
University of Groningen

Bachelor Integration Project

Identification of LTI system with auxiliary data
from a similar system

Author:
Aleksander Peszko (s3696871)

Lecturer:
prof. dr. Nima Monshizadeh

January 20, 2023

Contents
1 Introduction 2

2 Mathematical Terminology 2

3 Theory 3

4 Algorithm 6
4.1 Stage 1: System Identification without noise . 6
4.2 Stage 2: System Identification with noise . 6
4.3 Stage 3: Plotting identification error as function of σ2

w and Nr 6
4.4 Stage 4: LS for target and source systems . 6
4.5 Stage 5: WLS for target and source systems . 7

5 Experimental Setup 8
5.1 Virtual System . 8
5.2 Physical System . 8

6 Analysis of LS identification error 9

7 Analysis of WLS identification error 11
7.1 Scenario 1: Both Nr and Np are increasing . 11
7.2 Scenario 2: Np is fixed and Nr is increasing . 12

8 Conclusion 13

A Appendix: Matlab Codes 14
A.1 Stage 1: System Identification without noise . 14
A.2 Stage 2: System Identification with noise . 14
A.3 Stage 3: Plotting identification error as function of σ2

w and Nr 15
A.4 Stage 4: LS for target and source systems . 17
A.5 Stage 5: WLS for target and source systems . 19
A.6 Analysis of WLS identification error . 20

1

Abstract

This report describes the dynamical system identification with limited access to the data. The goal of
the research is to prove that leveraging data from a similar system can reduce the identification error by
complementing the original system’s data with additional data from the auxiliary system. The identification
will be performed using the regression analysis method of weighted least squares. Once the error is identified,
a detailed analysis of the influencing factors will be provided. It includes altering various parameters such
as process noise, number of experiments and weight parameter in order to observe the behaviour of the error
and ideally reduce it. The experimental setup includes two linear time-invariant (LTI) systems, namely
target and source systems that will be subjected to the identification, and based on the obtained results, I
will draw conclusions and validate the theoretical assumptions.

1 Introduction
Dynamical system identification is used in various fields of science as a method of constructing dynamical

systems from measured data [1]. Sometimes the system is complex and cannot be described with physical
principles. System identification allows deriving a mathematical model basing upon the collected data samples
and the relationship between parameters. The data samples are gathered through experiments and they dictate
the dynamics of identified system. The larger the number of experiments, the more accurate dynamics can
be modelled [1]. This is called a multiple trajectory setup and is often used in system identification [1]. In
this particular setup, multiple independent experiments are performed in order to collect as much data as
possible. In each trajectory, the system is run from beginning to the end giving opportunity for more unbiased
measurements [1].

The experimental analysis enables to determine the dynamics of the system with only two kinds of data,
namely input and output. This is in fact useful in modelling the complex systems because the behaviour is
reduced to just input-output relationship. However, in many cases, the internal state of the system is sought
to be established [2]. Therefore, the input-state relationship is crucial there. By knowing this relationship, the
internal state at next time step can be foreseen. A mathematical model can be then derived by subjecting the
measured input-state signals to some identification method such as the least squares method (LS) [2].

In every real world systems there are disturbances (noise) attached. They distort the measured data affecting
the whole system and resulting in the dynamics not being accurate anymore. The noise is a main reason for
causing identification error. Identification error is the deviation between the actual system and its mathematical
model [2]. As the parameters can no longer be described by a relation, it is difficult to predict the system’s
future behaviour [3]. In order to reduce the error, the number of experiments shall be increased because more
trials generate more reliable measurements [2]. However, in some cases, acquiring data from an actual system
is not feasible as some obstacles can arise [4]. With limited data, the identified system does not illustrate the
behaviour of the actual system. Therefore, one seeks help from an auxiliary system, which is a twin system to
the actual system. The reason is that it shares similar dynamics and it is abundant in data [5].

In this research, the primary focus lies on identifying the dynamics of a certain linear time-invariant (LTI)
system by leveraging data from an auxiliary system on top of the actual system’s data. The data is generated
in a multiple trajectories setup with each experiment having a constant data length [1][6]. Furthermore, the
identification method that is used throughout the process is weighted least squares method (WLS).

System identification will be achieved in steps according to Xin, L., et al. 2022 so that the transitions
between key phases are supported with mathematical correlations. Firstly, the influence of noise on the system
identification will be discussed. It includes investigating how changing the parameters such as the energy of
the noise and/or number of experiments affects the identification error. Second step is to show how adding
the source system’s data will affect the identified system’s dynamics and consequently the identification error.
Next, the specific weight will be assigned for auxiliary data in order to capture the change in behaviour. Lastly,
the simulations of the identification error will be shown and discussed in detail in terms of increasing amount of
actual system’s samples, auxiliary system’s samples and the weight parameter assigned to these samples. The
goal at the end of the research is to find such a combination of variables that reduce the identification error
between the actual and identified systems.

2 Mathematical Terminology
|| · || : Spectral norm of a matrix i.e. the largest singular value of a matrix,
|| · ||F : Frobenius norm of a matrix,
u ∼ N (µ,Σ) : Gaussian distributed random vector, where µ is the mean and Σ is the covariance matrix [1],
In : Identity matrix of dimensions n× n,
diag(q) : Identity matrix with q in diagonal.

2

3 Theory
System identification firstly requires establishing the system. Xin, L., et al. 2022 and Fattahi, S., and

Sojoudi, S., 2018 describe the target system with a discrete-time LTI system equation

x̄k+1 = Āx̄k + B̄ūk + w̄k (1)

where
x̄k ∈ Rn is target system state,
ūk ∈ Rm is target system input,
w̄k ∈ Rn is target system noise,
Ā ∈ Rn×n and B̄ ∈ Rn×m are target system matrices.

The input and process noise are assumed to be i.i.d Gaussian, with ūk ∼ N (0, σ2
uIm) and w̄k ∼ N (0, σ2

wIn)
[1]. Note that σ2 is the energy of the noise which dictates its deviation. Gaussian noise creates random samples
whose actual distribution is unknown [7]. It is commonly used in system identification due to the fact that the
data is normally distributed in the array.

Assuming the multiple trajectory setup, Nr independent experiments are conducted with new data being
generated at each trajectory. Every experiment starts at an initial state x̄0 ∼ N (0, σ2

xIn), and has data length
T . During these experiments, the system measures state and input at each time step put them into state-input
pairs. These samples are called a rollout and can be denoted as {(x̄i

k, ū
i
k) : 1 ≤ i ≤ Nr , 0 ≤ k ≤ T}, where i is

the rollout index and k is the time index [1][6].

Note that since x̄k and ūk can be measured by the system, then let z̄ik =

[
x̄i
k

ūi
k

]
∈ Rn+m be a state-input param-

eter.

Next step is to establish data matrices so that with each experiment the system is able to collect data. For
each rollout i, define X̄i = [x̄i

T · · · x̄i
1] ∈ Rn×T , Z̄i = [z̄iT−1 · · · z̄i0] ∈ R(n+m)×T , W̄ i = [w̄i

T−1 · · · w̄i
0] ∈ Rn×T .

Then, combine experiments together into single matrix by defining the batch matrices X̄ = [X̄1 · · · X̄Nr] ∈
Rn×NrT , Z̄ = [Z̄1 · · · Z̄Nr] ∈ R(n+m)×NrT , W̄ = [W̄ 1 · · · W̄Nr] ∈ Rn×NrT .

Selecting θ = [Ā B̄] results in Equation 1 becoming

X̄ = θZ̄ + W̄ (2)

where θ is responsible for the dynamics of the system [1].

Using least squares method theorem (from Chen, L., et al. 2021), one should solve

min
θ̃∈Rn×(n+m)

∥X̄ − θ̃Z̄∥2F

to obtain the estimated value of θLS = [ĀLS B̄LS].

Analytically calculated θLS from Frobenius norm has a following formula (from Xin, L., et al. 2022)

θLS = X̄Z̄⊤(Z̄Z̄⊤)−1 (3)

Knowing that not many experiments can be conducted for target system i.e. Nr is small, the estimation
error due to noise cannot be reduced. Nevertheless, there exists a possibility of accessing data from a source
system. Assuming similarity of these systems, source system’s samples complement target system’s samples.
Both systems share similar dynamics, therefore the source system can be analogically described by following
equation

x̂k+1 = Âx̂k + B̂ûk + ŵk (4)

where
x̂k ∈ Rn is source system state,
ûk ∈ Rm is source system input,
ŵk ∈ Rn is source system noise,
Â ∈ Rn×n and B̂ ∈ Rn×m are source system matrices.

3

Similarly to Equation (1), the input and process noise are assumed to be i.i.d Gaussian, with ûk ∼ N (0, σ2
uIm)

and ŵk ∼ N (0, σ2
wIn) [1].

Now, let us replace Â and B̂ with Ā+ δA and B̄ + δB in Equation (4), respectively, where δA = Â− Ā and
δB = B̂ − B̄ are the differences in systems’ matrices, and obtain

x̂k+1 = (Ā+ δA)x̂k + (B̄ + δB)ûk + ŵk (5)

Again, assuming the multiple trajectory setup, however in this case Np independent experiments are con-
ducted. Every experiment starts at an initial state x̂0 ∼ N (0, σ2

xIn), and has data length T . During these
experiments, the system measures state and input at each time step put them into state-input pairs. These
samples are called a rollout and can be denoted as {(x̂i

k, û
i
k) : 1 ≤ i ≤ Np , 0 ≤ k ≤ T}, where i is the rollout

index and k is the time index [1][6].

Note that since x̂k and ûk can be measured by the system, then let ẑik =

[
x̂i
k

ûi
k

]
∈ Rn+m be a state-input param-

eter.

