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Abstract
Biomedical analyses of cellular images is a time consuming and costly process. For many analyses
tasks, semantic segmentation is the first step. Deep Learning has shown great promise in automat-
ing this task and is used in existing tools for cellular image analyses. These tools are being used by
biomedical experts and thereby facilitate cellular research. However, they rely on default models for
the segmentation task and do not tune hyperparameters on a given dataset. This can result in sub-
optimal performance. In this thesis we propose an automated machine learning (AutoML) system to
tune the hyperparameters of a DL-pipeline for semantic segmentation of cellular images.

The system is based on meta-learning and leverages meta data to efficiently find a suitable pipeline
for a new dataset. Meta data here refers to DL-pipelines evaluated on different datasets. To quantify
datasets, different meta-features are extracted. These meta-features are concatenated with hyperpa-
rameter configurations and used as input to a machine learning model. This model is trained on the
meta base and learns to predict how well hyperparameter configurations will perform on different
datasets. After training, this model can then predict a ranking of hyperparameter configurations for a
new dataset. Based on the predicted ranking successive halving is used to determine the best hyper-
parameter configuration for a dataset. In addition to the AutoML system, the effects of generic and
domain specific transfer learning on model performance and convergence times are evaluated.

For transfer learning the results indicate no significant effect of pre-training on performance and
convergence times. On one of the four evaluation datasets generic pre-training lead to worse results
compared to all other conditions. Otherwise, there was no difference between generic and domain-
specific pre-training.
The results of the meta-learning experiments suggest that classical meta-features are most important.
Meta-features aiming to quantify the optical appearance of images were not used in the best meta-
learning pipeline. A random forest model outperformed LamdaMART and other evaluated meta-
models. To evaluate the overall system, it was tested on four cellular segmentation datasets for which
human experts had already developed DL-pipelines. Overall, the developed system performs slightly
worse compared to the existing DL-pipelines. On all datasets, the validation set IoU score of the
AutoML system was 0.04-0.084 worse compared to the existing pipelines.
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1 Introduction
In 2021 alone 79 zetabytes of data were created, captured, copied, and consumed worldwide1. This
amount is expected to increase significantly in the coming years, more than doubling until 2025. With
the overall amount of data increasing, methods to automatically extract valuable information from
data are also becoming increasingly important. One powerful tool for this task is machine learning
[1]. Machine learning (ML) refers to algorithms that learn from historical data, to predict outputs for
new data [1]. First, it enables the use of large data and can be used to extract information that humans
are not able to. Secondly, it can be used to automate tasks that usually require humans and thereby
save a lot of valuable time.
However, in order to leverage ML, an ML-expert is needed to configure an ML-pipeline for a specific
task. As stated in the ”no free lunch” theorem [2], there is no single ML algorithm that performs best
on all tasks. Therefore, to achieve optimal performance, individual ML systems have to be designed
for each task. The growing field of automated machine learning (AutoML) aims to automate this
construction of ML-pipelines for new tasks [3]. Most research within AutoML focuses on developing
general methods that work well for a variety of tasks and datasets.
While general methods are desirable, since they have the largest applicability, they also increase the
difficulty of developing high performing AutoML systems. To automatically construct general deep
learning systems for large datasets with instances of high dimensionality is especially challenging.
Therefore, limiting the application domain can be beneficial since this limits the number of possible
solutions. Moreover, restricting the domain increases the possibility of using meta-learning. Meta-
learning or ’learning-to-learn’ refers to leveraging previous experience to learn how to perform a new
task. Limiting the application domain leads to more similar datasets, thereby the experience gained
from evaluating pipelines on them is more valuable. One domain where automatically constructing a
deep learning pipeline can be especially useful is cellular image analysis.

Understanding how cells work in healthy or diseased states allows researchers in animal, plant and
medical sciences to develop vaccines, more effective medicines and more resilient plants. In general,
biomedical research into cellular functions will increase our understanding of living things [4]. One
common way of investigating cells is to analyze microscopy images. This analysis then gives insights
into the effects of chemical and genetical perturbations on phenotypes of cell cultures.
Advances in microscopy technology have enabled more high-thorough-put experiments to be per-
formed [5]. In this way, more and more images of cell cultures are generated. For cell researchers
this means that they can study biological systems at larger scales and it allows to perform more ex-
periments.
This segmentation is a time consuming process that requires human experts and thereby limits cellular-
research. Deep learning has shown great promise in automating this task. Human experts only need
to annotate some images and the deep learning model then performs the task for other images.
The first step in cellular image analyses is often to segment regions of interest (ROIs) in an image. This
segmentation is a time consuming process that requires human experts and thereby limits cellular-
research. Deep learning has shown great promise in automating this task [6]. Human experts only
need to annotate some images and the deep learning model then performs the task for other images.
Currently, it is common practice for human experts to design DL-pipelines for different datasets.
There are systems such as Italisk [7] and CellProfiler [8] that offer algorithms that can learn the
segmentation task without the need for a human expert. However, they rely on default workflows and
do not optimize hyperparameters. Tuning the hyperparameters of deep learning pipelines is required

1https://www.statista.com/statistics/871513/worldwide-data-created/

https://www.statista.com/statistics/871513/worldwide-data-created/
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for optimal performance [9]. Therefore, an AutoML system for hyperparameter tuning is desirable in
this context.

1.1 The AIxCell Research Project
To enable biomedical experts to utilise the advances in DL for their cell analysis task, the “AIxCell”
Research Project2 is developing an AutoML- and DL-based cell culture image analysis tool. Most
recent AutoML systems are designed for tabular data, only a few systems have been developed for
image data and these are mostly proprietary [3]. This research project aims to develop an AutoML
system for automating biomedical image analyses. The research project is funded by the German
Federal Ministry of Economics (BMWi) and a consortium of companies, university hospitals and the
Fraunhofer Institute for Production Technology (Fraunhofer IPT, Aachen). The presented thesis was
done in the context of the AIxCell research project and supervised by Fraunhofer IPT.
In the first stage of the project annotated datasets and corresponding analyses tasks were provided
by the project partners. DL solutions were then developed for these use-cases. In addition, a plug-in
deep learning library (PIDLL) that allows for easy configuration and training of DL-pipelines was
developed. The PIDLL allows to configure four different steps of the DL-pipeline: Pre-processing,
Feature engineering, Deep-Learning Model and Post-processing. For cellular image analyses the first
three steps influence how the segmentation mask is learned, Post-processing is then a final step that
allows to perform different analysis tasks based on the segmentation masks. This final step can be
manually configured by the user, the presented AutoML system focuses on configuring the first three
steps to determine an optimal pipeline for segmentation.
This thesis is part of the second stage of the project, developing the AutoML system to automatically
construct DL-pipelines. This system relies on the PIDLL and was developed based on insights gained
during the first stage of the project. Namely, the AutoML system searches for optimal pipelines in
a search space configured based on experience gained during the first stage. Moreover, the PIDLL
is used to configure and train pipelines. The final tool also has a user interface for image annotation
and is deployed on the cloud. An overview of the developed cell culture analyses tool can be seen in
Figure 1.

1.2 Research Questions
This thesis is about developing the AutoML system for the AIxCell tool. Even though the system
was developed for cellular image segmentation, the methodology and research is relevant for other
domain specific AutoML systems.
In general, predicting an optimal DL-pipeline for biomedical images is challenging due to diverse
images, multiple image modalities and approaching new tasks [10]. Even when the image modality
is limited to microscopic cellular images, it is still a challenging due to:

1. Long model evaluation times: Because the optimal pipeline needs to be found within a given
compute budget, this restricts the system to only fully evaluate a few pipelines on a new dataset.

2. Diverse datasets: Even when limiting the domain, images and segmentation tasks can vary
significantly between datasets.

3. A small meta-base: The long evaluation times impose a limit on the amount of DL-pipelines
that can be evaluated to collect meta-data.

2https://www.forschung-fom.de/forschung/projekte-und-vorhaben/d/s/AIxCell

https://www.forschung-fom.de/forschung/projekte-und-vorhaben/d/s/AIxCell
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An additional challenge, which is however not specific to AutoML for images, is the quantification
of tasks and their similarity. To tackle these questions, this thesis investigates transfer learning to re-
duce evaluation times and combat small datasets, meta-learning and optimal meta-features for image
datasets and a small meta-base, and finally multi-fidelity methods to efficiently evaluate configura-
tions.
To summarize, this thesis investigates the following main research question (MRQ) divided into four
sub research questions (SRQ):

MRQ: How can meta-learning based approaches be used to optimize performance of domain-specific
AutoML systems for image data, at the example of cellular image analyses?

SRQ1: Can pre-training on a domain-specific dataset decrease model training time and increase
performance, is this better compared to pretraining on a generic dataset?

SRQ2: What are good meta-features to represent image datasets, in a domain-specific setting?

SRQ3: Given a small meta-base, what are optimal ML-models and feature engineering strategies
to predict a ranking of DL-pipelines for a new task?

SRQ4: Can successive halving be used to efficiently evaluate a ranking of configurations on a
dataset, within a given compute budget?

1.3 Thesis Outline
In the first chapter, an introduction to the topic and a description of the AIxCell system has been
given. Moreover, the research questions have been formulated. The second chapter details cellular
image analyses and describes how computer vision is used to tackle this problem. Deep learning
for image segmentation is discussed and hyperparameters specific to cellular image analyses are pre-
sented. Then, an overview over the field of AutoML is given, the focus being on meta-learning and
multi-fidelity methods. Chapter two gives a description of radiomics, a potential tool to quantify
the optical appearance of image datasets. In chapter three related work is presented and the current
state-of-the-art is defined. In chapter four the different components of the overall AutoML system are
described. Furthermore, experiments to investigate and optimize each component are described. All
datasets used in the presented study are discussed and the evaluation methodology of the final sys-
tem is given. Chapter five presents the results of all experiments, these results are further discussed in
chapter six. Finally, in chapter seven the main contributions of this thesis are highlighted and potential
future work is discussed.
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2 Theoretical Foundations
Here the theoretical background to the presented research is discussed. In Section 2.1, image seg-
mentation and approaches for this task are discussed. In Section 2.2 transfer learning is described.
In Section 2.3, the field of AutoML, with a focus on meta-learning and multi-fidelity methods, is
presented. Finally Section 2.4 describes radiomics as a potential tool to quantify image data.

2.1 Image Segmentation

(a) Illustration of instance and semantic segmentation, image taken from
[11]

(b) Illustration of the IoU score.

Figure 2

There are two types of segmentation, instance and semantic segmentation [11]. Instance segmentation
refers to segmenting all instances of an object class separately. In semantic segmentation the task is to
assign each instance of an object class the same label. This difference is illustrated in Figure 2a. Both
tasks require different approaches, in instance segmentation the challenge is to separate overlapping
instances and in semantic segmentation the focus is on segmenting different ROI’s. In this thesis, the
focus is on semantic segmentation.
One key question in image segmentation is how to evaluate the performance of different approaches.
The IoU score is a classic metric to assess the performance of a segmentation algorithm. It is calcu-
lated by dividing the intersection between the predicted and true mask by the union of these regions.
This is best understood visually and shown in Figure 2b. In this way, the IoU score ranges from 0-1,
with zero indicating that the object has not been detected at all and one indicating a perfect match
between the prediction and ground truth.

2.1.1 Classic Computer Vision

For a long time research focused on classic computer vision techniques for image segmentation. One
simple way of segmenting regions of interest is using a threshold on the image. In gray-scale images,
each pixel has a value from 0-255. If the ROI’s fall into different scales on this range a threshold
can be effectively used for segmentation. The crucial task here is to find the optimal threshold value.
Otsu thresholding is a technique to automatically find this value for binary segmentation tasks. This
is done by minimizing the following equation to find an optimal value T [12]:

σ
2
w(T ) = σ

2
o(T )∗ p2

o(T )∗σ
2
b(T )∗ p2

b(T )
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Here σ2
o and σ2

b refer to the variance in the foreground and background pixels respectively and p2
o

and p2
b refer to the probability of pixels belonging to the fore and background. The variances and

probability’s are calculated for each image, with the probabilities being the ratio of pixels belonging
to foreground or background over all pixels in an image. All these depend on the threshold value
T . While this technique works well for binary segmentation, given a clear threshold exists, in many
scenarios there is no clear threshold.
Another popular classic computer vision approach for image segmentation is the watershed algorithm
[13]. Here the image is treated as a topographic map, classically defined by the pixel intensity values.
The algorithm then starts at the basins of this map and simulates them filling with water. In this
way the ridges of the topographic map are identified. Therefore, the algorithm identifies regions that
separate objects as the places where two water basins meet (at the ridges). The separate water basins
then correspond to identified ROI’s.
These are only two classical techniques. There are many more such as k-means clustering [14], active
contour models [15] or conditional and Markov random fields [16]. To a degree, all these classical
techniques focus on identifying or extracting useful features in an image and using these identified
features for the segmentation task. Earlier techniques such as the Otsu threshold use features present
in the image already, e.g. the pixel intensities. More advanced techniques such as watershed transform
or active contour models apply a predefined operation to an image for feature extraction.

2.1.2 Deep Learning

In 2012, the field of computer vision changed when AlexNet [17], a deep neural network, signif-
icantly outperformed competing algorithms at the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [18]. As the name states, this challenge is about image classification and not about
image segmentation. Image classification and segmentation are different tasks, with segmentation
being harder to solve by automated algorithms. The reason for this is not fully understood, however,
there are some potential reasons. Segmentation is pixel-wise classification, while in classification
many pixels are used to classify a single object. Thereby, in classification more task specific in-
formation is available. Moreover, contrary to classification, segmentation requires precise spatial
predictions. Nonetheless, both tasks entail pixel data and research then focused on using deep learn-
ing for image segmentation [19, 20]. Today deep learning models significantly outperform classical
vision methods for image segmentation tasks.
As stated in the previous section, classical computer vision research focused on extracting features
from images and then using these features to perform some task. Instead of manually defining features
to be extracted from an image, in deep learning the idea is to have a neural network learn representa-
tions that are important for a specific task [21].
These representations are learned from labeled data, for example in semantic segmentation images
where a human expert has already segmented the ROI’s. The field of supervised machine learning
refers to models that learn from annotated data D = (xi,yi);1 ≤ i ≤ n. The goal of these models is to
learn a mapping from an input xi to an output yi. More specifically the goal is to accurately predict
outputs for data that is not part of the set of data used to train the algorithm. To this end the dataset D
is commonly split into 3 subsets:

• The training set used to train the model

• The validation set used to tune model hyper-parameters to optimize performance

• The test set used to evaluate the final model
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One particularly powerful subset of machine learning models are neural networks, black-box models
that learn input to output mappings.
Here a multi layer perceptron (MLP) will be briefly described to illustrate these models. A MLP
consist of layers of connected neurons, each neuron is represented by a numerical value, commonly
called its weight. After each layer the resulting output is passed through an activation function.
This ensures that a neural network can learn non-linear input to output mappings. When an input is
presented to this network it is sequentially multiplied with the weights in each layer. Mathematically
the output of one layer is calculated the following way:

xk = σ(W k ∗ xk−1 +bk)

Here xk is the output of the layer k, if k = 0 x is the input to the network. W k represents the weights,
bk the bias of layer k and σ is some non-linear activation function. So if a MLP has k layers the output
of the network is calculated by:

ŷ =
k

∑
k=1

σ(W k ∗ xk−1 +bk)

This output is then compared to the desired output and the weights W are updated depending on the
similarity of produced output to the desired one. How this similarity is computed depends on the loss
function, one classical example is the mean squared error: MSE = 1/n∑

n
i=1(yi − ŷi)

2. Here n is the
number of examples in the dataset, yi is the desired output and ŷi is the predicted output.
The goal of the network is to minimize the loss function. This is done by computing the gradients of
all weights W in the network w.r.t. the loss of a given input x. In other words, how much did each
weight contribute to the error and how should they be adjusted to minimize the error. The algorithm
to efficiently compute these gradients is called back-propagation. At each iteration, when an input
has been fed through the network and the output has been computed, all weights of the networks are
updated based on these gradients. The overall training procedure is called gradient descent.
This automated training also explains why neural networks are black-box models. It is impossible
to determine why a local minima of W in the loss function leads to good performance. Thereby, it
is impossible to untangle the learned input-to-output mapping and the decisions of a neural network
cannot be explained. It is however known that different representations of the data are learned at each
layer and that the network learns to perform tasks that way [21].

