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Abstract

When it comes to creating a model in pharmacokinetics, the use of parametric, mixed effect models is often
employed. This is a reliable approach when prior research has been performed to shine a light on the behavior
of a drug. However, this approach is not necessarily optimal because of the assumptions it makes and requires
about the behavior of a drug. Especially when the exact behavior of a drug is relatively unknown, the use of
semi-parametric or non-parametric models might prove to be a useful tool to still build models that can be
used to predict the behavior of a drug, albeit at the cost of not providing an explicit model formula. This
thesis will showcase the use, pros and cons of the non-linear mixed effect models and generalized additive mixed
effect models by performing model building and analysis on three separate data sets containing measurements
in participants in pharmacokinetic studies. The numerical stability of the methods is also considered for each
model. The drugs in question in the data sets are remifentanil and theophylline. The third data set contains
measurements of blood flow in participants in a study on high-flux hemodialyzers. The goal of this thesis is to
widen the scope of the models used in pharmacokinetic research, to explore the limits of such models and when
to use them. The models were built and analysed in the statistical software tool R-studio.

ii



Contents

1 Introduction 1

2 Methods 2
2.1 Generalized additive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Non-linear mixed effect models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Mixed effect models and additive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Assessing and comparing models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Results 7
3.1 Remifentanil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Nlme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 GAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Analysis of remifentanil models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Theophylline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Nlme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 GAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Analysis of theophylline models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Dialyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Nlme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 GAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Analysis of dialyzer models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 discussion 34

5 conclusion 36

References 37

i



1 Introduction

In the world of pharmacokinetic modeling, there are several problems and challenges that can arise. Some of
these problems are practical, such as not being able to draw a measurement from a patient at every planned time
interval. But other problems are more specifically related to the research of pharmacokinetcs. For instance, when
investigating a new type of drug, it can be hard to apply a suitable type of model if you do not know the exact
physiological behavior or reaction of the body to the drug. It can be the case that a one-compartment model is
suitable, or a two-compartment model. What (non-)linear function would be appropriate to fit to the data? These
are some of the troubles that one can walk into when trying to fit a model to pharmacokinetic data. For this reason,
this thesis will investigate and compare two major model-fitting methods that can be used for different reasons and
advantages to analyze pharmacokinetic data: generalized additive models and (non-)linear mixed effect models.

When trying to fit a model to data, one can choose out of a couple of regression models. On the one hand, there
are non-parametric models, and on the other hand, there are parametric models. The first describes methods that
do not make any prior assumptions about the model or parameters. Hence, the relationship between variables is
assessed through non-parametric methods. However, this does not mean that findings such as residuals cannot be
treated with parametric assumptions. The main advantage of models that are generated in this way, is that they
have the advantage of being very flexible, as they are not subjected to specific parametrizations that may or may
not closely approximate the data. However, the drawback of this flexibility is that it to some extent diminshes the
degree to which one can interpret the meaning of the model. Since the result of a non-parametric model did not
make use of any prior assumptions, the model also leaves the user with relatively little physical implications that
can be derived from the model, meaning that the relationship between the dependent and the independent variables
is not expressed as, for instance, some explicit formula. At this point it becomes clear that interpretation is the
main drawback of this method and this is why we also consider a parametric method.

Contrary to a non-parametric method, a parametric method does allow for assumptions about the distribution
and possible parametrizations of the data. Since a parametrization already expresses relationships between the
dependent and independent variables, the user is able to gauge how well the respective parametrization can ap-
proximate the data. This means that there is already an interpretation of the model available by definition. The
obvious downside of this approach is that a suitable parametrization might not be available and is hard to find.
For example, this can be the case when the data shows irregular patterns that are hard to describe with a single
formula. What’s more, one does not always know if the used parametrization is the best one. However, another
advantage that a parametric approach has compared to a non-parametric approach, is that it often requires less
computational effort to generate the model. Hence, these parametric models hold appealing qualities, but are also
limited to the quality and appropriateness of the parametrization used.

With regards to pharmacokinetic modelling, the above presents multiple reasons as to why to use certain ap-
proaches in modelling. When there is uncertainty about what explicit relationship may or may not exist between the
dependent and the independent variables, a non-parametric method may be better suited for the job. However, even
if a suitable parametric representation is available, would this assumed relationship outperform a non-parametric
approach? Although it might seem reasonable to assume that a parametric approach would generally be better if
within reach, it might not be the case by definition. For that reason, we would require methods that allow us to
compare these different methods.

Generally speaking, the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)
are widely used to compare (nested) models that are of similar structure and use similar likelihood estimation
methods such as maximum likelihood estimation (MLE) and restricted maximum likelihood estimation (REML).
Information criterion methods such as AIC and BIC reward goodness of fit and penalize the amount of parameters
used in various ways to comprise a score. This will be elaborated on more in the method section. However, there
exists some discussion between scientists that believe that such criterions can be used liberally to compare different
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models and those that believe these criterions should be limited to nested models (Spiegelhalter et al., 2002). The
root cause of this discussion comes from the fact that the comparison between nested models is reliable because the
same terms that are neglected in the approximation of the error term y − f(x) —Where f is some function of x
and an approximation of y— will cancel (Wood, 2017). For that reason, the comparison between different types of
models is not ideal, but generally accepted within the field of modelling.

In short, the goal of this paper is to unveil the qualities and purpose of both parametric and non-parametric
models. Most notably, investigating when the two approaches differ in result and quality and why will be one of
the main focuses. What conditions or circumstances will cause one type of candidate pharmacokinetic model to
perform better than some other type? As the models will be discussed and compared, arguments will also be made
in favor of either or both methods based on the performance and properties displayed. Ultimately, we hope that
the information shown will bring attention and insight to others such that they might widen their horizon when it
comes to modelling pharmacokinetic data.

2 Methods

In order to uncover potential discrepancies in the performance of the parametric and non-parametric approaches,
three different data sets have been used to apply the various models to. These methods were applied in the
statistical software program R. The data sets used are: Theophylline, from the ’datasets’ package and Dialyzer
and Remifentanil from the ’nlme’ package. The data set on theophylline is a data frame consisting of 132 rows
containing information on 12 subjects that participated in the study by Dr. Robert Upton of the kinetics of the
anti-asthmatic drug. The data itself is taken from the report by Boeckmann et al. (1994). The columns contain
information on the respective dose administered, weight, elapsed time in hours and current concentration of the
drug in the blood stream of the participant after oral administration of the drug.

The Dialyzer data set was taken from research performed by Vonesh and Carter (1992) investigating the char-
acteristics of in vivo ultrafiltration for hemodialyzers. Meaning that it measured the behavior of a dialyzer that
filters the blood that are placed in the body. The data set holds 140 rows with measures about 20 patients. Next
to a subject identifier, the data frame holds information about the bovine blood flow rate which comes as a factor
with two levels, the transmembrane pressure and the ultrafiltration rate of the dialyzer.

Lastly, the Remifential data set is a larger data set containing 2107 rows and 12 columns, taken from a research
on the influence of age and gender of the pharmacokinetics of remifentanil by Minto et al. (1997) The data frame
holds information on 65 participants and how the remifentanil concentrations in their blood changed over time.
Several other measurements about the patient are also included in the columns, such as age, sex, height, weight,
body surface area and lean body mass, in addition to the infusion rate and amount of remifentanil administered in
the current time interval.

The reason that we opted for these sets of pharmacokinetic data is that each data set has something that makes
them fundamentally different from the others. Theophylline holds a fixed number of only seven data points per
subject, whereas Remifentanil holds a much larger, varying amount of data points per subject. This difference is
of interest in this study in order to investigate the performance of both models when fed both few and many data
points. Secondly, Dialyzer is of a different nature in that it also holds a grouping factor and an interesting potential
random effect structure, as will be shown later.

Now that the data sets have been discussed, it is time to introduce the methods used to model the data.
All methods and analysis has been carried out within the statistical modelling software ’R-studio’ using packages
available on the repository (CRAN). As mentioned in the introduction, we will use two different approaches to
modelling pharmacokinetic data. For the non-parametric method, we used GAM, short for generalized additive
models, from the mgcv package and we used (n)lme (non-linear mixed effects models) from the nlme package for
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the parametric method.

