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Abstract
This project investigated the Hegselmann-Krause model in opinion dynamics. This paper
followed a previous paper that investigated the stability of the model and its convergence.
The occurrences of sliding solutions due to discontinuities in the model was investigated.
This means that the vector field varies discontinuously as solutions approach a surface.
At this point, solutions can display many different behaviours, but this paper focused
on the case where the solution slides along the switching surface. To do this the model
will be viewed as a discontinuous piecewise linear model. This paper is significant as
it improved the understanding of an important model in the field of opinion dynamics.
Each zone was investigated and extended to the different boundary cases. Patterns were
investigated to make more general proofs. This project proved no sliding solutions in
the super symmetric case. The asymmetric case proved to be complex but no sliding
solutions could be constructed in three dimensions. However, no evidence was found that
they could not exist in higher dimensions.
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1 Introduction
“Opinions are the medium between knowledge and ignorance” is a quote from Greek
Philosopher Plato over 2000 years ago [1]. He described opinions as a human striving
away from ignorance and towards knowledge, but still falling short of a binary truth or
falsehood. In a world where all questions have more nuanced answers than yes or no,
opinions now hold more importance than ever before.

The dictionary definition of an opinion is not that different. “A view that is formed,
not necessarily based on fact or knowledge” [2]. This specification, that it is not formed
around fact, seems to make it weaker, however, this is precisely why opinions can shift and
evolve over time. Opinions are a crucial element to human identity. Thus their formulation
and subsequent evolution over time is a formative part of who one is at current and who
one will become in the future. They can be a window into one’s mental state, or an
expression of one’s inner philosophy. Opinions, much like people, can be influenced by
many things. The primary element that influences and alters one’s views are the opinions
of people adjacent to them (i.e. parents/guardians). However, it is far more complicated
than this. Many children have different opinions to their parents maybe consciously or
unconsciously. This is due to a whole spectrum of interactions where one voices their
opinions and listens to others and this can affect their stance.

The field of opinion dynamics is the practice of simulating the evolution of opinions over
time due to interactions with agents of similar views [3]. In consequence, many models
have been designed to simulate the interactions of agents with similar views and their
convergence properties.

The field of modelling agent interactions based on encounters has changed drastically
with the growth of social media. Now opinions are interacting at higher rates and with
more effect than in the past. Social media is constantly being used or misused to shift
public opinion or to garner favour in politics and thus the field of opinion dynamics is
more important than ever at this current point in time.

In this paper, the focus will remain on one specific model, namely, the Hegselmann-
Krause model [4]. This paper is a progression of a previous Bachelor’s thesis which
investigated the convergence properties of said model [5]. That paper ignored the possi-
bilities of sliding solutions which are a specific occurrence due to model discontinuities.
This paper will look to improve the understanding of this model and whether these prob-
lems arise.
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2 Background Literature

2.1 Opinion Dynamics

Some of the early papers relating to the origins of opinion dynamics are papers describing
crowd mentality such as Mackey (1841) [6]. These were observations made on how
behaviour shifts or becomes less rational when one is part of a group or a crowd. Other
famous studies have been found showing similar behaviours such as Zimbardo’s Stanford
prison experiment [7] or Milgram’s experiments [8]. Evidence was shown that people may
behave differently to conform to what they perceive as an intellectual or an authoritative
figure. These behaviours are at the core of how opinions shift in everything from sports
to politics. This fascination with conformity stems back to psychologist Solomon Asch
[9]. Asch found that a person in a classroom told to answer an easy question will be more
likely to answer incorrectly if they see everyone else in the class answer incorrectly first.
Allen and Levine [10] later found that if one other dissident is placed in the classroom
then the absence of group unanimity lowers conformity.

The field of opinion dynamics has grown rapidly in importance in the last 20 years with
the emergence of social media. Opinion dynamics works by simulating networks and
the connected agents. So this might be one’s group of acquaintances with a few external
influences. However, the internet has made this method infinitely more complex. Where
once opinion interactions were happening with limited agents at the pub with friends
or in one direction over the radio, now opinions are interacting at higher rates than the
past. Twitter and Facebook are prime examples of a constant interaction between various
opinions from random agents and this constantly evolves your own stance. This has been
used effectively to shift the sentiment of different policies or political movements. Social
media has played a significant role in the Trump Campaign, the Brexit Referendum and
Russia’s invasion of Ukraine [11]. There have also been social media campaigns on recent
policy discussions such as the COVID-19 vaccine [12].

Another important factor to assess is how perspectives shift due to new relationships with
new people. For example, people being more open about their sexuality or gender means
more people have interactions where they can be open about their values. Subsequently,
this shifts the general population. This phenomenon is called shifting the Overton win-
dow, where the said window is the range of acceptable policies to the public [13]. Certain
agents positing extreme or new positions may shift what is acceptable for the general
public. An example of this is the following paper which followed groups in Turkey and
how friends can shift group perspectives and reduce prejudice [14]. People are now able
to tell stories they were not comfortable before and this means opinion dynamics is only
growing in importance in terms of shifting norms and prejudices. This shift is something
that has to be accounted for in the models.

How opinions evolve is intrinsically connected to an agent’s personality. Being a leader
or a follower, being confident or unsure, being loud or quiet. Thus there are a variety of
papers investigating how personalities influence different opinion shifts and how to sim-
ulate this in a mathematical context. This is addressed later in the paper. Chen, Glass
and McCartney investigated reputation, stubbornness, appeal and extremeness in the fol-
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lowing paper, as indicators for how effective they would be at shifting group opinion
[15]. Results show that successful opinion leaders should have low stubbornness, lower
extremeness and high appeal as expected. Another paper, [16] investigated similar person-
ality traits but in the context of groups, so stubborn groups were found to be moderating
instead of polarizing for example. This literature is important to understand the kind of
things that opinion dynamics models have to simulate.

2.2 The Hegselmann-Krause Model

Opinion dynamics has been a long standing branch of psychology. One of the first mod-
els of opinion dynamics can be traced back to French (1956) [17] who used his model
to simulate something he referred to as social power. Another early example was Katz
and Lazarsfeld (1955) [18] who used the model throughout the 40s to investigate how
’opinion leaders’ shift conformity. Since then a variety of other models were introduced
such as De Groot (1974) [19] and Lehrer (1975) [6]. De Groot’s model is still in use
today, here it was used in the context of assessing reactions to COVID policies [20]. All
of these models were, however, linear. The first non-linear model was Krause (1997)
[21] and was popularised in 2002 [22] and called the Hegselmann-Krause model. This
was a collaboration between philosopher Rainer Hegselmann and mathematician Ulrich
Krause. Hegselmann was aware that the idea of a non-linear model being an improvement
predated him and dated back as early as Abelson (1964) [4]. The non-linearity allowed
better simulations of real human behaviour, which is often irrational or unintuitive. The
irrationality of human decision making was shown extensively by the Nobel Prize winner
Daniel Kahneman, who showed precisely that human behaviour is often illogical [23].

The HK model has also seen many adaptations and improvements to address different
problems. This is part of why it has remained such a significant model in opinion dynam-
ics over time. It has both a discrete time and a continuous time form. It can also be applied
to an infinite number of agents. However, this project will focus on the 3 agent case. This
paper discusses how the HK model being heterogeneous allowed for it to better represent
behaviour as it accounts for more individual traits that determine where opinions shift. In
this paper, we will also compare the homogeneous model to the heterogeneous case. Hou
(2021), [24] improves upon the HK model by adding scenarios where agents may express
stances against their true values which complicates the model significantly.

The Hegselmann-Krause extends further than mathematics. It has been shown to be useful
recently in the medical industry in fields as pressing as cancer research [15], specifically
to predict chemotherapeutic resistance. Furthermore, it has been used in more obvious
applications such as business and finance [25], where modelling opinions is an important
aspect. It has also been used to track sentiment analysis of huge internet outrages such as
that of the Suez Canal blockage of 2021 [26]. The model was able to assess the sentiment
of social media posts regarding the news story and thus track public discourse as the ordeal
progressed. As was previously mentioned, the application of opinion dynamics models to
places such as the internet is more important than ever before. This shows more than ever
why the Hegselmann-Krause model is an important model to investigate.
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2.3 Sliding Solutions
The theory on sliding solutions that will be focused on in this paper is from Filippov’s
book ’Differential Equations with Discontinuous Righthand Sides’ [27]. This book de-
tails, what are aptly named, ’Filippov solutions’, how they are defined and how to deal
with them. However, this book is not specific enough to this case and thus only the general
theory is applied.

