
Analysis on distributed
observers

Simulating the distributed Luenberger observer

R.H. Snijders

A thesis presented for the degree of

General mathematics Bachelor

FSE
Rijksuniversiteit Groningen

Netherlands
07-02-2023

Contents

1 Introduction 2

2 Methodology 2

3 Literature review 3

4 Background information 4
4.1 Mathematical systems . 4
4.2 Observers . 6
4.3 Luenberger observer . 7
4.4 Basic graph theory . 8
4.5 Distributed observer . 10
4.6 Funnel control in basic systems 13
4.7 Ackermann’s formula . 14
4.8 Brief overview of the Euler method 15

5 Results 16
5.1 Preliminaries . 16
5.2 Coupling gain vs placed poles . 16
5.3 Effect of the amount of connections in the graph 17
5.4 Observable vs Unobservable . 19
5.5 Funnel control . 20

6 Conclusion 21

7 Discussion 22

8 appendix 23

Abstract

This paper examines the distributed Luenberger observer. This distributed
observer arises when an output matrix is divided into smaller parts and observers
are constructed for each of them individually with the system matrix. A difficult
case arises when some or all of the smaller parts are not observable. When these
observers are coupled however, it has been shown that the distributed observer
converges to the overall state of the original system.

This study constructed a MATLAB code simulating the distributed Luen-
berger observer with 1× n agents. After analyzing the results, the study found
that the distributed Luenberger observer is particularly suited to non observable
agents, with a low amount of communication between them. Furthermore, the
distributed Luenberger observer is quite receptive to funnel control.

1

1 Introduction

Ever since people have been around, they have looked for ways to control the
systems around them. The first step to controlling systems, is of course the
gathering of information. Even when one can measure the effect that they
themselves introduce in the system as well as what the system produces, there
is still something unknown happening inside. The need for seeing what was going
on within systems then spawned the search for better and better state observers.
The introduction of the Luenberger observer was a major advancement in this
regard.

Observer design is an important field in systems theory. It has many ap-
plications in stabilization of systems and control theory. Often in systems, the
input and output are known by people working with them. A challenge is to
find the so called state of the system, which is what state observers are designed
to do.

In today’s society there is an increasing demand for decentralized systems.
Take as an example the avenue of crypto currency, a currency that gained
massive popularity thanks to the decentralized nature of it. Collaborations
of smaller parts of groups are becoming more and more prevalent, preferred
over an overarching structure that organizes everything.

To this end, there have been recent developments to create decentralized
observers for system, where there is not a single observer that oversees the entire
system. Rather, the system is divided up into smaller pieces that communicate
with each other. The pieces themselves do not have full knowledge of the system,
yet together they can help each other to determine the overall state of the
system.

In this paper I will discuss some of the methods to construct distributed
observers. To this end, I will first go into some systems notation, some graph
theory, as well as the basic Luenberger observer. I will discuss multiple ap-
proaches to a distributed observer, but the main focus is a version based on the
Luenberger observer. Lastly, I will review some results from simulations.

2 Methodology

This paper aims to research the distributed Luenberger observer. In particular
it aims to answer the question if funnel control could be implemented. In order
to do this the dynamics of the different agents of the distributed observer have
been programmed into MATLAB. The choice has fallen on MATLAB as it is an
environment with many built in features that can be used easily to these ends.

The research question of this paper is: ”What are the different properties of
the distributed Luenberger observer?” This question has been divided into the
smaller questions:

1. ”What are the different effects of different coupling gains, and different
pole placements of A− LiCi matrices?”

2

2. ”Does a more connected graph lead to a faster convergence for the dis-
tributed Luenberger observer?”

3. ”Is coupling observable agents beneficial to the convergence of the dis-
tributed Luenberger observer?”

4. ”Can the distributed Luenberger observer benefit from the usage of simple
funnel control?”

3 Literature review

A simple approach of constructing a distributed Luenberger observer comes from
Han, Trentelman et al[6]. In this paper they discuss a method for obtaining the
necessary tools to construct the observer. This paper serves as an investigation
of this method, but other successful methods exist and are highlighted in this
section.

