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Abstract

We find prime numbers p so that the elliptic surface defined by the equation

y2 = x3 + t360 + 1

has Mordell-Weil rank 68 over Fp. Moreover, we show that, up to finite index, these generating
sections are obtained from a reduction modulo p of the characteristic zero case. Furthermore,
using both the Tate conjecture for abelian varieties over finite fields and the theory of
Fq2-maximal curves, where q is a prime power, we prove that the family of elliptic surfaces
over Fp defined by the equation y2 = x3 + tp+1 + 1 has Mordell-Weil rank p− 1.

Keywords— Elliptic Curves, Elliptic Surfaces, Mordell-Weil Rank, Zeta Functions, Finite Fields
and Maximal Curves.

2



Contents

1 Introduction 4

2 Preliminaries 4
2.1 Some Algebraic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Jacobian Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Algebraic Surfaces and Their Intersection Theory . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Elliptic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 The Zeta Function of a Variety Over a Finite Field . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Chebotarev’s Density Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 The Set-Up 21

4 A Toy Example 23

5 Methods for Finding (Bounds on) Ranks 24
5.1 Morphisms and Rational Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Morphisms and Rational Points on Certain Curves . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Vector Space Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Shioda’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Primes Congruent to 1 Modulo 6 30
6.1 Finding Prime Numbers That Give High Rank . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 List of Polynomials That Need a Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Primes Congruent to −1 Modulo 6 36
7.1 Integral Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2 Zeta Functions and Maximal Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 Discussion & Further Developments 42

A A Basis of Regular 1-Forms on a Certain Curve 44

B Towards the Rank Of E360(Q(t)) 45

C Magma Code 46

D MatLab Code 57

3



1 Introduction

Elliptic curves remain a fascinating topic in mathematics. In this thesis we have gathered several methods
on finding ranks and rank bounds of elliptic curves over function fields of the form k(t), where k is a
finite field.

Before we continue suppose that k = k̄ ⊃ Q is an algebraically closed field. It is the Mordell-Weil-
Néron-Lang theorem [15] that asserts that the group of k(t)-rational points on a nonconstant elliptic
curve E/k(t) is finitely generated. If the j-invariant of E lies in the base field k, then the current rank
record is due to Shioda [24] on the curve

E360 : y
2 = x3 + t360 + 1, (1.1)

which has rank 68 over k(t). If we restrict to nonconstant j-invariant, the current rank record is 56 found
independently by Stiller [28] on the curve

E : y2 = 4x3 − 27t−2520x− 27t−2520 (1.2)

and by Shioda [23] on the curve
E : y2 = x3 + t844x+ t6. (1.3)

A quick investigation shows that the latter two examples are in fact one and the same. Indeed, the
elliptic surfaces that these two curves define are k-isogenous (see [9, Def. 1.1.11]) to the elliptic Delsarte
surface defined by

y2 = x3 + t840x+ 1. (1.4)

The elliptic curve E360 is also defined over Q(t), and we will show that the rank over Q(t) is at most 34.
However, going back to k = k̄ ⊃ Q and following ideas from [3], we will see that 60 of these independent
points are obtained via base changes from rational elliptic surfaces. The remaining 8 are obtained
from a base change of an elliptic K3 surface. Furthermore, there exist a finite field extension Q ⊂ Q(α)
of smallest degree so that we attain rank 68 over Q(α, t), but finding this field extension is a nontrivial task.

A lot more about elliptic curves over function fields of the form Fpn(t) is known. For example the
Birch and Swinnerton-Dyer (BSD) conjecture is known for E360/Fp(t) whenever the prime p > 3 (see [33,
Theorem 12.2]). Moreover, in certain isotrivial cases it is possible to compute the rank of the Mordell-Weil
group over Fp(t) via zeta functions of curves over finite fields.

Instead of finding a field extension of Q over which we attain rank 68 we try to find a prime number
p so that all the 68 generating sections on the elliptic surface corresponding to E360 in characteristic
zero exist and remain independent over Fp after a reduction modulo p. Due to Chebotarev’s density
theorem there are infinitely many primes that yield rank 68 for the Mordell-Weil group E360(Fp(t)). From
the fact that the Néron-Severi group behaves well under reduction modulo primes p of good reduction
([34, Proposition 2.6.2]) we obtain that these sections are, up to finite index, in fact obtained from a
reduction modulo p of the characteristic zero case. In particular, once we have found a prime p so that
rankE360(Fp(t)) = rankE360(F̄p(t)) = 68 we know that all the sections in characteristic zero will exist
and remain independent over Fp after a reduction modulo p.

The text is organized as follows. First there is a preliminary section to familiarize the reader with
notation and common notions in this area of mathematics. Thereafter, we discuss the main methods
used to obtain prime numbers for which the elliptic curve E360/Fp(t) has high rank. In the last two
sections the main results are discussed. We first look at primes p ≡ 1 mod 6 and show that for the
primes p = 44460001, p = 96614641, p = 133773121, p = 177452641 and p = 206869681 we obtain rank
68. Lastly we look at primes p ≡ 5 mod 6 and show, using maximal curves, that the elliptic curve
y2 = x3 + tp+1 + 1 has rank p− 1 over Fp(t).

2 Preliminaries

We assume throughout this thesis that the reader is familiar with the basics of both algebraic geometry
and algebraic number theory. Topics include schemes, sheaves and their cohomology, and splitting
behaviour of primes in number fields. Section I, II and III of [8] and Section I of [14] should suffice.
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Moreover, a solid understanding of the theory of elliptic curves such as treated in [25] is assumed. We
start by introducing the proper notions and definitions needed.

Let n ≥ 0 be an integer. Throughout this thesis we write

En : y
2 = x3 + tn + 1 (2.1)

for an elliptic curve over k(t), where k is a field of characteristic not 2 nor 3.

2.1 Some Algebraic Geometry

Let k be a perfect field, fix an algebraic closure k̄ and write Gk̄/k for the absolute Galois group of k.

Definition 2.1.1. An affine algebraic curve C over k is a 1-dimensional affine variety defined over k.

Definition 2.1.2. A projective algebraic curve C over k is a 1-dimensional projective variety defined
over k.

Important is that for any affine algebraic curve there always exists a unique smooth projective model.
I.e. whenever C/k is an affine algebraic curve, there exists a smooth projective algebraic curve C̃/k which
has the same function field as the affine curve. One way to obtain this is via repeated blow-ups or via a
gluing process of affine charts. Fulton’s notes [7] are an excellent resource for this material.

Example 2.1.3. Let k = Fq = Fpr be a finite field not of characteristic 2 nor 3, then we have an affine
algebraic curve

C : s6 = tn + 1

defined over k for any n ∈ Z>0. This is a nonsingular affine curve whenever p ∤ n. In general, projectivizing
this in the naive way (taking the projective closure in P2) yields a singular projective curve. We illustrate
a way to create a smooth projective model for n = 6l with l an integer. In this case we have the curve

C : s6 = t6l + 1

over the field k = Fpr . Consider a copy of C given by D : y6 = x6l +1. We obtain a smooth projective (cf.

[17, Section IIIa.1]) curve C̃ via the gluing maps t = 1/x and s = y/xl. Moreover, the curve obtained has
the same function field as C/k so it is the unique smooth model.

From now on when we say C/k is a curve we always mean the smooth projective model of C unless
stated otherwise.

Definition 2.1.4. Let V1, V2 ⊂ Pn be projective varieties over k̄. A rational map from V1 to V2 is a
map of the form

f : V1 → V2, ϕ = [f0, . . . , fn]

where the functions f0, . . . , fn ∈ k̄(V1) have the property that for every point P ∈ V1 at which f0, . . . , fn
are all defined, ϕ(P ) = [f0(P ), . . . , fn(P )] ∈ V2.

If V1 and V2 are defined over k, then the absolute Galois group Gk̄/k acts on ϕ in the obvious way:

ϕσ(P ) = [fσ0 (P ), . . . , f
σ
n (P )].

We say ϕ is defined over k if ϕ = ϕσ for all σ ∈ Gk̄/k.

Definition 2.1.5. Keep the notation as above. A rational map

ϕ = [f0, . . . , fn] : V1 → V2

is regular (or defined) at P ∈ V1 if there is a function g ∈ k̄(V1) such that

(i) each gfi is regular at P ;

(ii) there is some i for which (gfi)(P ) ̸= 0.

The most important result we have for curves is the following.
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Proposition 2.1.6. Let C be a curve and V ⊂ Pn a variety both defined over k̄. Let P ∈ C be a smooth
point, and let ϕ : C → V be a rational map. Then ϕ is regular at P . In particular, if C is smooth, then ϕ
is a morphism (of algebraic varieties).

Proof. See [25, Section II.2, Proposition 2.1].

From now on we will just say curve/variety instead of curve/variety over k̄. If we work over a not
algebraically closed field k it will be stated explicitly.

Definition 2.1.7. Let f : V1 → V2 ⊂ Pn be a rational map of projective varieties. We say f is dominant
if it has dense image.

Definition 2.1.8. We say a projective variety V1 covers V2 if there exists a dominant rational map from
V1 → V2.

The following is a well-known result about morphisms of curves.

Theorem 2.1.9. Let f : C1 → C2 be a morphism between algebraic curves. Then f is constant or
surjective.

Proof. See [8, Section II, Proposition 6.8].

Definition 2.1.10. Let ϕ : C1 → C2 be a morphism of curves defined over k. If ϕ is constant, we define
the degree of ϕ to be 0. Otherwise we say that ϕ is a finite map and we define its degree to be

deg(ϕ) = [k(C1) : ϕ
∗(k(C2))],

where ϕ∗ denotes pullback. We say that ϕ is separable, inseparable, or purely inseparable if the field
extension k(C1)/ϕ

∗(k(C2)) has the corresponding property, and we denote the separable and inseparable
degrees of the extension by degs(ϕ) and degi(ϕ), respectively.

In characteristic 0 all morphisms of curves are separable. In characteristic p > 0 this is not necessarily
the case.

Example 2.1.11. Let k = Fp be a finite field with p ≡ −1 mod 6. Consider the smooth projective
curve C/k given by affine equation C : s6 = tp+1 + 1. We have a morphism of curves f : C → P1, given
by f(s, t) = (t : 1). The degree of this map is just [k(s, t) : k(t)] with s and t satisfying the relation
s6 = tp+1 + 1. As tp+1 + 1 is neither a square nor a cube in k(t) we find that the degree of f equals 6.
Moreover, as the minimal polynomial of s over k(t) is x6 − tp+1 − 1, which is separable, we find that the
map f is separable.

The next definition is important for computing the genus of several curves.

Definition 2.1.12. Let ϕ : C1 → C2 be a nonconstant morphism of smooth curves, and let P ∈ C1. The
ramification index of ϕ at P , denoted by eϕ(P ), is the quantity e(P ) = ordP (ϕ

∗tϕ(P )) where tϕ(P ) ∈ k̄(C2)
is a uniformizer at ϕ(P ). Note that eϕ(P ) ≥ 1. We say that ϕ is unramified at P if eϕ(P ) = 1, and that
ϕ is unramified if it is unramified at every point of C1.

Theorem 2.1.13 (Riemann-Hurwitz). Let ϕ : C1 → C2 be a nonconstant separable morphism of smooth
curves of genera g1 and g2, respectively. Then

2g1 − 2 ≥ (deg ϕ)(2g2 − 2) +
∑
P∈C1

(eϕ(P )− 1) (2.2)

Further, equality holds if and only if one of the following two conditions is true:

(i) char(k) = 0.

(ii) char(k) = p > 0 and p does not divide eϕ(P ) for any P ∈ C1.

Proof. See [25, Section II, Theorem 5.9].

Definition 2.1.14 (The Frobenius Morphism). Assume that char(k) = p > 0 and let q = pr. For any
polynomial f ∈ k[X], let f (q) be the polynomial obtained from f by raising each coefficient of f to the
qth power. Then for any curve C/k, we can define a new curve C(q)/k as the curve whose homogeneous
ideal is given by the ideal generated by {f (q) : f ∈ I(C)}. Further, there is a natural map from C to C(q),
called the qth-power Frobenius morphism, given by ϕ : C → C(q), ϕ([x0, . . . , xn]) = [xq0, . . . , x

q
n].
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Lemma 2.1.15. Keep the previous notation. Then ϕ is purely inseparable if and only if its degree is q.
Moreover, Every map ψ : C1 → C2 of (smooth) curves over a field of characteristic p > 0 factors as

C1 C
(q)
1 C2,

ϕ λ

where q = degi(ψ) and λ is a separable map.

Proof. See [25, Section II, Corollary 2.12].

Definition 2.1.16. Let C/k be a smooth curve, we get an abelian group of finite formal sums

D(C) :=

{
r∑

i=1

niPi|r ∈ N, ni ∈ Z, Pi ∈ C(k̄)

}
,

called the divisor group of C. A divisor D ∈ D(C) is called effective if all ni ≥ 0 and the degree of D is

deg(D) =
r∑

i=1

ni.

With notations as above, any nonzero function h ∈ k̄(C) gives rise to a divisor div(h) =
∑

P ordP (h)P
which is of degree 0.

Definition 2.1.17. We say two divisors D,D′ are linearly equivalent if D − D′ = div(h) for some
h ∈ k̄(C)×.

Note that the absolute Galois group Gk̄/k acts on D(C) in a natural way via σ

(
r∑

i=1

niPi

)
:=

r∑
i=1

niP
σ
i ,

where Pσ
i indicates the result of the action of the absolute Galois group on the coordinates of the point

Pi. A divisor D in the divisor group of C is defined over k if D = Dσ for all elements σ of the absolute
Galois group. This group is denoted by Dk(C).

Definition 2.1.18. The Picard group of the curve C is defined as the abelian group consisting of divisors
modulo linear equivalence. It is usually denoted by Pic(C). The abelian group consisting of degree zero
divisors modulo linear equivalence is denoted by Pic0(C).

Definition 2.1.19. The Picard group of the curve C/k is the subgroup of Pic(C) which is fixed under
the absolute Galois group. It is denoted by Pick(C). The subgroup of Pic0(C), which is fixed by Gk̄/k is

denoted by Pic0k(C).

Remark 2.1.20. The Picard group of C/k is not necessarily equal to the group Dk(C) modulo linear
equivalence (over k). See [5] for an overview when this is the case.

Note that the Picard group is sometimes called the divisor class group, and its degree zero component
is sometimes referred to as the Jacobian. We use these notions simultaneously.

There are several equivalent definitions for the notion of abelian variety. The one we adapt is by
Milne [16].

Definition 2.1.21 (Group Variety). A group variety over k is an algebraic variety V over k together
with regular maps

m : V ×k V → V (multiplication)

inv : V → V (inverse)

and an element e ∈ V (k) such that the structure on V (k̄) defined by m and inv is a group with identity
element e. Such a quadruple (V,m, inv, e) is a group in the category of varieties over k.

Definition 2.1.22 (Abelian Variety). An abelian variety over k is a complete geometrically irreducible
group variety over k.

Definition 2.1.23. Let A and B be abelian varieties over k and f : A→ B a morphism of k-varieties.
We say the f is a homomorphism of abelian varieties if f(P ·Q) = f(P ) · f(Q) for all P,Q ∈ A(k̄).
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Lemma 2.1.24. Let A/k be an abelian variety. Then A is projective over k and the group law is abelian.

Proof. See [16, Corollary 1.4 & Theorem 6.4].

Definition 2.1.25. Let A and B be two abelian varieties over k. Suppose that f : A→ B is a morphism
of algebraic varieties over k. We call f an isogeny if it is surjective, has finite fibers and maps basepoint
eA to basepoint eB. Whenever such an isogeny exists we call A and B isogenous.

Lemma 2.1.26. Let f : A→ B be a homomorphism of abelian varieties over k. Then f is an isogeny if
and only if it is surjective and dim(A) = dim(B).

Proof. See [16, Proposition 7.1].

2.2 Jacobian Varieties

Throughout this section let C/k be a smooth projective curve over a field k and T a k-variety. The
definitions and theorems stated here are all found in [16].

Let us first fix some notation. We denote Vark for the category of k-varieties, Ab for the category of
abelian groups, and Pic0(T ) and Pic0(C × T ) for the groups of degree zero invertible sheaves on T and
C × T respectively (recall the usual comparison between invertible sheaves and divisors [8, Section II.6]).

Definition 2.2.1. We define the Picard functor P 0
C by P 0

C(T ) := Pic0(C × T )/q∗Pic0(T ), where q is the
natural projection map.

Important is that this defines a functor from Vark to Ab and it is represented by an abelian variety
JacC (or JC), called the Jacobian of C, of dimension the genus of C. The two most important properties
of the Jacobian are

JC(k) = Pic0k(C),

and whenever C(k) ̸= ∅ and moreover g(C) > 0 one has

C ↪→ JacC

via any morphism P 7→ [P ]− [P0] where P0 ∈ C(k).
Example 2.2.2. Let k = k̄ be an algebraically closed field and let E/k be an elliptic curve. The Jacobian
JacE of E is an abelian variety of dimension 1, i.e. it is a curve. We claim that JacE ∼= E, i.e. the
Jacobian of an elliptic curve is the elliptic curve itself. This follows from the fact that the map

f : E = E(k)→ JacE = JE(k) = Pic0(E)

P 7→ [P ]− [OE ]

is an isomorphism. For more details see [25, Section III, Proposition 3.4].

Example 2.2.3 (Jacobian of Hyperelliptic Curve). Let k = k̄ be an algebraically closed field of charac-
teristic ̸= 2, 3. Consider the smooth curve C/k given by affine equation C : y2 = x6 − 1 (this is the curve
arising from the elliptic curve E2 : y

2 = x3 + t2 + 1, see (2.1)). This defines a hyperelliptic curve of genus
2, hence the Jacobian JacC is a 2-dimensional abelian variety. In positive characteristic we have the
Frobenius endomorphism on JacC. Using this we can compute the rank of E2(Fp(t)) with Fp the prime
field of k (see Example 5.1.8).

Theorem 2.2.4 (The Albanese Property). Suppose g(C) > 0, P0 ∈ C(k) and denote α : C ↪−→ JacC the
canonical inclusion. For every abelian variety A/k and every k-morphism g : C → A there exists a unique
k-morphism h : JacC → A which is up to translation a homomorphism of groups, so that the diagram

C JacC

A

g h

α

commutes.

Proof. See [16, Proposition 6.1].

Remark 2.2.5. If g(C) = 0, then the canonical map α is not an inclusion. However, any map g : C → A
is constant ([16, Proposition 3.9]) implying that the Albanese property still holds.

We will see that the Jacobian of a curve C is crucial in some of our rank computations.
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2.3 Elliptic Curves

In the previous section we discussed some basic algebraic geometry, mostly of curves. This section builds
on top of that by discussing projective curves that turn out to have a structure of a group variety. As
previously, let k be a field and fix an algebraic closure k̄.

Definition 2.3.1. An elliptic curve E/k is a smooth projective curve of genus 1 together with a k-rational
point on E, usually denoted by O.

What’s important and quite remarkable is the following fact.

Theorem 2.3.2. Any elliptic curve E/k can be written in the so-called Weierstrass form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the coefficients ai ∈ k and the point O = (0 : 1 : 0) ∈ P2. Moreover, when the characteristic of the
field k is neither 2 nor 3 we can take a1 = a3 = a2 = 0. In this case we usually write E : y2 = x3+Ax+B
and say that E/k is in short Weierstrass form.

Proof. See [25, Section III, Proposition 3.1].

Definition 2.3.3. Let E/k be an elliptic curve given by a short Weierstrass equation E : y2 = x3+Ax+B.
The j-invariant of E/k is defined as

−1728(4A)
3

∆
,

where ∆ = −16(4A3 + 27B2) is a quantity known as the discriminant of the elliptic curve E/k.

Important in our study will be elliptic curves with j-invariant equal to zero. In particular, elliptic
curves of the form E : y2 = x3 + a with a ∈ k×.

Definition 2.3.4. Let E/k be an elliptic curve with k not of characteristic 2 nor 3 given by a short
Weierstrass equation. Given d ∈ k× not a square we define the quadratic twist of E by the extension
k(
√
d) as

Ed : dy
2 = x3 +Ax+B,

which is another elliptic curve over k.

It turns out that an elliptic curve is not only a variety, but it is also a group variety. In particular,
the set of k-rational points of E/k inherits a group structure from its Jacobian JE(k) with the point O
acting as identity. The next lemma tells us why this is the case.

Lemma 2.3.5. Let E/k be an elliptic curve, then the map α : E(k)→ JE(k) sending P to [P ]− [O] is
bijective.

Proof. See [25, Section III, Proposition 3.4] and compare Example 2.2.2.

The above tells us that an elliptic curve is in fact an abelian variety of dimension 1. Therefore, the
notion of isogeny as in Definition 2.1.25 and the notions isomorphism, endomorphism etc. make perfect
sense.

Lemma 2.3.6. Let E1 and E2 be elliptic curves both defined over k and f : E1 → E2 a nonconstant
k-isogeny of degree m. Then there exists a unique k-isogeny f̂ : E2 → E1, called the dual isogeny, so that
f̂ ◦ f = [m].

Proof. See [25, Theorem 6.1].

If E/k is an elliptic curve and E(k) is a finitely generated abelian group we write r(E(k)) or rank E(k)
for the Z-rank of this group. It is called the Mordell-Weil rank of E/k.

Lemma 2.3.7. Let E1 and E2 be elliptic curves over a field k. Assume that E1(k) and E2(k) are both
finitely generated. Let f : E1 → E2 be a k-isogeny, then the groups E1(k) and E2(k) have the same rank.

Proof. The map f has finite fibers, in particular finite kernel. It follows that f is injective on the
torsion-free part, hence r(E2(k)) ≥ r(E1(k)). The reverse inequality follows from the dual isogeny.
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Theorem 2.3.8. Let E and E′ be two elliptic curves defined over k. Then they are isomorphic over k̄ if
and only if they have the same j-invariant.

Proof. See [25, Section III, Proposition 1.4].

The following theorem is the cornerstone of this thesis.

Theorem 2.3.9. Suppose k is a field which is finitely generated over its prime field. Let A/k be an
abelian variety. Then the group of k-rational points A(k) is a finitely generated abelian group and we
write r(A(k)) for its rank.

Proof. See [15].

Corollary 2.3.10. Let k = Fq be a finite field with q = pr elements. Define K := k(t) the function field
of the projective line over k. Let E/K be an elliptic curve, then E(K) is a finitely generated abelian
group.