Rearranging terms in the Equation (5) gives

x̂k+1 = Āx̂k + B̄ûk + δAx̂k + δBûk + ŵk (6)

which can by further written as
x̂k+1 = [Ā B̄]ẑk + [δA δB]ẑk + ŵk (7)

Repeating the steps between Equations (1) and (3) for source system’s parameters will output data matrices
for each rollout i, such that X̂i = [x̂i

T · · · x̂i
1] ∈ Rn×T , Ẑi = [ẑiT−1 · · · ẑi0] ∈ R(n+m)×T , Ŵ i = [ŵi

T−1 · · · ŵi
0] ∈

Rn×T .
Then, combine experiments together into single matrix by defining the batch matrices X̂ = [X̂1 · · · X̂Np] ∈

Rn×NpT , Ẑ = [Ẑ1 · · · ẐNp] ∈ R(n+m)×NpT , Ŵ = [Ŵ 1 · · · ŴNp] ∈ Rn×NpT .
Additionally, introduce new variables to connect target and source systems, namely X = [X̄ X̂] ∈ Rn×(Nr+Np)T ,

Z = [Z̄ Ẑ] ∈ R(n+m)×(Nr+Np)T , W = [W̄ Ŵ] ∈ Rn×(Nr+Np)T and δ = [δA δB] ∈ Rn×(n+m).
Next, for each experiment include the differences in systems’ matrices in terms of source system’s samples

∆i = [δẑT−1 · · · δẑ0] ∈ Rn×T so that it can be later implemented in final equation [1]. Combining ∆i for all
i ∈ {1, . . . , Np} results in ∆ =

[
0 · · · 0 ∆1 · · · ∆Np

]
∈ Rn×(Nr+Np)T .

Once previous steps are followed, the obtained relationship of the target and source systems is

X = θZ +W +∆ (8)

At this point, the combined relationship of both systems is expressed with the dynamics of the target system
(i.e. θ = [Ā B̄]). In this case, the target and source systems’ samples are equally weighted. However, by assigning
weight to source system’s samples, one can influence the behaviour seeking more accurate identification [3].

Designing a parameter q ∈ R≥0 allows to assign the relative weight to the samples from source system (4). In
order to match the weight with data length T and number of experiments Np, one should define Q = diag(q) ∈
RT×T and Q̂ = diag(Q, · · · , Q) ∈ RNpT×NpT . Furthermore, define Q = diag(INrT , Q̂) ∈ R(Nr+Np)T×(Nr+Np)T

so that only the source system’s samples are affected in Equation (8). Using weighted least squares method
theorem (from Chen, L., et al. 2021), one should solve

min
θ̃∈Rn×(n+m)

∥XQ
1
2 − θ̃ZQ

1
2 ∥2F

to obtain the estimated value of θWLS = [ĀWLS B̄WLS].

Repeating (3) for θWLS outputs
θWLS = XQZ⊤(ZQZ⊤)−1 (9)

4

Combining it with (8), the estimation error can be calculated as

θWLS − θ = WQZ⊤(ZQZ⊤)−1 +∆QZ⊤(ZQZ⊤)−1 (10)

The theoretical knowledge described above will be used while constructing a Matlab algorithm in later sec-
tions of the research. Every aspect of the algebra behind the code has been covered and delivered in the form
of equations.

5

4 Algorithm
As stated in the introduction, the system identification consists of number of stages. Each stage has its own

Matlab code which is provided in the Appendix. In Stage 1, the code is designed to solve the identification error
without noise (i.e. X̄ = θZ̄). Stage 2 includes steps from previous stage with addition of noise to the system
Equation (2) to observe its influence on the system. Stage 3 will tackle how altering certain parameters (such
as σ2 and Nr) changes the identification error. During Stage 4, both target and source systems will be used for
system identification (Equation (8)). Lastly, in Stage 5, the specific weight will be assigned for source system’s
samples and WLS will be performed, i.e. θWLS = XQZ⊤(ZQZ⊤)−1.

In the end, the algorithm should include following (from Xin, L., et al. 2022):

1. Gather Nr length T rollouts of samples generated from the target system 1,
where x̄i

0 ∼ N (0, σ2
xIn) for all 1 ≤ i ≤ Nr.

2. Gather Np length T rollouts of samples generated from the source system 4,
where x̂i

0 ∼ N (0, σ2
xIn) for all 1 ≤ i ≤ Np.

3. Construct the matrices X, Q, Z and compute θWLS = XQZ⊤(ZQZ⊤)−1.
4. Return the first n columns of θWLS as an estimated Ā,
and the remaining columns of θWLS as an estimated B̄.

4.1 Stage 1: System Identification without noise
During this stage, the noise is excluded from the system (1), i.e. x̄k+1 = Āx̄k + B̄ūk. First step is to fill

empty matrices with data created by the system. In order to achieve that two data creating for loop Matlab
functions are introduced, the outer one for Nr and the inner for T (see Appendix A).

The second step is to use this data to identify the system dynamics, i.e. θLS = [ĀLS B̄LS], and consequently
the identification error by solving θLS = X̄Z̄⊤(Z̄Z̄⊤)−1.

4.2 Stage 2: System Identification with noise
Repeat the previous stage of the code, but this time include noise. Instead of x̄k+1 = Āx̄k + B̄ūk, use

x̄k+1 = Āx̄k + B̄ūk + w̄k and the output will include the disturbances caused by noise.

4.3 Stage 3: Plotting identification error as function of σ2
w and Nr

Two plots will be generated at the end of this stage both showing the behaviour of identification error in
terms of increasing parameters. Taking σ2

w as the increasing parameter requires changing the noise deviation
to an increasing array, for instance

σ2
w = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

.
Since the number of entries is established, the code requires solving the identification error for each entry. It is
achieved by creating a for loop function (see Appendix A).

For the second parameter, namely Nr, the new code needs to be adjusted for increasing number of ex-
periments. Similarly to σ2, change the number of experiments from a single value to an increasing array, for
instance

Nr = {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}

.
Again, introduce a for loop Matlab command and solve the identification error for each entry.

4.4 Stage 4: LS for target and source systems
During this stage of the code, the dynamics of combined target and sources system is identified. Firstly,

pre-define matrices for both systems and create a second for loop Matlab function for source system data. As
the loop is executed, introduce variables that connect target and source system data, i.e. X, Z, W and solve
θLS = XZ⊤(ZZ⊤)−1 to obtain the identification error (see second step of Stage 2).

6

4.5 Stage 5: WLS for target and source systems
Repeat the steps from Stage 4. However, before obtaining the identification error, add a weight specifying

parameter q and a for loop Matlab function for weighted samples (see Appendix A). Once the data is created,
one should solve θWLS = XQZ⊤(ZQZ⊤)−1 to obtain the identified system. Last activity in this code is to
identify the error by computing ||θWLS − θ|| = WQZ⊤(ZQZ⊤)−1 +∆QZ⊤(ZQZ⊤)−1.

7

5 Experimental Setup
Two examples of system identification will be provided in order to test the practical execution of theoretical

knowledge. One example represents a virtual LTI system while the other example concerns a real physical LTI
system. Both systems will be subjected to system identification and the results will be discussed in detail.

5.1 Virtual System
The following system is a virtual system described by Xin, L., et al. 2022. It does not represent any "real-

world" system, nonetheless it can provide insights on the accuracy of system identification.

Key important assumptions are listed below:

1. Dimensions are predefined, i.e. n = 3 and m = 2,

2. Target and Source system’s matrices are predefined:

Ā =

0.6 0.5 0.4
0 0.4 0.3
0 0 0.3

, B̄ =

 1 0.5
0.5 1
0.5 0.5

,

Â =

0.7 0.5 0.4
0 0.4 0.3
0 0 0.3

, B̂ =

1.1 0.5
0.5 1
0.5 0.5

,

3. Number of experiments and data length are predefined, i.e. Nr = 10, Np = 10, T = 100,

4. The input, process noise and initial state are Gaussian ∼ N (0, σ2I) with σ2 being the energy (deviation).
Knowing that, let us use Matlab build-in function randn to generate normally distributed vectors.

5.2 Physical System
The physical system that is being analyzed is the batch reactor process described by Rosenbrock [8]. The

system describes the behavior of certain fluids when mixing with materials under various conditions of temper-
ature and pressure [8]. Let this reactor be our target system. It is of dimensions n = 4 and m = 2 and its
matrices are following:

Ā =

1.38 −0.2077 6.715 −5.676

−0.5814 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

, B̄ =

0 0

5.679 0
1.136 −3.146
1.136 0

.

Due to the dangerous environment, the batch reaction cannot be precisely measured generating very little
data samples [8]. Nevertheless, there exists a similar batch reactor that is less dangerous to access and to gather
data. The basis for its process is based upon Rosenbrock’s batch reactor, therefore it can be classified as a
source system [9]. The system matrices are as follow:

Â =

1.178 −0.161 4.511 −4.403
−0.851 −2.661 −0.011 0.261
1.076 4.335 −7.560 4.382
0 4.335 1.089 −1.849

, B̂ =

0.004 −0.087
6.467 0.001
1.213 −3.235
2.213 −0.016

.

and the number of experiments and data length are predefined, i.e. Nr = 10, Np = 10, T = 2.

Comparing to the virtual system, it can be observed that the target and source matrices of the physical
system have slightly different values. Using both systems allows us to better understand the behavior of the
identification error under various conditions.

8

6 Analysis of LS identification error
When running the codes for Stages 1-4 for both examples, even though the matrices vary, the results show

commonalities. For the virtual system, the identification error excluding noise equals ||θLS−θ|| = 2.0958∗10−15

whereas for the physical system the value is ||θLS − θ|| = 0.85522 ∗ 10−15.
As it can be observed, in both examples its value is negligible, therefore the identification is very precise

which means that the identified θLS is very close to real θ. However, when noise is added to the system, the
precise identification becomes very difficult to obtain. Moreover, the results should change drastically. Let us
prove this assumption.

For σ2
w = 1 and Nr = 10, the identification error equals

1. ||θLS − θ|| = 0.0879 for the virtual system,

2. ||θLS − θ|| = 0.4441 for the physical system.

Comparing to the previous case where noise was excluded, the error has now a crucial impact on the dynamics
of the identified system. The reason is that noise is not scaled by θ thus cannot be controlled within the system
[10]. Unfortunately, external disturbances are present in every system [3]. This code is designed to control them
by means of other parameters which will be shown further.

