
Out of Distribution Detection in a DQN using

Uncertainty Quantification Methods

Bachelor’s Project Thesis

Dhruvs Sharma, s3812596, d.sharma.3@student.rug.nl,

Supervisor: Matias Valdenegro Toro

Abstract: In the current times one can see Reinforcement Learning (RL) models being applied
to a variety of problems. These include robotics, industrial automation and even video games.
The concerned models are not well suited for Out-Of-Distribution (OOD) inputs where they
can make false predictions with high confidences. Although OOD detection is a well-researched
topic in Deep Learning, OOD Detection in RL has had a lack of emphasis in terms of research
until recently. In this report we take a deep Q-Network and modify it to output confidences
with uncertainty using dropout and ensembles. The models are trained on the basic scenario (ID
environment) from VizDoom, an API that allows one to train RL agents on preexisting game
scenarios in the Doom video game. The scenario is edited to look different, say environment B,
where the textures and target monster sprite are dissimilar to the training environment. After
testing the models on environment B, the confidences produced show that dropout is somewhat
suitable for OOD detection in the current task, while an ensemble fails to do so with higher
standard deviation in the ID environment compared to the OOD environment.

1 Introduction

The advancements in the field of Machine
Learning have been extensive in recent years, and
it has evolved into many sub-paradigms, with one
of them being Reinforcement Learning (RL).
RL allows an agent to learn from its interactions
with the environment and make better decisions
over time in contrast to Supervised Learning. In
the latter case an agent is trained on a pre-existing
dataset, while an RL agent learns through trial
and error. This is achieved through rewarding or
punishing the agent based on its actions in an
environment. RL has been applied in the fields of
game playing, robotics, and autonomous vehicles
(Shao et al., 2019); (Kiran et al., 2022); (Kober et
al., 2013), to name a few.
However, it is important to note that the perfor-
mance of RL policies is quite dependent on the
training data/experience during training. It is often
assumed that the test data follows the same distri-
bution as training data, but this assumption does
not hold true in many real-world scenarios. These
samples/observations from a different underlying

distribution are known as Out-of-Distribution
(OOD) samples. Hence, one of the major chal-
lenges in RL is ensuring that the trained agent can
generalize to these new, unseen situations. This
is known as OOD detection (Sedlmeier et al., 2019).

The task of OOD detection is crucial in safety-
critical applications, such as autonomous systems
and robotics, where the decisions made by an
RL agent have the potential to cause harm to
human beings or damage to property. For example,
an RL-controlled robot that is deployed in an
industrial setting may not be able to perform well
when it experiences a new or unseen scenario,
oftentimes in which the robot has an imperfect
and limited perception (Botteghi, 2021).
But OOD detection is not limited to these do-
mains of application. As another example of OOD
detection in RL, but in a virtual use-case scenario,
is an agent being trained on a video game level
and then evaluated on an unseen level. This poses
a difficult challenge for current RL algorithms and
both the quality and quantity of the training data
matter for generalization (Balla et al., 2020). A
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lack of training data, in this case, gives rise to
uncertainty in the model itself.

Moving on to the topic of modern advance-
ments in RL, which have utilized deep neural net-
works (DNNs). These DNNs have been shown to
be susceptible to out-of-distribution (OOD) data
(Hendrycks et al., 2020) which can result in wrong
decisions leading to higher costs and sometimes,
critical failures.
One of the problems in current RL practice is that
researchers focus only on the metrics, namely the
mean squared error (MSE) and the accuracy of
the model. Since standard DNNs are used in com-
mon practice, point-wise predictions are generated
as outputs instead of a prediction distribution that
would be generated by a model that outputs un-
certainty. This very uncertainty can then be used
to assess how much confidence one has in the pre-
dictions of an RL model, with the predictions with
higher uncertainty being a tell for humans to inter-
vene in the process.
In this work we will explore detecting OOD sam-

ples in the context of an RL policy trained on
a video game environment. Although most of the
focus in research on OOD detection has been on
image and text recognition tasks, recently there
has been a benchmark that extends it to deep Re-
inforcement Learning (Mohammed & Valdenegro-
Toro, 2021).
In the mentioned work, the author corrupts the
states and changes some physical parameters to cre-
ate OOD environments. We modify a game envi-
ronment directly by changing its sprites and tex-
tures which enables us to create a visually dif-
ferent environment B. The confidence (mean and
standard deviation distribution) output of this en-
vironment B then enables us to evaluate if B is
Out-of-distribution or not. The model output be-
ing a distribution instead of point-wise predictions
is achieved through modifying it to incorporate two
sampling-based Uncertainty Quantification Tech-
niques, namely MC Dropout and Ensembles, (fur-
ther described in Section 3 (Gal & Ghahramani,
2015), (Lakshminarayanan et al., 2016). Hence, our
Research Question being the following:
A Reinforcement Learning agent is trained on a
video game environment A. Does the standard de-
viation output produced by testing it on a visually
different environment B support B being OOD?

