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Abstract
In the last few decades extensive research has been done on the human microbiome, which is
the sum of all microorganisms that live within and on our body. While the microbiome itself is
influenced by many factors, it in turn also plays a vital role in influencing the health and disease
of human beings. It is therefore no surprise that an increasing amount of effort has been put in
gathering data on the human microbiome. The development of high-throughput technologies
has allowed for the development of longitudinally personalized multi-omics profiling. Due to the
complicated web of interactions between the human microbiome and the host, it is extremely
complicated to determine significant health-related associations with certainty. A possible
solution that has gotten considerable interest from scientists in recent years has been the
rapidly developing field of machine learning (ML) due to its potential for integrating large
datasets, creating models and predicting phenotypes. ML can generally be subdivided into two
groups; unsupervised learning (like PCA and PCoA) and supervised learning (like SVM and RF)
with deep learning as a technique that can be both unsupervised or supervised. ML applications
have had positive results in recent years, as can be seen in microbiome studies on antimicrobial
resistance and cancer where ML strategies rivaled and/or eclipsed traditional analyses.
However, concepts such as the curse of dimensionality, high-quality data and interpretability are
still problematic. Luckily, studies have provided solutions to these problems, such as
autoencoders like VAE, data augmentation like MetaNN and deep forest algorithms. For this
reason, a selection of these solutions should be more publicly used and perhaps even
standardized in order to improve scientific quality of results in microbiome research.

1



Table of Contents Page

1. Introduction 3
2. The Microbiome 4
3. The Use of Multi-omics in Microbiome research 5
4. Machine Learning 6

4.1. Unsupervised Learning 7
4.2. Supervised Learning 8

4.2.1. Decision tree 8
4.2.2. Random Forest 8
4.2.3. Gradient Boosting 8
4.2.4. K-nearest neighbor 8
4.2.5. Naïve Bayes Classifiers 9
4.2.6. Support vector machines 9
4.2.7. Deep Learning 9

4.3. Workflow of machine learning modeling 10
4.4. Integrative strategies for multi-omics data 11

5. Recent Applications and Potential Uses 12
5.1. Antimicrobial Resistance 12
5.2. Cancer 13

6. Remaining Challenges and Future Perspectives 14
7. Conclusion and Discussion 16
8. Bibliography 17

2



1. Introduction
In the last few decades extensive research has been done on the gut human microbiome, which
is the sum of all microorganisms that live within our gastrointestinal tract, including the bacteria
(mostly strict anaerobes), fungi, archaea, viruses and protozoans. It is highly specific to the
individual, with a wide variety of factors influencing the composition of the various microbes
living in the gastrointestinal tract such as genetics, diet, mode of delivery, and many more. While
the microbiome itself is influenced by many factors, it in turn also plays a vital role in influencing
the health and disease of human beings (Sekirov et al., 2010). For example, a recent study from
2019, showed that treatment with a broad spectrum of antibiotics results in dramatic reduction in
gut bacterial load, lowered bacterial diversity, and enhanced inflammation (Hagan et al., 2019).
Not only is the relationship between antibiotics and the microbiome visible with respect to the
immune system, but also in the increasingly important emergence of antibiotic-resistance.
Research has shown that both the commensal and pathogenic bacteria in the gut microbiome of
humans can serve as a reservoir for antimicrobial-resistance genes (ARGs), which can then be
transferred to other pathogenic bacteria that may pose serious health threats (Paul et al., 2022).
A rather infamous example of an antibiotic-resistant bacteria is of course MRSA
(methicillin-resistant Streptococcus aureus) which has earned its reputation from taking many
lives, and notably also in hospitals. But while this is perhaps the best-known example of
antibiotic-resistant bacteria, there are a myriad more. These developments underscore the
importance of microbiome research. Not only is this to the benefit of combating antibiotic
resistance, but also other fields since the gut microbiome acts on many of our bodily systems. It
is therefore no surprise that an increasing amount of effort has been put in gathering data on the
human gut microbiome. The development of high-throughput technologies has allowed for the
development of longitudinally personalized multi-omics profiling. By combining various omics
fields such as metabolomics, proteomics and genomics among others it is possible to compile a
better picture of the human microbiome and its relation with human health (Lloyd-Price et al.,
2019, Zhou et al., 2019, iHMP RNC, 2014). Due to the complicated web of interactions between
the human microbiome and the host, it is extremely complicated to determine significant
health-related associations with certainty. For this reason it is important to develop methods to
efficiently extract information from multi-omics data in order to identify patterns that may
otherwise be lost to us. A possible method that has gotten considerable interest from scientists
in recent years has been the rapidly developing field of machine learning due to its potential for
integrating large datasets, creating models and predicting phenotypes (Li et al., 2022,
Angermueller et al., 2016, Beam et al., 2018, Ching et al., 2018). Promising advances have
been made, but there are also significant challenges in the field that require solving. Here, we
will first discuss the investigation of the human microbiome, followed by some of the various
related omics fields, as well as an investigation into the current use, future potential applications
and remaining challenges of machine learning techniques.
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2. The Microbiome
Every person has his or her body colonized by commensal microorganisms in enormous