Assuming one has access to a greater number of experiments and/or can scale the energy of the noise, then
it should have an influence on the behaviour of the identification error. Running the code of Stage 3 for both
systems will result in following plots (see Figures 1 and 2).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

w

10-2

10-1

||

L
S
 -

 |
|

Virtual System

N
r
=10

N
r
=100

N
r
=1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

w

10-2

10-1

100

||

L
S
 -

 |
|

Physical System

N
r
=10

N
r
=100

N
r
=1000

Figure 1: Identification error for the increasing energy of the noise

100 200 300 400 500 600 700 800 900 1000

N
r

10-4

10-3

10-2

10-1

||

L
S
 -

 |
|

Virtual System

2

w
=0.01

2

w
=0.1

2

w
=1

100 200 300 400 500 600 700 800 900 1000

N
r

10-3

10-2

10-1

||

L
S
 -

 |
|

Physical System

2

w
=0.01

2

w
=0.1

2

w
=1

Figure 2: Identification error for the increasing number of experiments

9

Depending on the value of the energy of the noise, the identification error changes. The relationship is that
as the energy increases so does the error (see Figure 1). It is based on the fact that higher disturbances to the
system are more difficult to control resulting in greater error [3]. On the other hand, with increasing number of
experiments, the identification error decreases (Figure 2). The reason is that more data samples are generated,
which in consequence gives more accurate measurements [11].
Note that due to the fact that data is generated randomly (i.i.d Gaussian) for each experiment, the increment
of curves in the graph is not ideal, however the increasing/decreasing tendencies are correct.

Now, it is established that the more experiments are withdrawn from the system, the more accurate is
the identification. However, often acquiring a lot of actual system’s samples is infeasible (as in 5.2). With a
limited number of experiments, the accurate identification is difficult to obtain. Therefore, one ought to seek
help from a source system which shares similar dynamics. Let us investigate the behavior of the error when 10
complementary experiments are added from the source system.

For Nr = 10 and Np = 10, the identification error equals

1. ||θLS − θ|| = 0.0659 for the virtual system,

2. ||θLS − θ|| = 1.3827 for the physical system.

While for the virtual system with almost identical target and source matrices the additional data samples
decreased the error, for the physical system the result was opposite. Instead of giving more reliable data samples,
the divergence between the target and source matrices δ results in auxiliary samples being less informative
consequently impeding an accurate identification.

According to the Theory Section 3, the influence of source system can be reduced by introducing a weigh
parameter q. Assigning a specific weight to the source system’s samples allows for including a higher number
of auxiliary data without distorting the system identification [7]. In the next section, the system identification
will be performed using weighted least squares (WLS) approach to observe the impact of the weight assignment
on the identification error.

10

7 Analysis of WLS identification error
Let us repeat the previous code, however this time assigning a specific weight factor to the source system’s

samples.

For Nr = 10, Np = 10 and q = 0.3, the identification error equals

1. ||θWLS − θ|| = 0.0465 for the virtual system,

2. ||θWLS − θ|| = 0.8599 for the physical system.

Assigning the weight factor to the source system’s samples reduced the error in both cases. Therefore, in
order to minimise the identification error, one should access more data samples with less emphasis on the source
system. Furthermore, the objective is to find the most convenient combination of the number of experiments
and the value of weight parameter.

To fully investigate the influence of the weight assignment, a detailed analysis of the identification error will
be provided. It includes various simulations of the identification error in terms of increasing amount of actual
system’s samples, auxiliary system’s samples and the weight parameter assigned to these samples. The aim of
the analysis is to identify the impact of certain parameters on the behavior of the error so that the identification
is as much precise as possible.

Since the identification error consists of three terms, i.e. ||WQZ⊤||, ||∆QZ⊤||, ||(ZQZ⊤)−1|| (see Equation
(10) in Theory Section 3), each term influences the error separately.

The first term corresponds to the error due to noise from both target and source systems. Unfortunately,
the noise cannot be directly controlled by the system. The variable that is controllable is the weight parameter
q.

The second term corresponds to the error due to differences in the target and source systems’ matrices.
Having two perspectives of both virtual and physical systems will illustrate how the divergence between the
target and source systems’ matrices influences the identification error.

In general, the most optimal scenario is to have at least one conditions satisfied, i.e. small σ2
w (less noisy

source system) and/or small δ (negligible difference between the target and source systems), and/or large Np

(numerous samples from the source system). In such cases, the auxiliary samples become more informative [1].

Let us assume two possible scenarios.

7.1 Scenario 1: Both Nr and Np are increasing
In the Scenario 1 it is assumed that the number of experiments from both target and source systems is

increasing. However, due to the fact that acquiring data samples from the target system is difficult, the number
of rollouts from the auxiliary system is set to Np = 3Nr. In other words, each rollout collected from the target
system is complemented by three rollouts from the source system.

Executing the code from the last section of Appendix A outputs two graphs - one for the virtual system and
one for the physical system - that are illustrated in Figure 3.

0 100 200 300 400 500 600

Nr

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

||

W
L

S
 -

 |
|

Virtual System

q=0

q=1

q=10
10

q=1/Nr
0.5

q=1/Nr
0.75

0 100 200 300 400 500 600

Nr

0

0.5

1

1.5

2

2.5

3

||

W
L

S
 -

 |
|

Physical System

q=0

q=1

q=10
10

q=1/Nr
0.5

q=1/Nr
0.75

Figure 3: Scenario 1 : Both Nr and Np are increasing

11

As expected, in both cases the error tends to decrease over the increased number of experiments. Never-
theless, numerous differences can be distinguished when comparing these systems. First major difference is the
magnitude of the error. For the virtual system the value varies within the limits of 0.9 to 0.1 whereas for the
physical system the value even reaches 3. The explanation is rooted in the Equation (10). Since, the physical
system has more differences in target and source matrices, i.e. larger δ, the error due to term ||∆QZ⊤|| will be
higher than for the virtual system.

In the case of the virtual system, when Nr is small, the identification error for q = 0 (data leveraged only
from the target system) has the greatest value. It is due to the fact that there is not enough data to support the
precise identification [7]. As the Nr increases, the error rapidly decreases because the system starts to gather
sufficient data. In order to decrease the error at the early stage, one should increase the value of q. Setting
q > 0 incorporates the samples from the auxiliary system to the equations giving more precise identification.
However, the emphasis on the source system samples cannot be excessive, otherwise the output is adverse. In
contrast, when q = 1010, the system considers almost exclusively the samples from the source system. It results
in a constant error throughout the graph.

The Figure 3 also shows that the most optimal weight factor q includes Nr in its formula. As the Nr

increases, the q should decrease exponentially in order to avoid the auxiliary data becoming dominant. For
both q = 1√

Nr
and q = 1

4
3
√
Nr

the identification error is exponentially decreasing for all Nr.
Considering the physical system, the selection of the weight parameter q is even more crucial then for the

virtual system because of the differences in the target and source system matrices (δ). For q = 1 and q = 1010

the system incurs more error than not using the the auxiliary data (q = 0). Furthermore, the emphasis on the
auxiliary data should be reduced. Similarly to the virtual system, the most optimal curves include q = 1√

Nr
and

q = 1
4
3
√
Nr

because the specific weight q decreases as Nr increases, consequently outputting the desired behavior.

The conclusions of the Scenario 1 are following. When Np and Nr are both increasing linearly (Np = 3Nr),
using a specific weight q helps to reduce the system identification error. As Nr is small, the system leverages
data from the auxiliary system and over increasing Nr the system starts to reduce excessive bias from the
auxiliary system [1].

7.2 Scenario 2: Np is fixed and Nr is increasing
Scenario 2 assumes that the number of experiments from the source systems is fixed at Np = 2400 and only

the number of experiments from the target system Nr is increasing. We would like to investigate the behavior
of the identification error when the main source of data comes from the auxiliary system.

Executing the code from the last section of Appendix A outputs two graphs - one for the virtual system and
one for the physical system - that are illustrated in Figure 4.

0 100 200 300 400 500 600

Nr

0

0.1

0.2

0.3

0.4

0.5

0.6

||

W
L

S
 -

 |
|

Virtual System

q=0

q=1

q=10
10

q=1/Nr
0.5

q=1/Nr
0.75

0 100 200 300 400 500 600

Nr

0

0.5

1

1.5

2

2.5

3

||

W
L

S
 -

 |
|

Physical System

q=0

q=1

q=10
10

q=1/Nr
0.5

q=1/Nr
0.75

Figure 4: Scenario 2 : Np is fixed, Nr is increasing

Similarly to the Scenario 1 (7.1), the error tends to decrease as the number of experiments increases. As
established in Section 6, having access to more experiments provides more accurate identification. Another
similarity is the difference in the error’s magnitude between the systems. Once again, this can be explained by
the Equation (10), namely that the physical system has more differences in target and source matrices, therefore
the error due to term ||∆QZ⊤|| will be higher than for the virtual system.

When looking at the virtual system (Figure 4), one can observe that when there is little data from the target
system, i.e. Nr is small, identifying the system by leveraging data only from the target system (q = 0) leads to

12

a high identification error [7]. As the Nr increases, the error starts to slowly flatten towards a smaller value,
however the deceleration rate is lower than for the Scenario 1. It emerges from the auxiliary samples that are
superior to the target system’s samples (Np = 2400).

In order to decrease the error at the early stage, one should increase the value of q. Setting q > 0 outputs a
smaller identification error (see Figure 4). During the initial phase (small Nr) using the auxiliary samples as the
main source of data helps reduce the error because of the marginal δ. Even for the extreme value of q = 1010,
the identification at the early stage (Nr ≤ 150) is more accurate than for q = 0. However, the weight parameter
q cannot be too large, otherwise the error will remain constant over the increasing Nr. Thus, establishing a
connection between the parameters q and Nr happens to be the most convenient. As the Nr increases, the q
should decrease exponentially so that the influence of the auxiliary data decreases, too. For both q = 1√

Nr
and

q = 1
4
3
√
Nr

the identification error has the smallest values among all curves.
While this scenario can be beneficial for the virtual system, it cannot be incorporated when the difference

between the target and source system matrices δ is large. In contrast, when the physical system is subjected to
identification, the error is hardly controllable by any value of q (see Figure 4) because it is dominated by ∆ in
||∆QZ⊤||.