Proof. This follows immediately from Theorem 2.3.9.

Remark 2.3.11. It is important in Theorem 2.3.9 that the field of definition is finitely generated over
its prime field. For example, the group of complex points on an elliptic curve is definitely not finitely
generated.

It is unknown how to determine the Mordell-Weil rank of the elliptic curve E/K in general. In this
thesis we are concerned with elliptic curves E/K where K = k(C) is the function field of a smooth
projective algebraic curve defined over a finite field k. It turns out that there is an equivalence between
elliptic curves E/K and certain algebraic surfaces E/k. Next section gives the set-up and preliminaries to
discuss this equivalence. However, before we continue we want to state a lemma that will be relevant
throughout this thesis.

Lemma 2.3.12. Let k be a field not of characteristic 2 nor 3 and let E/k be an elliptic curve satisfying
r(E(k)) <∞. Suppose that L := k(

√
−3) is a degree 2 field extension of k. Then we have

r(E(L)) = r(E(k)) + r(E′(k)),

where E′ is the quadratic twist of E/k by L.

Proof. See [3, p. 2-3].

Corollary 2.3.13. Let k be a field not of characteristic 2 nor 3, fix a ∈ k× and let E/k be an elliptic
curve given by E : y2 = x3 + a satisfying r(E(k)) <∞. Suppose that L := k(

√
−3) is a degree 2 extension

of k. Then we have
r(E(L)) = 2 · r(E(k)).

Proof. The curve E is k-isogenous to the elliptic curve Ê : y2 = x3 − 27a (see [32, Section 3]). Moreover,
the quadratic twist E′ : − 3y2 = x3 + a is k-isogenous to Ê′ : − 3y2 = x3 − 27a. This latter curve is
isomorphic to the elliptic curve E. As isogenous curves have the same rank (Lemma 2.3.7) the result
follows from Lemma 2.3.12.

This corollary is quite useful, as for a prime p ≡ −1 mod 6 we get r(En(Fp2(t))) = 2 · r(En(Fp(t)))
and the former rank is sometimes easier to calculate. We end this section by defining supersingularity for
elliptic curves (not to be confused with supersingular surfaces).

Definition 2.3.14. Let E/k be an elliptic curve over a field with characteristic p > 0. We say E
is a supersingular elliptic curve if End(E) is an order in a quaternion algebra, where End(E) are the
endomorphisms of E over k̄.

Elliptic curves which are not supersingular are called ordinary. In characteristic zero all elliptic curves
are ordinary.
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Theorem 2.3.15. Let E/k be an elliptic curve over a field with characteristic p > 0. The endomorphism
ring of E is isomorphic to one of

(i) Z;

(ii) an order in an imaginary quadratic field;

(iii) an order in a quaternion algebra.

In particular, when End(E) is noncommutative we know that E is supersingular.

Proof. See [25, Cor. 9.4].

Example 2.3.16. Suppose q is odd and q ≡ 2 mod 3. Let B ∈ F×
q . Then the elliptic curve E given by

y2 = x3 +B is supersingular.

Proof. Denote ϕ = Frobq for the qth power Frobenius endomorphism on E and ρ : E → E for the
endomorphism defined by ρ(x, y) = (ωx, y) with ω ∈ Fq satisfying ω2+ω+1 = 0. We have (ϕ ◦ ρ)(x, y) =
(ωqxq, yq) and (ρ ◦ ϕ)(x, y) = (ωxq, yq). These are equal if and only if ωq = ω, but ω is of order 3 and
q ≡ 2 mod 3. Therefore, these cannot be equal and the result follows from Theorem 2.3.15.

2.4 Algebraic Surfaces and Their Intersection Theory

Throughout this section let k = k̄ be an algebraically closed field. Excellent references on this material
are [8, Section V & Appendix A], [1] and the Stacks Project [26].

Definition 2.4.1. An algebraic surface S is an algebraic variety of dimension 2.

In this thesis we will be interested in irreducible smooth projective surfaces over (algebraically closed)
fields. In fact, when we say algebraic surface we will mean irreducible smooth projective surface together
with an embedding into Pn, unless stated otherwise.

Just as with curves we can look at divisors on our surface.

Definition 2.4.2. The divisor group of a surface S is the abelian group

D(S) =

{
r∑

i=1

niCi|r ∈ N, ni ∈ Z, Ci ⊂ S an irreducible curve

}
.

In a similar fashion as with curves we have that any function h ∈ k(S)× gives rise to a divisor div(h)
and two divisors are once again linearly equivalent if their difference is a divisor of the form div(g) for
some g ∈ k(S)×.

Definition 2.4.3. The group of divisors modulo linear equivalence is called the Picard group of the
surface S and it is denoted by Pic(S).

In order to continue properly we need some more abstract theory. Let R be a ring. Let M be an
R-module.

Definition 2.4.4. The tensor algebra of M over R is the noncommutative R-algebra

T (M) = TR(M) =
⊕
n≥0

Tn(M),

with T 0(M) = R, T 1(M) = M , T 2(M) = M ⊗R M , T 3(M) = M ⊗R M ⊗R M , etc. Multiplication is
defined by the rule that on pure tensors we have

(x1 ⊗ x2 ⊗ . . .⊗ xn) · (y1 ⊗ y2 ⊗ . . .⊗ yn) = x1 ⊗ x2 ⊗ . . .⊗ xn ⊗ y1 ⊗ y2 ⊗ . . .⊗ yn

and we extend this by linearity.

Definition 2.4.5. The exterior algebra Λ(M) of M over R is the quotient of T (M) by the two sided
ideal generated by the elements x⊗ x ∈ T 2(M). The image of a pure tensor x1 ⊗ . . .⊗ xn in Λn(M) is
denoted x1 ∧ . . . ∧ xn. These elements generate Λn(M), they are R-linear in each xi and they are zero
when two of the xi are equal (i.e., they are alternating as functions of x1, x2, . . . , xn). The multiplication
on Λ(M) is graded commutative, i.e., every x ∈M and y ∈M satisfy x ∧ y = −y ∧ x.
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Definition 2.4.6. Let (X,OX) be a scheme and F an OX-module. We define the nth exterior power of
F to be the sheafification of the presheaf

U 7→ Λn
OX(U) (F(U)) ,

where the right-hand side is the nth exterior power of OX(U)-modules as in Definition 2.4.5. It is denoted
by ΛnF .

Viewing S as a scheme we can now define the canonical bundle of S.

Definition 2.4.7. The canonical bundle of a surface S is given by

ωS := Λ2Ω1
S ,

where Ω1
S denotes the sheaf of 1-forms on S

Note that this is an invertible sheaf on S. Indeed, as dim(S) = 2 we obtain that Ω1
S is locally free

of rank 2. This forces ωS to be locally free of rank 1, hence invertible. The usual connection between
divisors and invertible sheaves then yields the canonical divisor KS of the surface S.

Definition 2.4.8. The Néron-Severi group of a surface S, denoted by NS(S), is the group of divisors
D(S) modulo algebraic equivalence, where we say a divisor D is algebraically equivalent to 0 if there is a
connected scheme W and an effective divisor D̄ on S×W , such that D̄ is flat over W and D = D̄w1−D̄w2

for two fibers D̄w1
, D̄w2

of D̄ at some w1, w2 ∈W .

Remark 2.4.9. The statement D̄ is flat over W just means that the corresponding morphism is flat.

Theorem 2.4.10. The Néron-Severi group of S is a finitely generated abelian group. Its rank is called
the Picard number of the surface and is denoted by ρ(S).

Proof. See [13, Section 6.6].

Definition 2.4.11. The ith Betti number of a surface S is given by

bi(S) = dimHi(S),

where we can work with singular cohomology over C in the case of characteristic zero or generally with
l-adic étale cohomology (l ̸= char(k)).

This latter cohomology theory is defined as follows: fix a prime l ≠ char(k) and denote Zl for the
ring of l-adic integers, which equals the inverse limit lim←−Z/lnZ. We define

Hi(S,Zl) := lim←−H
i(S,Z/lnZ),

where Hi(S,Z/lnZ) is not the usual sheaf cohomology, but rather the etalé cohomology†. Moreover, we
define

Hi(S,Ql) := Hi(S,Zl)⊗Zl
Ql.

Theorem 2.4.12. The Betti numbers of S are independent of the chosen cohomology theory.

Proof. See [8, Appendix C].

Theorem 2.4.13 (Poincaré Duality). The Betti numbers satisfy

b0 = b4 and b1 = b3.

Proof. See [8, Appendix C.3].

Definition 2.4.14. We say a surface S is supersingular when its Picard number ρ(S) equals its second
Betti number b2.

Below we outline some more invariants of algebraic surfaces that will show up in this thesis.

†See [8, Appendix C.3].
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Definition 2.4.15. Let S be an algebraic surface, then its Euler number e(S) is given by

e(S) :=

4∑
i=0

(−1)ibi(S).

Together with Poincaré-duality we can write b2 = e(S)−2(b0−b1), which will be useful for computations
later.

Definition 2.4.16. Let S be an algebraic surface, its Euler characteristic χ(S) is defined as the Euler
characteristic of its structure sheaf OS. In other words:

χ(S) =

2∑
i=0

(−1)i dimHi(S,OS),

where Hi(S,OS) denotes the usual sheaf cohomology.

Of particular importance in this thesis is the intersection number of two curves on an algebraic surface.
We restrict ourselves to the bare minimum.

Definition 2.4.17. Let S be a smooth algebraic surface and suppose C and D are two distinct irreducible
curves on S. Denote f and g local equations for C and D respectively at a point P on S. The intersection
multiplicity of C and D at P ∈ S is defined by

multP (C,D) := dimkOS,P /(f, g).

This gives a well-defined finite number which extends globally to the intersection number of C and D
given by (C.D) :=

∑
P∈S

multP (C,D).

Remark 2.4.18. The definition applies only to distinct, irreducible curves on S. However, by utilizing
the Euler-characteristic of invertible sheaves on S, one can extend the pairing to all of D(S) such that
it is independent under linear equivalence. In particular, it extends to a well-defined pairing on Pic(S).
Using this the self-intersection of C is given by

C2 = (C.C) := (C.D),

where D ̸= C is a divisor linearly equivalent to C. See [8, Section V, Theorem 1.1] for more details.

For further information on intersection theory we refer to [19, Section 4.3] and [8, Section 5].
Additionally, for future reference, the adjunction formula and Noether’s formula will now be stated.

Theorem 2.4.19 (Adjunction). Let C ⊂ S be an irreducible curve on an algebraic surface S. Then

2pa(C)− 2 = C2 + (C.KS) ,

where pa(C) denotes the arithmetic genus of C.

Proof. See [8, Section V, Prop. 1.5].

Lemma 2.4.20 (Noether’s Formula). Let S be an algebraic surface, then we have the relation

12χ(S) = e(S) +K2
S ,

where K2
S denotes self-intersection of the canonical divisor KS.

Proof. This is a corollary of Riemann-Roch for surfaces. See [8, Section V, Remark 1.6.1].
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2.5 Elliptic Surfaces

Once again let k = k̄ be an algebraically closed field and let C/k be a smooth projective curve with
function field K = k(C). A good definition for an elliptic surface is the following.

Definition 2.5.1. An elliptic surface S over C is a smooth projective surface S together with an elliptic
fibration over C, i.e. a surjective morphism f : S → C so that

• Almost all fibers are smooth curves of genus 1;

• No fiber contains an exceptional curve of the first kind, i.e. a smooth rational curve of self-
intersection −1;

• f admits a section, i.e., a map s : C → S such that f ◦ s = idC .

The second point is a technical requirement, known as “relative minimality”, that is necessary in
order to eliminate any unnecessary flexibility in the shape of the fibers caused by blow-ups of the surface
S. The third point guarantees that the generic fiber (to be defined later) will be an elliptic curve. A
complete classification of the singular fibers, using this definition, can be found in [19, Section 5.4].

Example 2.5.2. Let E be an elliptic curve and C a smooth projective curve, then E × C is an elliptic
surface with the elliptic fibration being the canonical projection onto C. Note that this is quite a peculiar
example as none of the fibers are singular.

One way to visualise sections on an elliptic surface is as follows. Let S → P1 be an elliptic surface,
and (P ) and (O) be sections. Then these sections can be thought of as horizontal curves on S, which
intersect all the fibers transversally at 1 point. This is nicely illustrated below:

Figure 1: An Elliptic Surface With 2 Visible Sections [19].

Definition 2.5.3. The generic fiber of an elliptic surface f : S → C is the fiber over the generic point of
the curve C. By generic smoothness this defines a smooth curve of genus 1 over the function field k(C).
In particular, using that the elliptic surface has a section, the generic fiber becomes an elliptic curve.

Important is that every section yields a k(C)-rational point on the generic fiber and conversely
every k(C)-rational point on the generic fiber yields a section C → S. As such we use the terminology
interchangeably. Moreover, any such section defines a curve on the surface in a natural way. So it makes
sense to talk about intersections of two sections.

Definition 2.5.4. Let P be a k(C)-rational point on the generic fiber of an elliptic surface. Also write P
for the curve it defines on the surface. We say the section P ̸= O is integral if it does not intersect the
zero section, i.e. (P.O) = 0.

Theorem 2.5.5. Let C/k be a smooth projective curve. Write K = k(C) and let E/K be an elliptic
curve. Then there exists an elliptic surface f : E → C with generic fiber isomorphic to E/K. Moreover,
this elliptic surface is unique up to isomorphism and we call it the Kodaira-Néron model of E/K.
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Proof. See [19, Theorem 5.9].

Remark 2.5.6. Let E/K be written in Weierstrass form. Denote C ′ = C \ Σ with Σ the set containing
the zeros of the discriminant of E/K, and the poles of the coefficients ai ∈ K of the Weierstrass form.
The proof of Theorem 2.5.5 constructs the surface by starting with the Weierstrass equation of E/K,
viewed as a surface S′ ⊂ P2 × C ′. One takes the Zariski closure W of S′ inside P2 × C and resolves the
singularities of W in such a way that the obtained surface is relatively minimal.

From now on we assume that our elliptic surfaces have at least one singular fiber. The following
theorem illustrates why this is important.

Theorem 2.5.7. Let E be an elliptic curve over the function field K. Assume that the Kodaira–Néron
model E of E has a singular fiber. Then the abelian group E(K) is finitely generated.

Proof. See [19, Theorem 6.6].

Example 2.5.8. Let k = F̄p be an algebraic closure of a finite field of characteristic p > 3. Consider for
some fixed integer n > 0 the elliptic curve En : y

2 = x3 + tn + 1 over k(t) = k(P1), then the associated
elliptic surface fn : En → P1 has at least one singular fiber, hence E(K) is finitely generated.

We will write E/K for the elliptic curve and E/k for the corresponding elliptic surface. The rank of
an elliptic surface is the Mordell-Weil rank of the generic fiber.

Remark 2.5.9. In this thesis we will look, among other things, at a supersingular elliptic surface with
high Mordell-Weil rank. However, we should note that supersingularity and high Mordell-Weil rank are
not related. Indeed, one can obtain large Mordell-Weil rank on ordinary elliptic surfaces as well (see [6]).

Recall that the Picard group of a surface S is the group of divisors modulo linear equivalence. It has a
well-defined pairing obtained from the intersection pairing. This pairing also behaves well with respect to
algebraic equivalence (see [19, Section 4.3]). In particular, we find that NS(S) has a well-defined pairing
induced from the intersection pairing. For elliptic surfaces this pairing gives a natural lattice structure on
their Néron-Severi groups.

Definition 2.5.10. Let S be an elliptic surface. The trivial lattice Triv(S) is the sublattice of NS(S)
generated by the zero section and fiber components.

Definition 2.5.11. Let S be an elliptic surface. The essential lattice L(S) is the orthogonal complement
of Triv(S) with sign reversed, i.e. L(S) = (Triv(S)⊥)− .

Lemma 2.5.12. Let E/K be an elliptic curve with Kodaira-Néron model E/k and write NS(E)Q for the
Néron-Severi group tensored with Q. For any P ∈ E(K), there exists a unique element of NS(E)Q, say
ϕ(P ), satisfying the following conditions:

(i) ϕ(P ) ≡ (P ) mod Triv(E)Q, and (ii) ϕ(P ) ⊥ Triv(E),

where ⊥ means “orthogonal to” in the lattice setting (see [19, Section 2]).

Theorem 2.5.13. For any P,Q ∈ E(K), let

⟨P,Q⟩ = −(ϕ(P ).ϕ(Q)). (2.3)

This defines a Q-valued symmetric bilinear pairing on E(K) which induces the structure of a positive-
definite lattice on E(K)/E(K)tors.

Proof. See [19, Section 6.5].

The above pairing is called the height-pairing and it is an important tool in showing sections are
independent from each other. Moreover, an explicit formula for this pairing is known and provided in the
next theorem.
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Theorem 2.5.14. For any P,Q ∈ E(K) we have

⟨P,Q⟩ = χ+ (P.O) + (Q.O)− (P.Q)−
∑
v∈R

contrv(P,Q),

where χ the Euler characteristic of the surface, R the set of singular fibers and contrv(P,Q) the local
contribution† of P and Q at a singular fiber v.

Proof. [19, Theorem 6.24].

This is particularly useful for computing height pairings between integral sections on elliptic surfaces
with only type II fibers. Indeed, in that case the formula reduces to

⟨P,Q⟩ = χ− (P.Q). (2.4)

Lemma 2.5.15. An element P ∈ E(K) is a torsion section if and only if ⟨P, P ⟩ = 0.

Proof. See [19, Proposition 6.31].

Lemma 2.5.16. Let C be a smooth projective curve over an algebraically closed field k. Write K = k(C)
and let E/K be an elliptic curve. Take a collection of r points {P1, . . . Pr} in E(K), then they are
Z-linearly independent if and only if the height-pairing matrix (⟨Pi, Pj⟩)ri,j=1 has full rank.

Proof. By Theorem 2.5.13 the height-pairing gives a well-defined structure of a positive-definite lattice
on E(K)/E(K)tors. General lattice theory then gives the result.

Example 2.5.17. Consider the elliptic curve E360 : y
2 = x3 + t360 + 1 over F̄p(t) with p ≥ 7. We claim

that this is a torsion-free elliptic curve. To see this note that all fibers of the corresponding surface are of
type II, so there is no local contribution (see [19, Theorem 6.24]). The Euler number is 360(1 + 1) = 720
(see [19, Theorem 5.47]) and K2

E360
= 0, as K2

S = 0 for any elliptic surface S (see Theorem 2.5.28).
Plugging this into Noether’s formula we get

12χ(E360) = 720,

hence the Euler characteristic is 60. To conclude, suppose P is a nontrivial torsion section. Via
Lemma 2.5.15 and the explicit formula for the height pairing we get

0 = ⟨P, P ⟩
= 120 + 2(P.O),

which forces (P.O) = −60, a contradiction as this should be nonnegative.

This example shows that most of the elliptic curves we are working with will be torsion-free. In
particular, finding n independent sections is equivalent to showing the Mordell-Weil rank is at least n.

Theorem 2.5.18. Let f : S → C be an elliptic surface. Then the Néron-Severi group is a torsion-free
finitely generated abelian group (cf. Theorem 2.4.10).

Proof. See [19, Theorem 6.4].

Theorem 2.5.19 (Shioda-Tate Formula). Let E/K be an elliptic curve. Let E denote the Kodaira-Néron
model of E, ρ(E) its Picard number and r the rank of the Mordell-Weil group of E/K. Then we have

ρ(E) = 2 + r +
∑
v∈C

(mv − 1),

where mv denotes the number of irreducible components of the fiber of v ∈ C.

Proof. See [19, Corollary 6.7].

The Shioda-Tate formula is quite useful for determining ranks if we know the Picard number of our
surface. There are several classes of surfaces of which we know them, but the rational elliptic surfaces are
the most important to us.

†See [19, Def. 6.23].
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Definition 2.5.20. Let f : S → C be an elliptic surface. We say S is a rational elliptic surface if the
surface S is rational, i.e. S is birationally equivalent to P2.

Note that if S → C is a rational elliptic surface, then C ∼= P1, see, e.g., [19, p. 145].

Lemma 2.5.21. Let E/k(t) be an elliptic curve given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.5)

where ai ∈ k[t] and deg(ai) ≤ i, such that considered as elliptic surface it contains a singular fiber. Then
the Kodaira-Néron model E/k defines a rational elliptic surface.

Proof. See [19, Section 7.4].

By rationality and Noether’s formula it follows that the Picard number of a rational elliptic surface S
will always be equal to 10 (see [19, Proposition 7.1]). So for rational elliptic surfaces we have the formula

r = 8−
∑
v∈C

(mv − 1).

The next example computes the type of fibers of an elliptic surface using Tate’s algorithm. For an
exposition see [19, Section 5.8].

Example 2.5.22. Consider k = F̄5 and the elliptic curve E1 : y
2 = x3 + t+ 1 over k(t). This defines a

rational elliptic surface, hence ρ(E1) = 10. The discriminant of E1 is ∆ = 3(t+ 1)2, so that we have a
singular fiber above t = −1 and possibly one above infinity. We quickly see that the fiber above −1 is of
type II. To investigate the fiber above infinity we perform a change of variables. Define r = 1

t and consider
the change of variables α = r2x, β = r3y. This yields the elliptic curve given by β2 = α3 + r5 + r6. The
order of vanishing of the discriminant of this curve at r = 0 is 10. Moreover, the order of vanishing of the
coefficient r5 + r6 at r = 0 is 5. Hence at t =∞ we find a singular fiber of type II∗, so it has 9 irreducible
components. By Shioda-Tate there are no other reducible fibers and the rank of E1(k(t)) is 0.

The following theorem will be of importance later.

Theorem 2.5.23. For any elliptic curve E over K = k(t) defined by a minimal† Weierstrass equation
of the form (2.5) associated with a rational elliptic surface, there are at most 240 K-rational points
P = (x, y) of the form

x = gt2 + at+ b, y = ht3 + ct2 + dt+ e

with a, ..., h ∈ k and they generate the Mordell–Weil group E(K).

Proof. See [19, Theorem 8.33].

Definition 2.5.24. Let f : S → C be an elliptic surface. We say S is an elliptic K3 surface if the surface
S is K3, i.e. has trivial canonical bundle.

As explained in [19, Section 11.2], if S → C is an elliptic K3 surface, then C is isomorphic to the
projective line P1.

Lemma 2.5.25. Let E/k(t) be an elliptic curve given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where ai ∈ k[t] and deg(ai) ≤ 2i with some i such that deg ai ≥ i . Then the Kodaira-Néron model E/k
defines an elliptic K3 surface.