Silm et al. [12] have investigated a way to make a distributed observer that
does not only converge asymptotically, but converges in finite time. Just like
[6] they use the assumption that the overall system is observable, and that
the agents share information according to a strongly connected communication
graph. The major advancement here is of course that on top of having a guar-
antee of convergence in infinite time, here we have a guarantee of convergence
in finite time. Such an observer can be more useful in applications.

They start off with a similar approach to the one done by [6]. They intro-
duce transformation matrices to divide agents into observable and unobservable
parts as in (13). They furthermore split the T matrix in the observable and
unobservable parts Ti =

[
Tio Tiu

]
. After computing the Luenberger matrices

Lio they give the following dynamics of the distributed observer:

˙̃xi = Ax̃i − TioLio(Cix̃i − yi)− γiTiuT
T
iu

∑
j∈Ni

(x̃i − x̃j) (1)

Where the γi are the coupling gains. Clearly, this is a far simpler way of con-
structing the distributed observer. The paper uses this as the beginning point
to find a nonlinear version that guarantees the finite time convergence property.

Rego et al. [10] have investigated a way of computing a distributed observer
of a discrete time system with a noise component. For a system of the form{

x(t+ 1) = Ax(t) + w(t)

y(t+ 1) = Cx(t) + v(t)
(2)

With similar assumptions they create a distributed observer of the following
form:

x̂i(t+ 1) = AΩ−1
i (

∑
j∈N

πi,jΩ̄ix̂j + CT
i R

−1
i yi) (3)

Here Ωi, Ω̄i and Ri are appropriately chosen positive definite matrices.

3

They use the same assumptions as in the other approaches, with the added
requirement that the dynamics matrix of the system is invertible. Dealing with
noise has been a struggle for the likes of the Luenberger observer, so advance-
ments like these could prove to be pretty significant.

4 Background information

4.1 Mathematical systems

In mathematics a system is given as the following set of equations[1]:{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
. (4)

Here the output of the system is y ∈ Rp, the input of the system is u ∈ Rm and
the state of the system is given as x ∈ Rn. ẋ is the vector that contains the
derivative values of the entries of x, which is dependent (usually) on x, the state
and u, the input. The remaining terms are matrices. A ∈ Rn×n and B ∈ Rm×n

are usually referred to as the system matrix and the input matrix. C ∈ Rp×n

and D ∈ Rp×m are commonly called the output matrix and the feedthrough
matrix respectively.

Take as an example the following system:
ẋ(t) =

[
0 1

−2 3

]
x(t) +

[
1

1

]
u(t)

y(t) =
[
1 1

]
x(t) + 2u(t)

(5)

By filling in the starting state, or initial condition, x0 and a specific input
one can see what happens to the state as time starts running. If we take x0 =[
1
1

]
and an input of u(t) = sin(t),we can see that ẋ at time 0 is given as

ẋ(0) =

[
0 1
−2 3

] [
1
1

]
+

[
1
1

]
sin(0) =

[
1
1

]
. Hence we know that the state has

those derivative values. This means that the derivative value of the first and
second entry of x is 1, which allows us to roughly see how the entries of the
state x will change. Furthermore, we can see that the output is given as y(0) =[
1 1

] [1
1

]
+ 2 sin(0) = 2 .

In this project we are most interested in the effect of something called ob-
servability. Before we get to the concept of observability, we must first state
what distinguishes states:

Definition 1. Distinguishability
An input u(t) ∈ Rm on the interval [t1, t2], t1, t2 ≥ t0 distinguishes between
x(t0) = x0 and x(t0) = x′

0 at time t2 if they produce different outputs at time

4

t2.
Furthermore, the initial states (x0, t0) and (x′

0, t0) are distinguishable on the
interval [t1, t2], if there exist a time t ∈ [t1, t2] and an input u(t) on the interval
[t1, t] that distinguishes between x0 and x′

0 at time t. [8]

For the majority of this paper, we consider systems with no input matrices
and no feedthrough matrices (so we have B,D = 0). Systems of that format
hence have the following equation system:

Ω :

{
ẋ(t) = Ax(t)

y(t) = Cx(t)
(6)

Systems of this format with initial condition x0 have the following solution:

y(t;x0, 0) = CeAtx0 (7)

Since these systems no longer have an input, the definition of distinguishability
changes slightly. One can now distinguish between two initial conditions simply
if there exists a time where they produce different outputs.