To spot sliding solutions, the concept of Lie derivatives is used as is explained by Da
Silva et al. [28]. This concept uses the gradient transpose of the boundary to show that
the vector fields on either side have opposite directionality. It gives useful conditions to
spot sliding solutions and assess when they might appear within the Hegselmann-Krause
model. This paper is used in tandem with the following [29] which also details Filippov
solutions in an accessible manner and the ways to approach them.
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3 Preliminaries

Definition 3.1. A symmetric matrix is a square matrix whose transpose is equal to itself.
For matrix M, this would mean MT = M. A matrix which is not symmetric is referred to
as asymmetric.

Definition 3.2. A function f :R→R is called continuous at a point x = a if limx→a f (x) =
f (a). The function is continuous on an interval if it is continuous at each point in the
interval.

Definition 3.3. A function f : [a,b]→ R is absolutely continuous on the interval [a,b] if,
for every ε > 0, there exists a δ > 0 such that whenever a finite collection of mutually
disjoint sub-intervals of [a,b], given by {[xi,yi] : i = 1, ...,n}, satisfies ∑

n
i=1 |yi − xi| < δ,

then the following holds: ∑
n
i=1| f (yi)− f (xi)|< ε.

Definition 3.4. A piecewise linear function is a function which is comprised of some
amount of linear segments defined over an equal number of intervals. Note that a piece-
wise linear function may have jump discontinuities. Similarly, a piecewise continuous
function is one comprised of continuous segments, and a piecewise differentiable function
is comprised of differentiable segments.

Definition 3.5. A point x ∈ D ⊂ Rn is an interior point if there exists an open ball with
centre x such that the ball is completely contained in D. The interior of a set D is the union
of all its open subsets, or equivalently, the set of all interior points of D. The boundary of
D is the set of points x such that every neighbourhood of x contains at least one point that
is in D and one point that is not in D.

Definition 3.6. A subset V of the vector space Rn is called convex if the line segment
between any two points in V is also in V.

Definition 3.7. A conical combination of vectors x1, ...,xn is a vector of the form θ1x1 +
θ2x2 + ...+ θnxn where θi are non-negative real numbers. Given λ points {v1, ...,vλ}
where vl ∈Rn,λ ∈N, a conical hull, denoted cone{vl}λ

l=1, is the set of points v ∈Rn such
that v = ∑

λ

l=1 θlvl .

Definition 3.8. A convex hull, denoted conv{vl}λ

l=1, is the conical hull in which ∑
λ

l=1 θl =

1, for {vl}λ

l=1 and θi. Equivalently, the convex hull of a given finite set S is the intersection
of all the convex sets which contain S.

Definition 3.9. Using the same notation as the definition above, and considering θl as
‘weights,’ a convex polyhedron is the convex hull containing all the weighted averages
of a finite set of points. The face of a polyhedron P refers to a planar region which is a
subset of P, and at least one dimension lower. Then, a face with dimension 0 is equivalent
to a vertex and a face with dimension 1 is an edge.

Definition 3.10. A polyhedral partition of a set X ⊆ Rn is a group of polyhedra {Xs}S
s=1
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for S ∈N, so that X = ∪S
s=1Xs, under the conditions that the interior int(Xs) is non-empty,

int(Xs) ∩ int(Xr) =∅ for s ̸= r, and the intersection of two polyhedra is either empty or a
common face.

Definition 3.11. (Euler’s Explicit Method)
For an initial value problem ẋ = f (t,x) with f (t0) = x0, t0 = 0, we choose a step size h
(the smaller h is the usually better results), then generate xk+1 using the formula xk+1 =
xk + f (tk,xk)h.

Definition 3.12. A graph, denoted G = (V,E), is comprised of

1. a set of n vertices V = {1, 2, ..., n}

2. a set of edges E, where E ⊆V ×V .

Within a graph, the neighbouring vertices (or adjacent vertices) to a given vertex are
those which are directly attached via an edge as follows.

Definition 3.13. The neighbour set of a vertex i is expressed as

Ni = { j ∈V | ( j, i) ∈ E}.

A path from vertex i to vertex j is the sequence of adjacent vertices which start at i and
terminate at j. If a path can be found between i and j, we say these vertices are connected.
The graph is called undirected if (i, j) ∈ E implies ( j, i) ∈ E, and directed otherwise.
Direction is shown via an arrow, as opposed to a line. Simple graphs are undirected
graphs which have no loops (i.e. no edges which start and ends at the same vertex) and
have a maximum of one edge between any two vertices.

Definition 3.14. The degree of a vertex vi is equal to the number of edges which meet with
that vertex, denoted by deg(vi), in the other words this is the cardinality of Ni.

Definition 3.15. The Degree matrix of a simple graph G = (V,E), is the n× n matrix
defined as

Di j =

{
deg(vi) i = j
0 otherwise.

Definition 3.16. The adjacency matrix of a simple graph G = (V,E), is the n×n matrix A
in which the element Ai j has the value 1 if the vertices vi and v j are adjacent, and Ai j = 0
if they are not. The adjacency matrix of a simple graph has 0 on the diagonal.

Definition 3.17. The Laplacian matrix of a simple graph G above, is the n× n matrix
given by L = D - A, where D is the degree matrix and A is the adjacency matrix. Equiva-
lently, this is given element-wise:
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Li j(G) =


deg(vi) if i = j
−1 if i ̸= j and vertices vi and v j are adjacent
0 otherwise.

Definition 3.18. For any interval I = [a,b], in the set R let l(I) = b − a denote its
length. For any subset S ⊆ R the Lebesgue outer measure λ∗(S) is defined as an infi-
mum λ∗(S) = in f{∑

∞
i=1 l(IK)} where Ik is a sequence of open intervals with S ⊂

⋃
∞
i=1 Ik.

Having measure zero refers to having a Lebesgue Measure as the null set.

Definition 3.19. An equilibrium of a system is a solution which does not change with time.
The differential equation ẋ = f (x) has an equilibrium solution or point at x(t) = x0 ∈ Rn

if f (x0) = 0.

Definition 3.20. A hyperplane is a subspace with 1 dimension less than its ambient space.
In R3 a hyperplane would be two dimensional.

Note: In the following definitions we will be referring to a piecewise linear system of the
form:

ẋ = Asx+bs,

where As ∈ Rn×n,bs ∈ Rn,x ∈ Xs and s ∈ Σ. We have that {Xs}S
s=1 is the polyhedral

partition of Rn and S ∈ N is finite size of the partition. Let Σ = {1,2...S}. The index set
of current modes at x ∈ Rn is defined as Σx = {s ∈ Σ | x ∈ Xs}. The system can now be
rewritten as:

ẋ = {Asx+bs | s ∈ Σ
x}.

Definition 3.21. The map ξ : [t0,T )→ R where t0,T ∈ R∪{∞} with t0 < T , is referred
to as classical solution of the system if and only if:

1. ξ is differentiable on [t0,T ),

2. and for all t ∈ [t0,T ), ξ̇(t) ∈ {Asξ(t) | s ∈ Σξ(t)}.

Definition 3.22. (Caratheodory Solution)

The map ξ : [t0,T )→R where t0,T ∈R∪{∞} with t0 < T , is referred to as Caratheodory
solution of the system if:

1. ξ is absolutely continuous on [t0,T ),

2. and for almost all t ∈ [t0,T ), ξ̇(t) ∈ {Asξ(t) | s ∈ Σξ(t)}.

Lemma 1. ∑
N
i=0

(N
i

)
= 2N .



