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Abstract
Several influential leaders in the field of Artificial Intelligence argue that something is missing in
the current Deep Learning approach: causal understanding. In the field of causal reasoning, mod-
els that quantify the causal effect of some variable on another are developed. This thesis offers an
overview of the field, a comparison of several estimators, including an extension to the X-Learner
coined X-Learner++ and an ensemble consisting of three estimators. The comparison is done on
the semi-synthetic IHDP dataset. Furthermore, a medical dataset to investigate the effect of prophy-
lactic treatment on Venous Thromboembolism (VTE) incidence is analyzed and compared to a peer-
reviewed meta-analysis. The best-performing estimator in the IHDP dataset is the Augmented Inverse
Probability Weighting (AIPW) estimator and the X-Learner++ with an error of -0.09. In the medical
data set, the ensemble approach worked best when compared to the meta-analysis with an error of
0.51%. The thesis introduces the causal reasoning methodology to the realm of orthopaedics, and
establishes trust by successfully emulating an existing meta-analysis. Furthermore, we establish that
the estimators, and the developed error correction for the X-Learner, work well on the semi-synthetic
dataset.
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1 Introduction

The Deep Learning (DL) revolution has had an immense impact on the field of Artificial Intelligence
(AI), particularly in pattern recognition. It has enabled self-driving cars [1], sophisticated language
models [2, 3], and a new age of digital art [4, 5]. The progress of learning-based AI led Rich Sutton
to learn and publish ’the Bitter Lesson’ [6], in which he argues that ’building in [AI systems] how we
think we think does not work in the long run’. In Suttons opinion, rule-based AI will never exceed
learning-based AI in the long term due to exponentially falling costs per unit compute, as Moore’s
law prescribes.

Yet, several influential leaders in the field of AI are critical of the success and are suspecting a missing
element in the approach. Joshua Tenenbaum states that pattern recognition is important in developing
intelligent systems, but that there is more to an intelligent system than simply recognizing patterns
[7]. Furthermore, Judea Pearl thinks that the notion underlying deep learning that everything can
be learned from data is insufficient. Additionally, Pearl claims, causal reasoning and understanding
is required to bridge the gap between pattern recognition and intelligence [7, 8]. Schölkopf and
Kügelgen (2022) argue that the causal view is a relevant building block to address open problems in
the field, specifically concerning robustness and generalizability beyond the training distribution [9].

Current state-of-the-art models rely on statistical learning theory, and the assumption that the test data
is independent and identically distributed (i.i.d.) compared to the training data. If this assumption
is violated, learning guarantees cease to hold [9]. The science of causality attempts to increase the
robustness of violations of this assumption by intervening on the training data, which is equivalent to
a distribution shift.

Interventions are common in many fields, such as agriculture, economics, epidemiology, and medicine
in general. Therefore, much work on the evaluation of an intervention, or causal reasoning, has been
done in these fields [10, 11, 12, 13, 14]. The gold standard to answer interventional questions such
as ’How effective is the new drug T in treating disease Y ?’ is the randomized control trial (RCT).
In theory, the random assignment of a population to a treatment and non-treatment group removes
all potential confounding, and, thereby, all third variables that may explain the effect on the disease.
Yet, conducting RCTs is expensive, time intensive, and can be unethical to conduct. Causal reasoning
offers a methodology to emulate such RCTs from observational data.

Many estimators to measure the effect of an intervention have been developed [11, 15, 16, 17, 18]
but the result can hardly be verified. This is because causal reasoning strives to compare the same
unit in two inherently different, and mutually exclusive situations: one in which the unit received the
treatment to one in which the unit did not receive the treatment. A ground truth to calculate classical
metrics like accuracy or mean-squared-error is hence not available. This was coined the ”fundamental
problem of causal inference” [19]. In this Master project, I suggest an error correction to the X-
Learner [16] coined the X-Learner++. This extension tests the induced error after an imputation step
by using the imputed values to predict the observed values. Furthermore, an ensemble approach that
combines multiple estimators is evaluated.

Due to the absence of a ground truth, semi-synthetic datasets with simulated outcomes are popular
tools in causal reasoning to evaluate estimators. To showcase the effectiveness of the X-Learner++,
the ensemble, and three singleton estimators, the effect of an intervention aimed at improving the
cognitive function of infants is evaluated [20]. This dataset has simulated outcomes, which makes a
comparison to the ground truth possible.
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When applying causal reasoning estimators to real-world medical datasets, such luxury is not avail-
able. Yet, it is possible to compare the result of an estimator to an already published RCT, which
the model should emulate. Therefore, this thesis emulates an RCT on the efficacy of prophylactic
treatment for Venous Thromboembolism (VTE), the formation of potentially lethal blood clots, after
an isolated ankle fracture. The medical problem statement is explained in Section 3.2.2 and in [21].
The results are then compared to an already existing RCT to establish trust in the performance of the
estimators. Then, the treatment effect for two sub-populations is calculated to investigate the effect of
Statins, a widely consumed drug in cardiovascular patients, on the efficacy of VTE prophylaxis. This
effort resembles one of the first attempts to apply causal reasoning in the realm of orthopaedics.

This work was created at the SORG and FARIL research collaborative at the Harvard Medical School
in Boston. I stayed there for eight months and was supervised by Dr. Hamid Ghaednia and Dr. Soheil
Ashkani-Esfahani. The project was partly fundeded by the Marco Polo grant from the University of
Groningen. Parts of this work are currently under review at the Journal of Orthopaedic Research.

1.1 Research Questions
To summarize, this thesis focuses on the following problems:

Theoretical Research Questions

Q1. Does the error correction extension to the X-Learner reduce
the error in the estimation of causal effects?

Q2. Does an ensemble of multiple estimators have less error
than any of the estimators has on its own?

Medical Research Questions

Q3. Does the causal effect of VTE prophylaxis on VTE incidence coincide
with the results of a meta-analysis of RCTs on the same topic?

Q4. What is the effect of Statins on the efficacy of VTE prophylaxis
on the VTE incidence?

1.2 Thesis Outline
Section 2 explains the science of causality in depth with a focus on causal reasoning. Then, Section 3
introduces the estimators under investigation in this thesis, including the extension to the X-Learner.
Section 3 also contains a description of the datasets on which causal effects are estimated, the medical
problem statement, and a variety of applied methods. Section 4 contains specific guidelines on how
the experiments are set up. Section 5 contains an overview of the results on the different datasets.
Thereafter, the results are discussed in Section 6. Last, a conclusion is drawn, the contributions of
this thesis are summarized, and paths for future research are outlined in Section 7.
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2 Background

The following Section explains the dissimilarities between conventional statistics and causality, in-
cluding an overview of the prevalent causal frameworks and independence assumptions necessary for
interventions. The explanation provided follows [9].

2.1 From Statistical to Causal Models

The success of machine learning (ML) can be accounted for by the unprecedented availability of
large data sets, the flexibility of modern ML models, and the computing power available today. The
combination of these three factors enables the ML models to approximate complex functions by
tuning the many available parameters on many examples in a reasonable amount of time. Furthermore,
current approaches rely on the assumption that the data encountered in training and deployment is
independent and identically distributed (i.i.d.), which is crucial for performance.

When the i.i.d. assumption is violated, general statistical learning guarantees cease to hold. For in-
stance, vision systems can be grossly misled by adversarial attacks [22]. These attacks, invisible to
the human eye, may lead a street sign detection model to predict, with high accuracy, the wrong street
sign, or even the wrong speed. Furthermore, another object detection model can be misled by present-
ing the target object, which is normally recognized accurately, in an unfamiliar environment. These
examples highlight the need to construct systems that do not solely rely on statistical dependencies.
Causality provides a framework for distributional shifts, and, hence, the means to reason outside of
the known.

The old statistical mantra that correlation is not causation must be addressed when discussing causal-
ity. A prominent example that illustrates this mantra is the positive correlation between Nobel prizes
and chocolate consumption per capita [23]. These so-called spurious correlations can not reasonably
be assumed to be causing one another. As the example suggests, the correlation seems insufficient
to infer causation. But what does ”causation” mean? Is there a connection between correlation and
causation? And what is sufficient to infer causality?

In this Master project, a definition of causality in terms of manipulability and intervention is adopted.

Definition 3.1 (Causal Effect). A random variable (RV) X has a causal effect on a random variable Y
if there exist at least two values of X, x and x′ where x ̸= x′ s.t. the distribution of Y after intervening
on X and setting it to x differs from the distribution of Y after setting X to x′.

In other words, if the value of some RV X is changed from value x to x′, and there is no change in
the RV Y , X does not have a causal effect on Y . For instance, when a new drug is tested in human
trials, it is expected that intervening on one group by giving them the new drug (X = x) will reduce
the severity of some disease, compared to the group that has not received the drug (X = x′). While this
example assumes two different groups, causal inference attempts to emulate such conditions based on
observational data.

