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Abstract
Global warming has been a crucial topic for the last decades. District Heating can play a significant
role in reducing energy usage and CO2 emissions. This research aims to review different types
of observer designs for estimating the temperature profile of a stratified thermal storage tank in
district heating applications. First, the mathematical model for a stratified thermal storage tank is
deducted from the literature and includes the slow buoyancy and mixing terms, in addition to most
mathematical descriptions. Literature research on the Sliding Mode is conducted, and the essential
operation of the Sliding Mode is elucidated. For the Sliding Mode Observer Design, a bounded
disturbance function is fundamental. This research conducts literature research on all parameters to
check their possible disturbance. From all gathered possible disturbance per parameter, a bounded
disturbance function is designed which can be utilized. Different Sliding Mode Observer designs are
explained, and there is shown that each design with a disturbance does not match a fundamental
matching condition needed for the implementation of the observer. The research proves that the
mathematical model, as depicted, cannot be observed by a Sliding Mode Observer. This thesis
proposes a narrowed-down error function that enables the design of a Sliding Mode Observer.
This narrowed-down system does not converge within a reasonable time. However, for fictional
values of the parameters, the Sliding Mode Observer partially holds, proving its potential for other
mathematical systems.
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1 Introduction
Global warming is causing extreme weather, such as floods, heat waves, and storms [21] [19]. These
extreme weather events have a severe impact on both humans and animals. The energy transition
has, therefore, taken up an important role in the world. Heating, cooling, ventilation and air
conditioning (HVAC) of buildings takes up approximately 50% of the total energy consumption of
Europe [20]. Showing that a more sustainable way of heating and cooling buildings is key in the
energy transition.

District heating and cooling can play a vital role in this transition if the technology is implemented
and optimized [18]. This is shown by [11], who showed that switching from a typical boiler or
heat pump to a District Heating System (DHS) with a Combined Heat and Power Plant (CHP) in
combination with house envelope and isolation measures can reduce the primary energy use by 88%
and the CO2 emissions by 96%. Figure 1 shows that a DHS consists of a centralized large power
plant, the transmission that is transported through pipes, the end users, and the thermal storage
[20]. Figure 1 shows that Thermal Storage experiences losses of up to 80%, which badly impacts
the overall system’s efficiency and sustainability.

Figure 1: Simplified illustration of a DHS derived from [20]

Thermal Energy Storage (TES) in a DHS can be stored in three main ways, namely sensible heat
storage, latent heat storage, and chemical heat storage [8]. The aim of this project will be sensible
heat storage with a specific focus on stratified thermal storage tanks. Stratification in storage tanks
has been shown to improve the performance of the heat storage [23]. Stratification in storage tanks
entails that there exists a temperature profile throughout the whole tank. As cold water is denser
than hot water, hotter water remains at the top while cold water stays at the bottom. Stratification
improves the effectiveness of the heat storage [5]. An essential aspect of these thermal storage tanks
is knowing when to tap and when to load hot and cold water. The execution of the loading and
tapping can be performed with a controller. The total energy of a thermal storage tank can be
determined with the State of Charge (SoC) of a tank. The SoC is the ratio between the current
energy in a thermal storage tank, which is compliant with the users’ needs, and the maximum
amount of energy in a thermal storage tank [32]. Calculating the SoC relies on the temperature
at any given point within the tank [22]. Therefore, the temperature profile of a stratified thermal
storage tank needs to be mapped.
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Sensors can be used for this, but hardware purchases should be minimized to reduce costs, and
sensors are prone to both failure and malfunctioning. State Estimation Strategies (SES) can be
used to estimate the temperature profile of a stratified thermal heat tank as shown in [16], who
shows the comparison between different SES. This research did not account for possible noise or
parameter uncertainty in the system, which has to be taken into account, as noise [35] or parameter
uncertainty can alter the measured temperature. For such systems, a more robust estimation of
the temperature profile needs to be observed with a SES that also complies to a low error margin.
A couple of essential aspects for such an observer are that the observer should not have a long
calculating time, which will counter the need for such an observer. The observer should also not
be resource intensive; otherwise, a lot of sensors could be used as well. The server should also be
compatible with control strategies that apply to controlling thermal storage tanks.
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2 System Description
2.1 System Model
The system in this project will be much smaller than an overall DHS. The system will consist only
of the thermal storage tank, as shown in Figure 2. Figure 2 shows a DHS with a CHP as a heat
producer. The stratified thermal storage tank, as shown in the middle, will be the complete system
in this research. As the inflow and outflow of the tank do have a serious impact on the content of
the tank, they are also considered part of the system. In this report, the modeling will be performed
on a tank with five layers. However, the mathematical model will be explained with n layers. As
this research will focus on estimating the temperature profile of the whole stratified thermal storage
tank, the only temperature sensors present will be at i=1 and i=n, hereby simulating how the SES
could work in real-time applications.

Figure 2: District Heating and Cooling System derived from [22]

2.2 Mathematical Model

2.2.1 Working Assumptions

This research makes multiple working assumptions so the system can be used for optimization
strategies. The following six working assumptions are made in order to keep the system simple:

1. The system will be simplified into a 1-dimensional model by discretizing the mathematical
model. This simplification shall ensure that the system is less computationally heavy, which
makes it both easier and faster to estimate the temperature. At the same time, it is proven
that a 1-dimensional model gives very reliable results for stratified thermal storage tanks [24].

2. It is assumed that all the layers have the same height, perimeter, cross-sectional area, and
thermal conductivity of the isolation wall.

3. It is assumed that the variable of interest for each control volume (layer i) will be the average
temperature throughout the whole layer.

4. During the design and modeling of the observer, a tank with three layers will be used as three
layers describe the system’s complete physics whilst not complicating the research.

5. It is assumed that while loading the tank in either layer 1 or 3, it will unload at the same
time from the other layer, keeping the volume in the tank constant. In this case, (un)loading
means water entering or leaving the tank.

6. It is assumed that the charging only happens through loading in layer one discharging only
happens through loading in layer 3
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2.2.2 Mathematical Description

Besides the visualized system in 2, the temperature of each layer in the thermal storage tank can
also be described mathematically with a Partial Differential Equation (PDE) [17]. In a real stratified
thermal storage tank, the temperature difference is not divided into layers but differs gradually in
the tank. However, this system is too complex for optimization purposes. Therefore, as discussed
in the working principles, the tank will be discretized in layers where the temperature is uniform
throughout the whole layer.

The following PDE [17] describes the state of a layer i:

∂Ti
∂t

= α
∂2Ti
∂z2︸ ︷︷ ︸

heat flux

+
Piki
ρcpAi

(T∞ − Ti)︸ ︷︷ ︸
heat loss environment

+
Q̇i

ρcpAizi︸ ︷︷ ︸
Indirect (dis)charging

+
ṁi(T

in
i )− Ti
ρAizi︸ ︷︷ ︸

Direct dis(charging)

+ λ︸︷︷︸
Slow Buoyancy

+ ϕ︸︷︷︸
Mixing

(2.1)

Equation 2.1 still has a second order derivative. This second order derivative has to be discretized in
space to simplify the system, transforming the PDE into an Ordinary Differential Equation (ODE).
PDE (2.1) can be discretized using the finite difference method [31], together with applying working
assumption 2 will result in 2.2.

dTi(t)

dt
= α

Ti+1 − 2Ti + Ti−1

z2
+

K

ρcpA
(T∞ − Ti) +

˙Qk,i

zρcpA
+

ṁi

zρA
(T in

i − Ti) + λ+ ϕ (2.2)

In this system, only the direct charging and discharging will be taken into account. The term for
indirect charging and discharging will be excluded, resulting in equation 2.3.

dTi(t)

dt
= α

Ti+1 − 2Ti + Ti−1

z2
+

K

ρcpA
(T∞ − Ti) +

ṁi

zρA
(T in

i − Ti) + λ+ ϕ (2.3)

Equation 2.3 still misses the effect of buoyancy and mixing. [17] has included these effects. The
effect of slow buoyancy, the inversion of layers due to heat losses at the top of the tank as the top
layer has a larger contact area to the tank, can be described with 2.4

λ = θi,i+1
1

µ
log
(
e0 + eµ(Ti+1−Ti)

)
− θi,i−1

1

µ
log
(
e0 + eµ(Ti−Ti−1)

)
(2.4)

where:

θi,i−1 =
Ai−1zi−1

Aizi +Ai−1zi−1
∈ [0, 1] (2.5)

Since it is assumed that all the layers have the same cross-sectional area and the same height, θi,i−1

and θi,i+1 can both be set to 1
2 . Furthermore, µ is used as a scaling factor to improve the formula

depending on the storage type used [17]. [17] have found that an appropriate µ is equal to 10 for
thermal storage vessels, resulting in equation 2.6.

λ =
1

20
log
(
e0 + e10(Ti+1−Ti)

)
− 1

20
log
(
e0 + e10(Ti−Ti−1)

)
(2.6)

Equations 2.2 and 2.6 can be combined into equation
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dTi(t)

dt
=α

Ti+1 − 2Ti + Ti−1

z2
+

K

ρcpA
(T∞ − Ti) +

ṁi

zρA
(Ti − T in

i ) + λ (2.7)

The mixing term is the only term missing from equation 2.7. This mixing term can be deduced
from both [17] and [32], where they have included a step function, represented as S(Ti − T in

l ), to
check whether there is a temperature difference in each layer. This can be seen in 2.8 and 2.9, where
ṁi(T

in
i − Ti) from equation 2.7 is replaced by ϕ1 and ϕ2 into:

ϕ1,i =τ

(
ṁ1S(T

in
i − Ti)(T

in
i − Ti) +

i∑
l=0

ṁ1
(Ti − T in

l )S(Ti − T in
l )∑N

j=l S(Tj − T in
l )

)
, if charging (2.8)

ϕ2,i =(1− τ)

(
ṁnS(Ti − T in

i )(T in
i − Ti) +

N∑
l=i

ṁn
(T in

l − Ti)S(T
in
l − Ti)∑l

j=0 S(T
in
l − Tj)

)
, if discharging (2.9)

Where

S(T2 − T1) =

{
1, if S(T2 − T1) ≥ 0.

0, otherwise.

and

τ =

{
1, if charging.

0, discharging.