Proof. See [19, Section 11.3].

Theorem 2.5.26. Let E/k be an elliptic K3 surface, then the Picard number ρ(E) ≤ 22.

Proof. The second Betti number of E equals 22. A result by Igusa [10] implies that ρ(E) is bounded by
the second Betti number.

†Meaning that the discriminant is not a twelfth power.
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Remark 2.5.27. Elliptic K3 surfaces which have Picard number 22 are supersingular.

Theorem 2.5.28 (Canonical Bundle). The canonical bundle of an elliptic surface f : S → C is given by

ωS = f∗
(
ωC ⊗ L−1

)
,

where L is a certain line bundle of degree −χ(S) on C. In particular, we have

KS ≈ (2g(C)− 2 + χ(S))F,

for a fiber F and moreover K2
S = 0.

Proof. See [19, Theorem 5.44].

For a rational elliptic surface f : S → P1 this tells us that KS ≈ −F for a fiber F . For reference we
end this section with a computation of the self intersection number of a section on an elliptic surface.

Lemma 2.5.29. Let f : S → C be an elliptic surface with a section (P ). Then P 2 = (P.P ) = −χ(S).

Proof. From adjunction we obtain that 2g(P )− 2 = P 2 + (C.KS). By Theorem 2.5.28 the right hand
side equals P 2 + 2g(C)− 2 + χ(S) as (C.F ) = 1. By construction we have g(P ) = g(C) and hence we
find P 2 = −χ(S).

2.6 The Zeta Function of a Variety Over a Finite Field

For certain elliptic curves we can calculate their rank via zeta functions. This section gives the required
background.

Definition 2.6.1. Let V/Fq be a projective variety over the finite field Fq. The zeta function of V/Fq is
the (formal) power series

Z(V/Fq;T ) := exp

( ∞∑
n=1

|V (Fqn)|
Tn

n

)
.

Definition 2.6.2. Let V/Fq a projective variety and denote VF̄q
for the base change to an algebraic

closure of Fq. The ith Betti number is defined as

bi(V ) := dimHi(VF̄q
),

where we use l-adic etalé cohomology.

In 1949, André Weil made a series of remarkable conjectures concerning the number of points on
varieties defined over finite fields [35]. Today all of them have been proven and we state them as a
theorem.

Theorem 2.6.3 (The Weil Conjectures). Let V/Fq be a smooth projective variety of dimension N and
denote Z(V/Fq;T ) its zeta function. The following statements hold:

• Z(V/Fq;T ) ∈ Q(T );

• There is an integer ϵ with Z(V/Fq; 1/q
NT ) = ±qNϵ/2T ϵZ(V/Fq;T );

• The zeta function factors as

Z(V/Fq;T ) =
P1(T ) · · ·P2N−1(T )

P0(T )P2(T ) · · ·P2N (T )
,

with each Pi(T ) ∈ Z[T ], with P0(T ) = 1 − T and P2N (T ) = 1 − qNT and such that for every
0 ≤ i ≤ 2N the polynomial Pi(T ) factors over C as

Pi(T ) =

bi∏
j=1

(1− αijT )

with |αij | = q1/2 and bi the i
th Betti-number of V .
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Proof. This was done mostly by Grothendieck, Deligne, Dwork and Weil using methods beyond what we
want to focus on such as l-adic cohomology theory. For the case of elliptic curves see [25, Section V.2].

Note that we can obtain |V (Fqn)| from the zeta function by the formula

|V (Fqn)| =
1

(n− 1)!

dn

dTn
logZ(V/Fq;T )

∣∣∣∣
T=0

. (2.6)

In order to compute the zeta function we need to be able to count points over finite field. To do this
one can use the Frobenius endomorphism. We now discuss this in the case of elliptic curves.

Definition 2.6.4. Let E/Fq be an elliptic curve and let ϕ be the qth power Frobenius endomorphism on
E. The quantity a := q + 1− |E(Fq)| is called the trace† of ϕ.

Theorem 2.6.5. Let E/Fq be an elliptic curve and let ϕ be the qth power Frobenius endomorphism on E
with trace a.

(a) Let α, β ∈ C be the roots of the polynomial T 2 − aT + q. Then α and β are complex conjugates
satisfying |α| = |β| = √q, and for every n ≥ 1,

|E(Fqn)| = qn + 1− αn − βn.

(b) The Frobenius endomorphism satisfies

ϕ2 − aϕ+ q = 0 in End(E).

Proof. See [25, Theorem 2.3.1].

Example 2.6.6. Let k = Fq = Fpn be a finite field with characteristic p ̸= 2, 3. Let E0/k be the elliptic
curve given by short Weierstrass equation E0 : y

2 = x3 + 1. We try to determine its zeta function. Using

Theorem 2.6.3 we immediately find that Z(E0/k;T ) =
P1(T )

(1−T )(1−qT ) . Moreover, by [25, Section V, Theorem

2.4] we find that P1(T ) = 1− aT + qT 2 with a = q + 1− |E(k)|. It remains to determine |E(k)| and in
order to do so we make some case distinctions.

• If p ≡ 2 mod 3 then E0/Fp is supersingular (see [25, Section V, Example 4.4]) and from [25,
Section V, Exercise 5.15] we get

|E0(Fpn)| =

{
pn + 1 if n is odd(
pn/2 − (−1)n/2

)2
if n is even.

• If p ≡ 1 mod 3 then E0/Fp is ordinary and a general formula for the number of points on E0 is
much more complicated. Denote Z[ω] for the ring of Eisenstein integers. From [11, Section 18.3]

we obtain that |E0(Fp)| = p+ 1+
(
4
π

)
6
π +

(
4
π

)
6
π̄, where p = ππ̄ is a factorisation into irreducibles

in Z[ω] with π ≡ 2 mod (3) and ( 4π )6 denotes the sixth power residue symbol (see [11, Section
14.2]). From Theorem 2.6.5 part (a) we deduce that

|E0(Fq)| = q + 1−

[
−
(
4

π

)
6

π

]n
−
[
−
(
4

π

)
6

π̄

]n
,

from which one can deduce the zeta function Z(E0/k;T ).

This is particularly useful for us when p ≡ −1 mod 6, as we then find

Z(E0/Fp;T ) =
1 + pT 2

(1− T )(1− pT )

and

Z(E0/Fp2 ;T ) =
(pT + 1)2

(1− T )(1− p2T )
.

†This terminology stems from the fact that ϕ can be seen as a linear transformation on a vector space called
the Tate-module (see [25, Section III.7]).
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The characteristic p ≡ 1 mod 3 case can be done without appealing to [11, Section 18.3]. Consider
the elliptic curve E : y2 = x3 + 1 over Fp. We know that E is ordinary in this case and End(E) = Z[ω],
where ω2 + ω + 1 = 0. We fix the above isomorphism via ω · (x, y) := (ωx, y) and denote π the Frobenius
endomorphism Frobp : E → E sending (x, y) 7→ (xp, yp). We would like to find an expression for the
Frobenius endomorphism in terms of the Euclidean domain Z[ω]. To do so write π = a+ bω and note
that deg(π) = p. In Z[ω] this translates to N(π) = p, where N(a+ bω) = a2 − ab+ b2.

Note that the subgroup ⟨(0,±1)⟩ ⊂ E(Fp) is precisely the kernel of ω − 1 and similarly the kernel
of 2 is precisely the subgroup of E(Fp) generated by points of the form (⋆, 0). Combining this we find
that ker(2ω − 2) = ⟨(0,±1), (⋆, 0)⟩ is a group of deg(2) · deg(ω − 1) = 12 elements. A quick inspection of
the elements shows this group is isomorphic to Z/6Z × Z/2Z. Moreover, we note that π restricted to
ker(2ω − 2) equals the identity. In other words ker(2ω − 2) ⊂ E(Fp) = ker(π − 1). This condition means
that (2ω − 2)|(π − 1) in Z[ω] or equivalently π ≡ 1 mod (2ω − 2).

The elements 2 and ω − 1 satisfy the relation 2 · 2 + (ω − 1) · (2 + ω) = 1, hence are coprime. By
the Chinese remainder theorem we get that Z[ω]/(2ω − 2) ∼= Z[ω]/(2) × Z[ω]/(ω − 1) ∼= F4 × F3. The
condition π ≡ 1 mod (2ω − 2) is then equivalent with π getting mapped to (1̄, 1̄) ∈ F4 × F3. The latter
condition precisely tells us that a ≡ 1 mod 2, b ≡ 0 mod 2 and a+ b ≡ 1 mod 3. We claim that these
properties for π are enough to determine its trace.

Indeed, the trace of π equals
Tr(π) = π + π̄ = 2a− b,

which is clearly invariant under complex conjugation. Moreover, there are only 12 elements of norm
p in Z[ω]. If η is such an element, then uη with u a unit and η̄ are as well. The units in Z[ω] are
±1,±ω,±(1 + ω), hence if π = a+ bω satisfies a ≡ 1 mod 2, b ≡ 0 mod 2 and a+ b ≡ 1 mod 3, then
uπ does not. In particular, only complex conjugation preserves these relations which is precisely what we
wanted.

The above gives us a quick way for computing the number of points in E(Fp). To see this take the
prime p = 7. The element −3− 2ω is precisely of our desired form and its trace is −4. The formula

|E(Fp)| = p+ 1− Tr (Frobp)

then yields that |E(F7)| = 7 + 1 + 4 = 12. Part (a) of Theorem 2.6.5 then allows us to compute the zeta
function completely.

2.7 Chebotarev’s Density Theorem

This section is based on [14]. Throughout denote K a number field, i.e. a finite field extension of Q. Let
L be a finite Galois extension of K with Galois group denoted by G. Let p be a prime of K (so a prime
ideal of OK) and let P be any prime of L lying above p.

Definition 2.7.1. The Artin symbol
[
L/K
P

]
is the unique element σ ∈ G so that

σ(α) = αnm(p) mod P

for all α ∈ L, where nm(p) denotes the norm of p.

Note that for any prime p, all the primes P lying above p are isomorphic via elements of G. Hence the

values of the Artin symbol
[
L/K
P

]
lying over p are all conjugate in G. We write

[
L/K
p

]
for this conjugacy

class.

Remark 2.7.2. If L/K is an abelian extension we abuse the notation and write
[
L/K
p

]
for the unique

element in G.

Definition 2.7.3. Let S be a subset of P (K), the set of all primes of K. The Dirichlet density of S is
defined as

lim
s→1+

∑
p∈S

1

# (OK/p)
s

 ∑
p∈P (K)

1

# (OK/p)
s

−1

if it exists.
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Theorem 2.7.4 (Chebotarev’s Density Theorem). Let L/K be a finite Galois extension of number fields
and let C be a conjugacy class of Gal(L/K) = G. Let

PC :=

{
p ∈ P (K) : p is unramified in L,

[
L/K

p

]
= C

}
Then, the Dirichlet density of PC in {p ∈ P (K) : p is unramified in L} exists and is equal to

#C
#G

.

It is hard to underestimate the usefulness of Chebotarev’s density theorem in modern (algebraic)
number theory. It is particularly useful for showing that certain subsets of the set of prime numbers
have a positive density, which implies (but is not equivalent to) the statement that the set has infinite
cardinality. The next statement is a corollary of Chebotarev’s density theorem.

Corollary 2.7.5. Let f(x) ∈ Z[x] be a nonconstant polynomial and denote P for the set of prime numbers.
Then the set

L = {p ∈ P : f splits completely modulo p}

has infinite cardinality.

Proof. Let L be the splitting field of f with [L : Q] = n. Chebotarev’s density theorem implies that the
Dirichlet density of the rational primes that split completely in L equals 1/n (see [18, Corollary 13.6]).
In particular, there are infinitely many rational primes that split completely in L. By the theorem of
the primitive element we write L = Q(α) with g ∈ Z[x] the minimal polynomial of α. Up to finitely
many exceptions we know that a rational prime p splits completely in L if and only if g splits completely
modulo p. It is clear that when g splits completely modulo p, f also splits completely modulo p.

Corollary 2.7.6. Let f1, . . . , fn ∈ Z[x] be nonconstant polynomials. Then the set

{p ∈ P : f1, . . . , fn have a root modulo p}

has infinite cardinality.

Proof. Write f := f1f2 · · · fn and note that according to Corollary 2.7.5 there are infinitely many primes
p so that f splits completely modulo p. In particular, for such primes p each of the polynomials fi has a
root modulo p.

3 The Set-Up

Now that we have the tools available it is time to make precise what we will do. Consider the elliptic
curve

E360 : y
2 = x3 + t360 + 1 (3.1)

over the field Q(t). It has discriminant ∆ = −1728(t360 + 1)2 and all fibers of the corresponding surface
are of type II. Moreover, for any prime p > 5 the elliptic surface corresponding to E360/Fp(t) has only
type II fibers as well. In particular, we have good reduction for all rational primes p > 5. Throughout

this section let p be a prime of good reduction and denote EQ̄
360 for the elliptic curve E360/Q̄(t) and E

F̄p

360

for the elliptic curve E360/F̄p(t). Recall that the Mordell-Weil rank of EQ̄
360 is 68 and that there is a finite

field extension Q ⊂ Q(α) of smallest degree so that

rankE360(Q(α, t)) = 68.

We first show that the rank over Q(t) is bounded by 34.

Lemma 3.0.1. The rank of E360/Q(t) is bounded by 34.

Proof. We have
r(E360(Q(t)))/2 = r(E360(Q(

√
−3, t))) ≤ r(E360(Q̄(t))) = 68

where the first equality follows from Corollary 2.3.13.
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Definition 3.0.2 (Reduction Modulo a Rational Prime of Good Reduction). One way to define reduction
modulo a rational prime of good reduction is as follows: denote K = Q(α) with ring of integers OK . Let
P = (X : Y : Z) be a point of E360 with X,Y, Z ∈ Q(α, t) written in homogeneous coordinates. Multiplying
through by a suitable polynomial we can view the coordinates as polynomials in t with coefficients in Q(α).
Reduction modulo p is then defined as reducing the coefficients modulo a prime p of K over p, which is
done via discrete valuations (see [25, Section VII.1–3] for a complete overview).

If p is such that the minimal polynomial of α over Q, denoted by minQα, has a root modulo p, then
after a reduction modulo p we end up in the field Fp(t). In general we end up in a field of the form Fpn(t)
for some integer n > 0. We remark that, due to Chebotarev’s density theorem, there are infinitely many
primes so that minQα has a root modulo p. It is precisely these primes we are looking for.

The next result shows that we do not have to worry about independent sections becoming dependent
after a reduction modulo p.

Theorem 3.0.3. Let p > 5 be any prime (so not necessarily with the property that minQα has a root mod
p). We have the following injection of finite dimensional Ql-vector spaces:

NS(E Q̄360)⊗Z Ql ↪→ NS(E F̄p

360)⊗Z Ql, (3.2)

where Ql denotes the the l-adic rational numbers with l ̸= p. In particular, since the given Néron-Severi

groups are torsion-free, reduction modulo p defines an injection on NS(E Q̄360).

Proof. See [34, Proposition 2.6.2] for the injection (3.2).

Note that E360(Q̄(t)) is torsion-free (cf. Example 2.5.17). Let P,Q ∈ E360(Q̄(t)) be two independent
points and denote their reduction modulo p (in E360(F̄p(t))) by P̃ and Q̃. Following [19, Section 6] we
see that

NS(E Q̄360) = L−
Q̄ ⊕ Triv(E Q̄360),

where L−
Q̄ denotes the essential sublattice and Triv(E Q̄360) the trivial sublattice. As E360(Q̄(t)) is torsion-free

we have
E360(Q̄(t)) ⊂ L−

Q̄ .

Combining this with the injection from (3.2) it follows that P̃ and Q̃ remain independent points. In
particular, once p is such that rank(E360(Fp(t)) = rank(E360(F̄p(t)) = 68 we know that, up to finite
index, all sections over Fp are obtained via a reduction modulo p from the characteristic zero case. By
Chebotarev’s density theorem there exists infinitely many such primes and in this thesis we have found
several such prime numbers p.

Example 3.0.4 (Generation up to finite index). An example (albeit not for the elliptic curve E360) where
a section modulo p generates a smaller index subgroup is as follows.

Fix the field k = Q(t) and consider the elliptic curves E′ : y2 = x3 − 4ax, and E : y2 = x3 + ax both
over k. These are related via the usual 2-isogenies ϕ : E → E′ and ϕ′ : E′ → E(see [25, Proposition
X.4.9]), which satisfy ϕ ◦ ϕ′ = [2] multiplication by 2 on E′. We look for a point that is not divisible by 2
over k, but is divisible by 2 over Fp(t) for some prime of good reduction. Any element divisible by 2 on
E′ has to lie in the image of ϕ. Now (0, 0) ̸= (ξ, η) ∈ E′(k) lies in the image of ϕ if and only if ξ is a
square. Suppose ξ = t2, then η2 = t6 − 4at2 and hence a := 2t2 − 4 yields η = 4t− t3. Now consider the
elliptic curve given by

E′ : y2 = x3 − 4(2t2 − 4)x

over Q̄(t). This defines a rational elliptic surface with two fibers of type III and one fiber of type I∗0. The
Shioda-Tate formula implies that E′(Q̄(t)) has rank 2. This Mordell-Weil group has a natural structure of
an Z[i]-module induced from the automorphism σ(x, y) = (−x, iy). In particular, the rank over Q(t) can
only be 0 or 1. The section P = (t2,−t3 + 4t) is completely defined over Q and is of infinite order, hence
E′(Q(t)) has rank 1. Suppose that there would exist a section Q ∈ E′(Q(t)) so that [2]Q = P . Then the
x-coordinate x([2]Q) = t2 and using the duplication formula for elliptic curves we see that this is not
possible over Q(t). In particular, P is not divisible by 2 in E′(Q(t)). However, after a reduction modulo
7 we find that P̃ := P mod 7 = (t2, 6t3 + 4t) = [2](t+ 4, t+ 4). I.e. P̃ is divisible by 2 in E′(F7(t)) and
we conclude that the subgroup generated by P̃ generates a smaller index subgroup in E′(F7(t)) than the
subgroup generated by P does in E′(Q(t)).
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Remark 3.0.5. The map in Theorem 3.0.3 is only an injection. Indeed, we will see that for the prime
number p = 359 the Mordell-Weil rank of E360/Fp(t) equals 358. So in positive characteristic more
independent sections can arise.

We end this section by stating some more properties of primes of good reduction. Note that by the
Lefschetz principle we can consider EC

360 := E360/C(t) instead of E360/Q̄(t).

Theorem 3.0.6. The Betti numbers do not change under reduction modulo p, i.e.

bi
(
EC360

)
= bi

(
E F̄p

360

)
,

where the left-hand side is computed via singular cohomology and the right-hand side using l-adic etalé
cohomology.

Proof. The Betti numbers are independent of chosen cohomology theory ([8, Appendix C, Section 3]).
The fact that the Betti numbers do not change after a reduction modulo p is a corollary from the Weil
conjectures (see [8, Appendix C, Section 1]).

The above allows us to compute the Betti numbers of E360 using singular cohomology even in charac-
teristic p > 5.

We are now finally ready to rigorously state what we will do. Consider the elliptic curve E360/Q̄(t),
which has Mordell-Weil rank 68. We want to find a prime number p > 5 so that all these sections are
defined over Fp after a reduction modulo p (they automatically remain independent after reduction
modulo a prime p > 5). By the above discussion it suffices to find primes p > 5 so that

rankE360(Fp(t)) = rankE360(F̄p(t)) = 68.

In the upcoming sections we find such prime numbers.

4 A Toy Example

This section demonstrates the method used to show that E360/F359(t) has Mordell-Weil rank 358. Consider
the elliptic curve E1 : y

2 = x3 + t+ 1 over the field k(t) where k is a field not of characteristic 2 nor 3.

Proposition 4.0.1. The Mordell-Weil group E1(k(t)) is trivial.

Proof. Without loss of generality we may assume that k contains a primitive sixth root of unity ζ6.
Indeed, if it does not contain a primitive sixth root of unity, we get E1(k(t)) ⊆ E1(L(t)) with L = k(ζ6).
If E1(L(t)) = 0, then so is E1(k(t)). Therefore, suppose k contains a primitive sixth root of unity.

Consider the smooth projective algebraic curve C/k defined by an affine equation C : s6 = t+ 1. The
function field of C is given by k(C) = k(s, t) = k(s), as t = s6 − 1. This immediately tells us that C is
birationally equivalent to the projective line and hence has genus 0. Over the field extension k(s) ⊃ k(t)
we see that E1 : y

2 = x3 + s6, which is isomorphic to the elliptic curve E0 : η
2 = ξ3 + 1 via the change of

variables η = y
s3 , ξ =

x
s2 . This curve can also be seen as an elliptic curve over the base field k and we call

this curve Ẽ. We have the relation E0 = Ẽ ×k k(s), where ×k denotes the fiber product of k-schemes. In
order to continue we first need a lemma.

Lemma 4.0.2. We have
E1(k(t)) ⊂ E0(k(s)) ∼= Mork(C, Ẽ),

where Mork(C, Ẽ) denotes the set of k-morphisms from C to Ẽ (which is a group as Ẽ is a group variety).

Proof. The first inclusion is clear as k(t) ⊂ k(s) and E1
∼= E0 over k(s). In order to prove the isomorphism

we first take a point P = (a(s), b(s)) ∈ E0(k(s)). Associated to this point is the k-morphism ϕP : C → Ẽ
given by (s, t) 7→ (a(s), b(s)). Conversely, any k-morphism γ : C → Ẽ can be written as γ(s, t) =
(γ1(s), γ2(s)), as s determines t completely. This gives rise to the point Pγ = (γ1(s), γ2(s)) ∈ E0(k(s)).
This establishes a bijection, which is obviously compatible with the group structures.

We ask the question: which morphisms correspond to the points in E1(k(t))? The next lemma gives
the answer.
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Lemma 4.0.3. The points in E1(k(t)) correspond precisely to the k-morphisms γ : C → Ẽ so that

C Ẽ

C Ẽ

γ

ρ δ

γ

is a commutative diagram, where ρ(s, t) = (ζ6s, t) and δ(ξ, η) = (ζ46ξ,−η) are both k-automorphisms of
order 6 on their respective curves.

Proof. Any point P = (x(t), y(t)) ∈ E1(k(t)) yields a k-morphism γP : C → Ẽ given by γ(s, t) =

(x(t)s2 ,
y(t)
s3 ). It is straightforward to check that the diagram commutes.