Machine learning models learn the response in the RV Y from individuals with similar levels of
confounding and different levels of X (e.g. x and x′). These models are used to impute how an
individual’s RV Y would have changed if the RV X took another value. Specifically, every individual
that has X = x and some value of Y is compared to the same individual after an intervention that
sets X = x′. This intervention is simulated by setting the RV X to x′ manually. Then, previously
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trained models that learned the relationship between individuals with X = x′ and Y impute the current
individual’s response to Y , if that individual had X = x′, instead of the observed X = x.

To illustrate this concept further, assume two different genes XA and XB, which correlate with equal
magnitude with the phenotype Y . When intervening on both genes by knocking them out, the pheno-
type only changes after the intervention on gene XA, not after knocking out gene XB. Therefore, XA
has a causal effect on Y , while the correlation between XB and Y stems from a different (confounded)
causal structure. These causal relationships are usually represented using causal graphs, which are
directed acyclic graphs (DAGs) whose arrows indicate a direct causal effect.

While XB is not a direct cause of Y , the correlation is a by-product of the causal structure determining
both, XB and Y . This connection between correlation and causation was termed the Common Cause
Principle by Reichenbach [24]:

Principle 3.1 (Common Cause). If two RVs X and Y are statistically dependent (X ̸⊥⊥ Y), then there
exists an RV Z which causally influences both of them and which explains all their dependence in the
sense of rendering them conditionally independent (X ⊥⊥ Y | Z). As a special case, Z may coincide
with X or Y.

The example of Nobel laureates X and chocolate consumption per capita Y illustrates this finding.
While it is reasonable to assume that neither chocolate consumption makes Nobel laureates, nor
does Nobel laureates make people eat more chocolate, a common cause Z may explain the observed
correlation. Specifically, the prosperity of a country could drive the scientific success of its people,
and enable more luxury goods (such as chocolate) to be consumed per capita. Therefore, the economic
standing resembles a confounder Z, which causes both, more people becoming Nobel laureates, and
more chocolate consumed.

Identifying the common cause requires background knowledge or additional assumptions, as it can
not be passively observed. The observational distributions over X and Y can be explained in the case
of X causing Y , Y causing X , and a common cause Z that causes both.

While correlation is useful in some scenarios, and causal inference in others, the field of medicine can
profit from these insights. Treating a patient is a paradigmatic example of an intervention to influence
a certain outcome. Causal inference can hence be used to develop more personalized medicine, to
evaluate the efficacy of a treatment for sub-populations, and on a larger scale than an RCT allows.
However, if we want to answer interventional questions, such as which treatment regiment and dosage
are the most effective for this particular patient, more than just correlation is required: a causal model.

2.2 Causal Modeling Frameworks
There are multiple, co-existing approaches to causal modeling, of which two will be described in this
section: the Causal Graphical Model (CGM), and the Potential Outcomes (PO) framework. First,
the CGM is an illustrative framework that combines observed variable distributions with a directed
graph, which offers an intuitive approach to causal inference. Second, the PO framework is popular
in epidemiology and most appropriate for the medical application discussed in this thesis.

Causal Graphical Models (CGM) Directed graphical models are widely known as Bayesian Net-
works [25], which compactly represent joint probability distributions by graphically representing the
dependencies between variables. But a causal interpretation of such a model requires a minor adap-
tation. When the edges in the directed, acyclic model determine the direction of the causal effect



Chapter 2 BACKGROUND 11

between two variables, we refer to them as CGMs [26].

Definition 4.1 (CGM). A CGM M = (G, p) over n random variables X1, ...,Xn consists of: (i) a
directed acyclic graph (DAG) G in which directed edges (X j −→ Xi) represent a direct causal effect of
X j on Xi; and (ii) a joint distribution p(X1, ...,Xn) which is Markovian w.r.t. G:

p(X1, ...,Xn) =
n

∏
i=1

p(Xi|PAi), (1)

where PAi = {X j : (X j −→ Xi ∈ G} denotes the set of parents, or direct causes, of Xi in G [9].

This is called the causal (or disentangled) factorization and is equivalent to the Causal Markov con-
dition:

Definition 4.2 (Causal Markov condition). A distribution p satisfies the causal Markov condition
w.r.t. a DAG G if every variable is conditionally independent of its non-descendants in G given its
parents in G.

The causal edges of a CGM allow for determining the effect of interventions on an outcome variable.
Generally, intervening on a variable means forcing it to take on a certain value. Thereby, the inter-
vened upon variable is not caused by anything other than the intervention. Hence, it is graphically
equivalent to deleting all the incoming edges to the variable. For instance, knocking out a gene means
that it becomes independent of the regulatory mechanisms that caused its activation previously. The
inactivity of the gene is now only caused by the intervention itself. Contrary, conditioning on the
activity of the gene enables us to passively observe which conditions drive the activation of the gene.

Interventions were mathematically defined by Pearl’s [27] do-operator. The notation do(X = x)
denotes the intervention that sets the RV X to the constant x. As this intervention removes all causes
of it, the original graph G is modified s.t. the incoming edges into the intervened variable X are
removed. This process was coined graph surgery [26]. The post-intervention graph GM enables
answering interventional queries using probabilistic inference. While CGMs are intuitive and offer
a conceptually simple approach to interventional reasoning and inference, counterfactual reasoning
can not be solved with them. For that purpose, Structural Causal Models (SCMs), or the Potential
Outcomes (PO) framework can be utilized. This thesis will focus on the PO framework due to its
popularity in epidemiology and the thesis’ medical application.

Potential Outcomes (PO) The PO framework was first developed in randomized agricultural exper-
iments [28], and later extended to observational studies [18]. Nowadays, it is used mostly in statistics
and epidemiology. The popularity in epidemiology is unsurprising when considering the terminology:
usually, the goal is to quantify the causal effect of a binary treatment variable T , where T = 1 and
T = 0 indicate the treatment and control group respectively, on an outcome variable Y . This outcome
variable is usually a measure of health.

Another interpretation of counterfactuals, which the PO framework tries to model, is to view them as
missing data. The general notation of POs is Yi(t), which captures the outcome Y of individual i if
they received treatment t. In the binary treatment case, one of the two POs is the observed factual,
while the other is the unobserved counterfactual. The POs are considered fixed quantities for every
individual i, and are therefore deterministic quantities. The randomness in the observed outcome Y
arises from randomness in the treatment assignment:
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Yi = TYi(1)+(1−T )Yi(0). (2)

The clinically meaningful individual treatment effect (ITE) can hypothetically be used to determine
the treatment regiment of an individual i in the binary treatment condition is defined as:

τi = Yi(1)−Yi(0). (3)

Though, the ”fundamental problem of causal inference” [19] states that one of these two POs remains
the unobserved counterfactual:

YCF
i = (1−T )Yi(1)+TYi(0). (4)

Therefore, τi is unidentifiable without further assumptions. In other words, it can not be directly
computed from data [9].

The following two assumptions remained implicit in Equations 2 and 4:

Assumption 3.1 Stable unit treatment value (SUTVA). The observation of one individual (i.e., unit)
should be unaffected by the particular assignment of treatment to the other individuals [29].

Assumption 3.2 Consistency. If individual i receives treatment t, then the observed outcome is
Yi = Yi(t), i.e., the potential outcome for t [9].

Assumption 3.1 means that (i) there is no interference between the individuals, and (ii) the treatment
level is constant within the treatment and control groups, which leads to well-defined POs. For in-
stance, if the treated group received a medication, it is important that all individuals received the same
dosage (or treatment level) of this medication. Generally, this assumption enables us to view the
individual units as independently sampled from the population.

Previously, POs were defined as deterministic quantities, although the study of complex subjects such
as humans does not allow full characterization of the unit. Since this missing information induces un-
certainty, POs are often defined as RVs. Generally, the confounders xi of an individual i are observed
and the expected POs are subject to reasoning by estimation of the expectation E[Y (1), Y (0) | x] from
data.

Another assumption in the PO framework is that no confounders remain unobserved, which is equiv-
alent to the Markov condition (Defn. 4.2) for CGMs. In the PO framework, this assumption of no
hidden confounding between treatment and outcome is named conditional ignorability.

Assumption 2.3 Conditional Ignorability. Given a treatment T ∈ {0,1}, POs Y(0), Y(1), and observed
covariates X, which cause treatment and outcome, we have:

Y (0)⊥⊥ T | W and Y (1)⊥⊥ T | W, (5)

where ⊥⊥ indicates the independence between Y and T given the adjustment set W . Conditional Ignor-
ability is sometimes called Unconfoundedness because all relevant confounders to achieve conditional
independence must be observed. If there are unobserved variables, which make T and Y dependent,
the estimation of a treatment effect will be biased. Note that this is an untestable assumption since
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there may always be an unobserved third variable. As Assumption 2.3 suggests, the PO framework is
targeted at investigating the (confounded) effect of some binary treatment on an outcome. Therefore,
it is mostly used in causal reasoning, the main topic of this thesis.