With the definition of distinguishability, we can define observability for these
systems as follows:

Definition 2. Observability
The system (A,C) is called observable on the interval [0, T], if any two states
x0, x

′
0 ∈ Rn are indistinguishable on [0, T] only if x0 = x′

0 [1]

This means that any two distinct initial conditions will have different output
trajectories. Hence, if a system (A,C) is observable, one can in some way deter-
mine the initial condition based on the trajectory of the output, as there only is
exactly one possible initial condition that could have provided that trajectory.
Take as an example the following system matrix, output matrix and these two
initial conditions:

A =

−4 2 2
1 2 −3
−3 3 0

 , C =

[
−3 2 1
−2 3 −1

]
, x0 =

00
0

 and x′
0 =

11
1

We have Ax0 = Ax′

0 = 0 and Cx0 = Cx′
0 = 0. Since the derivative of

the state has reached zero this means that the state will no longer change.
Furthermore, both of these initial conditions have the same output and since
the state will not change they will have the same output trajectory. Thus,
we cannot distinguish between these two states, yet they are not equal. We
conclude that this is an example of an unobservable system. This example
serves to show that a zero output trajectory does not imply that the trajectory
of the state is equal to zero. Interestingly, the line spanned by ax′

0, a ∈ R
satisfies Aax′

0 = aAx′
0 = a0 = 0 and similarly, Cax′

0 = aCx′
0 = a0 = 0. This

means that it is impossible to distinguish between any two points on that line,
as they all have the same output trajectory of zero.

5

Suppose now that we have a system where there are m such lines with the
property that any points on them share the same output trajectory of zero. Any
combination of the points on the lines will then satisfy A(a1x

′
0,1 + ...amx′

0,m) =
Aa1x

′
0,1 + ... + Aamx′

0,m = 0. Hence, these combinations of the points on the
lines also share the output trajectory of zero. We refer to the space spanned by
these lines as the unobservable space.

If a system is not observable, then there exists an unobservable subspace with
the property of that if any state trajectory finds itself in it, it is not possible to
determine precisely the initial conditions of the state. A way to determine the
unobservable subspace is by constructing something called the observer matrix.
The observer matrix is defined as follows for our (A,C) type systems:

C
CA
...

CAn−1

 (8)

From this matrix, we can determine if systems are observable, and if not, how
unobservable they are. This we can do thanks to the following theorem:

Theorem 1. The unobservable subspace NT is independent of T > 0, and is
equal to the null space of the observability matrix. [1]

Since the unobservable subspace is precisely equal to the null space of the
observer matrix, we can see by the size of the null space just how unobservable
the system is. This also means that, since a matrix A with a full rank only has
trivial solutions to Ax = 0, a system is precisely observable if it has an observer
matrix with full rank.

4.2 Observers

Often in a physical system, the input is known, since it usually is controlled.
Furthermore, one can see the output, since it is the product of the system. What
often is not known however is the state of the system. To get this information,
one could use what is called an observer. A mathematical observer is defined
as the following system with one additional property:

Definition 3. Observer

Ω :

{
ẇ(t) = Pw(t) +Qu(t) +Ry(t)

ξ(t) = Sw(t)
(9)

A system Ω as written above is called a state observer for Σ if, for any pair of
initial conditions x0, w0 satisfying e(0) = Sw0 − x0 = 0 and any input function
u(t), we have that e(t) = 0 for all t ≥ 0. [1]

An observer is a whole new system, where the output ξ is an approximation of
the state of the initial system. The state w(t) of this new system is dependent

6

on itself and the input and output of our original system. The main idea of
observers is that one takes a guess, namely Sw0 = ξ0, at what the state is so
that the observer can improve on the precision of the guess. For such a system
to be called an observer, it must satisfy that if the initial guess happens to be
exactly correct that for the rest of time the observer follows the trajectory of
the original system.