2 OOD Detection in Deep
Learning

In Deep Learning (DL, an umbrella field for
both classification and regression problems), when
it comes to low-dimensional feature spaces, out-
of-distribution (OOD) detection has been a well-
researched topic. Pimentel et al. (2014) pro-
vide a survey distinguishing between probabilis-
tic, domain-based, reconstruction-based, distance-
based and information-theoretic methods.
With regard to higher dimensional feature cases,
OOD detection has had a recent surge in inter-
est, especially classification problems. For exam-
ple, Hendrycks & Gimpel (2016) use predicted class
probabilities of a softmax classifier to propose a
baseline for OOD samples in Neural Networks. This
baseline is enhanced via using temperature scaling
and adding perturbations to the input (Liang et al.,
2017).
But since our task is to do a regression of the state
Q-Values of an agent in a virtual environment us-
ing a DQN, what is done here is not an application
of the methods described above. One might glance
at Generative-neural-network (GAN) based tech-
niques (Schlegl et al., 2017) as they can be helpful
to model the distribution of the training data. Al-
though utilizing GANs would be computationally
expensive and require a lot of data, which makes
them less suitable for our purpose.
Our approach is based on treating OOD Detec-
tion as a classification problem, in which we have
two classes, one for in-distribution data (ID) and
another for out-of-distribution data (OOD). It is
based on the UBOOD framework (Uncertainty
Based Out-of-Distribution Detection) proposed by
Sedlmeier et al. (2019). The idea is that the uncer-
tainty in the model for ID samples is lower than
OOD samples. Akin to this framework Lütjens et
al. (2018) propose an algorithm that uses uncer-
tainty information to cautiously avoid dynamic ob-
stacles in novel scenarios, a risk-sensitive approach
that can be used to make an RL policy sensitized
to novel data, although not explored here.
Based on Mohammed & Valdenegro-Toro (2021),
we chose MC Dropout and Ensembles as our choice
for Uncertainty Quantification methods as they
generally perform the best for OOD Detection ac-
cording to the authors.
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3 Out-of-Distribution Detec-
tion and Uncertainty

It is necessary to have an understanding of Un-
certainty Quantification (UQ) in order to com-
prehend how a model can produce uncertainty. UQ
is the process of determining and measuring the
uncertainty in the predictions made by a model.
As previously noted, uncertainty in predicitons can
be particularly helpful in the field of OOD detec-
tion, and can be categorized into two types: Epis-
temic uncertainty and Aleatoric uncertainty (Ki-
ureghian & Ditlevsen, 2009); (Gal & Ghahramani,
2015). Aleatoric uncertainty is uncertainty that
arises from the inherent noise in the data, while
epistemic uncertainty arises from the model’s lack
of knowledge about the data distribution.
Below we focus on two popular sampling methods
of UQ both of which play a crucial role in detecting
OOD samples and providing reliable predictions in
uncertain scenarios. The first one is Monte Carlo
Dropout (MC Dropout), which is a technique that
involves randomly dropping out neurons (Figures
3.1, 3.2) during the forward pass of a neural net-
work, on top of doing it during training (Gal &
Ghahramani, 2015). This results in a distribution of
predictions, rather than a single prediction. By tak-
ing the mean and standard deviation across these
predictions produced over multiple forward passes,
we can estimate the model’s uncertainty. This is
akin to Bayesian Model Averaging, where multi-
ple models are trained with different weight values
(Kendall & Gal, 2017).

On the other hand, using an Ensemble in the
context of UQ is to train multiple models (estima-
tors) and combine their predictions (Figure 3.3)
by taking the mean and standard deviation across
their outputs. The output standard deviation
serves as an uncertainty measure in both UQ
methods. Furthermore, ensembles can be used to
estimate both aleatoric and epistemic uncertainty
(Lakshminarayanan et al., 2016). An advantage
of using an ensemble is that the diversity of
the models in the ensemble can help to identify
when the input data is outside of the distribution
the ensemble was trained on. The idea behind
the aforementioned UQ methods is that model’s
uncertainty is typically higher for OOD samples
than for in-distribution samples.