The outcome of Scenario 2 considers the situation when Np is large and δ is small. At the initial phase, i.e.
when Nr is small. Since there is not enough target system’s data to support the accurate identification, setting
q to high number is the solution to the issue. Emphasising the auxiliary samples reduces the identification error
until the the target system becomes more informative. As Nr is becoming larger, the need for complimentary
data decreases. The system has enough data to perform identification without auxiliary samples. Therefore,
the weight parameter q shall be lowered so that the identification error due to the term ||∆QZ⊤|| is reduced.

8 Conclusion
In this work, I have performed an identification of a certain LTI system with limited access to data by com-

plementing it with additional data from an auxiliary system. The research has proven that leveraging data from
a similar system can reduce the identification error in certain situations (scenarios). Due to the fact that the
error consist of several terms, it can be controlled within the parameters that dictates its behaviour. We have
learned that by assigning a specific weight to the auxiliary samples one can control the precision of identification
especially when lacking in the number of experiments from the target system. As more experiments become
accessible, the contribution of auxiliary samples is less significant. Moreover, finding a right proportion between
the weight parameter and the number of experiments reduces the identification error, in consequence providing
an accurate identification.

References
[1] Lei Xin, Lintao Ye, George Chiu, and Shreyas Sundaram. Identifying the dynamics of a system by leveraging data from similar

systems. 2022 American Control Conference (ACC), pages 818–824, 6 2022.
[2] Rolf Isermann and Marco Münchhof. Introduction. Springer Berlin Heidelberg, 2011.
[3] Torsten Söderström. Errors-in-variables methods in system identification. Automatica, 43:939–958, 6 2007.
[4] Ivan Y. Tyukin, Alexander N. Gorban, Konstantin I. Sofeykov, and Ilya Romanenko. Knowledge transfer between artificial

intelligence systems. Frontiers in Neurorobotics, 12, 8 2018.
[5] Honggui Han, Hongxu Liu, Cuili Yang, and Junfei Qiao. Transfer learning algorithm with knowledge division level. IEEE

Transactions on Neural Networks and Learning Systems, pages 1–15, 2022.
[6] Lei Xin, George Chiu, and Shreyas Sundaram. Learning the dynamics of autonomous linear systems from multiple trajectories.

2022 American Control Conference (ACC), pages 3955–3960, 6 2022.
[7] Salar Fattahi and Somayeh Sojoudi. Data-driven sparse system identification. 2018 56th Annual Allerton Conference on

Communication, Control, and Computing (Allerton), pages 462–469, 10 2018.
[8] Michael Green and David JN Limebeer. Linear robust control. Courier Corporation, 2012.
[9] Claudio De Persis and Pietro Tesi. Formulas for data-driven control: Stabilization, optimality, and robustness. IEEE Trans-

actions on Automatic Control, 65(3):909–924, 2019.
[10] Lingyu Chen, Hang Yin, Linjie Wang, and Guomin Ji. A disguising method for linear vector data based on least square

method. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pages
2245–2249, 3 2021.

[11] Hailin Liu, Fangqing Gu, and Zixian Lin. Auto-sharing parameters for transfer learning based on multi-objective optimization.
Integrated Computer-Aided Engineering, 28:295–307, 6 2021.

[12] Xiao-Jun Zeng and M.G. Singh. Fuzzy bounded least squares method for systems identification. Proceedings of 28th South-
eastern Symposium on System Theory, pages 61–65, 1996.

[13] V. Karanko and M. Honkala. Least squares solution of nearly square overdetermined sparse linear systems. 2002 IEEE
International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353), pages IV–830–IV–833, 2002.

[14] Max Simchowitz, Ross Boczar, and Benjamin Recht. Learning linear dynamical systems with semi-parametric least squares.
pages 2714–2802, 2019.

13

A Appendix: Matlab Codes

A.1 Stage 1: System Identification without noise

1 clear; clc;
2
3 %% first step: create data
4 % assume you know the system (A,B)
5 % use this (A,B) to creat data
6
7 dimN = 3; % dimension of state x
8 dimM = 2; % dimension of input u
9

10 Ad = [0.6 0.5 0.4; 0 0.4 0.3; 0 0 0.3];
11 Bd = [1 0.5; 0.5 1; 0.5 0.5];
12
13
14 Nr = 10; % no of experiments
15 T = 100; % data length
16 uu = randn(dimM*Nr,T); % pre−define the input sequence
17 xx = zeros(dimN*Nr,T+1); % empty state array
18 zz = zeros((dimM+dimN)*Nr,T); % empty state−input array
19 xx(:,1) = randn(dimN*Nr,1); % random state input
20 X = zeros(dimN,Nr*T); % empty batch matrix for state samples
21 Z = zeros(dimN+dimM,Nr*T); % empty batch matrix for state−input samples
22
23 % data creating loop
24 for ii = 1:Nr % outer loop for each expriment
25 for ij = 1:T % inner loop for each data length
26
27 xr1 = (ii−1)*dimN+1; % upper boundary for state data
28 xr2 = ii*dimN; % lower boundary for state data
29 ur1 = (ii−1)*dimM+1; % upper boundary for input data
30 ur2 = ii*dimM; % lower boundary for input data
31 zr1 = (ii−1)*(dimN+dimM)+1; % upper boundary for state−input data
32 zr2 = ii*(dimN+dimM); % upper boundary for state−input data
33
34 xx(xr1:xr2,ij+1) = Ad*xx(xr1:xr2,ij) + Bd*uu(ur1:ur2,ij);
35 zz(zr1:zr2,ij) = [xx(xr1:xr2,ij)' uu(ur1:ur2,ij)']';
36
37 Xi = flip(xx(xr1:xr2,2:T+1),2); % combined state data length for single experiment
38 Zi = flip(zz(zr1:zr2,1:T),2); % combined state−input data length for single experiment
39 end
40
41 xxr1 = (ii−1)*T+1; % left boundary
42 xxr2 = ii*T; % right boundary
43
44 X(:,xxr1:xxr2) = Xi; % combined state data length for all experiments
45 Z(:,xxr1:xxr2) = Zi; % combined state−input data length for all experiments
46
47 end
48
49 Dif = X − [Ad Bd]*Z;
50
51
52 %% second step: use data to identify the system (A,B)
53 % X1 = Ad*X0 + Bd*U0
54 % X1 = [Ad Bd]*[X0' U0']'
55
56 % ABidy is the identified system
57 ABidy = X*Z'*inv(Z*Z'); % analytical solution for least square method
58
59 % divide columns to obtain matrices A,B
60 Aidy = ABidy(:,1:dimN);
61 Bidy = ABidy(:,dimN+1:dimN+dimM);
62
63 % compare the difference between [Aidy Bidy] and [Ad Bd]
64 ABdif = [Aidy−Ad Bidy−Bd];
65
66 error = max(svd(ABdif))

A.2 Stage 2: System Identification with noise

1 clear; clc;
2
3 %% first step: create data
4 % assume you know the system (A,B)
5 % use this (A,B) to creat data
6
7 dimN = 3; % dimension of state x
8 dimM = 2; % dimension of input u
9

10 Ad = [0.6 0.5 0.4; 0 0.4 0.3; 0 0 0.3];
11 Bd = [1 0.5; 0.5 1; 0.5 0.5];
12
13 ed = 1; % energy of the noise

14

14 Nr = 10; % no of experiments
15 T = 100; % data length
16 uu = randn(dimM*Nr,T); % pre−define the input sequence
17 ww = randn(dimN*Nr,T)*ed; % pre−define the noise sequence
18 xx = zeros(dimN*Nr,T+1); % empty state array
19 zz = zeros((dimM+dimN)*Nr,T); % empty state−input array
20 xx(:,1) = randn(dimN*Nr,1); % random state input
21 X = zeros(dimN,Nr*T); % empty batch matrix for state samples
22 W = zeros(dimN,Nr*T); % empty batch matrix for noise samples
23 Z = zeros(dimN+dimM,Nr*T); % empty batch matrix for state−input samples
24
25 % data creating loop
26 for ii = 1:Nr % outer loop for each expriment
27 for ij = 1:T % inner loop for each data length
28
29 xr1 = (ii−1)*dimN+1; % upper boundary for state data
30 xr2 = ii*dimN; % lower boundary for state data
31 ur1 = (ii−1)*dimM+1; % upper boundary for input data
32 ur2 = ii*dimM; % lower boundary for input data
33 zr1 = (ii−1)*(dimN+dimM)+1; % upper boundary for state−input data
34 zr2 = ii*(dimN+dimM); % upper boundary for state−input data
35
36 xx(xr1:xr2,ij+1) = Ad*xx(xr1:xr2,ij) + Bd*uu(ur1:ur2,ij) + ww(xr1:xr2,ij);
37 zz(zr1:zr2,ij) = [xx(xr1:xr2,ij)' uu(ur1:ur2,ij)']';
38
39 Xi = flip(xx(xr1:xr2,2:T+1),2); % combined state data length for single experiment
40 Wi = flip(ww(xr1:xr2,1:T),2); % combined noise data length for single experiment
41 Zi = flip(zz(zr1:zr2,1:T),2); % combined state−input data length for single experiment
42 end
43
44 xxr1 = (ii−1)*T+1; % left boundary
45 xxr2 = ii*T; % right boundary
46
47 X(:,xxr1:xxr2) = Xi; % combined state data length for all experiments
48 W(:,xxr1:xxr2) = Wi; % combined noise data length for all experiments
49 Z(:,xxr1:xxr2) = Zi; % combined state−input data length for all experiments
50
51 end
52
53 Dif = X − [Ad Bd]*Z − W;
54
55
56 %% second step: use data to identify the system (A,B)
57 % X1 = Ad*X0 + Bd*U0
58 % X1 = [Ad Bd]*[X0' U0']'
59
60 % ABidy is the identified system
61 ABidy = X*Z'*inv(Z*Z'); % analytical solution for least square method
62
63 % divide columns to obtain matrices A,B
64 Aidy = ABidy(:,1:dimN);
65 Bidy = ABidy(:,dimN+1:dimN+dimM);
66
67 % compare the difference between [Aidy Bidy] and [Ad Bd]
68 ABdif = [Aidy−Ad Bidy−Bd];
69
70 error = max(svd(ABdif))

A.3 Stage 3: Plotting identification error as function of σ2
w and Nr

1 clear; clc;
2
3 %% first step: create data
4 % assume you know the system (A,B)
5 % use this (A,B) to creat data
6
7 dimN = 3; % dimension of state x
8 dimM = 2; % dimension of input u
9