Where the step function is approximated into a smooth and continuous function by [17], where [17]
used [9, Chapter 11] for the approximation. Which looks like:

S(T2 − T1) ≈
1

1 + e−η(T2−T1)
(2.10)

Where [17], found that an appropriate value of η is equal to 1. Both formulas 2.8 and 2.9 are
artificial artifacts as they do not exactly describe the physics of mixing in a stratified thermal
storage tank. The formula for charging checks whether the flow during charging is higher or equal
to the temperature of the layers underneath (note that charging only happens in layer 1). If the
incoming flow is higher than the temperature of the layers, it will charge the layer on which it flows,
which is layer 1. If the temperature is lower than the temperature of one or more layers underneath,
the temperature difference will be distributed equally between each layer. This also happens the
other way around for discharging through layer 3. The equations 2.8 and 2.9 for the mixing can be
combined with formula 2.7 into the complete ODE:

dTi(t)

dt
= α

Ti+1 − 2Ti + Ti−1

z2
+

K

ρcpA
(T∞ − Ti) +

ϕ1,i + ϕ2,i
zρA

+ λ (2.11)

This model needs to be written in matrix form to enable a state estimation strategy to estimate
the temperature profile. The matrix form can be deduced from both [22] and [7] into a matrix with
following structure:

dT

dt
= AT +B + ϕτ,iṁ
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In this research, for simplicity reasons, only three layers will be used. However, to gain a clear
insight on how the formula will work for n layers, n layers will be used in the following equations.
Matrix A represents the heat flux given as:

A =



−α/z2 − Pk
ρcpA

α/z2 0 0 0

α/z2 −2α/z2 − Pk
ρcpA

α/z2 0 0

0 α/z2 −2α/z2 − Pk
ρcpA

. . . 0

0 0
. . .

. . . α/z2

0 0 0 α/z2 −α/z2 − Pk
ρcpA


Matrix B represents the slow buoyancy and part of the heat losses to the environment:

B =


Pk
ρcpA

T∞ + 1
20 log(e

0 + e10(T2−T1)

P2k2
ρcpA

T∞ + 1
20 log

(
e0 + e10(T4−T3)

)
− 1

20 log
(
e0 + e10(T3−T2)

)
...

Pnkn
ρcpA

T∞ − 1
20 log

(
e0 + e10(Tn−Tn−1)

)


Matrix ϕτ,i represents the mixing term for charging and discharging givens as:

ϕch,i =


ϕ1,1

zρA +
ϕ2,1

zρA
ϕ1,2

zρA +
ϕ2,2

zρA
...

ϕ1,n

zρA +
ϕ2,n

zρA


Where the ϕ1,i and ϕ2,i are defined the same as in formulas 2.8 and 2.9. These equations would
look like formulas 2.12, 2.13, 2.14, 2.15, 2.16 and 2.17 in the matrix for i=1, i=2 and i=3 while
taking working assumptions 5 and 6 into consideration; that the only inlet and outlet are coming
from layers 1 and 3.

ϕ1,1 =ṁ1
(T in

1 − T1)S(T1 − T in
1 )

S(T1 − T in
1 ) + S(T2 − T in

1 ) + S(T3 − T in
1 )

+ (2.12)

ṁ1 ∗ S(T in
1 − T1) ∗ (T in

1 − T1), if charging

ϕ1,2 =ṁ1
(T in

1 − T2)S(T2 − T in
1 )

S(T1 − T in
1 ) + S(T2 − T in

1 ) + S(T3 − T in
1 )

+ (2.13)

ṁ1
(T in

2 − T2)S(T2 − T in
2 )

S(T2 − T in
2 ) + S(T3 − T in

2 )
+

ṁ1 ∗ S(T in
2 − T2) ∗ (T in

2 − T2), if charging

ϕ1,3 =ṁ1
(T in

1 − T3)S(T3 − T in
1 )

S(T1 − T in
1 ) + S(T2 − T in

1 ) + S(T3 − T in
1 )

+ (2.14)

ṁ1
(T in

2 − T3)S(T3 − T in
2 )

S(T2 − T in
2 ) + S(T3 − T in

2 )
+ ṁ1

(T in
3 − T3)S(T3 − T in

3 )

S(T3 − T in
3 )

+

ṁ1 ∗ S(T in
3 − T3) ∗ (T in

3 − T3), if charging
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ϕ2,1 =ṁ3
(T in

1 − T1)S(T
in
1 − T1)

S(T in
1 − T1)

+ ṁ3
(T in

2 − T1)S(T
in
2 − T1)

S(T in
2 − T1) + S(T in

2 − T2)
+ (2.15)

ṁ3
(T in

3 − T1)S(T
in
3 − T1)

S(T in
3 − T1) + S(T in

3 − T2) + S(T in
3 − T3)

+

ṁ3 ∗ (T in
1 − T1)S(T1 − T in

1 ), if discharging

ϕ2,2 =ṁ3
(T in

2 − T2)S(T
in
2 − T2)

S(T in
2 − T2) + S(T in

2 − T1)
+ (2.16)

ṁ3
(T in

3 − T2)S(T
in
3 − T2)

S(T in
3 − T1) + S(T in

3 − T2) + S(T in
3 − T3)

+

ṁ3 ∗ (T in
2 − T2)S(T2 − T in

2 ), if discharging

ϕ2,3 =ṁ3
(T in

3 − T3)S(T
in
3 − T3)

S(T in
3 − T1) + S(T in

3 − T2) + S(T in
3 − T3)

+ (2.17)

ṁ3 ∗ (T in
3 − T3)S(T3 − T in

3 ), if discharging

2.3 Problem Formulation
The main problem in this paper is that there is no Sliding Mode Observer design yet for the
temperature estimation of a stratified thermal storage tank in DHS applications. The objective
is to review different Sliding Mode Observers, exploring whether they apply to the mathematical
model described in this chapter. The Observer should comply to the following restraint

lim
t→∞

T̂ = T

For this review, first of all, literature research will be conducted. Secondly, after conducting research
on the sliding mode technique and its ability to observe an unknown state, an analysis shall be
carried out whether there is a variant of the sliding mode that applies to the modeled system as
discussed in this chapter.
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3 Bounded Disturbance Function for the Slid-
ing Mode

3.1 Introduction to Sliding Mode Observers
This research shall look at the Sliding Mode Control technique as an observer for the system.
The sliding mode technique is an advanced control method that has many applications for robust
systems, as it can exclude both measurement noise and parameter uncertainty from the observer.
Another important aspect is that the Sliding Mode technique allows finite-time convergence for all
observable states [26].

According to [30], a sliding mode observer for a nonlinear system can be introduced to a system
in the form of 3.1 when dealing with either parameter uncertainty, measurement noise, or both
described by

Ṫ = AT +Ω(T, ṁ) +Df(T, ṁ, t)

y = CT
(3.1)

where T, ṁ and y are the state variables, input and output, respectively. In Sliding Mode Observer
Design for nonlinear systems, there is an unknown error function consisting of uncertainties and
noise given by f(T, y, ṁ, t). For the sliding mode to work as an observer, it is required to design a
bounded known disturbance function. The bounded disturbance function must comply with the
constraint given in 3.2, where ψ is a function that needs to be designed [30].

||f(T, y, ṁ, t)|| ≤ ψ(T, y, ṁ, t) (3.2)

The disturbance function ψ(T, y, ṁ, t) can be designed by looking into all possible parameters from
system 2.11 and ascertain whether there might be an error present in the parameter.

3.2 Parameter Uncertainty
As shortly mentioned in the previous paragraph 3.1, to determine the known disturbance function
ψ(T, y, ṁ, t), all parameters must be analyzed for possible uncertainties or measurement noise. After
each parameter is individually analyzed, the known disturbance function, ψ, can be designed. The
disturbance function must be greater than, or equal to, the biggest possible unknown error function
to ensure that the observer error can be driven to zero. Indicating that the disturbance function ψ
is always equal to, or bigger than, each possible value of the unknown error described in system 3.1.
The following paragraphs will look at each parameter to ascertain its possible uncertainty, if that
applies to the parameter. Each parameter can be found in the nomenclature.

3.2.1 Thermal Conductivity (k)

The thermal conductivity of the insulation wall can be uncertain. According to [28], [15] and [34],
the uncertainty for the thermal conductivity of a material is lower than 5 percent and mainly
depends on the material, the thickness of the material, and the measurement technique. However,
some other factors still play a role in the degree of uncertainty. If this research is to be expanded
with a specific type of material and thickness, this percentage can be reduced to under 0.5 percent.

3.2.2 Density of Water (ρ)

The next parameter that has uncertainty is the density of water. The density of water is known per
temperature, which only has an uncertainty of 1 ∗ 10−6 [33], which is negligible in this research.
However, the density is a nonlinear function with respect to the temperature. Since this nonlinear
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function complicates the system, a constant value for all temperatures will be picked that will look
like

ρTc + δ = ρTa

where ρTc and ρTa are the densities for the chosen and actual temperature, respectively. The δ is the
possible error. Since the tank will have boundaries for the temperature, which are Tmin and Tmax for
the minimum and maximum temperature respectively, the maximum error δ can be calculated. The
sliding mode technique can exclude the error from the function as long as it is bounded. Therefore,
it is simpler to set the density to a constant with a bounded error function. Table 1 in appendix A
[2] shows the density by temperature together. After determining Tmin and Tmax, a proper value
for the density can be picked. In this research, the boundaries for Tmin and Tmax will be 0, 01◦C
and 100◦C respectively, as these boundaries are very unlikely to be exceeded. Furthermore, for all
the parameters that are temperature dependent, namely fluid diffusivity, specific heat, and density,
the value will be taken at 50◦C as this is the exact temperature in-between the boundaries. In table
1, it can be seen that the maximum possible deviation with a constant ρ = 988, 04kg/m3 is 3, 1%.