quantities. A 70 kg “reference man” has an estimated number of bacterial cells of 3.8 x ,1013

which is roughly equal to our own human cells (Sender et al., 2016).  The collectivity of all
microorganisms by type in the human intestinal tract is also referred to as the gut microbiota
and the collectivity of microorganisms and their genome is called the microbiome (Gill et al.,
2006). The vast majority of these bacteria are located in the gastrointestinal tract, and of these
bacteria, most reside in the distal gut. The human distal gut microbiome contains over 100 times
as many genes as our human genome alone. Recent studies have shown that the gut
microbiota has coevolved because of the mutually beneficial relationship. This microbiota and
its microbiome have given us the capacity to extract nutrients that would otherwise not have
been capable (Bäckhed et al., 2005). On top of this vast amount of bacteria in our gut, it has
been found that bacterial diversity is significant between humans, and may contribute to
variations in normal physiology (Eckburg et al., 2005). Not only is the microbiome important for
the acquisition of nutrients, but it has important contributions to the development of the immune
system (Mazmanian et al., 2005), protection against gut injury (Rakoff-Nahoum et al., 2004) and
energy balance (Bäckhed et al., 2004) among others. Additionally, the human gut microbiota
plays big roles in various diseases such as diabetes (Qin et al., 2012), obesity (Ley et al., 2006),
inflammatory bowel disease (IBD) (Lloyd-Price et al., 2019), autism (Sharon et al., 2019) and
other brain disorders (Kaur et al., 2021), liver disease (Chu et al., 2019) and cardiovascular
diseases (Kazemian et al., 2020) to name some. Given the multitude of systems upon which the
microbiota acts, the understanding of the factors contributing to the control of the microbiome
itself has been of considerable interest. Studies have shown that there are an equally vast array
of factors influencing the microbiota, including genetics (Kurilshikov et al., 2021), age
(Wilmanski et al., 2021), diet (Zmora et al., 2019), drugs (Hagan et al., 2019, Wu et al., 2017)
and exercise (Quiroga et al., 2020). A generalized summary of the interplay between the human
microbiome and human health can be seen in Figure 1.
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Figure 1. The complex interplay between the gut microbiome and human metabolism, as depicted in a figure by Li et al., 2022.
A collection of factors influence the microbiome, such as drugs, diet and exercise. The microbiome in turn influences the brain, heart
and liver, among others, through its intermediaries like short-chain fatty acids (SCFAs), bile acids and indoles. The complexity of the
interactions require high-throughput technologies to compile into multi-omics data and deepen our understanding of the associations
between gut microbiota and human health.