2.1.3 Convolutional Neural Networks

Based on the MLP many variants of neural networks have been developed [21]. Among others, these
include convolutional neural networks specifically designed for pixel data. The main components
of convolutional neural networks are convolution layers and pooling (subsampling) layers. At each
convolutional layer, several small windows (e.g. size 3x3) slide over the input image, at each step
computing a weighted sum of the covered area according to the weights of the window components,
resulting in an output image (possibly reduced in size) in which one of those features is highlighted.
This process is illustrated in Figure 3. These windows are called filters or kernels, since it filters
a feature from a complete image. The output of a convolutional layer is therefore called a feature
map. The values of these kernels are the weights of the convolutional neural network and are learned
during the training process. Usually images contain three channels (RGB) and feature maps later in
the network contain even more channels. For each layer in the output feature map (see Figure 3 on the
right) different kernel weights are used. The weights of the kernel (see Figure 3 in the middle) used
to compute an output layer stay the same at every location of the image. In this way, the weights in a
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Figure 3: How a kernel slides over the input in a convolutional layer. The weighted sum of the values
covered by the kernel with the weights of the kernel is computed and put into the corresponding pixel
of the output feature map.

convolutional neural network are shared. This has two benefits, first it reduces the overall number of
trainable parameters, second it leads to the same feature detector being used in all parts of the image
[21].
A convolutional neural network consists of stacks of these convolution layers followed by a pooling
layer. In the pooling layer again a window slides over the image, however, there are no trainable
weights in the window. Instead the pooling layer always applies the same operation, the two most
common ones being max and average pooling. In max pooling the largest value in a window is taken
and in average pooling the average of all values in a window is taken. Usually pooling layer are used
with window dimensions and strides that lead to a significant reduction of the feature map.
By repeatedly applying convolutions and pooling some representation necessary to perform a given
task is learned. In classification tasks, a fully connected layer that takes the final representation as
input and outputs a probability distribution over the classes, is used to decide on a class based on the
learned representation. For image segmentation encoder-decoder networks are used.
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2.1.4 U-Net

The idea behind encoder-decoder networks is to encode the image to some lower dimension and then
to decode this lower dimension to the original size. Thereby, the network learns a representation that
is important for the segmentation task and then decodes that representation to segment the ROI’s. A
crucial component to make this work is to pass information about the original image and higher level
encoding to the decoding stage of the network [20].

In U-Net an image is first encoded into a representation of the same height and width using convo-
lution layers. That representation is then compressed using max-pooling. This procedure is repeated
until some final compressed representation of the input is reached. In the decoding stage of the net-
work that representation is up-sampled using up-convolution layers. At each stage of this up-sampling
process the corresponding representation on the encoding stage is also copied as input to the decoding
layer. In this way, during the decoding stage the network has access to same size representations of
the original image. This also applies to the segmentation mask. Here the original input is also used as
input to the final decoding layer. The intuition behind this process is that, since the network is doing
pixel wise classification, information about the individual pixels are needed at each decoding step
[20]. In Figure 4, the described network-architecture is illustrated, here one can also see the U-shape
of the network that led to its name.

There are more variants of the described U-Net encoder-decoder architecture and also other archi-
tectures have been developed for segmentation [22]. Nonetheless, especially for biomedical images,
U-Net has been shown to perform well on a variety of datasets.

Figure 4: The U-Net architecture, image taken from [20]. The gray numbers next to each feature map
indicate the sizes of the convolution layers. The vertical numbers indicate the width and height, the
horizontal number the depth of the layer. Operations applied between the layers are illustrated to the
right.
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Figure 5: Example of patching an image of postnatal cardiomyocytes. The original image on the
left (1388x918) is split into patches of 256x256, shown on the right, with a stride of 128. The row
illustrated in red corresponds to 9 patches enclosed in red on the left, the same applies to the row
enclosed in yellow.

2.1.5 Hyperparameters

The performance of deep neural networks, such as U-Net, depends on a variety of hyperparameters
that have to be optimized. Moreover, microscopic images also require some parameters that need to
be decided on. Here hyperparameters included in the presented research will be described.
The first group of hyperparameters falls into the category of image pre-processing, operations applied
to the image before they are fed into the neural network.

• Patching Microscopic images of cell cultures are usually of very high resolution. Due to mem-
ory constraints on common machines it is impossible to input an entire image into a neural
network. Simply resizing the images is not an option, because a lot of valuable information
would be lost in that way. Therefore images need to be divided into smaller patches, the size
of these patches, patch size, is an important parameter. The process of patching is illustrated in
Figure 5.

• Class-based sampling refers to the process of balancing class instances by simply duplicating
them (over-sampling) or by removing instances (under-sampling). This is a common approach
to combat class-imbalance, the minority class is over-sampled and the majority class is under-
sampled. In segmentation tasks the class distribution can be calculated in two ways. Pixel-wise,
for each class the number of pixels belonging to that class over the total amount of pixels or
patch-wise, the number of patches containing a class over the total number of patches. The
re-sampling is then done on the patch level, doubling patches containing minority classes and
removing patches that only contain a majority class.

• Batching refers to splitting the training set into ”batches”, a set number of training instances
used to calculate the network update for one training step. The batch size refers to how many
images are included in a single batch.
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• Image augmentations refer to operations applied to the images during the training process.
This is done to induce diversity in the training set, by slightly changing images to create new
ones. Image augmentations have been shown to significantly increase the performance of deep
neural networks [23]. This is especially true for small datasets and when the augmentations
are specifically chosen for a given dataset. Image augmentations can be divided into pixel
level and spatial transforms. Some examples of pixel level transforms are brightness, Gaussian
blurring and colour augmentations. For spatial transforms examples are flipping, cropping or
grid distortions. Some of these transforms are illustrated in Figure 6.

(a) Original image (b) Brightness/Blur (c) Contrast (d) Cropping

(e) Flip (f) Grid shuffle (g) Grid distortion

Figure 6: Illustration of various image augmentations. For transforms that alter image shape or
structure the same transform is applied to the masks.

The second group of hyperparameters directly influences the learning process of the neural network.

• Learning rate determines how much the weights of the network are updated at each training
step. A large learning rate will lead to the network learning faster, at the potential cost of
arriving at a sub-optimal solution.

• Backbone refers to the specific network architecture of each down and up sampling block in
U-Net. Over the years a variety of different backbones for CNN’s have been designed [24].
One of the most successful ones is ResNet, here so-called residual connections are included in
the network [25]. Next to choosing a backbone architecture, the depth of these blocks can also
be adopted. Depth here refers to the number of convolutional layers included in a block.

2.2 Transfer Learning
One major challenge in deep learning is the availability of annotated data. For semantic segmentation
of cellular images a biomedical expert needs to invest a significant amount of time to annotate images.
This often leads to relatively small datasets. A popular approach to this problem is to initialize the
weights of a network by training them on another dataset. The idea behind this is that data and tasks
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are often similar, so representaion learned for one task are also useful to perform another. In this way
knowledge about one task can be transferred to a new task [26]. Formally transfer learning can be
defined using the concepts of domain and task. A domain refers to a feature space X and a probability
distribution P(X) over this space. A task consists of a label space Y and a predictive function P(y|x),
where x ∈ X and y ∈ Y . In transfer learning the task is then to learn a function ft(x) for a target
domain and task (Dt ,Tt) utilizing knowledge from function fs(x) learned on the source domain and
task (Ds,Ts) [27].

One task where transfer learning is routinely used is image classification. Here the intuition is that
many features occur in multiple objects, so detecting them is helpful to classify many objects. Such
features range from very general features, such as edges, to more specific features, for instance eyes.
The most common dataset for pre-training is the ImageNet dataset. It includes millions of annotated
images of diverse real life objects [28]. Since this dataset is so large and diverse, a neural network that
is trained on it learns a diverse set of feature representations. When the same network is then used for
another classification task, say facial recognition, the hope is that many of the already learned features
transfer to the new task. Pre-training neural networks on ImageNet has led to significant performance
improvements on a variety of benchmarks [26]. Aside from performance improvements, transfer
learning has also been shown to reduce the training times of neural networks [26, 29]. Therefore, in
many computer vision tasks it is common practice to use pre-trained models.

Transfer learning has led to great improvements in a variety of areas, however, it is not clear how
helpful transfer learning is when pre-training and training datasets are significantly different. This is
especially relevant for different image domains. While ImageNet contains photographs scraped from
the web, other datasets contain very different images. Biomedical images for instance are acquired
in a different way than photographic images, e.g. MRI scans or retinal images, and can therefore be
considered as a separate image domain. For biomedical images it is common practice to use large
models pre-trained on ImageNet, but a recent analyses shows that they offer little benefit compared
to non pre-trained simple, light-weight models [29].

The reason for this could be that the feature representations learned during pre-training are not relevant
in another image domain. For example, feature representations about the textures of eyes are probably
not helpful to identify cell nuclei. Instead of pre-training on large general dataset, such as ImageNet,
another approach is to pre-train on a dataset in the same domain.

Karimi et al. conducted experiments on the effects of transfer learning for medical image segmenta-
tion [30]. They used a variety of 3D voxel datasets for organoid segmentation. The results show that
while in general transfer learning leads to faster convergence times and often increases model perfor-
mance, this is mediated by a variety of factors. One factor is the size and quality of the target dataset
as smaller and lower quality datasets benefit significantly more from transfer learning. Another factor
is the similarity of source and target datasets. Pre-training models on datasets of the same organ, so
on a very similar dataset, outperforms pre-training on other organoid datasets. Finally in the case of
large and high quality target datasets, transfer learning did not improve segmentation accuracy. The
authors argue that this could be due to an optimal solution being reached already and the error only
coming from annotation mistakes [30].

One observation that holds across a variety of studies is that transfer learning decreases model train-
ing times [26, 29, 30]. This effect is, however, more significant in classification tasks compared
to segmentation tasks. The reason for this is not known. Nonetheless, it could be that, due to the
aforementioned differences between segmentation and classification tasks, transferring pre-learned
features is less applicable in segmentation tasks.
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2.3 Automated Machine Learning
Automatic machine learning (AutoML) refers to the field in machine learning that deals with the
automatic configuration of ML-pipelines for a given task. Usually this task is performed by human
experts in a tedious trial-and-error process. AutoML aims to replace this process with automatic,
data-driven algorithms, that optimize ML-pipelines for a user given metric. For tabular data, some
AutoML systems have beaten human experts in ML competitions [3].
An overview of the components in an AutoML system can be found in Figure 7. The input to the
system are a dataset and a task, the system then performs data pre-processing selection, algorithm
selection and hyperparameter optimization. The output of the system is an ML-pipeline for the given
task. This ML-pipeline is then constructed from some machine learning library and trained on the
dataset. An important design choice of AutoML systems is the search space A, that contains the
different components of the ML-pipeline that can be combined. This space needs to be carefully
designed and is crucial to the performance of the AutoML system [3]. Another part of some Au-
toML systems is the meta-database, containing ML-pipelines from the search space evaluated on
other datasets. If such a meta-database exists, meta-learning can be used to leverage this previous
experiences. Meta-learning is further discussed in section 2.3.3.
The combination of algorithm selection and hyperparameter optimization (HPO) in the search space
is referred to as the combined algorithm selection and hyperparameter optimization problem (CASH)
[31]. Data pre-processing is usually not considered as a part of an AutoML system. Nonetheless,
especially for image data, pre-processing steps such as augmentations are vital to the performance of
the system. Since data pre-processing does not change the algorithm, it can also be seen as part of
HPO process.

2.3.1 Hyperparameter Optimization and Algorithm Selection

Hyperparameter optimization (HPO) refers to the process of selecting the best performing hyperpa-
rameters for an ML algorithm. Hyperparameters can exist as real values (e.g., learning rate), integer
values (e.g., batch size), binary values (e.g., should a specific data augmentation be used), or categori-
cal values (e.g., choice of optimizer). Tuning hyperparameters is important since it can often increase
the performance of ML-pipelines, compared to leaving them at a default value [9]. Algorithm selec-
tion refers to what ML algorithm should be used for a specific task. It is possible to combine HPO
and algorithm selection by including the algorithm as a categorical hyperparameter. This is known as
the combined algorithm selection and hyperparameter optimization problem (CASH) [31].

Figure 7: Overview of the components of an AutoML system
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Optimizing hyperparameters is a combinatorial optimization problem, each combination of hyperpa-
rameters (HP’s) is associated with a specific performance value. It is particularly challenging due to
the diverse set of data types, as some HP’s are integers while others are floats or categorical. There
are even conditional HP’s, e.g. HP’s only applicable to a specific ML algorithm. This highlights the
importance of defining a good search space.
Methods used in HPO include random search, grid search, population-based methods (such as genetic
algorithm, evolutionary algorithms, and particle swarm optimization), gradient-based optimization,
surrogate-based optimization and meta-learning [3, 32]. Gradient-based optimization uses informa-
tion about the gradient of the loss function with respect to the HP’s to optimize the HP’s [33]. In
surrogate optimization, a surrogate regression model is used to model the performance of HP con-
figurations as a Gaussian process. Some optimization method, e.g. Monte Carlo approach, is then
used to identify the HP configuration likely to perform best. One of the most popular tools for HPO
is SMAC (sequential model-based algorithm configuration) which performs surrogate optimization.
Here a random forest is used as a surrogate model and Bayesian optimization determines the next HP
configuration to sample [34]. In this way HP configurations are sequentially evaluated for a predefined
number of steps or until a stopping criteria is reached.

2.3.2 Neural Architecture Search

When optimizing neural networks, the network architecture can be included into the search space.
This is called neural architecture search (NAS) and currently a hot topic of research. State-of-the-
art neural networks often rely on complex architectures, these architectures are designed by human
experts in a time-consuming and error prone process.
NAS consists of three main dimensions: search space design, search strategy and performance eval-
uations [3]. Search space design refers to defining a space of architectural components that will be
searched for an optimal one. The design choices for neural architectures are vast, so the search space
needs to be sufficiently restricted. A common approach to this is to incorporate expert knowledge,
however, this might induce human bias and exclude viable novel architectures. Search strategy refers
to how this space is then searched for an optimal architecture. Many techniques from HPO can also
be applied here. Performance evaluation strategies describe how the performance of a candidate
architectures are evaluated. The standard way this is done is by training the architecture on a training
set and then evaluating it on a validation set. However, this is computationally expensive and it is
infeasible to evaluate many candidates. Current research therefore focuses on techniques to approxi-
mate the performance of configurations without fully training the neural network. Some of these are
further described in section 2.3.5.
NAS systems have achieved impressive performance on a variety of datasets [3, 35]. Nonetheless,
there are often default architectures that have been shown to generally perform well on a variety of
datasets. Therefore, in the presented study the focus is on optimizing other parameters of the DL-
pipeline.

2.3.3 Meta-Learning

In AutoML, meta-learning or ’learning to learn’, refers to using previous experience to learn how to
perform a new task. The construction of a ML-pipeline is considered somewhat of an art without
many guiding principles. Therefore, when human experts construct a ML-pipeline for a new task,
they rely on their experience of using ML to solve similar tasks. Similarly, in the field of AutoML,
meta-models leverage prior experience, in the form of meta-data, to learn how to solve new tasks.
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This meta-data consists of tuples P(i, j) where i is some dataset and j is the pipeline configuration.
For each tuple P(i,j) there are some evaluation scores such as accuracy and run-time, showing how
well configuration j did on dataset i. There also information about the task in the meta-data, each
tuple P(i,j) belongs to a specific task t. Then (P(i,j,t) gives information about the performance of
configuration j on dataset i to perform task t. However, in many meta-learning based systems, such as
the presented research, the task is always the same and therefore we can omit the task and the meta-
base only consists of tuples P(i,j). The goal in meta-learning is then to use a meta-model to predict
the performance of tuples P(i, j), where i is some new dataset [3]. It should be noted that task and
dataset are often used interchangeably in the literature. Here, task is only used to describe a machine
learning task such as regression, classification or detection.
A key question in meta-learning is how to represent the datasets so that they contain information
relevant to the performance of configurations. To this end, features describing datasets need to be
extracted. These are called meta-features. These meta-features can be handcrafted simple (e.g size of
dataset, number of classes, number of features) , statistical (e.g class distribution, correlation, covari-
ance), information-theoretic (e.g. information gain), model-based, and landmarkers [3]. Landmarkers
are the performances of simple models, e.g. 1-NN or random trees, evaluated on a dataset. Studies on
the Open-ML database [36], have shown that the optimal set of meta-features often depends on the
application [37].
Another approach is to learn representations of datasets. The objective here is to learn representations
that capture information relevant to quantize and assign similarity scores to datasets. This can been
done by using meta-models to learn a function f : M → M′ from existing meta-data P, here M is a set
of handcrafted meta-features. The meta-features M′ can then help to accurately predict performances
for new tasks. One example of M′ is a binary encoding of the pairwise performance of configurations,
so for two given configuration which one is predicted to perform better on the new dataset [38].
Another way to learn M′ is deep metric learning. As an example, if two datasets have the same feature
dimensions (e.g. same size images), a Siamese neural network can be used. Here the data is inputed
to two twin networks and the difference between predicted performance and observed performance is
used as a loss function [39]. Since the weights between both networks are tied in a Siamese network,
two very similar tasks are mapped to the same regions in the latent meta-feature space [3].
There are variety of ways to leverage meta-data to find an optimal configuration for a new dataset.
One approach is to warm-start HPO with configurations known to perform well on similar datasets
[40] . In order to do this some form of dataset similarity needs to be defined, this can simply be some
distance measure between two dataset meta-feature vectors. In warm-starting the best configurations
of the t most similar datasets are then first evaluated on the new dataset. In this way, the surrogate
model is initialized and the optimization process is guided towards a promising area in the search
space [40, 3]. Especially for larger datasets, and therefore longer evaluation times, warm-starting the
optimization process leads to significant performance improvements. This approach is used in the
first version of the auto-sklearn system, which has won many (early) AutoML challenges [41].
Another approach to leveraging the meta-data is to use a meta-model to construct a ranking of con-
figurations that are likely to perform well on a new dataset. Here the goal of the meta-model is to
learn a function f : (Mi,C j)→ R(i, j). Mi are the dataset meta-features, C j the configuration param-
eters and R(i, j) is the rank of configuration j on dataset i relative to all other configurations C. The
meta-model learns this function by training on the described meta-base. This training is called the
offline phase of a meta-learning system. In order to then find a good configuration for a new dataset,
all configurations C j in the search space can be concatenated with the dataset meta-features Mi and
the meta-model outputs a ranking of the configurations. This prediction for a new dataset is called the
online phase. An overview of this process is given in Figure 8.
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Figure 8: Overview of an AutoML meta-learning system

There are three different ways in which machine learning can be used to construct a ranking. In
pointwise ranking, a regression model is used to predict the relevance score of an input. In pairwise
ranking the problem is transformed into binary classification; for two given configuration predict
the better one. Iterating over configurations in this way leads to final ranking. Finally, the listwise
method optimizes for a ranking evaluation metric directly, in this way the order of all configurations
is considered in the loss function [42].