10 Ad = [0.6 0.5 0.4; 0 0.4 0.3; 0 0 0.3];
11 Bd = [1 0.5; 0.5 1; 0.5 0.5];
12
13
14 xEd = 0.1:0.1:1; % energy of the noise
15 lenEd = length(xEd);
16 yDif = zeros(1,length(xEd));
17 Nr = 10; % no of experiments
18 T = 100; % data length
19 uu = randn(dimM*Nr,T); % pre−define the input sequence
20 xx = zeros(dimN*Nr,T+1); % empty state array
21 zz = zeros((dimM+dimN)*Nr,T); % empty state−input array
22 xx(:,1) = randn(dimN*Nr,1); % random state input
23 X = zeros(dimN,Nr*T); % empty batch matrix for state samples
24 W = zeros(dimN,Nr*T); % empty batch matrix for noise samples
25 Z = zeros(dimN+dimM,Nr*T); % empty batch matrix for state−input samples
26
27 % data creating loop
28 for in = 1:lenEd

15

29 for ii = 1:Nr % outer loop for each expriment
30 for ij = 1:T % inner loop for each data length
31 xr1 = (ii−1)*dimN+1; % upper boundary for state data
32 xr2 = ii*dimN; % lower boundary for state data
33 ur1 = (ii−1)*dimM+1; % upper boundary for input data
34 ur2 = ii*dimM; % lower boundary for input data
35 zr1 = (ii−1)*(dimN+dimM)+1; % upper boundary for state−input data
36 zr2 = ii*(dimN+dimM); % upper boundary for state−input data
37
38 ww = randn(dimN*Nr,T)*xEd(in); % pre−define the noise sequence`
39 xx(xr1:xr2,ij+1) = Ad*xx(xr1:xr2,ij) + Bd*uu(ur1:ur2,ij) + ww(xr1:xr2,ij);
40 zz(zr1:zr2,ij) = [xx(xr1:xr2,ij)' uu(ur1:ur2,ij)']';
41
42 Xi = flip(xx(xr1:xr2,2:T+1),2); % combined state data length for single experiment
43 Wi = flip(ww(xr1:xr2,1:T),2); % combined noise data length for single experiment
44 Zi = flip(zz(zr1:zr2,1:T),2); % combined state−input data length for single experiment
45 end
46
47 xxr1 = (ii−1)*T+1; % left boundary
48 xxr2 = ii*T; % right boundary
49
50 X(:,xxr1:xxr2) = Xi; % combined state data length for all experiments
51 W(:,xxr1:xxr2) = Wi; % combined noise data length for all experiments
52 Z(:,xxr1:xxr2) = Zi; % combined state−input data length for all experiments
53 end
54
55 ABidy = X*Z'*inv(Z*Z'); % analytical solution for least square method
56
57 Aidy = ABidy(:,1:dimN); % obtain matrices A,B
58 Bidy = ABidy(:,dimN+1:dimN+dimM);
59
60 ABdif = [Aidy−Ad Bidy−Bd]; % compare the difference between [Aidy Bidy] and [Ad Bd]
61 yDif(in) = max(svd(ABdif));
62 end
63
64 Dif = X − [Ad Bd]*Z − W;
65
66 plot(xEd, yDif);
67
68
69 %% plot
70
71 load 'Nr10.mat'
72 semilogy(xEd, yDif,'−','markersize',6); hold on;
73
74 load 'Nr100.mat'
75 semilogy(xEd, yDif,'−','markersize',6); hold on;
76
77 load 'Nr1000.mat'
78 semilogy(xEd, yDif,'−','markersize',6); hold on;
79
80 title('Identification error for different no of experiments');
81 xlabel('ed');
82 ylabel('|| \theta_L_S − \theta ||');
83 legend('Nr=10','Nr=100','Nr=1000');
84
85 grid on;

1 clear; clc;
2
3 %% first step: create data
4 % assume you know the system (A,B)
5 % use this (A,B) to creat data
6
7 dimN = 3; % dimension of state x
8 dimM = 2; % dimension of input u
9

10 Ad = [0.6 0.5 0.4; 0 0.4 0.3; 0 0 0.3];
11 Bd = [1 0.5; 0.5 1; 0.5 0.5];
12
13
14 Ed = 1; % energy of the noise
15 xNr = 100:100:1000;
16 lenNr = length(xNr);
17 yDif = zeros(1,length(xNr));
18 %Nr = 10; % no of experiments
19 T = 100; % data length
20 uu = randn(dimM*xNr(lenNr),T); % pre−define the input sequence
21 ww = randn(dimN*xNr(lenNr),T)*Ed; % pre−define the noise sequence
22 xx = zeros(dimN*xNr(lenNr),T+1); % empty state array
23 zz = zeros((dimM+dimN)*xNr(lenNr),T); % empty state−input array
24 xx(:,1) = randn(dimN*xNr(lenNr),1); % random state input
25 X = zeros(dimN,xNr(lenNr)*T); % empty batch matrix for state samples
26 W = zeros(dimN,xNr(lenNr)*T); % empty batch matrix for noise samples
27 Z = zeros(dimN+dimM,xNr(lenNr)*T); % empty batch matrix for state−input samples
28
29 % data creating loop
30 for in = 1:lenNr
31 for ii = 1:xNr(in) % outer loop for each expriment
32 for ij = 1:T % inner loop for each data length

16

33 xr1 = (ii−1)*dimN+1; % upper boundary for state data
34 xr2 = ii*dimN; % lower boundary for state data
35 ur1 = (ii−1)*dimM+1; % upper boundary for input data
36 ur2 = ii*dimM; % lower boundary for input data
37 zr1 = (ii−1)*(dimN+dimM)+1; % upper boundary for state−input data
38 zr2 = ii*(dimN+dimM); % upper boundary for state−input data
39
40 xx(xr1:xr2,ij+1) = Ad*xx(xr1:xr2,ij) + Bd*uu(ur1:ur2,ij) + ww(xr1:xr2,ij);
41 zz(zr1:zr2,ij) = [xx(xr1:xr2,ij)' uu(ur1:ur2,ij)']';
42
43 Xi = flip(xx(xr1:xr2,2:T+1),2); % combined state data length for single experiment
44 Wi = flip(ww(xr1:xr2,1:T),2); % combined noise data length for single experiment
45 Zi = flip(zz(zr1:zr2,1:T),2); % combined state−input data length for single experiment
46 end
47
48 xxr1 = (ii−1)*T+1; % left boundary
49 xxr2 = ii*T; % right boundary
50
51 X(:,xxr1:xxr2) = Xi; % combined state data length for all experiments
52 W(:,xxr1:xxr2) = Wi; % combined noise data length for all experiments
53 Z(:,xxr1:xxr2) = Zi; % combined state−input data length for all experiments
54 end
55
56 ABidy = X*Z'*inv(Z*Z'); % analytical solution for least square method
57
58 Aidy = ABidy(:,1:dimN); % obtain matrices A,B
59 Bidy = ABidy(:,dimN+1:dimN+dimM);
60
61 ABdif = [Aidy−Ad Bidy−Bd]; % compare the difference between [Aidy Bidy] and [Ad Bd]
62 yDif(in) = max(svd(ABdif));
63 end
64
65 Dif = X − [Ad Bd]*Z − W;
66
67 plot(xNr, yDif);
68
69 %% plot
70
71 load 'Ed0,01.mat'
72 semilogy(xNr, yDif,'−','markersize',6); hold on;
73
74 load 'Ed0,1.mat'
75 semilogy(xNr, yDif,'−','markersize',6); hold on;
76
77 load 'Ed1.mat'
78 semilogy(xNr, yDif,'−','markersize',6); hold on;
79
80 title('Identification error for different noise energies');
81 xlabel('Nr');
82 ylabel('|| \theta_L_S − \theta ||');
83 legend('ed=0.01','ed=0.1','ed=1');
84
85 grid on;

A.4 Stage 4: LS for target and source systems

1 clear; clc;
2
3 %% first step: create data
4
5 dimN = 3; % dimension of state x
6 dimM = 2; % dimension of input u
7
8 % target system matrices
9 Adash = [0.6 0.5 0.4; 0 0.4 0.3; 0 0 0.3];

10 Bdash = [1 0.5; 0.5 1; 0.5 0.5];
11
12 % source system matrices
13 Ahat = [0.7 0.5 0.4; 0 0.4 0.3; 0 0 0.3];
14 Bhat = [1.1 0.5; 0.5 1; 0.5 0.5];
15
16 deltaA = Ahat − Adash;
17 deltaB = Bhat − Bdash;
18
19
20 % target system dataset
21 ed = 1; % energy of the noise
22 Nr = 10; % no of experiments
23 T = 100; % data length
24 uudash = randn(dimM*Nr,T); % pre−define the input sequence
25 wwdash = randn(dimN*Nr,T)*ed; % pre−define the noise sequence
26 xxdash = zeros(dimN*Nr,T+1); % empty state array
27 zzdash = zeros((dimM+dimN)*Nr,T); % empty state−input array
28 xxdash(:,1) = randn(dimN*Nr,1); % random state input
29 Xdash = zeros(dimN,Nr*T); % empty batch matrix for state samples
30 Wdash = zeros(dimN,Nr*T); % empty batch matrix for noise samples
31 Zdash = zeros(dimN+dimM,Nr*T); % empty batch matrix for state−input samples
32