2.3 Causal Reasoning
Causal reasoning aims at the quantification of causal relationships. This process requires two distinct
steps: (i) the identification of the causal estimand with observable data; and (ii) the estimation of the
causal effect using the data. The identification step aims at reducing a causal estimand to a statistical
estimand. A causal estimand contains a do-operator and describes an intervention, while a statistical
estimand is computable from observed conditional probabilities. In essence, identification entails se-
lecting the variables to include in the estimation such that (s.t.) the result of an intervention can be
computed based on conditional probabilities. Specifically, the graphical structure of the causal graph
is investigated, and confounders that fulfill some graphical conditions are included in an adjustment
set W with the aim of making T and Y conditionally independent. After selecting a sufficient ad-
justment set W , the statistical estimand is identifiable from the causal estimand and the causal effect
can be estimated. Before the conditions for the adjustment set W are explained, let us define what
we want to estimate. Generally, the causal effect consists of a difference in treatment effects and is
estimated by contrasting two interventions.

Definition 3.1 Treatment effects. The conditional average treatment effect (CATE) splits the sample
based on an RV x, and calculates a treatment effect for every subsample. Note that the RV x should
be discrete as splitting a continuous variable will result in a uninformative abundance of subgroups.
In case of an continuous RV x, it is recommended to create meaningful ranges and converting the
continuous variable to a discrete variable using those ranges. The CATE is defined as

τ(x) = E[Y | x,do(T = 1)] − E[Y | x,do(T = 0)] = E[Y (1) − Y (0) | x]. (6)

The average treatment effect (ATE) is, as the name suggests, defined as the population average of the
CATE,

τ = E[Y | do(T = 1)] − E[Y | do(T = 0)] = E[Y (1) − Y (0)]. (7)

There is a clear conceptual difference between the ITE (Equation 3), and the CATE (Equation 6).
While the ITE refers to the treatment effect on the unit level, the CATE is the averaged treatment
effect for a certain subpopulation, e.g. a Body-Mass-Index (BMI) above 30 in male individuals.
While conceptually different, the CATE is used as an approximation of the ITE by calculating the
CATE conditioned on the individual’s features xi.

The do-operator in the Equations for the (C)ATE (Equations 6, 7) indicates that we aim at the esti-
mation of interventional processes. Interventions are inherently different from simply conditioning
on T . Conditioning entails restricting the available observational data to the comparison between
sub-populations that did (P(Y |T = 1)) or did not (P(Y |T = 0)) receive the treatment. Contrary, in-
terventions set the intervened upon treatment variable to a constant for the whole population [30].
This is possible if the treatment selection does not have any causes, which is graphically equivalent
to deleting the incoming edges to T , and to conditional independence between T and Y . Achieving
this state by selecting a sufficient adjustment set W to make T and Y conditionally independent is the
goal of the identification step.



14 Chapter 2 BACKGROUND

The notational differences are as follows. In conditioning, some variable T is observed to take a
value t, so P(Y = y|T = t) is the observed probability that Y = y in the subset of the data where
T = t. Contrary, the expression P(Y = y|do(T = t)) reflects the probability of Y = y when T is set to
the constant t. The latter reflects the population distribution of Y if the whole sample had the value
of T fixed at t. The two notations can also be combined: P(Y = y|do(T = t),X = x) describes the
conditional probability of Y = y in the subset of the data where X = x, in the distribution that results
from the intervention do(T = t) [8]. This results in a CATE estimate (Equation 6).

(a) Graphical representation of
the state in observational data:
The confounders influence the
treatment selection.

(b) Graphical representation of
the state in an RCT (Ignorability
is satisfied).

Figure 1: Graphical representation of observational data and RCT data.

This intervention procedure affects the underlying probability function P. The original graph G (Fig-
ure 1a) with probability function P is manipulated to delete incoming edges to the treatment node T
on which we want to intervene. The manipulated probability Pm is connected to the graph Gm (Figure
1b). While the manipulation changes P, two invariance relations hold. First, the marginal probability
P(X = x) remains unchanged because it does not have any parents, and it does not depend on T .
Second, the conditional probability P(Y = y|X = x,T = t) does not change because the deliberate
manipulation of T does not change the process by which Y reacts to T [8]. The following holds:

P(X = x) = Pm(X = x)
and

P(Y |X = x,T = t) = Pm(Y |X = x,T = t)

Furthermore, since X is independent of T in the manipulated graph Gm, Pm(X = x|T = t) = Pm(X =
x) = P(X = x). Combining the above relations yields:

P(Y = y|do(T = t)) = Pm(Y = y|T = t) (8)

= ∑
x

Pm(Y = y|T = t,X = x)Pm(X = x|T = t) (9)

= ∑
x

Pm(Y = y|T = t,X = x)Pm(X = x) (10)

= ∑
x

P(T = t,Y = y,X = x)
P(T = t|X = x)

. (11)

The right-hand side (RHS) of Equation 8 resembles the relationship we want to model by definition,
i.e. the goal of causal inference is to evaluate the manipulated probability Pm of Y = y, given that T = t.
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To achieve this, an adjustment set W is necessary, which makes T and Y conditionally independent.
Specifically, this is an application of Bayes’ rule. The process of identifying this adjustment set
from all confounders is explained below. Equation 10 is called the adjustment formula and results
from the fact that in the manipulated graph Gm, T , and X are independent. Furthermore, multiplying
and dividing the summand in Equation 10 by the propensity score P(T = t|X = x) yields Equation
11. Since Equations 10 and 11 contain only conditional probabilities, they can be computed from
observational data [8]. Additionally, the conditional probability P(T = t|X = x), called the propensity
score, is sufficient to calculate the causal effect from the joint distribution P(T = t,Y = y,X = x).

This relates to the general method of g-computation, which truncates the factorization defined in
Equation 1 by the parent nodes of the intervened treatment variable. I.e., the product decomposition
P(X1, ...,Xn) = ∏i P(Xi|PAi) is truncated by excluding all nodes xi that are in the set of intervention
variables T . This leads to

P(X1 = x1, ...,Xn = xn|do(T )) = ∏
i ̸∈T

P(Xi|PAi). (12)

Identification The causal diagrams of real-world processes are never as simple as the toy graph in
Figure 1a. Therefore, different criteria for the identification of a sufficient adjustment set W , s.t. T and
Y are conditionally independent, were developed. This enables us to reduce a causal estimand, which
is a formula that describes an intervention with the do-operator (LHS Equation 8), to a statistical
estimand (Equation 11). The statistical estimand is a formula that contains only conditional proba-
bilities, and can therefore be estimated from observational data. After the assumptions are met, and
the statistical estimand is identified by using the sufficient adjustment set W , the remaining statistical
association is causation.

One of these identification methods is called the Backdoor criterion. For a discussion of different
methods see [8]. First, let us define the spurious association we strive to control for when identifying
a causal estimand.

Spurious association flows through chains and forks that are not conditioned on, and through colliders,
if they are conditioned on [31]. Figure 2 shows three DAGs, the nodes of which are RVs. In Figure
2a, the variables X1 and X3 are statistically dependent through X2, and conditioning on the chain node
X2 would make them statistically independent. Similarly, in Figure 2b, X1 and X3 are statistically
dependent and can be made independent by conditioning on the fork node X2. In contrast, X1, and X3
are statistically independent in Figure 2c because node X2 is a collider. In other words, the statistical
dependence between X1 and X3 is blocked by node X2. They are made statistically dependent by
conditioning on the collider X2. This can be summarized in 3 rules:

1. Conditional Independence in Chains Two variables, X1 and X3, are conditionally independent
given X2, if there is only one unidirectional path between X1 and X3 and X2 is any set of variables
that intercepts that path. ([8], p. 39).

2. Conditional Independence in Forks If a variable X2 is a common cause of variables X1 and
X3, and there is only one path between X1 and X3, then X1 and X3 are independent conditional
on X2. ([8], p. 40).

3. Conditional Independence in Colliders If a variable X2 is the collision node between two
variables X1 and X3, and there is only one path between X1 and X3, then X1 and X3 are uncon-
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ditionally independent but are dependent conditional on X2 and any descendants of X3. ([8], p.
44).

(a) Association flows from X1 to
X3 through the chain created by
X2

(b) Association flows from X1 to
X3 through the fork created by
X2.

(c) A collider blocks the flow of
association.

Figure 2: An overview of the flow of association in DAGs.

These conditional independence relations are combined in the Backdoor criterion, a selection of
graphical conditions that, when fulfilled, enable the identification of the computable, statistical es-
timand from the causal estimand. This conditioning set W has to consist of RVs of the Causal Graph,
such that the conditions in the Backdoor criterion (Definition 3.1) are satisfied. The set W consists of
the common causes for both T and Y . Graphically, conditioning on W is equivalent to deleting the
incoming edges to T (see Figure 1b). Additionally, the Positivity assumption (Assumption 3.1) must
be satisfied.

Definition 3.2 Backdoor Criterion. In a DAG G with an ordered pair of variables (T , Y ), the
backdoor criterion is satisfied by a set of variables W that adheres to the following [8]:

1. W blocks all paths between the ordered pair (T, Y) that contains an arrow into T, and is not the
direct arrow from T into Y. This blocking is achieved by conditioning a variable along the path.