3.2.3 Specific Heat of Water
The third parameter that is not completely certain is the parameter for the specific heat of water.
The specific heat capacity of a substance can be measured with differential scanning calorimetry
[27], and [25]. Both [27] and [25] show that the uncertainty in these measurements will not exceed
1, 5%. Besides this error, the Specific Heat of Water is also a nonlinear function with respect to
the temperature of the water. The value from cp will be picked at 50◦C, the same as for the
density of water. The specific heat of water is different for isochoric (constant-volume) and isobaric
(constant-pressure) circumstances. Working Assumption 8 shows that the volume of the tank stays
constant. Therefore, the isochoric values are used in table 2 in Appendix A [3], which shows the
values of cp for each temperature. The third column shows the deviation from cp = 4, 026 kJ/kg ∗T ,
where the biggest deviation is at T = 100◦C and is equal to 6, 85% which will be rounded upwards
to 6, 9%. Combining this with the 1, 5% from the literature results in a total maximum error of
8, 4% for the specific heat capacity of water. Combining this with the error from subsections 3.2.2
and 3.2.1 will give the error

Total Error ρ, k and cp = 1, 05/(1− 0, 031− 0, 084) = 1, 19

ψ(y, T, ṁ, t) = (+/−)

∣∣∣∣0, 19 Pk

ρcpA
(T∞ − Ti)

∣∣∣∣ (3.3)

3.2.4 Fluid Diffusivity
Fluid Diffusivity is a parameter that is dependent on thermal conductivity, specific heat, and density
of water in the following way:

α =
k

ρcp

In the paragraphs about thermal conductivity, specific heat and density of water, their errors have
already been determined as 5%; 8,4% and 3,1% with a total combined error at 19%

Furthermore, the fluid diffusivity is also nonlinear and dependent on the temperature, density, and
specific heat capacity. The values for α can be found in table 3 in Appendix A [4] Beside this, the
value for α is taken from T = 50◦C which equals to 0,155 * 10−6 m2/s. The deviation per possible
temperature is shown in the third column of table 3 and gives a value of 17, 42% rounding upwards
gives 17, 5%. Combining with the other part of the error results in 19+17, 5 = 36, 5% error given by

ψ(y, T, ṁ, t) = (+/−)

∣∣∣∣0, 365 ∗ αTi+1 − 2Ti + Ti−1

z2

∣∣∣∣ (3.4)
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3.2.5 µ from the Slow Buoyancy

The µ from λ out of [17] is set at 10, which was found to be a reasonable value for heat storage
vessels with a certain temperature difference between layers. In [17] they use temperatures between 5
and 85 ◦C, which is close to 20 percent outside of the range used in this paper, where the boundaries
are T ∈ (0, 01; 100). Combined with the fact that µ is used to make the max function sharper, an
error of 25 percent will be used in the error function.

This error cannot be incorporated in ψ like the other parameters since processing it as

ψ(y, T, ṁ, t) =
1

5
log
(
e0 + e2,5(Ti+1−Ti)

)
− 1

5
log
(
e0 + e2,5(Ti−Ti−1)

)
will result in the same value as the standard formula where µ is equal to 10. Therefore, in this
situation, it is more accurate to include the error as 25% of the function for slow buoyancy itself by

ψ(y, T, ṁ, t) = 0, 25 ∗ λi (3.5)

3.2.6 Eta from the mixing term

In the mixing term, the step function is approximated into a continuous function by formula 2.10
in chapter 2. This approximation has a parameter η that helps fabricate a rigorous formula. In [17],
they take a value of 1, which works for their model and simulations. However, it is complicated to
examine whether this parameter is even close to the correct number for this research. If η is gaining
steeper, the approximation becomes more accurate by design. However, this does not imply directly
that it also produces a more precise formula in this application. This research focuses on parameter
uncertainty and measurement noise, not on parameter design. Therefore, an upper and a lower
bound are set for η by

ηmin ≤ η ≤ ηmax where ηmin = 0, 5η ∧ ηmax = 1, 5η

This is incorporated in the disturbance by

ϕ1,i =τ

ṁ1
1

1 + e−0,5(T in
i −Ti)

(T in
i − Ti) +

i∑
l=0

ṁ1

(Ti − T in
l ) 1

1+e
−0,5(Ti−Tin

l
))∑N

j=l
1

1+e
−0,5(Tj−Tin

l
))

 , if charging (3.6)

ϕ2,i =(1− τ)

ṁn ∗ 1

1 + e−0,5(Ti−T−in
i )

(T in
i − Ti) +

N∑
l=i

ṁn

(T in
l − Ti)

1

1+e
−0,5(Tin

l
−Ti))∑l

j=0
1

1+e
−0,5(Tin

l
−Tj))

 , if discharging

(3.7)

since the bounds are equal to 50% of η.

3.2.7 Remaining Parameters

The parameters that do not contain error or measurement noise are: the thickness of the layer z,
the perimeter of the layers P , the cross-sectional area of the layers A and theta θ in λ as it is only
dependent on A and z.

3.3 Measurement Noise / Uncertainty
In the following paragraphs, the possible noise from measurements and uncertainty in the sensors
will be discussed so that it can be used in the bounded disturbance function.
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3.3.1 Measured Mass Flow Rate

The mass flow rate has ṁi has an impact on the mixing term ϕi,i. According to [12], the kinetic
differential pressure method is a method that is better accessible than direct measurement, magnetic
flow meters or ultra-sonic flow meters, due to lesser boundaries to the system, such as restrictions
in flow rate changes and (isolation)material of the pipe. In [13], the error does not exceed 2%, but
in [12], the average error was in the order of 0, 1%, with a maximum error of 6, 41%, which can be
rounded upwards for the boundary of the disturbance system to 6, 5%.

3.3.2 Measured Temperature and Temperature of the Inflow

There are a lot of different methods for measuring the temperature of a fluid [6]. Depending on the
method, a valid error can be found. If the temperature were to be measured with either: Platinum
resistance thermometers, thermistors, or semiconductor devices, the error would be maximum ±1◦C
for commercial applications [6]. This will be rounded upwards to 2◦C ensuring that it is adequately
bounded.

3.4 Disturbance Function
All the uncertainties in the parameters and the measurement noise or deviation have been determined,
allowing the complete bounded disturbance formula to be compiled. Combining the maximum
errors from (ref all the paragraphs here) into

ψ(y, T, ṁ, t) = ±
(∣∣∣∣0, 365 ∗ αTi+1 − 2Ti + Ti−1

z2

∣∣∣∣+ ∣∣∣∣0, 19 Pk

ρcpA
(T∞ − Ti)

∣∣∣∣ (3.8)

+

∣∣∣∣0, 25 ∗ λ∣∣∣∣+ ∣∣∣∣0, 065ϕa1,iρcpA
+

0, 065ϕa2,i
ρcpA

∣∣∣∣+ ∣∣∣∣ ϕb1,iρcpA
+
ϕb2,i
ρcpA

∣∣∣∣)
where

ϕa1,i =τ

ṁ1
1

1 + e−(T in
i −Ti)

(T in
i − Ti) +

i∑
l=0

ṁ1

(Ti − T in
l ) 1

1+e
−(Ti−Tin

l
))∑N

j=l
1

1+e
−(Tj−Tin

l
))

 , if charging (3.9)

ϕa2,i =(1− τ)

ṁn ∗ 1

1 + e−(Ti−T−in
i )

(T in
i − Ti) +

N∑
l=i

ṁn

(T in
l − Ti)

1

1+e
−(Tin

l
−Ti))∑l

j=0
1

1+e
−(Tin

l
−Tj))

 , if discharging

(3.10)

ϕb1,i =τ

ṁ1
1

1 + e−0,5(T in
i −Ti)

(T in
i − Ti) +

i∑
l=0

ṁ1

(Ti − T in
l ) 1

1+e
−0,5(Ti−Tin

l
))∑N

j=l
1

1+e
−0,5(Tj−Tin

l
))

 , if charging (3.11)

ϕb2,i =(1− τ)

ṁn ∗ 1

1 + e−0,5(Ti−T−in
i )

(T in
i − Ti) +

N∑
l=i

ṁn

(T in
l − Ti)

1

1+e
−0,5(Tin

l
−Ti))∑l

j=0
1

1+e
−0,5(Tin

l
−Tj))

 , if discharging

(3.12)

Formula 3.8 shows the disturbance for layer i, whereas formula 3.13 shows the total disturbance for
each layer by
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ψ(y, T, ṁ, t) = ±

−0, 365α/z2 0, 365α 0
0, 365α −2 ∗ 0, 365α/z2 0, 365α

0 0, 365α −2 ∗ 0, 365α/z2

T1T2
T3

 (3.13)

+


0,19P1k1
ρcpA

0 0

0 0,19P2k2
ρcpA

0

0 0 0,19Pnkn
ρcpA


T∞ − T1
T∞ − T2
T∞ − T3

 (3.14)

+0, 25∗

 1
20 log(e

0 + e10(T2−T1))

1
20 log

(
e0 + e10(T3−T2)

)
− 1

20 log
(
e0 + e10(T2−T1)

)
− 1

20 log
(
e0 + e10(T3−T2)

)
 (3.15)

+



0,065ṁ1

ρcpA
τ

(
ṁ1

1

1+e−(Tin
1 −T1)

(T in
1 − T1) +

∑1
l=0 ṁ1

(Ti−T in
l ) 1

1+e
−(Ti−Tin

l
))∑N

j=l
1

1+e
−(Tj−Tin

l
))

)

0,065ṁ1

ρcpA
τ

(
ṁ1

1

1+e−(Tin
2 −T2)

(T in
2 − T2) +

∑2
l=0 ṁ1

(Ti−T in
l ) 1

1+e
−(Ti−Tin

l
))∑N

j=l
1

1+e
−(Tj−Tin

l
))

)

0,065ṁ1

ρcpA
τ

(
ṁ1

1

1+e−(Tin
3 −T3)

(T in
3 − T3) +

∑3
l=0 ṁ1

(Ti−T in
l ) 1

1+e
−(Ti−Tin

l
))∑N

j=l
1

1+e
−(Tj−Tin

l
))

)


(3.16)

+



0,065ṁ1

ρcpA
(1− τ)

(
ṁn ∗ 1

1+e−(T1−T−in
i

1)
(T in

1 − T1) +
∑N

l=1 ṁn

(T in
l −Ti)

1

1+e
−(Tin

l
−Ti))∑l

j=0
1

1+e
−(Tin

l
−Tj))

)

0,065ṁ1

ρcpA
(1− τ)

(
ṁn ∗ 1

1+e−(T2−T−in
2 )

(T in
2 − T2) +

∑N
l=2 ṁn

(T in
l −Ti)

1

1+e
−(Tin

l
−Ti))∑l

j=0
1

1+e
−(Tin

l
−Tj))

)

0,065ṁ1

ρcpA
(1− τ)