2.1 Generalized additive models

Introducing the generalized additive model as formulated in Wood (2017), the general idea of the method is to model
the dependent variable by generating multiple curves that are nonzero for some (partially overlapping) interval along
the axis of independent variables and add these curves together. The sum of these curves equals the function that
approximates the data. In the case of multiple covariates that need to be incorporated into the model, this amounts
to a general formal formulation of the form:

yi = a+ f1(xi) + f2(vi) + ...+ fk(zi) + ϵi

where yi is the response variable, a is some intercept parameter, f , also called a smooth, is a function of some
covariate that is generated from a sum of multiple underlying functions such as we just described. The ϵi term is a
noise parameter that follows a N(0, σ2) distribution. Each fj can be represented in a form equivalent to:

f1(x) =

k1∑
j=1

bj(x)δj

where δj are unknown coefficients and the bj are piecewise linear functions based on some spacing of know along
the axis of the input variable. Now, in order to find the functions that best approximation to the "true" function
that is generating the data, the most conventional method is to minimize the difference

∥y −Xβ∥2

However, in order to not just basically perform linear interpolation, a penalty term is introduced. This penalty
term will prevent the overfitting to the noise that is typical of interpolation methods by penalizing the wiggliness
of the curve. Consequently, penalizing the wiggliness of the curve more and more by increasing λ means that the
curve will become more and more like a straight line. This term is implemented as follows

∥y −Xβ∥2 + λS

Where S is some expression that encapsulates the wiggliness of the curve in some form. Most intuitively, this
could be performed using the second derivatives of the functions described in Xβ, as is the case in cubic smoothing
splines. This would look like

n∑
i=1

{yi − g(xi)
2}+ λ

∫
g′′(x)2dx

It should be noted however, that this is not the default definition used in the GAM function, as the default
type of smoothing splines are thin plate smoothing splines. The main difference of this method is that it provides
a general solution to fitting a smooth function of more than one independent variables. This is done by providing
a different penalty expression defined as

Smd =

∫
Rd

∑
v1+...+vd

m!

v1!...vd!
(

∂mf

∂xv1
1 ...∂xvd

d

)2dx1...dxd

Note that x is a d-dimensional vector. Here, m is to be chosen, causing all of the combinations of the v-terms to be
determined as well. Another advantage is that thin plate regression splines do not require any particular ordering
of nodes.
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A challenge that this method introduces, is its flexibility. Namely, within the mgcv package that provides the
usage of this these types of models, a wide variety of options available to give certain characteristics to certain
smooths in order to make an appropriate model. Apart from the fact that there are multiple types of smooths,
specifying and adjusting a smooth means evaluating the dimension of a smooth, the order of the penalty term, point
constraints that the smooth should satisfy, weights of certain measures and overall desired or tolerated smoothness
of the curve. It is not always required to specify non-default values for most of these settings, but there certainly
are cases in which the offered flexibility allows one to significantly improve the fit of a smooth and we will also draw
from these resources in our models.

2.2 Non-linear mixed effect models

Secondly, we have the non-linear mixed effect models. These are often thought of as hierarchical models and therefore
its initial formulation is slightly different from that of the generalized additive model. We speak of a mixed model
because of the inclusion of both fixed and random effects. The first can be though of as population-level effects. The
latter are the effects associated with individual experimental units drawn at random from a population (Pinheiro
& Bates, 2000) . In this case an observation of data point within a group is modeled by

yij = f(ϕij , vij) + ϵij , I = 1, . . . ,M j = 1, . . . , ni

Where j is the number of the observation and i is the group number, M is the number of groups and ni is the
number of observations present in the respective group. Here, ϕij is a parameter vector that is specific to each
group i and vij is a covariate vector. Similar to earlier, the ϵij term is an error term, but this time it is normally
distributed differently per group. (Pinheiro & Bates, 2000) Because the model is non-linear, f is non-linear with
respect to some element of the parameter vector ϕij . Subsequently, this parameter is specified in such a way that
it holds information about both fixed, population-level effects and random, subject-level effects. That is,

ϕij = Aijβ +Bijbi bij ∼ N (0,Ψ)

where β and bi are the vectors representing the fixed and random effects by group respectively. The matrices A

and B then naturally specify the (non-linear) ways the fixed and random effects are to be put together in order to
represent the desired parameter vector ϕij for the model.

2.3 Mixed effect models and additive models

From the general definitions of generalized additive models and non-linear mixed effects models, it is clear how
fixed and random effects are incorporated in a nlme model. However, it is not immediately obvious how fixed and
random effects can be represented in the context of a GAM. The analogy between the mixed effect formulation and
the smooths in an additive model comes from the penalty matrix S as discussed in Silverman (1985) This matrix
penalizes the wiggliness of the smooth along with its scalar, λ. Now, in the context of fixed and random effect, a
fixed effect is reflected by a smooth that is not penalized. This is represented in the addition of a separate column
vector containing the parameters that are fixed effects. Consequently, the random effects are the smooths that did
undergo penalization and hence adopt a certain wiggliness based on the level of penalization. When we fit the
smooths for each subject, or subgroups, we introduce the hierarchical structure similar to that of a nlme model.
Moreover, the addition of each penalized smooth on top of the main, fixed effect smooth, represents the estimated
correction on the fixed effect fit, using only the participant’s personal measures and parameters.

More formally, when we suspect that random effects are present, we might formulate this belief in a way that these
random effects behave in a random way, such a as a random variable following a certain probability distribution.
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Let us introduce some smooth yi = f(xi) + ϵi, such that it be can defined as y ∼ N (Xβ, Iσ2) for some parameter
vector β and where

β ∼ N (0,S−/λ)

Here, S− is a psuedoinverse of the penalty matrix S (Wood, 2017). Then, by taking the log and some other minor
operations, we find that the estimator of this parameter vector can be defined as

β̂ = argmin
β

∥y −Xβ∥/σ2 + λβTSβ

Assuming positive definiteness of S, β̂ can be obtained by computing the derivative of the previous expression with
respect to β, setting it to zero and solving for β. The steps are shown below. The σ2 term has been removed
through multiplying by it and adopting it in the λ.

∂

∂β
{∥y −Xβ∥+λβTSβ}

=
∂

∂β
{(y −Xβ)T (y −Xβ) + λβTSβ}

=
∂

∂β
{(yTy − 2βTXTy + βT (XTX+ λS)β}

Setting the entire expression equal to zero and performing the differentiation yields:

= −2XTy + 2(XTX+ λS)β

Note that the differentiation of the quadratic term on the right simply results in 2(XTX + λS)β because XTX is
symmetric, but S is too from the assumption of positive definiteness. Lastly, the latter result simplifies to

β = (XTX+ λS)−1XTy

If we now substitute β̂ for β in our expression for the distribution of y, we see that we arrive at a model structure
that is very similar to that of the random effects ϕij specified in the previous section. In this way, we are also able
to generate random effects for our non-parametric additive models.

In practice, a when we want to produce a GAM in R, we specify the dependent variable and its relation to the
independent variable with a model formula, like in most conventional regression methods. Additionally, the gam()
function allows us to also use the s() function that introduces the ability to specify a smooth based on the input
variables and parameters. A typical call to construct a GAM will look like the following

gam(y ∼ s(x), data = D)

for dependent variable y, independent variable x and some data frame D containing these variables as columns.
Now, in order to produce a smooth that is treated as a random effect, we can perform the similar call

gam(y ∼ s(x, bs = "re"), data = D)

These random effects can be interpreted as random slopes that are added to the model. If a situation requires
that a random effect is not merely a random slope, but rather a random smooth, we can use a different type of
smooth. These are called factor smooths as they apply a smooth for each level of the specified random effect factor
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and can be specified as follows

gam(y ∼ s(fac, x, bs = "fs"), data = D) ,

where fac stands for the factor and x for the variable that we want a smooth of for each factor level.
However, we should note that the input for such a random effect is limited to being an independent variable or

some interaction effect between independent variables. For this reason, we will also make use of the gamm() function,
which actually uses the nlme package to fit random effects. For simple random effects, gam() is the preferred
function as it has faster performance and is more numerically robust. On the other hand, the implementation of
the nlme package for fitting random effects also allows the user to exploit the same random effect inputs as in a
nlme function call, allowing for much more intricate random effect structures.

2.4 Assessing and comparing models

Before we start to compare methods, we need to realise that the two approaches we are considering do not use
the same assumptions and methods. Therefore an optimal formulation of one model will not by definition produce
an optimal model for the other, if we try to mimic the structure of the first model as much as possible in the
other model. Secondly, we need to establish how we will arrive at an optimal model. It should be noted that the
interpretation of optimal in our case mostly comes down to having adjusted the model such that it accounts for
the structure of the data (e.g. its distribution and heteroscedasticity) and that the coefficients and parameters that
reside in the model are significant and make for a parsimonious model. Generally speaking, the approach to realise
the aforementioned definition of an optimal model amounts to starting with a nlme model with fixed and random
effects present for all of the coefficients and then performing analysis and adjustments to improve the model. In
order to compare models, a conventional ANOVA will be performed in order to assess the quality and improvement
between the previous model and the new model.

In the ANOVA, F-tests are performed to compute the ratio of the between- and within-group variability of
two or more models. Subsequently, the p-value for this ratio is computed and reflects how significant this ratio
is. Additionally, the anova command in R additionally presents AIC and BIC scores that indicate how well the
models fit the data relative to the amount parameters used and their log-likelihoods, as discussed earlier. Note that
an F-test only works for nested models and hence the avnova command is mostly useful for comparison within a
model type, rather than between model types. Therefore, when comparing non-nested or different types of models,
no p-value is presented, but one can still draw inferences from the AIC and BIC values. The use of ANOVA tables
within the process of analysing and adjusting the models will be demonstrated in the results section.