2. W does not contain any descendants of T.

Assumption 3.1 Positivity. For all subgroups of the data with a certain level of confounding (i.e. if
P(W=w) > 0), the probability of being selected for treatment can not be 0 or 1 (i.e. 0 < P(T = 1|W =
w)< 1).

Now let us illustrate the necessity of causal assumptions using a popular statistical phenomenon.

Simpson’s Paradox and Covid-19 Simpson’s paradox refers to the observation that aggregating data
on subpopulations can lead to opposite trends (and thus opposite conclusions) when subpopulations
are considered separately [32]. We observed an excellent example of this during the Covid-19 pan-
demic when we combined case fatality rates (CFRs), i.e., the proportion of confirmed Covid-19 cases
that are fatal, across different countries and age groups, as shown in Figure 3 [33]: For all age groups,
CFRs are lower in Italy than in China, but the overall CFR in Italy is higher.

How can this pattern be explained? The demographics of the cases (see Figure 3, right) are quite
different in the two countries, i.e., there is a statistical correlation between country and age. Italy,
in particular, had a much higher proportion of cases in older patients, who generally have a higher
risk of dying from Covid-19 (see Figure 3, left). While this explains the phenomenon statistically, it
may seem puzzling, as it defies causal intuition. Humans seem to naturally extrapolate conditional
probabilities to be interpreted as causal effects, which can lead to contradictory conclusions, and
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Figure 3: Left: Case fatality rates (CFRs) of Covid-19 in China and Italy. It includes cases reported
until early 2020 (see legend). For every group, CFRs in Italy are lower compared to China but
the aggregated CFR is higher in Italy. This is an example of Simpson’s paradox. Right: The case
demographics for China and Italy. While in China most cases were recorded for 40-49 year-olds, in
Italy, the two oldest age groups (70-80+) were the most prevalent. This figure is from [33].

raises the question: How is it possible that the disease in Italy is less deadly for the young, less deadly
for the elderly, but more deadly for the people as a whole? For this reason, the inversion of the
probabilities in Figure 3 is called a ”paradox” [34, 35].

If one considers the country as a treatment whose causal effect on mortality is of interest, then a causal
diagram is necessary to decide how to treat covariates, such as age, that are statistically associated
with the treatment, e.g., whether to stratify (i.e., adjust) for age or not. This also explains why RCTs
[36] are the gold standard for causal inference: randomization ensures that the confounding variables
can not have an outcome on the treatment variable, i.e., someone’s age does not determine whether or
not they (do not) receive the treatment. This ensures that there is no potential bias. However, RCTs
are costly and sometimes unethical, so causal inferences are usually based on observational data only.
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3 Methods

The following section serves multiple purposes. First, the estimators used to compute the causal
effects are introduced. Second, an extension to one of these estimators, the X-learner++, is described.
Third, the semi-synthetic dataset, which enables us to verify the estimator performance, is explained.
Then, the medical question this thesis aims to answer is stated. Last, we describe the medical dataset
under investigation.

3.1 Estimators

This section discusses different estimators for estimating causal effects from observational data. The
chosen estimators are Inverse Probability Weighting, and Conditional Outcome Estimation, which is
combined in a doubly robust estimator. Furthermore, the X-Learner and debiased Machine Learning
(ML) are discussed.

3.1.1 Inverse Probability Weighting (IPW)

The concept of truncation (Equation 12) becomes apparent when comparing the formula for the pre-
intervention distribution P(Y = y,T = t,X = x) (Equation 13) of Graph G in Figure 1a to the adjust-
ment formula. Equation 13 differs from Equation 10 only with respect to the term P(T |X = x).

P(Y = y,T = t,X = x) = ∑
x

P(Y |T = t,X = x)P(T |X = x)P(X = x) (13)

After deleting the incoming edge to T in the manipulated Graph Gm in Figure 1b, T does not have
any parents. In other words, in this manipulated Graph, nothing causes T . This simple relationship
between the pre-intervention probability distribution P, and the post-intervention probability distri-
bution Pm enables us to calculate Pm given a certain intervention by multiplying Equation 13 by the
inverse 1

P(T |X=x) of the propensity score (Equation 11).

The relationship between the pre- and post-intervention probability distribution, P and Pm respec-
tively, has multiple advantages. While the adjustment formula works reliably, increasing the dimen-
sionality of the adjustment set W may bear problems. When W consists of multiple variables, that
all can take many values, the summation of all values of W encounters computational and estimation
difficulties. For instance, the data in specific strata W = w may be too small to allow for reliable
estimation. Given a reliable estimate of the function P(T = t|W = w), and given that W satisfies the
Backdoor criterion, the available data can be re-weighted to act as a sample drawn from the post-
intervention distribution Pm. This artificial data can then be used to evaluate P(Y |do(t)) by counting
frequencies for Y = y in the sample where T = t.

This method is best understood using an example, which follows [8] and is taken from [37]. In this
example, Y is a binary RV that indicates whether a patient recovered or not, the binary RV T indicates
if a drug was administered, and the RV W indicates the gender of the patient. We assume that W
satisfies ignorability and that the propensity score P(T |W ) satisfies positivity.
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T Y W % of population

Yes Yes Male 0.116
Yes Yes Female 0.274
Yes No Male 0.01
Yes No Female 0.101
No Yes Male 0.334
No Yes Female 0.079
No No Male 0.051
No No Female 0.036

Table 1: An example of a study that investigates the effect of a treatment on recovery based on gender.
T indicates if the drug was administered, Y if the patient recovered, and W indicates the gender of the
patient.

To estimate P(Y |do(T = yes)) from the data, the propensity score P(T |W = w) for each value of W
is calculated. Based on Table 1, this results in the following calculation:

P(T = yes|W = Male) =
0.116+0.01

0.116+0.01+0.334+0.051
= 0.233

P(T = yes|W = Female) =
0.274+0.101

0.274+0.101+0.079+0.036
= 0.765

The probabilities calculated above are now used to re-weight the corresponding gender rows in the
strata that did receive the treatment (T = Yes) by the inverse of these probabilities. Specifically, rows
1 and 3 are weighted by 1

0.233 , while rows 2 and 4 are weighted by 1
0.765 . This probability distribution

in Table 2 reflects the post-intervention distribution Pm. Based on the data, the post-intervention
probability of recovery can now be computed. If everyone in the population was given the drug
(T = Yes), the probability of recovery is:

P(Y = yes|do(T = yes)) = 0.476+0.357 = 0.833

T Y W % of population

Yes Yes Male 0.476
Yes Yes Female 0.357
Yes No Male 0.041
Yes No Female 0.132

Table 2: The post-intervention distribution of the intervention do(T =Yes) in the population in Table
13. The distribution was determined using the IPW method.

IPW also allows us to calculate the ATE. This is done in two steps. First, the observations in the
sample that did get the treatment T = 1 are re-weighted by the inverse of the propensity score P(T |W ).
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Similarly, the observations that did not get the treatment T = 0 are multiplied by the inverse of 1−
P(T |W ). Second, the empirical mean is calculated and the two results are subtracted from one another.
This results in Equation 14 [17].

ˆAT EIPW =
1
n

n

∑
i=1

XiYi

P̂(T |W )
− (1−Xi)Yi

(1− P̂(T |W ))
(14)

This estimator suffers from poor sample properties when the propensity score approaches 0 or 1 for
observations in the sample. If an observation i in the sample received the treatment (T =1) and has a
propensity score close to 0, the contribution of this data point will be more extreme, to the point where
the contribution goes beyond the possible range for the ATE. This can be fixed by renormalizing the
propensity scores such that they sum up to 1 [38, 39]. This results in Equation 15.

ˆAT EIPW∗ =
(1

n

n

∑
i=1

Xi

P̂(T |W )

)−1 1
n

n

∑
i=1

XiYi

P̂(T |W )
−
(1

n

n

∑
i=1

1−Xi

1− P̂(T |W )

)−1 1
n

n

∑
i=1

(1−Xi)Yi

(1− P̂(T |W ))
(15)

3.1.2 Conditional Outcome Estimation (COM)

Another approach to estimating the ATE is to fit a machine learning model to estimate the conditional
expectation E[Y |do(T = t),W ] as a function of W , by taking the empirical mean µ̂ over all data points
n. This assumes that W is a sufficient adjustment set that satisfies the backdoor criterion. This results
in the Equation

τ̂ =
1
n

n

∑
i=1

(µ̂(do(T = 1),wi)− µ̂(do(T = 0),wi)). (16)

Specifically, one single model is fit to regress the outcome Y on the treatment T and the set of con-
founders W on the original dataset. Thereafter, the data is intervened upon. In the binary treatment
case T ∈ [0,1], this creates two data sets that differ only in their value for T . The model trained on
the original data set is used to predict the two intervened data frames to estimate E[Y |do(T = 1)] and
E[Y |do(Y = 0)]. Since the only difference between the dataset is the value for T , the model may
ignore this subtle difference in the case of a high-dimensional adjustment set W . This would bias
the treatment effect towards zero since the results of both predictions is equal if the model ignores
the difference in the treatment variable T in the two data sets. This may be alleviated by fitting two
separate models, µ̂0 and µ̂1. Each model is only trained with the part of the data where T = 0 and
T = 1, respectively. This is called grouped COM estimation (GCOM). This approach suffers from
data inefficiency since only part of the data is used to train the models. Also, the more dimensions
W has, the more likely it gets that there is a lack of overlap between the part of the data that did get
the treatment, compared to the part that did not get the treatment. This may induce uncertainty in the
estimator and finite sample bias [40].