2.3.4 Ranking AutoML Systems

The first system proposed to create a ranking of configurations for a new dataset was not based on
a machine learning model. Nonetheless, it is often used as a baseline for other more sophisticated
systems. In average ranking first some dataset similarity measure is used to find the k most similar
datasets. Then all configurations are ranked based on their average performance on these k most
similar datasets [43].
One more recent system constructs an optimal bagging workflow for a given new tabular dataset
[44]. Among other parameters, the search space considered consists of the number of learners in the
ensemble, the pruning method used or the dynamic integration method. Due to the structure of a
bagging workflow this search space only results in 63 valid configurations per dataset. To construct a
meta-base 140 classification dataset from OpenML [36] were used, on each dataset the performance
metrics of the 63 configurations were obtained. This resulted in a meta-base with 8820 datapoints.
Each dataset was represented by a vector of 158 meta-features, these were extracted using a tool for
automatic meta-feature extraction [45]. Thereby, most classic handcrafted meta-features are included.
The ranking was constructed using the pointwise approach, the meta-model (XGBoost) was trained
to predict accuracy scores given a concatenation of dataset meta-features and the given configuration.
This meta-model was evaluated in a leave-one-dataset out cross-validation scheme.
The results showed that this learning-to-rank approach significantly outperformed average ranking.
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Moreover, their was no significant difference between the performance of the optimal workflow and
the best one in the predicted top five.
Another recent ranking based AutoML system is RankML [46]. Here, the search space consists of
various available components with scikit-learn [47], a classical machine learning library. These were
presented acyclic graphs, in the order that machine learning pipelines are usually designed. First data
pre-processing, then feature preprocessing, then feature engineering and finally predictive models.
To construct the meta-base ML-pipelines were randomly constructed for each task, regression or
classification, and dataset. In this way, 142.006 pipelines for classification and 171.482 pipelines for
regression were evaluated. Overall 149 classification and 79 regression datasets were included in the
meta-base. Due to the the representations of pipelines as acyclic graphs, the overall size of pipeline
vectors is kept small while still representing the large search space. The ranking was constructed
using the pairwise approach, the meta-model used was again XGBoost.
The resulting system achieved performances similar to then state-of-the-art AutoML systems on a
variety of AutoML benchmarks, at a fraction of time. So RankML showed that it is possible to
predict optimal ML-pipelines for a new task, given a sufficiently large meta-base. This is especially
beneficial when the goal is to find an optimal configuration in a short amount of time.

2.3.5 Multi-Fidelity Methods

A key challenge in AutoML is that it is computationally expensive to evaluate an ML-pipeline on
a dataset. This is especially true for deep learning models and large dimensional datasets, such as
images. Training a single ML-pipeline on a single dataset can easily take several hours, and for some
tasks even days [48].
A common approach that human experts use to combat this problem is to evaluate configurations on
a subset of the data or some otherwise reduced version of it. Multi-fidelity methods refer to algo-
rithms that formalize these manual heuristics, using so called low fidelities to approximate the actual
performance of configurations. Examples of these low fidelities are subsets of the data, short training
times, down-sampled images or using a subset of the available features. While there are a variety of
multi-fidelity methods, in AutoML there are two predominant approaches to this problem. The first is
to extrapolate learning curves to approximate final performance. The second focuses on bandit-based
algorithms to to determine the best configuration out of a finite set.

In learning-curve based prediction for early stopping some number of configurations are trained for a
specific time and a performance evaluation is recorded at every step. Based on these learning-curves
a decision is then made which configurations are likely to perform well, these are then trained further
[3]. This is similar to how deep learning practitioners evaluate models, experienced practitioners
often decide whether to keep training a model based on the learning curve. In order to automate
this process, a model needs to predict the final performance of configurations based on partially
evaluated learning curves. Configurations that are predicted to perform significantly worse then the
best predicted configuration are stopped.
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Therefore, the model needs to give a probabilistic estimate of the the continuation of a learning curve.
This has been done by modelling the learning curve as a weighted combination of parametric models
from various scientific fields [49]. These parametric models were selected due to similar characteris-
tics as learning curves, increasing rapidly in the beginning and then slowly converging to a horizontal
line. So each learning curve is modelled by a function:

fcomb(t|ε) =
k=11

∑
k=1

wk fk(t|θk)

Where ε = (w1, ...,w11,θ1, ...,θ11,σ
2) represents the combined parameter vector, w is the weight of

function f (t|θ) with parameters θ and σ2 is the noise variance. These weights and parameters are then
sampled via Markov chain Monte Carlo to minimize the loss of fitting the partially observed learning
curve. This yields a predictive distribution, which allows to stop training configurations based on their
probability of outperforming the best predicted model [3, 49].

This predictive early stopping method can be combined with SMAC, by keeping track of the current
best configuration and stopping training if it is unlikely that a configuration outperforms it. On average
including early stopping decreases the time needed for SMAC to find an optimal configuring by a
factor of two [49], for the MNIST [50] and CIFAR-10 [51] datasets.

A limitation of the method presented above is that information is not shared across different con-
figurations. The combination of parametric models is only fitted to one learning curve and there
is no way to incorporate knowledge about the learning curves of other configurations. This can be
achieved by using a Bayesian neural network to predict the parameters and weights of the parametric
function combination [52]. In this way an informative prior, knowledge about the shape of learning
curves, is incorporated into the Bayesian neural network and information is shared across different
configurations.

In the multi-armed bandit problem a limited amount of resources must be allocated between com-
peting choices to maximize the overall expected gain. The properties of each choice are not fully
known initially, but they might become better understood as more resources are allocated towards
them [53, 54]. Selecting the best ML-pipeline out of a finite set for a given task within a given com-
pute budget is such a multi-armed bandit problem. At first it is unknown how well each configuration
will perform, but, as the configurations are evaluated on larger fidelity’s of the dataset, more is known
about the performance of individual configurations.

One popular bandit based multi-fidelity method is successive halving. The idea behind it is quite
simple, but nonetheless has been shown to perform well and can also be combined with other methods.
While in learning rate extrapolation only shorter run-times are used as fidelity’s, in successive halving
the budget can be anything.

In successive halving all configurations are first evaluated on some initial evaluation budget, then
the worst performing half is dropped and the evaluation budget is doubled. This procedure is then
repeated until only one configuration is left [55, 3]. This is illustrated in Figure 9. One downside of
successive halving is that is suffers from the budget vs number of configurations trade-off. For a given
total budget the user has to decide whether to try many configurations and only allocate little budget
to each configuration, or to include fewer configurations and allocate more budget to each. When to
little budget is allocated per configuration good configurations might be dropped, and when to much
budget is allocated resources are wasted to evaluate bad configurations.
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Figure 9: Illustration of the successive halving procedure. Image taken from [3].

2.4 Quantizing Optical Appearance
As explained in the previous section, designing suitable meta-features to represent datasets is crucial
for meta-learning based systems. For AutoML systems for images, information about how the images
”look like” could also be important to find well working configurations.
In medical image analyses, radiomics are data-characterization algorithms aiming to extract a stan-
dardized set of features from images. These features fall into five different classes: First-order statis-
tics, shape descriptors and textural descriptors. Textural descriptors is then further divided into gray
level co-occurrence matrix, gray level run length matrix, and gray level size zone matrix [56]. Ra-
diomics feature extraction was developed to convert images into meaningful vectors that can then be
used for analyses. This quantization of images has shown great promises in clinical-decision support
systems to improve diagnostic, prognostic, and predictive accuracy [57]. In general, radiomics feature
extraction has shown promises in classifying cancer in a variety of image modalities [58, 59, 57].
A typical radiomics workflow consists of image segmentation, preprocessing and feature extraction.
This workflow is often designed with a specific application in mind so that only application relevant
feature are extracted. Therefore, a radiomics feature extraction scheme cannot be used across appli-
cations and has to be redesigned [60]. AutoML has been used to automate this process, aiming to
streamline radiomics research, facilitate radiomics reproducibility, and simplify its application [61].
In general, radiomics have shown promise in medical image analyses and it can therefore be assumed
that they are a good tool to quantify images into meaningful vectors.
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3 Related Work

This section provides an overview over AutoML systems for image data. To this end, first exist-
ing AutoML systems and their performances are presented. Secondly, some technologies that are
potentially used in these systems are discussed. Thirdly, systems that automate the development of
DL-pipelines are discussed. Finally some existing systems for cellular image analyses are referenced
and the motivation behind the presented research is given.

3.1 AutoML Systems for Images

There are many AutoML systems developed for tabular data. For this reason, a variety of techniques
have been developed to find optimal ML-pipelines on tabular datasets. An AutoML system for images
is in many ways similar to systems for tabular data, nonetheless there are some differences. Mainly
due to the high dimensionality of images, it takes a long time to evaluate pipeline configurations.
Additionally, images always have a similar structure, so techniques such as transfer learning and
few-shot algorithms are potentially more applicable.
While there is little published research on AutoML for image data, there are some publicly available
systems. Google AutoML3, H20 hydrogen torch 4, Microsoft Azure AutoML 5, Amazon Sagemaker
6 and BigML’s OptiML 7 all offer automatic configuration of DL-models for image analyses. The
user therefore does not need to configure a model themselves, but can just upload their dataset, pay
a fee, and get a trained model in return. Since these companies are competing for the best AutoML
image analyses tool, there are no published papers describing how exactly these systems configure an
optimal deep learning model. For instance, researchers at Amazon have published a paper describing
AutoGluon, their tabular AutoML tool [62]. They state that their system also works for image data,
but that the underlying technology for this task is significantly different.
While there is not much information about the underlying technologies, the performance of these sys-
tems can still be compared. A good overview of the performance of state-of-the-art neural networks
with default hyperparameters (ResNet [25]), open source (auto-sklearn [41] and AutoKeras [63]) and
commercial (Google AutoML Vision) AutoML tools was provided by Yang et al. [64]. They re-
leased a new benchmark dataset, MedMNIST, consisting of 10 different preprocessed medical image
datasets. These cover all key data modalities in medical images and the tasks include binary/multi-
class, multi-label classification and ordinal regression. Moreover, the size of dataset ranges from 100
to 100.000 images. Overall, the results indicate no clear winner, no system achieved superior per-
formance on all datasets. Nonetheless, Google AutoML vision performed best overall followed by
AutoKeras and default ResNets. Auto-sklearn performed worst, which is not surprising since it relies
on classical machine learning and modern CNN architectures are not included in the search space.

3.2 Generalist Deep Learning Models

As stated, for many AutoML systems for image data no published research describing the underlying
technology is given. Still, there are some technologies that are potentially used in these systems. Here,

3https://cloud.google.com/automl
4https://h2o.ai/blog/comprehensive-guide-to-image-classification-using-h2o-hydrogen-torch/
5https://azure.microsoft.com/en-us/services/machine-learning/automatedml
6https://cloud.google.com/automl
7https://bigml.com/whatsnew/optiml

https://cloud.google.com/automl
https://h2o.ai/blog/comprehensive-guide-to-image-classification-using-h2o-hydrogen-torch/
https://azure.microsoft.com/en-us/services/machine-learning/automatedml
https://cloud.google.com/automl
https://bigml.com/whatsnew/optiml
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two techniques that aim at making DL models more general, so applicable to multiple datasets/tasks
are discussed.

3.2.1 Few shot learning

Few shot learning is a field related to the presented research. Here, the aim is to enable networks
to learn new task with only a few data-points of that task. For example, the new task could be to
detect cats in an image. The model should then learn this from a few annotated images of cats. This
is a hard problem, because, usually neural networks require many examples per class. In Model-
Agnostic Meta-Learning for Fast Adaptation of Deep Networks (MAML) [65] this is done using a
specific training technique. First, some tasks are sampled, then for each task the gradient step w.r.t. k
examples of the task is calculated. The update of the overall network is then the average of the gradient
steps over the sampled tasks. In this way, it is possible to learn a new task with a few examples since
the gradient step is also calculated w.r.t. other tasks. So the model leverages information from other
tasks when learning a new task. This is only a high level description of this technique, for a more
detailed description please see the original paper [65].
The connection between few-shot learning and the presented research is that both aim at leveraging
previous tasks to learn a new task. Different to the presented system, few shot learning focuses on
directly learning a new task, while in the presented research the focus is on how to best learn a new
task. For the presented research, a few shot meta-learning approach could be to treat each dataset as
a task and to then training a agnostic model using the described training procedure. In this way, the
model could be quickly adopted for a new dataset. However, this would require a large variety of
datasets and there is less common information across datasets than there is across different classes in
image recognition. Nonetheless, few shot meta-learning could potentially enable quick adaptations
of neural networks for new datasets.
While few shot meta-learning focuses on fast adaptions of neural networks, there are also models that
are trained on diverse datasets and work on new datasets without re-training. These models are able
to perform well on variety of datasets in a specific domain.

3.2.2 Cellpose

Cellpose is a generalist deep learning model for instance segmentation of cellular images [66]. The
model was trained on a large dataset composed of cellular images from a variety of microscopy
modalities and fluorescent markers. Overall, the dataset contains over 70.000 segmented objects and
has been designed to contain all kinds of object shapes. Due to this training on a variety dataset, the
model does not require re-training and can be used directly on novel images. The network architecture
is similar to U-Net [20] with a backbone based on ResNet [25]. Running the system on the CellIm-
ageLibrary dataset [67] showed that it significantly outperforms StarDist [68] and Mask-RCNN [69],
two other state-of-the-art generalist segmentation models.
The main attraction of Cellpose is that it works well on a variety of cellular images and does not
require retraining. This means that biomedical experts do not need to go through the laborious process
of annotating a new dataset. While this model is an amazing tool and is currently being used in
practice, there are two limitations. First, the model only performs instance segmentation and cannot
be used for semantic segmentation. Secondly, it will be outperformed by models trained on large
specific datasets. The more different the dataset, the larger the performance difference will be.
This section presented a technique for quick adaptations of neural networks and a system relying on
transfer learning. These are related to AutoML systems for images, since both offer solutions to the
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problems of long training times and re-usability of similar data. The approach of Cellpose can be
seen as an alternative to the approach presented in this thesis, using a generalist model instead of
optimizing a specific pipeline.

3.3 Automating Deep Learning Pipelines
There are also systems that focus on finding an optimal DL-pipeline for a new dataset. This optimal
DL-pipeline includes the neural architecture and other hyperparameters, such as the learning rate.
Most of these systems focus on tabular data, but there are some that also work on images. Here two
systems automating the two most commonly used deep learning libraries (Tensorflow and Pytorch)
are briefly presented.

3.3.1 Auto-Pytorch

Auto-Pytorch jointly optimizes the network architecture and the training hyperparameters to enable
fully automated deep learning [70]. It has been developed for tabular data, nonetheless its optimiza-
tion approach has also been used on the NAS-Bench-201 search space [71] and has achieved good
performance on benchmark image classification datasets. The authors introduced the BOHB opti-
mization algorithm, combining Bayesian optimization and hyperband. Furthermore, they warm-start
the Bayesian optimization using meta-learning. Meta-learning is done by first evaluating some con-
figurations, that performed well on other datasets, on the new dataset. This is similar to the approach
used in auto-sklearn, described in section 2.3.3.
Overall, their approach relies on an efficient selection of both what configurations to evaluate and on
what budget they should be evaluated. By combing these two, a guided and highly efficient search
over configurations is achieved. Nonetheless, this approach still relies on training many configurations
from scratch on a new dataset. This leads to a long overall search process, which is not desirable for
high dimensional image datasets.

3.3.2 Auto-Keras

This AutoML tool is specifically developed to perform NAS, it searches for the best neural architec-
ture given a dataset and a task. It combines Bayesian optimization with a novel method called neural
morphism [63]. This is the process of modifying a given neural network architecture by applying
discrete operations such as inserting a layer, adding a skip connection between two layers, etc. What
morphism operation to apply and evaluate next is determined by Bayesian optimization. The benefit
of this network morphism is that previously trained weights can be reused, reducing the evaluation
time for different configurations. Moreover, the functionality of the network is preserved throughout
the optimization process.
Auto-Keras achieves state-of-the-art performance on common image datasets, such as MNIST [50]
and CIFAR-10 [51]. While Auto-Keras presents and interesting method for NAS, it is not immedi-
ately usable for biomedical images since these require preprocessing. Moreover, as stated above the
presented research does not include NAS and focuses on other hyperparameters.