3. The Use of Multi-omics in Microbiome research
The intricacies of the interplay between microbiome and health have understandably led to the
use of multiple ‘-omics’ fields in order to better understand the relationship between the two and
contribute to more personalized medicine. A first example is the field of genomics. Not only
because of the classification of the various microorganisms within our gut microbiota community
and their functions, but also because of the study of the impact of host genetics on the
interactions with the microbiota (Li et al., 2022). Furthermore, the fact that our microbiome
includes such an enormous amount of genetic information separate from our own genome
highlights the importance of including these genes in our super-organismal view of our genetic
landscape, especially given that the human gut microbiome has been implicated in the
regulation of so many of our systems (Gill et al., 2006). On a similar note, a deeper
understanding of our metabolome should include the metabolic networks of the microbial
communities in our gut (Gill et al., 2006). Furthermore, the gut microbiome has been implicated
in epigenetic regulation of brain disorders (Kaur et al., 2021), antimicrobial resistance (Huemer
et al., 2020) and colorectal cancer development (Allen et al., 2019), showing the necessity of
including epigenomics in the integrated model of microbiome interactions.
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The National Institutes of Health Human Microbiome Project (NIH HMP) was an initiative to
investigate the gut microbiome and its relationship with human health and lasted ten years,
subdivided into two phases (HMP1 and HMP2). HMP1 focused on the identification and
characterization of the various microbial communities of the body in a study on healthy adult
subjects, and included a set of projects that included specific diseases. The huge in-depth
investigation of HMP1 improved the identification of the taxonomic composition of the
microbiome, but also led to the realization that that composition did not correlate well with the
host phenotype, which was found to be influenced more by microbial function. HMP2 increased
the amount of biological properties that were included in the study for both the host and the
microbiome. It included studies of microbiome-associated conditions like pregnancy (for the
vaginal microbiomes), inflammatory bowel diseases (for the gut microbiome), and prediabetes
(for the gut and nasal microbiomes). The HMPs measured changes in microbial community
composition, viromics, metabolomics, gene expression and protein profiles for the host and
microbiome, and host-specific properties such as genomics, epigenomics, antibody and
cytokine profiles, thereby expanding the resource base for microbiome research. HMP1 and
HMP2 together have produced a total of 42 terabytes of multi-omic data, archived and curated
by the Data Coordination Center (DCC) and available for use (iHMP RNC, 2019). There is
growing evidence that the knowledge garnered by this research can provide us with ways to
manipulate the gut microbiota as a potential strategy for disease treatment (Li et al., 2022). One
avenue of treatment development is dietary intervention. A study by Ghosh et al., 2017, for
example, shows that adherence to a Mediterranean diet alters the gut microbiome in a
significant enough way that older people have reduced frailty,improved health status and better
cognitive function (Ghosh et al., 2020). Another intervention that has seen increasing interest is
fecal microbiota transplantation (FMT), where administration of fecal matter from a donor into
the intestinal tract of a recipient has seen successes in treatment of, for example,  recurrent
Clostridium difficile infections and may be a potential treatment method for IBD, obesity, and
brain disorders (Gupta et al., 2016, Xu et al., 2021).
But while an enormous amount of information was gathered from this study, it also raised more
questions. Generally, it still remains a challenge to extract useful information from the huge
multi-omics data for finding associations between the microbiome and host health. For this
reason, it is becoming increasingly clear that advanced computational methods need to be
developed to efficiently work with these big datasets.

4. Machine Learning
One of these potential methods is the use of machine learning (ML). ML is a form of artificial
intelligence that is created to automatically learn and improve itself from input data without being
explicitly programmed by a human. As mentioned above, high-throughput technologies have led
to an enormous amount of data, which has previously been used in single-omics data analysis.
However, this only tells part of the stories since the various omics fields all contribute to the
phenotype. It has been argued that ML can contribute to the untangling of the various omics
fields to get a comprehensive view from heterogeneous data in gut microbiota studies. For
example, ML has already been used for phenotyping (both environmental and host
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phenotypes), microbial classification (to determine abundance, diversity, and/or distribution),
studying interactions between components of the microbiome, and monitoring changes in the
microbiome (Hernández Medina et al., 2022). ML can generally be subdivided into two groups;
unsupervised learning and supervised learning (See Figure 2) (Li et al., 2022).

Figure 2. A summary of machine learning subdivisions and some of the most common techniques that are currently
employed. Machine learning is subdivided into two groups. 1) Unsupervised Learning techniques (such as principal component
analysis (PCA), principal coordinate analysis (PCoA) and t-distributed stochastic neighbor embedding (t-SNE)). 2)  Supervised
Learning techniques (such as support vector machine (SVM), Naïve Bayes (NB), k-nearest neighbor (KNN), gradient boosting,
random forest (RF) and others). There’s also a technique called Deep Learning, which is a form of machine learning that can be
unsupervised or supervised. Created with BioRender

4.1 Unsupervised Learning
Unsupervised learning entails the discovery of new hidden patterns from a given dataset without
known dependent variables. These are also called data-driven predictions. The biggest part of
these can be further categorized into two groups of techniques. The first is dimension reduction,
which is a transformation from high-dimensional space into a low-dimensional space that
simplifies the data and makes it more practical to work with by keeping the useful properties.
Such data can, for example, be used to make visualizations by taking principal variables from
high-dimensional feature space (Li et al., 2022, Hernández Medina et al., 2022). Examples
include popular and classical methods such as principal component analysis (PCA) and
principal coordinate analysis (PCoA), which are used to visualize and contrast microbial
communities. Another method is t-distributed stochastic neighbor embedding (t-SNE) that can
be used to identify non-linear relationships in complex microbiome datasets (Hernández Medina
et al., 2022). The other group consists of clustering analyses. These include k-means clustering,
hierarchical clustering and self-organizing map (SOM). These algorithms are used to cluster,
meaning to form multiple groups, based on similarities or differences. This has been used to
identify patterns in gut microbiota studies (Li et al., 2022).
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4.2 Supervised learning
Supervised learning learns a function from input data that consists of independent and
dependent variables across all samples. The dependent variables are used to train and develop
the ML model. The created ML model can then be tasked to find patterns for the new samples,
such as classification and regression (a method to identify the relationships between
independent variables and a dependent variable) (Li et al., 2022). Supervised learning has
some of the most classical of ML methods (Hernández Medina et al., 2022). Examples of
supervised learning include support vector machine (SVM), Naïve Bayes (NB), k-nearest
neighbor (KNN), gradient boosting and random forest (RF) (Li et al., 2022, Hernández Medina
et al., 2022). A number of these supervised learning techniques will now be discussed.