Figure 3.1: An example figure of a standard neu-
ral network (Krause, 2016).

Figure 3.2: An example figure of Dropout in a
neural network (Krause, 2016).
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Figure 3.3: A figure which shows training an en-
semble (Alam et al., 2019).

It is reasonable to inquire about which one of
epistemic and aleatoric uncertainty matters more
in OOD detection, with the answer to that being
epistemic uncertainty. This is because epistemic un-
certainty captures the model’s uncertainty about
the true underlying data distribution. In contrast,
aleatoric uncertainty captures the inherent noise in
the data, which does not affect the model’s uncer-
tainty about the data distribution. Leading from
this, epistemic uncertainty is a better indicator of
OOD samples as it captures the model’s lack of
knowledge about the input data. In conclusion,
both MC Dropout and Ensembles are viable choices
to estimate epistemic uncertainty.

4 Methods

4.1 The Game Scenario

VizDoom is a reinforcement learning platform built
on top of the Doom game engine (Wydmuch et al.,
2019). In this work, we used the VizDoom API to
train an RL agent in one of the pre-existing ’basic’
scenario (game environment level) provided by the
authors.
In the scenario, the player agent would spawn with
a gun at the center of a square room along a wall.
A monster would spawn somewhere alongside op-
posite room wall, the aim/goal being to shoot the
monster (one shot enough to reach the end goal).

The player would be allowed to move left, move
right or shoot, allowing for a combination of two
actions at once, totaling 23 = 8 possible actions. A
living reward of -1 would be given for every time
step, with the reward for shooting the monster be-
ing +101, and the reward for every bullet missed
being -5. The episode would end on monster death
or t = 300 timeout (t is the number of steps in a
game episode).

4.2 Model Architecture

A Deep Q-Network (DQN) is a specific type of
Q-learning algorithm that uses a neural network,
called the Q-network, to approximate the Q-value
function (Mnih et al., 2013), (Mnih et al., 2015).
In our case, we used the DQN to do a regression
of the state values for all possible actions, enabling
us to choose the best action during training via
the epsilon-greedy policy.

According to Mnih et al. (2013) the optimal
strategy for selecting action a′ in a Markov Deci-
sion Process (MDP, playing a game scenario in our
case is an MDP with a state, actions and rewards
tied to it) while maximizing the expected value of
r + γQ∗(s′, a′) is given by the following equation
(Bellman Equation):

Q∗(s, a) = Es′ ∼ E [r + γmax a′Q(s′, a′) | s, a]

where the optimal value Q∗(s′, a′) of the next
time-step sequence s′ is known for all possible ac-
tions a′.

The author further mentions that a Q-network
with weights θ can be used as a non-linear func-
tional approximator to estimate the action-value
function (Q(s, a; θ) ≈ Q∗(s, a)). The network can
be trained by minimizing a series of loss functions
Li (θi) with the loss function changing at each
iteration i:

Li (θi) = Es,a∼ρ(·)

[
(yi −Q (s, a; θi))

2
]

In the above equation, the author expresses
that yi = Es′∼E [r + γmaxa′ Q (s′, a′; θi−1) | s, a]
is the target for iteration i, while ρ(s, a) being
the probability distribution over sequences and
actions (s, a). Here, the previous iteration’s (θi−1)
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parameters are fixed when optimizing the loss
function Li (θi). This optimization is preferably
done through stochastic gradient descent (also in
our case).

The driver/example code (using Tensorflow) for
a Deep Q-Network with an epsilon-greedy policy
was taken from the VizDoom repository on github∗,
made for the purpose of learning the ’basic’ game
scenario.
The design of the neural network included the in-
corporation of convolutional layers to extract fea-
tures from the input image, a flattening operation
to convert the output of these layers into a one-
dimensional array, and two dense layers to produce
the final output. Below the structure of the DQN
is described with hyper-parameters:

1. It begins with an input layer which takes in
an image with shape (30, 45, 1) as input:
Input(shape=(30, 45, 1)).

2. The first convolutional layer is applied to
the input image from the Input() layer:
Conv2D(filters = 8, kernel size = 6,

stride = 3, input shape = (30, 45, 1)).
BatchNormalization() and ReLU() activa-
tion function are applied in order right after
the convolution step.