(
ṁn ∗ 1

1+e−(T3−T−in
3 )

(T in
3 − T3) +

∑N
l=3 ṁn

(T in
l −Ti)

1

1+e
−(Tin

l
−Ti))∑l

j=0
1

1+e
−(Tin

l
−Tj))

)



+



ṁ1
ρcpA

τ

(
ṁ1

1

1+e−0,5(Tin
1 −T1)

(T in
1 − T1) +

∑1
l=0 ṁ1

(Ti−T in
l ) 1

1+e
−0,5(Ti−Tin

l
))∑N

j=l
1

1+e
−0,5(Tj−Tin

l
))

)

ṁ1
ρcpA

τ

(
ṁ1

1

1+e−0,5(Tin
2 −T2)

(T in
2 − T2) +

∑2
l=0 ṁ1

(Ti−T in
l ) 1

1+e
−0,5(Ti−Tin

l
))∑N

j=l
1

1+e
−0,5(Tj−Tin

l
))

)

ṁ1
ρcpA

τ

(
ṁ1

1

1+e−0,5(Tin
3 −T3)

(T in
3 − T3) +

∑3
l=0 ṁ1

(Ti−T in
l ) 1

1+e
−0,5(Ti−Tin

l
))∑N

j=l
1

1+e
−0,5(Tj−Tin

l
))

)


(3.17)

+



ṁ1
ρcpA

(1− τ)

(
ṁn ∗ 1

1+e−0,5(T1−T−in
1 )

(T in
1 − T1) +

∑N
l=1 ṁn

(T in
l −Ti)

1

1+e
−0,5(Tin

l
−Ti))∑l

j=0
1

1+e
−0,5(Tin

l
−Tj))

)

ṁ1
ρcpA

(1− τ)

(
ṁn ∗ 1

1+e−0,5(T2−T−in
2 )

(T in
2 − T2) +

∑N
l=2 ṁn

(T in
l −Ti)

1

1+e
−0,5(Tin

l
−Ti))∑l

j=0
1

1+e
−0,5(Tin

l
−Tj))

)

ṁ1
ρcpA

(1− τ)

(
ṁn ∗ 1

1+e−0,5(T3−T−in
3 )

(T in
3 − T3) +

∑N
l=3 ṁn

(T in
l −Ti)

1

1+e
−0,5(Tin

l
−Ti))∑l

j=0
1

1+e
−0,5(Tin

l
−Tj))

)


which shows a linear part in the first two terms 3.13 3.14,and a nonlinear part in the second three
terms 3.15 3.16 3.17.
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4 Review of Sliding Mode Observers
4.1 Basic Introduction to the Sliding Mode
In control systems, there are almost always discrepancies between the plant and the mathematical
model that is developed for either the controller or the observer. This can come from very complex
physical models that are simplified or from parameters. For these kinds of systems, robust control
is critical. The Sliding Mode methodology is one of such robust control methods. The sliding mode
uses an introduced variable that is part of the system, namely the sliding surface. The sliding
surface can be seen as a line in the system’s phase portrait, shown in figure 3. First, a control drives
the system towards the sliding surface S; this is called the reaching mode. When the system is on
the trajectory of the sliding surface, a discontinuous signal is applied to drive the system toward
zero, called the sliding mode. During the sliding mode, the difference between the mathematical
model and the plant will be driven to zero. During the sliding mode, the system is independent of
possible bounded uncertainties or disturbances, making it a strong, robust control method.

Figure 3: The trajectory of the sliding mode [29]

4.2 Linear System without disturbances
The book of [30] describes all types of observers for systems. The system can be first-order, higher-
order, linear or nonlinear, with or without disturbances. The coming sections will extensively go
through sliding mode observers for the system in chapter 2, to offer a precise comprehension of
the reasoning and functioning of sliding mode observers. Note that all the following explanations
(sections 4.2, 4.3, 4.4 , 4.5) are deducted from the book of [30].

For a first order linear system with no disturbances, considered by the altered system from chapter
2

Ṫi(t) = ATi(t) +Bṁ(t) (4.1)

y(t) = CT (t)

where A ∈ Rn×n → A ∈ R3×3, B ∈ Rn×m → B ∈ R3×3 and C ∈ Rp×n → C ∈ R2×3 . Where matrix
C has full row rank, meaning that all the measured outputs are independent, which is true since

C =

[
1 0 0
0 0 1

]
(4.2)

which has this form due to the measured states T1 and T3(see working assumption 5). Furthermore,
the duo (A,C) must be observable.
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The first step for designing a sliding mode observer is creating a coordinate transformation of the
initial system 4.1. The transformation will have the following form

Tc =

[
NT

c

C

]
→

0 1 0
1 0 0
0 0 1

 (4.3)

this transformation will be applied to the triple (A,B,C) and realizes one very important aspect for
the observer, as it will allow the error function to be split in both e and ey (this will be shown later
in the explanation of equations 4.12 and 4.13). The observer will have the form

˙̂
T (t) = AT̂ (t) +Bṁ(t) +Gnv (4.4)

ŷ(t) = CT̂ (t)

where matrix B is applicable on the input, however, the input is still nonlinear as described by 2.8,
2.9 and 2.10. However, since this is a sliding mode observer for a linear system (4.1), the input
should be linearized using a Jacobian Matrix. The matrix coordinates in equation 4.4 are assumed
to already be linearized and in the following form

A = TcAT
−1
c =

[
A11 A12

A21 A22

]
, B = TcB =

[
B1

B2

]
and CT−1

c =
[
0 Ip

]
(4.5)

where (x̂, ŷ) are the state estimates of (x, y). Furthermore, the v is the discontinuous injection term
that is defined per layer i as

vi = βsign(ey,i), β = a positive scalar

This term is designed to force e(t) to the sliding surface S = {e : Ce=0} in finite time as the term
is discontinuous with respect to S. Assuming the system is already in the form of 4.5, the gain Gn

is designed as

Gn =

[
L
−Ip

]
(4.6)

where −Ip is defined as the negative identity matrix with size p and L ∈ Rn−p×p is free for design.
The errors for the state and the output are defined by

e(t) = T̂ (t)− T (t) (4.7)

ey(t) = ŷ(t)− y(t) (4.8)

and where the derivative of the system, error ė(t), is defined by

ė(t) = ˆ̇T (t)− Ṫ (t) (4.9)

= (AT̂ (t) +Bṁ(t) +Gnv)− (ATi(t) +Bṁi(t)) (4.10)

= Ae(t) +Gnv (4.11)

this is where the important aspect from the coordinate transformation comes into play, as the error
function ey(t) is defined by

ey(t) = ŷ(t)− y(t)

= C(T̂ (t)− T (t))

= Ce(t)

=
[
0 Ip

]
e(t)
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showing that the error of the output ey(t) consists of the last p terms of the error of the state e.
This induces a possible split of the error function of the state into both a function of e as of ey and
is partitioned as e = col(e1, ey) and the error system can thus be described as

ė1(t) = A11e(t) +A12ey(t) + Lv (4.12)

ėy(t) = A21e(t) +A22ey(t)− v (4.13)

where ėy(t) can be divided into layers as

˙ey,i(t) = A21,ie(t) +A22,iey(t)− βsign(ey,i (4.14)

To achieve asymptotic convergence of the state, firstly the error ey(t) must be driven to zero in
finite time. This can be achieved by introducing a candidate Lyapunov function (See Appendix B
for Lyapunov Stability) in the form of:

V =
1

2
e2y (4.15)

where the derivative of the Lyapunov function is defined by

V̇ = ėyey (4.16)

ensuring that equation 4.13 is asymptotically stable results in two conditions that must be satisfied,
namely:

1. V̇ < 0 for ey(t) ̸= 0

2. For ey(t) → ∞, V → ∞

where the second condition is satisfied, as can be seen directly from equation 4.15. The first condition
can be stated as

˙ey,iey,i = ey,i

(
A21,ie1 +A22,iey − βsign(ey,i)

)
(4.17)

= ey,i

(
A21,ie1 +A22,iey

)
−β|ey,i| (4.18)

< −|ey,i| (β − |(A21,ie1 +A22,iey)|) (4.19)

where the step from equation 4.17 to 4.18 follows from the fact that x ∗ sign(x) = |x|. Scalar β
must also comply to the following constraint in order for the equation to hold:

β > |A21,ie1 +A22,iey|+ κ (4.20)

where the scalar κ complies to κ ∈ R+, otherwise, equation 4.18 could be positive and would thus
violate the first condition for the asymptotic stability of the Lyapunov candidate. This will result
in the final ”reachability” condition

˙ey,iey,i < κ|ey,i| (4.21)

If equation 4.21 holds, the error ey,i will converge to zero in finite time and subsequently a sliding
mode takes place on S. During this sliding motion, both errors e1 and ey are zero and the systems
4.12 and 4.13 can be described as

ė1(t) = A11e(t) + Lveq (4.22)

0 = A21e(t)− veq (4.23)

where veq is the equivalent output error injection which is required to maintain the sliding motion.
Equation 4.23 shows that

veq = A21e(t) (4.24)
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which can be substituted into 4.22 resulting in

ė1(t) = (A11(t) + LA21(t))e1(t) (4.25)

this represent the reduced order motion governing the sliding motion and is of size: (n-p), as can be
deducted from the sizes as discussed after equation 4.1 and the coordinate transformation 4.5. L
represents total freedom of design for the observer, and can thus always assure that 4.25 is stable.
This shows how a very simplistic sliding mode observer would reconstruct the unknown states of a
linear system.