17

33 % source system dataset
34 Np = 10; % no of experiments
35 uuhat = randn(dimM*Np,T); % pre−define the input sequence
36 wwhat = randn(dimN*Np,T)*ed; % pre−define the noise sequence
37 xxhat = zeros(dimN*Np,T+1); % empty state array
38 zzhat = zeros((dimM+dimN)*Np,T); % empty state−input array
39 xxhat(:,1) = randn(dimN*Np,1); % random state input
40 Xhat = zeros(dimN,Np*T); % empty batch matrix for state samples
41 What = zeros(dimN,Np*T); % empty batch matrix for noise samples
42 Zhat = zeros(dimN+dimM,Np*T); % empty batch matrix for state−input samples
43 Delta = zeros(dimN,(Nr+Np)*T); % empty batch matrix for Delta samples
44
45 % data creating loop for target system
46 for ii = 1:Nr % outer loop for each expriment
47 for ij = 1:T % inner loop for each data length
48
49 xr1dash = (ii−1)*dimN+1; % upper boundary for state data
50 xr2dash = ii*dimN; % lower boundary for state data
51 ur1dash = (ii−1)*dimM+1; % upper boundary for input data
52 ur2dash = ii*dimM; % lower boundary for input data
53 zr1dash = (ii−1)*(dimN+dimM)+1; % upper boundary for state−input data
54 zr2dash = ii*(dimN+dimM); % upper boundary for state−input data
55
56 xxdash(xr1dash:xr2dash,ij+1) = Adash*xxdash(xr1dash:xr2dash,ij) + Bdash*uudash(ur1dash:ur2dash,ij) + wwdash(xr1dash:xr2dash,ij)

;
57 zzdash(zr1dash:zr2dash,ij) = [xxdash(xr1dash:xr2dash,ij)' uudash(ur1dash:ur2dash,ij)']';
58
59 Xidash = flip(xxdash(xr1dash:xr2dash,2:T+1),2); % combined state data length for single experiment
60 Widash = flip(wwdash(xr1dash:xr2dash,1:T),2); % combined noise data length for single experiment
61 Zidash = flip(zzdash(zr1dash:zr2dash,1:T),2); % combined state−input data length for single experiment
62 end
63
64 xxr1dash = (ii−1)*T+1; % left boundary
65 xxr2dash = ii*T; % right boundary
66
67 Xdash(:,xxr1dash:xxr2dash) = Xidash; % combined state data length for all experiments
68 Wdash(:,xxr1dash:xxr2dash) = Widash; % combined noise data length for all experiments
69 Zdash(:,xxr1dash:xxr2dash) = Zidash; % combined state−input data length for all experiments
70
71 end
72
73 % data creating loop for source system
74 for jj = 1:Np % outer loop for each expriment
75 for ji = 1:T % inner loop for each data length
76
77 xr1hat = (jj−1)*dimN+1; % upper boundary for state data
78 xr2hat = jj*dimN; % lower boundary for state data
79 ur1hat = (jj−1)*dimM+1; % upper boundary for input data
80 ur2hat = jj*dimM; % lower boundary for input data
81 zr1hat = (jj−1)*(dimN+dimM)+1; % upper boundary for state−input data
82 zr2hat = jj*(dimN+dimM); % upper boundary for state−input data
83
84 xxhat(xr1hat:xr2hat,ji+1) = (Adash+deltaA)*xxhat(xr1hat:xr2hat,ji) + (Bdash+deltaB)*uuhat(ur1hat:ur2hat,ji) + wwhat(xr1hat:

xr2hat,ji);
85 zzhat(zr1hat:zr2hat,ji) = [xxhat(xr1hat:xr2hat,ji)' uuhat(ur1hat:ur2hat,ji)']';
86
87 delta = [deltaA deltaB];
88
89 Xihat = flip(xxhat(xr1hat:xr2hat,2:T+1),2); % combined state data length for single experiment
90 Wihat = flip(wwhat(xr1hat:xr2hat,1:T),2); % combined noise data length for single experiment
91 Zihat = flip(zzhat(zr1hat:zr2hat,1:T),2); % combined state−input data length for single experiment
92 Deltai = delta*Zihat; % combined Delta for single experiment
93 end
94
95 xxr1hat = (jj−1)*T+1; % left boundary
96 xxr2hat = jj*T; % right boundary
97
98 Xhat(:,xxr1hat:xxr2hat) = Xihat; % combined state data length for all experiments
99 What(:,xxr1hat:xxr2hat) = Wihat; % combined noise data length for all experiments

100 Zhat(:,xxr1hat:xxr2hat) = Zihat; % combined state−input data length for all experiments
101 Delta(:,Nr*T+xxr1hat:Nr*T+xxr2hat) = Deltai; % combined Delta for all experiments
102
103 end
104
105 X = [Xdash Xhat];
106 Z = [Zdash Zhat];
107 W = [Wdash What];
108
109
110 Dif = X − [Adash Bdash]*Z − W − Delta;
111
112
113 %% second step: use data to identify the system (A,B)
114 % X1 = Ad*X0 + Bd*U0
115 % X1 = [Ad Bd]*[X0' U0']'
116
117 % ABidy is the identified system
118 ABidy = X*Z'*inv(Z*Z'); % analytical solution for least square method
119
120 % divide columns to obtain matrices A,B
121 Aidy = ABidy(:,1:dimN);

18

122 Bidy = ABidy(:,dimN+1:dimN+dimM);
123
124 % compare the difference between identified and target system matrices
125 ABdif = [Aidy−Adash Bidy−Bdash];
126
127 error = max(svd(ABdif))

A.5 Stage 5: WLS for target and source systems

1 clear; clc;
2
3 %% first step: create data
4
5 dimN = 3; % dimension of state x
6 dimM = 2; % dimension of input u
7
8 % target system matrices
9 Adash = [0.6 0.5 0.4; 0 0.4 0.3; 0 0 0.3];

10 Bdash = [1 0.5; 0.5 1; 0.5 0.5];
11
12 % source system matrices
13 Ahat = [0.7 0.5 0.4; 0 0.4 0.3; 0 0 0.3];
14 Bhat = [1.1 0.5; 0.5 1; 0.5 0.5];
15
16 deltaA = Ahat − Adash;
17 deltaB = Bhat − Bdash;
18
19
20 % target system dataset
21 ed = 1; % energy of the noise
22 Nr = 10; % no of experiments
23 T = 100; % data length
24 uudash = randn(dimM*Nr,T); % pre−define the input sequence
25 wwdash = randn(dimN*Nr,T)*ed; % pre−define the noise sequence
26 xxdash = zeros(dimN*Nr,T+1); % empty state array
27 zzdash = zeros((dimM+dimN)*Nr,T); % empty state−input array
28 xxdash(:,1) = randn(dimN*Nr,1); % random state input
29 Xdash = zeros(dimN,Nr*T); % empty batch matrix for state samples
30 Wdash = zeros(dimN,Nr*T); % empty batch matrix for noise samples
31 Zdash = zeros(dimN+dimM,Nr*T); % empty batch matrix for state−input samples
32
33 % source system dataset
34 Np = 10; % no of experiments
35 uuhat = randn(dimM*Np,T); % pre−define the input sequence
36 wwhat = randn(dimN*Np,T)*ed; % pre−define the noise sequence
37 xxhat = zeros(dimN*Np,T+1); % empty state array
38 zzhat = zeros((dimM+dimN)*Np,T); % empty state−input array
39 xxhat(:,1) = randn(dimN*Np,1); % random state input
40 Xhat = zeros(dimN,Np*T); % empty batch matrix for state samples
41 What = zeros(dimN,Np*T); % empty batch matrix for noise samples
42 Zhat = zeros(dimN+dimM,Np*T); % empty batch matrix for state−input samples
43
44 Delta = zeros(dimN,(Nr+Np)*T); % empty batch matrix for Delta samples
45
46 % data creating loop for target system
47 for ii = 1:Nr % outer loop for each expriment
48 for ij = 1:T % inner loop for each data length
49
50 xr1dash = (ii−1)*dimN+1; % upper boundary for state data
51 xr2dash = ii*dimN; % lower boundary for state data
52 ur1dash = (ii−1)*dimM+1; % upper boundary for input data
53 ur2dash = ii*dimM; % lower boundary for input data
54 zr1dash = (ii−1)*(dimN+dimM)+1; % upper boundary for state−input data
55 zr2dash = ii*(dimN+dimM); % upper boundary for state−input data
56
57 xxdash(xr1dash:xr2dash,ij+1) = Adash*xxdash(xr1dash:xr2dash,ij) + Bdash*uudash(ur1dash:ur2dash,ij) + wwdash(xr1dash:xr2dash,ij)

;
58 zzdash(zr1dash:zr2dash,ij) = [xxdash(xr1dash:xr2dash,ij)' uudash(ur1dash:ur2dash,ij)']';
59
60 Xidash = flip(xxdash(xr1dash:xr2dash,2:T+1),2); % combined state data length for single experiment
61 Widash = flip(wwdash(xr1dash:xr2dash,1:T),2); % combined noise data length for single experiment
62 Zidash = flip(zzdash(zr1dash:zr2dash,1:T),2); % combined state−input data length for single experiment
63 end
64
65 xxr1dash = (ii−1)*T+1; % left boundary
66 xxr2dash = ii*T; % right boundary
67
68 Xdash(:,xxr1dash:xxr2dash) = Xidash; % combined state data length for all experiments
69 Wdash(:,xxr1dash:xxr2dash) = Widash; % combined noise data length for all experiments
70 Zdash(:,xxr1dash:xxr2dash) = Zidash; % combined state−input data length for all experiments
71
72 end
73
74 % data creating loop for source system
75 for jj = 1:Np % outer loop for each expriment
76 for ji = 1:T % inner loop for each data length
77
78 xr1hat = (jj−1)*dimN+1; % upper boundary for state data

19

79 xr2hat = jj*dimN; % lower boundary for state data
80 ur1hat = (jj−1)*dimM+1; % upper boundary for input data
81 ur2hat = jj*dimM; % lower boundary for input data
82 zr1hat = (jj−1)*(dimN+dimM)+1; % upper boundary for state−input data
83 zr2hat = jj*(dimN+dimM); % upper boundary for state−input data
84
85 xxhat(xr1hat:xr2hat,ji+1) = (Adash+deltaA)*xxhat(xr1hat:xr2hat,ji) + (Bdash+deltaB)*uuhat(ur1hat:ur2hat,ji) + wwhat(xr1hat:

xr2hat,ji);
86 zzhat(zr1hat:zr2hat,ji) = [xxhat(xr1hat:xr2hat,ji)' uuhat(ur1hat:ur2hat,ji)']';
87
88 delta = [deltaA deltaB];
89
90 Xihat = flip(xxhat(xr1hat:xr2hat,2:T+1),2); % combined state data length for single experiment
91 Wihat = flip(wwhat(xr1hat:xr2hat,1:T),2); % combined noise data length for single experiment
92 Zihat = flip(zzhat(zr1hat:zr2hat,1:T),2); % combined state−input data length for single experiment
93
94 Deltai = delta*Zihat; % combined Delta for single experiment
95 end
96
97 xxr1hat = (jj−1)*T+1; % left boundary
98 xxr2hat = jj*T; % right boundary
99