If we however want an observer that gives us useful information regardless
of where we place our original guess, we must take a look at stable observers.
These are defined as follows:

Definition 4. Stable observer
A state observer Ω is called stable if for each pair of initial values w0, x0 and
any input function u(t), we have that limt→∞ e(t) = 0 [1]

Stable observers have the property that for any initial guess that one makes,
as time increases the disparity between the guessed state and the original state
will decrease to zero. Hence, the system will converge to the state of our original
system for any initial guess.

4.3 Luenberger observer

The Luenberger observer for a system of format (A,B,C) arises when one intro-
duces a matrix L ∈ Rn×p. The observer is constructed as follows [7]: We take
P = A− LC,Q = B,R = L and S = In. This yields the system:

Ω :

{
ẇ = (A− LC)w(t) +Bu(t) + Ly(t)

ξ(t) = w(t)

We can simplify this a bit further, and introduce some new notation. In most
literature, the Luenberger observer is referred to as having state x̂(t) rather
than w(t). This gives us the following equation for the Luenberger observer
dynamics:

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)) (10)

One can see that if the initial guess happens to be exactly correct, the
equation reverts back to the original system, or indeed [3]:

˙̂x(0) = Ax̂(0) +Bu(0) + L(y(0)− Cx̂(0))
= Ax(0) +Bu(0) + L(y(0)− Cx(0))
= Ax(0) +Bu(0) + L(y(0)− y(0))
= Ax(0) +B(0) = ẋ(0)

Furthermore, when the L matrix is taken precisely so that the eigenvalues of
A−LC are in the left half complex plane, we obtain a stable observer. One can
see this when we consider the error dynamics of the observer:

7

e = x̂− x
ė = ˙̂x− ẋ = Ax̂+Bu+ L(y − Cx̂)− (Ax+Bu)
= Ax̂−Ax+ L(Cx− Cx̂)
= Ae− LCe = (A− LC)e

We can see that the error behaves in accordance to the matrix A− LC, which
we have taken to have eigenvalues in the left half plane. Matrices with such a
property are called stable and will make any state converge to zero over time.
Hence we have that the error will converge to zero as time goes to infinity. In
particular, one can see that if the initial guess was correct and thus the error
at time t0 was exactly zero then the error will not change, since the derivative
ė will remain zero.

We conclude that the Luenberger observer will follow the trajectory of our
initial system when the initial guess is exactly correct. The starting point and
the trajectory will be the same in the case of a perfect initial guess, and the
error always converges to zero, regardless of the initial guess. This means that
the Luenberger observer is a stable observer by the earlier defined definition of
observers.

Remark. A short proof that stable matrices have states converge to
zero: An n×n matrix will have n linearly independent eigenvectors each with its
own (not necessarily unique) eigenvalue. This means that the equation ẋ = Ax
can be written as ẋ = A(α1v1+ · · ·+αnvn), where all vi are eigenvectors. Let λi

be the corresponding eigenvalues for the eigenvectors vi Since all those vectors
are eigenvectors, we can rewrite the expression as: ẋ = λ1α1v1 + . . . λnαnvn.
Here we can use the fact that all the eigenvalues are in the left half complex
plane. It should be noted that writing x in terms of the eigenvalues is essentially
rewriting x in a different basis. If any αi is positive, it will decrease the quantity
of vi over time, since the λi is negative. Vice versa, if α is negative, the quantity
of vi will increase. Hence, the quantity of all of the eigenvectors will decrease
in x, which means that x will tend to zero.