4.3 Linear system with disturbances
Now a linear system with some disturbance will be discussed, looking at the possibility of recon-
structing the unknown states when there is an unknown disturbance in the system. System 4.1
from the previous chapter can be replaced with

Ṫi(t) = ATi(t) +Bṁ(t) +Dξ(T, ṁ, t) (4.26)

y(t) = CT (t)

where D is the distribution matrix ∈ Rp×h of the associated disturbance described by ξ(T, ṁ, t) ∈ Rh.
The gain Gn is in the new system desired to match the disturbance D, such that D = GnX, where
X is free to be designed, as long as X ∈ Rp×h combining this with the coordinate transformation
and the design of Gn:

A = TcAT
−1
c =

[
A11 A21

A21 A22

]
, B = TcB =

[
B1

B2

]
, CT−1

c =
[
0 Ip

]
and Gn =

[
L
−Ip

]
(4.27)

results in matrix D

D = GnX =

[
L
−Ip

]
X (4.28)

This form of D is fundamental for the error dynamics that will follow from this. The error dynamics
can be shown in the same way as in the previous chapter, namely as:

ė(t) = ˆ̇T (t)− Ṫ (t) (4.29)

= (AT̂ (t) +Bṁ(t) +Gnv)− (ATi(t) +Bṁi(t) +Dξ(T, ṁ, t)) (4.30)

= Ae(t) +Gnv −Dξ(T, ṁ, t) (4.31)

this error can once again be split up into e1(t) and ey(t) since the essential system dynamic of the
coordinate transformation remains equal to the linear version. The error can be partitioned again
as e = col(e1, ey) and the derived error can thus be described as

ė1(t) = A11e1(t) +A21ey(t) + Lv − LXξ(T, ṁ, t) (4.32)

ėy(t) = A21e1(t) +A21ey(t)− v +Xξ(T, ṁ, t) (4.33)

due to the design of D = GnX. When ey(t) is driven to zero with a slightly different reachability
condition than for the linear system (shown in equation 4.40), the error dynamics will look like

ė1(t) = A11e1(t) + Lveq − LXξ(T, ṁ, t) (4.34)

0 = A21e1(t)− veq +Xξ(T, ṁ, t) (4.35)

the charm in the design of D = GnX really shows here, as veq can be substituted into ė1(t) by

veq = A21e1(t) +Xξ(T, ṁ, t) (4.36)

ė1(t) = A11e1(t) + Lveq − LXξ(T, ṁ, t) (4.37)

ė1(t) = A11e1(t) + L(A21e1(t) +Xξ(T, ṁ, t))− LXξ(T, ṁ, t) (4.38)

= (A11 + LA21)e1(t) (4.39)
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which is completely independent of the disturbance ξ(T, ṁ, t) due to the coordinate transformation
and design of the disturbance matrix M. However, before L can be designed, the reachability
condition needs to be developed again for the system dynamics with disturbance. This can be
performed the same way as in the previous chapter by designing a candidate Lyapunov function
that must comply to the two conditions 4.2. This will result in

˙ey,iey,i = ey,i

(
A21,ie1 +A22,iey +Xiξ − βsign(ey,i)

)
(4.40)

= ey,i

(
A21,ie1 +A22,iey +Xiξ

)
−β|ey,i|

< −|ey,i| (β − |(A21,ie1 +A22,iey +Xiξ(T, ṁ, t))|)

where the scalar β must also comply to the following constraint in order for the equation to hold:

β > |A21,ie1 +A22,iey +Xiξ(T, ṁ, t)|+ κ (4.41)

where κ ∈ R+.

However, in paragraph 3.4 detailing the error function, it can be seen that the bounded error
function consists of each layer. Therefore, matrix D of the error function ξ(T, ṁ, t) must consist
of an identity matrix, otherwise the output of the disturbance will not affect each layer as it is
supposed to. This takes away the design freedom for matrix L completely and will not result in

D = GnX =

[
L
−Ip

]
X (4.42)

which is fundamental for the design of the observer. This shows that it is not possible to observe the
linear 1-dimensional model of a stratified thermal storage tank when there is noise and parameter
uncertainty present in each layer of the tank.

4.4 Nonlinear system with disturbances
It is still important to check whether the sliding mode could be applied as an observer to the
mathematical model developed in chapter 2, as that model is nonlinear and can be described as

Ṫi = ATi +B(ṁ, T ) +Dξ(T, ṁ, t) (4.43)

y = CT (4.44)

where T ∈ Rn, ṁ ∈ Rm and y ∈ Rp are the state variables, inputs and outputs respectively. And A
∈ Rn×n , D ∈ Rn×q and C ∈ Rp×n. One very important constraint for this system is n > p ≥ q.
This constraint will allow part of the gain L to be designed with a certain freedom later on in
designing the observer. Breaking this constraint would result in zero degree of freedom for the
observer design. This would obviously prevent the design of the whole observer. Therefore, it is
not possible to design a sliding mode observer, either linear or nonlinear, for the 1-dimensional
mathematical model as depicted in this research.

4.5 Realizing a narrowed-down Sliding Mode Observer
In the previous paragraphs, the sliding mode is discussed step for step and it shows that with the
current model, it is impossible to apply the sliding mode method. Within the linear variant with
disturbances, the matrix Gn cannot be designed due to properties of the error function D. For the
nonlinear variant, the dimensions of the error function violate the first constraint. However, it is
possible to avoid these problems by proposing some changes to the error dynamics and corresponding
matrix. The changed error matrix and dynamics would not contain the complete error function,
but only the conduction and the slow buoyancy terms and would look like

ω(T, y) = D

[
0,365α

z2
∗ (T2 − T1) +

1
4

1
20 log(e

0 + e10(T2−T1))

0,365α
z2

∗ (T2 − T3)− 1
4

1
20 log(e

0 + e10(T3−T2))

]
(4.45)
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with matrix D

D =

 1 0
−1 −1
0 1

 (4.46)

which will result in the same output for the conduction slow buoyancy and as in the complete error
function ψ(y, T, ṁ, t) as using the identity matrix due to the interconnection of the terms in each
layer, shown by

ω(T, y) =

 1 0
−1 −1
0 1

[0,365α
z2

∗ (T2 − T1) +
1
80 log(e

0 + e10(T2−T1))

0,365α
z2

∗ (T2 − T3)− 1
80 log(e

0 + e10(T3−T2))

]
(4.47)

=


0,365α

z2
∗ (T2 − T1) +

1
80 log(e

0 + e10(T2−T1))

0,365α
z2

∗ ((T3 − T2)− (T2 − T1)) +
1
80 log

(
e0+e10(T3−T2)

e0+e10(T2−T1)

)
0,365α

z2
∗ (T2 − T3)− 1

80 log(e
0 + e10(T3−T2))

 (4.48)

with this error construction, it is possible to design an observer using the sliding mode, as long
as the regular assumptions for the observer design are met. A large flaw is that the error of the
ambient temperature and the error of the mixing terms cannot be taken into account with this
error structure, as those errors cannot be constructed in a similar manner.

Due to the changes in the error function and corresponding matrix D, it is now more likely that an
observer design might be possible. This could possibly be designed for both a linear as a nonlinear
system. However, the design for a nonlinear system will take more time and knowledge, which is
not possible within the time scope of this research. Therefore, the current system will be linearized
with help of Jacobian Matrices, in order to enable the possibility of simulations further on in this
research. The nonlinear system looks like

dT

dt
=AT +B + C + ϕ+Dω(T, y) (4.49)

=


− a

z2
− Pk

ρcpA
a
z2

0

a
z2

−2 a
z2

− Pk
ρcpA

a
z2

0 a
z2

− a
z2

− Pk
ρcpA



T1

T2

T3

 (4.50)

+


1
20 log(e

0 + e10(T2−T1)

1
20 log(e

0 + e10(T3−T2)− 1
20 log(e

0 + e10(T2−T1)

1
20 log(e

0 + e10(T3−T2)

+


Pk
ρcpA

T∞

Pk
ρcpA

T∞

Pk
ρcpA

T∞

 (4.51)

+


ϕ1,1

zρA +
ϕ2,1

zρA

ϕ1,2

zρA +
ϕ2,2

zρA

ϕ1,3

zρA +
ϕ2,3

zρA

+Dω(T, y) (4.52)

where the nonlinearity’s are in the second matrix, B, where the slow buoyancy is the nonlinearity,
and in the third matrix, ϕch,i, where the mixing term is the nonlinearity. These functions can be
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linearized with a Jacobion Matrix, which would generally look like:

dT

dt
=

(
A+

∂B

∂T

∣∣∣∣∣
T=T̄

+
∂C

∂T

∣∣∣∣∣
T=T̄

)
T +

∂C

∂ṁ

∣∣∣∣∣
T=T̄
ṁ=m̄

ṁ (4.53)

−

∂B
∂T

∣∣∣∣∣
T=T̄

+
∂C

∂T

∣∣∣∣∣
T=T̄
ṁ=m̄

 T̄ − ∂C

∂ṁ

∣∣∣∣∣
T=T̄
ṁ=m̄

m̄+


Pk
ρcpA

T∞
Pk
ρcpA

T∞
Pk
ρcpA

T∞

+Dψ(T, t) (4.54)

which would give matrix A as

A11 +
(
∂B1
∂T1

+ ∂C1
∂T1

) ∣∣∣∣∣
T=T̄

A12 +
(
∂B1
∂T2

+ ∂C1
∂T2

) ∣∣∣∣∣
T=T̄

A13 +
(
∂B1
∂T3

+ ∂C1
∂T3

) ∣∣∣∣∣
T=T̄

A21 +
(
∂B2
∂T1

+ ∂C2
∂T1

) ∣∣∣∣∣
T=T̄

A22 +
(
∂B2
∂T2

+ ∂C2
∂T2

) ∣∣∣∣∣
T=T̄

A23 +
(
∂B2
∂T3

+ ∂C2
∂T3

) ∣∣∣∣∣
T=T̄

A31 +
(
∂B3
∂T1

+ ∂C3
∂T1

) ∣∣∣∣∣
T=T̄

A32 +
(
∂B3
∂T2

+ ∂C3
∂T2

) ∣∣∣∣∣
T=T̄

A33 +
(
∂B3
∂T3

+ ∂C3
∂T3

) ∣∣∣∣∣
T=T̄




T1

T2

T3

 (4.55)

where

∂B1

∂T1
=− e10(T2−T1

2(1 + e10(T2−T1))
,

∂B1

∂T2
=

e10(T2−T1

2(1 + e10(T2−T1))
,

∂B1

∂T3
= 0 (4.56)

∂B2

∂T1
=

e10(T2−T1)

2(1 + e10(T2−T1))
,

∂B2

∂T2
= − e10(T3−T2)

2(1 + e10(T3−T2))
+

e10(T2−T1)

2(1 + e10(T2−T1))

∂B2

∂T3
=

e10(T3−T2)

2(1 + e10(T3−T2))
,

∂B3

∂T1
= 0,

∂B3

∂T2
=

e10(T3−T2)

2(1 + e10(T3−T2))
,

∂B3

∂T3
=− e10(T3−T2)

2(1 + e10(T3−T2))
and

∣∣∣∣∣
T=T̄

∀ ∂Bi

∂Ti

The partial derivatives of Ci with respect to Ti are too large and complex to put completely and
clearly in a matrix, so that will be done only in the simulating part of the model in MATLAB.
The partial derivatives of Ci with respect to ṁ can be seen easily, as ṁ is the same for each layer.
The partial derivative will result in the formulas of 2.12, 2.13, 2.14, 2.15, 2.16 and 2.17, where the
ṁ will replaced with 1 ∀ ∂Ci

∂ṁ . Now the system has been linearized, the most important feature
that needs to be checked, is whether the definition of matrix D, will still allow the design of Gn, or
if that is not possible, whether the error formula (A11 + LA21)e(t) is asymptotically stable. The
formula for D looks like

D = GnX =

[
L
−Ip

]
X (4.57)

for some random, to be designed X ∈ R2×2. Where D is known, so it is possible to check whether
the design matrix Gn can exist. First of all, the matrix D needs to be transformed into the new
coordination system multiplying Tc(4.3) with D:0 1 0

1 0 0
0 0 1

 ∗

 1 0
−1 −1
0 1

 =

−1 1
1 0
0 −1

 (4.58)

19



Now the general formula of GnX can be calculated to check whether it is possible to reach the form
of the transformed matrix D.