100 Xhat(:,xxr1hat:xxr2hat) = Xihat; % combined state data length for all experiments
101 What(:,xxr1hat:xxr2hat) = Wihat; % combined noise data length for all experiments
102 Zhat(:,xxr1hat:xxr2hat) = Zihat; % combined state−input data length for all experiments
103
104 Delta(:,Nr*T+xxr1hat:Nr*T+xxr2hat) = Deltai; % combined Delta for all experiments
105
106 end
107
108 X = [Xdash Xhat];
109 Z = [Zdash Zhat];
110 W = [Wdash What];
111
112
113
114 %% weighted least square
115
116 q = 0.3; % assigning weight
117 Qi = eye(T)*q;
118 Qhat = zeros(Np*T,Np*T);
119
120 for kk = 1:Np
121
122 qq1 = (kk−1)*T+1;
123 qq2 = kk*T;
124
125 Qhat(qq1:qq2,qq1:qq2) = Qi; % Np times
126
127 end
128
129 Q = blkdiag(eye(Nr*T),Qhat);
130
131 Dif = X − [Adash Bdash]*Z − W − Delta;
132
133
134 %% second step: use data to identify the system (A,B)
135
136 % ABidy is the identified system
137 ABidy = X*Q*Z'*inv(Z*Q*Z'); % analytical solution for least square method
138
139 % divide columns to obtain matrices A,B
140 Aidy = ABidy(:,1:dimN);
141 Bidy = ABidy(:,dimN+1:dimN+dimM);
142
143 % compare the difference between identified and target system matrices
144 ABdif = [Aidy−Adash Bidy−Bdash];
145
146 error = max(svd(ABdif))
147
148 ABdif1 = W*Q*Z'*inv(Z*Q*Z')+Delta*Q*Z'*inv(Z*Q*Z');
149
150 diff = ABdif−ABdif1;

A.6 Analysis of WLS identification error

1 clear; clc;
2
3 %% first step: create data
4
5 dimN = 3; % dimension of state x
6 dimM = 2; % dimension of input u
7
8 % target system matrices
9 Adash = [0.6 0.5 0.4; 0 0.4 0.3; 0 0 0.3];

10 Bdash = [1 0.5; 0.5 1; 0.5 0.5];
11
12 % source system matrices

20

13 Ahat = [0.7 0.5 0.4; 0 0.4 0.3; 0 0 0.3];
14 Bhat = [1.1 0.5; 0.5 1; 0.5 0.5];
15
16 deltaA = Ahat − Adash;
17 deltaB = Bhat − Bdash;
18
19
20 % target system dataset
21 ed = 1; % energy of the noise
22 xNr = round(logspace(log10(10), log10(600), 10)); % no of experiments
23 lenNr = length(xNr);
24 yDif = zeros(1,length(xNr));
25 %Nr = 10; % no of experiments
26 T = 2; % data length
27 uudash = randn(dimM*xNr(lenNr),T); % pre−define the input sequence
28 wwdash = randn(dimN*xNr(lenNr),T)*ed; % pre−define the noise sequence
29 xxdash = zeros(dimN*xNr(lenNr),T+1); % empty state array
30 zzdash = zeros((dimM+dimN)*xNr(lenNr),T); % empty state−input array
31 xxdash(:,1) = randn(dimN*xNr(lenNr),1); % random state input
32 Xdash = zeros(dimN,xNr(lenNr)*T); % empty batch matrix for state samples
33 Wdash = zeros(dimN,xNr(lenNr)*T); % empty batch matrix for noise samples
34 Zdash = zeros(dimN+dimM,xNr(lenNr)*T); % empty batch matrix for state−input samples
35
36 % source system dataset
37 Np = 2400; % no of experiments
38 uuhat = randn(dimM*Np,T); % pre−define the input sequence
39 wwhat = randn(dimN*Np,T)*ed; % pre−define the noise sequence
40 xxhat = zeros(dimN*Np,T+1); % empty state array
41 zzhat = zeros((dimM+dimN)*Np,T); % empty state−input array
42 xxhat(:,1) = randn(dimN*Np,1); % random state input
43 Xhat = zeros(dimN,Np*T); % empty batch matrix for state samples
44 What = zeros(dimN,Np*T); % empty batch matrix for noise samples
45 Zhat = zeros(dimN+dimM,Np*T); % empty batch matrix for state−input samples
46
47 Delta = zeros(dimN,(xNr(lenNr)+Np)*T); % empty batch matrix for Delta samples
48
49 for in = 1:lenNr
50 % data creating loop for target system
51 for ii = 1:xNr(in) % outer loop for each expriment
52 for ij = 1:T % inner loop for each data length
53
54 xr1dash = (ii−1)*dimN+1; % upper boundary for state data
55 xr2dash = ii*dimN; % lower boundary for state data
56 ur1dash = (ii−1)*dimM+1; % upper boundary for input data
57 ur2dash = ii*dimM; % lower boundary for input data
58 zr1dash = (ii−1)*(dimN+dimM)+1; % upper boundary for state−input data
59 zr2dash = ii*(dimN+dimM); % upper boundary for state−input data
60
61 xxdash(xr1dash:xr2dash,ij+1) = Adash*xxdash(xr1dash:xr2dash,ij) + Bdash*uudash(ur1dash:ur2dash,ij) + wwdash(xr1dash:xr2dash

,ij);
62 zzdash(zr1dash:zr2dash,ij) = [xxdash(xr1dash:xr2dash,ij)' uudash(ur1dash:ur2dash,ij)']';
63
64 Xidash = flip(xxdash(xr1dash:xr2dash,2:T+1),2); % combined state data length for single experiment
65 Widash = flip(wwdash(xr1dash:xr2dash,1:T),2); % combined noise data length for single experiment
66 Zidash = flip(zzdash(zr1dash:zr2dash,1:T),2); % combined state−input data length for single experiment
67 end
68
69 xxr1dash = (ii−1)*T+1; % left boundary
70 xxr2dash = ii*T; % right boundary
71
72 Xdash(:,xxr1dash:xxr2dash) = Xidash; % combined state data length for all experiments
73 Wdash(:,xxr1dash:xxr2dash) = Widash; % combined noise data length for all experiments
74 Zdash(:,xxr1dash:xxr2dash) = Zidash; % combined state−input data length for all experiments
75
76 end
77
78 % data creating loop for source system
79 for jj = 1:Np % outer loop for each expriment
80 for ji = 1:T % inner loop for each data length
81
82 xr1hat = (jj−1)*dimN+1; % upper boundary for state data
83 xr2hat = jj*dimN; % lower boundary for state data
84 ur1hat = (jj−1)*dimM+1; % upper boundary for input data
85 ur2hat = jj*dimM; % lower boundary for input data
86 zr1hat = (jj−1)*(dimN+dimM)+1; % upper boundary for state−input data
87 zr2hat = jj*(dimN+dimM); % upper boundary for state−input data
88
89 xxhat(xr1hat:xr2hat,ji+1) = (Adash+deltaA)*xxhat(xr1hat:xr2hat,ji) + (Bdash+deltaB)*uuhat(ur1hat:ur2hat,ji) + wwhat(xr1hat:

xr2hat,ji);
90 zzhat(zr1hat:zr2hat,ji) = [xxhat(xr1hat:xr2hat,ji)' uuhat(ur1hat:ur2hat,ji)']';
91
92 delta = [deltaA deltaB];
93
94 Xihat = flip(xxhat(xr1hat:xr2hat,2:T+1),2); % combined state data length for single experiment
95 Wihat = flip(wwhat(xr1hat:xr2hat,1:T),2); % combined noise data length for single experiment
96 Zihat = flip(zzhat(zr1hat:zr2hat,1:T),2); % combined state−input data length for single experiment
97
98 Deltai = delta*Zihat; % combined Delta for single experiment
99 end

100
101 xxr1hat = (jj−1)*T+1; % left boundary

21

102 xxr2hat = jj*T; % right boundary
103
104 Xhat(:,xxr1hat:xxr2hat) = Xihat; % combined state data length for all experiments
105 What(:,xxr1hat:xxr2hat) = Wihat; % combined noise data length for all experiments
106 Zhat(:,xxr1hat:xxr2hat) = Zihat; % combined state−input data length for all experiments
107
108 Delta(:,xNr(lenNr)*T+xxr1hat:xNr(lenNr)*T+xxr2hat) = Deltai; % combined Delta for all experiments
109
110 end
111
112 X = [Xdash Xhat];
113 Z = [Zdash Zhat];
114 W = [Wdash What];
115
116
117
118 q = 1/((xNr(in))^(0.75)); % assigning weight
119 Qi = eye(T)*q;
120 Qhat = zeros(Np*T,Np*T);
121
122 for kk = 1:Np
123
124 qq1 = (kk−1)*T+1;
125 qq2 = kk*T;
126
127 Qhat(qq1:qq2,qq1:qq2) = Qi; % Np times
128
129 end
130
131 Q = blkdiag(eye(xNr(lenNr)*T),Qhat);
132
133 ABidy = X*Q*Z'*inv(Z*Q*Z'); % analytical solution for least square method
134
135 Aidy = ABidy(:,1:dimN); % obtain matrices A,B
136 Bidy = ABidy(:,dimN+1:dimN+dimM);
137
138 ABdif = [Aidy−Adash Bidy−Bdash]; % compare the difference between [Aidy Bidy] and [Adash Bdash]
139 yDif(in) = max(svd(ABdif));
140 end
141
142 Dif = X − [Adash Bdash]*Z − W − Delta;
143
144 plot(xNr, yDif);
145
146
147 %% plot
148
149 load 'Nr_q_0.mat'
150 plot(xNr, yDif,'−','markersize',6); hold on;
151
152 load 'Nr_q_1.mat'
153 plot(xNr, yDif,'−','markersize',6); hold on;
154
155 load 'Nr_q_10^10.mat'
156 plot(xNr, yDif,'−','markersize',6); hold on;
157
158 load 'Nr_q_Nr^0,5.mat'
159 plot(xNr, yDif,'−','markersize',6); hold on;
160
161 load 'Nr_q_Nr^0,75.mat'
162 plot(xNr, yDif,'−','markersize',6); hold on;
163
164 title('Identification error for different weight assignment');
165 xlabel('Nr');
166 ylabel('|| \theta_W_L_S − \theta ||');
167 legend('q=0','q=1','q=10^1^0','q=1/Nr^0^.^5','q=1/Nr^0^.^7^5');