12 Chapter 4 METHODOLOGY

4 Methodology

This paper is a progression from a previous paper investigating the stability of the HK
model [5]. The previous paper assumed no sliding solutions were present to prove asymp-
totic stability and in this paper this assumption will be assessed. There is minimal previ-
ous research into the sliding solutions of the HK Model and that is why this paper holds a
value for both mathematics and opinion dynamics. It is important to improve our knowl-
edge of an important model and understand which assumptions are reasonable to make
when investigating its stability. Thus to approach this problem, the following research
questions are proposed.

4.1 Research Questions

This paper examines the following questions:

1. Do sliding solutions exist for the 3 agent HK Model?

2. If they do, what conditions are necessary for sliding solutions to appear?

3. Can the findings from this paper be extended to the HK Model with more agents?

Only 3 agents will be assessed as this is the easiest way to depict the state space with the
facilities at hand, however, an extension into higher dimensions may be explored. It is
common in mathematics to approach the base case to draw out information that can be
implemented in higher dimensions.

4.2 Analysis Outline

To answer these questions this paper will be broken up into smaller sections. The paper
will start by detailing the Hegselmann-Krause Model and how it functions.

Firstly, the discrete time model will be explored. This is the simpler and more intuitive
version of the model and it helps understand the more complex continuous time model.
Examples will be shown to help visualise what the model is simulating.

Following this, the continuous time model will be introduced. To do this, the influence
functions will be explained along with the boundary levels and what they simulate in the
real world. Then the piecewise linear model will be introduced. Next this model will be
reduced by a dimension by centring the final agent to have opinion ’0’ and measuring
the other agent’s distance with respect to said agent. This allows us to depict the model
in a 2 dimensional visualization called the state space. This state space is of particular
importance to the study of sliding solutions.

The paper will then start investigating the occurrences of sliding solutions in said state
space. To start, a sliding solution will be defined and differentiated from a Caratheodory
solution, and how to spot them will be addressed.
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This paper will start its investigation looking precisely at the super symmetric model
where the two boundary matrices are symmetrical and the same as each other. The ap-
proach will initially be testing the individual boundary points but will become an inves-
tigation of the general zonal behaviour due to their assigned matrix. If a sliding solution
is found, the conditions leading to its existence will be assessed, and whether this is a
problem for the proof of asymptotic stability in the previous paper.

Finally, this paper will investigate the asymmetrical case and try to extend the findings
into higher dimensions. Again the boundary points will be investigated along with the
vector’s orientation towards a [1,1] vector dividing the state space in half. Due to sym-
metry certain assumptions can be made. This is because certain agents will behave in
similar ways to others. A more general argument will be made about the possibilities of
sliding solutions from a real world standpoint. Then project limitations and future work
will be discussed, in the context of improving our understanding of this important model
in opinion dynamics.
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5 The Model
As was previously discussed, the HK model is the collaboration between a philosopher,
Hegselmann, and a mathematician, Krause. It was significant as it was the first non-linear
opinion dynamics model.

Different models use different systems to simulate the evolution of opinions. Some mod-
els give opinions discrete values one through ten for example. Other models use a contin-
uous space where an opinion can take any value within the closed set [0,1].

The unique property of the Hegselmann-Krause model is the property of egocentric trim-
ming. This means that agents are only influenced by agents with an opinion close enough
to their own. An agent within this range is referred to as a ’Neighbour’ and then the model
can be detailed in graph form. The ability to put this model in graph form is precisely how
this paper looks to investigate sliding solutions.

In this next section, the model will be introduced in 2 sections, the discrete time version
and the continuous time version.

5.1 Discrete Time Model
The simpler version of the model is to use discrete time states. This is to say that the
model is computed only at specific time values [t, t +1. . . ].

The first thing to address when introducing an opinion dynamics model is how to express
the agents and their interactions in a mathematical manner. To do this we describe our
information as a graph with vertices and edges. Each agent is a vertice with an opinion
on the scale [0,1] and if the agents are close enough to interact, then there exists an edge
between the two vertices. Thus the Neighbour set describes all the agents within a certain
confidence bound of the focus agent. Then the opinion at the next time step is an average
of the opinion states in the Neighbour set and the focus agent’s own opinion value. The
model can be represented by a state dependent graph such as the following:

Vertices V = {1, ...,N} with edges E(ξ(t)) = {(i, j) | i ̸= j | ξi(t)−ξ j(t) |≤ d}.

The vertices represent the agents and the edges represent whether they are within range
to influence each other. ξi ∈ [0,1] represents agent i’s opinion and d here represents the
boundary level which one has to be in to have an influence. This model is homogeneous
as every agent has the same d value. The model has to calculate the various opinion states
at different time steps by taking the average of the opinion values. It is important to note
that this also includes the original agent’s opinion as this is important for the average. The
model thus looks like this:

ξi(t +1) =
1

#Ni(ξi(t))
∑

j∈Ni(ξ(t))
ξ j(t). (1)

We then rewrite this model as a piecewise linear model as ξ(t +1) = B(ξ(t))ξ(t) with B
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defined as below as N ×N matrix:

Bi j(ξ(t)) =

{
1

#Ni(ξ(t))
if j ∈ Ni(ξ(t))

0 otherwise.
(2)

It is apparent that there are some significant limitations to the discrete time model. Firstly,
all agents have the same confidence bound or the model is homogeneous. It is a universal
value that determines how close you are to someone else. Furthermore, the discrete time
model has no direction to the influence interactions. This is not representative of how
opinions evolve in real life. Different people have different personality types, confidence
or meekness, stubbornness or open-mindedness, and this would mean different people
have different requirements to be influenced. Additionally, some people may influence
another person without being influenced themselves. Examples of this include, a politi-
cian on television or just a confident opinion leader, who expresses their stances but is
not moved by rebuttals. Some papers found in the literature review investigated precisely
these opinion leaders and their influences on group conformity [15].

Finally, due to it being a mere average of opinions we can find quite simple convergence
within a certain range. In fact, the previous paper [5] found an upper bound for how many
time steps it takes before the results converge for the discrete time model. This is again
not representative of society, we have not seen complete convergence of opinion and we
presumably never will.

5.2 Example

Figure 1: Simple network with 5 agents

Example 1: On the right is an ex-
ample of the discrete time model
of five agents. This image has the
opinion values at time step zero
as ξ(0) = (0.1,0.4,0.7,1,0.5).

This image has boundary level
d = 0.3 so we can translate this
into the diagram on the right. We
use | ξi(t)− ξ j(t) |≤ d for t = 0
and d = 0.3. The edges on the
graph show the influences between the agents.

We see Agent one is only close enough to interact with agent two and agent four is only
close enough to agent three. Agents two, three and five are all close enough to influence
each other. Note that each agent is always influencing themselves in this model. Thus the
Neighbour sets look like:

• N1(0) = {1,2}

• N2(0) = {1,2,3,5}
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• N3(0) = {2,3,4,5}

• N4(0) = {3,4}

• N5(0) = {2,3,5}

The evolution over the future time steps is calculated like this for each agent. Below is
agent one’s opinion calculated at time step one.

ξ1(1) =
1

#N1(ξ1)
∑

j∈N1(ξ)

ξ j(0) =
1
2
(0.1+0.4) =

1
4
.

We thus calculate this for each agent and find:

ξ(1)= (
1
4
,
1
4
(0.1+0.4+0.7+0.5),

1
4
(0.4+0.7+1+0.5),

1
2
(0.7+1),

1
3
(0.4+0.7+0.5)).

Which becomes ξ(1) = (0.25,0.425,0.65,0.85,0.53̇). Note that each of the agent’s opin-
ions here shift towards 0.5 aside from agent five who is pulled away from the centre as
agent three has a more extreme opinion than agent two. This is showing the expected
behaviour when all agents are connected somehow, which is that over time they will all
converge past a specific time step.