3.4 Automatic Cellular Image Analyses
Next to the already presented Cellpose model, a variety of other tools for the analyses of cellular im-
age have been developed. Italisk [7] contains pre-defined workflows for image segmentation, object
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classification, counting and tracking. With its impressive user interface and good performance of the
default workflows it is used by many researchers. Nevertheless, Italisk does not leverage AutoML
to tune hyperparameters or perform feature selection. So for optimal performance the user must still
configure the workflow manually. CellProfiler [8] is an image analysis software designed for high
throughput screening. CellProfiler is able to automatically extract cellular features in images, such as
cell size, shape, pixel intensity, texture, and colocalisation. Furthermore, CellProfiler offers function-
ality to interactively explore and analyse the multidimensional data extracted from the images using
plots such as histogram, scatter plot, density plot and parallel coordinate plot. The data visualisation
feature allows biomedical experts to intuitively and quickly draw hypotheses or insights regarding
their cell culture. CellProfiler does not offer any ML or DL models for segmentation, but researchers
can add their own implementations due to the software being open-source.
There are also products that are only available to paying costumers, one of these is Olympus Live
Cell imaging 8. In this system, the user can choose between three different pre-configured workflows
for segmentation. All of these are based on U-Net, but they are specifically designing for different
types of tasks. These tasks are loosely described based on characteristics such as object shapes or
signal-to-noise ratios. The user can then choose an option based on their use-case.
In conclusion, there are variety of tools for cellular image analyses available to researchers. These
offer great value, since they allow researchers to easily explore their data and perform some analyses
task automatically. However, due to the workflows performing these analyses tasks not being task-
specifically optimized, they might not perform optimally. To the best of our knowledge, there are no
systems that incorporate AutoML to determine an optimal DL-pipeline for an analyses task.

8https://www.olympus-lifescience.com/en/solutions/live-cell-imaging/

https://www.olympus-lifescience.com/en/solutions/live-cell-imaging/
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4 Methods
In this section, all components of the AutoML system are presented. Each component is described
and experiments to optimize the components are presented. First, the requirements to the system and
the approach used are discussed. Second, the transfer learning methodology is presented. Third, the
search space for pipeline configurations is given. Fourth, the default settings and a method to auto-
matically configure class-based sampling are discussed. Fifth, all datasets in the meta-base and the
construction of the meta-base are outlined. Sixth, the different meta-feature extraction techniques are
discussed. Seventh, meta-learning metrics, models and experiments are described. Eighth, succes-
sive halving is briefly presented. Finally, the evaluation methodology of the best combination of all
components, the final AutoML system, is presented

4.1 System Requirements and Approach
As described in the Introduction, the AutoML system has to find the best DL-pipeline configuration
that learns how to segment the given ROIs in the images. Moreover, due to compute constraints this
has to be done within a reasonable time limit. The input to the system is a dataset consisting of micro-
scopic cellular images and their corresponding masks. The challenge for the system is that training
a single pipeline takes a considerable amount of time and that the search space for good pipeline
configurations is vast. So the system has to find a good pipeline configuration without evaluating
many configurations on the input dataset. The AIxCell AutoML system tackles this task in a five-step
process. First, a search space for DL-pipelines is designed, this is done based on previous experi-
ence and the search space is biased towards good configurations. Next to defining the search space,
other hyperparameters are set to good default values. Secondly, random pipeline configurations are
sampled from the search space and evaluated on different datasets. This then forms the Metabase, pre-
vious experience that the system leverages to find optimal configurations for new datasets. Thirdly,
meta-features are extracted from the datasets and different feature engineering strategies are evalu-
ated. Fourthly, meta-learning reduces the search space to a few configurations that are predicted to
perform well. Finally, successive halving is used to find the optimal pipeline based on the meta-
learning selection. This process of condensing the search space to a single DL-pipeline is illustrated
in Figure 10. Prior to developing the AutoML system, transfer learning is investigated. Here the
focus is on if transfer learning can reduce model evaluation times, which could improve the overall
system. More specifically the transfer learning experiments explored the effects of domain-specific
and generic pretraining.

Figure 10: The five-step process used to find an optimal DL-pipeline from unlimited search space,
within a given compute limit.
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4.2 Transfer Learning

To compare domain-specific and generic transfer learning for semantic segmentation of cellular im-
ages, the effects of pre-training on two cellular image datasets and ImageNet are evaluated. Here
the datasets and transfer learning methodology and experimental setup will be described. The same
model is used in all conditions and is also used in the overall AutoML system. It is described in
section 4.4 for the transfer learning experiments. ResNet-18 is used as a backbone.

4.2.1 Pre-training Datasets

Two different domain-specific datasets and one generic dataset are used to pre-train the model. The
first domain-specific one is curated to train the Cellpose model. It contains 608 images representing
a variety of microscopy modalities and fluorescent markers. Additionally, it contains photographic
images of various objects, such as sea shells or bananas. Overall, it contains a large variety of seg-
mented objects. The cellpose dataset [66] was developed for instance segmentation. In order to use
it for semantic segmentation, all segmented objects were assigned the same class and the masks were
thereby binarized. An example of this conversion can be seen in Figure 11. This works well for most
image mask pairs in the cellpose dataset. However, for images that contain many objects and not
much background, it can be problematic since a large percentage of the image then corresponds to the
object class. This can potentially be difficult to learn for the model, due to only minor changes in the
loss function for predicting the entire image as class one or accurately segmenting the objects.

(a) Original image (b) Instance mask (c) Binary mask

Figure 11: The process of converting the instance segmentation masks into binary masks for semantic
segmentation.

The second dataset used for pre-training is a collection of various datasets for nuclei segmentation.
These images were collected using different microscopy modalities and thereby cover a large part of
the cellular image domain.
The combined dataset is made up of a large part of the 2018 Data Science Bowl from kaggle (1276
images) [72], nuclei in histopathology images [73] (50 images), nuclei segmentation challenge (120
images) [74], nuclei in immunohistochemistry (50 images) [75], BBBC006 (32 images), BBBC007
(32 images), BBBC0018 (168 images), BBBC0020 (25 images) all from the Broad Bank Institute
[76] and nuclei in U2OS cells (97 images) [77]. Some example images from this dataset can be seen
in Figure 12. In total the dataset contains 1850 images with binary masks, representing the segmented
nuclei. Since most images in this dataset come from the kaggle data science bowl, this dataset will be
refered to as the kaggle dataset.
ImageNet [28] is used as the generic dataset for pre-training. Specifically pre-trained ResNet blocks
were used for the encoder part of the network. The decoder part of the network is not pre-trained in
the generic condition.
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(a) BBBC006 (b) BBBC007 (c) BBBC018 (d) BBBC020

(e) Tissue Nuclei (f) Nuclei Benchmark (g) Kaggle Challenge (h) Histopathology

Figure 12: Example images for each dataset included in the kaggle dataset

4.2.2 Transfer Learning Procedure

To initialize the weights of the model, it was pre-trained for 50 epochs on both datasets. In this way,
there are two models of identical structure, each one with its weights trained on a different domain-
specific dataset. The learning rate was set to 0.0005, the adam optimizer and binary-cross-entropy
loss were used.
The datasets that are used to evaluate the effects of pre-training sometimes required different input
and output shapes. Therefore, the first and/or last layer have to be exchanged and its weights are
randomly initialized. To preserve the pre-trained weights, all other layers are frozen and only the new
layers are trained until convergence. The new layers were assumed to have reached a converged state
when the validation IoU score did not change by more then 0.03 for three consecutive epochs. After
this initial training all layers were unfrozen and trained on the new dataset, using a learning rate of
0.0001. The learning rate is set at such a low value to avoid ”destruction” of the pre-trained weights.
A similar procedure is used for the model with weights pre-trained on the ImageNet dataset. First,
the pre-trained layers are frozen and all other layers were trained until convergence. Then, all layers
are unfrozen and the model is fine tuned on the new dataset.

4.2.3 Experiments

Four differently initialized models were compared: pre-trained on cellpose, pre-trained on kaggle,
encoder weights pre-trained on ImageNet and a non pre-trained model. The models were evaluated
on four of the datasets within AIxCell: RUB, UKA, UKK and UKB. A description of these datasets is
given in section 4.5. Images in these datasets are of large dimension, therefore they were divided into
patches of size 224x224. The images used for evaluation were of the same dimensions as the images
used for pre-training. The evaluation datasets were split into training, and test set using a split of
[0.7, 0.3]. Performance of the models is evaluated using the validation set IoU score, the performance
metric is logged every epoch.
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Patch size 64 128 256
Batch size 4 8 16 32
Learning rate 0.0005 0.001 0.01
Backbone ResNet-18 ResNet-50
Augmentation: Flip 0 0.5
Augmentation: Brightness and Gaussian Blur 0 0.5
Augmentation: Grid distortion 0 0.5

Table 1: The Search space considered in AIxCell. For the augmentations the value refers to the
probability of applying an augmentation during the training process. Overall, there are 576 possible
configurations.

4.3 Search Space

As stated in the theoretical foundations section, deciding on what hyperparameters to optimize is
crucial to the performance of AutoML systems. For AIxCell we based that decision on the experience
gained while specific DL-pipelines were developed for the use cases. Hyperparameters that were
found to cause large variability of performance metrics were: patch size, batch size, learning rate,
image augmentations, and the backbone used by the network. A description of these hyperparameters
was given in section 2.1.5. Another factor that was found to have a large impact on performance, is the
neural architecture used. However, on all use-cases, U-Net showed good performance and on three
out of four it indeed performed best. Therefore, it was decided to only use the U-Net architecture and
thereby restrict the problem to HPO and to exclude NAS.
Next to deciding on what hyperparameters to optimize, the possible values of the chosen hyperpa-
rameters need to be defined. Technically, even though there are only five hyperparameters, without
further restriction the search space would be infinite. This restriction needs to be done in a way that
includes optimal configurations, while also inducing enough variance into the search space. The pos-
sible values were again chosen based on the previous student project, see Table 1 for all possible
values. Overall, the search space contains 576 possible combinations. Image augmentations were
randomly applied during the training process, so before an image was fed to the model there was a
chance of an augmentation to be applied. For each augmentation setting that probability to zero, so
never applying that augmentation, and setting that probability to 0.5, so applying the augmentation
50 percent of the time, are included in the search space. Image augmentation can also be combined
in that way, in the most extreme case all three can be applied to the same image.
Overall 576 possible configurations are included in the search space. By choosing potentially im-
portant hyperparameters and overall good values for them the search space is biased towards good
solutions. In this space of well-performing configurations, the task of the AIxCell AutoML system is
to find the optimal one.

4.4 Default Settings

While some hyperparameters are being optimized in AIxCell, others are set at default values. In
this section, the chosen default parameters are presented. Moreover, a simple rule-based method to
configure class-based (re-)sampling is discussed.
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4.4.1 Default Parameters

A U-Net like model is used, see section 2.1.4. The model is implemented in Keras and is based on the
segmentation models library 9. In the encoder part of the network, there are five down-sampling layers
that each contain four convolutional blocks. The convolutional blocks consist of a convolution layer
followed by batch normalization and that output is then passed through a ReLU activation function.
Convolutional layers contain residual connections. Each convolutional block is a ResNet block and
contains either 18 or 50 layers. The decoder part of the network also has five convolutional blocks that
follow the same structure as the encoder blocks. The activation function of the final layer is sigmoid
for binary segmentation and softmax for multi-class problems. If ResNet-18 is used as the model
backbone there are a total of 14.330.789 trainable parameters, for ResNet-50 there are 32.513.701
trainable parameters.
Other default parameters are: The patch stride was set to half of the patch size, adam optimizer on
default settings, and categorical focal loss [78] (adopted for multi-class according to [79]) with a
gamma of 2.

4.4.2 Automatic class-based sampling

In the first stage of the AIxCell project, the configuration of class-based sampling turned out to be
crucial for optimal performance on some imbalanced datasets. In the presented system first the class
distribution is calculated pixel-wise, the re-sampling is then done patch-wise. As explained above,
the class distribution is calculated by dividing the number of pixels belonging to a class by the total
number of pixels. Therefore, the class distribution is represented by an array with as many elements
as there are classes. In the automatic class based sampling method it is first checked whether a dataset
is indeed imbalanced. To determine if a dataset is imbalanced first a threshold is calculated:

threshold =
∑

i=n
i=1 xi

n
+

∑
i=n
i=1 xi

n
∗0.75

Here x is the array representing the class distribution and n is the number of classes. If any of the
classes occur on a larger percentage of pixels than this threshold, the dataset is deemed imbalanced.
As an example, consider a dataset with two classes and a class distribution of [0.8, 0.2] 80% of
the pixels belong to class one, and 20% belong to class two. This dataset would not be considered
imbalanced since the threshold (1

2 +
1
2 ∗ 0.75 = 0.875) is smaller than the largest class distribution

value (0.8). Therefore, it can be said that this is a fairly conservative measure to calculate class
imbalance. Nonetheless, one needs to consider that we are calculating class imbalance based on
pixel-wise occurrence and in this setting only more extreme imbalances are problematic.
If a dataset is imbalanced the class-based sampling factors are calculated in the following way. First
an acceptable low and high value of class occurrence are calculated: alow = µ(x)− µ(x) ∗ 0.5 and
ahigh = µ(x)+µ(x)∗0.2. If a class occurrence percentage (x[i]) is below or above this threshold a re-
sampling factor is calculated: f actor = alow or ahigh/x[i]. The factor is capped at 2 for up-sampling,
but not capped for down-sampling. This is done to limit the number of duplicated images in the
dataset.
The re-sampling based on the calculated factors is then done patch-wise, first, it determined which
classes occur in each patch. Then, patches are sampled based on the calculated sampling factor.
To illustrate the entire class-based sampling progress consider a three-class problem, the pixel-wise
distribution is [0.1,0.1,0.7]. Since 0.7 is above the calculated threshold of 0.525, the dataset is deemed

9https://github.com/qubvel/segmentation_models

https://github.com/qubvel/segmentation_models
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imbalanced. The class-based sampling factors are calculated as [1.5, 1.5, 0.514]. Now, after the
AutoML system determined the optimal patch size, the images are divided into patches. Then the
class distribution on a patch level is calculated. Say that classes one and two are more in the center
of the images and in absolute numbers the patches containing pixels of the classes is [7, 10, 34].
So only 7 out of 50 patches contain the first class. Now after class-based sampling the absolute
distribution could be [10, 15, 22]. Note that classes can co-occur on some patches and the new
absolute distribution therefore can be different than the exact multiplication of sampling factors and
initial absolute values. In the given example the last class co-occurs with the other classes on some
patches and is therefore sometimes up-sampled and sometimes down-sampled.
It would be better to do both the initial calculation and the re-sampling on a patch level. However,
since patch size is an optimizable hyperparameter and the process of dividing a dataset into patches
is computationally expensive, the patch-wise distribution is approximated using the pixel-wise distri-
bution.

4.5 Meta-Base
The core of the AIxCell AutoML system is meta-learning, here the system leverages data of the
performances of configurations on other datasets to predict an optimal pipeline for a new dataset. To
this end, a meta-base was constructed. This meta-base consists of pipeline configurations, sampled
without replacement from the search space, trained on eight different datasets. The entry into the
meta-base is then the pipeline configuration, the dataset, and the validation set IoU score. In this way,
an experience pool is constructed for the meta-model to learn from.

4.5.1 Datasets

Six of the used datasets were part of the AIxCell project, four were provided by the project partners,
and two were annotated with the Fraunhofer IPT. Additionally, two public datasets were also used to
create the meta-base. In this section, all datasets are described. To this end, the datasets meta-features
(further discussed in section 4.6) and example images are given. For the all example images white
represents the class and black the background.

RUB contains 72 RGB images with mean image dimensions 968x1292 of lunge tissue obtained
using brightfield microscopy. The object of interest is tissue and the magnification factor is unknown.
There are two classes, one being the inverse of the other. The other handcrafted meta-features are:
average mean area: 8440.43, average std area: 25047.10, average min area: 2.0, average max area:
372536.0. An example image is shown in Figure 13.

(a) Image (b) First Class (c) Second Class

Figure 13: Example image from the RUB dataset.
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UKB contains 32 images with mean image dimensions 1024x1024 of cardiomyocytes obtained
using fluorescent microscopy. The object of interest is nuclei and the magnifcation factor is 20. There
are four classes, one of the classes only occurs in some of the images. The area-based handcrafted
meta-features are: average mean area: 7140.11, average std area: 41909.09, average min area: 105.0,
average max area: 262031.37. An example is shown in Figure 14, note that the third class only occurs
on a few images and is not present in this example image.

(a) Image (b) First Class (c) Second Class (d) Third Class (e) Fourth Class

Figure 14: Example image from the UKB dataset.