4.4 Basic graph theory

Figure 1: Example of a graph

A graph is formally defined as a set of ver-
tices and edges, or in other words, G = (V,E).
Here V is the set of all the vertices, and E is
the set of all the vertices that are connected
to each other. If for example vertices A an
B are connected, then E will contain the el-
ement {A,B}. As an example, take Figure
1. Each circle with a number represents a
vertex, where the connections between them
represent an edge between the vertices. This
graph consists of the following sets:

V = {1, 2, 3, 4, 5}
E = {{1, 2}, {1, 3}{2, 3}, {2, 5}}

8

You can see that E contains the element
{1, 2}, and as we can see in the graph indeed
1 and 2 share an edge. Since vertex 4 does not share any edges with any other
vertex, we can see that it does not appear in E, but it is still included in V . Two
vertices are referred to as being adjacent if they share an edge and independent
if they do not. We denote the set of all adjacent vertices of vertex i as Ni.

Figure 2: Example of a directed
graph

A graph is called directed if every edge it
has has a direction. If there is an edge from A
to B in the direction of B we now write it as
the ordered pair (A,B). Rather than saying
that A and B are adjacent to each other, we
now say that A is adjacent to B, but B is not
adjacent to A. The sets corresponding to the
graph in Figure 2 are:

V = {1, 2, 3, 4, 5}
E = {{1, 2}, {1, 3}, {2, 3}, {2, 5}{3, 1}}

We can see that now the ordering becomes
very important. Furthermore, while the edge
between vertex 1 and 2 is only contained once,
the edge between vertex 1 and vertex 3 is con-
tained twice. Once to show that vertex 1 is
adjacent to vertex 3, and then again to show
that vertex 3 is also adjacent to vertex 1.

In graphs, one can ”travel” from one vertex to another adjacent one. A
path is defined as the route that can be traveled from one vertex to a certain
other vertex, with the added property that no vertices can be repeated (with
the exception of the first and last vertex). One writes down a path by listing
all the vertices that are on the route. Two examples of paths in the graph of
Figure 1 from vertex 3 to vertex 2 can be constructed as 3, 1, 2 and 3, 1, 2, 3, 2.
This is however not a path in the graph of Figure 2, as there one can not travel
from vertex 3 to 2. Two examples of paths in the graph of Figure 2 starting at
1 and ending at 5 are written as 1, 3, 1, 2, 5 and 1, 2, 5.

With the concept of directed graphs and paths, comes the final property in
graph theory that needs to be discussed in this research, namely connectedness.
An undirected graph is called connected if one can construct a path from any
vertex to any other vertex. In directed graphs, we distinguish between strongly
and weakly connected graphs. A graph is a weakly connected directed graph
if one obtains a connected graph when one removes the directed property of
the edges. A graph is strongly connected if one can construct a path from any
vertex to any other vertex even with the directed property of the edges.

In the graph corresponding to the leftmost illustration in Figure 4.4 we can
easily construct paths from any of the vertices to any of the other vertices, hence
it is a connected graph. If we remove the directed property of the edges of the
graph corresponding to the middle illustration of Figure 4.4 we obtain the graph
corresponding with the leftmost illustration. Since we already have seen that

9

Figure 3: Examples of a connected graph, a weakly (but not strongly) connected
directed graph and a strongly connected directed graph respectively

the graph was connected, we can conclude that the graph corresponding to the
middle illustration is weakly connected. It is however not strongly connected, as
we can see by means of a counterexample: We can not construct a path between
vertex 5 and vertex 1. The graph belonging to the rightmost illustration however
is strongly connected, as it now is possible to construct paths between any of
the vertices.

4.5 Distributed observer

Rather than constructing an observer for the system (A,C), we can divide this
system up into different smaller systems. We can split our original C matrix

into smaller parts as follows: C =

C1

...
CN

. This gives rise to a collection of N

new systems (A,Ci). We define N = {1, . . . , N} as the set containing all the
agents.