5.3 Continuous Time Model
To improve on the discrete time model, the model is changed into an ordinary differential
equation. This means that the state variable is defined at any time interval. We also intro-
duce a more complicated boundary system to determine whether agents are ’neighbours’
or not. Each agent now has two boundary values for each other individual agent. They
have different boundaries for different agents to represent how an agent’s malleability can
change depending on who they are interacting with. An agent may respect another agent’s
opinion more than someone they dislike even if this opinion is further away from their
own. An example of this would be being friends with someone changes how seriously
you take their opinion [14]. One might be homophobic but upon discovering a friend is
gay their opinion on similar issues may shift. Thus they need different boundaries for
each agent. They have two values for each individual to represent their malleability in
different directions. One may be a centrist, but be more open to being influenced by a
’left’ position than a ’right’ position for example. That is why each agent has two bound-
ary values dC

i j which symbolises competitiveness and dG
i j symbolising generosity, where i

and j are agent numbers.

Now it is required to alter these boundary ranges into a binary system i.e. whether or not
the agent is influenced. To do this, influence functions are used. These are functions that
assess two agents. They return one if agent j’s opinion is close enough to that of agent i
and zero if otherwise. This allows us to ‘weigh’ the influence of each agent with respect
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to the original agent. Within this, there are now the unique influence boundaries discussed
above for each agent. The influence functions look like this:

φi j(ξi,ξ j) =

{
1 if−dG

i j ≤ ξ j −ξi ≤ dC
i j

0 if otherwise.
(3)

This means the corresponding dynamics are now given by the following equation. Note
that values of φii are taken as zero and not included because we are no longer accounting
for agents influencing their own opinions.

ξ̇i =
N

∑
j=1

φi j(ξi,ξ j)(ξ j −ξi). (4)

This equation takes into account the distance between the two agents if they are close
enough to interact. Here the time dependency of ξ̇i is excluded to maintain simplicity.
Now the evolution from the discrete time model is clear as now there are directions to
the interactions and we have boundary levels that are more representative of how peo-
ple actually behave. Another difference is we can now exclude the agent’s opinion when
calculating their evolution as we are no longer using the previous method. This formula-
tion still takes into account the distance between opinions when predicting the shift as an
interaction with a more extreme opinion would shift you more than a moderate one. In
general, this means that convergence is now more complicated.

Now we look to express ξ̇i in matrix form using the following matrix.

Ls =


∑

N
j=1 φ1 j −φ12 ... −φ1N

−φ21 ∑
N
j=1 φ2 j ... −φ2N

: : :
−φN1 −φN2 ... ∑

N
j=1 φN j

 . (5)

Here S is the total combinations of influence functions and s=1,2... S. This means s is
dependent on ξ’s position in the space. This leads to the following piecewise linear form
for the model, where ξ is each of the opinion values in vector form:

ξ̇ =−Lsξ. (6)

In simple terms, this model takes agent interactions to formulate a matrix. Then by multi-
plying this matrix by the initial opinion positions of the N agents we receive back a vector
direction in which the agent will travel.
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5.4 Dimension Reduction
The workings of the model in three dimensions are already hard to picture. To combat
this we reduce the dimensions of the model to the intuitive two dimensional model. This
is done by centring the last agent and measuring the other agents with respect to this last
agent. This adds an equilibrium point at the origin, so agent N is given opinion state zero
and previous agents’ values are now their distance to the opinion of agent N given variable
xi.

xi = ξi −ξN , (7)

xi − x j = (ξi −ξN)− (ξ j −ξN) = ξi −ξ j. (8)

As we can see the differences between all agents are conserved within this dimension re-
duction. It is also important to note that φi j(ξi,ξ j) = φi j(xi,x j). The next step to formulate
the linear piecewise model is to find the derivative of ẋi and we use equation (4) of ξ̇i.

ẋi = ξ̇i − ξ̇ j

=
N

∑
j=1

φi j(ξi,ξ j)(ξ j −ξi)−
N−1

∑
j=1

φN j(ξN ,ξ j)(ξ j −ξN).

=
N

∑
j=1

φi j(xi,x j)(x j − xi)−
N−1

∑
j=1

φN j(xN ,x j)(x j).

This leads to the following definition for the derivative ẋi:

ẋi =−(
N

∑
j=1

φi j +φNi)xi +(
N−1

∑
j=1, j ̸=i

φi j −φN j)x j. (9)

The influence functions are discontinuous by nature, meaning they jump immediately
from value 0 to 1. This means that we have to partition the state space D= [-1, 1]N−1 into
polyhedral regions Xs where S is the total number of influence functions. Now we apply
the formulas found during the dimension reduction to try and define the state space in 2
dimensions and leading to the following definition for Xs and the state space.

Xs = {x ∈ RN−1 | Hsx+gs ≤ 0}. (10)

In this definition Hs ∈R(Ns+2N−2)×(N−1) and gs ∈RNs+2N−2. This comes from the number
of influence function inequalities combined with the 2(N-1) inequalities from the state
boundaries giving −1 ≤ x ≤ 1 for all i = 1,2...N −1.
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This is useful to investigate the three agent case which is what this paper focuses on. The
three agent case can now be visualised on two axes. The previous matrix Ls now becomes
As:

As =


−∑

N
j=1 φ1 j −φN1 φ12 −φN2 ... φ1,N−1 −φN,N−1

φ21 −φN1 −∑
N
j=1 φ2 j −φN2 ... φ2,N−1 −φN,N−1

: : :
φN−1,1 −φN1 φN−1,2 −φN2 ... −∑

N
j=1 φN−1, j −φN,N−1

 . (11)

The model is now given in this new, reduced dimension, piecewise linear form:

ẋ = Asx. (12)

This matrix shifts as the solution crosses boundaries and thus alters as the solution evolves.
This is important because with the dimension reduction we have complicated some issues.
For example, if x1 is close enough to interact with x3 then this shifts x2 because x2 is mea-
sured with respect to x3 so now the movement is more complex than in the discrete time
case. We can also write s as s(x) such that ẋ = F(x) because s changes dependent on the
position of x. Later we discuss what happens when x is on a boundary and then F(x) is
not well defined.

5.5 State Space
This is an example of the state space for the following boundary matrices:

[dG
i j ] =

 0 0.5 0.6
0.4 0 0.5
0.3 0.4 0

 [dC
i j] =

 0 0.3 0.2
0.3 0 0.1
0.2 0.1 0

 .

Each of the zones are labelled on the figure. 31 indicates that agent 3 is being influenced
by agent 1 in the scenario, i.e. φ31 = 1. The axes are given by x1 and x2 which are
measured with respect to x3. That means x3 in this depiction is at [0,0]. The graph is now
measured from -1 to 1 in the axis because within [0,1] x1 can be both +1 and -1 from
agent 3 so we need to expand the domain. This does mean that in the top right and bottom
left corners we have no solutions past the dotted lines 0 to 0 in the top left and bottom
right directions. However, this definition of the state space is problematic because the
boundary lines are not well defined. This is because, as mentioned before when x is on a
boundary the s(x) can be the dynamics on either side. That is, when a point is precisely
on the boundary, it can actually choose which zone dynamics to act with. That means that
when boundaries are investigated for sliding conditions the points along the boundaries
have to be considered with the dynamics of each of the adjacent zones.
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Figure 2: Example of State Space for Asymmetric Model

5.6 Example

Figure 3: Example of sliding solutions

Here we see a simple example of
the 3 agent case. On the state space
image in figure 2, this interaction
would place us in the orange diag-
onal polygon where the zones 31,
13, 32 and 21 intersect. Using the
boundaries above let us take the
opinions states to be [x1,x2,x3]

T =
[0.1,−0.3,0]T . This would give us
precisely the relationship given in
figure 3. We can also calculate the
direction that this solution will take
in future time steps. The matrix
defining this relationship is given
below:

As =

[
−∑

3
j=1 φ1 j −φ31 φ12 −φ32

φ21 −φ31 −∑
3
j=1 φ2 j −φ32

]
=

[
−2 1
−1 −1

]

As

[
x1

x2

]
=

[
−2 1
−1 −1

][
0.1
−0.3

]
=

[
−0.5
0.2

]
.
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This shows that the solution will move with respect to vector

[
−0.5
0.2

]
, so x1 will decrease

in value and x2 will become larger albeit at a slower rate. This solution will move towards
the boundary where 2 will begin to influence 1 and then the matrix A will change to
include the interaction 12. Then they will converge to opinion value 0 because they will
interact with agent 3 who is centred at 0. This is how the model simulates the evolution
of opinions in the continuous time case.
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6 Results
The formulation of the continuous time model has given us many benefits as has just been
detailed. However, some problems arise with this new model. The influence function φ

only has values from 0 to 1 and very small differences in opinion can switch the result
from 1 to the other. This gives the function a discontinuous right hand side, and it means
the model is now only piecewise linear. This causes problems for the solution set of the
model.