4.2.1 Decision Tree
A decision tree is a commonly used method for predictive modeling. It uses a flowchart-like
structure resembling a tree model to find a variable from input features. It makes decisions
based on how to split up a dataset into groups that are similar. A positive aspect of this model is
that it allows for easy interpretations of the trained model. Multiple other methods have
developed from the decision tree method, such as random forest and gradient boosting (Li et
al., 2022, Hernández Medina et al., 2022).

4.2.2 Random Forest
Random forest, also called bootstrap aggregation or bagging, is an aggregated collection of
independently-trained decision trees that are trained on a randomly-sampled subset of the
training dataset (Li et al., 2022, Hernández Medina et al., 2022). In essence, multiple decision
trees are trained at the same time and the aggregation of the predicted structures is used to get
the final predicted outcome (Li et al., 2022).

4.2.3 Gradient Boosting
Gradient boosting is another ensemble ML algorithm, similar to RF in that it starts with a weak
learner, but differs in the sense that the weak learner is sequentially trained and improved based
on the previous one until a model is made that fits the dataset best (Li et al., 2022). Two
algorithms of this type have been developed called XGBoost and LightGBM, which differ in how
the tree grows. XGBoost splits the tree level-wise, while LightGBM splits the tree leaf-wise. The
LightGBM model is, for this reason, more accurate and faster since the leaf-wise method can
cut down on more loss (Li et al., 2022).

4.2.4 K-nearest neighbor
K-nearest neighbors (k-NN) uses the principle of “Cicero pares cum paribus facillime
congregantur” (meaning ‘birds of a feather flock together’). It uses known classifications of
samples (i.e. from a training set) to classify an unknown sample within a group that is nearest to
that point (Mucherino et al., 2009). It can be used for both classification and regression
problems. What determines the “neighborhood” is a selected distance metric in a
multidimensional feature space. Usually, these metrics are euclidean distances (the length of a
line between two points) or correlation coefficients (Marcos-Zambrano et al., 2021). It has had
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multiple applications in recent years, such as a study that developed a machine learning
approach (KNN) to estimate the postmortem interval using skin microbiome samples. A KNN
regressor was developed from a data set from nasal and ear samples which allowed for
accurate prediction of postmortem interval to within 55 accumulated degree days, which is
roughly equal to 2 days at 27.5 °C. The results were a successful proof-of-concept of the use of
necrobiome data in forensics (Johnson et al., 2016). Another study by Hacilar et al. (2018) used
KNN to classify fecal samples as belonging to a health or diseased (IBD) person using shotgun
metagenomic data from 382 individuals (234 health and 148 IBD patients). They tested a variety
of trained models and found that KNN + LogitBoost (a boosting classification algorithm) worked
best (Mucherino et al., 2009, Hacilar et al., 2018).

4.2.5 Naïve Bayes Classifiers
Naïve Bayes (NB) Classifiers are a family of classifiers based on the Bayes’ theorem which
describes the probability of an event based on prior knowledge of conditions that are potentially
related to the event. NB classifiers make use of this theorem with strong (naïve) assumptions  of
statistical independence between the features. One study by Werner et al. (2012) describes how
it has been used for taxonomic classification in microbiome research using 16S rRNA gene
sequences due to its automation, speed and accuracy. Werner et al. tested the influence of the
training set on classification. They observed that it was most advantageous to use the largest,
most diverse training set and even identified new phylogenetic clusters previously unclassified.
Furthermore, they found that trimming the reference sequences to the primer region made the
classification depth better, with higher confidence thresholds.

4.2.6 Support vector machines
Support vector machines (SVM) is a supervised ML algorithm mainly used for classification,
although it can also be used for regression. Specifically, it is used for learning a decision
boundary (which is a line where all (or most) samples of one class are on one side of that line)
between the classes for two-group classification problems and regression tasks. It captures
non-linear associations of microbiome and host information to maximize the distance (margin)
between healthy and disease samples (Marcos-Zambrano et al., 2021, Wu et al., 2021). The
only samples relevant for learning a decision boundary are those closest to it (the support
vectors). SVM can be a convenient tool for when linear separation between classes is not
possible in original feature space because it can make use of the kernel trick (which avoids the
explicit mapping needed for linear learning algorithms) to estimate the decision boundary in
higher-dimensional space (Marcos-Zambrano et al., 2021).