Conversely, a k-morphism γ(s, t) = (γ1(s, t), γ2(s, t)) yields a point Pγ = (s2γ1(s, t), s
3γ2(s, t)) ∈

E1(k(s)). We will use some Galois theory to show this point lies in E1(k(t)). First of all, note that
the curve C is irreducible. Moreover, as char(k) ̸= 2, 3 we find that k(s) ⊃ k(t) is a separable alge-
braic extension and as k contains a primitive 6th root of unity it is also normal. Therefore, k(s) ⊃ k(t)
is a degree 6 Galois extension with Galois group G generated by σ : k(s)→ k(s) sending s 7→ ζ6s and t 7→ t.

The fact that γ makes the diagram commute implies that γ1(ζ6s, t) = ζ46γ1(s, t) and γ2(ζ6s, t) =
−γ2(s, t). Using this when applying σ pointwise on Pγ we find that the Galois group G fixes Pγ , so that
Pγ ∈ E1(k(t)).

We are now ready to prove Proposition 4.0.1. Any point P ∈ E1(k(t)) corresponds to a k-morphism
γ : C → Ẽ so that our diagram commutes. As C is birationally equivalent to the projective line it has
genus 0, which implies that γ is a constant morphism. Say that γ(s, t) = Q, then δ(Q) = Q and as δ is a
degree 1 map this forces Q to be the point at infinity. This means that there is only one such morphism
γ and we deduce that the group E1(k(t)) is trivial.

The above procedure generalizes and will be fruitful later on. However, we would also like to indicate
an alternative approach using the theory of elliptic surfaces. In order to do this we consider again the
elliptic curve E1 : y

2 = x3 + t + 1, but now over the field k̄(t) (cf. Example 2.5.22). This defines a
rational elliptic surface E/k̄ (the Kodaira-Néron model) with a singular fiber at t = −1 and possibly at
t =∞. Using Tate’s algorithm (see [19, Section 5.8]) we find for t = −1 a fiber of type II, which has 1
irreducible component. For the fiber at infinity we need to do more work. Define r = 1

t and consider
the change of variables α = r2x, β = r3y. This yields the elliptic curve given by β2 = α3 + r5 + r6. The
order of vanishing of the discriminant of this curve at r = 0 is 10. Moreover, the order of vanishing of
the coefficient r5 + r6 at r = 0 is 5. Hence at t = ∞ we find a singular fiber of type II∗, so it has 9
irreducible components. The Shioda-Tate formula yields r(E1(k̄(t))) = 8− 8 = 0, which also implies that
r(E1(k(t))) = 0. It remains to show that there is no torsion. However, this is easy as both fibers have
no local contribution (cf. Example 2.5.17). We conclude that the group E1(k̄(t)) is trivial, which gives
another proof of Proposition 4.0.1.

Both of these methods are useful for determining the rank of elliptic curves of the form

En : y
2 = x3 + tn + 1

over Fp(t).

5 Methods for Finding (Bounds on) Ranks

In this section we outline several methods of computing ranks and specific points on the elliptic curve
En/Fp(t).

5.1 Morphisms and Rational Points

Let k = Fq = Fpm be a finite field and let C be a smooth, projective, geometrically irreducible curve over
k. Denote K := k(C) the function field of the curve C and suppose P0 ∈ C(k). We adopt the following
standard terminology; see for example Ulmer [33].
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Definition 5.1.1. Let E be an elliptic curve over K.

(1) We say E is constant if there is an elliptic curve Ē defined over k such that E ∼= Ē ×k K.
Equivalently, E is constant if it can be defined by a Weierstrass equation with coefficients in k.

(2) We say E is isotrivial if there exists a finite extension K ′ of K such that E becomes constant over
K ′. Note that a constant curve is isotrivial.

(3) We say E is non-isotrivial if it is not isotrivial. We say E is non-constant if it is not constant.

The isotrivial case is the most interesting to us as we have already seen in Section 4. Indeed, the
following theorem generalizes the statements seen in Section 4.

Theorem 5.1.2. Suppose Ē is an elliptic curve over k and let E = Ē ×k K. We have a canonical
isomorphism

E(K) ∼= Mork(C, Ē),

where Mork denotes morphisms of varieties over k. Under this isomorphism, E(K)tor corresponds to the
subset of constant morphisms.

Proof. (From [33, Lecture 1, Section 6].) Note that from the scheme theoretic point of view the set E(K)
corresponds precisely to the set of K-morphisms Spec(K)→ E. By the universal property of the fiber
product these are in bijection with the set of k-morphisms Spec(K)→ Ē. By assumption the curve C is
smooth, hence such a k-morphism extends uniquely to a k-morphism C → Ē. This gives a map from
E(K) to Mork(C, Ē). If η : Spec(K)→ C denotes the canonical inclusion, composition with η (ϕ 7→ ϕ ◦ η)
induces a map Mork(C, Ē)→ E(K) inverse to the map above. This establishes the desired bijection and
this bijection is obviously compatible with the group structures.

Since k is finite, it is clear that a constant morphism goes over to a torsion point. Conversely, if
P ∈ E(K) is torsion, say of order n, then the image of the corresponding ϕ : C → Ē must lie in the set of
n-torsion points of Ē, a discrete set, and this implies that ϕ is constant.

Corollary 5.1.3. Suppose C has genus g(C) ≥ 1, then

rank E(K) = rankHomk(JacC, Ē).

Proof. We repeat the Albanese property of the Jacobian of C (see Theorem 2.2.4). Denote α : C ↪−→ JacC
the canonical inclusion. For every abelian variety A/k and every k-morphism g : C → A there exists a
unique k-morphism h : JacC → A which is up to translation a homomorphism of groups, so that the
diagram

C JacC

A

g h

α

commutes. Taking Ē/k for A/k we obtain that Mork(C, Ē) ∼= Mork(JacC, Ē). As the k-morphism h
above is, up to translation, a homomorphism of groups we get a surjective map

Mork(C, Ē) ↠ Homk(JacC, Ē),

with kernel precisely the constant k-morphisms. In other words

E(K)/E(K)tor ∼= Homk(JacC, Ē)

and the result follows.

The rank of this latter expression can be determined via the characteristic polynomial of the Frobenius
endomorphism. Indeed, this is precisely the next theorem due to Tate (see [29, Theorem 1]).

Theorem 5.1.4. Let A and B be abelian varieties over a finite field k, and let fA and fB be the
characteristic polynomials of their Frobenius endomorphisms relative to k. Then

rankHomk(A,B) = r (fA, fB),

where r (fA, fB) is defined as follows. Factor fA =
∏
P a(P ) and fB =

∏
P b(P ) into a product of

irreducibles, then

r (fA, fB) =
∑
P

a(P )b(P ) deg(P ).
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Remark 5.1.5. The above is a corollary of the “Tate conjecture for abelian varieties over finite fields”.

Suppose now that g(C) ≥ 1 and denote χC for the characteristic polynomial of the qth power
Frobenius endomorphism on JacC. The following gives a relation between χC and the numerator of the
zeta function (see Definition 2.6.1) of the curve C. To ease up notation we write LC(T ) for the numerator
of the zeta function of C and we refer to it as the L-polynomial of C.

Lemma 5.1.6. Suppose we are in the set-up above. Then we have

LC(T ) = T 2gχC(1/T ).

Proof. See [4, Proposition 8.4].

The next theorem illustrates some of the properties of the polynomial LC(T ).

Theorem 5.1.7. Let C by a smooth projective geometrically irreducible curve of genus g ≥ 1 defined
over Fq. Denote LC(T ) for the L-polynomial of C. Then

(i) LC is of the form
LC(T ) = a0 + a1T + · · ·+ a2gT

2g,

with ai ∈ Z for 0 ≤ i ≤ 2g;

(ii) a0 = 1, a2g = qg and a2g−i = qg−iai for 0 ≤ i ≤ g;

(iii) LC factors over C as

LC(T ) =

2g∏
i=1

(1− αiT ) ,

where we can arrange the αi so that αg+iαi = q for all 1 ≤ i ≤ g.

If we denote for any integer r ≥ 1, Nr := |C(Fqr )| and Sr := Nr − (qr + 1), then we also have

(iv) Nr = qr + 1−
2g∑
i=1

αr
i ;

(v) Lastly, for 1 ≤ i ≤ q we have

iai = Sia0 + Si−1a1 + · · ·+ S1ai−1.

Proof. See [27, Section 5.1].

By the last property one sees that from the first g numbers N1, . . . , Ng of points on the curve one
can obtain the whole L-polynomial and hence the whole characteristic polynomial of Frobenius.

Example 5.1.8. Let k = F7 and consider the hyperelliptic curve C : s6 = t2+1 of genus 2 and the elliptic
curve E0 : y

2 = x3 + 1 both over k. We try to determine rankHomk(JacC,E0) from the L-polynomials
of C and E0. The L-polynomial of E0, denoted by LE0(T ), is 1 − aT + 7T 2 with a = 8 − |E0(k)| (cf.
Example 2.6.6). A quick calculation reveals that |E0(k)| = 12, so that LE0(T ) = 1+ 4T +7T 2. It remains
to find the L-polynomial of C. Using Magma we find |C(k)| = 8 and |C(F49)| = 46, hence S1 = 0 and
S2 = −4 so that we find

LC(T ) = 49T 4 − 2T 2 + 1.

From Lemma 5.1.6 we deduce that χC = T 4 − 2T 2 + 49 = (T 2 + 4T + 7)(T 2 − 4T + 7) and that
χE0

= T 2 + 4T + 7. By Theorem 5.1.4 we conclude that

rankHomk(JacC,E0) = 2.

In particular, this shows that we have r (E2(F7(t))) ≤ r (E2(F7(C))) = 2.

Theorem 5.1.4 phrased in terms of zeta functions will be used to compute the rank of Ep+1(Fp(t)) for
primes congruent to 5 modulo 6.
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5.2 Morphisms and Rational Points on Certain Curves

We want to generalize the methods developed in the proof of Proposition 4.0.1 in order to apply them to
elliptic curves of the form En : y

2 = x3 + tn + 1. So let k be a finite field containing a primitive 6th root
of unity ζ6 and define the elliptic curve Ef : y

2 = x3 + f(t) over k(t), where f(t) is so that the smooth
projective algebraic curve C given by affine equation s6 = f(t) is geometrically irreducible. Then the field
extension k(C) ⊃ k(t) is a degree 6 Galois extension with Galois group generated by σ : k(C) → k(C)
sending s 7→ ζ6s and t 7→ t.

We repeat the exact same procedure as in Section 4. Over k(C) the curve Ef : y
2 = x3 + s6

is isomorphic to the elliptic curve E0 : η
2 = ξ3 + 1. We have the relation E0 = Ẽ ×k k(C), where

Ẽ : η2 = ξ3 + 1 is defined over k. We remark that the curve E0 is often called a sextic twist of Ef ,
as they become isomorphic over a degree 6 extension. From Theorem 5.1.2 we immediately deduce
that Ef (k(t)) ⊂ E0(k(C)) ∼= Mork(C, Ẽ) and that the constant morphisms corresponds precisely to
E0(k(C))tor.

In this case there is also a description of the k(t)-rational points on Ef .

Lemma 5.2.1. The points in Ef (k(t)) correspond precisely to the k-morphisms γ : C → Ẽ so that

C Ẽ

C Ẽ

γ

ρ δ

γ

is a commutative diagram, where ρ(s, t) = (ζ6s, t) and δ(ξ, η) = (ζ46ξ,−η) are both k-automorphisms of
order 6 on their respective curves.

Proof. The proof of Lemma 4.0.3 essentially carries over, but for completeness we repeat it here in
a general context. Take a point P := (x(t), y(t)) ∈ Ef (k(t)), this gives a morphism γP : C → Ẽ via

(s, t) 7→
(

x(t)
s2 ,

y(t)
s3

)
. We compute

(s, t)
ρ7→ (ζ6s, t)

γ7→ (ζ46x(t)/s
2,−y(t)/s3)

and
(s, t)

γ7→ (x(t)/s2, y(t)/s3)
δ7→ (ζ46x(t)/s

2,−y(t)/s3),

so that the diagram indeed commutes.

Conversely, take any k-morphism γ : C → Ẽ and write it as γ(s, t) = (γ1(s, t), γ2(s, t)). This gives
the point Pγ =

(
s2γ1(s, t), s

3γ2(s, t)
)
∈ Ef (k(C)). The exact same argument as in the proof of Lemma

4.0.3 yields the result.

In the next example we apply this procedure to find a lower bound for the rank of the elliptic curve
E2 : y

2 = x3 + t2 + 1 over Fp(t) with p ≡ 1 mod 6.

Example 5.2.2 (The Elliptic Curve E2). Fix a prime p congruent to 1 modulo 6 and set k = Fp, then k
contains a primitive sixth root of unity. We try to determine the rank of E2(k(t)). As t2+1 is not a perfect
square nor a cube in k(t) and C : s6 = t2+1 defines an irreducible hyperelliptic curve of genus 2, we are pre-
cisely in the required set up. Via quotients of algebraic curves by automorphisms we find two independent k-
morphisms so that the diagram commutes, namely γ1(s, t) = (ζ6/s

2,−t/s3) and γ′1(s, t) = (−1/s2,−t/s3).
To see this note that we have an automorphism on C given by σ(s, t) = (ζ6s, t). The subfield of k(C)
which is fixed by σ is k(s3, t) implying we get a surjective morphism f : C → C/ ⟨σ⟩ : α2 = t2 + 1 sending
(s, t) 7→ (α = s3, t = t). Take η = stζ6 and ν = ζ26s

2, then η2 = νt2 = ν(ν3 − 1). Define X := −1/ν and
Y := η/ν2, then Y 2 = X3 + 1. So we have a k-morphism sending (s, t) 7→ (ζ6/s

2,−t/s3). The other
k-morphism is obtained from considering a different automorphism of the curve C. It remains to show
that they are independent, which Magma quickly does for us.

This gives a lower bound of 2 for the rank of E2(k(t)). However, we would also like to have an upper
bound for the rank. Once again we can do this via the theory of elliptic surfaces. Indeed, the curve
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E2/F̄p(t) defines an elliptic surface with singular fibers at t2 = −1, which are easily seen to be irreducible.
The fiber at infinity is of Kodaira type IV∗, hence consists of 7 irreducible components. The Shioda-Tate
formula yields that r(E2(F̄p(t))) = 2, which then yields an upper bound of 2 over k(t). In particular we
have found that r(E2(Fp(t))) = 2 for any prime p ≡ 1 mod 6.

Remark 5.2.3. For a specific prime p an upper bound can also be obtained via Theorem 5.1.4 (see
Example 5.1.8).

Remark 5.2.4. Whenever k does not contain a primitive 6th root of unity ζ6 we can look at L := k(ζ6) a
degree 2 extension of k. The results in all of Section 5.2 then work with k replaced by L. Using Corollary
2.3.13 we are able to say something about Ef (k(t)) again.

5.3 Vector Space Decomposition

In this section we follow the method outlined in [3]. Although done in characteristic zero, nothing special
changes when done in characteristic p > 0. The set-up is the usual one: let k be a finite field containing a
primitive sixth root of unity ζ6 ∈ k. Write K := k(t) and let E/K be an elliptic curve given by affine
equation y2 = x3 + f(t) for some f(t) ∈ K. This has a natural K-endomorphism ρ of order 6 given by
ρ(x, y) = (ζ26x,−y). Consider the field extension L = K(s) ⊃ K where s6 = t. Then L/K is a cyclic
Galois extension of degree 6 with Galois group generated by the automorphism σ : s 7→ ζ6s. If P ∈ E(L),
then we write P 7→ Pσ for the action of σ on the coordinates of P . We can tensor the abelian group
E(L) with Q to obtain a Q-vector space

V := E(L)⊗Z Q.

This vector space has a natural Q(ζ6)-structure via ζ6 · (P ⊗ r) = ρ(P )⊗ r. Moreover, σ extends to a
Q-linear map σV on V via σV (P ⊗ r) = Pσ ⊗ r. Important is that this map σV is also Q(ζ6)-linear.
Indeed, for a nontrivial point P = (x, y) we compute

ζ6 · (σ(x), σ(y))⊗ r = (ζ26σ(x),−σ(y))⊗ r
= (σ(ζ26x), σ(−y))⊗ r
= σV (ζ6 · (x, y)⊗ r),

so that the action of ζ6 and σV commute. In particular, this implies that σV is Q(ζ6)-linear. The
eigenvalues λ of σV satisfy λ6 = 1, hence they all lie in Q(ζ6) and we find that the Q(ζ6)-vector space V
decomposes as a direct sum of eigenspaces V =

∑
Vλ. We now investigate these eigenspaces.

Lemma 5.3.1. Keep the set-up from the above discussion. The Q(ζ6)-vector space E(L)⊗Z Q splits as a
direct sum

5∑
i=0

Vζi
6
,

where the Q(ζ6)-vector space Vζi
6
can be identified with Ei(K)⊗Z Q, in which Ei/K is the elliptic curve

given by y2 = x3 + t6−if(t).

Proof. It is clear that the eigenspace V1 corresponds to (nontrivial) points P⊗r with Pσ−P of finite order.
Hence some multiple of P is in E(K). This implies V1 = E(K) ⊗Z Q and E0/K ∼= E/K via a change
of variables, so the result follows. For a nontrivial point P ⊗ r to lie in Vζ6 we need Pσ − ρ(P ) to be of
finite order. This means that a multiple of P , say [m]P := (x, y) satisfies σ([m]P ) = ρ([m]P ) = (ζ26x,−y).
In other words, x = α(t)s2 and y = β(t)s3 for some α, β ∈ k(t). These coordinates have to satisfy
β(t)2s6 = α(t)3s6 + f(t) or equivalently β(t)2 = α(t)3 + (1/t)f(t). This means that these points are
precisely the k(t)-rationals points on the elliptic curve with affine equation y2 = x3 + (1/t)f(t). Via a
change of variables this isomorphic to the elliptic curve given by affine equation y2 = x3 + t5f(t). It
follows that Vζ6 = E5(K)⊗Z Q, as desired. The other cases follow in a similar fashion.

This immediately gives the following corollary.

Corollary 5.3.2. Keeping the set-up from above we find

r(E(L)) =

5∑
i=0

r(Ei(K)). (5.1)
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Proof. Note that the left hand side of Equation 5.1 is just dimQ (E(L)⊗Z Q), which by Lemma 5.3.1

equals
5∑

i=0

dimQ
(
Ei(K)⊗Z Q

)
. This latter expression is precisely the right hand side of (5.1).

Important is that elliptic curves described in the beginning of this section always have even rank. This
is because the Mordell-Weil group E(K) inherits a natural Z[ζ6]-module structure from the endomorphism
ring. This implies that (x, y) ∈ E(K) and (ζ26x, y) ∈ E(K) are independent points if they exist, something
which we will repeatedly use.

Example 5.3.3. Consider the elliptic curve E1 : y
2 = x3 + t+ 1 over K = Fp(t), where p ≡ 1 mod 6.

Write L = Fp(s) where s
6 = t, then

r(E1(L)) =

5∑
i=0

r(Ei(K)),

where Ei/K is the elliptic curve given by y2 = x3 + ti(t + 1). Note that E1/L can be written as
E1 : y

2 = x3 + s6 + 1, which is just the elliptic curve E6/Fp(s). In particular we find that

r(E6/Fp(s)) =

5∑
i=0

r(Ei(K)),

where Ei/K is the elliptic curve given by y2 = x3 + ti(t+ 1).

This means we can calculate the rank of E6/Fp(t) using elliptic curves that contain lower powers of t
in their Weierstrass form. Let us work this out explicitly. Fix a prime p ≡ 1 mod 6, then we know by
Example 5.3.3 that we need to calculate the rank of 6 different elliptic curves. These elliptic curves over
Fp(t) are given by equations y2 = x3 + ti(t+ 1), where i = 0, . . . , 5. For i = 0 we immediately see that
this has rank 0 as deduced in Section 4. For i = 1 we see that the corresponding elliptic surface has 3
singular fibers, two of type II and one of type IV∗. The Shioda-Tate formula yields that the rank (over
F̄p(t)) is equal to 2. However, a quick calculation in Magma [2] shows that for p = 7 the rank is 0 and for
p = 31 the rank is 2. We deduce that the rank of E6/Fp(t) is highly dependent on p, but we are able to
find primes for which we attain the geometric† Mordell-Weil rank. For now, we have failed in calculating
the rank of E6/Fp(t) in general.

5.4 Shioda’s Algorithm

In 1986 Tetsuji Shioda presented an algorithm for computing the Picard number for certain algebraic
surfaces [23]. In this section we explain how this can be used to give an upper bound for the rank of the
elliptic curves we are interested in. This section applies Shioda’s method as described in [9, Section 7] to
a concrete example.

Fix a prime number p ≡ 1 mod 720, denote k = F̄p and consider the group E360(k(t)). We would like
to have an upper bound for its rank. The corresponding elliptic surface E360 has only singular fibers above
t360 = −1 and they are all of type II. This implies that the Euler number e(E360) = 720 (cf. Example
2.5.17). Moreover, from [21, Theorem 6.12] we have that b1(E360) = b1(P1) = 0 so by Poincaré-duality
(Theorem 2.4.13) it follows that b2(E360) = 718. Noether’s formula yields that the Euler characteristic is
χ(E360) = 60 and we define the Lefschetz number of E360 as

λ(E360) := b2(E360)− ρ(E360)
= 718− ρ(E360).

In particular, once we find the Lefschetz number, the Shioda-Tate formula implies

r(E360(k(t))) ≤ 716− λ(E360).

Shioda’s algorithm gives the Lefschetz number. We will very roughly sketch the algorithm for our
specific elliptic curve. For a complete description of the algorithm see [9, Section 7.1]. The lattice L in
the algorithm is generated by the vectors

v1 :=

(
−1
3
, 0,

1

3
, 0

)
, v2 :=

(
−1
2
, 0, 0,

1

2

)
, v3 :=

(
1

360
,
−1
360

, 0, 0

)
.

†Meaning over an algebraically closed base field.
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The only elements that we have chance to lie in the set Λ as in [9, Section 7] are the vectors of the form
xi :=

(
60+i
360 ,

−i
360 ,

1
3 ,

1
2

)
and zi :=

(
i−420
360 , −i

360 ,
2
3 ,

1
2

)
. As p is a prime congruent to 1 modulo 720 we see that

for these vectors the integer ci always equals 1. It is now relatively straightforward to write Magma code
(see Listing 7) that determines for a fixed prime p a lower bound for the amount of elements in Λ. In
particular, this provides us with an upper bound for the rank of E360(k(t)). Via this method we see that
the rank for p = 44460001, p = 96614641, p = 133773121, p = 177452641 and p = 206869681 is bounded
above by 68.