Solutions over a piecewise linear model now have possibilities of sliding and Zeno be-
haviour [30]. Suddenly, the existence of a global Lyapunov function is not guaranteed
and finding it becomes more difficult. This is why the paper that precedes this one [5] as-
sumed the non-existence of sliding and Zeno behaviours. However, this assumption is not
guaranteed, thus next this paper will discuss sliding solutions in the Hegselmann-Krause
Model.

6.1 Sliding Solutions
In this section, we will introduce different solution types and how they can be spotted.
Note that in this section we are referring to the model form:

ẋ = Asx. (13)

Using this formulation, we have that each partition X s is a domain subset that is both
closed and convex. Then we can define the index set of current modes at x ∈ D where
D = [-1, 1]N−1. This is defined by Σx := {s ∈ Σ | x ∈ X s}, as in [31]. This is using that
Σ = 1, ...,S. Thus Σx contains the index of the polygon for all x within the interior of X s,
but when x lies on the boundary, Σx includes the indices of all polygons which contain
that point, or the polygons on both sides. Now we recall these 2 definitions from the
Preliminaries to discuss them.

Definition 6.2. Caratheodory Solution

The map ξ : [t0,T )→R where t0,T ∈R∪{∞} with t0 < T , is referred to as Caratheodory
solution of the system if

1. ξ is absolutely continuous on [t0,T )

2. for almost all t ∈ [t0,T ), ξ̇(t) ∈ {Asξ(t) | s ∈ Σξ(t)}.

Definition 6.3. The map ξ : [t0,T )→ R where t0,T ∈ R∪{∞} with t0 < T , is referred to
as Classical solution of the system if and only if

1. ξ is differentiable on [t0,T ),

2. for all t ∈ [t0,T ), ξ̇(t) ∈ {Asξ(t) | s ∈ Σξ(t)}.
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Here we see that a classical solution is also a Caratheodory solution, as everywhere is a
stronger condition than almost everywhere and if ξ differentiable on [t0,T ) then it is con-
tinuous on [t0,T ). These are the solutions that are focused on for the proof of Asymptotic
Stability. It is important to note that in our state space a classical solution is quite rare as
it requires that the solution continues over the boundary without losing differentiability
at that point. So for this model we mainly focus on Caratheodory solutions. However,
it has been shown [30] that the existence of Caratheodory solutions for all initial values
is not guaranteed even in Piecewise systems with maximal Caratheodory solutions. This
paper avoids this issue by convexifying the differential inclusion. This also has the added
advantage that all solutions become global. However, this is where we encounter different
types of solutions.

Definition 6.4. The map ξ : [t0,T )→ R where t0,T ∈ R∪{∞} with t0 < T , is referred to
as a Filippov solution of the system if

1. ξ is absolutely continuous

2. for almost all t ∈ [t0,T ), ξ̇(t) ∈ conv{Asξ(t) | s ∈ Σξ(t)}

Definition 6.5. The map ξ : [t0,T )→R is sliding is referred to as a sliding solution of the
system if and only if

1. it is not a Caratheodory solution on [t0,T )

2. there exists an index set Σ
ξ(·)
slide ⊆ Σ such that Σ

ξ(·)
slide = Σξ(t) for all t ∈ (t0,T )

3. ξ̇(t) ∈ conv{Asξ(t) | s ∈ Σξ(t)} for almost all t ∈ [t0,T ).

Here conv indicates the convex hull of the set. We see that Caratheodory solutions are
Filippov solutions, but sliding solutions are explicitly not Caratheodory. In less formal
terms, Filippov solutions are absolutely continuous curves, where directions of the vector
field in the neighbourhood of a point x are applied to the value. This is useful as it applied
directly to the concept of the state space that was previously introduced.

Figure 4: Example of sliding solutions

At a boundary there are 4 different sce-
narios to consider. Let us take the bound-
ary in question to be a function h(x) = 0.
When h(x)< 0 we have f1(x) as the value
of our solution and when h(x)> 0 we take
f2(x). This is precisely what happens on
both sides of a boundary in our state space.
The state space here is divided into the two
subspace polyhedrons on either side of the
boundary, Σ1 for f1(x) and Σ2 for f2(x).
The different scenarios are: f1 and f2 both
push away from the boundary; f1 pushes
towards the boundary while f2 pushes away; vice versa; finally f1 and f2 both push to-
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wards the boundary. The last option is where sliding occurs. It should be noted that either
f1 or f2 can move in the same direction as the boundary, but this does not pose a problem
either.

As suggested above a sliding solution is caused by opposite pressure in two zones on
both sides of the boundary. If both zones push towards the boundary line then as soon
as the solution enters the other zone it is pushed back into the first zone and so on. This
causes sliding behaviour across the switching surface. This is not Caratheodory solution
behaviour and so it poses a problem. There is an easy way to check for sliding behaviour.
We use the gradient transpose of the boundary which is the green vector. Then the inner
product of the gradient and the fi solution will be positive if they travel in the same planar
direction. Thus for sliding we need f1 to have a positive inner product with the normal
vector and f2 to have a negative inner product. This explanation is often referred to as the
Lie derivatives. Formally written:

[
dh
dx

T
f1(x)]> 0,

[
dh
dx

T
f2(x)]< 0.

.

This causes attractive sliding motion. Filippov’s book [27] states that this is a solution to
the differential equation:

x′(t) =


f1(x(t)) h(x)< 0
fF(x(t)) h(x) = 0
f2(x(t)) h(x)> 0.

(14)

We see that this is applicable to our model. He has that the vector field at the surface is
the convex hull (conv) of f1 and f2 such that:

fF(x(t)) = [α f2(x)+(1−α) f1(x)].

Here α ∈ [0,1] chosen such that dh
dx

T
fF(x) = 0. Thus α(x) is given by:

α(x) =
dh
dx

T
f1(x)

dh
dx

T
( f1(x)− f2(x))

.

.

This is how Filippov defines his sliding solutions and this method of opposite inner prod-
ucts is the method this paper will use to investigate the existence of said solutions in the
HK model.
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6.6 Super Symmetric Model

6.6.1 Preliminaries

Here are some lemmas, claims and basic notation that will be useful in the following
section.

Notation

• Zone where agent one is influenced by agent two is denoted by zone 12.

• Zone where agents one and two influence each other is denoted by zone 121.

• Zone where agent one influenced by agent two and agent three is given as zone
12+13.

• The vectors [1,1], [1,0] or [0,1] all refer to the lines in the direction of these vectors
through the state space point (0,0).

Lemma 2. : If the boundary points u = (x1,y1) and v = (x2,y2) multiplied by their zone
matrix and the normal vector (n) to the boundary are positive, then the whole boundary
is positive with respect to the normal vector.

Proof

Assume nT Au > 0 and nT Av > 0.

Any point along the boundary can be written as αu+(1−α)v where α ∈ [0,1].

If nT Au > 0 and nT Av > 0 then
nT A(u+(1−α)v) = nT Au+(1−α)nT Av which is > 0.

Claim

When zone a has matrix A and zone b has matrix B, then the zone of a overlapping b has
matrix A+B, where a and b have none of the same interactions. This can be seen from the
formulation of ẋ and As.

Lemma 3. The addition of 2 positive matrices with respect to a normal vector n, is still
positive with respect to n.

Assume nT Au > 0 and nT Bv > 0 for all u in the zone for A and v for the zone with B.

Then we have nT (A+B)w > 0 where w is in the zone of both interactions.