In addition to assessing the quality of a model on its own, we also consider the properties of the convergence
and fit of the model. This will be done by inspecting the Hessian of the log-likelihood of the parameters and the
quantile plots of the model fits respectively. The first of these represents the matrix of second derivatives of the
log-likelihood of the combination of parameter, given the parameter vector used in the model. To better understand
this, we can formalise this into

Hij =
∂2

∂θi∂θj
log p(Y |θ)

∣∣∣∣
θ=θ∗

meaning that we assess the second derivative of the log-likelihood of some probability density function p, for some
random variable Y at some value of parameter vector θ∗. The entries of the matrix hij are then defined as the double
partial derivative of the log-likelihood function with respect to the i-th and then j-th element of the parameter
vector. In practice, this θ∗ is the instance of the parameter vector at which the parameters provide the optimal fit
to the given model structure.
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Now, in order to use interpret the values of this matrix, it is useful to make an analogy to calculus, where the
second derivative describes the acceleration of the curve. This property is then often used to derive properties at
local optima and minima of the curve, which are obtained when the first derivative is zero. Namely, when the curve
arrives at such a point, the first derivative, which equals zero, does not provide any additional information as to
if the point is a local minimum or maximum. In our case, we know beforehand if we converge at some minimum
or maximum based on if we choose to minimize or maximize the positive or negative log-likelihood respectively.
However, the second derivative does show us the rate at which the model converges at around the optimal value,
which is given by the optimal parameter vector θ∗.

The way this applies to our models is that we can look at the definiteness of this Hessian. If the Hessian
is positive or negative definite for minimizing or maximizing the log-likelihood respectively at the optimal vector
parameter solution, we have a converging model. In practice this condition is met by definition for any model that
did not throw any convergence errors. However, we can still say something about the quality of this convergence
if based on the properties of the Hessian. The main property of the Hessian is that it describes the rate at which
the objective function, which is the log-likelihood function in our case, changes based on a difference in the input
parameter vector θ∗. This amount of change is typically described by the condition number, κ, which is the ratio
between the largest and smallest eigenvalues of H in the case of a symmetric matrix. Note that this is the case
because here H is defined as the inverse of the variance-covariance matrix, which is symmetric by construction.
Then, if κ is large it means that small differences in the θ∗ will produce relative large differences in the output of
the log-likelihood, meaning that the model is probably not very reliable. The opposite also holds: a κ closer to 1

(as the condition number is a ratio) implies that the log-likelihood behave more consistently. Note that generally
speaking, a relatively small condition number does not imply convergence, but rather shows that the output will not
vary as wildly compared to an output that has a greater underlying condition number when θ∗ changes. Therefore,
models with lower condition numbers will be preferable as they are more computationally stable.

Most importantly, it can tell us something about how distinct the given solution is and thus how certain we are
of this model being appropriate for our observed values. By distinct we mean how spread out the locations of the
minima and optima are if we were to fit our model to new or replicated data. The closer these minima or optima
are to each other, the more distinct the value of the θ∗ and the less scattered the values of the vector are between
each fit to similar data. Hence, in order to assess the quality of convergence of our models.

Secondly, we also look at the quantile plots produced by the models. In these plots, dots are plotted representing
the standardized residuals of the fit. These dots are plotted against a straight line with a slope of one. If these dots
line up near this line, it indicates that the residuals are distributed approximately normal. Therefore, the quantile
plots will inform us on how well the model manages to be in or around the center of how the response variables are
plotted.

3 Results

3.1 Remifentanil

3.1.1 Nlme

The first models we will consider are the models we built for the Remifentanil data set. This data set was of great
interest because of the large amount of data it provided because of the amount of observations per participant, but
also the amount participants. Let us begin with the general model with fixed and random effects for all parameters
by calling the following command in R.

RemiMod.nlme0 <- nlme(conc ∼ SSfol(Dose, Time, lKe, lKa, lCl) | Subject, data = RemiT)

7



where ’conc’ (short for concentration) is the response variable, SSfol is a so called ’self-starting function’ given by

y(x) =
Dose ∗ exp(lKe) ∗ exp(lKa)

exp(lCl)[exp(lKa)− exp(lKe)]
{exp[−exp(lKe)x]− exp[−exp(lKa)x]}

that feeds initial values of the parameters to the non-linear mixed effect model lKe, lKa and lCl. The latter
parameters are shorthand for the log value of the extermination rate, absorption rate and clearance rate of the
substance administered and x is stands for time. However, when running this line, R throws an error and warnings
about functions not achieving convergence. Because increasing the allowed number of iterations did not solve
this problem, we decided to look at the correlation structure of the variables by inspecting the pairs() of the
parameters for a simpler model generated using the nlsList() function. This revealed the following plot

Figure 1: Scatter plot of the extermination rate, absorption rate and clearance.

In this plot it can be seen that the variables lKe and lKa are possibly negatively correlated as there is some diagonal
structure to those particular plots. This means that our model is probably over-parameterized and that as a con-
sequence, some of our parameters have become too dependent of each other. Therefore, we reformulate our model to

RemiMod.nlme01 <- nlme(conc ∼ SSfol(Dose, Time, lKe, lKa, lCl) | Subject,

random = pdDiag(list(lKe + lKa + lCl ∼ 1)), data = RemiT) .

The additional specification of our random variables in this way forces the random-effects variance-covariance
structure to be diagonal in order to remove the correlation between our lKe and lKa variables. This resulted in the
function call converging and producing our first nlme model. The summary output can be seen below. Throughout
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RemiMod.nlme0
lKef −1.85∗∗∗

(0.04)
lKaf −0.44∗∗∗

(0.07)
lClf 0.54∗∗∗

(0.03)
lKeσ 0.20∗∗∗

(0.00)
lKaσ 0.16∗∗∗

(0.00)
lClσ 0.19∗∗∗

(0.00)
N 1133.00
No. groups 36.00
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

lKe lKa
lKa -0.398
lCl 0.110 0.229

Table 1: Summary table and correlation matrix of RemiMod.nlme0

this thesis, values of fixed and standard deviations of random effects for coefficients are indicated by subscripts of f
and σ respectively.

This output shows that the model at hand is already performs in a sound way as we can see from a couple of
indicators. First of all, we see that the p-values for all of the fixed effects are significant. Secondly none of values of
the fixed and random effects have values that are small to a degree that they are redundant compared to the general
scale of the other values. Lastly, we also see that the correlation between our parameters is never close to −1 or 1,
meaning that all of the parameters in the model are not (virtually) linearly dependent numerically speaking.

It would be acceptable to stop at this point, as the model does not show any glaring issues or obvious improve-
ments. However, in order to see if we can do better we resort to literature on modelling the pharmacokinetics of
Remifentanil. For instance Kim et al. (2017) showed that the weight of the participant was related to the clearance
observed. We included this relationship in the fixed effect structure to see if this would lead to a better model as
displayed below. We follow this up with an anova test to see if the new model is significantly better than our initial
model.

RemiMod.nlme01 <- nlme(conc ∼ SSfol(Dose, Time, lKe, lKa, lCl) | Subject,

fixed = list(lKe + lKa ∼ 1, lCl ∼ LBM), random = pdDiag(list(lKe + lKa + lCl ∼ 1)),

data = RemiT) .

Model df AIC BIC LogLik. L.Ratio p-value

RemiMod.nlme0 7 7866.368 7901.597 -3926.184
RemiMod.nlme01 8 7854.403 7894.664 -3919.201 13.966 1*10−4

Table 2: Anova table of models RemiMod.nlme0 and RemiMod.nlme01

From the anova test, we can see that the new model has a siginficantly better AIC and BIC with a p-value of
around 0.0002. However, in the summary table of RemiMod.nlme01 in table 3 we can see that the addition of the
interaction fixed effect between clearance and lean body mass (LBM) caused the intercept of the clearance to be
no longer significant in the model. Therefore, we remove the intercept and perform another anova test to see if the
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model has improved again under this adjustment.

RemiMod.nlme01
lKef −1.85∗∗∗

(0.04)

lKaf −0.44∗∗∗

(0.07)

lCl.(Intercept)f −0.07

(0.15)

lCl.LBMf 0.01∗∗∗

(0.00)

lKeσ 0.20∗∗∗

(0.00)

lKaσ 0.17∗∗∗

(0.00)

lCl.(Intercept)σ 0.15∗∗∗

(0.00)

N 1133.00

No. groups 36.00
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

lKe lKa lCl.(I)
lKa -0.395

lCl.(I) 0.035 -0.065
LCL.LBM -0.010 0.013 -0.982

Table 3: Summary table and correlation matrix of RemiMod.nlme01

RemiMod.nlme02 <- nlme(conc ∼ SSfol(Dose, Time, lKe, lKa, lCl) | Subject,

fixed = list(lKe + lKa ∼ 1, lCl ∼ 0 + lCl), random = pdDiag(list(lKe + lKa + lCl ∼ 1)),

data = RemiT) .

Model df AIC BIC LogLik. L.Ratio p-value

RemiMod.nlme01 8 7854.403 7894.664 -3919.201
RemiMod.nlme02 7 7852.839 7887.839 -3919.305 6.935 0.0085

Table 4: Anova table of models RemiMod.nlme01 and RemiMod.nlme02

Again, the new model supposedly has a significantly better fit in terms of AIC-score. As hoped, we have created a
significantly better model that contains only significant coefficients, as displayed in table 4.