6 Primes Congruent to 1 Modulo 6

Recall from Section 5.3 that we failed in finding the rank of E6/Fp(t) for a prime p ≡ 1 mod 6. However,
using the Shioda-Tate formula and the fact that E6 defines a rational elliptic surface we see that the
geometric Mordell-Weil rank equals 8. We ask the question: for which primes does E6/Fp(t) with p ≡ 1
mod 6 attain its geometric rank? The following conjecture gives the answer.

Conjecture 6.0.1. Consider the elliptic curve E6 : y
2 = x3 + t6 +1 over Fp(t), where p ≡ 1 mod 6. We

know that r(E6(F̄p(t))) = 8 and we think that we attain the geometric rank over Fp(t) if the following
conditions are satisfied:

• We have a root β6,0 ∈ Fp of the polynomial G6,0 := z6 + 225z4 − 405z2 + 243.

• We have a root of the polynomial G6,0,1 = z3 − β2
6,0 + 1 in Fp.

• We have a root of the polynomial G6,0,2 = z12 − β5
6,0 in Fp.

Equivalently, we need a root of the polynomial

G6 := z144 + 4380210601797031650z120 + 66612598686163181266968375z96

+ 335162808845453779072679142322236z72 + 27095485078653399252384867877999276575z48

+ 7688896356384740565701186573250z24 + 717897987691852588770249.

Explanation. We employ Theorem 2.5.23 as the equation for E6 is minimal. First note that we have
the 4 obvious independent sections (−1, t3), (−ζ26 , t3), (−t2, 1) and (ζ26 t

2, 1), where ζ6 is a primitive sixth
root of unity in Fp. We search for 4 more. In order to do so, let β6,0 ∈ Fp be a root of G6,0. We know
that the group E6(F̄p(t)) is generated by sections of the form (x, y) ∈ E6(F̄p(t)) with x = gt2 + at+ b,
y = ht3 + ct2 + dt + e and a, b, c, d, e, g, h ∈ F̄p. Filling these into the equation for E6 we obtain the
following system of equations:

−b3 + e2 − 1 = 0

−3ab2 + 2de = 0

2ce− b(a2 + 2bg)− 2a2b− b2g + d2 = 0

2cd− a(a2 + 2bg) + 2eh− 4abg = 0

2dh− g(a2 + 2bg)− 2a2g − bg2 + c2 = 0

−3ag2 + 2ch = 0

−g3 + h2 − 1 = 0


.

In order to solve this system we can plug this into software like Matlab [31]:
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1 syms g a b h c d e t;

2 x = g*t^2 + a*t + b;

3 y = h*t^3 + c*t^2 + d*t + e;

4 f = y^2 - x^3 - t^6 - 1;

5 C = coeffs(f, t);

6 v0 = C(1);

7 v1 = C(2);

8 v2 = C(3);

9 v3 = C(4);

10 v4 = C(5);

11 v5 = C(6);

12 v6 = C(7);

13 S = solve(v0 == 0, v1 == 0, v2 == 0, v3 == 0, v4 == 0, v5 == 0 ,v6 == 0);

Listing 1: Solves System of Equations For E6.

This yields a number of solutions. Write r := β6,0, then one of them is

g = −ζ6(r2 − 1)1/3

a = (817ζ36r
2(r2 − 1)1/3(−r5/12 + 5r3/6− 3r/4)2/3)/288

− (99ζ36 (r
2 − 1)1/3(−r5/12 + 5r3/6− 3r/4)2/3)/64

+ (65ζ36r
4(r2 − 1)1/3)(−r5/12 + 5r3/6− 3r/4)2/3)/5184

b = (65ζ26r(r
2 − 1)1/3(−r5/12 + 5r3/6− 3r/4)1/3)/24

− (451ζ26r
3(r2 − 1)1/3(−r5/12 + 5r3/6− 3r/4)1/3)/216

− (ζ26r
5(r2 − 1)1/3(−r5/12 + 5r3/6− 3r/4)1/3)/108

h = r

c = (65ζ26r(−r5/12 + 5r3/6− 3r/4)2/3)/24

− (451ζ26r
3(−r5/12 + 5r3/6− 3r/4)2/3)/216

− (ζ26r
5(−r5/12 + 5r3/6− 3r/4)2/3)/108

d = −ζ6(−r5/12 + 5r3/6− 3r/4)1/3)

e = r



.

Using Magma we see that we are in the splitting field of G6,0, hence we can take the cube root of both
r2 − 1 and −r5/12 + 5r3/6− 3r/4 in Fp. This section is visibly independent of the previous 4 and the
Z[ζ6]-structure induced from the endomorphism (x, y) 7→ (ζ6x,−y) yields 2 extra independent sections.
Using a root of G6,0,1 we can find 2 extra independent sections.

The equivalence of needing roots of G6,0, G6,0,1 and G6,0,2 and of needing a root of G6 is easily
checked with Magma (see below).

1 R<z> := PolynomialRing(Integers ());

2 f := z^6 + 225*z^4 - 405*z^2 + 243;

3 K<b> := NumberField(f);

4 L<x> := PolynomialRing(K);

5 h := x^3 - b^2 + 1;

6 HasRoot(h); /*If true , then h has a root in K*/

7 g := x^12 - b^5;

8 HasRoot(g);

9 SplField := SplittingField(g);

10 SplField;

Listing 2: Combining Three Polynomials Into One.

Remark 6.0.2. The above explanation is not a rigorous proof. However, in our search for high rank we
might as well hope that a lot of sections are defined over Fp. In the case of E6, to have a lot of sections
defined over Fp, we at least need roots of G6,0, G6,0,1 and G6,0,2. Therefore it makes sense to restrict our
search for primes so that these polynomials have roots in Fp.
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6.1 Finding Prime Numbers That Give High Rank

Using the decomposition found in Section 5.3 we can systematically try to compute the rank of E360(Fp(t))
for p ≡ 1 mod 6. To see this we first fix some notation. Denote Ea,b for the elliptic curve over Fp(t) given
by affine equation y2 = x3 + tb(ta + 1). Denote r(a, b) for its rank over Fp(t), then our decomposition
yields the formula

r(360, 0) =

5∑
i=0

r(60, i). (6.1)

We try to find pieces that correspond to rational elliptic surfaces in order to obtain similar conditions as
in Conjecture 6.0.1. Recall that in Lemma 5.3.1 we assumed that the field L is of the form L = K(s) with
s6 = t so that L/K is cyclic Galois of degree 6. We can do the same thing by taking s2 = t (so that L/K
is cyclic of degree 2 with generator σ sending s 7→ ζ36s) or s

3 = t (so that L/K is cyclic of degree 3 with
generator σ sending s 7→ ζ26s). Doing this yields the following formulas for the rank. If E : y2 = x3+f(t2),
then the rank of E is the sum of the ranks of y2 = x3 + f(t) and y2 = x3 + t3f(t). If E is given by
E : y2 = x3 + f(t3), then the rank of E is the sum of the ranks of y2 = x3 + f(t), y2 = x3 + t2f(t) and
y2 = x3 + t4f(t). Using these formulas we now investigate the r(60, 0) case.

Using the order 6 automorphism we find that r(60, 0) =
5∑

i=0

r(10, i). We look at these ranks one

by one as well. Using the order 2 automorphism we find that the r(10, 0) case decomposes into r(5, 0)
and r(5, 3), the former surface is rational and the latter K3. Using Shioda’s formula we know that
geometrically r(5, 0) = 8 as all fibers of the corresponding rational surface are of type II. Using Matlab
(see Listing 13) we find that a lot of sections are defined over Fp whenever we have a root β5,0 of
G5,0 = z40 + 3732368398z30 + 104580047z20/1080 − 209z10/900 + 1/583200000 in Fp and a root of
G5,0,1 = z3 − β2

5,0 in Fp. Note that this happens for the prime p = 1154971. The following picture nicely
illustrates the other decompositions (note that r(10, 4) = r(10, 10), r(10, 3) = r(10, 15), r(5, 3) = r(5, 15)
and r(5, 4) = r(5, 10) via a change of variables)

r(60, 0)

r(10, 0) r(10,1) r(10, 2) r(10, 3) r(10, 4) r(10,5)

r(5,0) r(5, 3) r(5,1) r(5, 4) r(10,15) r(10,10)

r(5,15) r(5,10).

In particular only the r(5, 0) and r(5, 1) cases correspond to rational surfaces. All other cases or
either K3 or neither K3 nor rational. For the r(5, 1) case (geometric rank 8) we obtain a lot of sections
defined over Fp whenever we have a root β5,1 ∈ Fp of the polynomials G5,1 = 5z8 + 360z6 − 1350z4 + 729
and G5,1,1 = z3 − β2

5,1 + 1.

We can play the same game for all other r(60, i) cases, which we will now do. The case r(60, 1) cannot
be decomposed any further. For r(60, 2) we get the following diagram

r(60, 2)

r(30, 1) r(30, 4)

r(15, 2) r(15,5).
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For r(60, 3) we get

r(60, 3)

r(20, 1) r(20, 3) r(20,5).

For r(60, 4) we get

r(60, 4)

r(30, 2) r(30, 5)

r(15, 1) r(15, 4)

r(15,10)

and lastly for r(60, 5) we have no further decomposition. In this way we barely obtain any rational elliptic
surfaces, but there is a way around this. Indeed, we estimate certain ranks using rational elliptic surfaces.
To illustrate this, consider the r(10, 10) case corresponding to the elliptic curve E10,10 : y

2 = x3+t10(t10+1).
Performing the substitution s = t10 we obtain that E10,10(Fp(s)) ⊂ E10,10(Fp(t)) and the former group is
isomorphic to E2,2(Fp(t)). This means that r(10, 10) ≥ r(2, 2), so we can bound the rank. The latter
curve is quickly analysed as follows. For p ≡ 1 mod 6 the corresponding surface has 2 fibers of type II
and 2 fibers of type IV. Using the Shioda-Tate formula we immediately see that the geometric rank is 4.
Suppose now that we take p so that the polynomial G2,2 = 4z3 − 1 has a root modulo p. Then according
to the sections obtained by Matlab we should get a lot of them defined over Fp. In fact, one can write
down 4 explicit independent sections. They are given as (α, t2 + 1/2), (ζ26α, t

2 + 1/2), (αt2, t3/2 + t) and
(ζ26αt

2, t3/2 + t) where α is a root of G2,2 (cf. Appendix B).

In the same way we get r(10, 5) ≥ r(2, 1), which corresponds to a rational elliptic surface with 3 fibers
of type II and 1 fiber of type I∗0. Therefore it has geometric Mordell-Weil rank equal to 4 and we once again
ask ourselves when this has sections defined over Fp. Using Matlab with sections of the form (−t+a, ct+d)
we see that we have a lot of them defined over Fp whenever G2,1,1 = 3z4+6z2−1 has a root modulo p. Us-
ing some more general sections we see that we also need a root ofG2,1,2 = −14348907+12597120z4+4096z8.

Similarly we see r(15, 5) ≥ r(3, 1), which corresponds to a rational elliptic surface. It has 4 fibers of
type II and 1 of type IV. So the geometric rank is equal to 6. Using Matlab we find a lot of sections
defined over Fp when the following polynomials have roots mod p:

• G3,1,1 = z9 − 159z6/2 + 21z3 + 1/8 with root β3,1,1;

• G3,1,2 = z9 + 159z6/2 + 21z3 − 1/8 with root β3,1,2;

• G3,1,1,1 = z3 − β2
3,1,1;

• G3,1,2,1 = z3 − β2
3,1,2.

We continue the process.

Again we find r(20, 5) ≥ r(4, 1) a rational elliptic surface with only type II fibers, hence with
geometric rank 8. Using Matlab we get that a lot of sections are defined over Fp whenever G4,1 =
z32 + 26480951z24 + 772048803z16/8 + 26480951z8/16 + 1/256 has a root β4,1 ∈ Fp and the polynomial
G4,1,1 = z3 − β2

4,1 has a root in Fp.

We are not done, via a change of variables we find r(15, 4) = r(15, 10) ≥ r(3, 2). Once again
we get a rational elliptic surface. This one has 4 fibers of type II and 1 fiber of type IV, hence has
geometric rank 6. Via Matlab we see that a lot of sections will be defined over Fp when we have a
root β3,2 of G3,2 = z18+1229z12/18+8371z6/3888+1/1259712 in Fp and a root of G3,2,1 = z3−β2

3,2 in Fp.
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Similarly, we investigate r(5, 10) ≥ r(1, 2). The latter corresponds to a rational elliptic surface with
three singular fibers of type II, IV and I∗0, respectively. So it has geometric rank 2 and we always attain
it for p ≡ 1 mod 6 as we have the obvious section (−t, t) together with the Z[ζ6]-structure.

Second to last, we investigate r(10, 15) ≥ r(2, 3). This gives a rational elliptic surface with 3 fibers of
type II and 1 of type I∗0, meaning it has geometric rank 4. Using Matlab we see that a lot of sections are
defined over Fp whenever the polynomials G2,3,1 = 3z4 + 6z2 − 1, G2,3,2 = 9z8 − 18z6 + 39z4 + 6z2 + 1
and G2,3,3 = z8 + 18z4 − 27 have roots in Fp.

Lastly, we investigate r(5, 15) ≥ r(1, 3), the latter corresponds to a rational elliptic surface with 1
fiber of type II, one of type I∗0 and one of type IV. Therefore it has geometric rank 2 and it is clear that
we always attain rank 2 for primes 1 modulo 6. To see this note that we have the obvious section (−t, t2),
so using the Z[ζ6]-action we get rank 2.

When we add together all of the geometric ranks, we find that the highest rank we can achieve as
a lower bound in this scenario is 52. However, we have not analysed several curves obtained in the
decomposition. An important curve to look at is E10,1 : y

2 = x3 + t(t10 + 1).

Lemma 6.1.1. The rank of E10,1 equals the sum of the ranks of E : y2 = x3 + t5 − 5t3 + 5t and
Etwist : (t

2 − 4)y2 = x3 + t5 − 5t3 + 5t.

Proof. Via a change of variables we see that E10,1 is isomorphic to the curve E : y2 = x3 + t5 + t−5.
Consider now u = t+ 1/t, which gives a degree 2 extension Fp(u) ⊂ Fp(t). In particular we have that
the extension Fp(t) is obtained by adjoining a root of u2 − 4 to Fp(u). Using [25, Exercise 10.16] we see
that r(10, 1) = r(E10,1(Fp(u))) + r(Etwist(Fp(u))), where the group E10,1(Fp(u)) can be viewed as the
Fp(u)-rational points on the curve E : y2 = x3 + u5 − 5u3 + 5u. The result follows.

The curve Etwist determines an elliptic K3 surface and the curve E : y2 = x3 + u5 − 5u3 + 5u over
Fp(u) defines a rational elliptic surface with singular fibers all of type II. In particular, the latter surface
has geometric Mordell-Weil rank 8. We ask the question: when does E/Fp(u) attain its geometric rank?
Using Matlab again we see that we at least need the polynomial G10,1,1 = 25z16 − 25 · 11340z12 − 5 ·
240842z8 − 25 · 2268z4 + 1, but also of a bunch of other polynomials with huge coefficients to have roots
modulo p. E.g the polynomials G10,1,2 = 13286025z16 − 164025 · 28 · z12 + 5 · 235718z8 − 45 · 28z4 + 1 and
G10,1,3 = 10485760000z32+796262400000z28+28673969152000z24+5919441120000z20+569262158025z16−
18498253500z12 + 280019230z8 − 24300z4 + 1 need roots. Via these polynomials we see that the prime
409 works.

Using this method we can obtain rank 60 just by looking at rational elliptic surfaces. We try to find
a prime that attains this.

6.2 List of Polynomials That Need a Root

Here we keep a list of which polynomials need to have roots modulo p in order to obtain (possibly) high
rank. Recall that the notation βi,j and βi,j,k is used to denote a root of the polynomials Gi,j and Gi,j,k

respectively.

• G6,0 = z6 + 225z4 − 405z2 + 243;

• G6,0,1 = z3 − β2
6,0 + 1;

• G6,0,2 = z12 − β5
6,0;

• G5,0 = z40 + 3732368398z30 + 104580047z20/1080− 209z10/900 + 1/583200000;

• G5,0,1 = z3 − β2
5,0;

• G5,1 = 5z8 + 360z6 − 1350z4 + 729;

• G5,1,1 = z3 − β2
5,1 + 1;

• G2,1,1 = 3z4 + 6z2 − 1;

• G2,1,2 = −14348907 + 12597120z4 + 4096z8;

34



• G3,1,1 = z9 − 159z6/2 + 21z3 + 1/8;

• G3,1,2 = z9 + 159z6/2 + 21z3 − 1/8;

• G3,1,1,1 = z3 − β2
3,1,1;

• G3,1,2,1 = z3 − β2
3,1,2;

• G4,1 = z32 + 26480951z24 + 772048803z16/8 + 26480951z8/16 + 1/256;

• G4,1,1 = z3 − β2
4,1;

• G3,2 = z18 + 1229z12/18 + 8371z6/3888 + 1/1259712;

• G3,2,1 = z3 − β2
3,2;

• G2,3,1 = 3z4 + 6z2 − 1;

• G2,3,2 = 9z8 − 18z6 + 39z4 + 6z2 + 1;

• G2,3,3 = z8 + 18z4 − 27;

• G2,2 = 4z3 − 1;

• G10,1,1 = 25z16 − 25 · 11340z12 − 5 · 240842z8 − 25 · 2268z4 + 1;

• G10,1,2 = 13286025z16 − 164025 · 28 · z12 + 5 · 235718z8 − 45 · 28z4 + 1;

• G10,1,3 = 10485760000z32+796262400000z28+28673969152000z24+5919441120000z20+569262158025z16−
18498253500z12 + 280019230z8 − 24300z4 + 1.

Remark 6.2.1. The polynomials G2,3,1 and G2,1,1 are equal. Moreover, in order to obtain high rank for
E360(Fp(t)) we do not have to check whether G6,0, G6,0,1 and G6,0,2 have roots modulo p, as they do not
show up in the decomposition. This leaves 20 polynomials for which we need to determine if they have a
root modulo p.

Remark 6.2.2. Their exist infinitely many prime numbers p so that all these polynomials have a root in
Fp thanks to Corollary 2.7.6.

Running a computer program we encounter the primes p = 44460001, p = 96614641, p = 133773121,
p = 177452641, p = 206869681 and p = 246569041. Using Magma we see that we attain a lower bound of
rank 60 using rational elliptic surfaces (see Listing 5). We however, are interested in the rank 68 case.
The remaining 8 independent sections can be found by base changing from the elliptic K3 surface found
in Lemma 6.1.1.

This elliptic K3 surface is given by the equation y2 = x3 + (t2 − 4)3(t5 − 5t3 − 5t). Going forward,
let us refer to this elliptic curve as EK3/Fp(t). From what we know about the literature, there are no
general methods for computing the rank of such curves in a straightforward manner. However, we can do
a naive point search and check whether we obtain a lot of independent points. To do this, fix the prime
p = 44460001 as obtained above. The following piece of Magma code computes points in EK3(Fp(t)) of
the form

(x, y) =
(
a0 + a1t+ a2t

2 + a3t
3 + a4t

4, b0 + b1t+ b2t
2 + b3t

3 + b4t
4 + b5t

5 + b6t
6
)
,

with ai, bj ∈ Fp.

1 p := 44460001;

2 K := GF(p);

3 A<a0,a1,a2,a3,a4,b0,b1,b2,b3,b4,b5,b6> := AffineSpace(K,12);

4 S := CoordinateRing(A);

5 U<t> := PolynomialRing(S);

6 x := a0+a1*t+a2*t^2+a3*t^3+a4*t^4;

7 y := b0+b1*t+b2*t^2+b3*t^3+b4*t^4+b5*t^5+b6*t^6;

8 f := x^3+(t^2-4) ^3*(t^5-5*t^3+5*t)-y^2;

9 I := ideal <S | Coefficients(f)>;

10 B := Scheme(A,I);

11 Points(B);

Listing 3: Computing Points In EK3(Fp(t)).
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Running this code in Magma gives many points. We naively take a few of them and check whether
they are independent. The code displayed in Listing 6 shows that we obtain 8 independent points. We
conclude that the Mordell-Weil rank of E360(Fp(t)) is at least 68 for p = 44460001. Moreover, the primes
p = 96614641, p = 133773121, p = 177452641 and p = 206869681 also yields a lower bound of 68 in a
similar fashion.

Together with the results from Section 5.4 this yields that we have

rankE360(Fp(t)) = rankE360(F̄p(t)) = 68 (6.2)

for the primes p = 44460001, p = 96614641, p = 133773121, p = 177452641 and p = 206869681.

Combining the above with the results from Section 3 we conclude that we have found five prime
numbers p for which the 68 independent sections of Shioda’s example exist and remain independent over
Fp after a reduction modulo p. Next section discusses the case where a lot more than 68 independent
sections arise when reducing modulo p.

Remark 6.2.3. Throughout this section we repeatedly invoked Magma to compute the Mordell-Weil rank
of certain rational elliptic surfaces over Fp. We can do these computations by hand via several methods:

(1) performing a complete 2-descent;

(2) using Theorem 7.2.1;

(3) or via brute-forcing.

For our purposes method (3) suffices. Indeed, it is relatively easy to compute sections on these rational
elliptic surfaces and check whether they are independent (cf. the K3 case from before). Via this method
we can explicitly compute all the 68 generating points on the elliptic curve E360/Fp(t). Method (2) is not
feasible as pg(C) for the curves C appearing becomes too big, too quickly. Method (1) is quite efficient and
it is precisely what Magma uses when the usual geometric methods are not available.

7 Primes Congruent to −1 Modulo 6

Recall that a surface S is called supersingular if ρ(S) = b2(S). This section looks at particular elliptic
surfaces that are supersingular and attain high Mordell-Weil rank.

7.1 Integral Sections

It was already known by Tate and Shafarevich [30] that we can construct families of elliptic curves over
Fp(t) that attain arbitrarily large rank over F̄p(t). By investigating section 13.4.1 of [19] in a more
elementary way we find another such family and we try to explain in depth why unitary matrices yield
integral sections on the corresponding surface. To do so we first introduce some notation.