Proof

Assume nT Au > 0 and nT Bv > 0.
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Then we have nT (A+B)w = nT Aw+nT Bw which is > 0 because w is within zone for the
A matrix and the zone for the B matrix. Thus nT Aw > 0 and nT Bw > 0 for all w and the
addition of them is positive also.

Claim

There is a symmetry of agents 2 and 1 with respect to 3.

The matrices and vector spaces of interactions between agents 2 and 1 with respect to 3
are symmetrical as they are both measured from the point of equilibrium. On our graph
one interaction is represented by a horizontal hyperplane and the other by a vertical hy-
perplane. However, the behaviour within them should be the same and for this to occur
the matrices have the following vector swap.

13 =

[
−1 0
0 0

]
,23 =

[
0 0
0 −1

]

31 =

[
−1 −1
0 0

]
,32 =

[
0 0
−1 −1

]
.

This is also true for 21 with respect to 12.

21 =

[
−1 1
0 0

]
,12 =

[
0 0
1 −1

]
.

6.6.2 Boundary Testing

The first scenario of the model to investigate is what is called the Super Symmetric model.
This model has that if agent i influences agent j, then agent j influences agent i. With these
conditions the continuous time model starts to look like the discrete time model. There
are no one way influences and this reduces the zones and boundary points of the state
space.

The first method we approach is to test each of the boundary points using the reduced
dimension model and multiplying the zonal matrix A by the points for x1 and x2, which
again are the distances of agents 1 and 2 from agent 3. We thus get the direction of
movement of these boundary points which, as we proved above, summarizes the whole
boundary if they are both positive with respect to the normal vector.

In Figure 5, an example of the super symmetrical model is given where every boundary
value is equal to 0.5. For a model to be super symmetric note that not all boundaries
have to be equal as long as the dC

i j and the dG
i j matrices are symmetric (equal to their

transpose) and equal to each other. The arrows on the diagram are the directions of the
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Figure 5: Super symmetric model, dG
i j = dC

i j = 0.5

boundary points with respect to each zone. However, each of these boundary points has
multiple directions depending on which zone’s dynamics are chosen at the boundary. The
multiple directions are shown only for points beneath the [1,1] vector through (0,0). This
is because with this level of symmetry we have simply reflective behaviour.

For an example of these multiple dynamics, take point [0,−0.5]. This zone can choose
multiple different dynamics. It can have the direction of zone 121, 131 or 323 or a mixture
of the 4. We will explain why none of these boundary points are an issue.

First, here is an example of how the boundary point is calculated. Take the intersection
point at [x1,x2]

T = [0.5,−0.5]. This intersection point can be the zone where agents 13
interact with each other and 23 interact with each other. It can also be in the zones of these
2 properties individually. It could also, in theory, be a point where no agents interact (the
white corner), however, there is no movement there so there is no problem. Thus we take
the matrix As from (11) and plug in N=3 and our interactions.

As =

[
−2 −1
−1 −2

]
, [x1,x2]

T = [0.5,−0.5],

[
−2 −1
−1 −2

][
0.5
−0.5

]
=

[
−0.5
0.5

]
.
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This means that this point moves with gradient -1 towards the top left corner of the graph
in this zone. This is shown by the arrow on the diagram. When this solution reaches a
new zone the matrix will change and the behaviour will change until it reaches a stationary
point. However, since it is a boundary point it can also be represented by the dynamics of
the zones with merely 131 or merely 232. To be sure that no sliding solutions exist at this
point we can test the boundary point with the 2 other zones that it is on.

[
−2 −1
0 0

][
0.5
−0.5

]
=

[
−1
−0.5

]
,

[
0 0
−1 −2

][
0.5
−0.5

]
=

[
0.5
−1

]
.

In the first case the solution moves into the pink zone with the same gradient shown by
the arrow on the graph and in the second case there is the same behaviour reflected over
[-1,1]. Thus, the direction for 131 points away from both the vertical and horizontal
boundary at that point and zone 232 behaves in the same manner. In fact, one example
of the direction being away from the boundary is enough to discount sliding because for
sliding to occur both vector fields need to push towards the boundary. Remember that also
if two boundary points at the beginning and end of the boundary have the same direction
then this is true for the whole boundary. This means all of the boundaries on the graph
have sliding problems because all boundaries point within their own zone. This method
can be used at every point on the graph to show no sliding occurs.

What is noted is that the 131 zone, the 121 zone and the 232 zone in isolation have counter
flow about x1 = 0 or x2 = 0 and the [1,1] vector. The dynamics here make sense as agents
1 and 2 are close enough to interact without interacting with agent 3 so they become closer
until they have the same opinion and then they stop shifting. Thus when points reach the
central dividing line, they stop moving. So the point [0,−0.5] with dynamics of the zone
131, doesn’t move. This behaviour is true for all 3 of these simple zones. One might ask
whether sliding can thus be formed by adding boundaries at these central dividing lines
in an asymmetric case, however, despite this having opposite pressure it would not be a
sliding solution. This is because the opposite pressure has to be at the boundary itself
not just in the adjacent zones and at the boundary through 0, with dynamics 131/232/121,
there is no movement. Even if there is movement, which can occur with more zones
over this 0 boundary, the behaviour wouldn’t be sliding it would simply travel along the
boundary as a Caratheodory solution instead of having the infinite switching behaviour
shown before.

This method is nice but it does not prove non-existence in other versions of the super
symmetric model. To extend this we must make zonal observations as opposed to merely
calculating boundary points. These zones have the same internal vector fields regardless
of where they shift on the graph so if we can prove that none of these zones pose a
sliding problem then we can show no sliding solutions exist for the super symmetric case,
wherever the zones move.
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6.6.3 Zonal proof

We have noticed that each of the vector fields point generally towards the line [1,1]
through (0,0). This makes sense as when the opinions are close enough they start to
converge towards the centre of our state space as shown in the previous thesis [5]. Other
papers have also shown that the model converges once you are within a certain zonal
depth of interaction [30]. If we can show each of these zones points towards this diagonal
vector for all points a,b ∈ [−1,1] then we can discount sliding solutions along the bound-
aries with gradient 1. Then again if we prove all vectors point towards a central diving
vector [0,1] through (0,0) we can discount sliding solutions along vertical boundaries.
We have also noted in previous sections that the relationships 23 and 32 are symmetric in
behaviour to the relationships 13 and 31 as they are both agents measured with respect to
our equilibrium point. Thus if no sliding solutions can occur along the vertical boundary
then none can occur along the horizontal boundary. Another simplification is to consider
only the points below [1,1] through (0,0) because the state space is symmetric over this
line. Thus we can assume for all zones that a > b.

Below we show 3 more examples of the super symmetric model, to show that the zones
only alter in size when the boundary values change but the internal vector fields do not
and we can still divide the map by the [1,1] vector through (0,0). The boundary matrices
of these spaces are also given below respectively.

Figure 6: Three examples of the super symmetric model

[di j]
C = [di j]

G =

 0 0.1 0.2
0.1 0 0.3
0.2 0.3 0

 , [di j]
C = [di j]

G =

 0 0.8 0.2
0.8 0 0.5
0.2 0.5 0

 , [di j]
C = [di j]

G =

 0 0.8 0.7
0.8 0 0.6
0.7 0.6 0

 .

In the super symmetric case, there are 3 hyperplanes, zones 121, 131 and 232. Every
other zone is a different intersection made up of these 3. That means the total zones are
23 = 8. This is because ΣN

i=0
(N

i

)
= 2N as shown in the preliminaries. The zones are:

131 =

[
−2 −1
0 0

]
,232 =

[
0 0
−1 −2

]
,121 =

[
−1 1
1 −1

]
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121+232 =

[
−1 1
0 −3

]
,121+131 =

[
−3 0
1 −1

]
,232+131 =

[
−2 −1
−1 −2

]

131+232+121 =

[
−3 0
0 −3

]
,∅= 02×2.

The empty zone is the zone where no agents interact with each other and so trivially there
is no movement here and the matrix is zeros. It was shown at the beginning that when
the zones overlap the matrices are just simply added together. We also note a symmetry
between zones 13 and 23 as can be expected, the matrices transpose both corners, a vector
swap effectively and this means that they behave in an opposite fashion, which was also
shown before.