UKK contains 229 images with mean image dimensions of 957x1414 of sarcomeres obtained using
fluorescent microscopy, there is only one class. The object of interest is sarcomeres and the mag-
nification factor is unknown. The other handcrafted meta-features are: average mean area: 10.81,
average std area: 34.60, average min area: 0.0, average max area: 6994.0. An example image is
shown in Figure 15.

(a) Image (b) First Class

Figure 15: Example image from the UKK dataset.

UKA contains 71 images with mean dimension 2657x3395 of induced pluripotent stem cells ob-
tained by Phase contrast microscopy. The object of interest is embroid bodies and the magnification
factor is four. There are four classes, notably, the classes are quite imbalanced and one of the classes
only occurs in a few images. The handcrafted meta-features are: average mean area: 76988.24, aver-
age std area: 439257.09, average min area: 0.5, average max area: 3290732.62. An example image
can be seen in Figure 16.



Chapter 4 METHODS 37

(a) Image (b) First Class (c) Second Class (d) Third Class

Figure 16: Example image from the UKA dataset.

iPSC contains 40 images with mean dimension 2666x2666 of induced pluripotent stem cells ob-
tained by Phase contrast microscopy. The object of interest is stem cells and the magnification factor
is 4. There are six classes, some of these classes are underrepresented and only occur in a few of
the images. In general, while there are six classes in this dataset an image contains at most four
classes. The other handcrafted meta-features are: average mean area: 12026.07, average std area:
91226.61, average min area: 1017.0, average max area: 2360599.75. An example image can be seen
in Figure 17, note that only two classes are present in this image and the other images are therefore
black.

(a) Image (b) First Class (c) Second Class (d) Third Class (e) Fourth Class

(f) Fifth Class (g) Sixth Class

Figure 17: Example image from the iPSC dataset.

MSC contains 202 images with mean dimension 2052x2052 of stem cells obtained using Phase
contrast microscopy, there are three classes. The object of interest is stem cells and the magnification
factor is 4. The other handcrafted meta-features are: average mean area: 6851.93, average std area:
82203.03, average min area: 0.66, average max area: 2787744.0. An example image can be seen in
Figure 18.
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(a) Image (b) First Class (c) Second Class (d) Third Class

Figure 18: Example image from the MSC dataset.

NuceleiSegBench [74] contains 120 images with mean dimension 1000x1000 of tissue images ob-
tained using fluorescent microscopy, there is one class. The object of interest is nuclei and the mag-
nification factor is unknown. The other handcrafted meta-features are: average mean area: 409.63,
average std area: 569.87, average min area: 0.0, average max area: 18186.0. An example image can
be seen in Figure 19.

(a) Image (b) First Class

Figure 19: Example image from the Nuclei segmentation benchmark dataset.

BBBC020 [76] contains 20 images with mean dimension 1040x1388 of macrophages obtained us-
ing fluorescent microscopy, there are two classes. The objects of interest are the cell surface and
nuclei, the magnification factor is unknown. The other handcrafted meta-features are: average mean
area: 8440.43, average std area: 25047.10, average min area: 2.0, average max area: 372536.0. An
example image can be seen in Figure 20.
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(a) Image (b) First Class (c) Second Class

Figure 20: Example image from the BBBC020 dataset.

4.5.2 Meta data collection

To create the meta-base, for each dataset pipeline configurations were sampled without replacement
from the search space. These pipeline configurations were then trained on the respective datasets.
By sampling configurations without replace for each dataset, it is ensured that each configurations
is only trained once on each dataset. Since there are eight datasets and 576 possible configurations,
there are a total of 4608 possible datapoints. To evaluate how well pipeline configurations perform
after training they were evaluated on a validation set. During each training run the datasets were
randomly divided into 80% training and 20% validation images. In this way, the train validation split
is different each time. Configurations were evaluated on two different GPU’s, a P-100 and an A-
100. Both are recent and powerful, however, the A-100 is faster. This training on different hardware
limits the comparability of configuration training times. Training configurations for a set amount
of epochs that ensures that configurations always converge to optimal performance is expensive and
potentially unnecessary. To limit training times and still ensure convergence, early stopping was used.
Configurations were trained until the validation set IoU score changed no more than 0.05 for eight
consecutive epochs. A relatively large performance delta of 0.05 was chosen because on some datasets
there was a large variability in validation IoU score between different epochs. A potential downside of
these early stopping parameters is that some configurations might not reach a performance maximum.
Nonetheless, these parameters are a good trade-off between ensuring convergence and not training
configurations longer than necessary. In some way, using early stopping to create the meta-base can
be seen as using a low-fidelity approximation.

4.6 Meta-Feature extraction
The goal of the Meta-Features is to quantify datasets in a way that represents the characteristics
important to the performance of pipeline configurations on different datasets. To this end, three
different types of features were extracted. These are meta-features that DL experts classically deem
important, meta-features from the expert user, and meta-features about the optical appearance of
images.

4.6.1 Handcrafted Meta-Features

These refer to dataset features that were deemed import and therefore extracted from datasets. These
are: The number of instances, the number of classes, the class distribution, the mean image shape
and the image format (RGB or grayscale). Mean image shape refers to the mean of the average width
and height of the images. Class distribution is calculated pixel wise, for each class the number of
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pixels of that class over the total amount of pixels. Therefore, the class distribution is represented by
a list of length number of classes. Since there needs to be an equal number of meta-features for each
dataset that list was compressed to a scalar value, aiming to represent class imbalance. This scalar is
the average distance between class distribution values. In this way, the scalar value represents how
imbalanced a dataset is.
In addition, information about the ROIs in the images was extracted. To this end, the mean, standard
deviation, minimum, and maxima of ROI sizes were extracted. These were calculated for each class
and averaged for each image, then averaged over all images in the dataset. This results in an additional
four dataset meta-features.
Overall, nine handcrafted meta-features were extracted for each dataset.

4.6.2 User given Meta-Features

The biomedical expert that uses the system can also provide useful information about a dataset. This
includes the microscopy technique, object of interest and the magnification level. The eight datasets in
the meta-base contain three different microscopy techniques, five different objects of interest and four
magnification levels. The microscopy techniques and objects of interest were represented as binary
vectors and the magnification level as a scalar value. Moreover, an additional feature representing if
the magnification level is known for a dataset was included. After the binary encoding there are ten
user given meta-features for each dataset.

4.6.3 Optical Meta-Features

To extract optical information of the image dataset, radiomics features were extracted. For a descrip-
tion of radiomics, please see section 2.4. The python implementation pyradiomics [56] was used to
extract 95 radiomics features per class. For each ROI a set of 95 features is extracted. These feature
vectors are then averaged and one 95-dimensional radiomics vector is obtained for each image. Av-
eraging all image level vectors leads to one radiomics vector for each dataset. Since these radiomics
features have different scales, feature-wise normalization was performed. This was done in two ways,
once over all image radiomics vectors and once over all dataset radiomics vectors. Feature-wise nor-
malization was used since instance-wise normalization (normalizing each radiomics vector) would
still lead to different feature scales.
In addition to feature-wise normalization, some dimension reduction techniques were applied. T-SNE
[80] is used to visualize the data and PCA [81] is used to compress the vector to four dimensions that
still capture 94.45% of the total variance in the dataset.
To quantify dataset similarity the cosine similarity measure was used. Cosine similarity can be cal-
culated between same dimensional vectors by dividing their dot product with their multiplied vector
norms:

Sc(A,B) =
A.B

∥A∥∗∥B∥

For each dataset the cosine similarity to all other datasets was calculated and these values were added
as meta-features.
In total there are four (PCA), eight (cosine similarities) or 95 (all) radiomics meta-features for each
dataset.
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4.6.4 Feature-engineering

All meta-features described above, are constant for each dataset and all the within-dataset variance
comes from the varying hyperparameters, see Table 1. To create more meaningful meta-features,
dataset meta-features and hyperparameter settings were combined. The following meta-features were
created based on handcrafted dataset features:

• number of images = (mean image shape / patch size)2

• batches per epoch = (number of images * number of instances) / batch size

• augmentation batches = sum(image augmentations) * 2 * batches per epoch

• learning rate batches = learning rate * batches per epoch

• backbone classes = backbone * number of classes

Here sum(image augmentations) refers to how many of the three augmentations are potentially ap-
plied and backbone is set to 0.5 for ResNet-18 or 2 for ResNet-50.

The radiomics meta-features were also combined with the hyperparameters, to capture potential inter-
action effects between the two. Either the first four principal components or the eight similarity scores
were multiplied with the learning rate, backbone and number of classes. In this way, an additional
four or eight meta-features were created.

4.6.5 Experiments

To evaluate the potential of radiomics to represent images belonging to different datasets, t-sne is
used to visualize radiomics vectors in two dimensions. Moreover, the cosine similarities of radiomics
vectors were evaluated in a qualitative way. The effect of feature-wise normalization on radiomics
vectors was evaluated using both t-sne and cosine similarity scores.

The goal of these different meta-features is to allow the meta-model to accurately rank different
configurations. Therefore, a variety of different meta-features combinations were tried for each meta-
model. In Figure 21 the 11 different meta-feature representations that were evaluated are illustrated.
The performance of these different dataset representations was evaluated using the metrics described
in section 4.7.1, moreover, the evaluation strategy is the same as for the meta-models.
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Figure 21: Evaluated Meta-Feature combinations to represent datasets. Fields marked with an X
indicate that a meta-feature representation is included in the evaluated representation.

4.7 Meta-Learning
The main part of the AIxCell system is meta-learning. Here, a machine learning model is trained on
the configurations of the meta-base and then predicts a ranking of configurations for a new dataset.
The input to the ML-model is the hyperparameter vector concatenated with a meta-feature vector. The
output was represented in two different forms first the validation set IoU score and second an ordinal
division of configurations. Here, configurations were assigned to ten bins based on their validation set
IoU performance, the worst 10% of configurations were assigned the label one the second worst 10%
the label two, and so on. The top 10% of configurations were assigned the label ten. This was done
to more clearly separate configurations since for many datasets there is not much variance between
different configurations.

4.7.1 Metrics

A key part of developing the meta-learning configurator was to find appropriate metrics. Here the
metrics used to evaluate the performance of meta-models will be described.
For the regression models the root mean squared error:

RMSE =

√
1/n

n

∑
i=1

(yi − ŷi)2

was used to assess how accurately the model predicts validation set IoU scores.
Pearson’s r is a measure of linear correlation between two variables. It is the ratio between the
covariance of two variables and the product of their standard deviations, when these are estimated
using a sample rX ,Y is calculated by:

r =
∑

n
i=1(xi − x̄)(yi − ȳ)√

∑
n
i=1(xi − x̄)2

√
∑

n
i=1(yi − ȳ)2
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The possible values for Pearson’r r range from -1, indicating a perfect negative correlation and 1
indicating a perfect positive correlation. A value of 0 indicates that two variables are not related.
Kendall rank correlation Tau is a measure to determine the correlation between two rankings, it is
calculated based on the number of concordant and discordant pairs. Any pair of observations (xi,yi)
and (x j,y j) are concordant if the sort order of (xi,x j) and (yi,y j) agrees, that is either xi < x j and
yi < y j or xi > x j and yi > y j. Otherwise, a pair of observations is said to be discordant. Kendall τ is
then defined as:

τ =
nconcordant −ndiscordant

ntotal

The possible values for Kendall’s tau range from -1, two rankings being inverse, to 1 meaning that
two rankings are identical.
The task of the meta-model is to limit the search space for good pipelines so that successive halving
can be used to find the optimal one. Therefore, two measures to evaluate how well the model predicts
the top 10% of configurations were also included. First, the difference between a random selection
and using the meta-model to limit the search space was assessed using the z-score. Here the z-score
is calculated as:

z =
µ(ŷ)−µ(yall)

σ(yall)

where ŷ are the IoU scores of the predicted top 10% configurations and yall are the IoU scores of all
configurations. The larger the z-score, the better the selection from the meta-model is compared to a
random selection.
Second, the difference between the predicted top 10% and the actual top 10% is evaluated as:

di f fiou = µ(y)−µ(ŷ)

where y are the IoU scores of the actual top 10% of configurations.
All evaluation metrics were computed for each dataset and then averaged to evaluate the performance
of a model and/or feature engineering strategy.

4.7.2 Meta-models

Loss Functions The pointwise and pairwise ranking approaches were compared. These approaches
differ in the loss functions used. Let x = x1, ...,xn be the instances to be ranked and R = r(1), ...,r(n)
be their corresponding relevance scores. These are either raw validation set IoU scores or a binning
based on them. If r(i)> r( j) then xi should be ranked higher than x j. For pointwise ranking the loss
function is then:

Lr( f ;x,R) =
i=n

∑
i=1

√
( f (xi)− r(i))2

In pairwise ranking the loss function is:

Lp( f ;x,R) =
i=n−1

∑
i=1

j=n

∑
j=1,r( j)<r(i)

φ( f (xi)− f (x j))

where φ is the hinge function: φ(z) = max(0,1− z). Note that even though the model is performing
binary classification it still learns a relevance score, so the output of f (x) is some scalar value. In
words, the loss for one instance is: For all instances that have a lower true relevance score, how well
does the model recognize these lower instances. This is often referred to as a maximum-margin loss,
the larger the difference between two scores the larger the loss.
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Regression Models Five different models were evaluated to create the ranking using the pointwise
approach. These model range from simple to more complex: Linear regression, decision tree, support
vector machine (SVM), random forest and XGBoost. For the SVM the data was normalized, replacing
every sample with its corresponding z-score. The other models do not require normalization.

LamdaMART is a state-of-the-art algorithm for learning to rank that has achieved top performance
on a variety of experimental datasets [82]. It combines LamdaRANK and MART (multiple additive
regression trees). The gradient-boosted decision trees from MART are extended with a cost function
derived from LambdaRank to order any ranking situation. So instead of predicting pseudo-residuals
based on a regression metric, as in regression trees, the trees predict some ranking loss function. Here,
the pairwise ranking loss function described above is used.

4.7.3 Experiments

Meta-models and meta-features were evaluated using leave-one-dataset out cross-validation. This
means that a meta-model is trained on the meta-data of seven datasets and then tested on the meta-
data of one dataset. The meta-data of each dataset is the testing set once and the performance of
a meta-model and meta-feature combination is then the average of all test datasets. Moreover, due
to the meta-base being small in size it was observed that the performance of meta-models varied a
fair bit due to randomness in the training process. Therefore, all meta-models where model training
includes a random process (SVM, decision tree, random forest) were evaluated over 30 random seeds.
For XGBoost the training process is deterministic on default settings, nonetheless, there are two
hyperparameters that lead to a randomized behavior. Subsample by tree refers to how much of the
training data is used to construct each tree and Colsample by tree refers to what percentage of features
is used to construct each tree. To estimate the potential over-fitting of the default XGBoost, XGBoost
with subsample=0.9 and colsample=0.9 was also evaluated over 30 random seeds.
The following meta-models were evaluated for every meta-feature representation (see section 4.6.5):

• Linear Regression

• Decision Tree

• SVM

• Random Forest

• XGBoost Regressor

• LamdaMART

• LamdaMART with randomized training

Each model was also evaluated given the two relevance score representations discussed above. In
total, 168 (2x7x12) different meta-learning configurations were evaluated.

4.8 Successive Halving
To evaluate the top k configurations of the ranking predicted by the meta-model, successive halving
was used. Next to this k configurations the input also includes a time limit, this is the total bud-
get. As described in section 2.3.5, the worst half of configurations is dropped after each step until
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only one configuration remains. Therefore, first, the number of steps required to end up at a single
configuration, given k configurations, is calculated by:

n steps = f loor(log(k)/ log(2))+1

Then the budget per step is calculated, budget step = total budget / n steps. For the first step, each
configuration is assigned a budget of budget step / k, and for the second step the budget for each
configuration is doubled since k is divided by two. In this way, the algorithm proceeds until only
one configuration remains. The performance of configurations is the validation set IoU score and
configurations are stopped when their time budget runs out.

4.9 System Evaluation Experiments

The performance of the AIxCell system is evaluated in two ways, on two new open-source datasets
and on some of the datasets used to curate the meta-base. For the evaluation the best 50 predicted
configurations are used to start the successive halving process. With 50 configurations there are six
steps in successive halving, therefore 27.38% of the total budget is used to train the best configuration.
The time budgets for each of the datasets were adjusted based on their dimensions and total number
of instances.
The first open-source dataset is Fluocells [83], with 283 images of neuronal cells, of mean dimension
1600x1200, obtained using Fluorescent microscopy. The task is binary segmentation, separating
neuronal cells and background. An example image and mask are shown in Figure 22. The dataset
was split into 0.8 training, 0.1 validation and 0.1 testing. Due to the large number of instances and
relatively large image dimensions of the Fluocells dataset, the AIxCell system was given a compute
budget of 6 hours. The best configuration is therefore trained for 1.64 hours.
The second public dataset used is the Electron Microscopy Dataset from EPFL [84]. For this dataset
a pre-defined split into training and testing is available. The training set consists of 165 images of
mitochondria, with dimension 1024x768, obtained using Electron microscopy. Again, there is one
class and here the task is to segment mitochondria. An example image can be seen in Figure 23. The
testing set also contains 165 images of the same dimensions. To evaluate performance the training set
was split into 0.8 training, 0.1 validation and 0.1 testing. Note that the testing set is never used here
due to the existing test set, nonetheless the split is set at a default and therefore not affected by this.