Definition 7.1.1. Let Fq2 be a finite field. For any element a ∈ Fq2 we write ā := aq. The unitary group

over Fq2 consists of invertible matrices A =

(
a b
c d

)
∈ Mat(2,Fq2) that satisfy AA

∗ = I = A∗A, where

A∗ :=

(
ā c̄
b̄ d̄

)
. This is a group under matrix multiplication denoted by U(2,Fq2) .

Consider now the following theorem based on [19, Theorem 13.42].

Theorem 7.1.2. Let p be a prime number so that p ≡ −1 mod 6, and let k be the field Fp2 . Consider
the elliptic curve E over K = k(t) defined by the Weierstrass form:

Ep+1 : y
2 = x3 + tp+1 + 1.

Then the rank of Ep+1(K) is 2p− 2 and any unitary matrix

(
a b
c d

)
∈ U(2,Fp2) gives rise to the integral

section P = (−(at+ b)(p+1)/3, (ct+ d)(p+1)/2). Moreover, the rank of Ep+1(Fp(t)) is p− 1.
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The proof of this theorem in [19] is quite involved and makes use of crystalline cohomology, a concept
we prefer not to delve into. However, using Theorem 5.1.4 we can give a much more elementary proof.

The elliptic surface Ep+1, corresponding to the equation for Ep+1, is covered by a Fermat surface of
the form

Sp+1 : X
p+1 + Y p+1 + Zp+1 +W p+1 = 0 ⊂ P3. (7.1)

Indeed, write Sp+1 affinely as xp+1 + yp+1 + zp+1 + 1 = 0, fix an integer l so that p+ 1 = 6l and fix an
element i ∈ Fp2 satisfying i2 = −1. Then we have a covering map (see Definition 2.1.8)

(x, y, z) 7→ (ξ = x2l, η = iy3l, t = z)

from Sp+1 to Ep+1. Take a line m parametrized by t given by m = (at + b, ct + d, t) ⊂ A3 where
a, b, c, d ∈ Fp2 . In order for this line to lie entirely on the Fermat surface we would need

(at+ b)p+1 + (ct+ d)p+1 + tp+1 + 1 = 0.

This gives the following four conditions on a, b, c, d ∈ Fp2 :
āa+ c̄c = −1
āb+ c̄d = 0

b̄a+ d̄c = 0

b̄b+ d̄d = −1

 .

This precisely means that the matrix B :=

(
a b
c d

)
satisfies B∗B = −I. We conclude that any matrix

B ∈ Mat(2,Fp2) satisfying B∗B = −I yields a line on the Fermat surface. Of course, any unitary matrix
A then yields another line as (AB)∗(AB) = −I.

Take a matrix B satisfying B∗B = −I, via the covering map this yields the point(
(at+ b)(p+1)/3, i(ct+ d)(p+1)/2

)
∈ Ep+1(Fp2(t)).

We should note that we are not in the same situation as in [19, p. 403]. However, it is not hard
to go from our result to theirs. Indeed, in the field Fp2 there always exists an element α satisfying

αp+1 = −1, α(p+1)/3 = −1 and α(p+1)/2 = −i. To see this we note that p2 − 1 = 36l2 − 12l, which is
divisible by (p+ 1)/3 = 2l. Hence there is an element α ∈ Fp2 so that α2l = −1. Then clearly α6l = −1

and α3l = −αl = −i. This yields the obvious line (α, αt, t) and any unitary matrix U :=

(
e f
g h

)
yields

the line (αet+ fα, αgt+ hα, t) and hence the point(
−(et+ f)(p+1)/3, (gt+ h)(p+1)/2

)
∈ Ep+1(Fp2(t)),

as desired.

Remark 7.1.3. The size of the group U(2,Fp2) is p(p+ 1)(p2 − 1). This is a classical, but nontrivial
result for which we refer to [12, Proposition 2.3.3] for more details.

We now investigate in some specific examples how many of these p(p+ 1)(p2 − 1) sections arising
from unitary matrices yield independent sections on the elliptic surface. We can do this via the explicit
formula for the height pairing from Theorem 2.5.14.

In our set-up, this becomes particularly simple. Indeed, the elliptic surface defined by equation
y2 = x3 + tp+1 + 1 has only fibers of type II. Therefore we are left with the following formula for the
height pairing on Ep+1:

⟨P,Q⟩ = (p+ 1)/6 + (P.O) + (Q.O)− (P.Q), (7.2)

for points P,Q ∈ Ep+1(F̄p(t)). Moreover, if the sections P ,Q arise from unitary matrices, then they are
integral. Indeed, for a point P =

(
−(et+ f)(p+1)/3, (gt+ h)(p+1)/2

)
∈ Ep+1(Fp2(t)) it is clear that the
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corresponding section does not intersect the zero section for t ∈ A1. To see what happens at t =∞ we
set s = 1/t and write p+ 1 = 6k. Set η = ys3k and ξ = xs2k, then a model at infinity is given by

η2 = ξ3 + s6k + 1.

The section P is of the form P = (αt2k + l.o.t, βt3k + l.o.t)† with α, β ∈ Fp2 . On the model at infinity
this becomes the section (s2k · (αs−2k + h.o.t), s3k · (βs−3k + h.o.t))∗, which has polynomials in s as
coordinates and hence does not intersect the zero section at s = 0. We conclude that the section P is an
integral section. For such sections the height pairing formula (7.2) becomes even simpler:

⟨P,Q⟩ = (p+ 1)/6− (P.Q).

Remark 7.1.4. From Lemma 2.5.29 we know that for any P ∈ E(K) its self-intersection P 2 is given
as P 2 = −χ(Ep+1). In a similar fashion as in Example 2.5.17 we find that the Euler number of
Ep+1 is 2p + 2. With Noether’s formula (2.4.20) we find −χ(Ep+1) = −(p + 1)/6. This implies that
⟨P, P ⟩ = (p+ 1)/3 + 2(P.O) on the elliptic surface Ep+1.

We aim to answer the question: what is the rank of the subgroup H ⊂ Ep+1(Fp2(t)) generated
by sections arising from unitary matrices? We did not find an answer to this question. However,
for the prime p = 5 we can do some computations using Magma.

Example 7.1.5. Fix the prime p = 5 so that we consider the elliptic curve E6 : y
2 = x3 + t6 + 1. By

Theorem 7.1.2 we know this has rank 8 over F25 and rank 4 over F5. Any unitary matrix U :=

(
e f
g h

)
with coefficients in F25 yields an integral section of the form(

−(et+ f)2, (gt+ h)3
)
∈ E6(F25(t)).

Note that taking coefficients in the field F5 gives well-defined sections over F5. The only unitary matrices

over F5 are

(
0 1
1 0

)
and

(
1 0
0 1

)
This way we find 2 distinct sections defined over F5: (−1, t3) and

(−t2, 1). These sections are independent. Indeed, call P := (−1, t3) and Q := (−t2, 1). It is clear that these
sections only meet above t = 1 and possibly at ∞. Performing the change of variables s = 1

t we obtain an
affine model y2 = x3 + s6 + 1 and the points P and Q correspond to (−s2, 1) and (−1, s3) respectively.
These clearly do not meet above s = 0 and we conclude that the sections P and Q only intersect above t = 1.

We now give a computation that shows (P.Q) = 1. The above argument shows that we only have to
look at the intersection multiplicity of the curves

P = Z(y2 − x3 − t6 − 1, x+ 1, y − t3)

and
Q = Z(y2 − x3 − t6 − 1, x+ t2, y − 1)

inside A3 (with coordinates x, y, t) at the point (−1, 1, 1). We change coordinates a := x+ 1, b := y − 1
and c := t− 1. The curve P then corresponds to

Z((b+ 1)2 − (a− 1)3 − (c+ 1)6 − 1, a, b+ 1− (c+ 1)3)

and Q corresponds to the curve

Z((b+ 1)2 − (a− 1)3 − (c+ 1)6 − 1, b, a− 1 + (c+ 1)2).

The intersection multiplicity is then given by

dimF5

( F5[a, b, c](a,b,c)

((b+ 1)2 − (a− 1)3 − (c+ 1)6 − 1, a, b+ 1− (c+ 1)3, b, a− 1 + (c+ 1)2)

)
,

which equals

dimF5

( F5[c](c)

(1− (c+ 1)6, 1− (c+ 1)3, 1− (c+ 1)2)

)
(⋆).

†The abbreviation “l.o.t” means “lower order terms”.
∗The abbreviation “h.o.t” means “higher order terms”.
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The polynomials 1 − (c + 1)6, 1 − (c + 1)3 and 1 − (c + 1)2 all have a simple root at c = 0. It follows
that the ideal (1− (c+ 1)6, 1− (c+ 1)3, 1− (c+ 1)2) = (c) ⊂ F5[c](c). In particular, the expression (⋆)
evaluates to 1 and we conclude that (P.Q) = 1.

This implies that the height pairing matrix is

(
2 0
0 2

)
, so that we have found two independent sections.

Therefore, the subgroup H ⊂ E6(F5(t)) generated by sections obtained from unitary matrices over F5 only
generates a rank 2 subgroup.

Over F25 = F5(ζ3), with ζ3 a cube root of unity, the situation changes drastically. Indeed, using
the Z[ζ3]-action induced from the endomorphism (x, y) 7→ (ζ3x, y) we immediately get the 4 independent
sections (−1, t3), (−ζ3, t3), (−t2, 1) and (−ζ3t2, 1). We generate some unitary matrices over F25 using

Magma (see Listing 8). Two of them are given by

(
3 3ζ3 + 2

2ζ3 + 3 2ζ3

)
and

(
3ζ3 + 1 3ζ3 + 3
3ζ3 2ζ3 + 3

)
. Together

with the Z[ζ3]-action this yields 4 different sections. A computation in Magma (see Listing 9) shows
that they are independent. In particular, the subgroup H ⊂ E6(F25(t)) generated by sections arising from
unitary matrices is of rank 8 as well!

The example above seems to indicate that the subgroup generated by sections arising from unitary
matrices does in fact generate, up to finite index, the entire Mordell-Weil group over Fp2(t). It seems
plausible that ideas from [20, Chapter 5.1] may be used to answer this question, but we did not investigate
this further.

7.2 Zeta Functions and Maximal Curves

Recall that we are interested in the rank of the group Ep+1(Fp(t)). We determine this rank using Theorem
5.1.4. To do so fix a prime number p congruent to −1 modulo 6 and let k := Fp2 = Fq. Then k contains
a primitive sixth root of unity and we are precisely in the set-up from Section 5.2. Indeed, define the
algebraic curve C : s6 = tp+1 + 1. Then we know that Ep+1(k(t)) ⊂ Mork(C, Ẽ) and the morphisms
corresponding to rational points are precisely the ones which make a certain diagram commute. Once
we know the rank of the group Ep+1(k(t)) we also know the rank of Ep+1(Fp(t)) as k = Fp(

√
−3) (cf.

Lemma 2.3.13). Tate’s result (Theorem 5.1.4) gives us a method for determining

rankMork(C, Ẽ) = rankHomk(JacC, Ẽ),

where the equality follows from Corollary 5.1.3.

The following statement by Tate and Shafarevich [30], which is a corollary of Theorem 5.1.4, proves
to be incredibly powerful.

Theorem 7.2.1. Let k = Fq be a finite field, C a geometrically irreducible projective curve and E an
elliptic curve both defined over k. Moreover, denote K = k(C) and EK the curve E seen over K. Let r
be the rank of EK(K) and denote LC/k(T ), LE/k(T ) for the L-polynomials of C/k and E/k respectively
(cf. Section 5.1). Then we have

r = 2h,

if LC/k(T ) = LE/k(T )
h · G(T ) and LE/k(T ) irreducible over Q or LC/k(T ) = LE/k(T )

h/2 · G(T ) and
LE/k(T ) = F (T )2 with gcd(LE/k(T ), G(T )) = 1.

Proof. This is an immediate corollary of Theorem 5.1.4 and Lemma 5.1.6.

In our case we have that r = rankMork(C, Ẽ), so in order to use this theorem we need to know the
zeta functions of C/k and Ẽ/k.

Lemma 7.2.2. Consider the elliptic curve Ẽ : y2 = x3 + 1 over k = Fp2 = Fq, where p ≡ −1 mod 6.
The zeta function is given by

Z(Ẽ/k;T ) =
(pT + 1)2

(1− T )(1− p2T )
.

Proof. See Example 2.6.6.
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From this lemma we immediately see that LẼ/k(T ) = (1 + pT )2, which is not irreducible over Q. In

order to apply Theorem 7.2.1 we need to know how many factors of 1 + pT appear in LC/k(T ) where C
is the curve C : s6 = tp+1 + 1 over k = Fp2 . We first compute the genus of C.

Lemma 7.2.3. Let k be a field of characteristic p ≡ −1 mod 6 and let C be the smooth projective curve

given by the affine equation s6 = tp+1 + 1. The genus of C/k is 5(p−1)
2 .

Proof. Write p + 1 = 6a for some integer a and note that the curve C is given by gluing two affines
s6 = t6a+1 and y6 = x6a+1 via the gluing maps t = 1/x and s = y/xa (cf. Example 2.1.3). In particular,
the points of infinity of C correspond to the points with x = 0 on the affine chart y6 = x6k+1, hence there
are 6 of them. Consider the morphism f : C → P1 sending (s, t) 7→ (t : 1). Then the degree of f is equal to
[k(C) : k(t)] = 6. By Riemann-Hurwitz (Theorem 2.1.13) we find that 2g(C)−2 = 6·(−2)+

∑
P∈C

(ef (P )−1).

The points of C that ramify and that correspond to the affine part of P1 have to satisfy tp+1 = −1, hence
there are p+ 1 such points with ramification index 6. Moreover, f−1(1 : 0) consists precisely of the 6
points of infinity of C so no ramification occurs at these points. Filling in the Riemann-Hurwitz formula

we obtain g(C) = 5 + 1
2 (p+ 1)(5) = 5(p−1)

2 , as desired.

Definition 7.2.4. Let C/k be a smooth, projective, geometrically irreducible algebraic curve over a finite
field k = Fq. We say C is Fq-maximal if it attains the Hasse-Weil bound, i.e. if |C(Fq)| = q+1+2g(C)

√
q.

Note that this is only possible if the cardinality of k is a square.

Example 7.2.5 (Hermitian Curves). Let k = Fq2 be a finite field and let Hq/k be the algebraic curve
given by affine equation Y q+1 +Xq+1 + 1 = 0. Then this is a k-maximal curve.

Proof. See [27, Example 6.3.6].

Theorem 7.2.6. Let C/Fq2 be an Fq2-maximal curve. The zeta function of C is

Z(C/Fq2 ;T ) =
(1 + qT )2g(C)

(1− T )(1− q2T )
.

Proof. We know that b1 = 2g(C) for an algebraic curve, so that Z(C/Fq2 ;T ) = P1(T )
(1−T )(1−q2T ) where

P1(T ) =
2g(C)∏
j=1

(1− ωjT ) and |ωj | = q. Using Theorem 5.1.7 we find that |C(Fq2)| = q2 + 1 −
2g(C)∑
j=1

ωj ,

which by Fq2-maximality gives the equality

−
2g(C)∑
j=1

ωj = 2g(C)q.

This together with the fact that |ωj | = q forces each ωj = −q and the result follows.

Theorem 7.2.7. Any algebraic curve over Fq2 that is covered by an Fq2-maximal curve is maximal itself.

Proof. See [22, Theorem 5.2.1].

Lemma 7.2.8. Let k = Fp2 be a field of characteristic p ≡ −1 mod 6 and let C/k be the smooth
projective curve given by the affine equation s6 = tp+1 + 1. The curve C is an Fp2-maximal curve.

Proof. We will perform an explicit point counting on the curve C/k. From the genus calculation in the
proof of Lemma 7.2.3 we know that C has 6 points at infinity all of which are defined over k. So we
just look at the affine equation s6 = tp+1 + 1 over k. First note that for t = 0 we get 6 points and for
tp+1 = −1 we get p+ 1 points. For the remainder assume that tp+1 /∈ {0,−1}. As tp+1 = tt̄ ∈ Fp for any
t ∈ Fp2 we find that we need s ∈ Fp2 and s6 ∈ Fp. This is precisely the condition that s6(p−1) = 1 and
there are 6(p− 1) such s. Now 6 of these s’s satisfy s6 = 1 namely the ones corresponding to t = 0. The
other 6p− 12 such s satisfy that s6 − 1 = tp+1 runs through F×

p . In particular for any such s we get p+ 1
associated t’s. We conclude that |C(k)| = 6 + 6 + (p+ 1) + (6p − 12)(p+ 1) = 6p2 − 5p+ 1, which is
precisely the Hasse-Weil upper bound.
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An alternative argument goes as follows. The curve C is covered by the Hermitian curve Hp : X
p+1 +

Y p+1 + 1 = 0 via (X,Y ) 7→ (s = iX(p+1)/6, t = Y ), where i ∈ k is such that i2 = −1. The curve Hp is
k-maximal, so Theorem 7.2.7 then implies that C/k is k-maximal.

It follows from Theorem 7.2.6 that Z(C/k;T ) = (1+pT )5(p−1)

(1−T )(1−p2T ) . From Theorem 7.2.1 it now follows

that h = 5(p− 1) and hence the rank of Ep+1(Fp2(C)) equals 10(p− 1). It remains to find the rank of
Ep+1(Fp2(t)) and we will deduce this from the rank of Ep+1(Fp2(C)). We will follow the same method as
described in Section 5.3.

The field k(C) has an order 6 automorphism σ defined by s 7→ ζ6s and t 7→ t. This induces an order
6 automorphism on Ep+1(k(C)) via the coordinate-wise action P 7→ Pσ (cf. Section 5.3). We can make
the abelian group Ep+1(k(C)) into a Q-vector space V by tensoring it with Q, i.e.

V := Ep+1(k(C))⊗Z Q.

We now claim that V is also a Q(ζ6)-vector space. Indeed, the natural action of ζ6 on Ep+1(k(C)) given
by ζ6 · (x, y) := (ζ26x,−y) gives V the structure of a Q(ζ6)-vector space. The automorphism σ extends to
a Q-linear map σV on V and a quick check reveals that σ(ζ6 · (x, y)) = ζ6 · σ(x, y) so that σV is in fact a
Q(ζ6)-linear map of order 6 on V . As all the eigenvalues of σV lie in Q(ζ6) we get that V decomposes as
a direct sum

V =

5∑
i=0

Vζi
6
,

where Vζi
6
denotes the eigenspace of σV corresponding to the eigenvalue ζi6. We investigate these

eigenspaces one by one. In order to do so write a point P ∈ Ep+1(k(C)) \ {O} as

P = (α0 + α1s+ α2s
2 + α3s

3 + α4s
4 + α5s

5, β0 + β1s+ β2s
2 + β3s

3 + β4s
4 + β5s

5),

where each αi, βi ∈ k(t) and note that Ep+1(k(C)) is torsion-free as the corresponding elliptic surface has
only type II fibers (cf. Example 2.5.17).

• (The eigenspace V1) As Ep+1(k(C)) is torsion-free it follows that P ⊗ r lies in V1 if and only if
Pσ = ζ06 · P = P (cf. the proof of Lemma 5.3.1), with

Pσ = (α0 + α1ζ6s+ α2ζ
2
6s

2 + α3ζ
3
6s

3 + α4ζ
4
6s

4 + α5ζ
5
6s

5,

β0 + β1ζ6s+ β2ζ
2
6s

2 + β3ζ
3
6s

3 + β4ζ
4
6s

4 + β5ζ
5
6s

5).

Comparing coefficients we see that such a point P must be of the form (α0, β0) ∈ Ep+1(k(C))
with α0, β0 ∈ k(t). I.e., we look for k(t)-rational points on the curve EV1

: y2 = x3 + 1. These
corresponds precisely to EV1

(k), which is finite. We conclude that the eigenspace V1 = {0} and
does not contribute to the rank.

• (The eigenspace V−1) Here we find that a point P must be of the form P = (α0, β3s
3). I.e., we look

for k(t)-rational points on the curve EV−1
: fy2 = x3 + 1 where f := tp+1 + 1. The elliptic curve

EV−1 is isomorphic to the elliptic curve y2 = x3 + f3. We claim that the latter has rank 2p − 2
over k(t). Indeed, define the algebraic curve C−1 : s

2 = tp+1 + 1. This curve has genus (p− 1)/2
and in a similar fashion as before we find via zeta functions that Mork(C−1, E0) has rank 2p− 2.
The function field k(C−1) has an automorphism determined by s 7→ sζ36 = −s. After tensoring
with Q we can once again decompose this into eigenspaces. The +1-eigenspace is trivial. The
−1-eigenspace corresponds precisely to the k(t)-rational points on the curve y2 = x3 + f3. We
conclude that the eigenspace V−1 has dimension 2p− 2 over Q.

• (The eigenspaces Vζ2
6
and Vζ4

6
). In this case we look for the k(t)-rational points on the curves

EV
ζ26

: y2 = x3 + f4 and EV
ζ46

: y2 = x3 + f2 respectively. Define the curve D : s3 = tp+1 + 1, which

has genus p − 1 so that Mork(D, E0) has rank 4p − 4. Tensoring with Q and decomposing this
vector space using the automorphism s 7→ ζ26s we see that we precisely end up looking for the
k(t)-rational points on EV

ζ26

and EV
ζ46

. This means that the eigenspaces Vζ2
6
and Vζ4

6
together have

dimension 4p− 4 over Q.
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• (The eigenspaces Vζ6 and Vζ5
6
). In this case we look for the k(t)-rational points on the curves

EVζ6
: y2 = x3 + f5 and EV

ζ56

: y2 = x3 + f respectively. We claim that these elliptic curves

have the same rank over k(t). To see this consider the Frobenius map ϕ : EV
ζ56

→ E
(p)
V
ζ56

given by

(x, y) 7→ (xp, yp), where E
(p)
V
ζ56

: y2 = x3+fp. We can write p = 6l−1 and by substituting y = f−3ly,

x = f−2lx we find that E
(p)
V
ζ56

is isomorphic to the elliptic curve given by equation y2 = x3 + 1/f ,

which is isomorphic to EVζ6
. We conclude that EV

ζ56

and EVζ6
are k(t)-isogenous elliptic curves,

implying that they have the same rank.

Remark 7.2.9. A similar argument using the Frobenius map for the eigenspaces Vζ2
6
and Vζ4

6
shows that

they have the same rank as well.