3. Then a second convolutional layer is applied
on the output of the first convolutional layer:
Conv2D(filters = 8, kernel size = 3,

stride = 2), input shape = (9, 14, 8)).
Similarly here, BatchNormalization() and
ReLU() follow the convolutional step.

4. The flatten layer (Flatten()) is applied on the
output of the second convolutional layer, which
flattens the output into a 1D array.

5. The output of Flatten() layer is split into two
parts, x1 and x2. x1 corresponds to the first 96
elements, and x2 corresponds to the remaining
elements.

6. x1 is passed through a dense layer with one
neuron named state value:
state value = Dense(1)

x1 = state value(x1)

∗https://github.com/Farama-Foundation/ViZDoom/

blob/master/examples/python/learning tensorflow.py

Table 4.1: A table with the hyper-parameter val-
ues used to train all models.

Hyperparameter Value

Learning rate 0.00025

Discount factor 0.99

Replay mem. size 10000

#Training epochs 15

#Learning steps per epoch 2000

Target net update steps 1000

Batch size 64

7. x2 is passed through the advantage dense
layer, which has num actions number of neu-
rons, which is 8:
advantage = Dense(num actions)

x2 = advantage(x2)

8. x1 and x2 are then combined. x2 is adjusted
by subtracting the mean value from all the
predicted advantages, thus making the mean
of the advantages zero. x1 is added to the
adjusted x2, thus combining the state value
and the advantages:
x = x1 + (x2 -

tf.reshape(tf.math.reduce mean(x2,

axis=1), shape=(-1, 1)))

9. The final output (x) of the model is the
combined state value and advantages:

4.3 Training and Hyper-parameters

The agent was given a set of initial actions and al-
lowed to explore the environment. While playing, it
collected experiences (i.e., state, actions, rewards,
next state), stored the states in a replay buffer and
then used these experiences to update its Q-values
and improve its policy. Three instances of the
model were trained, first a baseline model, then
a model with Dropout and finally a model with a
number of estimators (an Ensemble). All had the
same following hyper-parameters throughout, in
Table 4.1
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Additionally, in the case of Dropout, we replaced
the Dense() layers with StochasticDropout()

layers (with a probability of 0.2) from the pack-
age keras uncertainty†, and then passed the
model to a StochasticRegressor() model class
(also from keras uncertainty). The predict()

method of this class uses Monte Carlo Sampling
to produce a mean and standard deviation (the
uncertainty) output of the state Q-values (for each
action) learned during training, which was used
for OOD Detection.
In a similar fashion, we passed the model
to the SimpleEnsemble() class from
keras uncertainty, with 5 ensemble mem-
bers. The predict() method of this class also
outputs the learned state q-value distribution
(mean and standard deviation distribution of each
possible action along an episode). This standard
deviation output was used as a confidence measure
for OOD evaluation, just like in the case of MC
Dropout.

4.4 ID vs. OOD Environment

To understand how the environment was modified,
one needs to be familiar with the concept of .WAD
files (i.e. ”Where’s All the Data?”), which are files
used in the Doom video game’s engine to store
game data, which includes levels, graphics, and
sound effects. In VizDoom, .WAD files are used to
provide the game environment for the AI agent to
interact with. One can use their own custom .WAD
files, or use the ones provided by VizDoom to cre-
ate a variety of different game environments for the
AI agent to train on.
By default, VizDoom uses an open source archive
’freedoom2.WAD’‡ as an alternative to the original
archive ’DOOM2.WAD’ to make game levels. It in-
cludes custom textures, sounds etc. We use this as
our environment A (ID environment, Figure 4.1).

On the other hand, for the (Out-of-distribution)
OOD environment B we used the original Doom 2
game’s assets (when initiliazing the environment)
by using an inbuilt method in VizDoom to utilize
’DOOM2.WAD’ as the base archive:
vizdoom.game.set doom game path(scenario path,

"DOOM2.WAD").