3.1.3 AIPW

The IPW and (G)COM estimators may both be misspecified. This means that the model has biased
coefficients and error terms. To alleviate this shortcoming, both estimators can be combined. As a
result, only one of the two estimators has to be specified correctly to make the result robust. For an
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explanation of why this is the case, see [12], p.178. This yields the doubly robust AIPW estimator in
Equation 17 [12].

τ̂ =
1
n

n

∑
i=1

(
Ti(Yi − µ̂1(Wi))

P̂(T |W )
+ µ̂1(Wi)

)
− 1

n

n

∑
i=1

(
(1−Ti)(Yi − µ̂0(Wi))

1− P̂(T |W )
+ µ̂0(Wi)

)
(17)

Where Y is a continuous outcome variable, T is a binary treatment variable, and µ̂1 is the regression
model trained on the part of the data where T = 1, µ̂0 for the part where T = 0, and P̂(T |W ) is the
estimation of the propensity score. If sample i was treated, the residuals between Yi and µ̂1(Wi) are
re-weighted by the estimated propensity score. Afterwards, the estimated value µ̂1(Wi) is added to the
re-weighted residuals, and the empirical mean over all i is computed.

Assuming ignorability and positivity, the bias of this estimator is small if either the GCOM or the
propensity score model is specified correctly. Specifically, for the first part of the equation, the bias
in large samples is

E[P(T |W )
( 1

P(T |W )
− 1

P∗(T |W )

)
(µ1(W )−µ∗1(W )]. (18)

Where P∗(T |W ) and µ∗1 represent the probability limits of the models. If the models are correctly
specified, P∗(T |W )=P(T |W ) and µ∗1=µ1. If one of the models is correctly specified, then either

1
P(T |W ) −

1
P∗(T |W ) = 0 or µ1(W )− µ∗1(W ) = 0, which results in the whole Equation 18 to be 0 due

to multiplication with 0. Hence, if either one of the models is correctly specified, the asymptotic bias
is zero [12].

3.1.4 X-Learner

The X-Learner [16] improves upon the data inefficiency of GCOM estimation by adding two more
steps. In the first step of the algorithm, two models µ̂0 and µ̂1 are trained to estimate the mean
outcomes in the portion of the data where T = 0 and T = 1 (Equations 19 and 20, respectively).
These are called the base learners of the first stage [16] and are equivalent to the GCOM estimators.

µ̂0 = Ê[Y |T = 0,W ] (19)

µ̂1 = Ê[Y |T = 1,W ] (20)

These models are then used to estimate the ITEs (Equation 3). To do this, the counterfactual values
are imputed using the relevant base learner of the first stage. That is, for every individual in the
portion of the sample where T = 1, the ITE is estimated using Equation 21. This is done by taking the
observed, factual value for Y , and predicting what the counterfactual outcome for Y would have been
if the individual had not received the treatment. The counterfactual is imputed using the model µ̂0,
which was trained on the portion of the data where T = 0. For every individual where T = 0, the ITE
is estimated using Equation 22. Here, the counterfactual is predicted by using the model µ̂1, which
was trained on the data where T = 1 to predict the counterfactual in the portion of the data where
T = 0.

τb = Yb − µ̂0(Wb) (21)
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τ j = µ̂1(Wj)−Yj (22)

The b in Equation 21 indicates the portion of the data where T = 1, while j in Equation 22 stands for
the portion of the data where T = 0. The next step is to train two more models coined as the base
learners of the second stage. First, the ITEs from Equation 21 are the response variable for a model
τ̂1(W ), based on the treatment group data (where T = 1). Similarly, a model τ̂1(W ) uses the results
from Equation 22 as the response variable and the confounders from the control group data (where
T = 0) as predictors. All models can be trained using any supervised learning algorithm that can cope
with non-linearity and high dimensionality.

Finally, the two second-stage base learners are combined to give a single CATE estimate. This is done
by weighting both base learners of the second stage by a function g(x) ∈ [0,1]. A suitable weighting
function is the propensity score [16], which yields

τ̂ = P̂(T |W )τ̂0(w)+(1− P̂(T |W ))τ̂1(w). (23)

3.1.5 X-Learner++

This thesis investigates an extension to the X-learner, which corresponds to an error correction and
was invented in this thesis. Specifically, the error in estimating the counterfactuals from the base
learners is quantified. After the counterfactuals are imputed using the models trained in Equations 19
and 20, two models ê0 and ê1 can be trained to predict the imputed counterfactuals µ̂0 and µ̂1 from the
confounders W , where T = 1 and T = 0, respectively.

ê0 = Ê[µ̂0(Wi)|T = 1,W ] (24)

ê1 = Ê[µ̂1(Wi)|T = 0,W ] (25)

For example, the model ê0 is trained on the part of the data where T = 1 to predict the outcome of
the model µ̂0(Wi). I.e., the model ê0 learns to predict the counterfactual Yc f (0) for the confounders
where T = 1. Thereafter, the model is used to predict the factual Y (0) from the confounders W where
T = 0. This prediction now yields values that can be subtracted from the observed factual to yield
an indication of the error in predicting the counterfactuals. This error is halved and added to each
counterfactual prediction to correct the error. The halving is because the error should occur twice,
once in the counterfactual prediction from the base learners, and once in the factual prediction of this
error correction.

E0i =
Y (0)i − ê0(Wi|T = 0))

2
(26)

E1i =
(Y (1)i − ê0(Wi|T = 1))

2
(27)

Now, the Equation for the estimation of the ITEs turns from Equation 21 and 22 into

τi = Yi − (µ̂0(Wi)+E0i), (28)
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and

τi = (µ̂1(Wi)+E1i)−Yi. (29)

The rest of the estimator remains the same. This error correction makes full use of the information
available to quantify the mistakes made in the counterfactual prediction.

3.1.6 Debiased Machine Learning

In causal inference, we strive to estimate the treatment effect from a high-dimensional set of variables
consisting of confounders and the treatment variable. Furthermore, the reduction of bias in this es-
timation is desirable. To this end, the Frisch-waugh-Lovell (FWL) theorem1 [42] is combined with
flexible ML methods to yield the debiased ML estimator. The FWL theorem reduces bias in the esti-
mation while the flexible ML methods are well suited to estimate high-dimensional data. To reduce
the risk of overfitting the ML models, cross-fitting is used. The combination of those two approaches
makes the estimator N− 1

2 consistent, where N is the sample size.

Importantly, the purpose of cross-fitting is different from cross-validation, even though the methods
are similar. In k-fold-cross-fitting, the dataset is split into k parts. Then, for each split, a model is
trained on the k-1 subsets of the data. This model is subsequently used to predict the out-of-fold
subset. This means that the ML models never predict any data they have encountered before, which
reduces the chance of overfitting. Note that in cross-validation, the out-of-fold predictions are used
to attain an unbiased estimate of how well the model performs. However, in cross-fitting, we solely
strive to get an unbiased prediction with a low likelihood of overfitting.

Debiased ML was developed to handle semi-parametric inference of a low-dimensional parameter θ0
from high-dimensional nuisance parameters η0 [15]. The method combines the Frisch-Waugh-Lovell
(FWL) theorem2 [42] with flexible ML methods, which are well suited to estimate high-dimensional
data. Generally, the FWL theorem and cross-fitting are used to reduce the bias induced by regulariza-
tion and overfitting of modern ML methods, which may hinder the estimator to be N− 1

2 consistent,
where N is the sample size.

Frisch-Waugh-Lovell Theorem Frisch, Waugh, and Lovell are credited3 with the discovery of an
interesting property of partial linear regression. This property is best demonstrated with an example.
Assume a linear regression model with two feature matrices, X1 and X2, then:

Ŷ = β̂1X1 + β̂2X2,

where β̂1 and β̂2 are row vectors that must be estimated to predict Y from the features X1 and X2.
Instead of estimating β1 directly, the following steps lead to the same results:

1. Regress Y on the second set of features X2:

Ŷ ∗ = γ̂1X2.

2. Regress X1, the first set of features on the second set of features X2:

X̂1 = γ̂2X2.
1see [41] for a short proof of the theorem.
2see [41] for a short proof of the theorem.
3Even though G. U. Luwe published the theorem 26 years prior [43] (section 9, page 184).
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3. Calculate the residuals:
X̃1 = X1 − X̂1,

and

Ỹ = Y − Ŷ ∗.

4. To yield β̂1, regress the outcome residuals Ỹ on the features residuals X̃1:

Ỹ = β̂1X̃1.