Figure 22: Image and Mask from the Fluocells dataset
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Figure 23: Image and Mask from the Electron microscopy dataset from EPFL

Next to evaluating the system on novel datasets it was also evaluated on two of the datasets in the
meta-base. Namely, on the UKB and iPSC datasets. To this end, the meta-model was only trained
on the meta-data of the seven other datasets. Since for both of these use-cases specific pipelines were
developed by students beforehand, this allows for a comparison between the AIxCell system and
human experts. For both datasets a train, validation and testing split of 0.8, 0.1, 0.1 is used.
The UKB dataset is relatively small, therefore the AIxCell system was given a compute budget of 4 to
train the top configuration for 1.09 hours. The iPSC dataset only contains 40 images, however these
are of very large dimension. Moreover, there are 6 classes and it is therefore reasonable to assume
that longer training times might be needed. The AIxCell system was given a compute budget of 6
hours for this dataset.
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5 Results
In this section, the results of the described experiments for answering the main research question
on how meta-learning based approaches can be used to optimize performance of domain-specific
AutoML systems for image data, at the example of cellular image analyses are presented. To this end
four sub-research questions are investigated. The first one is about the effects of transfer learning 5.1,
the second is about optimal meta-features for image data 5.2, the third is about optimal meta-models
and feature engineering 5.4, and the final one is about the effectiveness of successive halving 5.5.

5.1 Transfer Learning
For transfer learning, the research question was whether pre-training the model will lead to shorter
training times and increased performance. In addition, the effect of domain-specific and generic pre-
training was investigated. To this end, the model is pre-trained on two datasets. On a validation set of
the cellpose dataset the model achieved an IoU score of 0.6867 and on a validation set of the kaggle
dataset an IoU score of 0.7341. These are high IoU scores and therefore it appears that the model
converges to a performance maxima for both datasets.
Nonetheless, there are a few noteworthy observations. On the UKA dataset using a model pre-trained
on ImageNet or kaggle leads to an increase in train set performance (see Figure 26). This increase
is mainly due to the model predicting the third class more accurately, this class only occurs on a few
images and thereby only on a very low percentage of the total pixels. So it appears that pre-training
can help to identify such minority classes. However, that effect was not present on the validation
dataset. On the RUB dataset (see Figure 24), the model pre-trained on ImageNet has a significantly
lower validation set IoU score and the validation set IoU takes longer to increase. Therefore, on this
dataset it appears that generic pre-training is actually harmful to model performance. For all datasets,
the pre-trained models initially have a lower IoU score than the non pre-trained model, the models
require slightly longer training to reach a comparable validation set IoU score. This effect is only
present in the first one or two epochs and more significant on the UKA and RUB datasets.
In conclusion, the experiments show that, on the evaluated datasets, for semantic-segmentation pre-
trained models do not perform better and do not have shorter training times. Moreover, results on the
RUB dataset indicate that generic pre-training can be harmful to model performance. On all datasets,
pre-training lead to slightly longer convergence times. There also appears to be no difference between
generic and domain-specific pre-training.
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Figure 25: Model learning curves for different pre-training settings on the UKK dataset

Figure 24: Model learning curves for different pre-training settings on the RUB dataset
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Figure 26: Model learning curves for different pre-training settings on the UKA dataset

Figure 27: Model learning curves for different pre-training settings on the UKA dataset
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5.2 Meta-Features for Optical Appearance

(a) No feature-wise normalization applied.

(b) Feature-wise normalization applied.

Figure 28: Radiomics vectors of all images of the meta-base visualized in two dimensions. The colors
represent the dataset the vectors belong to, examples images for each dataset are also shown. Feature-
wise normalization clearly leads to a better clustering of images belonging to the same dataset.
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(a) Dataset-level radiomics vectors obtained using all
images in each dataset.

(b) Dataset-level radiomics vectors obtained using 20
images for each dataset.

Figure 29: Cosine distance scores between the dataset level radiomics vectors. A value of zero
indicates vector directions to be identical and a value of one indicates orthogonal vectors. Only using
20 images for each dataset, leads to a good approximation of the true cosine similarity.

The goal of extracting radiomics features from the images in the datasets is to capture optical infor-
mation. This optical information could then be important for the meta-model to predict good pipeline
configurations. To investigate if radiomics vectors are suitable to represent optical information, the
originally 95-dimensional vectors are visualized in two dimensions using t-sne. Moreover, cosine
similarity scores between all datasets are calculated and qualitatively examined.
The radiomics vectors were visualized and then analyzed. First, t-sne was used to visualize the ra-
diomics vectors of all images in two dimensions. In Figure 28, the benefit of applying feature-wise
normalization is clearly visible. When feature-wise normalization is applied, see Figure 28a, the ra-
diomics vectors of images belonging to the same dataset cluster together. The datasets clusters that
are closest to each other also look most similar. For instance, the MSC and iPSC dataset both contain
images of stem cells and were obtained using phase contrast microscopy, therefore their images look
very similar. The radiomics vectors of images in these datasets cluster closely to each other, although
there is still a clear separation between the two. Based on the visual investigation of the t-sne di-
mension reduced radiomics vectors, radiomics vectors are suitable to represent images of different
datasets. Therefore, this visual investigation confirms that radiomics vectors are suitable to express
the optical features of images in vector form.
The same applies when looking at the cosine distance scores between dataset level radiomics vectors,
see Figure 29. Datasets that look similarly visually also have a low cosine distance and datasets
that are visually different have a higher cosine distance. RUB and NucSegBench have the lowest
cosine distance with 0.085 and when comparing the images of the two they also look very similar.
Conversely, between UKK and RUB the cosine distance is the largest. In general, the cosine similarity
scores (and t-sne visualization) indicate that, based on optical features, the UKK dataset is the most
different from all other datasets. The cosine similarity scores between dataset level radiomics vectors
can be well approximated if only 20 images of each dataset are used to determine dataset vectors, see
Figure 29 a. The cosine similarity scores differ slightly, however, the maximal difference is 0.04 and
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the overall ordering of similarities stays the same. This can be helpful to reduce the computational
cost of radiomics feature extraction for large datasets.

5.3 Meta-Base Statistics

Figure 30: Percentages for how many data points in the metabase belong to which dataset.

Overall, 1.458 different configurations were trained on the different datasets. A distribution of how
many configurations were trained on each dataset can be seen in Figure 30. There are 4.608 possible
data points, so the metabase covers 31.64% of the search space. Due to the training of configurations
sometimes stopping due to technical problems, the training time of some configurations was short.
Moreover, due to manual errors when extracting the data from the cloud, the validation IoU scores of
some configurations did not make sense (for instance a validation set IoU of zero). To eliminate these
configurations outlier removal based on the absolute z-score of configurations was done. First all
configurations that had total training times with a z-score larger then three (computed over the dataset
train time distribution), were removed. Next, all configurations with a z-score larger than four, based
on the validation set IoU score, were removed. This resulted in 35 configurations being removed from
the meta-base. After outlier removal, the meta-base consists of 1.423 datapoints and covers 30.8% of
the search space.
The distributions of the validation set IoU scores, after outlier removal, can be seen in Figure 31. The
scores on most datasets roughly follow a normal distribution, however for RUB and NucleiSegBench
the distributions are skewed toward the right. There are a lot of configurations with good scores and
only a few that perform significantly worse. The mean scores differ significantly between datasets,
iPSC seems to most difficult with a mean score of 0.48 while RUB is easiest with a mean score
of 0.95. The average standard deviation in validation set IoU score is 0.039 and the within-dataset
standard deviation varies between datasets. The dataset with the lowest standard deviation is RUB
with σ = 0.021 and the dataset with the largest standard deviation is NucSegBench with σ = 0.075.
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Figure 31: Distribution of validation set IoU scores on each dataset. Scores were divided into 50 bins
for visualization.

5.4 Meta-Learning

Meta-Model Feature Engineering Z-score Pearson Diff IoU RMSE
Random Forest Handcrafted, engineered handcrafted 0.643 0.295 0.028 0.138
LamdaMART
deterministic

Only handcrafted 0.608 0.299 0.030

LamdaMART
deterministic

Handcrafted, eng handcrafted, radiomics sim 0.606 0.291 0.028

Random Forest
Binned IoU

Only handcrafted 0.601 0.346 0.029

Random Forest Handcrafted, eng handcrafted, radiomics sim 0.583 0.308 0.030 0.157

Table 2: The top 5 combinations of meta-features, meta-model, and target representation, measured by
z-score. Binned IoU score below the meta-model indicates the binned target representation, otherwise
the results refer to raw IoU scores.

An excerpt of the results is shown in Table 2 the best 5 configurations measured by z-score are shown.
For the comprehensive results, refer to Appendix A.
The best combination of meta-model, feature engineering, and target representation is: random for-
est with handcrafted and engineered handcrafted features predicting raw IoU scores. In this way, a
selection based on the top 10% predicted configurations is 0.643 standard deviations better than a
random selection. This is a decent results considering that the true top 10% of configurations are
only 1.41 standard deviations better than random selection. In its deterministic setting, meaning that
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all data points and features are used for each tree, LamdaMART performs second best. For target
representation using the raw IoU scores is best. Nonetheless, the difference between binning the IoU
scores and using raw IoU scores is quite small. Applying random forest on these binned IoU scores
also performs well.
The z-score was chosen to evaluate meta-models to reiterate the z-score measures how much better
a given selection is compared to a random selection. In this way, it most clearly represents what the
meta-model is supposed to achieve. Limit the search space, so that successive halving can find the
best configuration by training on the new dataset.
This measure also correlates with the Pearson correlation, difference in IoU and RMSE score. While
the largest z-score is not always associated with the best score on these metrics, configurations with
large z-scores always have one of the best scores on these metrics as well. The best meta-model
configuration, with a z-score of 0.643, indeed has the lowest RMSE, 0.138, is tied for the lowest
difference in IoU, 0.028, and also has a good Pearson correlation, 0.295. It is observed that us-
ing a binned IoU score target representation leads to better Pearson correlation. Unfortunately, all
meta-models score badly when evaluated using Kendall’s Tau. The scores for all models are around
zero, meaning that according to Kendall’s Tau there is no relationship between the predicted and true
ranking. However, many meta-datapoints only differ by an IoU score lower then 0.001. Therefore,
constructing an accurate ranking is not that important as long as the meta-model accurately assigns
configurations to different tiers.
The results clearly show that tree based models perform best, with Random Forest slightly outper-
forming LamdaMART. As expected the linear regression baseline model performed worst with a top
z-score of 0.303 using only the handcrafted meta-features. The SVM did not perform well either with
a top z-score of 0.35 for handcrafted and engineered handcrafted features. For gradient boosting trees
using the pairwise-ranking loss function did outperform the pointwise loss function. Randomized
LamdaMART achieved a z-score of 0.55 while randomized XGBoost only achieved a z-score of 0.48.
For both LamdaMART and XGBoost only using a subset of the training data and features for each
tree results in worst performance. Overall, the best model is the random forest using the pointwise
ranking method.
Including meta-features describing the dataset is clearly necessary, all models performed worst using
only the hyperparameters. The handcrafted meta-features are the most important ones. This is not
surprising, since these features correlate most with performance. For instance, a dataset with many
classes will most likely have a lower IoU score. When examining the trees in the random forest, the
first node was indeed almost always split based on the number of classes in the dataset and therefore
the number of classes in a dataset leads to the largest decrease in impurity. So the number of classes
and other handcrafted meta-features are used by the model to predict most of the IoU score. This is
logical since these meta-features stay constant for each dataset and can therefore be used to predict
the mean IoU score of a dataset. Since the within-dataset variance is quite small, accurately predicting
the mean will already lead to a low RMSE. Nonetheless, these meta-features to predict the mean IoU
score are not useful when it comes to predict within-dataset variance. As can be seen in Figure 33, the
engineered handcrafted features and hyperparameter settings are most important to accurately predict
the mean squared error of configurations on a validation dataset. Again this was to be expected, since
these meta-features are the only ones that vary on a dataset level. Note that different meta-features
are important to predict different datasets.
While the extracted radiomics features led to visually plausible results to quantify datasets, they are
not used by the best meta-model. Nonetheless, the radiomics based (cosine-)similarity scores are
used in two of the top five performing configurations. Only using the entire 95-dimensional radiomics
vectors and hyperparameter settings as meta-features led to bad results for all meta-models. The same
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goes for using only similarity scores or PCA. So it is clear that the handcrafted meta-features are most
important, while radiomics features do not seem to add much value.
The user-given features are not used by any of the top performing meta-model configurations. Nonethe-
less, especially when the target is the binned IoU scores they do seem to add value. For LamdaMART
in the randomized and deterministic setting, the combination of handcrafted meta-features and the
user-given ones performs best, with a respective z-score of 0.551 and 0.583.

(a) Performance of the best model for maximal
tree depth. The RMSE score are averaged over
all eight dataset being the validation set once.

(b) Performance variation over 20 random seeds
of the best meta model. The yellow line is the
median z-score and the green triangle the mean z-
score.

Figure 32: Left train and validation RMSE for different max depth. Right boxplot showing the
variation of meta-model performance over 20 random seeds.

For the best performing model, it is observed that there was a very large difference between train and
test set performance. Therefore, the random forest was evaluated for different numbers of maximal
tree depths. In this way, the capacity of the random forest can be controlled. As can be seen in
Figure 32a, the RMSE is lowest for a max depth of seven. Overall, there the impact of the max
depth is not very significant and there is always a large gap between train and validation RMSE. As
described, this can be explained by some meta-features being used to predict the mean IoU score on
a dataset and this is not possible on the validation dataset.
Training the best model again with the max depth set to seven, improved the results. Averaged over
20 random seeds this results in an average z-score of 0.688, an average RMSE of 0.136, an average
Pearson correlation of 0.291 and a difference in IoU of 0.262. The performance of this model on each
validation dataset is shown in Figure 34. As can be seen the model performs similarly well across all
datasets, even though the z-scores are different. This shows that the z-scores always have to be looked
at in the context of a specific dataset and are not a good measure to compare model performance
between two datasets. A potentially better way to evaluate model performance could be to normalize
the z-score based on the top z-score that can be achieved. One observation from the performance plots
is that on most datasets the model does well at predicting bad configurations, but when predicting the
best configurations the variance increases. This is especially the case for BBBC020, MSC, and UKB,
where the meta-model predicts low IoU scores for some of the best true configurations. On MSC one
of the true top 10% configurations is predicted to be the worst configuration. On all datasets except
UKB, there is some overlap between the predicted top 10% and true top 10% (green points). Overall,
the model performs worst on the UKB dataset. The best performance is achieved on the RUB dataset,
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almost all points in the true and predicted top 10% overlap. The model used to create the plots has
a z-score of 0.702, so slightly better than when the z-scores are averaged over 20 random seeds. As
can be seen in Figure 32b the performance of the best meta-model varies over different random seeds.
Nevertheless, the model always has a z-score above 0.64 which is a good performance.
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Figure 33: Feature Importance to predict IoU scores on each dataset. Importance is obtained using
permutation: The model is trained with each feature being removed and the performance on the
validation dataset is obtained. The feature importance is then the difference in validation dataset
MSE, between training with and without the feature.
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Figure 34: Validation set performance of the best meta-model, feature engineering strategy and target
representation (random forest, handcrafted and engineered handcrafted, IoU scores) on all datasets.
Points are colored blue by default, red is used for the top 10% of predicted configurations, magenta
for the true top 10% and green for configurations that are both in the predicted and true top 10%.
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5.5 Evaluation of the AutoML System

In the previous sections, the results of optimizing the different components of the AutoML system are
presented. Based on these results the final AutoML system uses the best meta-learning pipeline: Ran-
dom forest with max tree depth of 7, handcrafted and engineered handcrafted meta-features trained to
predict raw IoU scores. Transfer learning and radiomics features are not used since they were found
to not have a positive impact.

The workflow of the AIxCell AutoML system is illustrated in Figure 35. For a given dataset first the
handcrafted and engineered handcrafted meta-features and the class distribution are extracted. Then
in the initial configurator, the pipeline is initiated with the default values and the class-based (re-
)sampling values are set by the automatic class-based sampling procedure. Then the meta-learning
configurator predicts a ranking of pipeline configurations for the input dataset. Successive halving
is then used to evaluate the top 50 pipeline configurations from the ranking, this is done with the
compute budget set by the user.

Figure 35: Overview over the final AIxCell AutoMl system

In this section, the results of the AIxCell AutoML system evaluations are presented. To this end, the
AutoML system was run on four different datasets. The compute budgets and overall methodology are
described in section 4.8. For each evaluated dataset the results are compared to an existing pipeline,
constructed by human experts. Moreover, the performance of the best found pipeline configuration
on a test set image is visualized.
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5.5.1 Performance on the UKB dataset

Figure 36: Successive halving on the UKB dataset

(a) Image (b) True mask (c) Predicted mask

Figure 37: Visual result of the best found pipeline configuration on the UKB dataset. Note that the
color schemes are slightly different between the true and predicted mask. In the true mask the green
color represents mononuclear instances, these are represented by white in the predicted mask. Blue
always indicates binuclear instances.