4.2.7 Deep Learning
Deep learning (DL) is a class of ML algorithms of both unsupervised and supervised techniques
with various artificial neural network architectures. It is a deep neural network (DNN) that
consists of nodes (neurons or units) of functions that extract information from input data and
turn it into more abstract outputs that go to other nodes, thereby forming a connection of nodes
in a network of multiple layers that can be organized in different architectures (Li et al., 2022,
Hernández Medina et al., 2022, Ghannam et al., 2021). The simplest of these neural network
architectures is the fully-connected neural network (FCNN), where all nodes of one layer are
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connected to every node of the next, as can be seen in Figure 3. FCNN has been used to
predict host phenotypes from metagenomic data (Hernández Medina et al., 2022). Deep
learning has shown to handle multi-omics data successfully and is rather flexible in that it can
adapt to new tasks. While deep learning techniques create more accurate models, it has been
noted that it sacrifices interpretability behind the predictions, which can make applications
difficult. Also, deep learning generates many hyperparameters that require larger datasets to
learn from training (Li et al., 2022, Hernández Medina et al., 2022, Ghannam et al., 2021).

Figure 3. An example of a Deep Learning Fully-Connected Neural Network (FCNN), where all nodes from one layer are
connected to the nodes of the next. (taken from Li et al., 2022)

4.3 Workflow of machine learning modeling
As described above, multiple supervised machine learning algorithms have been made. The
various steps in the development of a correct model using these algorithms can generally be
summed to four distinct steps and can be seen in Figure 4 (Li et al., 2022).

Figure 4. The general workflow of machine learning modeling. In this figure the four steps of modeling can be seen: feature
engineering, model training, performance evaluation and model application/testing (taken from Li et al., 2022).

Feature engineering involves data pre-processing (which includes cleaning, normalization and
transformation of the data), feature extraction (to build a feature vector that represents a
decreased number of variables from raw data in order to select relevant information from the
raw data) and feature selection processes. Selection of the relevant information to form a
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feature vector can still be difficult, especially if the dataset consists of many variables, such as
genes, proteins and metabolites, which require much computing power and memory.
Inadequate training of the model can lead to overfitting. Overfitting is an undesirable behavior
where the algorithm gives predictions for training data but not for new data, leading to
inaccurate predictions when given a new dataset (Li et al., 2022).
The training process typically consists of parameter tuning and feature engineering until the
model can no longer be improved. Multiple different models and approaches can be developed
and benchmarked, after which the one with the best results is selected for application and
evaluation (Li et al., 2022).
As for the performance evaluation, this step typically applies methods such as a confusion
matrix (a table to describe the performance of a classification model on a set of test data), a
receiver operating characteristics (ROC) (a plot of test sensitivity as the y coordinate versus its
1-specificity or false positive rate as the x coordinate) and assessment metrics like area under
ROC curve (AUC) (a measure of the overall performance of a diagnostic test, interpreted as the
average value of sensitivity for all possible values of specificity) to test the performance of
classification and regression tasks. The AUC summarizes the model performance into a single
measure from zero to one, which facilitates comparison of different classifiers (Li et al., 2022,
Park et al., 2004). When evaluation is finished, the model can be tested with new data.