Additionally, as stated by Kim et al. (2017), it has been known for some time now that age is also a significant
covariate in the pharmacokinetics of Remifentanil. Apparently, the age of a participant is most often found to
be related to the elimination rate and/or the clearance. In our sample, the addition of age in the random effect
structure did not lead to significant improvement of the model and this was also the case when adding it to the
fixed effect component of the clearance. However, we did find strong support for participant age being an important
covariate for the fixed effects corresponding to the elimination rate parameter when exploring how to include age
into our model optimally by the following command.
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RemiMod.nlme02
lKef −1.85∗∗∗

(0.04)
lKaf −0.44∗∗∗

(0.07)
lCl.LBMf 0.01∗∗∗

(0.00)
lKeσ 0.20∗∗∗

(0.00)
lKaσ 0.17∗∗∗

(0.00)
lCl.(Intercept)σ 0.16∗∗∗

(0.00)
N 1133.00
No. groups 36.00
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

lKe lKa
lKa -0.395

LCL.LBM 0.129 -0.266

Table 5: Summary table and correlation matrix of RemiMod.nlme02

RemiMod.nlme03 <- nlme(conc ∼ SSfol(Dose, Time, lKe, lKa, lCl) | Subject,

fixed = list(lKe ∼ Age, lKa ∼ 1, lCl ∼ 0 + lCl), random = pdDiag(list(lKe + lKa + lCl

∼ 1)), data = RemiT)

We also see from the summary in table 6 that again we have constructed a model that holds only significant
coefficients.

RemiMod.nlme03
lKe.(Intercept)f −2.07∗∗∗

(0.09)

lKe.Agef 0.01∗∗

(0.00)

lKaf −0.45∗∗∗

(0.07)

lCl.LBMf 0.01∗∗∗

(0.00)

lKe.(Intercept)σ 0.18∗∗∗

(0.00)

lKaσ 0.20∗∗∗

(0.00)

lCl.(Intercept)σ 0.15∗∗∗

(0.00)

N 1133.00

No. groups 36.00
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

lKe.(I) lKe.Ag lKa
lKe.(I) -0.902

lKa -0.060 -0.131
LCL.LBM 0.012 0.054 -0.262

Table 6: Summary table and correlation matrix of RemiMod.nlme03

What’s more, when comparing the models we see that we have again produced a significantly better model.
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Model df AIC BIC LogLik. L.Ratio p-value

RemiMod.nlme02 7 7852.839 7887.839 -3919.305
RemiMod.nlme03 8 7848.644 7887.905 -3916.822 6.966 0.083

Table 7: Anova table of models RemiMod.nlme02 and RemiMod.nlme03

Now that we have incorporated several influences from the literature and did not find any other worthwhile ad-
justments to the model, we revisit our initial issue with the random effects variance-covariance structure that lead
us to using the pdDiag function. As we saw earlier, the absorption and elimination rate seemed to be strongly
correlated for their random effects. From this standpoint, it might be worthwhile to remove one or the other to see
if this significantly influences the model in some way. From the results, we saw that the removal of the elimination
rate did the model no good, increasing the AIC up to 7898 with a p-value of near zero. However, the exclusion of
the absorption random effect parameter did give some interesting results. For our new model, specified below, we
also got the following ANOVA results

RemiMod.nlme04 <- nlme(conc ∼ SSfol(Dose, Time, lKe, lKa, lCl) | Subject,

fixed = list(lKe ∼ Age, lKa ∼ 1, lCl ∼ 0 + lCl), random = pdDiag(list(lKe + lCl ∼ 1)),

data = RemiT)

Model df AIC BIC LogLik. L.Ratio p-value

RemiMod.nlme03 8 7848.644 7887.905 -3916.822
RemiMod.nlme04 7 67847.980 7883.209 -3916.990 2.336 0.126

Table 8: Anova table of models RemiMod.nlme03 and RemiMod.nlme04

As we had suspected, the removal of the absorption parameter did not seem to significantly change the quality
of the model by neither the AIC or BIC metrics. Hence, we cannot say that one model is strictly better than the
other. However, because of the principle of parsimony, we favor the latter model, as it has a simpler random effect
structure.

However, as we inspect the plot for the fitted values verses the response values in figure 2, it becomes clear that
the residuals are seem heteroscedastic. For that reason, the model was updated again in order to account for the
varying residuals. This was done by modelling the variance in the model as a power function plus some constant,
according to the formulation of the varConstPower function from the nlme package as shown below.

RemiMod.nlme05 <- update(RemiMod.nlme0, fixed = list(lKe ∼ 1, lKa ∼ 1, lCl ∼ 1), random

= pdDiag(list(lKe ∼ 1, lCl ∼ 1 )), groups = ∼ Subject, weights = varConstPower(fixed

= list(power = .71), form = ∼ fitted(.)))

Note that the fixed effect structure was also reduced to the basic structure as it appeared that the last addi-
tion to the model revealed that our prior structure did not yield a model that was significantly better than one
without this complex fixed effect structure. Consequently, the results shown in the anova table reveal that the
introduction of this variance structure improves the model significantly.

Lastly, the plots shown in figure 3 show the fit of the RemiMod.nlme05 model. As one can see, the shape of the
fitted values roughly corresponds to the way the values observed values are spread out. However, the fitted values
more often than not tend to be slightly shifted or delayed compared the observed values.
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RemiMod.nlme05
lKef −2.03∗∗∗

(0.02)
lKaf −0.38∗∗∗

(0.06)
lClf 0.56∗∗∗

(0.03)
lKeσ 0.12∗∗∗

(0.00)
lClσ 0.18∗∗∗

(0.00)
N 1133.00
No. groups 36.00
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

lKe lKa
lKe -0.344
lKa 0.013 -0.146

Table 9: Summary table and correlation matrix of Remi.nlme05

Figure 2: Plot of the fitted values versus the response values for RemiMod.nlme04. Note that the spread of the
nodes seems to widen as the value of the fitted value increases

Model df AIC BIC LogLik.

RemiMod.nlme04 7 7847.980 7883.209 -3916.990
RemiMod.nlme05 7 6385.288 6420.516 -3185.644

Table 10: Anova table of models RemiMod.nlme04 and RemiMod.nlme05
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Figure 3: Plot of the RemiMod.nlme05 model for 16 random participants from the remifentanil study

3.1.2 GAM

Now, for the formulation of a proper GAM model we started with evaluating the various smooths that we could
implement in the model and how define these. In the light of the theory on the analogy between smooths and
random effects, it makes sense to think a model constructed out of a smooth that represents the general population
effect of the drug and one or more smooths that represent the present per subject effects with respect to the fixed
effect. Because the concentration of remifentanil was measured over time, it makes sense to specify the fixed effect
smooth as a function of time. Subsequently, we need to assess what type of random effects we need to consider.
Based on the knowledge we have from the previous models, a good starting point would be to incorporate random
effects of both lean body mass (LBM), age and the dose administered. Although the dose was not explicitly used in
our function call for our nlme models, it was present in the parametrization introduced by the self starting function
we used from the nlme package. These covariates will serve as a starting point for formulating our model. For our
initial model, we start by specifying our fixed effect model, which will be generated from:

RemiMod.gam1 <- gam(conc ∼ s(Time, k = 15, pc = 1), data = RemiT, method = "REML", family

= Gamma(link = "log"), weights = c(4, rep(1,nrow(RemiT) -1)), select = TRUE)

In the specification of the smooth, k represents the dimension of the basis to use for constructing the smooth.
The term pc is a so called point constraint that force the smooth to pass trough a certain point. This constraint
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was added since the measures of the concentration would often jump from 0 to the a much higher value that was
measured at the first time interval, causing the starting point to behave like an outlier in some cases where the
difference between the first and second measurement we relatively big. Therefore, introducing the point constraint
caused the the fit to pass through the first measurement in most cases (only most because a smooth is not equal
to the fit). In addition we also increased the weight of the first measurement to put even more emphasis on the fit
going through the first observed value. We also allowed the model to fully penalize the smoothing terms if necessary
by stating select = TRUE. In other words, we allow the model to remove smooth terms from the model if they
are too wiggly. We added this setting because the fits tended to become wiggly for some participants where there
were large clusters of observations. Lastly, the gamma distribution was used to model the values of the fit. The
reason for this was that we required the fit to be nonzero because a negative concentration would not make sense.

Now that we have introduced the fixed effect smooth, we can start adding random effect smooths, or factor
smooths, rather. The approach will be similar in terms of how we assess the model. However, the main difference
is that we have to find the best model from a pool of potential models and we have to find a way to find the best
model. As mentioned earlier, we do have some prior knowledge of what covariates probably are present in the
random effect structure. Additionally, it is intuitive to add a factor smooth dependent on time as a random effect,
so that we have both a fixed and random effect smooth of time. Secondly, because it is hard to decide in which
direction to take the model from there, we opt to compare this model to a relatively full model in which we add
a multitude of fixed effects and random effects such as random intercepts, slopes, smooths. Then by comparing
the residual variances and AIC scores, we can see if our basic fixed and random effect model needs some of the
components of the fuller model. If this is the case, we can trim down the fuller model by checking for non-significant
smooths and removing these. Hence, for our basic model, we define

RemiMod.gam2 <- gam(conc ∼ s(Time, k = 15, pc = 1) + s(Subject, Time, k = 10, bs = "fs"),

data = RemiT, method = "REML", family = Gamma(link = "log"), weights = c(4, rep(1,nrow(RemiT)

-1)), select = TRUE)

This will be the basic model that we are going to compare to the fuller model. The reduction of the basis di-
mension of the factor smooth to 10 is because it appeared that larger values would cause the model to have more
coefficients than data for future models.