†https://github.com/mvaldenegro/keras-uncertainty
‡https://freedoom.github.io/

Figure 4.1: A screenshot of the In-Distribution
(ID) environment A. Pay attention to the mon-
ster, floor and the wall textures

Figure 4.2: A screenshot of the Out-on-
Distribution (OOD) environment B. It has dif-
ferent textures for the monster, floor and the
walls utilizing assets from the Doom 2 game.
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Figure 5.1: Baseline model average rewards per
episode (ID vs. OOD)

Refer to Figure 4.2 for the OOD environment.
Since ’DOOM2.WAD’ is licensed by the developers
of Doom 2 game, the authors had to purchase the
game itself and get original .WAD file from the
installation directory of the game.

5 Experimental Results and
Analysis

In this work, the data collected from the base-
line, MC Dropout, and ensemble models was an-
alyzed across 20 test runs or episodes, with the
results being averaged over the number of steps
per episode. First, the examination of the baseline
model’s performance is conducted using the ID and
OOD datasets (as depicted in Figure 5.1).
The results show higher rewards in the ID setting
for episodes lasting no more than 50 steps, which is
consistent with the expectation as the model was
trained on the ID dataset. Conversely, the rewards
in the OOD setting demonstrate the agent’s inabil-
ity to defeat the monster within the first 40 steps,
with a declining trend observed until the episode
times out (which is limited to 120 steps on the x-
axis). This trend suggests that the baseline model
experienced significant challenges in the OOD set-
ting.

5.1 Dropout Results

Again the examination of the reward plot is done,
but for the Dropout model on the ID and OOD
datasets (5.2). In contrast to the baseline model,

Figure 5.2: Dropout model average rewards per
episode (ID vs. OOD)

Figure 5.3: Dropout model mean and standard
deviation of Q-value for action 1 (ID vs. OOD)

we see reward spikes in some episodes during the
initial steps in the OOD setting, which suggest that
the dropout model is more successful, although the
episodes in the ID setting end sooner. One inter-
esting thing to notice is that the agent misses their
shots on the monster via the little dips in the re-
ward curve in the OOD setting (check A.2 to ob-
serve an example run), with the trend going down-
wards without any spikes until episode timeout here
as well.

Moving onto the plots of the mean and standard
deviations (uncertainty) of the Q-value for each one
of the 8 possible action combinations (Figure 5.3 -
Figure 5.10).

One can observe that the dropout model has
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Figure 5.4: Dropout model mean and standard
deviation of Q-value for action 2 (ID vs. OOD)

Figure 5.5: Dropout model mean and standard
deviation of Q-value for action 3 (ID vs. OOD)

Figure 5.6: Dropout model mean and standard
deviation of Q-value for action 4 (ID vs. OOD)

Figure 5.7: Dropout model mean and standard
deviation of Q-value for action 5 (ID vs. OOD)

Figure 5.8: Dropout model mean and standard
deviation of Q-value for action 6 (ID vs. OOD)

Figure 5.9: Dropout model mean and standard
deviation of Q-value for action 7 (ID vs. OOD)
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Figure 5.10: Dropout model mean and standard
deviation of Q-value for action 8 (ID vs. OOD)

higher ID mean with less spikes in all actions when
compared to the OOD mean. The OOD mean
varies more during the initial phase of an episode
with less number of fluctuations when compared
to later on in an episode. Whereas the ID mean
varies less during the start of an episode, where
the quick test runs end. With the different colored
shaded regions one can see the uncertainty in
both settings. As mentioned earlier, OOD setting
episodes run until the 300 step timeout, in contrast
with 71 steps for the ID setting. Overall, we see a
similar trend across all actions for both the settings.

Moving forward, a plot of the mean and stan-
dard deviation for the Q-value corresponding to
the chosen action is generated (Figure 5.11). The
plot reflects the same trend as the previous action
plots, however, for the purpose of OOD detection,
it is crucial to determine which setting, either ID
or OOD, has higher uncertainty. Unfortunately, the
current graph does not provide a clear distinction
in this regard.

Up next, the plots for the standard deviations
for the ID and OOD datasets are observed (Figure
5.12). Here, one can see the difference between the
ID and OOD dataset standard deviation, and see
that OOD setting has a trend of having a higher
standard deviation overall, which is what one would
anticipate when the dropout model is tested on the
OOD environment.