GnX =

[
L
−Ip

]
X =

L1 L2

−1 0
0 −1

 ∗
[
x1 x2
x3 x4

]
(4.59)

=

L1x1 + L2x3 L1x2 + L2x4
−x1 −x2
−x3 −x4

 (4.60)

which must be equal to the transformed matrix D (4.58). It shows that there are two zeros on
places [2,2] and [3,1] in matrix D. This means that x2 and x3 must equal zero. Resulting in:L1x1 L2x4

−x1 0
0 −x4

 (4.61)

where entry [2,1] must be 1 and entry [3,2] must be -1, giving x1 = −1 and x4 = 1. Resulting in
values of 1 for both L1 and L2. This would correctly giveL1x1 L2x4

−x1 0
0 −x4

 =

1 ∗ −1 1 ∗ 1
−(−1) 0

0 −(1)

 =

−1 1
1 0
0 −1

 (4.62)

showing that it is possible to design L and X such that it complies with the constraint 4.57. However,
it shows that the total design freedom from the observer gain L is now eliminated, as L1 and L2

must now equal 1 for the constraint and thereby, the observer to hold. Since the design freedom for
L is now zero, the most important aspect is to check whether this holds

ė1(t) = (A11 + LA22)e(t) < 0 (4.63)

meaning that the error is asymptotically stable. This can be explored by transforming matrix A
and looking at the value of the error. This is shown as

TcAT
−1
C =

0 1 0
1 0 0
0 0 1



− a

z2
− Pk

ρcpA
a
z2

0

a
z2

−2 a
z2

− Pk
ρcpA

a
z2

0 a
z2

− a
z2

− Pk
ρcpA


0 1 0
1 0 0
0 0 1

 (4.64)

=

−2 a
z2

− Pk
ρcpA

a
z2

a
z2

a
z2

− a
z2

− Pk
ρcpA

0
a
z2

0 − a
z2

− Pk
ρcpA

 (4.65)

where it can be seen that

A11 = −2
a

z2
− Pk

ρcpA
and A21 =

[
a
z2
a
z2

]
(4.66)

resulting in the error function

ė1(t) =(A11 + LA22)e(t) (4.67)

=

(
−2

a

z2
− Pk

ρcpA
+
[
1 1

] [ a
z2
a
z2

])
e(t) (4.68)

=

(
−2

a

z2
− Pk

ρcpA
+ 2

a

z2

)
e(t) (4.69)

=− Pk

ρcpA
e(t) (4.70)
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which is strictly negative, because each individual parameter must be positive. This shows, that
for the current model with three layers it is possible to observer the middle state as the error will
converge to zero. The model can now be simulated in MATLAB and Simulink by implementing
both the mathematical system as the observer. The simulations and results will be discussed in the
next chapter.
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5 Simulations and Results
A number of simulations were performed in MATLAB and Simulink. The values for some parameters
need to be determined. The ρ, cp, and α have already been established in Chapter 3 and Appendix
B. So the parameters that need to be established are P, k, A, z and T∞. The area, perimeter and
height per layer can be deducted from the capacity of the tank. In this research, we will consider a
tank of 1000 m3 with a height of 15 m. This can give z=5m, A=66,7m, and P=13,7m. Since most
thermal storage tanks are placed underground, it is realistic to take the soil temperature for T∞
which is 11 ◦C average in the Netherlands according to [10]. The thermal conductivity of isolation
walls usually is between 0,02-0,04 W/m◦C ([KIs]), so an average of 0,03 W/m◦C is taken. If the
tank were to be charged in 4 hours, the ṁ should be approximately 68 kg/s for initial temperatures
of T1=25 ◦C, T2=20 and T3=15 ◦C assuming that0 80 ◦C represents a full charge. Furthermore,
the discharge temperature will be 50 ◦C. The complete Simulink layout and the MATLAB code
can be found in Appendix C.

For the normal values, the observer does converge to zero without disturbances. However, it takes
incredibly long. This happens because the error function is negative but minuscule, as shown by

−
(
Pk

ρcpA

)
e(t) = − 13, 7 ∗ 0, 03

988, 04 ∗ 4026 ∗ 66, 7
e(t) = −1, 55 ∗ 10−9e(t) (5.1)

which shows that the observer cannot be used for commercial or applicable academic purposes, as
the error will never converge to zero quickly. It will take approximately a month for the error to
reduce by 0,5 ◦C. However, it is still possible to check whether the observer would work for fictional
numbers for a contribution to the academic field.

Defining the inflow and outflow to be zero, β=100 and all other parameter to be equal to 1. The
initial temperature conditions are T1=80◦C, T2=70◦C, and T3=60◦C, and the initial values for
T̂ are 0,9Ti. The linearization is taken at T̄1 = 40◦C, T̄2 = 30◦C and T̄3 = 20◦C. These values
are chosen due to the behavior of the normal system; when ṁ = 1 is applied, the normal system
reaches exactly these values of T during charging, showing that these are proper values for T̄ . This
gives a convergence of the error in a couple of seconds, shown in figure 4. Here, layer 2 needs to be
reconstructed by the observer, and it shows that the reaching mode takes approximately 1/10th of
a second, and then it reaches the sliding mode, where the error of the state converges to zero in
approximately 5 seconds. The total simulation time is 10 seconds. Figure 4 shows that the Sliding
Mode Observer does work very well for fictional parameters with no charging or perturbations.

Now, a simulation with charging and discharging of the tank can be considered to see whether this
will give accurate results as well. All the conditions will remain the same, except for the ṁ1 and
Tsupply = 80◦C. There will be charging of the tank between t=20 and t=40, with ṁ1 = 1kg/s. This
will result in figure 5. The figure depicts that the error dynamics, until the charging starts, look
the same as in figure 4. However, at t=20, when the charging starts, it can be seen that an error
occurs, and the observer moves into the reaching mode for shorter than a second and then reaches
the sliding mode. The sliding mode takes approximately 3 seconds before the error converges to
zero. The total simulation time is 40 seconds. This figure shows that the observer also works for
fictional parameters during charging without disturbance.

The subsequent simulations include the error dynamics, Dω(T, y), in the simulations. This will
check whether the Sliding Mode Observer works with perturbations in the system. All the other
parameters remain the same, just as the ṁ1. The results are shown in figure 6. The plot shows that
the error dynamics remain almost the same, as no changes can be seen without zooming. The total
simulation time is 40 seconds. This shows that the sliding mode observer can indeed reconstruct
the unknown state (T2) while the system has parameter uncertainty and measurement noise for
these parameters and charging circumstances.
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Figure 4: Observer error without disturbance or flow

Figure 5: Observer error with charging between 20 ≤ t ≤ 40

Now that these results are shown, it is important to check whether adding a discharging phase is
possible. This can be added after the charging phase. The following conditions are added: ṁ = 0
for 0 < t < 20 ∧ 30 < t ≤ 40 ∧ t > 50, ṁ = 1 for 20 ≤ t ≤ 30 and ṁ = −1 for 40 ≤ t ≤ 50, where
Tdischarge = 50◦C. The total simulation time is 70 seconds. Figure 7 shows that that the error
dynamics behave just like the previous plots until 30 seconds. However, a negative error forms when
the charging stops at 30 seconds. When the discharging starts at 40 seconds, the error increases,
and after the discharging has stopped, an even bigger negative error forms. This could happen due
to two things, firstly since the linearization values for T̄ , that is still at T̄1 = 40◦C, T̄2 = 30◦C and
T̄3 = 20◦C only work for a close region of T to the linearization values. The linearization could
causes problems for the observer, when there are charging and discharging periods in the same
simulation, because the values for T̄ are only appropriate around the region the values are chosen
and since the Tcharge and Tdischarge have different outcomes for the real system, it might be possible
that the error will not converge because of this. The second possibility is that the discharging
temperature Tdischarging = 50◦C, is hotter than the temperature in the tank. This causes problems
for the observer.