This generic case can be specified to suit the problem statement in causal inference by reducing the
set of features X1 to a single feature, the treatment variable T . In other words, to derive the treatment
effect, regression on residuals can be performed to yield the low-dimensional treatment parameter τ:

(Y − (Y ∼W ))∼ (T − (T ∼W )),

where ∼ indicates a regression model. Or, equivalently

Y −E[Y |W ] = τ(T −E[T |W ])+ ε,

where Y is the RV corresponding to the outcome, T is the treatment variable, and W is the set of
confounders that satisfies the Backdoor criterion (Definition 3.9). In essence, the AWL theorem
allows us to split the estimation of confounders to the treatment from the estimation of the causal
parameter τ. When the models are fitted with enough data, the result should be an unbiased estimate
of the treatment effect.

Debiasing with ML This Section follows [42]. Modern ML models are efficient function approxi-
mators. Their flexibility is well-suited to estimate the expectations mentioned in the equation above,
yielding

Y − M̂y(W ) = τ(T − M̂t(W ))+ ε,

where M̂y and M̂t are ML models that estimate E[Y |W ] and E[T |W ], respectively. After calculating
the residuals, the causal parameter τ can be estimated using a linear model, such as ordinary least
squares (OLS):

Ỹ = α+ τT̃ .

While the flexibility of ML models helps deal with the function approximation of non-linear, high-
dimensional nuisance parameters, it bears the risk of overfitting. In essence, an overfitted model
leads to a reduction in the variance of the residuals in either the outcome residuals Ỹ or the treatment
residuals T̃ . Consequently, if My or Mt are overfitted, the model captures the treatment effect or
makes it difficult to compare treatment levels respectively (see [15] for a rigorous explanation of the
problems of overfitting in this context). This issue can be overcome by using cross-fitting as described
above.

Following this procedure guarantees an asymptotically normal estimator, which allows the compu-
tation of valid confidence intervals. Furthermore, the estimator is approximately unbiased, and N− 1

2

consistent. For a more in-depth explanation with empirical examples, see [15].
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3.1.7 Ensemble

Another contribution of this thesis is the investigation of an ensemble of the four estimators. The
ensemble ATE is calculated by taking the arithmetic mean µ over all four results.

3.2 Estimation

The goal of this thesis is to estimate the ATE for two datasets. First, a semi-synthetic dataset based
on the Infant Health Development Program (IHDP). The IHDP is a randomized, clinical trial that
evaluates the efficacy of an early treatment to reduce the developmental and health problems of low
birth weight, and premature infants [20]. This covariate data was used to synthesize the outcomes
such that the evaluation of causal inference estimators is possible [44]. Second, a real-world dataset
that evaluates the efficacy of chemoprophylaxis for VTE after an ankle fracture is investigated. The
first dataset is meant to show the efficacy of the estimators at hand, while the second dataset resembles
one of the first applications of the causal inference methodology in the field of orthopaedics. For both
datasets, the best-performing models to estimate the outcome and the propensity score were identified
using a grid search approach as outlined in Section 4.2.

3.2.1 Semi-synthetic Dataset

The IHDP dataset resembles a semi-synthetic dataset that has real-world complexities, while the
outcomes are simulated. Therefore, access to the ground truth for the ATE is available. Since the
original dataset stems from the IHDP RCT from 1985, ignorability is satisfied and a causal diagram is
not necessary [44]. The IHDP experiment investigated the effect of high-quality child care and home
visits from a trained provider for infants that suffer from low birth weight or are born prematurely.
The measured outcome was cognitive test scores, which showed a large effect of the intervention in
the real dataset [45].

In the semi-synthetic dataset, there are 19 binary, and 6 continuous covariates in total [44]. For
instance, there are child measurement variables such as birth weight, head circumference, weeks born
preterm, birth order, firstborn, neonatal health index, sex, and twin status. Furthermore, pregnancy
behaviors are included such as whether cigarettes were smoked, alcohol was drunk, or drugs were
consumed. Last, descriptive variables of the mother at the time of birth were recorded. These include
age, maritial status, educational attainment, whether she worked during pregnancy, and whether she
received prenatal care.

To simulate an observational study from the experimental data, a non-random portion of the data was
discarded [44]. Specifically, the children with non-white mothers were excluded from the treatment
group. As a result, the treatment and control groups are not balanced. Thus, simple outcome com-
parisons would lead to biased estimates, whereas the estimators described above should be able to
estimate the correct ATE. After this exclusion, there are 139 children in the case group and 608 chil-
dren in the control group. Table 3 shows an overview of the class distribution in both datasets under
investigation.

For this dataset, the best model to predict the outcome was the Gradient Boosting Regressor [46]
with a learning rate of 0.01, a maximum depth of 2, and 1000 estimators. For the propensity score,
the best-performing model was the AdaBoost Classifier [47] with a learning rate of 0.4 and 500
estimators.
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Dataset
Groups IHDP VTE
Case 139 18.6% 239 20.3%

Control 608 81.4% 936 79.7%

Total 747 - 1175 -

Table 3: The distribution of treatment vs. control group for the ATE estimation in both, the IHDP and
the VTE dataset.

3.2.2 Medical Problem Statement

VTE is a leading cause of death after major orthopaedic surgery. It is a combination of two disorders:
deep vein thrombosis (DVT) and pulmonary embolism (PE), both of which can be lethal. The Surgeon
General to the United States of America (USA) declared VTE a public health concern since up to
600,000 people die each year in the USA [48].

The condition is difficult to detect in its early stages, and surgeons disagree on when to administer
chemoprophylaxis [49], i.e., the administration of anticoagulants, which makes the formation of blood
clots less likely but increases the chance of severe bleeding [50]. The disagreement is especially
apparent in isolated foot and ankle fractures. Specifically, patients not at risk of VTE are suggested
not to receive chemoprophylaxis due to the possible risk of bleeding adverse events (BAEs) [51, 52].

This thesis investigates the general effect of chemoprophylaxis on VTE incidence, and the conditional
average treatment effect, conditioned on prior use of Statins. Statins are the primary treatment for
hyperlipidemia, an increased level of fats in the blood. Many patients with cardiovascular disease
(cvd) consume Statins already. Furthermore, Statins are suspected to lower the risk of VTE, as shown
in two RCTs [53, 54]. However, the effect of Statins is not immediate and the combined effect of
chemoprophylaxis and Statin consumption remains unexplored. Therefore, the effect of Statins on
the efficacy of chemoprophylaxis is an open field of research.

3.2.3 Medical Dataset

The data was gathered using Mass General Orthopaedic Registry and the research patient data reg-
istry tool (RPDR). A total of 16,421 patients with ankle fractures were recruited retrospectively. All
these patients were visited in one of the three hospitals in the Mass General Brigham network includ-
ing Massachusetts General Hospital, Brigham and Women Hospital, and Newton Wellesley Hospital,
between January 2004 and June 2021. To hasten the process of screening the patients’ data an auto-
mated string search method was used to find patients who were suspect VTE or VTE was mentioned
in their records within 180 days after the ankle fracture. This resulted in 1,175 patients. Out of 1,175
patients, 239 had confirmed VTE 180 days after the incidence of ankle fracture. The control group
consists of 936 patients. Table 3 shows the class distribution. The inclusion criteria were:

1. Presence of an ankle fracture diagnosed by a physician and confirmed radiologically via X-ray
or CT scan

2. Age of 18 years or older

3. Symptomatic VTE confirmed by a clinician and through radiologic (Duplex ultrasound, CT
angiography, and/or angiography) and laboratory (D-Dimer) assessments



Chapter 3 METHODS 27

Figure 4: The causal diagram of the interaction between Statins, VTE chemoprophylaxis, and VTE.
The treatment is colored green, while the included variables are colored yellow.

The exclusion criterion is:

1. Patients who did not have a confirmed and symptomatic VTE or VTE occurred after 180 days
post-fracture.

All data and notes of the patients in every hospital encounter were manually screened via a structured
chart review and clinical documentation in order not to miss any findings or symptoms indicating
VTE or any complication that could affect the outcomes of our patients. Furthermore, the patients in
each group were split into two subgroups, one of which already consumed Statins, while the other did
not. An overview of the class distribution for the CATE estimation is presented in Table 4. Missing
data were imputed using the Multivariate Imputation by Chained Equations (MICE) technique [55].

For this dataset, the best model to predict the outcome was the AdaBoost Classifier [47] with a
learning rate of 0.1 and 500 estimators. For the propensity score, the best-performing model was the
Random Forest Classifier with a maximum depth of 50 and 5 estimators.

Dataset
Groups Statins no Statins
Case 50 11.2% 542 74.1%

Control 395 88.8% 189 25.9%

Total 445 - 731 -

Table 4: The distribution of treatment vs. control group for the CATE estimation in the VTE dataset.

To identify the variables necessary to satisfy the Backdoor criterion (Definition 3.1), physicians at
the SORG and FARIL collaborative research lab at Harvard Medical School conducted an internal
systematic review. This review aimed at identifying the causal structure of the interaction between
Statins, VTE chemoprophylaxis, and VTE. The result of this review is displayed in Figure 4. While
Age and BMI would already be a sufficient adjustment set, including all variables increased the pre-
dictive power of the model. Therefore, all variables were included in the analysis.