4.4 Integrative strategies for multi-omics data
Machine Learning strategies can be employed to better integrate the vast amount of multi-omics
data such as metabolomics, transcriptomics, metagenomics and others. The individual omics
data analyses have been very popular and extensively used in previous years. However, these
only provide a partial perspective of the true complexity of a biological system. Therefore, in
order to gain a more thorough and complete understanding of these systems, ML has been
proposed to be used because of the significant potential to integrate heterogeneous data in, for
example, gut microbiota studies  (Li et al., 2022). Li et al. (2022) posits that there are three
types of methods for the integration of multi-omics data in ML. The first of these integration
strategies is data-driven modeling, which makes use of directly combining each omics data into
a larger matrix before the training step for the machine learning model (Li et al., 2022). In other
words, the data integration step happens at the early stage of modeling. Data-driven modeling
has already been applied in multiple microbiota studies. For example, a study on hypertension
made use of metagenomic and metabolomic data was to train random forest classifiers
evaluated with ROC and AUC for statistical analyses. Through this method, they were able to
reveal that gut microbiota dysbiosis contributes to the development of hypertension (Li et al.,
2017). Another study on personalized nutrition created a machine-learning algorithm (a
stochastic gradient boosting regression algorithm) that integrated blood parameters, dietary
habits, physical activity and gut microbiota. This algorithm was capable of accurately predicting
personalized postprandial glycemic response to real-life meals (Zeevi et al., 2015). Another type
of integration strategies first transform the omics data in an intermediate form, such as a graph,
a kernel matrix and  a deep neural network. These can then be combined for the training and
analysis of the model (Li et al., 2022). An example of this can be seen in a study by Hira et al.
(2021) on the integration of multi-omics analysis of ovarian cancer by using variational
autoencoders (VAE), which is a deep learning-based dimensionality reduction technique. The
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algorithm was used for mono-omics, integration of di-omics and tri-omics data analysis of
ovarian cancer through cancer samples identification, molecular subtypes clustering and
classification and survival analysis. This method was found to successfully classify
transcriptional subtypes with an accuracy range of 87.1% - 95,7% and proved that VAE-based
methods can be used in cancer prognosis. Further conclusions Hira et al. made were that VAE
outperformed existing dimensionality reduction techniques and integrated multi-omics analyses
performed better or similar compared to mono-omics analyses. Finally, another type of
integration first lets the machine learning algorithm train the model using each omics data, and
then the predictive outcomes of the trained individual models are pulled together to create a
combined model (Li et al., 2022).

5. Recent Applications and Potential Uses
As can be gathered from some of the examples of papers that have already been given, the
utility of machine learning has borne its fruits in recent years. Applications range from
phenotypic prediction and biomarker discovery to precision medicine for recommended
therapeutics and nutrition and patient stratification and classification of disease subtypes (Li et
al., 2022). Having already discussed some of the possible applications of machine learning for a
wide variety of medical fields in some capacity in above examples, we shall discuss a few
applications that show the variety and utility of machine learning in two specific fields:
Antimicrobial Resistance and Cancer.

5.1 Antimicrobial Resistance
As described above, antimicrobial resistance (AMR) is an ever increasing problem and the
microbiome can act as a reservoir for bacteria to develop and spread AMR genes. The
development of new methods to improve treatment of bacterial infections and the discovery of
potential AMR genes is therefore warranted. A few studies in this field will now be investigated
in more detail. The first of these studies, by Madrigal et al. (2022), sought to identify such genes
by looking at the surface microbiome of the International Space station across three flights in
eight different locations during 12 months. Whole genomes of 226 strains, 21 shotgun
metagenome sequences, and 24 metagenome-assembled genomes (MAGs) were retrieved and
used to this end. The data was analyzed using a deep learning model specifically made for the
identification of antibiotic resistance genes: DeepARG. They were able to identify hundreds of
AMR genes from many isolates. For example, they identified AMR dominance for Kalamiella
piersonii, which is a bacterium also found in urinary tract infections in humans, as well as strains
related to Enterobacter bugandensis and Bacillus cereus (Madrigal et al., 2022). Another study
by Ren et al. (2022) evaluated four machine learning methods for the prediction of AMR for the
antibiotics ciprofloxacin, cefotaxime, ceftazidime and gentamicin: logistic regression, support
vector machine, random forest and convolutional neural network. For training for the models
they made use of whole genome sequencing data and corresponding phenotype information for
antibiotics for 987 E.coli strains. The models were then evaluated using ROC and AUC. In this
study, Ren at al. were able to demonstrate that these models effectively predicted AMR on
whole-genome sequencing data, with RF and CNNs performing better than LR and SVM. They
were also able to identify novel secondary mutations associated with AMR for each antibiotic
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(Ren et al., 2021). In a third study, an approach called INferring Drug Interactions using
chemo-Genomics and Orthology (INDIGO) was used that was capable of predicting antibiotic
combinations that interact synergistically or antagonistically in inhibiting bacterial growth on the
chemogenomic profiles of the individual antibiotics. INDIGO is an algorithm that makes use of
random forests to build a model that links the interaction outcome of drug combinations to the
joint chemogenomic profile of the drug pair. Chemogenomic profiling gives insights into the
mechanism of action of drugs by measuring the fitness of gene-knockout strains treated with (in
this case antibiotic) compounds. A large database of publicly available chemogenomic data in
E.coli was used to identify predictive genetic features of antibiotic synergy and antagonism in
order to identify new drug interactions. Identification of orthologs of genes of E.coli led to the
prediction of drug combinations for Mycobacterium tuberculosis and Staphylococcus aureus,
two types of bacteria frequently implicated in mortally dangerous infections (Chandrasekaran et
al., 2016). In the context of the microbiome, it could be worthwhile to apply this method with
INDIGO to identify combinations of antibiotics that should be avoided so as to limit the damage
to the fragile ecosystem in the gut.