In figure 8, the linearization values for T̄ have been lowered to 11 ◦C for each T̄ . All other parameters
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Figure 6: Observer error with charging between 20 ≤ t ≤ 40 and added error dynamics Dω

Figure 7: Observer error with charging between 20 ≤ t ≤ 30 and discharging between 40 ≤ t ≤ 50 and added
error dynamics Dω

remain the same, just like the charging and discharging between 20 and 30 seconds and 40 and 50
seconds respectively. This figure 8 shows that there is still an error during the discharging. However,
after the discharging ends, it will converge back to zero. Setting the linearization values at T∞
allows this. In figure 9, all the parameters have the same values as in figure 7, only the Tdischarge is
lowered to 5◦C. This figure shows that the error does not converge but remains negative after the
discharging stops. Figures 8 and 9 do not exactly show what the cause is. However, it does show
that the values for T̄ are important for the convergence after the discharging stops.
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Figure 8: Observer error with charging between 20 ≤ t ≤ 30, discharging between 40 ≤ t ≤ 50, added error
dynamics Dω and T̄ = 11◦C

Figure 9: Observer error with charging between 20 ≤ t ≤ 30, discharging between 40 ≤ t ≤ 50, added error
dynamics Dω and Tdischarge = 5◦C
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6 Conclusion
In this research, a 1-dimensional mathematical model for a stratified thermal storage tank is derived
from literature. This model is discretized through space to transform it into an ODE. Furthermore,
the effects of slow buoyancy and mixing are explained thoroughly and are added to the basic
mathematical model. The final mathematical model is detailed enough and explained well enough
to be used for observation methods such as the Sliding Mode. For this model, multiple different
designs of Sliding Mode Observers are reviewed to check whether they would fit the model and get
results. First, a linear sliding mode observer without disturbances is explained in small steps to give
a broader proficiency on how the sliding mode generally operates. It was verified that under model
linearization it can be implemented into the system model. Secondly, a sliding mode observer with
disturbances is explained, which cannot be applied to the model since the disturbance matrix did not
satisfy a fundamental matching condition needed for the implementation of the observer. Thirdly, a
sliding mode observer for a nonlinear system with disturbances is briefly discussed, and the model
did also not met the matching condition. This shows that it is impossible to use a Sliding Mode
based observer design as discussed in chapter 3 in the book from [30], when we consider at once all
the disturbances that our model can be subjected to. There is a change possible in the disturbance
and the matrix D for the disturbance, to enable the design of an observer for both a linear as
a nonlinear system. This would not include the complete disturbance, so it is not applicable to
real-life applications. However, the simulations of that linear observer with disturbances show that
the error converges, even though it takes years, which is too long for any commercial or academic
purpose. It takes so long to converge, because the design freedom of the observer gain is eliminated
by the altered design of the disturbance matrix. When applying fictional numbers to the observer to
increase the convergence time, the error does converge in a very short time. It also converges with
perturbations and while charging. However, when adding a discharging phase, the simulations show
that the error does not converge during the discharging, only after discharging stops. The proof
that it is impossible to design an adequate Sliding Mode Observer for the complete mathematical
model using the observer design from the book [30] answers the research question.
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7 Discussion
This research focused on reviewing the possibilities for an observer design using the sliding mode
control technique. First, the mathematical model was deducted and included and thoroughly
explained the terms for slow buoyancy and mixing. This mathematical model can be used in
future research. Secondly, the bounded disturbance function that is required for a Sliding Mode
Observer Design and other kinds of state estimation strategies has been entirely derived from
literature. This disturbance function can be used in further research within the sliding mode, or for
other types of SES that need a bounded disturbance function; besides this, the parameter error or
measurement noise for a parameter can individually be used in future research as well. Then, the
first possible sliding mode observer is reviewed. This is for a linear system without disturbance,
and the thorough explanation shows that this applies to the derived mathematical model. Future
research could empirically analyze whether such an observer would work if it were to be applied to a
real stratified thermal storage tank. A Sliding Mode Observer for a linear system with disturbances
needs total design freedom for the disturbance matrix. This research contributes to the academic
field by proving that such an observer cannot be designed for the 1-dimensional mathematical model.
Lastly, a sliding mode observer for a nonlinear system with perturbations is reviewed. This research
contributes to the scientific field by proving that the mathematical model cannot comply with this
observer’s constraints. The non-cooperating constraints can be avoided by designing smaller and
less complete disturbance dynamics with corresponding matrix. By doing this, an observer can be
designed. The limitations of this design are the linearization of the mathematical model and the
evaluation of T̄ . This research proves that the observer converges for the correct evaluation values
of T̄ with an disturbance and during constant charging.

Further research could look into designing a nonlinear sliding mode observer for the smaller
disturbance dynamics and corresponding matrix. Future research could also look into more modern
sliding mode observers with different designs, as there are other possible designs using the sliding
mode technique. In this research, there are several working assumptions and simplifications. Such
that the model only has three layers, and the volume remains constant. If a sufficient sliding mode
observer were to be designed, these working assumptions should be examined to see whether they
significantly impact the observer’s dynamics. Besides this, the mathematical model is 1-dimensional,
while a real stratified thermal storage tank can only be described entirely by a 3-dimensional model.
For optimization methods, a 1-dimensional model often satisfies. However, for further research, it
could be possible to look at a more complicated model, which could possibly avoid the constraints
for a sliding mode observer design. The computational time could be an issue for a 3-dimensional
mode and should be considered wisely. Another point of further research could be to look into
the design of the disturbance function. The changes made to reduce and simplify the disturbance
dynamics and corresponding matrix in this research do not suffice for real-life applications. Further
research could look into the design of the bounded disturbance function and ways to avoid the
constraint of the size of the disturbance matrix. Lastly, reviewing other state estimation strategies
is also something to consider for estimating the temperature profile of a stratified thermal storage
tank in future research.
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A Tables
Temperature in ◦C Density in kg/m3 Deviation in % Absolute Deviation in kg/m3

0,1 999,85 1,18 11,81

10 999,7 1,17 11,66

15 999,1 1,11 11,06

20 998,21 1,02 10,17

25 997,05 0,90 9,01

30 995,65 0,76 7,61

35 994,03 0,60 5,99

40 992,22 0,42 4,18

45 990,21 0,22 2,17

50 988,04 0,00 0

55 985,69 0,24 2,35

60 983,2 0,49 4,84

65 980,55 0,76 7,49

70 977,76 1,05 10,28

75 974,84 1,35 13,2

80 971,79 1,67 16,25

85 968,61 2,01 19,43

90 965,31 2,35 22,73

95 961,89 2,72 26,15

100 958,35 3,10 29,69

Table 1: Deviation for temperature differences when ρ is constant at ρ = 988, 04kg/m3

Temperature Specific Heat Capacity Deviation in % Absolute Deviation in
in ◦C in kJ/kg ∗ T kJ/kg ∗ T
0,01 4,217 4,53 0,191

10 4,191 3,93 0,165

20 4,157 3,14 0,131

30 4,118 2,21 0,091

40 4,074 1,16 0,047

50 4,026 0,00 0,000

60 3,977 1,25 0,050

70 3,925 2,58 0,101

80 3,873 3,96 0,153

90 3,820 5,39 0,206

100 3,768 6,85 0,258

Table 2: Deviation for temperature differences when cp is constant at cp = 4, 026
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Temperature Fluid Diffusivity Deviation in % Absolute Deviation in
in ◦C in 10−6 m2/s 10−6 m2/s

0 0,132 17,42 0,023

5 0,135 14,81 0,02

10 0,138 12,32 0,017

20 0,143 8,39 0,012

25 0,146 5,81 0,009

30 0,148 4,52 0,007

50 0,155 0,00 0

75 0,162 4,32 0,007

100 0,168 7,74 0,013

Table 3: Deviation for temperature differences when α is constant at α = 0, 155
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B Lyapunov Stability
Consider the following autonomous system

ẋ(t) = f(t, x) x ∈ Rn (B.1)

An equilibrium point for the equation is given as

f(x0, t) = 0 ∀ t > 0 (B.2)

there may be much more x0 that satisfy this condition. However, for analyzing stability properties,
it is useful to assume that the equilibrium lies at the origin x ∈ Rn. There is no loss of generality,
since any equilibrium point can be shifted to the origin through a change of variable x→ x̄ where
x̄ = x− x0 implies the origin is an equilibrium point of

¯̇x(t) = f(t, x̄) x̄ ∈ Rn, so f(x0, t) = 0 = f(t, x̄ = 0) (B.3)

showing that the assumption for a equilibrium point in the origin does not result in loss of generality.

Definition 1. The equilibrium point of B.2, x=0 is stable if for each ϵ >0, there is a δ = δ(ϵ) > 0,
such that

for||x(0)|| < δthere is||x(t)|| < ϵ, ∀ t ≥ 0 (B.4)

Meaning that starting close enough to the equilibrium point, the solution will always remain close
to it. The solution is unstable if it is not stable and it is asymptotically stable if it is stable and δ
can be chosen such that

for||x(0)|| < δthere is lim
t→∞

x(t) = 0 (B.5)

Meaning that by starting close to the equilibrium point, it will always remain close and in addition,
it will move towards the equilibrium point.

Theorem 1. Let x=0 be an equilibrium point for B.1 and let D ⊂ Rn be a domain containing
x=0. Let V : D → R be an ODE such that

V (0) = 0 and V (x) > 0 in D\{0} (B.6)

where

V̇ (x) =
∂V

∂t
+
∂V

∂x
f(t, x) ≤ 0 in D (B.7)

then x=0 is stable. Furthermore, if
V̇ (x) < 0 in D (B.8)

then x=0 is asymptotically stable. As this only contains a domain D in all real numbers, this does
not prove global asymptotic stability. There are two more constraints for global asymptotic stability.
The first one is very intuitive, namely the conditions of Theorem 1 must hold for D = Rn. The
other constraint that must hold is

||x|| → ∞ =⇒ V (x) → ∞ (B.9)

If a function V complies to these constraints, it is called a radially unbounded funnction.
Theorem 2. Conside the system B.1. If this function is radially unbounded, positive definite and
differentiable V : R× Rn → R

V̇ (x) =
∂V

∂t
+
∂V

∂x
f(t, x) ≤ 0 in D (B.10)

then the is global stable. Furthermore, if

V̇ (x) < 0 for x ̸= 0 (B.11)

then the origin is asymptotically stable. This appendix uses both the appendix D of [30] and chapter
4.1 from [14] to explain the Lyapunov Stability for local and global situations.
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C Matlab and Simulink Model
This appendix shows the MATLAB model in which the parameters and initial values are defined,
and where the linearization is performed. Furthermore it contains the Simulink file with the content
of each block.