Σi :

{
ẋi = Axi

yi(t) = Cix
(11)

It is important to note that if the overall system (A,C) is observable, it does
not provide any guarantees on whether the individual (A,Ci) are observable
too. With that in mind, the idea behind the distributed observer is to create an
observer split into N parts out of all these separate systems, which we will refer to
as agents.

Figure 4: Communication
schematics

If all of the agents were observable, we could
construct a regular Luenberger observer for
them and we could find the original state of
the system. However, when some or all of the
agents are unobservable, something else must
be done. If we want to ensure convergence to
the state, the agents have to share informa-
tion with some or all of the other agents. The

10

way that the agents share their information
is written in a communication graph G. An
example of such a graph is given in Figure 4.
In this example we have that each agent both
shares and receives information from their ad-
jacent numbers. For example, agent 2 receives
information from agents 1 and 3, and shares
information with them as well. This graph is represented in the following Ad-
jacency matrix:

A =

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

As you can see, since agent 1 receives information from agent 2, in the matrix

that represents the graph there is a 1 on the first row, second column, but agent
3 does not share their information with agent 5, hence the 5th row, 3rd column
is a 0 in the matrix.

We define the diagonal weight matrix D as the matrix with on its diagonal
entry di the total weight of all the vertices that share the information with agent
i. Hence, the diagonal weight matrix of the graph represented in Figure 4 is
given as:

D =

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

Lastly, we introduce something called a Laplacian matrix Λ. It is defined as

Λ = D−A. Thus, the Laplacian matrix of the graph represented in Figure 4 is
given as follows:

Λ =

2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2

A way of constructing a stable distributed observer arrises when one expands

on the Luenberger observer. Besides the L matrix that we have seen in the
Luenberger observer, we introduce a coupling gain γ, gain matrices Mi and the
information sets for each of the individual agents Ni, consisting of the agents
that share their information with agent i. We construct the dynamics of each
of the individual agents as follows:

˙̂xi = Ax̂i + Li(yi − Cx̂i) + γMi

∑
j∈Ni

(x̂j − x̂i) (12)

11

As you can see, the first part of the equation is essentially the regular Luen-
berger observer. The second part of the equation corresponds to the information
sharing that happens between the agents. When the L matrices and M matrices
are constructed appropriately, we will see that the agents all converge to each
other and the state. These Mi and Li matrices and the coupling gain in this
research are computed using the following crucial theorem [6]:

Theorem 2. Computation of the required matrices for the distributed
Luenberger observer: Let α > 0. If (A,C) is observable and G is a strongly
connected directed graph with Λ as the Laplacian matrix representation, then
there exists a distributed observer that achieves omniscience asymptotically while
all solutions of the error system converge to zero with decay rate at least α. Such
an observer is obtained as follows.

1. For each i ∈ N , choose an orthogonal matrix Ti such that

TT
i ATi =

[
Aio 0
Air Aiu

]
, CiTi =

[
Cio 0

]
(13)

Where (Aio, Cio) are observable

2. Compute the positive row vector r = [r1, ..., rN] such that rΛ = 0 and
r1N = N

3. Put gi = 1, i ∈ N and take ϵ > 0 such that property (17) holds.

4. Take γ > 0 sufficiently large so that for all i ∈ N

Aiu +AT
iu − (

γ

ri
ϵ− 2α)In−vi) +

1
γ
ri
ϵ− 2α

AirA
T
ir < 0 (14)

5. Choose Lio such that all eigenvalues of AioLioCio lie in the region {s ∈
C|Re(s) < −α}

6. For all i ∈ N , solve the Lyapunov equation

PioSi + ST
i P

T
io + (γ − 2α)Ivi = 0 (15)

Where Si = Aio − LioCio + αIvi , and Pio > 0.