From here, we will introduce our fuller model. We should mention that we have checked for the presence of
some fixed and random effects, or even linear relationships beforehand. Namely, there appeared to be no significant
interaction effects that were not between the subject and some other variable. We also left out the random intercept
smooth of the dose along with the random slopes for the lean body mass and dose, because they greatly reduced the
quality of the model compared to all other smooths. Only the variables of lean body mass en dose would produce
significant linear effects for the model, but these would yield either virtually equal or worse AIC scores. Taking all
of the above into considerations, our fuller model used will be given by:

RemiMod.gam.F <- gam(conc ∼ s(Time, k = 15, pc = 1) + s(Age) + s(LBM)

+ s(Subject, bs = "re", k = 10) + s(Age, bs = "re", k = 10) + s(LBM, bs = "re", k=10)

+ s(Subject, Age, bs = "re", k = 10) + s(Subject, Time, k = 10, bs = "fs"), data = RemiT,

method = "REML", family = Gamma(link = "log"), weights = c(4, rep(1,nrow(RemiT) -1)))

We see here that we have included fixed effect smooths for age and lean body mass and that we have included
random intercepts for each subject, age, and lean body mass. Additionally we have also added the random slope
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edf F p-value
s(Time) 1.314 ∗ 101 186.204 < 2 ∗ 10−16
s(Age) 4.366 15.939 < 2 ∗ 10−16
s(LBM) 2.855 25.303 < 2 ∗ 10−16

s(Subject) 2.035 0.308 0.0150
s(Age) 1.39510−15 0 0.9660
s(LBM) −6.068 ∗ 1−−16 0 0.0127

s(Subject, Age) 2.206 ∗ 10−3 0 0.0919
s(Subject, Time) 3.773 ∗ 101 2.445 < 2 ∗ 10−16

Table 12: Summary table of the smooths of the RemiMod.gam.F model

for age. When we look at the AIC for both models, we see that the AIC value for the full model is about 17 points
lower than the AIC value for the basic model. Meaning that something is going right in the full model.

Model df AIC

RemiMod.gam2 58.76 3086.483
RemiMod.gam.F 53.84 3069.704

Table 11: Comparison of the degrees of freedom and the AIC values between the models RemiMod.gam2 and
RemiMod.gam.F

When we inspect the summary of the this model in table 12, we see that the random effect smooths are not
significant.

Removing the random effect smooths resulted in a model with only significant coefficients. However, upon
further testing, it turned out that removing some of the significant smooths did not affect the AIC score, nor the
residual deviance much. This way, upon continuing to iteratively include and exclude components from the full
model, we found a new model, RemiMod.gam3, that has very similar properties to the full model, but uses fewer
terms. This model was given by the following line.

RemiMod.gam3 <- gam(conc ∼ s(Time, k = 15, pc = 1) + s(Subject, bs = "fs", k = 10) +

s(Age) + s(LBM), data = RemiT, family = Gamma(link = "log"), weights = c(4, rep(1,nrow(RemiT)

-1)))

Although a traditional anova F test cannot provide an accurate quantification of the p-value of the ratio of the
F-values, we can draw information from the residual deviance results. Apparently, the residual deviance equals
83.079 for RemiMod.gam3 and 83.000 for RemiMod.gam.F. This shows that the RemiMod.gam3 model performs
virtually the same with respect to this metric compared to the full model, even though it uses fewer terms. On the
other hand, the AIC score for RemiMod.gam3 appears to be slightly greater than the full model. What’s more,
the AIC-scores are still worse than that of the original model with the regular fixed and random effect structure,
represented by RemiMod.gam2.

Model df AIC

RemiMod.gam2 68.61 3038.232
RemiMod.gam3 69.02 3042.280
RemiMod.gam.F 53.84 3039.49

Table 13: Comparison of the degrees of freedom and the AIC values between the GAM models
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Figure 4: Plots of the fitted values of the RemiMod.gam2 model for 16 participants

Now that we have obtained a satisfactory model, we look at the plots to see how well it performs from a visual
perspective. In figure 4, the fitted values look decent for some of the curves, but seem to overshoot the observed
values more often than not. The most obvious explanation for this result is that the random effects do not adjust
the fixed effect strongly enough for every subject. For that reason, we also attempted to formulate an additional
model that does not assume a mixed model structure in order to see if this would produce a better result. In this
model, a smooth is fitted directly per subject with entirely separate smooth coefficients per subject, rather than
first generating a general population effect as a starting point for the model, as we can see in the model formula below.

RemiMod.gam0 <- gam(conc ∼ s(Time, by = Subject, k = 20, pc = 1), gamma = .3, data =

RemiT, method = "REML", family = Gamma(link = "log"), weights = c(4, rep(1,nrow(RemiT)-1)),

select = TRUE)

Because we move away from the mixed model formulation here, we also leave behind some of the benefits
this model. The most important aspect is that because we no longer consider population level effects, we do also
not consider the inclusion of other explanatory variables to generate our fit. We are able to drop these explanatory
variables in this case because we only fit smooth of time directly and independently for each subject. Therefore,
the fixed effect plus some other explanatory variable-based random effects is no longer of any additional value and
we are left with a model that provides less explanation or interpretation, at the trade-off of more precise fits. In
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the plot below it is clearly visible that this method produces more suitable models.

Figure 5: Plots of the per subject GAM of the same random 16 participants of the remifentanil study

Aside from the third graph showing a straight line for the fit (for some unknown reason), the other graphs display
fairly nice fits. The seventh graph appears to suffer from a cluster of values that causes the fit to be dominated by
this cluster. The result is that the model skips the first value as if it is some outlier and does not match the peak
displayed in the measurements. Other than this, the fits behave well generally speaking. However, although this
model provides good fits, the quality of these fits was paid for in a less explicit result that specifies nothing about
the relationship between the dependent variable and any independent variable other than time.

3.1.3 Analysis of remifentanil models

Now that have formulated models for both the nlme and GAM methods, we will investigate some of they key
properties that tell us something about the quality of a fit in a broader sense. First off, we will compare the
quantile plots produced from the best model we were able to generate from both methods. From the quantile plot
of model RemiMod.nlme05 below, we see that the extreme values of the residuals occur more often than expected
compared to a Gaussian distribution. This means that largest residuals, both positive and negative occur too often.
In combination with the plot on the right in figure 6, it becomes evident that there are multiple outliers in the
observed or response values that are corroborated with smaller fitted values. On the other hand, we can also see
that there is a cluster of fitted values that are structurally larger than the observed values in the zero to forty range,
which partially explains the tail in the left of the quantile plot in figure 6.

The first phenomenon of response values being greater than some of the fitted values can also be observed to
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some degree in figure 3, where in most plots the peaks of the fitted line do not quite attain most of the observed
values nor the shape or curvature of this peak.

Still, despite the use of the constant plus power function for modelling the variance in the RemiMod.nlme05
model, the heteroscedasticity seems present to some degree, albeit is less than before. This observed trend could
also be partially due to the parametrization not being fit to model such sharp peaks or various kinds of curvatures
of these peaks in the data, which would cause this plot to have this shape for most power functions that would
model the variance.

Figure 6: Left: quantile plot of the RemiMod.nlme05 model. Right: scatter plot of the fitted versus the residual
values

Secondly, we have the quantile plots of the additive models. The first plot in figure 7, obtained from the
gam.check function applied to the RemiMod.gam2 model, again shows that the deviance residuals are probably
distributed in a non Gaussian fashion, as is supported by a Shapiro-test returning a p-value smaller than 2.2∗10−16,
meaning that the p-value is essentially zero. We can also see this from the plot in the bottom let corner, where the
residuals are too heavily stacked around zero for the distribution to be normal. Moreover, the plot on the lower
right also shows that the model struggles more with fitting a model to the observed values the greater the values
get. This is also immediately clear from figure 9, where we see multiple peaks in the plots not quite matching the
trend of the observed values.
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Figure 7: Output of the gam.check() function RemiMod.gam2.

If we compare the results from our mixed effect additive model, RemiMod.gam2, to our additive model that fits
separately for each subject, RemiMod.gam0, we see that are some stark differences. Perhaps the most interesting
difference between the results can be found in the plots displaying the response versus the fitted values (lower right
in figure 7 and right in figure 8). Namely, the spread of the scatter is a lot wider and, moreover, more symmetrical
for RemiMod.gam2 than for RemiMod.gam0. This pattern can also seen from the bottom left plot of figure 7, which
shows that there are only slightly more negative residuals than positive residuals. Now, when we look at the right
plot of figure 8, we see that the scatter is less symmetrical, with the spread showing a clear trend of response values
being greater than the fitted values most of the time. This means that the residuals tend to be mostly positive and
tend to be greater as the fitted values also become larger.

Still, this shows us that the fit is a fair bit more precise overall. However, we should mention that the quantile
plot in figure 8 by no means displays normal behavior unfortunately, as can be seen from the confidence interval
band in the left plot. We should note that for the plots below in figure 8, we have removed the results of the plot
for which model produced a constant value, as well as some the fitted values corresponding to the first observation,
as these residuals are not a fair representation of the overall performance of the model for all of the participants.
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Figure 8: Left: Quantile plot of the residuals of the RemiMod.gam0 model. The band in this plot displays the 95%
confidence interval for normality. Right: a fitted values vs Response plot.