3.2.4 Cross-Fitting and Boostrapping

Each estimator under investigation in this thesis is asymptotically normal. Therefore, valid Confi-
dence intervals (CIs) can be constructed using bootstrapping. Hence, 5,000 samples were created
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from the original dataset by sampling with replacement. Then, the (C)ATE is calculated on every
sample. Furthermore, k-fold cross-fitting was implemented and used for the estimation of the data.
This is recommended as best practice to reduce the bias in the estimation of the causal effect [15, 56].



Chapter 4 EXPERIMENTAL SETUP 29

4 Experimental Setup
This Section describes the specific steps taken in the experiment process.

4.1 Tools and Technologies
Machine learning models and k-fold data splitters were imported from the scikit-learn library [57].
Also, the basic standardizer scale was used to standardize the continuous variables after sample split-
ting. Furthermore, the set of estimators was run on a Windows 11 Desktop computer with 32GB
RAM, an AMD Ryzen 9 5900 12-Core Processor, and a NVIDIA GeForce RTX 3080.

4.2 Experimental Configurations and Hyperparameter Optimization
The model selection and hyperparameter optimization for the ML models used in the estimation step
were combined in one large grid search. The models and hyperparameters under investigation are
displayed in Appendix Section B. All experiments were performed using the random seed 123 to
allow for reproducibility.

4.3 Performance Criteria
During the grid search, multiple scoring systems were used, depending on the predicted outcome. For
binary outcomes, the weighted F1-score was used to evaluate model performance. For instance, the
best propensity score model was selected based on the performance of classifying the binary treatment
variable. In the estimation step, however, predict proba is used to attain a continuous prediction
from a classifier. For the continuous outcomes, the negative mean squared error indicated model per-
formance. Note that these metrics were used for model selection and that the hyperparameters of each
model were optimized using k-fold cross-validation before comparing the performance. Ultimately,
the target metric under investigation in this thesis is the (C)ATE.

For the semi-synthetic IHDP dataset, the synthesized outcomes enable a direct evaluation of the es-
timator’s performance. Hence, the error between the estimated ATE and the ground-truth ATE is
reported (Equation 30), where AT EEst is the estimated ATE and AT EGT is the ground truth ATE.

ErrAT E = AT EEst −AT EGT (30)

There is no ground truth available for the medical dataset. Therefore, the performance of the estima-
tions based on the VTE dataset is evaluated based on a subsample of a meta-analysis that investigated
the effect of VTE chemoprophylaxis on the VTE incidence based on 22 studies [51]. This subsample
of 1,666 patients had radiologically confirmed VTE, like in the dataset studied in this thesis. The
rest of the meta-analysis contained patients that were only clinically confirmed and is hence not as
comparable.
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5 Results

5.1 Model Selection
The model selection scores for the outcome model in the IHDP dataset are presented in Table 5, while
Table 6 contains the results for the IHDP propensity score model.

Model negative MSE

Gradient Boosting Regressor -0.37
AdaBoost Regressor -0.41

Random Forest Regressor -0.87
SVM -1.53
MLP -1.7

Table 5: This Table shows the performance of the five best models when predicting the outcome of
the IHDP dataset.

Model weighted F1-score

AdaBoost Classifier 0.87
Gradient Boosting Classifier 0.84

Random Forest Classifier 0.79
Logistic Regression 0.79

Bagging 0.72

Table 6: This Table shows the performance of the five best models when predicting the treatment
variable of the IHDP dataset.

The model selection scores for the outcome model in the IHDP dataset are presented in Table 5, while
Table 6 contains the results for the IHDP propensity score model.

The results for the model selection in the VTE dataset are presented in Table 7 for the outcome model,
and in Table 8 for the treatment prediction.

Model weighted F1-score

AdaBoost Classifier 0.81
Random Forest Classifier 0.79

Bagging 0.73
Logistic Regression 0.73

Gradient Boosting Classifier 0.72

Table 7: This Table shows the performance of the five best models when predicting the outcome of
the VTE dataset.
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Model weighted F1-score

Random Forest Classifier 0.77
AdaBoost Classifier 0.76

Stacking 0.73
Bagging 0.71

Gradient Boosting Classifier 0.7

Table 8: This Table shows the performance of the five best models when predicting the treatment
variable of the VTE dataset.

5.2 IHDP Dataset

The results for the IHDP dataset are displayed in Table 9, and the corresponding histograms of the
5,000 bootstrap samples are displayed in Figure 5. The histograms also show the true ATE, the
mean of the bootstrap samples, and the confidence intervals (CI). The estimated ATE using the AIPW
estimator is 3.93, SD=0.24, CI=[3.46, 4.38]. The X-Learner estimator resulted in an ATE of 3.91,
SD=0.23, CI=[3.47, 4.36], and the X-Learner++ yielded an ATE of 3.93, SD=0.22, CI=[3.49, 4.36].
The debiased ML estimator estimated an ATE of 6.14, SD=0.5, CI=[4.23, 5.1].

Estimator ATEEst ATEGT ATE Error

AIPW 3.93 4.02 -0.09
X-Learner 3.91 4.02 -0.11

X-Learner++ 3.93 4.02 -0.09
Debiased ML 6.14 4.02 2.12

Ensemble 4.66 4.02 0.64

Table 9: This Table shows the estimated ATE, and its ground truth, based on the synthetic dataset.
The mean error for the ATE is presented.

5.3 Medical Dataset

The results for the VTE dataset are displayed in Table 10 and 11, for the ATE and CATE respec-
tively. The histograms for the ATE are displayed in Figure 6. The ATE estimates are as follows:
the AIPW estimator yielded an ATE of 3.13%, SD=4.34%, CI=[-5.34, 11.67], the debiased ML esti-
mator resulted in an ATE of 4.23%, SD=5.92%, CI=[-7.45, 15.74], the X-Learner estimated an ATE
of 0.17%, SD=4.32%, CI=[-8.42, 8.61], the extension X-Learner++ yielded 0.18% as ATE estimate,
SD=4.3%, CI=[-8.25, 8.68], and the ensemble resulted in an ATE of 2.51%, SD=3.54%, and a CI of
[-4.47, 9.45]. The CATE estimates are presented in Table 11.
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(a) The estimated ATE using AIPW. (b) The estimated ATE using debiased ML.

(c) The estimated ATE using X-Learner. (d) The estimated ATE using X-Learner++.

Figure 5: The histograms of the bootstrap ATE distribution on the IHDP dataset. The red line corre-
sponds to the true ATE, the black line to the mean of the 5,000 bootstrap samples, and the green lines
correspond to the percentile confidence interval.

Estimator ATEEst ATERCT ATE Error

AIPW 3.13% 2% 1.13%
X-Learner 0.17% 2% -1.83%

X-Learner++ 0.18% 2% -1.82%
Debiased ML 4.23% 2% 2.23%

Ensemble 2.51% 2% 0.51%

Table 10: This Table shows the estimated ATE and the ground truth ATE, which was derived from a
comparable meta-analysis of multiple RCTs. Furthermore, calculated errors are displayed.
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(a) The estimated ATE using AIPW. (b) The estimated ATE using debiased ML.

(c) The estimated ATE using X-Learner. (d) The estimated ATE using X-Learner++.

Figure 6: The histograms of the bootstrap ATE distribution on the VTE dataset. The red line corre-
sponds to the ATE determined in RCTs, the black line to the mean of the 5,000 bootstrap samples,
and the green lines correspond to the percentile confidence interval.

Estimator CATEEst 95% CI CATEEst(Statins=0) 95% CI

AIPW 3.08% [-5.44, 11.5] 3.02% [-3.32, 9.26]
X-Learner -0.5% [-12.65, 9.25] -0.23% [-5.64, 3.51]

X-Learner++ -0.5% [-12.45, 8.66] -0.31% [-6.6, 3.15]
Debiased ML 3.93% [-7.8, 15.75] 3.78% [-4.54, 11.84]

Ensemble 2.17% [-5.02, 8.94] 2.19% [-2.44, 6.71]

Table 11: This Table shows the estimated CATE for the effect that Statin has on the efficacy of VTE
chemoprophylaxis. There was no suitable ground truth accessible.
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6 Discussion

6.1 IHDP
The estimation of the IHDP dataset shows the strength of causal reasoning, especially in situations
where unconfoundedness is not violated. Despite the class imbalance, and the relatively low sample
size, the AIPW estimator, the X-Learner, and the X-Learner++ yielded small errors when compared
to the true ATE of this synthetic dataset. The low standard deviation of these estimators is indicative
of the high certainty the estimators had in estimating the treatment effect, and the confidence intervals
contain the true value. The debiased ML estimator showed the worst results, it overestimated the
treatment effect and the true effect is outside of the bounds of the confidence intervals. This may be
because the residuals of the treatment and outcome regressions have a non-linear relationship, and cal-
culating the linear coefficient may not work very well. Consequently, the ensemble also overestimated
the ATE, but less so due to the good performance of the other estimators included in the ensemble.
While the ensemble does not yield the lowest error, it does protect against the misspecification of any
single estimator in the ensemble.