We conclude that the vector space V decomposes into 6 pieces. Five of them have dimension 2p− 2
and one of them is trivial. This implies that the rank of Ep+1(k(t)) equals dimQ(Vζ5

6
) = 2p− 2 and by

Corollary 2.3.13 we find that the rank of Ep+1(Fp(t)) = p− 1. This finishes the proof of Theorem 7.1.2.

Remark 7.2.10. The rank over F̄p(t) equals 2p− 2 as well. Indeed, if it were strictly bigger, then the
Picard number of the corresponding surface would not be bounded by the second Betti number anymore, a
contradiction (cf. Theorem 2.5.26).

Remark 7.2.11. Theorem 7.1.2 implies that the rank of the elliptic curve

E360 : y
2 = x3 + t360 + 1

over F359(t) is 358. This is much higher than 68 and it shows that map (3.2) is not surjective in general.

We would like to end this section with a quick analysis of E360 over F359(t). In this case we can not
perform a vector space decomposition as in Section 5.3 over F359(t). However, we can do this over Fq(t)
with q = 3592 = 128881. Using Magma (see Listings 10, 11 and 12) we see that we obtain 60 independent
sections from base changes of rational elliptic surfaces and (at least) 8 independent sections coming from
the usual K3. Together with Remark 7.2.10 this shows that all the independent sections in characteristic
zero exist and remain independent over F3592 , but only half of them exist over F359 due to Corollary
2.3.13.

8 Discussion & Further Developments

In this thesis we have found several prime numbers p so that Shioda’s rank 68 example of an elliptic
curve over Q̄(t) has rank 68 over Fp(t) after reduction modulo p. In particular, we have found 5 prime
numbers so that the 68 independent points on the elliptic curve

E360 : y
2 = x3 + t360 + 1

over Q̄(t) reduce to points defined over the field Fp(t), and moreover remain independent over Fp(t).
These primes are: p = 44460001, p = 96614641, p = 133773121, p = 177452641 and p = 206869681. The
method used for finding these 5 primes is very much akin to that of the characteristic 0 case as found in
[3]. In fact, for primes p ≡ 1 mod 6, the method used there completely carries over to the field Fp(t).
A vector space decomposition of the Q(ζ6)-vector space E360(Fp(t))⊗Z Q yields 60 independent points
coming from a base change of rational elliptic surfaces. Via a base change from an elliptic K3 surface we
got 8 extra independent points and Shioda’s algorithm gave an upper bound of 68 for the rank.

This is in stark contrast with primes p congruent to −1 modulo 6, as no such decomposition over
Fp(t) is possible. However, in this case high rank is obtained by analysing a family of elliptic curves
depending on the prime p related to certain maximal curves. In fact, via zeta functions of curves over
finite fields and a corollary of the Tate conjecture we have shown that

Ep+1 : y
2 = x3 + tp+1 + 1

has rank 2p− 2 over Fp2(t) and rank p− 1 over Fp(t). The former result was already known by Schütt
and Shioda ([19, Theorem 13.42]), where they use crystalline cohomology. Our proof is mainly based
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on the Tate conjecture for abelian varieties over finite fields, and hence more elementary. Moreover, we
extended their result to the rank over Fp(t).

In particular, the above shows that for p = 359 the rank of E360(Fp(t)) is 358. This is significantly
higher than the rank we found over Fp(t) for primes congruent to 1 modulo 6. However, for p = 359 only
half of the sections in the characteristic zero case reduce to sections over F359. For all the 68 sections in
characteristic 0 to exist after reduction modulo 359 we have to consider the base field F3592 .

There are several questions that remain unanswered. To name a few:

(1) What is the rank of the subgroup H ⊂ Ep+1(Fp2(t)), which is generated by sections arising from
unitary matrices (see Section 7.1)?;

(2) For which primes p ≡ 1 mod 6 does the elliptic K3 surface with equation

y2 = x3 + (t2 − 4)3(t5 − 5t3 − 5t)

attain Mordell-Weil rank 8 over Fp (see Section 6.2)?;

(3) What is the rank of the elliptic curve E360 over Q(t)?;

(4) What is the degree of the smallest field extension Q ⊂ Q(α) for which the elliptic curve E360 has
rank 68 over Q(α, t)?;

(5) What is a general formula for the rank of E360(Fp(t)) for any prime p > 3?

All of them are interesting in their own right. Question (1), (2) and (3) seem to be solvable in a
reasonable time frame. In fact, in Appendix B we made a start answering question (3). Questions (4)
and (5) on the other hand seems rather hard to answer, and it would be interesting to see them solved in
the future.
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A A Basis of Regular 1-Forms on a Certain Curve

This section contains a computation of a basis for the space of regular differentials H0
(
C,Ω1

C/k

)
of the

curve C : s6 = tp+1 + 1 over k = Fp2 with p ≡ −1 mod 6 (first appearing in Section 7.2). This was not
needed in order to compute any ranks, however such computations seem to be lacking in the literature.
Therefore we decided to include such computation in the appendix.

Lemma A.0.1. Consider the algebraic curve C : s6 = tp+1 + 1 over k = Fp2 with p ≡ −1 mod 6, write
p + 1 = 6l for some integer l and let ζ6 ∈ k be a primitive 6th root of unity. Let A,B ∈ Z, then the

differential tAsBdt is in H0
(
C,Ω1

C/k

)
if and only if the pair (A,B) ∈ Z2 satisfies

A ≥ 0

B ≥ −5
−lB −A− 2 ≥ 0.

In particular, such regular differentials form a basis for H0
(
C,Ω1

C/k

)
of cardinality 5(3l−1) = 5(p−1)/2 =

g(C).

Proof. Take the element t ∈ k(C) and note that this function vanishes at the points Pi := (ζi6, 0) for
i = 0, . . . 5. Moreover, we recall from the proof of 7.2.3 that we have 6 points O0, . . . ,O5 at infinity

for the curve C. This means that the divisor of t is given by div(t) =
5∑

i=0

(Pi)−
5∑

j=0

(Oj). Consider the

differential 1-form dt. The function 1/t is a uniformizer at the points Oj and we find d(1/t) = −1/t2dt,
so dt has poles of order 2 at the points at infinity and no other poles. Recall from Lemma 7.2.3 that
the map f : C → P1 sending (s, t) 7→ (t : 1), i.e. the function t ∈ k(C), ramifies above the points with
t6l +1 = 0. The ramification index at these points equals 6. There are precisely 6l such points and we call
them Qn = (0, rn), with n = 1, . . . , 6l and rn such that r6ln = −1. Note that all the points Qn behaves in
exactly the same way, so that

div(dt) = a

6l∑
n=1

(Qn)− 2

5∑
j=0

(Oj)

where the integer a has to satisfy 6al − 12 = 5(p− 1)− 2, an equation coming from the general fact

deg div(dt) = 2g(C)− 2.

Solving this for a yields a = 5. In a similar fashion as how we found div(t), we quickly find that

div(s) =
6l∑

n=1
(Qn)− l

5∑
j=0

(Oj).

Take integers A,B ∈ Z and consider the differential ω := tAsBdt. The only possibilities where ω has
zeros or poles are at the points Oj , Qn or Pi. At each Oj we find multiplicity −lB −A− 2, at each Qn

we get multiplicity B + 5 and at each Pi we get multiplicity A. In order for ω to be regular we find that
we need the following conditions on A and B:

A ≥ 0

B ≥ −5
−lB −A− 2 ≥ 0.

(A.1)

Solving this system, i.e. counting the points with integer coordinates in this triangle, yields the desired
result.
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B Towards the Rank Of E360(Q(t))

Throughout this thesis we have proven that the rank of the elliptic curve

E360 : y
2 = x3 + t360 + 1

over Q(t) has Mordell-Weil rank at most 34 (see Lemma 3.0.1). One can actually reduce this bound using
the following remarks:

(a) The vector space decomposition as done in Section 5.3 can be done over Q(ζ6, t) with ζ6 ∈ C a
primitive sixth root of unity.

(b) Using (a) and some Galois theory we investigate the pieces corresponding to rational surfaces over
Q(ζ6) and try to determine their Mordell-Weil rank.

Theorem B.0.1. The Mordell-Weil rank of the rational elliptic surface over Q(ζ6) defined by equation

E2,2 : y
2 = x3 + t4 + t2

is equal to 0.

Proof. We use the polynomialG2,2 = 4z3−1 obtained in Section 6.1. Let α be a root of this polynomial and
consider the extension Q(ζ6) ⊂ Q(ζ6, α). This is a degree 3 Galois extension with Galois group G generated
by the automorphism σ : α 7→ ζ26α. Using Magma we find 4 independent points in E2,2 (Q(ζ6, α, t)), namely
P1 = (α, t2 + 1/2), P2 = (ζ26α, t

2 + 1/2), Q1 = (αt2, t3/2 + t) and Q2 = (ζ26αt
2, t3/2 + t). In particular,

we find that ⟨P1, P2, Q1, Q2⟩ ⊂ E2,2 (Q(ζ6, α, t)) generates subgroup of rank 4, which is precisely the
geometric Mordell-Weil rank. Denote V := E2,2 (Q(ζ6, α, t))⊗Z C a complex 4-dimensional vector space.
The Galois group G acts on V in the usual way giving a representation ρ : G→ GL(V ). The image of σ
under ρ, using the basis obtained from the points P1, P2 , Q1 and Q2, corresponds to the matrix

M :=


0 −1 0 0
1 −1 0 0
0 0 0 −1
0 0 1 −1

 .

DenoteW := E2,2 (Q(ζ6, t))⊗ZC which is precisely the subspace of V given by {P ∈ V : ρ(σ)P = P} ⊂ V .
The eigenvalues λ ofM satisfy λ2+λ+1 = 0. In particular, 1 is not an eigenvalue implying that W = {0}.
In other words, the rank of E2,2 (Q(ζ6, t)) is zero, as desired.

Corollary B.0.2. The rank of E360(Q(t)) is bounded above by 32.

Proof. This follows immediately from Theorem B.0.1 and Lemma 3.0.1.

It is possible to repeat the process outlined above for all rational elliptic surfaces and the elliptic
K3 surface found in Section 6.1. The surfaces with low geometric Mordell-Weil rank (such as 2 or 4)
are relatively easy to study. However, when the surface has geometric Mordell-Weil rank 6 or 8, this
method becomes computationally challenging as it requires finding independent sections on the surface
and understanding the Galois group of the corresponding field extension. This group can become complex
when the degree of the extension is high. We decided not to investigate this further due to a lack of time.
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C Magma Code

The next piece of code computes prime numbers p so that all the polynomials appearing in Section 6.2 have a root modulo p.

1 P<z> := PolynomialRing(Integers ());

2 /*We first define all the polynomials of which we know we need roots */

3 G50 := 583200000*z^40 + 2176717249713600000*z^30 + 56473225380000*z^20 - 135432000*z^10 + 1;

4 G51 := 5*z^8 + 360*z^6 - 1350*z^4 + 729;

5 G211 := 3*z^4 + 6*z^2-1;

6 G212 := 4096*z^8 + 12597120*z^4 - 14348907;

7 G311 := 8*z^9 - 4*159*z^6 + 21*8*z^3 + 1;

8 G312 := 8*z^9 + 159*4*z^6 + 21*8*z^3 - 1;

9 G41 := 256*z^32 + 256*26480951*z^24 + 32*772048803*z^16 + 16*26480951*z^8 + 1;

10 G32 := 1259712*z^18 + 69984*1229*z^12 + 324*8371*z^6 + 1;

11 G232 := 9*z^8 - 18*z^6 + 39*z^4 + 6*z^2 + 1;

12 G233 := z^8 + 18*z^4 - 27;

13 G22 := 4*z^3 - 1;

14 G1011 := 25*z^16 - 25*11340*z^12 - 5*240842*z^8 -25*2268*z^4 + 1;

15 G1012 := 13286025*z^16 - 164025*28*z^12 + 5*235718*z^8 - 45*28*z^4 + 1;

16 G1023 := 10485760000*z^32 + 796262400000*z^28 + 28673969152000*z^24 + 5919441120000*z^20 +

569262158025*z^16 - 18498253500*z^12 + 280019230*z^8 - 24300*z^4 + 1;

17

18 /*We iterate over all the primes.*/

19 for i in [1..100000000] do

20 n := NthPrime(i);

21 /*We check if the prime is 1 modulo 720.*/

22 if n mod 720 ne 1 then

23 /*We continue to the next iteration in the for loop if the prime is NOT 1 modulo 720.*/

24 continue;

25 end if;

26 /*We define a polynomial ring over the finite field F_p so that we can reduce our polynomials

modulo p.*/

27 Pn <z> := PolynomialRing(GF(n));

28 /*We reduce G50 modulo p and check if it has a root.*/

29 Ln50 := Pn! G50;

30 Bool50 ,b50 := HasRoot(Ln50);

31 if Bool50 eq false then

32 /*If is has no root we continue to the next iteration in the for loop.*/

33 continue;

34 end if;

35 /*Once we are here we know G50 has root mod p. We can define a new polynomial using this root

and

36 check if it has a root.*/

37 G501 := Pn! z^3 - (b50)^2;

38 if HasRoot(G501) eq false then

39 continue;

40 end if;

41 /*We repeat the above process for all the polynomials and iterated roots we need.*/

42 Ln51 := Pn! G51;

43 Bool51 ,b51 := HasRoot(Ln51);

44 if Bool51 eq false then

45 continue;

46 end if;

47

48 G511 := Pn! z^3 - b51 ^2+1;

49 if HasRoot(G511) eq false then

50 continue;

51 end if;

52

53 Ln311 := Pn! G311;

54 Bool311 ,b311 := HasRoot(Ln311);
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55 if Bool311 eq false then

56 continue;

57 end if;

58

59 G3111 := Pn! z^3 - b311 ^2;

60 if HasRoot(G3111) eq false then

61 continue;

62 end if;

63

64 printf "Test 1: the prime %o has a chance; ~ i = %o \n",n,i;

65 Ln312 := Pn! G312;

66 Bool312 ,b312 := HasRoot(Ln312);

67 if Bool312 eq false then

68 continue;

69 end if;

70

71 G3121 := Pn! z^3 - b312 ^2;

72 if HasRoot(G3121) eq false then

73 continue;

74 end if;

75

76 Ln41 := Pn! G41;

77 Bool41 ,b41 := HasRoot(Ln41);

78 if Bool41 eq false then

79 continue;

80 end if;

81

82 G411 := Pn! z^3 - b41 ^2;

83 if HasRoot(G411) eq false then

84 continue;

85 end if;

86

87 printf "Test 2: the prime %o has a greater chance; ~ i = %o \n",n,i;

88 Ln32 := Pn! G32;

89 Bool32 ,b32 := HasRoot(Ln32);

90 if Bool32 eq false then

91 continue;

92 end if;

93

94 G321 := Pn! z^3 - (b32)^2;

95 if HasRoot(G321) eq false then

96 continue;

97 end if;

98

99 Ln211 := Pn! G211;

100 if HasRoot(Ln211) eq false then

101 continue;

102 end if;

103

104 Ln212 := Pn! G212;

105 if HasRoot(Ln212) eq false then

106 continue;

107 end if;

108

109 Ln232 := Pn! G232;

110 if HasRoot(Ln232) eq false then

111 continue;

112 end if;

113

114 Ln233 := Pn! G233;

115 if HasRoot(Ln233) eq false then
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116 continue;

117 end if;

118

119 printf "Test 3: the prime %o comes really close! ~ i = %o \n",n,i;

120 Ln22 := Pn! G22;

121 if HasRoot(Ln22) eq false then

122 continue;

123 end if;

124

125 Ln1011 := Pn! G1011;

126 if HasRoot(Ln1011) eq false then

127 continue;

128 end if;

129

130 Ln1012 := Pn! G1012;

131 if HasRoot(Ln1012) eq false then

132 continue;

133 end if;

134

135 Ln1023 := Pn! G1023;

136 if HasRoot(Ln1023) eq false then

137 continue;

138 end if;

139 /*Once we are here we know that we all the roots we need and we print n.*/

140 printf "The prime %o works! ~ i = %o \n",n,i;

141 end for;

Listing 4: Computing Primes Which Yield High Rank.

48



The next piece of code computes the part of the rank of E360(F44460001(t)) that is obtained by base changing from rational

elliptic surfaces.

1 p := 44460001;

2 K := GF(p);

3 L<t> := FunctionField(K);

4

5 /*We define all the elliptic curves that corresponds to rational elliptic surfaces in our

decomposition */

6 E50 := EllipticCurve ([0,t^5+1]);

7 E13 := EllipticCurve ([0,t^3*(t+1)]);

8 E101 := EllipticCurve ([0,t^5 - 5*t^3 + 5*t]);

9 E51 := EllipticCurve ([0,t*(t^5+1)]);

10 E12 := EllipticCurve ([0,t^2*(t+1)]);

11 E23 := EllipticCurve ([0,t^3*(t^2+1)]);

12 E22 := EllipticCurve ([0,t^2*(t^2+1)]);

13 E21 := EllipticCurve ([0,t*(t^2+1)]);

14 E31 := EllipticCurve ([0,t*(t^3+1)]);

15 E41 := EllipticCurve ([0,t*(t^4+1)]);

16 E32 := EllipticCurve ([0,t^2*(t^3+1)]);

17

18 /*We compute their Mordell -Weil group */

19 G50 ,m50 := MordellWeilGroup(E50);

20 G13 ,m13 := MordellWeilGroup(E13);

21 G101 ,m101 := MordellWeilGroup(E101);

22 G51 ,m51 := MordellWeilGroup(E51);

23 G12 ,m12 := MordellWeilGroup(E12);

24 G23 ,m23 := MordellWeilGroup(E23);

25 G22 ,m22 := MordellWeilGroup(E22);

26 G21 ,m21 := MordellWeilGroup(E21);

27 G31 ,m31 := MordellWeilGroup(E31);

28 G41 ,m41 := MordellWeilGroup(E41);

29 G32 ,m32 := MordellWeilGroup(E32);

30

31 /*We compute their ranks */

32 r50 := TorsionFreeRank(G50);

33 r13 := TorsionFreeRank(G13);

34 r101 := TorsionFreeRank(G101);

35 r51 := TorsionFreeRank(G51);

36 r12 := TorsionFreeRank(G12);

37 r23 := TorsionFreeRank(G23);

38 r22 := TorsionFreeRank(G22);

39 r21 := TorsionFreeRank(G21);

40 r31 := TorsionFreeRank(G31);

41 r41 := TorsionFreeRank(G41);

42 r32 := TorsionFreeRank(G32);

43

44 /*We sum their ranks to get a lower bound for the rank of E360(Fp(t))*/

45 LBRank := r50 + r13 + r101 + r51 + r12 + r23 + r22 + r21 + r31 + r41 + r32;

46 LBRank;

Listing 5: Lower Bound of 60 Using Rational Surfaces for the Prime 44460001.
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The next piece of code computes whether the points found on the elliptic curve

y2 = x3 + (t2 − 4)3(t5 − 5t3 + 5t)

over F44460001(t) are independent.

1 K := GF (44460001);

2 L<t> := FunctionField(K);

3

4 /*We define our elliptic K3 surface */

5 E := EllipticCurve ([0,(t^2-4) ^3*(t^5 - 5*t^3 + 5*t)]);

6

7 /*We define our points that we found in a matrix.

8 Each row consists of an array of the form [a0,a1,a2,a3,a4,b0,b1,b2,b3,b4,b5,b6],

9 which corresponds to a point x = a0 + ... a4*t^4, y = b0 + ... b6*t^6.*/

10 X := Matrix(K, 8, 12, [298182 , 30824910 , 18189043 , 8984250 , 33116893 , 18401627 , 40901717 ,

27724783 , 22118594 , 21200495 , 29597123 , 27118537 ,

11 1639614 , 12739358 , 26058296 , 39263511 , 8996056 , 17109065 , 34957848 , 1776259 ,

14219251 , 21965827 , 16744422 , 26872802 ,

12 2081116 , 16450118 , 144746 , 13740882 , 13419981 , 3687933 , 27478375 , 36065591 ,

7749320 , 2122377 , 31095808 , 31254454 ,

13 4982545 , 17978612 , 39985989 , 36174083 , 38622024 , 38908857 , 1657775 , 43864532 ,

33378226 , 23935301 , 37178456 , 35760240 ,

14 5784117 , 4377759 , 18649150 , 17657829 ,37501795 , 38210606 , 22150682 , 14671060 ,

37972614 , 909232 , 31369696 , 37303844 ,

15 8732268 , 9683578 , 22032164 , 2637656 ,1802138 , 23925728 , 29919562 , 35245090 ,

27344842 , 34561779 , 6752832 , 24221212 ,

16 9443293 , 16319437 , 25518972 , 44233011 ,1008487 , 33455589 , 24706356 , 43659670 ,

36057833 , 30978518 , 37551194 , 25295739 ,

17 10222816 , 11502968 , 42548665 , 24386966 ,35056860 , 38210606 , 22150682 , 14671060 ,

37972614 , 909232 , 31369696 , 37303844]);

18

19 /* Define the points on E:*/

20 x1 := X[1,1] + X[1 ,2]*t + X[1 ,3]*t^2 + X[1 ,4]*t^3 + X[1 ,5]*t^4;

21 y1 := X[1,6] + X[1 ,7]*t + X[1 ,8]*t^2 + X[1 ,9]*t^3 + X[1 ,10]*t^4 + X[1 ,11]*t^5 + X[1 ,12]*t^6;

22 P1 := E![x1,y1];

23

24 x2 := X[2,1] + X[2 ,2]*t + X[2 ,3]*t^2 + X[2 ,4]*t^3 + X[2 ,5]*t^4;

25 y2 := X[2,6] + X[2 ,7]*t + X[2 ,8]*t^2 + X[2 ,9]*t^3 + X[2 ,10]*t^4 + X[2 ,11]*t^5 + X[2 ,12]*t^6;

26 P2 := E![x2,y2];

27

28 x3 := X[3,1] + X[3 ,2]*t + X[3 ,3]*t^2 + X[3 ,4]*t^3 + X[3 ,5]*t^4;

29 y3 := X[3,6] + X[3 ,7]*t + X[3 ,8]*t^2 + X[3 ,9]*t^3 + X[3 ,10]*t^4 + X[3 ,11]*t^5 + X[3 ,12]*t^6;

30 P3 := E![x3,y3];

31

32 x4 := X[4,1] + X[4 ,2]*t + X[4 ,3]*t^2 + X[4 ,4]*t^3 + X[4 ,5]*t^4;

33 y4 := X[4,6] + X[4 ,7]*t + X[4 ,8]*t^2 + X[4 ,9]*t^3 + X[4 ,10]*t^4 + X[4 ,11]*t^5 + X[4 ,12]*t^6;

34 P4 := E![x4,y4];

35

36 x5 := X[5,1] + X[5 ,2]*t + X[5 ,3]*t^2 + X[5 ,4]*t^3 + X[5 ,5]*t^4;

37 y5 := X[5,6] + X[5 ,7]*t + X[5 ,8]*t^2 + X[5 ,9]*t^3 + X[5 ,10]*t^4 + X[5 ,11]*t^5 + X[5 ,12]*t^6;

38 P5 := E![x5,y5];

39

40 x6 := X[6,1] + X[6 ,2]*t + X[6 ,3]*t^2 + X[6 ,4]*t^3 + X[6 ,5]*t^4;

41 y6 := X[6,6] + X[6 ,7]*t + X[6 ,8]*t^2 + X[6 ,9]*t^3 + X[6 ,10]*t^4 + X[6 ,11]*t^5 + X[6 ,12]*t^6;

42 P6 := E![x6,y6];

43

44 x7 := X[7,1] + X[7 ,2]*t + X[7 ,3]*t^2 + X[7 ,4]*t^3 + X[7 ,5]*t^4;

45 y7 := X[7,6] + X[7 ,7]*t + X[7 ,8]*t^2 + X[7 ,9]*t^3 + X[7 ,10]*t^4 + X[7 ,11]*t^5 + X[7 ,12]*t^6;

46 P7 := E![x7,y7];

47

48 x8 := X[8,1] + X[8 ,2]*t + X[8 ,3]*t^2 + X[8 ,4]*t^3 + X[8 ,5]*t^4;
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49 y8 := X[8,6] + X[8 ,7]*t + X[8 ,8]*t^2 + X[8 ,9]*t^3 + X[8 ,10]*t^4 + X[8 ,11]*t^5 + X[8 ,12]*t^6;

50 P8 := E![x8,y8];

51

52 /*We check whether they are independent */

53 IsLinearlyIndependent ([P1,P2,P3,P4,P5,P6,P7,P8]);

Listing 6: 8 Independent Points In EK3(F44460001(t)).
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The next piece of code uses Shioda’s algorithm to compute an upper bound for the rank of E360(F44460001(t)).