To evaluate how the standard deviation outputs
for the ID and OOD setting are separated, one can

Figure 5.11: Dropout model mean and standard
deviation of Q-value for the chosen action (ID
vs. OOD)

Figure 5.12: Dropout model standard deviation
of Q-value for the chosen action (ID vs. OOD)
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Figure 5.13: ROC curve for the dropout model,
for OOD Detection. The orange line is for a ran-
dom classifier which corresponds to an AUC of
0.5

use an ROC curve which acts as a binary classifier
(Figure 5.13). We instantly observe that it performs
better than chance, and an AUC of 0.6810 portrays
a 68% chance that the positive class (OOD) has a
higher predicted standard deviation (uncertainty)
than the negative class (ID). Hence, one can say
that the dropout model somewhat succeeds in sep-
arating in ID and OOD samples.

5.2 Ensemble Results

Commencing with the ensemble model results, we
analyze the reward plot for the ID and OOD setting
(Figure 5.14).

An interesting trend is shown by the OOD set-
ting, matching and even passing the rewards with
the ID setting during the first few steps, but having
lower rewards in the subsequent steps of an average
episode. The test runs in the ID setting end sooner
when compared to the OOD setting, in which some
runs hit the time out. We also see big spikes in
the rewards in the OOD setting in the subsequent
steps, unlike the dropout model which suggests that
the agent is still killing the monster, even though
much later. Like in the Dropout model, we don’t see
any missed shots (little dips) in the reward curves
here. Overall, suprising results for the OOD setting
are seen here.

Stepping ahead, we analyze the ensemble model

Figure 5.14: Ensemble model average rewards
per episode (ID vs. OOD)

Figure 5.15: Ensemble model mean and stan-
dard deviation of Q-value for action 1 (ID vs.
OOD)

plots which have the mean and standard deviations
of the Q-values for all possible actions (Figures 5.15
- 5.22).

One noticeable trend in all action plots for the
ensemble model which can be seen here is that
the ID setting has a visibly higher uncertainty
(blue shaded region) compared to the OOD setting
(brown shaded region), even though the mean of
the Q-Value for all actions in the ID setting is
higher than in OOD setting. The former result is
quite unexpected, and the authors are not sure
why that is the case. One can also notice spikes
in the uncertainty in the OOD setting in the
subsequent steps for all actions.
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Figure 5.16: Ensemble model mean and stan-
dard deviation of Q-value for action 2 (ID vs.
OOD)

Figure 5.17: Ensemble model mean and stan-
dard deviation of Q-value for action 3 (ID vs.
OOD)

Figure 5.18: Ensemble model mean and stan-
dard deviation of Q-value for action 4 (ID vs.
OOD)

Figure 5.19: Ensemble model mean and stan-
dard deviation of Q-value for action 5 (ID vs.
OOD)
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Figure 5.20: Ensemble model mean and stan-
dard deviation of Q-value for action 6 (ID vs.
OOD)

Figure 5.21: Ensemble model mean and stan-
dard deviation of Q-value for action 7 (ID vs.
OOD)

Figure 5.22: Ensemble model mean and stan-
dard deviation of Q-value for action 8 (ID vs.
OOD)

Figure 5.23: Ensemble model mean and stan-
dard deviation of the Q-value for the chosen ac-
tion (ID vs. OOD)
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Figure 5.24: Ensemble model standard deviation
of Q-value for the chosen action (ID vs. OOD)

Furthermore, the ensemble plot of the mean
and standard deviation of the chosen Q-value is
examined (Figure 5.23). This plot shows similar
trends as the plots for all actions. Even though
apparent through the current plot, we check the
standard deviation (uncertainty) plots for the
ensemble model (Figure 5.24) and observe that the
ID setting has a way higher uncertainty compared
to the OOD setting. As previously noted, these are
unexpected results for the ensemble model.

Furthermore, an ROC curve is plotted to anal-
yse how the ensemble model detects OOD sam-
ples (Figure 5.25). We instantly see that it com-
pletely fails, with an AUC of 0.0009, which means
that there is a 0.09 % chance that the OOD
class/setting has a higher standard deviation than
the ID class/setting.
Last but not the least, two tables are made for

the scores of both the models in the ID and OOD
settings (Tables 5.1 and 5.2). These scores give a
rough idea to the reader of how the models do in
both the ID and OOD environments, with the ROC
AUC being the most important one, as it conveys
the ability of the models to separate ID and OOD
samples.

6 Conclusions and Future
Work

In the current work, two Uncertainty Quantifica-
tion methods (MC Dropout and Ensemble) are

Figure 5.25: ROC curve for the ensemble model,
for OOD Detection. The orange line is for a ran-
dom classifier which corresponds to an AUC of
0.5

Table 5.1: A table with the averaged scores and
results from the Dropout model.