We note that most zones push towards the central dividing vector [1,1]. Thus we take the
inner product of the zones beneath this vector and check if their inner product with the
vector [-1,1] (the normal vector to [1,1]) is positive.

121 =

[
−1 1
1 −1

][
a
b

]
⇒

[
−1 1

][−a+b
a−b

]
= 2a−2b

131+232 =

[
−2 −1
−1 −2

][
a
b

]
⇒

[
−1 1

][−2a−b
−a−2b

]
= a−b

131+121+232 =

[
−3 0
0 −3

][
a
b

]
⇒

[
−1 1

][−3a
−3b

]
= 3a−3b.

These 3 zones cause no problems as each of these values is positive under the [1,1] vector
because here a > b. The zones 131 and 232 individually we have already discussed and
seen they do not pose a problem. Both of these point within themselves towards the
[1,0] and the [0,1] vectors respectively. They, under certain conditions, push towards the
boundary with each other, however, zone 131 + 232 causes no problems to our proof as
shown above. The remaining 2 zones are shown below:

131+121 =

[
−3 1
0 −1

][
a
b

]
⇒

[
−1 1

][−3a+b
−b

]
= 3a−2b

232+121 =

[
−1 0
1 −3

][
a
b

]
⇒

[
−1 1

][ −a
a−3b

]
= 2a−3b.
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Figure 7: Zoomed view of problematic zones

These zones point towards or
away from the [1,1] depending
on whether or not a is positive.
Remember, when the inner prod-
uct is positive the vectors move
in the same direction. For the
first case, when a > 0 we have no
problems so let us address when
a < 0. In this scenario with a vec-
tor pointing away from [1,1] the
solution would point towards the
boundary with the 131 zone or the
boundary with the 323 zone. We see the zoomed in figure 7. These two zones are the pur-
ple and blue triangles. We see that whichever boundary these zones point towards, all
of the boundaries surrounding these zones point away from the boundary with the other
dynamics. This means sliding is not possible in these zones.

Next, we investigate whether the zones point towards the central [0,1] dividing vector so
we take the normal vector [-1,0] and take a > 0 as to the right and to the left of the vector
we still have symmetry.

121 =

[
−1 1
1 −1

][
a
b

]
⇒

[
−1 0

][−a+b
a−b

]
= a−b

131+232 =

[
−2 −1
−1 −2

][
a
b

]
⇒

[
−1 0

][−2a−b
−a−2b

]
= 2a+b

131+121+232 =

[
−3 0
0 −3

][
a
b

]
⇒

[
−1 0

][−3a
−3b

]
= 3a

131+121 =

[
−3 1
0 −1

][
a
b

]
⇒

[
−1 0

][−3a+b
−b

]
= 3a−b

232+121 =

[
−1 0
1 −3

][
a
b

]
⇒

[
−1 0

][ −a
a−3b

]
= a.

We see here that for a > 0 and a > b that all zones point in the positive direction with
respect to the [0,1] vector through (0,0). This discounts opposite pressure on either side
of a vertical boundary. By symmetry we know the horizontal boundaries behave the same
way.

This overall shows that in the super symmetric case there are no possibilities for sliding
solutions. This is because if all boundaries point in the same direction away from bound-
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aries then we can never have sliding solutions. However, as discussed before, human
interactions rarely follow the conditions within the super symmetric case. Thus we must
try to extend this to more complex scenarios.

6.7 Asymmetric Model

6.7.1 Basic Zones

In the asymmetric case it is not clear that sliding solutions do not exist. Thus in the
following section we try to construct one. We will first divide the state space under the
vector [1,1] (x1 > x2) through (0,0) into 3 sections shown below. Section 1 will be where
a = x1 is positive and b = x2 is negative. Section 2 will have both as negative and section
3 will have both as positive.

Figure 8: Example of Asymmetric Model (Figure 2) with sectors labelled

Different to the super symmetric case, we now have 6 base level zones.

12 =

[
−1 1
0 0

]
,21 =

[
0 0
1 −1

]
,13 =

[
−1 0
0 0

]
,

31 =

[
−1 −1
0 0

]
,23 =

[
0 0
0 −1

]
,32 =

[
0 0
−1 −1

]
.

6.7.2 Section 1

We can check each of these zones with respect to section 1 where a is positive and b is
negative.



Chapter 6 RESULTS 33

12 ⇒
[
−1 1

][−1 1
0 0

][
a
b

]
= a−b

21 ⇒
[
−1 1

][0 0
1 −1

][
a
b

]
= a−b

13 ⇒
[
−1 1

][−1 0
0 0

][
a
b

]
= a

31 ⇒
[
−1 1

][−1 0
−1 0

][
a
b

]
= 0

23 ⇒
[
−1 1

][0 0
0 −1

][
a
b

]
=−b

32 ⇒
[
−1 1

][0 −1
0 −1

][
a
b

]
= 0.

We see that all of those point towards the [1,1] vector as they have positive inner products,
or are perpendicular. As has been proven at the beginning of the section, zones that are
positive with respect to [-1,1] added are still positive with respect to [-1,1]. That means
any combination of the 6 zones here will still have a positive inner product with the vector
[-1,1]. However, one can still have sliding solutions along the vertical boundary. Thus we
take the normal vector [-1,0] to check this.

12 ⇒
[
−1 0

][−1 1
0 0

][
a
b

]
= a−b

21 ⇒
[
−1 0

][0 0
1 −1

][
a
b

]
= 0

13 ⇒
[
−1 0

][−1 0
0 0

][
a
b

]
= a

31 ⇒
[
−1 0

][−1 0
−1 0

][
a
b

]
= a

23 ⇒
[
−1 0

][0 0
0 −1

][
a
b

]
= 0

32 ⇒
[
−1 0

][0 −1
0 −1

][
a
b

]
= b.

Here all values are positive in the segment aside from the 32 zone. However, we see that
the 32 zone will point towards the 323 zone and towards the stability point in the centre
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of that zone, as shown in the super symmetric case. For sliding to occur, there needs to be
alternate flow on either side of the boundary so this 32 zone that points to the right would
need one of the zones pointing towards the centre to be on its right. However, this 32
section of the graph only has its own 323 zone in that direction. Thus there are no sliding
solutions in this quadrant.

6.7.3 Section 2

The other quadrant to consider is where both a and b are negative. If we return to the
original 6 matrices, we see that again, only one zone is not positive with respect to [-1,1].
This zone is 13. This zone moves only left and right as the x2 values disappear. Thus
we see this zone will move towards 131 which we have already investigated in the super
symmetric model. This time though, zone 131 cannot be excluded as for negative a, it too
is negative with respect to [-1,1]. Thus we must test many zones: 13+21, 13+12, 13+ 212,
131+12, 131+21, 13+32, 13+23, 13+232, 131+32, 131+23 and 131+323 at least.

13+23 ⇒
[
−1 1

][−1 0
0 −1

][
a
b

]
= a−b

13+232 ⇒
[
−1 1

][−1 −1
0 −2

][
a
b

]
= a−b

131+23 ⇒
[
−1 1

][−2 0
−1 −1

][
a
b

]
= a−b.

These zones offer us no issues. However, all the other zones do cause problems by point-
ing away from the [-1,1] vector. We start by breaking down some other issues. Firstly,
note that each of the base zones have positive inner products with the normal vector [0,1],
meaning they all point upwards in this quadrant.

12 ⇒
[
0 1

][−1 1
0 0

][
a
b

]
= 0

21 ⇒
[
0 1

][0 0
1 −1

][
a
b

]
= a−b

13 ⇒
[
0 1

][−1 0
0 0

][
a
b

]
= 0

31 ⇒
[
0 1

][−1 0
−1 0

][
a
b

]
=−a

23 ⇒
[
0 1

][0 0
0 −1

][
a
b

]
=−b
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32 ⇒
[
0 1

][0 −1
0 −1

][
a
b

]
=−b.