So far we have assessed metrics such as residuals, AIC-values, correlation coefficients to judge whether a model
has desired properties on its own, but also with respect to other models. Additionally, we have investigated behavior
of residuals for our selected models to see what model structurally produces the most desirable type of fit (i.e. how
are residuals of a model distributed generally). However, we still have to consider the condition number, κ, to see
which models provide us with the most stable results. The results are printed in table 14 below.

Model AIC κ R

RemiMod.nlme05 6385 34121.6 0.06
RemiMod.gam2 3038 583532.7 1
RemiMod.gam0 3426 137678.1 0.24

Table 14: Condition numbers of the Remifentanil models and the ratio R between the κ of the respective model
and the largest κ of these models.

It can be seen from the table that the condition numbers are some differences between the model types we have
constructed, with the smallest value being approximately twenty times smaller than the largest κ. This result was
expected for the the non-linear mixed effect model and it is reassuring that was indeed the case. The reason that
parametric models tend to be more consistent in their performance is because of the fact that the model function is
included in the assumptions of the model and hence the model does not have to generate some arbitrary function
to approximate the data, unlike non-parametric methods. Following up on the additive models, the difference is
again very noticeable and expected because the RemiMod.gam2 model uses more smoothers on more variables
and is therefore naturally more dependent on the input parameter vector θ∗. Before we conclude more about the
performance of the model types as a whole, we will first consider the performance of our models on other data sets.
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fm4Theo.nlme
lKef −2.45∗∗∗

(0.05)
lKaf 0.43∗

(0.20)
lClf −3.23∗∗∗

(0.06)
lKaσ 0.64∗∗∗

(0.00)
lClσ 0.17∗∗∗

(0.00)
N 132.00
No. groups 12.00
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

lKe lKa
lKe -0.344
lKa 0.013 -0.146

Table 15: Summary table and correlation matrix of fm4Theo.nlme

3.2 Theophylline

3.2.1 Nlme

The following models that will be constructed are based on the theophylline data set. This sample has also been
analyzed by Pinheiro and Bates (2000) and we will refer to this book for the exploratory analysis performed on
the data. Additionally, the model selection steps were also presented in their book and we will therefore skip to
the final theophylline model proposed. First of all, as general practice we generate a model using a self-starting
function within the nlsList function and use this as the input for our basic nlme model.

fm1Theo.lis <- nlsList(conc SSfol(Dose, Time, lKe, lKa, lCl) | Subject , data = Theoph)

fm1Theo.nlme <- nlme(fm1Theo.lis)

Again, this initial nlme model uses the nlsList input to determine starting values and the fixed and random
effect structures. By default it assumes the most basic fixed and random effect R-studio model formula for each
parameter (i.e. lKe + lKa + lCl ∼ 1 for both the fixed and random effects). According to Pinheiro and Bates
(2000), the following model fits the data well.

fm4Theo.nlme <- update(fm3Theo.nlme, random = pdDiag(lKa 1, lCl 1)

, weights = varConstPower(const = 1, power = 0.1))

From this model function we see that the random effect structure has been diagonalized and that the lKe pa-
rameter has been removed. These adjustments were made because there was high correlation between parameters
and because the lKe parameter contributed virtually nothing to the random effects. Secondly, the varConstPower
argument has been added in order to account for the heteroscedasticity in the standardized residuals. The summary
of the final model below in figure 9 shows no worrying signs and hence we will use the model for our final analysis.
The fit of the model is also shown in figure 9.
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Figure 9: Plots of the fm4Theo.nlme model fits for each subject

3.2.2 GAM

For the construction of the additive models theophylline sample, we started with the same basic fixed plus random
effect (random smooth) model structure shown below.
TheoMod.gam1 <- gam(conc s(Time) + s(Time, Subject, bs = "fs"), data = Theo, method

= "REML" , gamma = .6 )

The gamma parameter was also reduced in order to reduce the smoothness of the fitted curve, to better represent
the data. This did not change the overall patterns for each individual curve, but increased the overall fit quite well
without overfitting. Subsequently, additional smooths were introduced into the model. However, upon adding these
smooths, it appeared that the model had often become an overdetermined system because the model would require
more parameters than the number of observed values. In the cases where the extra smooth did not introduce too
many additional parameters, the contribution to the fit was not significant. Therefore, the best suited model for
this data set appeared to simply the initial TheoMod.gam1 model. The summary and plots of the fit are displayed
below.
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TheoMod.gam1
s(Time) 8.73∗∗∗

s(Time,Subject) 22.22∗∗∗

N 132.00

No. groups 12.00
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 16: summary of TheoMod.gam1

Figure 10: Plots of the TheoMod.gam model fits for each subject

3.2.3 Analysis of theophylline models

With the models being formulated, we again continue with the analysis of the quality of the model. Starting with
the nlme model, in figure 11 we see that the the spread of the residuals in the left plot is approximately normal,
except for the extreme values. Consequently, we also see in the right plot that the fitted values display relatively
consistent behavior with respect to their observed values. All of this indicates that we have a suitable model at
hand and that the model functions appropriately.
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Figure 11: Left: quantile plot of the fm4Theo.nlme model. Right: scatter plot of the fitted versus the residual
values

Secondly, we have the plots for the generalized additive model in figure 12. The quantile plot on the left shows
us that the residuals are spread out mostly in a normal fashion. Most notably, there appear to be a few too many
extreme residuals on the positive side, as indicated by the tail going upwards for the larger positive residuals.
Additionally, we see in the plot on the right that the fitted values versus the response values show a clear diagonal
trend. However, contrary to the plot in figure 11, we see that the fitted values do not quite reach the value 10
and up, contrary to the response values. This means that for the larger response values, the model structurally fits
values to the peak that are generally smaller than the peak. This effect can also be seen in figure 10, most notably
in plots (from left to right) 1, 4, 5, 10 en 12.

Figure 12: Left: quantile plot of the TheoMod.gam1 model. Right: scatter plot of the fitted versus the residual
values

Lastly, we also have the condition numbers. For this sample, we see that the two models yield wildly different
values for κ. The main takeaway from this is that the additive model is a lot more sensitive to changes in the data
and hence to changes in the parameter vector θ∗, as discussed in the theory section.
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Model AIC κ R

fm4Theo.nlme 351 226.7416 3.1∗10−4

TheoMod.gam1 425 731631 1

Table 17: Condition numbers of the Theophylline models and the ratio R between the κ of the respective model
and the largest κ of these models.

3.3 Dialyzer

3.3.1 Nlme

For our last sample, we have the dataset of Vonesh and Carter (1992) which was described in the theory section.
Again, we start with building the nlme model first. A suitable model was demonstrated and proposed by Pinheiro
and Bates (2000), but in order to demonstrate the potential (mis)use of the nlme model, we opt for using a new
parametrization that also generally fits the spread of the data. The introduced parametrization is of course still a
function of pressure, but belongs to a different family of functions compared to the parametrization used in Bates
and Phinheiro (2000). The family used in our model is given by the parametrization that satisfies the following:

f = b1 ∗ pb2 ∗ e−p∗b3

where, b1, b2 and b3 are just some parameters and p represents the independent variable of pressure. In this case,
these parameters are not chosen in such a way that they represent a specific physiological effect —although this
could have been the case like in the self-starting functions from the nlme package—, but rather as an arbitrary
collection of parameters that happen to fit the spread of the data. Now, for the nlme model, we start with creating
the non-linear least squares model to use as our input for our nlme command.

DiaMod.lis <- nlsList(rate ∼ b1*Pressureˆ(b2)*exp(-Pressure*b3)|Subject , data = Dia2

, start = c(b1 = 60, b2 = 1.5, b3 = 1))

From the pairs plot in figure 13, we see that there is some correlation between the parameters b1 and b3, but
it does not seem to be too worrying from this point. After feeding this model to our nlme model and inspecting the
summary in table 18, it appears that the standard deviation for the random effect of the b2 parameter is essentially
negligible given its order of magnitude, as shown below.
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DiaMod.nlme0
b1f 71.87∗∗∗

(3.01)
b2f 1.55∗∗∗

(0.05)
b3f 0.69∗∗∗

(0.04)
b1σ 8.55∗∗∗

(0.00)
b2σ 0.00∗∗∗

(0.00)
b3σ 0.09∗∗∗

(0.00)
N 140.00
No. groups 20.00
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

b1 b2
b1 0.637
b2 0.856 0.798

Table 18: Summary table and correlation matrix of DiaMod.nlme0

Figure 13: Plots of every possible pair of coefficients, for every coefficient in the DiaMod.lis model.