5.2. Cancer
The study by Hira et al. (2021) already shows the potential for integrative machine learning
applications in research, but did not include microbiome data in its investigations. However,
other studies have found links between the microbiome and cancer development/prognosis.
There are three such studies, among many in recent years, that have used these integrative
machine learning applications and gathered positive results. These will now be discussed in
more detail. The first study, by Yang et al. (2022), used a multi-omics machine learning
framework in predicting the survival of colorectal cancer (CRC) patients. CRC is the third most
universal cancer globally, and so identification of biomarkers is critical for personalized
therapies. This identification was achieved by looking at mRNA, miRNA and tissue microbiome
levels and training models to evaluate the accuracy of potential biomarkers in predicting CRC
survival. Yang et al. concluded that the microbiome of CRC tissue had the best predictive power
on three-year survival of CRC patients. 26 differential microbial communities and 13
differentially expressed genes were screened out in the process, with Thermoanaerobacterium,
Parabacteroides, Oceanicaulis and Acetonema being more abundantly present in short-term
survival CRC patients, while Methylotenera, Candidatus_Riesia and Aquamicrobium were
enriched in long-term survival CRC patients (Yang et al., 2022). Another study by Uyar et al.
(2021) used multi-omics data integration through the use of advanced deep learning methods to
uncover multi-omic ‘fingerprints’ associated with clinical and molecular features for multiple
cancer types. Uyar et al. made use of MAUI, a stacked beta-variational auto-encoder, that is
capable of reducing the high dimensional multi-omic feature datasets (Mutations, gene
expression, DNA methylation, copy number variations) into low dimensional factors. MAUI was
further successfully used for the modeling of clinical parameters, predicting and characterisation
of molecular cancer subtypes, prognostic stratification of patients based on survival outcomes,
and response or resistance to cancer treatment (Uyar et al., 2021). A third study By Zhang et al.
published by Elsevier in Pharmacological Research in February 2023 employed another
integrative multi-omics machine learning strategy to identify determinants of gut microbiota and
tumor immunological status in CRC. Zhang et al. used the gut microbiome, gut metabolome,
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host tumor transcriptome and host tumor immune profile of different CRC patient populations to
analyze the data individually and integratedly to identify gut microbial markers that were capable
of distinguishing CRC samples from healthy controls. A Least Absolute Shrinkage and Selector
Operation (LASSO)-penalized logistic regression model (a form of supervised machine learning)
was developed to select the most likely genera. Additionally, Support Vector Machine-Recursive
Feature Elimination (SVM-RFE) was applied to screen important features. For integration of
microbiome and metabolomics, DIABLO (Data Integration analysis for Biomarker discovery
using a Latent component method for Omics), a dimension reduction method, was used to
identify metagenomic and metabolomic signatures. Zhang et al. provided evidence for the direct
effect of the CRC microbiota in the tumor progression, tumor immune status and
immunotherapy response. For example, Fusobacterium and Clostridium were considerably
increased in CRC compared to healthy controls. Lactobacillus, Faecalibacterium, and
Bifidobacterium were depleted in CR patients. Additionally, the Lasso and SVM-FRE models
successfully identified microbial markers for early detection of CRC. DIABLO identified strong
interplay across gut microbes, metabolites, and well-defined functional genes in CRC samples,
notably in immunity signaling pathways such as T cell proliferation, chemotaxis and defense
response to viruses (Zhang et al., 2023).