The MATLAB data:

1
2 clear all

3
4
5 %%% Numerical values of some parameters

6 alpha =1;

7 rho =1;

8 A=1;

9 dz=1;

10 cp=1;

11 P=1;

12 k=1;

13 Beta =100;

14
15 %%% Values of the ambient temperature , charging temperature and the

16 %%% discharging temperature

17 T_amb =11;

18 T_sup =80;

19 T_ret =5;

20 K_mdot =5;

21
22
23 %%% Specification of the initial conditions

24 T0 =[80;70;60];

25 T_hat0 =0.9*T0;

26 mdot_0 =0;

27
28 %%% Linearization of lambda , by defining the jacobian matrix

29
30 %%% Defining the values of T and T_hat as real , so they can be used

in the

31 %%% linearization

32 syms T1 real

33 syms T2 real

34 syms T3 real

35
36 syms T_hat1 real

37 syms T_hat2 real

38 syms T_hat3 real

39
40 syms mdot real

41
42
43 %%% The values for which the Temperature will be evaluated , this is

\bar{T}

44 %%% in the report
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45 T1nom =11;

46 T2nom =11;

47 T3nom =11;

48
49 %%% The values for which the mass flow will be evaluated , this is \

bar{\dot{m}}

50 %%% in the report

51 mdotnom =1;

52
53
54 %%% Linearzing Lambda

55 LAMBDA =@(T1 ,T2 ,T3)[(1/20)*log (1+ exp (10*(T2 -T1)));

56 -(1/20)*log(1+exp (10*(T2-T1)))+(1/20)*log (1+ exp (10*(T3-T2)));

57 -(1/20)*log(1+exp (10*(T3-T2)))];

58
59
60 JAC_LAMBDA=jacobian(LAMBDA(T1,T2,T3) ,[T1,T2,T3]);

61
62 JAC_LAMBDA_EVAL=matlabFunction(JAC_LAMBDA);

63
64 %%% Defining the output of Lambda , so it can be used in the

Simulink block

65 %%% for the observer

66 lambda_nom=LAMBDA(T1nom ,T2nom ,T3nom);

67 jac_lambda_nom=JAC_LAMBDA_EVAL(T1nom ,T2nom ,T3nom);

68
69
70 %%% Linearzing the convection for the charging

71 CONV_CHARGING =@(T1,T2,T3,mdot)[(1/( dz*rho*A))*(mdot*(T_sup -T1));

72 (1/(dz*rho*A))*(mdot*(T1 -T2));

73 (1/(dz*rho*A))*(mdot*(T2 -T3))];

74
75 %%% Defining and evaluating the Jacobian Matrix with respect to T

for charging

76 JAC_CONV_T_CHARGING=jacobian(CONV_CHARGING(T1 ,T2 ,T3 ,mdot),[T1 ,T2 ,T3

]);

77
78 JAC_CONV_T_EVAL_CHARGING=matlabFunction(JAC_CONV_T_CHARGING);

79
80 %%% Defining and evaluating the Jacobian Matrix with respect to Mdot

for charging

81 JAC_CONV_mdot_CHARGING=jacobian(CONV_CHARGING(T1,T2,T3,mdot),mdot);

82
83 JAC_CONV_mdot_EVAL_CHARGING=matlabFunction(JAC_CONV_mdot_CHARGING);

84
85 %%% Defining the values for the Jacobian for the charging , so it

can be implemented in the

86 %%% observer

87 conv_nom=CONV_CHARGING(T1nom ,T2nom ,T3nom ,mdotnom);

88
89 jac_conv_T=JAC_CONV_T_EVAL_CHARGING(mdotnom);
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90
91 jac_conv_mdot=JAC_CONV_mdot_EVAL_CHARGING(T1nom ,T2nom ,T3nom);

92
93
94 %%% Linearzing the convection for the discharging

95 CONV_DISCHARGING =@(T1 ,T2 ,T3 ,mdot)[(1/(dz*rho*A))*(mdot)*(T2 -T1);

96 (1/(dz*rho*A)*(mdot)*(T3 -T2));

97 (1/(dz*rho*A)*(mdot)*(T_ret -T3))];

98
99 %Defining and evaluating the Jacobian Matrix with respect to T for

discharging

100 JAC_CONV_T_DISCHARGING=jacobian(CONV_DISCHARGING(T1,T2,T3,mdot) ,[T1

,T2 ,T3]);

101
102 JAC_CONV_T_EVAL_DISCHARGING=matlabFunction(JAC_CONV_T_DISCHARGING);

103
104 %Defining and evaluating the Jacobian Matrix with respect to Mdot

for discharging

105 JAC_CONV_mdot_DISCHARGING=jacobian(CONV_DISCHARGING(T1 ,T2 ,T3 ,mdot),

mdot);

106
107 JAC_CONV_mdot_EVAL_DISCHARGING=matlabFunction(

JAC_CONV_mdot_DISCHARGING);

108
109 %%% Defining the values for the Jacobian for the discharging , so it

can be implemented in the

110 %%% observer

111 conv_dis_nom=CONV_DISCHARGING(T1nom ,T2nom ,T3nom ,mdotnom);

112
113 jac_conv_dis_T=JAC_CONV_T_EVAL_DISCHARGING(mdotnom);

114
115 jac_conv_dis_mdot=JAC_CONV_mdot_EVAL_DISCHARGING(T1nom ,T2nom ,T3nom)

;

The Simulink setup:

Figure 10: Simulink setup
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The data from the left block of figure 10

1 function mdot_dot = fcn(mdot ,t,K_mdot)

2 %%%This functions describes the charging and discharging of the

system

3 %%%using an integrator to simulate a more real -life applications

4
5
6 %%% Refers to the different charging and discharging modes that mdot

might

7 %%%have , 1=nothing , 2=charging , 3= discharging

8 mdot_ref1 =0;

9
10 mdot_ref2 =1;

11
12 mdot_ref3 =-1;

13
14 %%% States between which seconds , charging , discharging or nothing

happens

15 mdot_star =(0<=t)*(t<20)*( mdot_ref1)+(t>=20) *(t<=30)*mdot_ref2 +(t

>30)*(t <=40)*mdot_ref1 +(t>40)*(t <=50)*mdot_ref3;

16
17
18 %%% The integrator

19 mdot_dot = -K_mdot *(mdot -mdot_star);

The data from the higher middle block of figure 10

1 function [T_dot ,y] = fcn(T,mdot ,rho , A, dz, T_amb , cp, P, k,T_ret ,

T_sup ,alpha)

2 %%% This function describes the temperature of the "plant"

3
4 %%% Temperature dynamics of the layer

5 T1=T(1);

6 T2=T(2);

7 T3=T(3);

8
9 %%% Layer 1

10 conv1 =(1/( dz*rho*A))*((mdot >=0)*abs(mdot)*(T_sup -T1)+(mdot <0)*abs(

mdot)*(T2 -T1));

11 lam1 =(1/20)*log (1+ exp (10*(T2 -T1)));

12 T_dot1 =( alpha/dz)*(T2 -T1)+((P*k)/(rho*cp*A))*(T_amb -T1)+conv1+lam1;

13
14 %%% Layer 2

15 conv2 =(1/( dz*rho*A))*((mdot >=0)*abs(mdot)*(T1-T2)+(mdot <0)*abs(mdot

)*(T3 -T2));

16 lam2 = -(1/20)*log (1+ exp (10*(T2 -T1)))+(1/20)*log (1+ exp (10*(T3 -T2)));

17 T_dot2 =( alpha/dz)*(T1+T3 -2*T2)+((P*k)/(rho*cp*A))*(T_amb -T2)+conv2+

lam2;

18
19
20 %%% Layer 3
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21 conv3 =(1/( dz*rho*A))*((mdot >=0)*abs(mdot)*(T2-T3)+(mdot <0)*abs(mdot

)*(T_ret -T3));

22 lam3 = -(1/20)*log (1+ exp (10*(T3 -T2)));

23 T_dot3 =( alpha/dz)*(T2 -T3)+((P*k)/(rho*cp*A))*(T_amb -T3)+conv3+lam3;

24
25
26
27 T_dot = [T_dot1;T_dot2;T_dot3 ];

28
29 %%% Temperature for reference for the observer

30 y=[T1;T3];

The data from the lower right block of figure 10

1 function T_hat_dot = fcn(T_hat ,y,mdot ,dz, rho , A, alpha , P, k,

T_amb , Beta ,cp ,jac_lambda_nom , lambda_nom , T3nom , T2nom , T1nom ,

mdotnom , jac_conv_mdot , jac_conv_T , conv_nom ,conv_dis_nom ,

jac_conv_dis_T , jac_conv_dis_mdot)

2
3 %%% Defining the temperature estimates

4 T_hat1 = T_hat (1);

5 T_hat2 = T_hat (2);

6 T_hat3 = T_hat (3);

7
8 %%% Defining the error in alpha as described in the report

9 alpha = 1.365* alpha;

10
11 %%% Defining y_hat so it can be fed into the temperature estimates

as e_y

12 y_hat =[ T_hat1;T_hat3 ];

13
14 e_y = y_hat -y;

15
16
17 %%% Feedback for the observer

18 T_c =[0 ,1,0;1 ,0,0;0,0,1];

19
20 Gn=[1,1;-1,0;0,-1];

21
22 v=Beta*[sign(e_y(1));sign(e_y(2))];

23
24 %%% Description of the temperature of each layer

25
26 %%% Layer 1

27 f1=( alpha/dz)*(T_hat2 -T_hat1)+((P*k)/(rho*cp*A))*(T_amb -T_hat1);

28
29 %%% Layer 2

30 f2=( alpha/dz)*( T_hat1+T_hat3 -2* T_hat2)+((P*k)/(rho*cp*A))*(T_amb -

T_hat2);

31
32
33 %%%Layer 3
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34 f3=( alpha/dz)*(T_hat2 -T_hat3)+((P*k)/(rho*cp*A))*(T_amb -T_hat3);

35
36 %%% Describing the jacobian matrices for lambda , the convection when

37 %%% charging and the convection when discharging.

38 lambda_linearized=lambda_nom+jac_lambda_nom *(T_hat -[T1nom;T2nom;

T3nom ]);

39
40 conv_linearized=conv_nom+jac_conv_T *(T_hat -[T1nom;T2nom;T3nom ])+

jac_conv_mdot *(mdot -mdotnom);

41
42 conv_disc_linearized=conv_dis_nom+jac_conv_dis_T *(T_hat -[ T1nom;

T2nom;T3nom ])+jac_conv_dis_mdot *(mdot -mdotnom);

43
44 %%% Describes the final temperature estimates. The discontinuous

signal is

45 %%% inversed so it transfers back to the normal coordinate system.

46 %%% Furthermore it adds the errr in lambda and adds the linearized

values

47 %%% for lambda , charging and discharging

48 T_hat_dot = [f1;f2;f3]+(eye(3)/T_c)*Gn*v+1.25* lambda_linearized +(

mdot >0)*conv_linearized +(mdot <0)*conv_disc_linearized;
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