Therefore, we decide to drop it as a random effect to see if it improves the model, as shown below
DiaMod.nlme1 <- nlme(DiaMod.lis, random = list(b1 ∼ 1, b3 ∼ 1)
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DiaMod.nlme1
b1f 71.88∗∗∗

(3.01)
b2f 1.55∗∗∗

(0.05)
b3f 0.69∗∗∗

(0.04)
b1σ 8.55∗∗∗

(0.00)
b3σ 0.09∗∗∗

(0.00)
N 140.00
No. groups 20.00
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

b1 b2
b2 0.637
b3 0.856 0.798

Table 19: Summary table and correlation matrix of DiaMod.nlme1

Model df AIC BIC LogLik. L.Ratio p-value

DiaMod.nlme0 10 792.1557 821.5721 -386.0779
DiaMod.nlme1 7 786.1505 806.7420 -386.0753 0.0052 0.9999

Table 20: Anova table of the semi-parametric DiaMod.nlme0 and non-parametric DiaMod.nlme1

DiaMod.nlme3 <- nlme(DiaMod.lis , random = list(b1 ∼ 1, b3 ∼ 1) , weights = varPower(form

= ∼ Pressure + I(Pressure)ˆ2) )

Model df AIC BIC LogLik. L.Ratio p-value

DiaMod.nlme1 7 768.1505 806.7420 -338.7195
DiaMod.nlme3 8 786.1995 809.7327 -385.0998 1.9510 0.1625

Table 21: Anova table of the semi-parametric DiaMod.gamm1$lme and non-parametric DiaMod.gamm2$lme

As can be seen in table 21, the similar values in AIC and the higher value of BIC for the DiaMod.nlme3, and
non-significant p-value, show that the model is not significantly better and that the more parsimonious model,
DiaMod.nlme1, is to be preferred. What’s more, figure 14 shows that the fit of the final model shows a very
plausible and nice fit.
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Figure 14: Plot of the DiaMod.nlme1 model fits for 12 of the subjects in the dialyzer data set with the pressure on
the horizontal axis and the rate of the bloodflow in the dialyzer on the vertical axis.

3.3.2 GAM

In our generalized additive model, the gamm function was used in order to exploit the functionalities of the nlme
package. Based on the work from Krijnen and Trapman (2022), the model below was obtained as the best model
found in this research.

DiaMod.gamm1 <- gamm(rate ∼ s(pressure) , random = list(Subject = ∼ pressure +

I(pressureˆ2)) , data = Dia , method = "REML" , weights = varPower(form = ∼ pressure)

This model equals the final model proposed by Krijnen and Trapman with the addition of the variance power
function on the weights of the variance. This yielded a significantly better model. Consequently, the inputs for the
random effects were checked after this addition to the model and the steps taken by Krijnen and Trapman were
reiterated in order to see if these steps were still similarly valid, which they were. However, it should be noted that
because functionalities of the nlme package were used through the gamm function, certain structures on the random
effects and weights were specified, meaning that these components were parameterized. Therefore, this model is no
longer in the realm of strictly non-parametric models, but rather belongs to the class of semi-parametric models.
In the summary table and plot below we can see that the semi-parametric model shows no immediate issues and
that the fit seems to be decent.
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DiaMod.gamm1$lme
X(Intercept)f 37.38∗∗∗

(1.02)
Xs(pressure)Fx1f 31.87∗∗∗

(5.18)
(Intercept)σ 2.16
Pressureσ 5.56
Pressure2σ 1.67
N 140.00
No. groups 20.00
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Intercept Pressure
Pressure -0.603
Pressure2 0.117 -0.727

Table 22: Summary table and correlation matrix of DiaMod.gamm1$lme

Figure 15: Plot of the model fits of DiaMod.gamm1 for 12 subjects.

In order to further complement the list of types of models investigated for this sample, a fully non-parametric
model was also created in order to compare the performance of all of these models. To this end, a model was intro-
duced similar to RemiMod.gam2 and TheoMod.gam1, where the fixed effect was represented by a regular smooth
of the main independent variable and the random effect represented by a factor smooth of the same independent
variable. This led to the following model, summary and plot. In the summary we see that again, there are no im-
mediate glaring problems with the model and that the fits seem to be good. Additionally, the fit also seems suitable.
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DiaMod.gamm2$lme
X(Intercept)f 37.39∗∗∗

(0.95)
Xs(pressure)Fx1f 29.87∗∗∗

(5.35)
Xr.1σ 34.07∗∗∗

(0.00)
Xr.2σ 34.96
N 140.00
No. groups 20.00
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 23: Summary table of DiaMod.gamm2$lme

DiaMod.gamm2 <- gamm(rate s(pressure) + s(pressure, Subject, bs = "fs") , method =

"REML" , select = TRUE , data = Dia )

Figure 16: Plot of the model fits of DiaMod.gamm2 for 12 subjects.

Now, because we have used the gamm for both models, we can inspect the ANOVA table for these two models
and compare them directly. As can be seen in table 24, the semi-parametric model performs significantly better,
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showing the power of mixing parametric and non-parametric methods.

Model df AIC BIC LogLik. L.Ratio p-value

DiaMod.gamm1$lme 11 699.439 731.6388 -338.7195
DiaMod.gamm2$lme 7 759.673 780.1638 -372.8365 68.23395 < .0001

Table 24: Anova table of the semi-parametric DiaMod.gamm1$lme and non-parametric DiaMod.gamm2$lme

3.3.3 Analysis of dialyzer models

For the comparison of the dialyzer model, the same diagnostic plots were performed in order to assess further assess
and compare the model fits in terms of normality, skewness of the residuals and numerical stability of the methods.
First of all, the nlme model for the dialyzer data does not show any major defects in the model as its residuals
follow a normal distribution and does not suffer from heteroscedasticity. These things can be clearly observed in
figure 17 and show that DiaMod.nlme1 indeed is a suitable model for the data.

Figure 17: Left: quantile plot of the DiaMod.nlme1 model. Right: scatter plot of the fitted versus the residual
values

Additionally, we have both the non-parametric and the semi-parametric to analyse. For these models we see
a slight disparity in the for the quantile plots, while the fitted values versus the response values plots are quite
similar. Namely, the quantile plot for the semi-parametric model, DiaMod.gamm1, seems to behave better in terms
of normality of the residuals compared to the non-parametric plot. This can be inferred from the fact that the
quantile plot in figure 18 shows more points outside of the confidence interval band for the more extreme values
of the residuals. Even though this is a common phenomenon, it still shows that DiaMod.gamm1 has slightly more
desirable properties. On the other hand, the patterns shown in the right plots for both figures 32 and 33 seem
nearly identical and show no heteroscedasticity. However, both models are still acceptable as the slightly lacking
normality only holds for few extreme values of the residuals and is hence not too worrying usually.

Secondly, we have the condition numbers of these three respective models. However, because of the way the
mixed effect model is realised through the gamm function implies that there are two model components to each
model. The gam component represents only the fixed effect estimated by the mgcv package machinery and the lme
component represents the model fixed and random effects estimated by the nlme package machinery. Therefore,
the gam components were omitted from the analysis because they have no estimated random effects. Interestingly
enough, table 3 shows that the semi-parametric model has the highest condition number, implying that this method
is the least robust numerically with regard to the estimated log-likelihood. Moreover, the most robust method would
be the non-parametric method, which seems counter-intuitive but can be understood better given that the number of
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parameters in this model is close to the number of parameters in the nlme model, judging from the the apVar output
from both models. The parametric and non-parametric models hold four and five parameters respectively, which
partially explains why the condition numbers could be similar. In contrast, the semi-parametric model uses nine
parameters, which also explains why the condition number is roughly double that of both of the other models. For
these reasons, given the diagnostic plots in figures 31 to 33 and the condition numbers, it seems that the parametric
method is the best functioning method in terms of model properties. Lastly, the semi and non-parametric methods
seem similar in performance as the semi parametric model performs better based on the quantile plots in figures 29
and 30, but performs worse in terms of numerical stability and vice versa for the non-parametric method.

Figure 18: Left: quantile plot of the DiaMod.gamm1 model. Right: scatter plot of the fitted versus the residual
values

Figure 19: Left: quantile plot of the DiaMod.gamm2 model. Right: scatter plot of the fitted versus the residual
values

Model AIC κ R

DiaMod.nlme1 768 71.72192 0.67
DiaMod.gamm1$lme 699 108.7929 1
DiaMod.gamm2$lme 759 48.34529 0.44

Table 25: Condition numbers of the Dialyzer models and the ratio R between the κ of the respective model and
the largest κ of these models.
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4 discussion

Throughout this thesis, varying results have been found. Most notably, the parametric models were not absolutely
the most stable models, although this was nearly the case. As for the parametric model for the dialyzer sample,
the chosen parametrization of the rate as a function of pressure also influences the quality of the model. For the
particular parametrization used in this paper, the result was satisfactory, but comes with the problem that we are
stuck with the used parametrization and that it is not possible to show in this moment that is parametrization was
the optimal one. As can be seen in the final chapters of Bates & Pinheiro (2000), the dialyzer model built shows a
similar fit, but uses a different parametrization based on the self starting functions provided by the nlme package.
Consequently, other questions also arise about what parametrization to choose and on what basis is one supposed
to make this choice. It can be argued that one should use a parametrization based on findings from literature
on the respective topic or drug and this seems reasonable. However, such parametrizations are still dependent on
particular papers with their own respective confounds and limitations, meaning that the parametrization would
become reduced to the best possible option that the literature so far has been able to unveil. When standing on
this crossroad, the appeal of non-parametric or semi-parametric methods become more evident. The ability to have
the parametrization be implicitly determined by the empirically obtained measures, allows one to perform analysis
and prediction based on what is measured, rather than what was expected.