The successive halving plot on the UKB dataset (see Figure 36) shows that the best pipeline already
converges after five steps. In general, pipeline configurations converge quickly on this dataset. More-
over, there are two pipeline configurations that perform similarly well and the other top configurations
perform worse. The following are the hyperparameter settings of the optimal pipeline configuration:
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patch size = 128, learning rate = 0.0005, backbone = ResNet-18, augmentations = Flip and batch size
= 4. This configuration was ranked as the 17th best configuration by the meta-model. This pipeline
configuration achieves a test set IoU score of 0.60. The existing pipeline configured in a previous
project within AIxCell achieved a test set IoU score of 0.64. So the AIxCell AutoML system per-
forms slightly worse.
The visual results (see Figure 37) show that the pipeline mostly segments the mononuclear and binu-
clear instances correctly. In some cases, binuclear instances are classified as mononuclear ones. For
an example, see the top left of the predicted mask in Figure 37.

5.5.2 Performance on the iPSC dataset

Figure 38: Successive halving on the iPSC dataset

The successive halving plot on the iPSC dataset (see Figure 38) shows that pipelines take significantly
longer to converge, compared to the UKB dataset. Nonetheless, it there is no significant increase in
performance from the fifth to the sixth step so it can be assumed that the optimal pipeline converged
to optimal performance. Most configurations improve at every step, however, for one configuration
there is a significant drop from the second to the third step.
The following are the hyperparameter settings of the optimal pipeline configuration: patch size = 256,
learning rate = 0.0005, backbone = ResNet-18, augmentations = None and batch size = 8. This con-
figuration was ranked as the 24th best configuration by the meta-model. This pipeline configuration
achieves a test set F1-score of 0.6431. The existing pipeline configured in a previous project within
AIxCell achieved a test set IoU score of 0.7344. So the AIxCell AutoML system performs slightly
worse. It has to be noted that for the iPSC dataset the test set performance significantly varies depend-
ing on what images are included in the test set. This is due to the dataset having six different classes
which are unevenly distributed over the 40 images. If images that contain classes that only occur on
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a minority of the images are in the test set, performance will be worse due to little training examples
being available for these classes.
The visual results (see Figure 39) show that the pipeline detects all three classes in the image. How-
ever, especially the third class (yellow in true and dark grey in predicted) is not accurately segmented.
So the pipeline detects the class but is unable to accurately segment it.

(a) Image (b) True mask (c) Predicted mask

Figure 39: Visual result of the best found pipeline configuration on the iPSC dataset. Note that the
color schemes are slightly different between the true and predicted mask.
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5.5.3 Performance on the Fluocells dataset

Figure 40: Successive halving on the Fluocells dataset

(a) Image (b) True mask (c) Predicted mask

Figure 41: Visual result of the best found pipeline configuration on the Fluocells dataset.

For the Fluocells dataset the successive halving plot (see Figure 40) shows that pipeline configurations
take a long time to converge. Based on the plot it appears that this dataset requires the longest model
training times. In the first step, configurations do not perform well as there is no configuration with a
validation set IoU score higher then 0.1. In the next steps there are always significant differences be-
tween the configurations that are droped and continued. Furthermore, in the third and forth steps there
are significant performance drops for some pipelines. The best pipeline configuration still improved
from the fifth to the sixth step. It could therefore be that the best pipeline is not fully converged.
The following are the hyperparameter settings of the optimal pipeline configuration: patch size =
256, learning rate = 0.001, backbone = ResNet-50, augmentations = None and batch size = 16. This
configuration was ranked as the 9th best configuration by the meta-model. This pipeline configuration
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achieves a test set F1-score of 0.7621. The best pipeline in a benchmarking of different configurations
achieves a test set F1-Score of 0.8149 [83].
The visual results on a test set image show that the model accurately segments three neuronal cells
(see Figure 41). However, there the model also segments two regions that are not labeled as neuronal
cells in the true mask.

5.5.4 Performance on the EPFL electron microscopy dataset

Figure 42: Successive halving on the EPFL electron microscopy dataset

(a) Image (b) True mask (c) Predicted mask

Figure 43: Visual result of the best found pipeline configuration on the EPFL electron microscopy
dataset.

Based on the successive halving plot (see Figure 42 the electron microscopy dataset [84] appears
to be the dataset that requires the least amount of time for a model to converge. The most notable
differences between configurations occurs during the first step, here some configurations have IoU
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scores below 0.2, while some others already converged to near optimal performance. During the last
three steps the top configurations still improve, however, the performance gains are becoming smaller
and smaller. The best configuration does not improve in the final step and it can therefore be assumed
that the model converged to optimal performance.
The following are the hyperparameter settings of the optimal pipeline configuration: patch size = 256,
learning rate = 0.0005, backbone = ResNet-18, augmentations = None and batch size = 8. This con-
figuration was ranked as the 32nd best configuration by the meta-model. This pipeline configuration
achieves a test set IoU-score of 0.7832. The best known reported solution achieves a test set IoU score
of 0.8672 [84].
The visual results from investigating one of the test images, show that the model accurately segments
most regions (see Figure 43. Still, there are some regions that are not detected by the model and
others that the model segments as a false positive.
Overall, pipeline configurations found by the AIxCell AutoML system are always worse compared to
known solutions that were developed by human experts.
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6 Discussion
In this section, the results of the experiments are discussed. First in section 6.1, the transfer learning
results are discussed and compared to experiments from the literature. Secondly in section 6.2, the
results of the meta-learning experiments are discussed. The focus here is on the meta-features and
different meta-models. Finally, in section 6.3 the performance of the overall system is evaluated and
the strength and weaknesses of the overall system are discussed.

6.1 Transfer Learning

The results of the transfer learning experiments indicate that transfer learning does not speed up model
convergence time and does not increase model performance. Moreover, there was no significant
difference between domain-specific and generic pre-training.
These results are in contrast to the results of previous studies that were presented in section 2.2. How-
ever, a review of the literature showed that the benefits of transfer learning were most prominent in
classification tasks and weaker for segmentation tasks [26, 27, 30]. Furthermore, a study on biomed-
ical image segmentation indicated that the effects of pre-training were mediated by source and target
dataset similarity and target dataset quality [30]. In the presented research, both in-domain (cellpose
and kaggle) and generic (ImageNet) datasets were tested. Nonetheless, the similarity between the
in-domain source datasets and the target datasets can still be questioned. Both cellpose and kaggle
are about binary segmentation, so the model learns to segment a certain object from the background.
For cellpose, this is any object and for kaggle, these are the cell nuclei. In most of the target datasets
(except UKK) the model is tasked with a multi-class segmentation problem. The segmentation task
is, thereby, significantly different and the results might be due to this difference in tasks. In summary,
even though the images in the datasets are from the same domain, the difference in what needs to be
segmented could lead to pre-training not being beneficial.

Another potential explanation for the results is the quality of the target datasets. After division into
patches, all target datasets contain a large number of images. Moreover, the images in all datasets
are of good quality. Good quality here refers to no blurring or significant contrast differences due to
image acquisition. Due to this relatively high quality of target datasets, the model might not benefit
from pre-training because near optimal performance is reached in any case. An observation that
stands in contrast to this conclusion is that on all datasets (except RUB) the model only achieves a
peak validation set IoU score below 0.72.
Another study that investigated the effect of domain-specific and generic pre-training for segmenta-
tion tasks was performed by Cheng and Lam [85]. In their study, they pre-trained a U-Net model on
the XPIE dataset [86], which contains 10,000 segmented natural images originally for salient object
detection. They compared this model to using an encoder pre-trained on ImageNet and to a model
trained from scratch. The target dataset contained images obtained using lung ultrasound and the task
was to segment ribs. Comparably to the results of the presented study, they found that the model
achieved similar IoU scores in all conditions. Still, they also performed a visual investigation of their
results. Based on this investigation they found that, pre-training on the XPIE dataset outperformed
both ImageNet pre-training and training from scratch. No visual investigation of the transfer learning
results was performed in the presented research.

Due to the aforementioned reasons, the obtained results are not conclusive to determine the applicabil-
ity of transfer learning to domain specific AutoDL systems. The results do, however, suggest that, for
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semantic segmentation on diverse cellular image datasets, generic and domain-specific pre-training is
not beneficial. Future research could focus on determining if further restricting the domain and taking
the segmentation task into account leads to any benefits. In this way, not one pre-trained model would
be used for all datasets in a domain but a different pre-trained model would be used based on dataset
characteristics. This would, however, further increase the complexity of the domain specific AutoML
system which might not be desirable.

6.2 Meta Learning

The results indicate that meta-learning is suitable to narrow down the search space to a few configu-
rations that are likely to perform well. Handcrafted meta-features that describe the task in a dataset
were shown to be the most important. Moreover, combining the handcrafted meta-features with the
hyperparameters increased performance. A random forest model used to predict the raw IoU scores
(pointwise approach) was best. Here limiting the maximal tree depth to seven further increased per-
formance.

6.2.1 Meta Features

When visualized in two dimensions the radiomics vectors captured what images belong to which
dataset, furthermore, the cosine similarity scores between the dataset level vectors were qualitatively
good. Nonetheless, the top two meta-learning configurations did not use any representation of the
radiomics scores. The radiomics similarity scores seem to be the most viable representation, as they
were used in the third best configuration.
There are a few reasons that could explain why, even though visually plausible, the radiomics scores
were not used by the best meta-learning configurations. First, the handcrafted meta-features and hy-
perparameters are more predictive and therefore most useful to the meta-model. Furthermore, the size
of the meta-base is limited which could limit the number of features that can be effectively used by
the meta-model [1]. The amount of datasets in the meta-base is also limited, if there would be more
datasets this could increase the use of radiomics as a visual similarity measure. Secondly, it is not
known how much the performance of a DL-pipeline is actually influenced by the visual features of a
dataset. If information about the visual features does not have a large impact, this would decrease the
value of the radiomics features.

It should, however, be noted that for many meta-models including the radiomics similarity scores
and principal components, in combination with handcrafted and handcrafted engineered features, are
the second or third best feature representation. Therefore, radiomics features are still promising for
meta-learning based AutoML systems. Future research could investigate different ways to reduce the
95-dimensional vectors and investigate radiomics on a larger, more diverse meta-base.
The user given meta-features did not help the meta-model to estimate the performance of configura-
tions. This is probably due to these features being diverse and there is little overlap between datasets.
Especially the objects of interest were diverse, nuclei was the most common and only occurred in
three out of eight datasets. Some objects only occur in one dataset which unfortunately makes them
useless for predictions outside the training distribution. The microscopy technique seems to be the
best user-given meta-feature since it gives information about the visual features in an image and the
same technique is used for multiple datasets.
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These observations suggest that, in order to effectively use user-given meta-features, it is important
to design a small set of common features. This could be done together with a biomedical expert.
Moreover, increasing the number of datasets in the meta-base would increase the applicability of
user-given meta-features.
The best meta-features were the handcrafted ones; designed to extract information about the dataset
and task that was deemed important. This confirms that features that are considered important by
human experts are also important for meta-learning systems. Combining these features with the
hyperparameter settings further increased performance. This shows the importance of combining
’static’ dataset meta-features with hyperparameters to capture within dataset variance.
Overall, the investigated meta-features and feature engineering strategies significantly improved the
performance of the meta-model. Some directions for future research have already been suggested.
Furthermore, future research could investigate tools to automatically extract meta-features and en-
gineer features. One such tool is MetaBU [87]. MetaBU takes a set of meta-features as input and
then learns new meta-features via an Optimal Transport procedure, aligning the manually designed
meta-features with the space of distributions on the hyper-parameter configurations [87]. This has
been shown to increase the performance of state-of-the-art AutoML systems [41, 88] and could also
improve the performance of the presented meta-model.

6.2.2 Meta Models

Evaluating different meta-models showed that more complex models significantly outperformed sim-
ple baseline models. Moreover, tree based models such as random forest and LamdaMART performed
best. The ranking was most accurately predicted using the pointwise loss function, nonetheless, Lam-
daMART with the pairwise loss function also performed well. This is different to other learning-to-
rank systems where no evaluations on different meta-models was presented and LamdaMART was
used by default [46, 44]. Nonetheless, the size of the meta-base used in this study is very limited and
larger meta-bases were used in the other studies. Therefore, it is possible that a pointwise approach is
best for a small meta-base and that the pairwise approach is best for a larger meta-base.
An investigation of the tree is the random forest showed that the ’static’ handcrafted meta-features
are used for the splits close to the root and that the hyperparameters are used to split nodes near the
leafs. Therefore, initially the model learns a baseline value and then this is refined based on the hy-
perparameters. Looking at the feature importances when predicting IoU scores on a validation dataset
shows that the engineered meta-features are most important. This could be due to these combinations
capturing both the baseline score of a dataset and the within-dataset variance.
While the results of the meta-learning experiments are good, they should be looked at with a bit of
caution. Depending on what random seed is used, the model performance (measured by z-score)
varies significantly. This is due to the nature of the z-score and the size of the meta-base. The z-score
of the top 10% is easily influenced by a small number of errors in the predictions, since changing
only a few of 10-30 points exerts a large influence. The variance over random seeds, shows that the
model is not very robust in predicting the top 10%. Nonetheless, by averaging over random seeds
more reliable estimates are obtained and it should be noted that the best model always performs well
and there are no random seeds that lead to a large drop in performance.

6.3 The AutoML System

The best pipeline configurations that the AutoML system finds for the evaluation datasets are similar
for some hyperparameters and more diverse for others. The only image augmentation that is used
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in any of the top pipeline configurations is the flip transform for the UKB dataset. Moreover, the
flip transform was the only image augmentation in the top 50 predicted pipeline configurations. Grid
distortion or brightness and blurring were never used. An analysis of the metabase showed that
these two image augmentations showed that there effect is highly dependent on what dataset they
are used on. The brightness-blur transform decreases performance on all datasets, mean decrease
of the validation IoU score of 0.031, except for iPSC and MSC where it increases performance,
mean increase of 0.014. Similarly using the grid transform decreases performance for all datasets,
by a factor of 0.023, except the BBBC020 and the RUB dataset, mean increase of 0.024. Due to
the performance of configurations being influenced by all hyperparameters and the metabase only
covering 30.8% of all possible configurations this analysis is not conclusive. Nonetheless, it indicates
that what image augmentations can be used is dependent on the image dataset.
In order to know what image augmentations can be applied for a dataset, human experts look at
the images and then try out different augmentations and evaluate them visually. Over time human
experts then learn what augmentations can be applied to what type of image. In principle, the meta-
model should also be able to learn this from the metabase. However, there is no optical information
in the meta-feature representation used in the final system. Therefore, the model might just learn
that overall the grid distortion and brightness+blur transform lead to worse performance. This could
explain why no image augmentations are included in the top 50 pipeline configurations predicted by
the meta-model.
For the other hyperparameters in the search space, a more diverse range of possible values are used
by the best pipeline configurations. A patch size of 64 was not used, this could indicate that including
this value in the search space does not add much value. Swapping a patch size of 64 for a larger
value could bias the search space towards better configurations. Overall, the search space appears
to be suitable to find an optimal pipeline configuration. Nonetheless, no analysis to determine what
hyperparameter settings work on which datasets was conducted. As stated above, this is difficult due
to the interaction effects between hyperparameter configurations.

Based on the results it appears that successive halving is suitable to evaluate a ranking of pipeline
configurations. It appears crucial to use a large enough compute budget to ensure the convergence of
the top pipeline configuration. The required time for a model to converge differs between datasets,
based on the successive halving plot it appears that the Fluocells and iPSC dataset require significantly
longer convergence times. Without prior experiments of training pipelines on a dataset, setting a
compute budget that is sufficient, while not wasting unnecessary resources, is challenging. There
are two possible solutions to this problem. First, before starting the successive halving process one
of the pipelines could be trained until convergence and the compute budget could then be adjusted
accordingly. This solution has the clear disadvantage that it induces a significant compute overhead.
The second possible solution is to estimate convergence time based on the meta-features. For instance,
it appears that the number of classes and instances in a dataset are correlated to convergence time, so
simple rules could be designed to estimate the compute budget needed for successive halving.
Another notable observation in the plots of all datasets (see Figures 36 42 40 38), is that during the
first step there is a large gap between continued configurations and stopped configurations. It is not
clear whether that gap is due a worst performing pipeline or due to a better random initialization of
the model weights. It has, however, been shown that models that perform worse early on also tend to
converge to a lower value [3, 32, 70]. Therefore this might not be a problem for the applicability of
successive halving.
Future research could compare the presented results of using successive halving to other multi-fidelity
methods. Specifically predictive early stopping based on model learning curves, discussed in section
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2.3.5, could further improve the overall AutoML system.