1 clear; clc;
2
3 %% first step: create data
4
5 dimN = 3; % dimension of state x
6 dimM = 2; % dimension of input u
7
8 % target system matrices
9 Adash = [0.6 0.5 0.4; 0 0.4 0.3; 0 0 0.3];

10 Bdash = [1 0.5; 0.5 1; 0.5 0.5];
11
12 % source system matrices
13 Ahat = [0.7 0.5 0.4; 0 0.4 0.3; 0 0 0.3];
14 Bhat = [1.1 0.5; 0.5 1; 0.5 0.5];
15
16 deltaA = Ahat − Adash;
17 deltaB = Bhat − Bdash;
18
19
20 % target system dataset
21 ed = 1; % energy of the noise
22 % xNr = 100:100:600;
23 xNr = round(logspace(log10(10), log10(600), 10));

22

24 lenNr = length(xNr);
25 yDif = zeros(1,length(xNr));
26 %Nr = 10; % no of experiments
27 T = 2; % data length
28 uudash = randn(dimM*xNr(lenNr),T); % pre−define the input sequence
29 wwdash = randn(dimN*xNr(lenNr),T)*ed; % pre−define the noise sequence
30 xxdash = zeros(dimN*xNr(lenNr),T+1); % empty state array
31 zzdash = zeros((dimM+dimN)*xNr(lenNr),T); % empty state−input array
32 xxdash(:,1) = randn(dimN*xNr(lenNr),1); % random state input
33 Xdash = zeros(dimN,xNr(lenNr)*T); % empty batch matrix for state samples
34 Wdash = zeros(dimN,xNr(lenNr)*T); % empty batch matrix for noise samples
35 Zdash = zeros(dimN+dimM,xNr(lenNr)*T); % empty batch matrix for state−input samples
36
37 % source system dataset
38 xNp = 3*xNr;
39 lenNp = length(xNp);
40 %Np = 10; % no of experiments
41 uuhat = randn(dimM*xNp(lenNp),T); % pre−define the input sequence
42 wwhat = randn(dimN*xNp(lenNp),T)*ed; % pre−define the noise sequence
43 xxhat = zeros(dimN*xNp(lenNp),T+1); % empty state array
44 zzhat = zeros((dimM+dimN)*xNp(lenNp),T); % empty state−input array
45 xxhat(:,1) = randn(dimN*xNp(lenNp),1); % random state input
46 Xhat = zeros(dimN,xNp(lenNp)*T); % empty batch matrix for state samples
47 What = zeros(dimN,xNp(lenNp)*T); % empty batch matrix for noise samples
48 Zhat = zeros(dimN+dimM,xNp(lenNp)*T); % empty batch matrix for state−input samples
49
50 Delta = zeros(dimN,(xNr(lenNr)+xNp(lenNp))*T); % empty batch matrix for Delta samples
51
52 for in = 1:lenNr
53 % data creating loop for target system
54 for ii = 1:xNr(in) % outer loop for each expriment
55 for ij = 1:T % inner loop for each data length
56
57 xr1dash = (ii−1)*dimN+1; % upper boundary for state data
58 xr2dash = ii*dimN; % lower boundary for state data
59 ur1dash = (ii−1)*dimM+1; % upper boundary for input data
60 ur2dash = ii*dimM; % lower boundary for input data
61 zr1dash = (ii−1)*(dimN+dimM)+1; % upper boundary for state−input data
62 zr2dash = ii*(dimN+dimM); % upper boundary for state−input data
63
64 xxdash(xr1dash:xr2dash,ij+1) = Adash*xxdash(xr1dash:xr2dash,ij) + Bdash*uudash(ur1dash:ur2dash,ij) + wwdash(xr1dash:xr2dash

,ij);
65 zzdash(zr1dash:zr2dash,ij) = [xxdash(xr1dash:xr2dash,ij)' uudash(ur1dash:ur2dash,ij)']';
66
67 Xidash = flip(xxdash(xr1dash:xr2dash,2:T+1),2); % combined state data length for single experiment
68 Widash = flip(wwdash(xr1dash:xr2dash,1:T),2); % combined noise data length for single experiment
69 Zidash = flip(zzdash(zr1dash:zr2dash,1:T),2); % combined state−input data length for single experiment
70 end
71
72 xxr1dash = (ii−1)*T+1; % left boundary
73 xxr2dash = ii*T; % right boundary
74
75 Xdash(:,xxr1dash:xxr2dash) = Xidash; % combined state data length for all experiments
76 Wdash(:,xxr1dash:xxr2dash) = Widash; % combined noise data length for all experiments
77 Zdash(:,xxr1dash:xxr2dash) = Zidash; % combined state−input data length for all experiments
78
79 end
80
81 % data creating loop for source system
82 for jj = 1:xNp(in) % outer loop for each expriment
83 for ji = 1:T % inner loop for each data length
84
85 xr1hat = (jj−1)*dimN+1; % upper boundary for state data
86 xr2hat = jj*dimN; % lower boundary for state data
87 ur1hat = (jj−1)*dimM+1; % upper boundary for input data
88 ur2hat = jj*dimM; % lower boundary for input data
89 zr1hat = (jj−1)*(dimN+dimM)+1; % upper boundary for state−input data
90 zr2hat = jj*(dimN+dimM); % upper boundary for state−input data
91
92 xxhat(xr1hat:xr2hat,ji+1) = (Adash+deltaA)*xxhat(xr1hat:xr2hat,ji) + (Bdash+deltaB)*uuhat(ur1hat:ur2hat,ji) + wwhat(xr1hat:

xr2hat,ji);
93 zzhat(zr1hat:zr2hat,ji) = [xxhat(xr1hat:xr2hat,ji)' uuhat(ur1hat:ur2hat,ji)']';
94
95 delta = [deltaA deltaB];
96
97 Xihat = flip(xxhat(xr1hat:xr2hat,2:T+1),2); % combined state data length for single experiment
98 Wihat = flip(wwhat(xr1hat:xr2hat,1:T),2); % combined noise data length for single experiment
99 Zihat = flip(zzhat(zr1hat:zr2hat,1:T),2); % combined state−input data length for single experiment

100
101 Deltai = delta*Zihat; % combined Delta for single experiment
102 end
103
104 xxr1hat = (jj−1)*T+1; % left boundary
105 xxr2hat = jj*T; % right boundary
106
107 Xhat(:,xxr1hat:xxr2hat) = Xihat; % combined state data length for all experiments
108 What(:,xxr1hat:xxr2hat) = Wihat; % combined noise data length for all experiments
109 Zhat(:,xxr1hat:xxr2hat) = Zihat; % combined state−input data length for all experiments
110
111 Delta(:,xNr(lenNr)*T+xxr1hat:xNr(lenNr)*T+xxr2hat) = Deltai; % combined Delta for all experiments
112

23

113 end
114
115
116 X = [Xdash Xhat];
117 Z = [Zdash Zhat];
118 W = [Wdash What];
119
120
121 q = 1/((xNr(in))^(0.75)); % assigning weight
122 Qi = eye(T)*q;
123 Qhat = zeros(xNp(lenNp)*T,xNp(lenNp)*T);
124
125 for kk = 1:lenNp
126
127 qq1 = (kk−1)*T+1;
128 qq2 = kk*T;
129
130 Qhat(qq1:qq2,qq1:qq2) = Qi; % Np times
131
132 end
133
134 Q = blkdiag(eye(xNr(lenNr)*T),Qhat);
135
136
137 ABidy = X*Q*Z'*inv(Z*Q*Z'); % analytical solution for least square method
138
139 Aidy = ABidy(:,1:dimN); % obtain matrices A,B
140 Bidy = ABidy(:,dimN+1:dimN+dimM);
141
142 ABdif = [Aidy−Adash Bidy−Bdash]; % compare the difference between [Aidy Bidy] and [Adash Bdash]
143 yDif(in) = max(svd(ABdif));
144 end
145
146 Dif = X*Q − [Adash Bdash]*Z − W − Delta;
147
148 plot(xNr, yDif);
149
150
151 %% plot
152
153 load 'Np_3Nr_q_0.mat'
154 plot(xNr, yDif,'−','markersize',6); hold on;
155
156 load 'Np_3Nr_q_1.mat'
157 plot(xNr, yDif,'−','markersize',6); hold on;
158
159 load 'Np_3Nr_q_10^10.mat'
160 plot(xNr, yDif,'−','markersize',6); hold on;
161
162 load 'Np_3Nr_q_Nr^0,5.mat'
163 plot(xNr, yDif,'−','markersize',6); hold on;
164
165 load 'Np_3Nr_q_Nr^0,75.mat'
166 plot(xNr, yDif,'−','markersize',6); hold on;
167
168 title('Identification error for different weight assignment');
169 xlabel('Nr');
170 ylabel('|| \theta_W_L_S − \theta ||');
171 legend('q=0','q=1','q=10^1^0','q=1/Nr^0^.^5','q=1/Nr^0^.^7^5');

24

	Introduction
	Mathematical Terminology
	Theory
	Algorithm
	Stage 1: System Identification without noise
	Stage 2: System Identification with noise
	Stage 3: Plotting identification error as function of w 2 and Nr
	Stage 4: LS for target and source systems
	Stage 5: WLS for target and source systems

	Experimental Setup
	Virtual System
	Physical System

	Analysis of LS identification error
	Analysis of WLS identification error
	Scenario 1: Both Nr and Np are increasing
	Scenario 2: Np is fixed and Nr is increasing

	Conclusion
	Appendix: Matlab Codes
	Stage 1: System Identification without noise
	Stage 2: System Identification with noise
	Stage 3: Plotting identification error as function of w 2 and Nr
	Stage 4: LS for target and source systems
	Stage 5: WLS for target and source systems
	Analysis of WLS identification error