7. Define

Li =

[
Lio

0

]
,Mi = Ti

[
P−1
io 0
0 In−vi

]
TT
i , i ∈ N (16)

In step 3, the property referenced is the following lemma:

Lemma 1. Let Λ be the Laplacian matrix associated with the strongly connected
directed graph G. For all gi > 0, i ∈ N , there exists an ϵ > 0 such that:

TT (RΛ + ΛTR)⊗ InT +G > ϵInN (17)

12

Where ⊗ symbolizes the Kronecker product. Here T is a n2×n2 matrix of zeros
with the transformation matrices Ti on the diagonal. R is the n×n matrix with
the entries of r on its diagonal and G is a special matrix with on its diagonal

the matrices Gi, defined as Gi =

[
giIvi 0
0 0n−vi

]
, where i ∈ N

This method has been proposed by Han, Trentelman et al. [6] and proven
to create a stable distributed observer.

4.6 Funnel control in basic systems

Often in systems with an input the goal is to design inputs such that a certain
output is achieved. The input that satisfies this is called a feedback law. Take
as an example the following one by one system:{

ẋ = bu

y = cx
(18)

If one wanted to design a feedback law that returned an output y to zero, one
introduces a reference signal yref = 0 to obtain an error e = y(t)− yref = y(t).
The goal is of course to design an input that minimizes the error. In this case,

a good feedback law is given as u(t) = −y(t)
bc . One sees this when computing

the derivative of the error.

ė(t) = ẏ(t) = cẋ = cbu(t) = −y(t) = −e(t)

Such a derivative equation will converge to 0, and hence so will the error in
this case. This means that this indeed is a successful feedback law.

Suppose now that we have a system of the form (4), where D = 0, and
suppose that we want to design an input u(t) such that the output converges
to a certain value yref . We define the error again as the difference between
our current y value and the reference y, or e = y − yref . A way to control
such errors in basic systems is via the concept of funnel control. The idea is to
restrain errors to the inside of a funnel shaped area defined by a function φ(t)
to ensure that with time the error decreases as the funnel gets narrower and
narrower. This φ(t) function has to satisfy the following conditions [11]:

φ ∈ Φk = {φ ∈ Ck(R≥0 → R)|φ, φ̇, . . . , φk are bounded and φ(τ) >
0 for all τ > 0, and lim infτ→∞ φ(τ) > 0}

When φ is chosen in such a manner then the funnel area is given by:

Fp
φ = {(t, e) ∈ R≥0 × Rp|φ(t)∥e∥ < 1} (19)

Such a funnel area has the upper bound given by 1
φ , and the lower bound

given by − 1
φ . Furthermore, since the function φ has a limit inferior that is

larger than zero there exists a value of the narrowest part of the funnel, ρ∞.

13

With such a φ,and with the initial error lying somewhere in that boundary,
there is a way to contain the entire trajectory of the error within the funnel
area. The main idea is to introduce a feedback law that increases in magnitude
when the error is close to the funnel boundary and decreases when the error
is closer to zero. This means that if the error is large, the feedback will cause
a larger change, hence bringing the error down. A basic way that that can be
done is by introducing κ(t) as follows [11]:

κ(t) =
1

1− φ(t)2∥e(t)∥2
, and u(t) = −κ(t)e(t) (20)

A funnel control of this kind will usually only work on systems of relative
degree one, where it works off of the high-gain property of such systems. The
high gain property is the property that a system stabilizes with a gain chosen
arbitrarily high (enough). As we can see however in the computation of the
gamma, our distributed observer satisfies this property, as gamma must simply
be selected large enough, with no restrictions.

Figure 5: Funnel control con-
cept

An example of how funnel control works
is provided by Han et al. [5] in Figure 5. It
showcases the funnel with its bounds as well
as the error staying within the bounds of the
funnel.