1 /* Global Variables:*/

2

3 /*We fix a prime number p = 1 mod 720.*/

4 p := 44460001;

5 /* Smallest element so that p^c*x_i = x_i is always 1 as p = 1 mod 720:*/

6 c := 1;

7 /* integers so that ord(x_i) = ord(t*x_i), note gcd(t,360) = 1: (pre -computed array)*/

8 CoprimeTArray := [1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

9 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,

10 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229];

11

12 /* Functions used:*/

13

14 /* Computes rational numbers modulo integers.*/

15 ModZ := function(a)

16 return -Floor(a) + a;

17 end function;

18

19 /* Computes the sum condition appearing in Bas Heine ’s thesis for c = 1.*/

20 Sumt := function(t,x)

21 term1 := ModZ(t*p*x[1]);

22 term2 := ModZ(t*p*x[2]);

23 term3 := ModZ(t*p*x[3]);

24 term4 := ModZ(t*p*x[4]);

25 return term1 + term2 + term3 + term4;

26 end function;

27

28 /* Checks the nonzero condition in Bas’s thesis */

29 ZeroCheck := function(x)

30 if ModZ(x[1]) eq 0 or ModZ(x[2]) eq 0 or ModZ(x[3]) eq 0 or ModZ(x[4]) eq 0 then;

31 return false;

32 else

33 return true;

34 end if;

35 end function;

36

37 /* Function that checks if a vector is definitely in the set Lambda. If bool = 1, then it is in

Lambda. If bool = 0, then it might still be in Lambda

38 and we might have to search further by increasing CoprimeTArray */

39 IsDefInLambda := function(x)

40 bool := 0;

41 for t in CoprimeTArray do;

42 if Sumt(t,x) ne 2*c then;

43 bool := 1;

44 end if;

45 end for;

46 return bool;

47 end function;

48

49 /*We can exclude i = 0, as then the coefficients are zero*/

50 LBSizeLambda := 0;

51 for i in [1..359] do;

52 x_i := [(60+i)/360,-i/360 ,1/3 ,1/2];

53 z_i := [(i -420)/360,-i/360 ,2/3 ,1/2];

54

55 if ZeroCheck(x_i) eq true then;

56 /*We check if x_i is in the set Lambda */

57 if IsDefInLambda(x_i) eq 1 then;

58 LBSizeLambda := LBSizeLambda + 1;
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59 else

60 print(x_i);

61 end if;

62 end if;

63

64 if ZeroCheck(z_i) eq true then;

65 /*We check if z_i is in the set Lambda */

66 if IsDefInLambda(z_i) eq 1 then;

67 LBSizeLambda := LBSizeLambda + 1;

68 else

69 print(z_i);

70 end if;

71 end if;

72 end for;

73

74 /*The vectors in the output might still be in the set Lambda , but using lower bounds for the

rank this can be excluded.*/

75 /*Shioda -Tate gives an upperbound for the rank:*/

76 printf "For p = %o an upperbound for the rank of E_360(F_p(t)) is %o \n",p,716- LBSizeLambda;

Listing 7: Computing an Upper Bound for the Rank of E360(F44460001(t)).

The next piece of code computes generators for the unitary group U(2,F25).

1 p := 5;

2 K := GF(p);

3 R<x> := PolynomialRing(Integers ());

4 f := x^2+x+1;

5 H<w> := ext <K|f>;

6 U := GU(2,H);

7 M := Matrix(H,2,2,[1,0,0,1]);

8 TransMat := TransformForm(M, "unitary");

9 UnitaryGroup := U^( TransMat ^(-1));

10 Generators(UnitaryGroup);

Listing 8: Computing Generators for the Unitary Group Over F25.

The next piece of code computes whether the 8 points found in E6(F25(t)) are independent.

1 p := 5;

2 K := GF(p);

3 R<x> := PolynomialRing(Integers ());

4 f := x^2+x+1;

5 H<w> := ext <K|f>;

6 U := GU(2,H);

7 L<t> := FunctionField(H);

8 E := EllipticCurve ([0,t^6+1]);

9 P := E![-1,t^3];

10 P1 := E![-w,t^3];

11 Q := E![-t^2,1];

12 Q1 := E![-w*t^2 ,1];

13 R := E![-(3*t + 3*w+2) ^2 ,((2*w+3)*t + 2*w)^3];

14 R1 := E![-w*(3*t + 3*w+2) ^2 ,((2*w+3)*t + 2*w)^3];

15 S := E![ -((3*w+1)*t + 3*w+3) ^2 ,((3*w)*t + 2*w+3) ^3];

16 S1 := E![-w*((3*w+1)*t + 3*w+3) ^2 ,((3*w)*t + 2*w+3) ^3];

17 arrray := [P,P1,Q,Q1,R,R1,S1,S];

18 IsLinearlyIndependent(array);

Listing 9: 8 Independent Points In E6(F25(t)).
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The next piece of code computes the part of the rank of E360(F3592(t)) that is obtained by base changing from rational

elliptic surfaces.

1 p := 359;

2 K := GF(p^2);

3 L<t> := FunctionField(K);

4

5 /*We define all the elliptic curves that corresponds to rational elliptic surfaces in our

decomposition */

6 E50 := EllipticCurve ([0,t^5+1]);

7 E13 := EllipticCurve ([0,t^3*(t+1)]);

8 E101 := EllipticCurve ([0,t^5 - 5*t^3 + 5*t]);

9 E51 := EllipticCurve ([0,t*(t^5+1)]);

10 E12 := EllipticCurve ([0,t^2*(t+1)]);

11 E23 := EllipticCurve ([0,t^3*(t^2+1)]);

12 E22 := EllipticCurve ([0,t^2*(t^2+1)]);

13 E21 := EllipticCurve ([0,t*(t^2+1)]);

14 E31 := EllipticCurve ([0,t*(t^3+1)]);

15 E41 := EllipticCurve ([0,t*(t^4+1)]);

16 E32 := EllipticCurve ([0,t^2*(t^3+1)]);

17

18 /*We compute their Mordell -Weil group */

19 G50 ,m50 := MordellWeilGroup(E50);

20 G13 ,m13 := MordellWeilGroup(E13);

21 G101 ,m101 := MordellWeilGroup(E101);

22 G51 ,m51 := MordellWeilGroup(E51);

23 G12 ,m12 := MordellWeilGroup(E12);

24 G23 ,m23 := MordellWeilGroup(E23);

25 G22 ,m22 := MordellWeilGroup(E22);

26 G21 ,m21 := MordellWeilGroup(E21);

27 G31 ,m31 := MordellWeilGroup(E31);

28 G41 ,m41 := MordellWeilGroup(E41);

29 G32 ,m32 := MordellWeilGroup(E32);

30

31 /*We compute their ranks */

32 r50 := TorsionFreeRank(G50);

33 r13 := TorsionFreeRank(G13);

34 r101 := TorsionFreeRank(G101);

35 r51 := TorsionFreeRank(G51);

36 r12 := TorsionFreeRank(G12);

37 r23 := TorsionFreeRank(G23);

38 r22 := TorsionFreeRank(G22);

39 r21 := TorsionFreeRank(G21);

40 r31 := TorsionFreeRank(G31);

41 r41 := TorsionFreeRank(G41);

42 r32 := TorsionFreeRank(G32);

43

44 /*We sum their ranks to get a lower bound for the rank of E360(Fp(t))*/

45 LBRank := r50 + r13 + r101 + r51 + r12 + r23 + r22 + r21 + r31 + r41 + r32;

46 LBRank;

Listing 10: Lower Bound of 60 Using Rational Surfaces Over F3592 .
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The next piece of code computes points in E360(F3592(t)).

1 p := 359;

2 K<b> := GF(p^2);

3 A<a0 ,a1 ,a2 ,a3,a4,b0,b1,b2,b3,b4,b5,b6> := AffineSpace(K,12);

4 S := CoordinateRing(A);

5 U<t> := PolynomialRing(S);

6 x := a0+a1*t+a2*t^2+a3*t^3+a4*t^4;

7 y := b0+b1*t+b2*t^2+b3*t^3+b4*t^4+b5*t^5+b6*t^6;

8 f := x^3+(t^2-4) ^3*(t^5-5*t^3+5*t)-y^2;

9 I := ideal <S | Coefficients(f)>;

10 B := Scheme(A,I);

11 Points(B);

Listing 11: Finding Points on the K3 Surface Over F3592 .

The next piece of code computes whether the points found in E360(F3592(t)) are independent.

1 p := 359;

2 K<b> := GF(p^2);

3 L<t> := FunctionField(K);

4

5 /*We define our elliptic K3 surface */

6 E := EllipticCurve ([0,(t^2-4) ^3*(t^5 - 5*t^3 + 5*t)]);

7

8 /*We define our points that we found in a matrix.

9 Each row consists of an array of the form [a0,a1,a2,a3,a4,b0,b1,b2,b3,b4,b5,b6],

10 which corresponds to a point x = a0 + ... a4*t^4, y = b0 + ... b6*t^6.*/

11 X := Matrix(K, 8, 12, [b^8520 , b^103920 , b^24000 , b^70440 , b^107880 , b^12780 , b^56700 , b^40500 ,

b^14940 , b^123660 , b^68220 , b^32940 ,

12 b^9600 , b^9960 , b^37320 , b^117960 , b^85920 , 242, 327, 82, 331, 217, 311, 358,

13 b^10866 , b^107690 , b^80704 , b^62457 , b^88762 , b^16299 , b^41635 , b^11571 , 240,b

^29318 , b^23882 , b^4263 ,

14 b^12900 , b^71400 ,b^47460 , b^51960 , b^29460 , b^19350 , b^44730 , b^69390 , b^110970 , b

^41310 ,b^45450 , b^108630 ,

15 b^15548 , b^77558 ,b^25274 , b^68467 , b^69188 , b^23322 , b^95674 , b^17186 , b^79984 , b

^62815 , b^84552 ,b^39342 ,

16 b^30000 , b^60960 , b^45480 ,b^27480 , b^480, 344, 216, 246, 250, 70, 229, 310,

17 b^38766 , b^10618 ,b^3643 , b^33357 , b^116662 , b^122589 , b^14918 , b^48273 , b^109967 , b

^63487 ,b^33364 , b^110553 ,

18 b^61372 , b^91162 ,b^73246 , b^49493 , b^115012 , b^92058 , b^97106 , b^80194 , b^6236 , b

^93245 , b^99588 ,b^43638

19 ]);

20

21 /* Define the points on E:*/

22 x1 := X[1,1] + X[1 ,2]*t + X[1 ,3]*t^2 + X[1 ,4]*t^3 + X[1 ,5]*t^4;

23 y1 := X[1,6] + X[1 ,7]*t + X[1 ,8]*t^2 + X[1 ,9]*t^3 + X[1 ,10]*t^4 + X[1 ,11]*t^5 + X[1 ,12]*t^6;

24 P1 := E![x1,y1];

25

26 x2 := X[2,1] + X[2 ,2]*t + X[2 ,3]*t^2 + X[2 ,4]*t^3 + X[2 ,5]*t^4;

27 y2 := X[2,6] + X[2 ,7]*t + X[2 ,8]*t^2 + X[2 ,9]*t^3 + X[2 ,10]*t^4 + X[2 ,11]*t^5 + X[2 ,12]*t^6;

28 P2 := E![x2,y2];

29

30 x3 := X[3,1] + X[3 ,2]*t + X[3 ,3]*t^2 + X[3 ,4]*t^3 + X[3 ,5]*t^4;

31 y3 := X[3,6] + X[3 ,7]*t + X[3 ,8]*t^2 + X[3 ,9]*t^3 + X[3 ,10]*t^4 + X[3 ,11]*t^5 + X[3 ,12]*t^6;

32 P3 := E![x3,y3];

33

34 x4 := X[4,1] + X[4 ,2]*t + X[4 ,3]*t^2 + X[4 ,4]*t^3 + X[4 ,5]*t^4;

35 y4 := X[4,6] + X[4 ,7]*t + X[4 ,8]*t^2 + X[4 ,9]*t^3 + X[4 ,10]*t^4 + X[4 ,11]*t^5 + X[4 ,12]*t^6;

36 P4 := E![x4,y4];

37

38 x5 := X[5,1] + X[5 ,2]*t + X[5 ,3]*t^2 + X[5 ,4]*t^3 + X[5 ,5]*t^4;

39 y5 := X[5,6] + X[5 ,7]*t + X[5 ,8]*t^2 + X[5 ,9]*t^3 + X[5 ,10]*t^4 + X[5 ,11]*t^5 + X[5 ,12]*t^6;
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40 P5 := E![x5,y5];

41

42 x6 := X[6,1] + X[6 ,2]*t + X[6 ,3]*t^2 + X[6 ,4]*t^3 + X[6 ,5]*t^4;

43 y6 := X[6,6] + X[6 ,7]*t + X[6 ,8]*t^2 + X[6 ,9]*t^3 + X[6 ,10]*t^4 + X[6 ,11]*t^5 + X[6 ,12]*t^6;

44 P6 := E![x6,y6];

45

46 x7 := X[7,1] + X[7 ,2]*t + X[7 ,3]*t^2 + X[7 ,4]*t^3 + X[7 ,5]*t^4;

47 y7 := X[7,6] + X[7 ,7]*t + X[7 ,8]*t^2 + X[7 ,9]*t^3 + X[7 ,10]*t^4 + X[7 ,11]*t^5 + X[7 ,12]*t^6;

48 P7 := E![x7,y7];

49

50 x8 := X[8,1] + X[8 ,2]*t + X[8 ,3]*t^2 + X[8 ,4]*t^3 + X[8 ,5]*t^4;

51 y8 := X[8,6] + X[8 ,7]*t + X[8 ,8]*t^2 + X[8 ,9]*t^3 + X[8 ,10]*t^4 + X[8 ,11]*t^5 + X[8 ,12]*t^6;

52 P8 := E![x8,y8];

53

54 /*We check whether they are independent */

55 IsLinearlyIndependent ([P1,P2,P3,P4,P5,P6,P7,P8]);

Listing 12: Finding Independent Sections on the K3 Surface Over F3592 .
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D MatLab Code

All the Matlab code below computes sections of the form (gt2 + at+ b, ht3 + ct2 + dt+ e) on certain rational elliptic surfaces.

1 syms g a b h c d e t; %These are the variables in Theorem 7.12 in Schutt -Shioda.

2 x = g*t^2 + a*t + b;

3 y = h*t^3 + c*t^2 + d*t + e;

4 r1 = 5;

5 r2 = 0;

6 %Define the elliptic curve we are working with.

7 f = y^2 - x^3 - t^(r2)*(t^(r1) + 1);

8 %Extract the coefficients with respect to t.

9 C = coeffs(f, t);

10 v0 = C(1);

11 v1 = C(2);

12 v2 = C(3);

13 v3 = C(4);

14 v4 = C(5);

15 v5 = C(6);

16 v6 = C(7);

17 %Solve the system of equations arising.

18 S = solve(v0 == 0, v1 == 0, v2 == 0, v3 == 0, v4 == 0, v5 == 0 ,v6 == 0);

Listing 13: Solving the Systems of Equations Arising From E5,0.

1 syms g a b h c d e t;

2 x = g*t^2 + a*t + b;

3 y = h*t^3 + c*t^2 + d*t + e;

4 r1 = 5;

5 r2 = 1;

6 f = y^2 - x^3 - t^(r2)*(t^(r1) + 1);

7 C = coeffs(f, t);

8 v0 = C(1);

9 v1 = C(2);

10 v2 = C(3);

11 v3 = C(4);

12 v4 = C(5);

13 v5 = C(6);

14 v6 = C(7);

15 S = solve(v0 == 0, v1 == 0, v2 == 0, v3 == 0, v4 == 0, v5 == 0 ,v6 == 0);

Listing 14: Solving the Systems of Equations Arising From E5,1.

1 syms a b c d e f g t;

2 x = a*t;

3 y = c*t^2 + d*t;

4 r1 = 2;

5 r2 = 2;

6 f = y^2 - x^3 - t^(r2)*(t^(r1) + 1);

7 C = coeffs(f, t);

8 v0 = C(1);

9 v1 = C(2);

10 v2 = C(3);

11 S = solve(v0 == 0, v1 == 0, v2 == 0);

Listing 15: Solving the Systems of Equations Arising From E2,2.
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1 syms g a b h c d e t;

2 x = g*t^2 + a*t + b;

3 y = h*t^3 + c*t^2 + d*t + e;

4 r1 = 2;

5 r2 = 1;

6 f = y^2 - x^3 - t^(r2)*(t^(r1) + 1);

7 C = coeffs(f, t);

8 v0 = C(1);

9 v1 = C(2);

10 v2 = C(3);

11 v3 = C(4);

12 v4 = C(5);

13 v5 = C(6);

14 v6 = C(7);

15 S = solve(v0 == 0, v1 == 0, v2 == 0, v3 == 0, v4 == 0, v5 == 0 ,v6 == 0);

Listing 16: Solving the Systems of Equations Arising From E2,1.

1 syms a b c d e t;

2 x = a*t + b;

3 y = c*t^2 + d*t + e;

4 r1 = 3;

5 r2 = 1;

6 f = y^2 - x^3 - t^(r2)*(t^(r1) + 1);

7 C = coeffs(f, t);

8 v0 = C(1);

9 v1 = C(2);

10 v2 = C(3);

11 v3 = C(4);

12 v4 = C(5);

13 S = solve(v0 == 0, v1 == 0, v2 == 0, v3 == 0, v4 == 0);

Listing 17: Solving the Systems of Equations Arising From E3,1.

1 syms g a b h c d e t;

2 x = g*t^2 + a*t + b;

3 y = h*t^3 + c*t^2 + d*t + e;

4 r1 = 4;

5 r2 = 1;

6 f = y^2 - x^3 - t^(r2)*(t^(r1) + 1);

7 C = coeffs(f, t);

8 v0 = C(1);

9 v1 = C(2);

10 v2 = C(3);

11 v3 = C(4);

12 v4 = C(5);

13 v5 = C(6);

14 v6 = C(7);

15 S = solve(v0 == 0, v1 == 0, v2 == 0, v3 == 0, v4 == 0, v5 == 0 ,v6 == 0);

Listing 18: Solving the Systems of Equations Arising From E4,1.
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1 syms a b c d e h g t;

2 x = g*t^2 + a*t + b;

3 y = h*t^3 + c*t^2 + d*t + e;

4 r1 = 3;

5 r2 = 2;

6 f = y^2 - x^3 - t^(r2)*(t^(r1) + 1);

7 C = coeffs(f, t);

8 v0 = C(1);

9 v1 = C(2);

10 v2 = C(3);

11 v3 = C(4);

12 v4 = C(5);

13 v5 = C(6);

14 v6 = C(7);

15 S = solve(v0 == 0, v1 == 0, v2 == 0, v3 == 0, v4 == 0, v5 == 0, v6 == 0);

Listing 19: Solving the Systems of Equations Arising From E3,2.

1 syms a b c d t;

2 x = a*t^2 + b*t;

3 y = c*t^3 + d*t^2;

4 r1 = 2;

5 r2 = 3;

6 f = y^2 - x^3 - t^(r2)*(t^(r1) + 1);

7 C = coeffs(f, t);

8 v0 = C(1);

9 v1 = C(2);

10 v2 = C(3);

11 v3 = C(4);

12 S = solve(v0 == 0, v1 == 0, v2 == 0, v3 == 0);

Listing 20: Solving the Systems of Equations Arising From E2,3.

1 syms g a b h c d e t;

2 x = g*t^2 + a*t + b;

3 y = h*t^3 + c*t^2 + d*t + e;

4 f = y^2 - x^3 - t^5 + 5*t^3 - 5*t;

5 C = coeffs(f, t);

6 v0 = C(1);

7 v1 = C(2);

8 v2 = C(3);

9 v3 = C(4);

10 v4 = C(5);

11 v5 = C(6);

12 v6 = C(7);

13 S = solve(v0 == 0, v1 == 0, v2 == 0, v3 == 0, v4 == 0, v5 == 0 ,v6 == 0);

Listing 21: Solving the System of Equations Arising From the Rational Part of E10,1.
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