The estimation on the IHDP dataset shows that the estimators are resilient toward a treatment selection
bias, which is always apparent in observational data. This bias was induced by excluding a nonrandom
portion of the data, as mentioned in Section 3. The strongest assumption underlying causal reasoning,
unconfoundedness, can be discarded in this estimation because the original experiment was conducted
as an RCT. Furthermore, it may be that the synthesization of the outcome to yield a ground truth may
have simplified relations that would be much more complex in a real-world dataset. While the results
are convincing, they must be interpreted with those limitations in mind that make the estimation of
the ATE easier.

6.2 VTE
The results for the VTE dataset show much uncertainty in the estimation of the treatment effects,
and no significant difference between the groups was found. A possible reason for this may be the
small sample size in combination with the bootstrap approach. Some bootstrap samples may be
overwhelmingly populated by patients who are especially at risk of VTE, or not as prone to VTE as
the actual sample. Since the sub-sample in the ATE estimation that did develop VTE only contains
239 patients, the possible lack of heterogeneity in some bootstrap samples possibly leads to an over-
or underestimation of the ATE. While the sample size in the IHDP dataset is balanced similarly, the
synthesized outcomes probably ease the estimation. Furthermore, the included conditioning set for
the VTE dataset only consists of four variables, two of which are binary. This may make the function
approximation more difficult compared to the high-dimensional conditioning set in the IHDP dataset.

The CATE estimation conditional on prior use of Statins exacerbated the challenges already present
in the ATE estimation. No significant difference between the two subgroups of Statin users and non-
Statin users could be determined. Since the number of samples that suffered from VTE and consumed
Statins prior is only 50, it may be challenging for a model to capture the trends within that subgroup.
With the use of bootstrapping, the number of cases in some bootstrap samples is even lower than that.
The comparison within the Statin consumers is therefore difficult.

There are two interconnected limitations that are noteworthy for this real-world dataset. The esti-
mation relies on the completeness of the causal diagram presented in Figure 4. This is essential for
the assumption of unconfoundedness, which is violated when a variable that influences the treatment
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selection and the outcome is omitted. A violation of this assumption leads to bias in the effect es-
timation. While the physicians at the SORG/FARIL research collaborative worked scrutinously on
the presented diagram, a possible violation of the unconfoundedness assumption can not be ignored.
Nevertheless, the replication of the effect estimated in the meta-analysis indicates that this may not
be the case, or that the violation does not induce strong bias in the estimation.

While the high variance introduces uncertainty in the results, and no significant difference between
the groups under investigation is found, a purely numerical comparison to a meta-analysis on the
topic is interesting [51]. This meta-analysis found that both groups, the ones treated with VTE pro-
phylaxis and the ones who were not, have a VTE incidence significantly different from zero. Fur-
thermore, there is about a 2% difference (the VTE incidence is 12.5% for the treated, 10.5% for the
untreated) between these two groups, albeit statistically insignificant. This 2% difference between
the two groups is approximated in the results presented in Table 10, which show that the ensemble
estimator benefits from overestimations in the AIPW and debiased ML estimators and an underes-
timation in the X-Learner and X-learner++. The difference between the two groups is insignificant
in both, the meta-analysis and the results presented in this work. Therefore, this thesis replicated a
part of the results of the meta-analysis, which concluded that VTE prophylaxis may not always be
appropriate, especially after isolated ankle fractures due to the increase in the risk of adverse bleeding
events following prophylactic treatment, and no significant effect of VTE prophylaxis. Nevertheless,
the results presented here show high uncertainty and estimate the average treatment effect. Therefore,
the evidence presented here requires further research, and patients at risk of VTE may still benefit
from prophylaxis.
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7 Conclusion

7.1 Summary of Main Contributions
This thesis contributes to the field of causal reasoning and the field of orthopaedics as follows. The
development of an error correction for the X-Learner slightly reduces the error in the estimation of
the treatment effect for the IHDP dataset, as compared to the X-Learner without the error correction.
However, the error reduction is negligible, and, in the VTE dataset, the X-Learner++ performs slightly
worse than the X-Learner. Generally, no significant difference between the X-Learner and the X-
Learner++ could be found. Furthermore, the combination of multiple estimators to an ensemble
can reduce the bias induced by some estimators overestimating the treatment effect, while others are
underestimating the effect. The ensemble also reduces the variance in the estimation, and it performed
best in the real-world dataset. Nevertheless, the bias in all estimators, including the ensemble, is high,
which makes the results uncertain.

Another contribution of this thesis is the introduction of the causal reasoning methodology to the field
of orthopaedics. A short version of this thesis is submitted to the Journal of Orthopaedic Research
(JOR) to increase the exposure of physicians to this relatively new methodology. Furthermore, causal
reasoning was introduced to the SORG/FARIL research collaborative at Harvard Medical School dur-
ing the writing of this thesis through multiple presentations, the submitted research article, and the
thesis itself. The evidence on the lack of efficacy of VTE prophylaxis in ankle fractures is strength-
ened and may influence clinical decision-making, albeit the high variance does not show confidence
in the results. The thesis showed that causal reasoning can effectively replicate prior RCTs. The
analysis of the effect of Statin consumption on VTE prophylaxis showed no significant differences
between the groups. Therefore, there seems to be no effect of Statins on the efficacy of VTE pro-
phylaxis. Nevertheless, we show that causal reasoning can emulate costly, timely, and sometimes
unethical RCTs using widely available observational data.

7.2 Future Work
The field of causal reasoning can be supplemented by the complementary field of causal discovery.
In causal discovery, the causal graph structure is determined in a data-driven way, not based on expert
opinion. Advances in causal discovery may therefore make expert opinion obsolete, and reduce bias
introduced by prior, personal conceptions of the world. This would enable us to decide on the structure
of the causal diagram in a data-driven way without inducing the models with what we think causes
what. While we attempted to utilize existing discovery algorithms, the results were not usable.

The assumption of unconfoundedness is strong and requires more attention. While the experiment on
the IHDP dataset showed that the estimators can robustly determine the ATE, given suitable data and
the absence of unobserved confounding. In contrast, the real-world dataset showed that the estimator’s
confidence can degrade quickly. It may be that there was unobserved confounding in the experiment,
which can introduce bias. In other words, maybe there is another variable of which experts were not
aware, which influences the treatment selection and the outcome. Furthermore, the small sample size,
especially in the CATE analysis on Statin consumers, induces finite sample bias. The data is collected
from one center, and bootstrapping with a small sample induced its own problems. A replication of
the results with increased sample size and with multiple, geographically diverse centers may increase
the generalizability and the certainty of the estimation.
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Appendices

A Submitted Paper

B Hyperparameters for GridSearch
B.1 Bagging

Parameters Values

n estimators 5, 25, 50, 100, 250, 500, 1000
warm start True, False

Table 12: The hyperparameters for the Random Forest base classifier and regressor used in the Bag-
ging classifier and regressor.

B.2 Stacking

Parameters Values

passthrough True, False

Table 13: The hyperparameters for the Stacking classifier and regressor. The chosen stacking esti-
mators were the Random Forest Classifier and regressor with 10 estimators, the Gradient Boosting
classifier and regressor with a maximum depth of 10, a learning rate of 0.01, and 100 estimators, and
the AdaBoost classifier and regressor with 100 estimators and a learning rate of 0.01.

B.3 MLP

Parameters Values

hidden layer sizes (2,3), (3,4,3), (8,4)
activation tanh, relu

learning rate init 0.0001, 0.001, 0.01, 0.1, 0.4
learning rate constant, invscaling, adaptive
warm start True, False

Table 14: The hyperparameters for the Multi Layer Perceptron (MLP) classifier and regressor.

B.4 AdaBoost

Parameters Values

n estimators 5, 25, 50, 100, 250, 500, 1000
learning rate 0.0001, 0.001, 0.01, 0.1, 0.4

Table 15: The hyperparameters for the AdaBoost classifier and regressor.
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B.5 Random Forest

Parameters Values

n estimators 5, 25, 50, 100, 250, 500, 1000
max depth 2, 5, 10, 25, 50

class weight balanced, balanced subsample, none

Table 16: The hyperparameters for the Random Forest base classifier used in the Bagging classifier.

B.6 Gradient Boosting

Parameters Values

n estimators 5, 25, 50, 100, 250, 500, 1000
max depth 2, 5, 10, 25, 50

learning rate 0.0001, 0.001, 0.01, 0.1, 0.4

Table 17: The hyperparameters for the Gradient Boosting classifier.

B.7 Logistic Regression

Parameters Values

solver lbfgs, saga, elasticnet
penalty l1, l2

class weight balanced, none

Table 18: The hyperparameters for the Logistic Regression classifier.

B.8 Support Vector Machine (SVM)

Parameters Values

kernel rbf, sigmoid, poly
gamma auto, scale

C 0.1, 0.5, 1

Table 19: The hyperparameters for the SVM regressor.
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