This means that the zones negative with respect to the [-1,1] vector are still moving up-
wards just at a lesser gradient than [1,1]. Next, we assess these zones with respect to the
vector [1,1].

12 ⇒
[
1 1

][−1 1
0 0

][
a
b

]
=−a+b

21 ⇒
[
1 1

][0 0
1 −1

][
a
b

]
= a−b

13 ⇒
[
1 1

][−1 0
0 0

][
a
b

]
=−1

31 ⇒
[
1 1

][−1 0
−1 0

][
a
b

]
=−2a

23 ⇒
[
1 1

][0 0
0 −1

][
a
b

]
=−b

32 ⇒
[
1 1

][0 −1
0 −1

][
a
b

]
=−2b.

We can see here that each of these zones is positive with respect to [1,1] aside from 12.
That means that for zones to have sliding aside from 12, it would have to be along the
diagonal boundary line. With the functions negative to [-1,1] above and the functions
positive to [-1,1] below. This means the zone above must contain 21 or 12. Thus there
are only 3 functions that could possibly be below. One of those zones plus 21 or 12 must
then be negative [-1,1].

13+23+12 ⇒
[
−1 1

][−1 0
1 −2

][
a
b

]
= 2a−2b

13+232+12 ⇒
[
−1 1

][−1 0
0 −3

][
a
b

]
= a−3b

131+23+12 ⇒
[
−1 1

][−3 0
0 −1

][
a
b

]
= 3a−b.

Under the boundary [1,1] no values exist such that a can be 3 times or a third of b such that
those values become negative. Thus there can be no sliding solutions along said boundary.
Overall, we find that we cannot make any sliding solutions in this quadrant.
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6.7.4 Section 3

In this section we look at where a and b are positive. This is the inverse symmetric zone
of when a and b were negative so now instead of 13 being the problematic zone we see
that 23 is the problematic zone. Thus all of the calculations made in the previous section
still apply just with a vector swap to each of the matrices. We still cannot construct sliding
solutions.

We have now investigated all 3 quadrants of the asymmetric case and we have not been
able to construct a sliding solution in any of them. However, this is not a conclusive
proof but we do use this information to assume no sliding solutions can be found in 3
dimensions. The only fool proof way to show this is to investigate all 26 = 64 zones but
it is too computationally extensive to test them all, the case with symmetric matrices does
not reduce the different zone types either.

This finding is logical for 3 agents. The concept of your opinion shifting and gaining a
new connection just to immediately lose it is not one that is intuitive to real life. Certainly
not without accounting for certain opinions pushing one’s opinion away for being too
polarising.

We now consider how this extends to higher dimensions. This research finds no reason
to assume sliding solutions cannot exist in higher dimensions. There is also no easy
way to determine whether they exist either especially because the number of zones grows
drastically in higher dimensions. In R3 we have N(N −1) basic zones and 2N(N−1) total
zones for the asymmetric model. In 4 dimensions we then have 212 = 4096 zones and in 5
dimensions we then have 220 = 1,048,576 zones. This is clearly far too computationally
difficult as an approach.
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7 Discussion

7.1 Summary of Main Contributions

In this paper, the literature surrounding opinion dynamics and the Hegselmann-Krause
model were discussed. A brief history of the origins of opinion dynamics and models
to simulate the phenomena in question was delivered. Then the importance of opinion
dynamics was evaluated and its applicability in the modern era due to the prevalence of
social media. Some of the important political and societal applications were discussed
such as shifting views on gender norms or the recent debates over COVID-19 policies
that were all fought via the medium of targeted social media posts [12]. Companies such
as Cambridge Analytica received significant funding precisely to shift public opinion on
Brexit for example.

This paper then introduced the Hegselmann-Krause model for both the discrete time case
and the continuous time version. The two models were then compared. The discrete
time model had clear convergence and simple interactions between agents. It also had an
upper limit for total convergence which was a useful result. However, it didn’t simulate
real behaviour particularly accurately as it was a homogeneous model where influences
had no direction. The continuous time model added directionality to interactions and
thus complicated the convergence properties to better simulate real life. However, in the
conversion to the continuous time model, the differential equation developed a discontin-
uous right hand side. This discontinuity created the possibility of sliding solutions at the
boundaries of the state space. Sliding solutions cause problems when proving the stabil-
ity of the model. Thus this paper investigated the existence of said solutions in the HK
Model.

We then approached 2 different cases of the model, the super symmetric case and the
asymmetric case. For the super symmetric case, it was proven that there are no sliding
solutions under any circumstances. For the asymmetrical case, no sliding solutions could
be constructed. However, zones no longer have directions pointing within themselves and
so the possibilities for sliding solutions increase, especially in higher dimensions. So far,
no examples were found, however, there has been little evidence that they cannot exist at
all in the HK model. In fact, specific literature has been designed looking to remove the
discontinuities from the HK model [32], suggesting they may become a problem in higher
dimensions. Thus we conclude sliding solutions are quite possible in the Hegselmann-
Krause model in higher dimensions and they should be accounted for in future work.

7.2 Limitations

The limitations of this project are mainly related to computation power. An easy way to
test the existence of sliding solutions was not found for the asymmetric case. There are 64
zones to test and thus many more boundaries if one wishes to be thorough. Some shortcut
methods were found, along with some symmetries and some other useful tricks which
could be applied more concretely.

This paper is also limited to the 3 dimensional case, as in higher dimensions one cannot
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picture the state space in the same manner and thus cannot perform the same zonal cal-
culations at the boundaries. Furthermore, the number of zones grows quickly to a point
where it is no longer feasible to compute them. As stated before, already 1 dimension
higher is 4096 zones.

The existence of sliding solutions is a problem for the stability proofs of this model.
However, some papers have tried to combat this by removing the discontinuous right
hand side of the differential equation that causes the possibilities for these solutions. To
do this instead of having the influence functions jump from 0 to 1 they add a function that
smoothly translates the values from 0 to 1 [31]. This removes the jump discontinuities and
thus the possibilities of sliding solutions. However, other issues arise. The boundary is
no longer a single line, the boundary is now a zone in itself to retain continuity. However,
that still means solutions can be lost inside. This is because within this zone we have
continuously changing zonal matrices, instead of the usual finite amount. This infinite
amount of matrices complicates the dynamics of the system and other proofs such as
solution existence and stability.

7.3 Future Work
This paper found no evidence that sliding solutions cannot exist, especially in higher
dimensions, so future research should try to construct examples of sliding solutions. This
can be done by examining problematic zones found in three dimensions such as have been
highlighted in this paper. Then, even if no problems arise in three dimensions, one can
extrapolate to a similar zone in a higher dimension and investigate it there.

Future work could also look to develop a code that tests the zones of the state space to
see if they uniformly point towards the [1,1] vector and towards the [0,1] vector as this
would disprove the existence of sliding solutions. Even if it does not disprove every zone,
one would only have to test the outlier zones as opposed to every zone in the state space
which would reduce the computational requirements of the task. One thing to consider
would be whether your opinion can ever be pushed away from another agent due to them
being too ’polarising’ or having a dislike for the agent. This is a phenomenon that may
play a part in real life opinion dynamics.

Another thing to assess would be to consider whether the proof of the nonexistence of
sliding solutions in the super symmetric case extends to higher dimensions. One approach
could also be to prove that every point in the space has a unique Caratheodory solution
and thus that sliding solutions can be assigned measure zero in this case.
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8 Conclusion
This paper has introduced and explained the Hegselmann-Krause Model for both discrete
and continuous time. It has detailed how this model simulates opinion evolution and how
applicable it is to real life. Then it introduced the problems with both models and offered
solutions to the problems. This paper focused on one specific issue about the existence of
sliding solutions and how this causes problems for stability proofs of the model. Then we
proved that no sliding solutions exist in the super symmetric case and tried to construct
a sliding solution in the asymmetric case to no avail. Overall, this paper is important to
assess what can and cannot be assumed about solutions within the Hegselmann-Krause
Model. This will aid stability studies and the general understanding of Fillipov solutions
due to a differential equation with a discontinuous right hand side.
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