On the other hand, the beauty of the non-parametric or semi-parametric methods is also its necessary weakness.
The fact that there is no explicit relationship assumed between the dependent variable, independent variables and
other parameters, means that it becomes harder make derivations from the model for specific variables simply
because this relationship is not explicitly assumed nor determined in the process. Therefore, the appeal for para-
metric methods remains and has their own place in science and with great success. When strong evidence for certain
parametrizations is available, these parametrizations allow for prediction with the ability to explicitly quantify the
relationship between variables and parameters and the dependent variable. This trade-off was also clearly visible in
the case of remifentanil sample. The RemiMod.nlme05 model had some trouble with matching the peaks present
in the observed values for multiple Subjects. The most likely cause of this is that the parametrization used was not
well suited to model the shapes of these peaks given the available parameters. Therefore, such a finding implies that
some different parametrization might be required to more accurately model the data, such as a parametrization
based on a multicompartmental differential equation system (Eleveld et al., 2017).

Secondly, the models built for the theophylline data set seem strikingly similar, both in their respective quantile
plots and fitted versus response value plots. This means that both models do a similar job at approximating the
observed values. However, table 17 also shows that the condition number for the additive model is several orders of
magnitude larger than its nlme counterpart. This is most likely explained by the fact that the data contains a small
collection of data points per subject in combination with the fact that the spread of the data points is more difficult
to model because of the steep peak early on in the measurements. This makes balancing the wiggliness penalty
and minimizing residuals more difficult because following the spread of the observed values would come at the cost
of a sharp increase in wiggliness in the model. Therefore, the additive model is more prone to changes in the data
because these might give the model more reason to decide more strongly between wiggliness and fit. As for the
similarities, these came from the distribution of the residual being close to normal for both methods. Additionally,
the locations of outliers relative to the fitted values appeared to be similar too, showing that the models generated
very similar fits. All in all, both methods yielded similar results in terms of fit, but the nlme model came with better
qualities as it will be less sensitive to changes in the data and while performing similarly regarding the normality
of the residuals between the models.

It would be interesting to further investigate and formalise the properties of a data set with the goal of assessing
how well suited an additive model would be for the current spread of the data. This could be formalised by using
metrics such as amount of data points, the distance between these points and some metric on the first derivative of
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the lines obtained using linear interpolation for instance. This way one could determine a priori if the application of
an additive model could prove to be problematic and it would help in choosing a suitable modelling method. In the
context of the theophylline data set, this could mean that a generalized additive model would not be recommended
by such a tool, because the model would vary relatively much for small changes in the data, meaning that the model
would behave less predictably when predicting for different theophylline data sets.

However, at the core of these models lie fundamentally different model functions, ranging from sums of of
polynomials to explicit parametrizations. For that reason, it is challenging at a theoretical level to soundly compare
the quality of two such different models. Most notably, because the models are not nested by definition, comparison
between model types through regular anova analysis and AIC scores is meaningless. This was the main motivation
to choose to look at model fits through checking the normality of the residuals, but also through investigating the
observerd patterns of these residuals for each fitted value and their respective observed value, sometimes indicating
heteroscedasticity to some degree at times for instance. In order to improve on the current insights on parameters
and variables, an additional analysis through the brms from the rstan package. This package provides tools to
perform Bayesian regression model analysis through the use of Markov Chain Monte Carlo simulations. This
Bayesian approach comes with the advantage of being able to alos investigate the stability of the solution through
assessing the distribution of all kinds of variables, parameters and statistic, allowing one to say additional meaningful
things about how appropriate a certain parametrization or additive model formula, given the data. Therefore, the
integration of Bayesian regression could provide more insights on the properties of multiple parts of the model,
allowing one to give a more detailed comparison between model, especially when the models behave relatively
similarly based on a frequentist approach such as for the theophylline models.

For the Dialyzer data set, a relatively thorough model building process was followed, similar to that of the
remifentanil models. In addition to the parametric and non-parametric models, a semi-parametric model was also
introduced based on some of the properties of the data that were known from prior research by Pinheiro and Bates
(2000) and Krijnen and Trapman (2022). All of the models seemed to perform quite well also having relatively
similar condition numbers and quantile plots. When we compare this to our findings of the previous samples, we
see that the high condition numbers are found when the curvature of a fit needs to be high and/or the amount of
observations is low. However, in this sample we found that the condition numbers were small, even though there
was only a limited amount of observations per participant. Therefore, it makes sense to suspect that the shape of
the fit plays a considerable role in the stability of the parameter vector θ∗. This consideration highlights the limits
of the empiricist nature of the semi- and non-parametric methods. Even though it might be more objective and
can fit any curve, it might still struggle based on challenges hidden in the shape of the data points, as it can only
work with what is observed.

However, as we touched on before in the discussion, the parametrization used for the DiaMod.nlme1 model is
known to not be the only viable parametrization and it begs the question how much value the parametrization adds,
given that our parametrization is not based on a physiological phenomenon or other measured variables. For that
reason, one could claim that the non-parametric or semi-parametric models are preferable as they provide models
that are similar in quality and performance, but are more objective in the sense that no explicit parametrization
was assumed beforehand. A nice addition to this thesis would be to formally explore more of the variations of
possible parametrizations to see which would perform well and why. Looking back, the results from the models on
this sample displayed the considerable value of the non-parametric methods given the right conditions, especially
when a suitable parametrization based in physiology is unknown or not forthcoming.

One limitation of this study would be that the approach taken for the remifentanil study does not translate very
well to the models built for the other data sets. The main difference, namely, is that no factor smooth was used for
RemiMod.gam0, but rather a smooth that was fitted for each subject. This meant that no real mixed effect model
was implemented after all and that the implications from this model are harder to compare to the implications from
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the models that did include both fixed and random effects. Therefore, the contribution of this model to the aim of
this thesis is limited.

Additionally, the method of obtaining RemiMod.nlme3 could also have been more refined. Although, the method
did yield a decent fit and provided a starting model that was clearly improved upon, a more formal approach could
prove to be worthwhile. For instance, using a function suitable for generalized additive models similar to step.AIC
function from the MASS package could be nice attempt to more structurally exhaust the list of possible combinations
of smooths. The fact that there were so many potential smooths in this model, given the elaborate data set, meant
that a lot more combinations of smooths had to be explored and with good reason, as the best model found used
more smooths than just a basic fixed effect smooth and a factor smooth for the random effects. In addition, the large
sample size of this data set was also relatively problematic because it caused some of the run times to become quite
extensive, taking sometimes up to over 30 minutes to generate a generalized additive model. In order to combat
this problem, a model was generated using a random subset of 16 subjects in order to reduce the amount of required
computations. Unfortunately, this means that every iteration of a model could be slightly different because of the
different subjects that were taken from the pool each time. To compensate for this, the models were run multiple
times to check if different properties would arise. Fortunately, a subset of 16 subjects was large enough to create
very similar results for each model. A possible solution to this problem could have been to use the bam function
from the mgcv package because it is designed to handle larger data sets. All in all, there is room to improve on the
performed analysis by expanding on the exploration of the best set of smooths and on adopting different functions
to decrease computational workload.

5 conclusion

Multiple models with different types were employed for three different types of data sets, each model performing
with some degree of succes. Between these models, the results from the ones that were used for the remifentanil
sample were perhaps the most interesting as the models showed varying abilities to fit a model to the data. For
instance RemiMod.gam2, had some decent qualities with respect to its residuals, but seemed to perform worse
when the observed values were not spread out nicely enough. This showcased the robustness of the parametric
methods, which would more or less force the graph of the fitted values to follow a certain shape, suffering less from
an inconvenient spread of the data for some subjects.

On the other hand, the limits of mixed effect models was also displayed through the RemiMod.gam0 model.
Because this model used a different fit per subject, essentially having random effects explaining everything for each
subject, showed that such an approach also bears fruit when model fitting is the focus. However, this approach has
even less room for interpretation than the mixed effect model because the common denominator of the fixed effects
is no longer there as a point of reference. Regardless of the nice properties of mixed models, we saw that not every
type of mixed model came with desirable properties. For instance, the normality of the

The models for the Theophylline sample had more similar performances. The main difference between the two
models is that the shape of the plot was slightly different in the peaks with the nlme model generating more round
or smooth peaks, whereas the peaks of the gam model fits often were more sharp and seemed less natural becuase
of the lack of smoothness. Therefore, we know that a gam model is not the best candidate for a pharmacokinetic
data set if there is a scarce amount of observed values in a shape that is not very smooth.

Lastly, the dialyzer sample was analyzed. Interestingly enough, the scarcity of available data points per subject
was not as much of an issue for the stability of the additive model. This probably comes from the nice and smooth
shape the observed values form as it is the main difference between this sample and the theophylline sample.
Additionally, the models were very similar for all three types of models used in many regards. First of all, the
residuals for all three models closely resembled a Gaussian distribution. Most notably, however, was that all the
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condition numbers were relatively close and in the same order of magnitude, the model with the largest κ being
the semi-parametric model and the lowest being the fully parametric model. This was still somewhat surprising
because the parametric model usually displays better robustness. However, a meta analysis or dedicated research
on the exact conditions of under what conditions additive models perform well should be further investigated before
we can confidently state this as a fact.

All in all, this research has given insights in the qualities and limitations of various applications and implementa-
tions of mixed modelling. We have seen under what circumstances additive models fail compared to parametric nlme
models, but also when non-parametric additive models provide advantages over parametric non-linear models in the
mixed model context. Furthermore, we hope that this research has shown the merits of utilizing non-parametric
models and how they can be implemented.
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