On all evaluated datasets the AIxCell AutoML system is outperformed by the DL-pipelines con-
structed by human experts. This was to be expected, since the other constructed pipelines are found
within a much larger search space and have been found in a longer search process.
For the iPSC dataset the best found configuration has a test set IoU score of 0.54, this in the top
10% of configurations in the metabase, the distribution is shown in Figure 31. Moreover, looking at
the predicted top 10% vs true top 10% plot 34, it can be seen that while this performance is within
the true top 10% it is still far from the optimal performance of 0.64. So the AutoML system finds
a configurations that falls within the top 10% but does not find the optimal solution. This could be
due to the meta-model not including the best configuration in the top 50, or due to successive halving
discarding the optimal configuration. A potential reason for why it is not included in the prediction
of the meta-model is that the brightness/blur augmentation is not used. As discussed above, this
augmentation is beneficial for the iPSC dataset but never included by the meta-model. Moreover,
as stated in the results section the performance on the iPSC dataset is dependent on the selection of
images for the testing set. It could, therefore, be that the best pipeline configuration in the metabase
just has a favorable test set selection.
For the UKB dataset the best found configuration has a test set IoU score of 0.60, this again is in the
top 10% of configurations in the metabase (see Figure 31). This is a surprisingly good performance,
given that evaluating the meta-learning pipeline on the metabase revealed that for the UKB dataset
none of the true top 10% configurations was predicted in the top 10% (see Figure 34). Nonetheless,
the best pipeline configuration in the metabase is still better with a validation set IoU score of 0.64.
This again might be due to test set selection, although the UKB dataset is more robust to this compared
to the iPSC dataset. Overall, the performance on these two datasets that are in the metabase is good
and the AutoML system reliably identifies a configuration in the true top 10%.
On the Fluocells [83] and EPFL electron microscopy [84] datasets the AutoML system is significantly
outperformed by the published solutions [83, 84]. Nonetheless, an F1-Score of 0.7621 on Fluocells
and an IoU-score of 0.7832 on EPFL electron microscopy can be considered good and the visual
results confirm that the models are able to perform the segmentation task. Nonetheless, on both
datasets the models have a tendency towards false positives. One thing that is missing in the evaluation
of the AIxCell AutoML system is a comparison to a baseline solution. To this end, existing systems
for automatic semantic segmentation such as Italisk [7] could be evaluated on the discussed datasets.
A comparison to such a baseline would allow to more clearly asses the benefits of using AutoML to
tune the hyperparameters of a cellular image segmentation system.
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7 Conclusion
In this thesis an AutoML system that automatically configures a DL-pipeline for a given cellular im-
age segmentation dataset was developed. The results show that the system reliably finds a pipeline
configuration that is in the top 10% of all configurations in the search space. Nonetheless, the Au-
toML system performs worse then DL-pipelines developed by human experts. These DL-pipelines
were not included in the search space of the AutoML system. This highlights the importance of de-
signing a good search space that includes the optimal pipeline configurations.

The main component of the AutoML system is meta-learning, the experiments show that meta-
learning can be used to limit the search space to pipeline configurations that are likely to perform
well. To this end, classic handcrafted meta-features were found to be most important. Moreover,
combinations of hyperparameter settings and these meta-features improved results. This limitation
of the overall search space is reliable even though the meta-base only consists of 1.412 datapoints
that cover 30.8% of the total search space. Overall, the presented study highlights the potential for
meta-learning in domain-specific AutoML systems.

To quantify optical information of datasets, radiomics features were evaluated. These are not used
in the best meta learning configuration. Nonetheless, results suggest that it might be important to
include such meta-features in order to predict optimal image augmentations. No clear analysis of
this observation was performed, it remains for future research to determine this effect. The results of
the transfer learning experiments showed no effect of model pre-training. Furthermore, no difference
between generic and domain-specific pre-training was found. This is inconsistent with the literature.
Still, most existing studies focus on classification and it appears that transfer learning is less applica-
ble to segmentation.

The presented AutoML system enables biomedical experts to utilize deep learning pipelines opti-
mized for given datasets. No human expert is required for hyperparameter tuning. However, to
achieve optimal performance a DL-expert is still required, as the presented system is reliably outper-
formed by DL-pipelines developed by DL-experts. Another downside of the presented system is that
the biomedical expert is required to annotate images.
Overall, the presented system still increases the applicability of deep learning to cellular image anal-
ysis and enables cellular research. Moreover, the evaluated methodology is promising and can inform
research on domain-specific AutoML system for image data.
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Appendices

A Meta Learning Results

Table 3: Results using Decison Tree as the meta-model to predict raw IoU scores

RMSE Kendall Tau Diff IoU Z-score Pearson

All meta-features 0.210 0.010 0.041 0.308 0.135
Only hyperparameters 0.189 0.034 0.053 0.015 0.017
Handcrafted and engineered handcrafted 0.183 0.022 0.041 0.346 0.200
Radiomics similarity scores 0.189 0.007 0.045 0.320 0.134
Handcrafted, rad sim, eng handcrafted,radiomics 0.190 0.010 0.042 0.263 0.149
Handcrafted, rad PCA, eng handcrafted,radiomics 0.286 0.004 0.042 0.280 0.121
Only engineered handcrafted 0.194 0.021 0.046 0.171 0.034
Handcrafted and radiomics PCA 0.212 0.025 0.036 0.492 0.145
Handcrafted and radiomics similarity 0.199 0.018 0.039 0.419 0.131
Only Handcrafted 0.202 0.012 0.033 0.542 0.127
Handcrafted, eng handcrafted, radiomics PCA 0.186 -0.001 0.043 0.287 0.152
Handcrafted, eng handcrafted, radiomics sim 0.189 0.003 0.042 0.289 0.161
Handcrafted and user-given 0.197 0.005 0.035 0.483 0.152
Only entire radiomics vectors 0.255 0.002 0.042 0.341 0.116

Table 4: Results using Linear Regressor as the meta-model to predict raw IoU scores

RMSE Kendall Tau Diff IoU Z-score Pearson

All meta-features 1.077 -0.048 0.060 -0.043 0.031
Only hyperparameters 0.151 0.017 0.050 0.173 0.057
Handcrafted and engineered handcrafted 4.203 -0.004 0.052 0.118 0.124
Radiomics similarity scores 0.200 0.016 0.059 0.041 0.010
Handcrafted, rad sim, eng handcrafted,radiomics 0.212 0.011 0.063 -0.148 0.068
Handcrafted, rad PCA, eng handcrafted,radiomics 1.336 0.010 0.048 0.183 0.076
Only engineered handcrafted 0.147 0.019 0.042 0.303 0.146
Handcrafted and radiomics PCA 0.577 0.016 0.059 0.041 0.010
Handcrafted and radiomics similarity 0.577 0.016 0.059 0.041 0.010
Only Handcrafted 0.577 0.016 0.059 0.041 0.010
Handcrafted, eng handcrafted, radiomics PCA 4.195 -0.004 0.052 0.118 0.124
Handcrafted, eng handcrafted, radiomics sim 4.202 -0.004 0.052 0.118 0.124
Handcrafted and user-given 0.579 0.016 0.059 0.041 0.010
Only entire radiomics vectors 0.577 0.016 0.059 0.041 0.010
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Table 5: Results using SVM as the meta-model to predict raw IoU scores

RMSE Kendall Tau Diff IoU Z-score Pearson

All meta-features 0.153 0.036 0.057 -0.048 0.187
Only hyperparameters 0.152 0.039 0.059 -0.205 0.039
Handcrafted and engineered handcrafted 0.314 -0.009 0.036 0.352 0.258
Radiomics similarity scores 0.153 0.044 0.058 -0.195 0.035
Handcrafted, rad sim, eng handcrafted,radiomics 0.153 0.037 0.057 -0.047 0.187
Handcrafted, rad PCA, eng handcrafted,radiomics 0.153 0.038 0.057 -0.041 0.186
Only engineered handcrafted 0.153 0.031 0.057 -0.048 0.187
Handcrafted and radiomics PCA 0.314 -0.015 0.052 -0.060 0.117
Handcrafted and radiomics similarity 0.314 -0.011 0.052 -0.065 0.117
Only Handcrafted 0.314 -0.016 0.052 -0.065 0.116
Handcrafted, eng handcrafted, radiomics PCA 0.314 -0.002 0.036 0.350 0.260
Handcrafted, eng handcrafted, radiomics sim 0.315 -0.003 0.037 0.329 0.259
Handcrafted and user-given 0.315 -0.013 0.052 -0.062 0.117
Only entire radiomics vectors 0.315 -0.012 0.052 -0.062 0.116

Table 6: Results using XGBoost as the meta-model to predict raw IoU scores

RMSE Kendall Tau Diff IoU Z-score Pearson

All meta-features 0.157 0.006 0.044 0.224 0.173
Only hyperparameters 0.181 0.025 0.057 -0.062 0.013
Handcrafted and engineered handcrafted 0.136 0.004 0.034 0.479 0.320
Radiomics similarity scores 0.167 0.013 0.050 0.234 0.111
Handcrafted, rad sim, eng handcrafted,radiomics 0.159 0.004 0.047 0.193 0.168
Handcrafted, rad PCA, eng handcrafted,radiomics 0.263 -0.008 0.043 0.235 0.106
Only engineered handcrafted 0.166 0.006 0.052 -0.053 0.067
Handcrafted and radiomics PCA 0.165 0.001 0.039 0.446 0.255
Handcrafted and radiomics similarity 0.194 -0.005 0.037 0.464 0.239
Only Handcrafted 0.165 0.011 0.039 0.452 0.264
Handcrafted, eng handcrafted, radiomics PCA 0.138 0.002 0.034 0.482 0.311
Handcrafted, eng handcrafted, radiomics sim 0.171 -0.001 0.033 0.491 0.308
Handcrafted and user-given 0.156 -0.001 0.037 0.493 0.272
Only entire radiomics vectors 0.262 0.001 0.040 0.430 0.211
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Table 7: Results using Random Forest as the meta-model to predict IoU scores

RMSE Kendall Tau Diff IoU Z-score Pearson

All meta-features 0.181 0.013 0.041 0.294 0.244
Only hyperparameters 0.175 0.026 0.052 0.024 0.021
Handcrafted and engineered handcrafted 0.138 0.007 0.028 0.643 0.295
Radiomics similarity scores 0.173 0.000 0.043 0.374 0.173
Handcrafted, rad sim, eng handcrafted,radiomics 0.166 0.021 0.042 0.229 0.227
Handcrafted, rad PCA, eng handcrafted,radiomics 0.259 -0.010 0.041 0.252 0.123
Only engineered handcrafted 0.160 0.001 0.050 0.009 0.002
Handcrafted and radiomics PCA 0.151 -0.014 0.032 0.522 0.230
Handcrafted and radiomics similarity 0.164 -0.003 0.035 0.516 0.237
Only Handcrafted 0.153 -0.002 0.030 0.582 0.242
Handcrafted, eng handcrafted, radiomics PCA 0.146 -0.001 0.031 0.553 0.298
Handcrafted, eng handcrafted, radiomics sim 0.157 0.005 0.030 0.583 0.308
Handcrafted and user-given 0.155 -0.012 0.030 0.570 0.276
Only entire radiomics vectors 0.228 0.012 0.039 0.407 0.264

Table 8: Results using LamdaMART as the meta-model to predict a ranking based on IoU scores,
with colsample bytree and subsample set to 0.9. Results averaged over 20 random seeds

Kendall Tau Diff IoU Z-score Pearson

All meta-features -0.009 0.037 0.403 0.273
Only hyperparameters 0.010 0.052 0.087 0.129
Handcrafted and engineered handcrafted 0.000 0.032 0.486 0.302
Radiomics similarity scores 0.014 0.048 0.267 0.165
Handcrafted, rad sim, eng handcrafted,radiomics -0.011 0.037 0.406 0.278
Handcrafted, rad PCA, eng handcrafted,radiomics -0.015 0.037 0.408 0.281
Only engineered handcrafted -0.004 0.034 0.427 0.290
Handcrafted and radiomics PCA -0.005 0.034 0.523 0.298
Handcrafted and radiomics similarity -0.002 0.034 0.531 0.317
Only Handcrafted -0.002 0.032 0.556 0.289
Handcrafted, eng handcrafted, radiomics PCA 0.001 0.032 0.520 0.307
Handcrafted, eng handcrafted, radiomics sim -0.002 0.033 0.491 0.317
Handcrafted and user-given -0.001 0.034 0.521 0.290
Only entire radiomics vectors -0.002 0.036 0.504 0.307
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Table 9: Results using LamdaMART as the meta-model to predict a ranking based on IoU scores.
Here LamdaMART is deterministic and always uses all datapoints and features.

Kendall Tau Diff IoU Z-score Pearson

All meta-features -0.016 0.036 0.398 0.264
Only hyperparameters 0.010 0.053 0.058 0.122
Handcrafted and engineered handcrafted -0.012 0.036 0.371 0.291
Radiomics similarity scores 0.018 0.051 0.219 0.163
Handcrafted, rad sim, eng handcrafted,radiomics -0.008 0.037 0.437 0.286
Handcrafted, rad PCA, eng handcrafted,radiomics -0.009 0.033 0.529 0.269
Only engineered handcrafted -0.008 0.033 0.434 0.292
Handcrafted and radiomics PCA 0.025 0.032 0.567 0.315
Handcrafted and radiomics similarity 0.036 0.036 0.507 0.346
Only Handcrafted -0.003 0.030 0.608 0.299
Handcrafted, eng handcrafted, radiomics PCA -0.012 0.031 0.516 0.318
Handcrafted, eng handcrafted, radiomics sim 0.008 0.028 0.606 0.291
Handcrafted and user-given 0.002 0.031 0.552 0.279
Only entire radiomics vectors 0.022 0.036 0.530 0.323

Table 10: Results using Random Forest as the meta-model to predict binned IoU scores. Results are
averaged over 20 random seeds.

RMSE Kendall Tau Diff IoU Z-score Pearson

All meta-features 2.887 0.006 0.037 0.411 0.317
Only hyperparameters 3.256 0.023 0.048 0.183 0.130
Handcrafted and engineered handcrafted 2.878 0.004 0.033 0.479 0.351
Radiomics similarity scores 2.950 0.025 0.040 0.416 0.264
Handcrafted, rad sim, eng handcrafted,radiomics 2.906 0.008 0.040 0.364 0.296
Handcrafted, rad PCA, eng handcrafted,radiomics 2.935 0.004 0.036 0.415 0.322
Only engineered handcrafted 2.925 -0.001 0.032 0.509 0.335
Handcrafted and radiomics PCA 2.780 0.006 0.035 0.491 0.359
Handcrafted and radiomics similarity 2.747 0.025 0.037 0.476 0.361
Only Handcrafted 2.829 0.010 0.029 0.601 0.346
Handcrafted, eng handcrafted, radiomics PCA 2.893 0.010 0.035 0.448 0.341
Handcrafted, eng handcrafted, radiomics sim 2.868 0.019 0.036 0.444 0.346
Handcrafted and user-given 2.815 0.005 0.031 0.543 0.336
Only entire radiomics vectors 2.809 0.022 0.037 0.488 0.317
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Table 11: Results using LamdaMART as the meta-model to predict binned IoU scores, with colsample
bytree and subsample set to 0.9. Results averaged over 20 random seeds

Kendall Tau Diff IoU Z-score Pearson

All meta-features 0.006 0.034 0.477 0.333
Only hyperparameters 0.016 0.052 0.081 0.159
Handcrafted and engineered handcrafted 0.007 0.032 0.525 0.358
Radiomics similarity scores 0.021 0.047 0.277 0.203
Handcrafted, rad sim, eng handcrafted,radiomics 0.009 0.035 0.454 0.320
Handcrafted, rad PCA, eng handcrafted,radiomics 0.004 0.035 0.455 0.338
Only engineered handcrafted 0.013 0.033 0.462 0.329
Handcrafted and radiomics PCA 0.008 0.034 0.543 0.359
Handcrafted and radiomics similarity 0.008 0.035 0.498 0.372
Only Handcrafted 0.004 0.033 0.544 0.347
Handcrafted, eng handcrafted, radiomics PCA 0.006 0.031 0.534 0.353
Handcrafted, eng handcrafted, radiomics sim 0.008 0.033 0.509 0.354
Handcrafted and user-given 0.006 0.033 0.551 0.341
Only entire radiomics vectors 0.008 0.036 0.520 0.357

Table 12: Results using LamdaMART as the meta-model to predict binned IoU scores. Here Lam-
daMART is deterministic and always uses all data points and features.

Kendall Tau Diff IoU Z-score Pearson

All meta-features -0.034 0.034 0.463 0.352
Only hyperparameters 0.014 0.053 0.051 0.157
Handcrafted and engineered handcrafted 0.016 0.030 0.523 0.353
Radiomics similarity scores 0.014 0.043 0.363 0.205
Handcrafted, rad sim, eng handcrafted,radiomics 0.004 0.034 0.412 0.321
Handcrafted, rad PCA, eng handcrafted,radiomics 0.005 0.039 0.377 0.298
Only engineered handcrafted 0.007 0.029 0.571 0.366
Handcrafted and radiomics PCA 0.016 0.033 0.524 0.357
Handcrafted and radiomics similarity 0.048 0.040 0.450 0.368
Only Handcrafted 0.021 0.034 0.540 0.341
Handcrafted, eng handcrafted, radiomics PCA 0.001 0.038 0.472 0.346
Handcrafted, eng handcrafted, radiomics sim 0.013 0.033 0.517 0.359
Handcrafted and user-given 0.005 0.031 0.583 0.365
Only entire radiomics vectors -0.014 0.041 0.400 0.356
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