6. Remaining Challenges and Future Perspectives
While ML has shown to be a promising tool to analyze the gut microbiome, there are still a
number of hurdles left to overcome in order to perfect these techniques and make it even more
competitive against other analysis techniques. The high-dimensional and heterogeneous data
used in microbiome studies has large amounts of molecular features (such as genes, species,
metabolites among others) but often has relatively small sample sizes. This is also referred to as
the ‘curse of dimensionality’ and can make it difficult to develop accurate prediction models,
which can lead to overfitting problems by ML algorithms. Possible solutions to this problem
include cross-validation, reduction of the model complexity, and more robust training with more
data (Li et al., 2022). Another solution is to employ an algorithm that has been used in some of
the strategies mentioned above: autoencoder-based deep learning methods such as VAE.
These transform high-dimensional features into low-dimensional representations, making
high-dimensional datasets more easy to handle (Hira et al., 2021).That being said, deep
learning contains many hyperparameters and requires much data. With lowering costs to
acquiring data per sample and the already extensive data collection by the Human Microbiome
Project, ML methods such as deep learning are likely to increase in importance in the near
future (Li et al., 2022, iHMP RNC, 2014). Having said that, there can be multiple confounding
factors (factors that are not included in the analysis model but are significantly associated with
response variables) like drugs, age and diet among others still make it challenging to build
robust and accurate ML models and could therefore be integrated more in ML models to
account for these factors and improve disease associations by machine learning algorithms (Li
et al., 2022). Another issue is the matter of reliable, correctly-labeled and high quality data.
Firstly, an important consideration is that microbiome datasets may have deficiencies and
biases, which can adversely affect the training process of a machine learning algorithm. It is
therefore paramount that extra care must be taken in the use of data, and preferably use larger
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datasets in ML training (Hernández Medina et al., 2022). Imbalanced datasets can have a
negative effect on the accuracy of training classifiers. This means that classes have to be
balanced, either by adding data to the smaller classes in the dataset or by discarding data from
the larger set (Li et al., 2022). A possible solution to this could be the generation of new data
using data augmentation. A study by Lo et al. (2019) already showed the value of this by using
MetaNN, a neural network framework that uses a data augmentation technique, which
outperformed existing models in classification accuracy for metagenomic data (Lo et al., 2019).
Finally, and perhaps most importantly, interpretability of machine learning results can still be
difficult, especially with deep learning models that use many hidden layers. ML makes links
between an input and a response but does not figure out the mechanism behind the
relationship. This is why machine learning models are sometimes seen as ‘black boxes’.
Elucidating underlying mechanisms and factors of pathogenesis, which can stand in the way of
developing treatment methods in the clinic. This is why deep learning, and perhaps ML in
general, is likely to be adopted in the research field first, and only later in the clinic (Ching et al.,
2018, Hernández Medina et al., 2022). An example of facilitating interpretation can be seen in
deep forest algorithms, which are decision tree algorithms that can assign and rank importance
of critical features. It has already shown results in microbiome-wide association studies (Li et al.,
2022, Hernández Medina et al., 2022). We have now seen the current applications of machine
learning techniques, as well as a few of the remaining challenges that prevent these techniques
from being employed even more than they are today. In order to increase the utility of machine
learning within the microbiome field, and ultimately increase the scientific output in the search
for more personalized and advanced therapies related to the microbiome, these machine
learning techniques will have to become more sophisticated. For this reason, we propose a
collection of specific improvements that future researchers can focus on to better utilize
machine learning and hopefully increase the quality of machine learning output. These are
based on some of the proposed solutions given in literature to rectify the remaining problems
(see Figure 5). These improvements are aimed mainly to reduce or prevent the curse of
dimensionality, data quality and problems with interpretability, as described in the Remaining
Challenges section.
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Figure 5. The steps of using machine learning in multi-omics data in microbiome research with additions to improve the
machine learning applications. The additions are in the bottom half of the figure and can have influence on various steps of
machine learning utilization, such as the sample collection (of factors contributing to microbiome-related influences such as the host
genome), the various omics types (and the size of the datasets) and machine learning itself (dimensional reduction, training,
complexity, etc.). Created with BioRender.

7. Conclusion and Discussion
As we have seen, the microbiome is massively influential in determining the health of people.
For this reason it is no wonder that much effort has been put in acquiring as much data as
possible in recent years. While this has certainly guided the field in a positive direction, new
challenges have come to light. For example, the data has been put to good use in single-omics
studies, but single-omics can only give us a very limited view of microbiome interactions,
especially given the fact that the microbiome influences so many different systems in our body.
It is therefore imperative that the various omics fields are integrated into a single model to better
capture the interactions at play. However, this is easier said than done since conventional
analysis methods have proven to handle multi-omics data with some difficulty. A possible
solution to this problem is machine learning, which has gained increased popularity in recent
years. As we have seen, there are a myriad of different techniques that employ machine
learning. Their applications have proven their effectiveness in handling single-omics and
multi-omics data. Machine learning results often rival or eclipse those of conventional analyses.
However, a few challenges still stand in the way of more widespread use of machine learning
techniques in multi-omics studies. Concepts such as the curse of dimensionality, high-quality
data and interpretability are still problematic. Luckily, studies have provided solutions to these
problems. For this reason, a selection of these solutions should be more publicly used and
perhaps even standardized in order to improve scientific quality of results in the microbiome
field. The use of autoencoders like VAE, data augmentation like MetaNN and deep forest
algorithms have proven to be very effective in this regard. Taken together with the fact that A.I.
is expanding in other fields like the recently popularized ChatGPT, it is not far-fetched to
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conclude that we only stand at the precipice of an increased rate of machine learning uses,
especially in the complicated scientific fields like microbiome research.
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