Avg. reward ID setting -12.3

Avg. reward OOD setting -201.7

Avg. mean of chosen Q-value ID 72.6

Avg. mean of chosen Q-value OOD 10.8

Avg. std. of chosen Q-value ID 8.3

Avg. std. of chosen Q-value OOD 10.2

ROC AUC 0.68

Table 5.2: A table with the averaged scores and
results from the Ensemble model.

Avg. reward ID setting 6.1

Avg. reward OOD setting -145.7

Avg. mean of chosen Q-value ID 84.2

Avg. mean of chosen Q-value OOD 8.9

Avg. std. of chosen Q-value ID 168.6

Avg. std. of chosen Q-value OOD 20.0

ROC AUC 0.09
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compared to detect OOD samples in a video game
scenario/level of the Doom 2 game. The task is
to kill a monster in the scenario, with the original
environment having a different distribution than
the OOD environment. This difference in the
OOD setting is achieved through changing the
archive that the game level loads it assets from,
to the original Doom 2 game, in contrast with the
default textures the level uses from an open-source
archive. The performance discrepancy between the
trained models in their original environment and
the customized versions illustrates the models’
vulnerability to variations in the environment. One
of the difficulties faced was to change the original
environment and the target not so much, which
would result in a complete failure of the models.
Another challenge faced by the authors was to
train the ensemble members independently, which
did not result in rewards that converged.

MC Dropout is able to somewhat distinguish ID
samples from OOD samples, with ensembles com-
pletely failing to do so. The reason why this hap-
pens in our case can be explored in future research
(if interested, one can infer with Appendix A to
see examples of agent gameplay in the OOD set-
ting). Hence, we can answer our Research Question
by saying yes, MC Dropout somewhat supports
the visually different environment B being Out-of-
distribution, while an Ensemble fails to do so. New
game scenarios can also be tested alongside more
UQ methods, such as Bayes by Backpropogation,
Flipout, DropConnect etc.

References

Alam, K. M. R., Siddique, N., & Adeli, H.
(2019, July). A dynamic ensemble learn-
ing algorithm for neural networks. Neu-
ral Computing and Applications, 32 (12), 8675–
8690. Retrieved from https://doi.org/10

.1007/s00521-019-04359-7 doi: 10.1007/
s00521-019-04359-7

Balla, M., Lucas, S. M., & Pérez-Liébana, D.
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A Appendix

Here, the screen buffer screenshots are provided of
runs in which the agent fails to kill the monster,
hence the runs in the OOD environment for both
the models.

A.1 Ensemble

We look at an Ensemble model’s test episode in
which the agent fails to kill the monster in the OOD
environment, with an ending score of -300 (Figures
A.1 - A.5). Each screenshot is taken after every 12
frames. Here, we can clearly see that the agent is
not moving or firing the weapon at all before time
out as seen in Figure 5.14. This behaviour is also
consistent across all failed runs exhibited by the
Ensemble agent.

A.2 MC Dropout

Lastly, we look at a Dropout model’s test episode in
which the agent fails to kill the monster in the OOD
environment, with an ending score of -410 (Figures
A.6 - A.10). Each screenshot is taken after every
12 frames here as well. One notices that the mon-
ster has spawned on the right side, and the agent
exhibits similar behaviour whenever this happens,
that is completely ignoring the target monster and
moving towards the left wall of the room (away
from the monster), whilst firing missed shots. The
agent stays at the left wall and ignores the mon-
ster, still firing missed shots until timeout. This
would explain the little dips in the rewards because
of missed bullets in the OOD setting (Figure 5.2).
This behavior is seen in all the failed runs by the
MC Dropout agent.

Figure A.1: Steps 0 - 5 failed run Ensemble
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Figure A.2: Steps 6 - 11 failed run Ensemble Figure A.3: Steps 12 - 17 failed run Ensemble
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Figure A.4: Steps 18 - 23 failed run Ensemble

Figure A.5: Step 24 failed run Ensemble
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Figure A.6: Steps 0 - 5 failed run MC Dropout Figure A.7: Steps 6 - 11 failed run MC Dropout
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Figure A.8: Steps 12 - 17 failed run MC Dropout Figure A.9: Steps 18 - 23 failed run MC Dropout
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Figure A.10: Step 24 failed run MC Dropout
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