4.7 Ackermann’s formula

For systems with a nonzero input matrix, the
controllability matrix is defined as follows:[

B AB . . . An−1B
]

This matrix is used in Ackermann’s formula,
another very important tool for the construc-
tion of the distributed Luenberger observer. We use Ackermann’s formula in our
computation of the Li matrices. The formulation of the formula is as follows:

Let ẋ(t) = Ax(t) + Bu(t) be a linear time invariant dynamical sys-
tem, with x(t), B ∈ Rn and A ∈ Rn×n. If the observer matrix
is invertible, then the matrix Â = A − BKT has the user-defined
eigenvalues {λ1, . . . , λp}, with algebraic multiplicities q1, . . . , qp,

where K = (
∏p

i=1(A−λiI)
qi)(Co(A,B)−1)T

1
0
...
0

 (Co(A,B) denotes

the controllability matrix)

We use the formula in the computation of the L matrices when we have a
C matrix in R1×n. To do this however, we still need to alter it a little bit,
since Ackermann’s formula gives you a matrix K that lets A − BKT have all

14

negative eigenvalues, where we need a matrix L that lets A − LC have only
negative eigenvalues. We fix this problem by using Ackermann’s formula using
AT and B = CT . When we use the formula now, we are given a K that lets
AT −BKT have negative real part eigenvalues. Since eigenvalues are conserved
under transposition, we can see that (AT − BKT)T = A − KBT = A − KC
will have the same eigenvalues. Hence, using the formula in this fashion will
provide us with the L matrices needed in the C ∈ R1×n case. In this research
the choice was made to take the Ci ∈ R1×n. Hence, in the case that (A,Ci) is
observable, we can apply Ackermann’s formula directly to find our Li. However,
when this is not the case it is slightly trickier. We must now apply the formula
to (Aio, Cio), a system that we know is observable per design.

4.8 Brief overview of the Euler method

When one is presented with a differential equation in the format of dy
dt =

f(y(t), t) and an initial value y(t0) = y0, it is difficult to determine exactly
how the trajectory looks of y(t). A way of approximating the solution to this
so called initial value problem was given by the mathematical titan Leonhard
Euler himself. He developed what is now called the Euler method in 1769 [4].
The method is based on the definition of the derivative:

f(y(t), t) =
dy

dt
= lim

∆t→0

y(t+∆t)− y(t)

∆t
(21)

This means that for a small enough nonzero ∆t we have that y(t+∆t)−y(t)
∆t ≈

f(y(t), t). Euler used this fact to approximate the solution of the initial value
problem as follows:

y(t0 +∆t) ≈ y(t0) + ∆tf(y(t0), t0) [2] (22)

When one has computed the value of the y(t0+∆t) it is possible to compute
the value of y(t0+∆t+∆t) by using equation (22) and plugging in t0 = t0+∆t.
Using this we can iteratively determine an approximation of y at any time t.

This means that for observers of the format (9) supplied with the initial value
of the state of the observer at time zero that we can compute an approximation
of what the state of the observer will be at later times. To do this, usually a time
interval that researchers wish to inspect as well as an amount of steps is selected
to determine the accuracy of the method. We get that ∆t = time interval

step size For the

distributed Luenberger approximation the agents (which have been provided
with a starting value) will then look as follows:

x̂i(t+
time interval

step size
) ≈ x̂i(t) +

time interval

step size
(˙̂xi(t)) (23)

A big advantage of the Euler method is that it is the easiest to compute of any
of the ways we know to solve initial value problems. Other methods of solving
the initial value problem like the Taylor method or the Runge-Kutta of order 4
do outperform the standard Euler method [9], but are more computational and
complicated.

15

5 Results

In this section the results of the simulations will be discussed. Before we can get
to the results, we must first go over some preliminaries that have been taken.

5.1 Preliminaries

In this research I have cases where all of the agents are in R1×n. For the compu-
tation of the trajectories of the agents the Euler method has been used. Unless
otherwise specified, the standard step size used has been 1

100000 . I have chosen
for the Euler method as it is computationally quick and easy. Furthermore, the
step size of this magnitude should be accurate enough for the purposes of this
research.

5.2 Coupling gain vs placed poles

As was mentioned in the background information on the distributed observer,
the distributed observer given with the dynamics of equation (12) consists of 2
parts. There is the classic Luenberger observer part, Ax̂i + Li(yi − Cx̂i). This
part of the equation is responsible for ensuring that the distributed observer
converges to the state. Then there is the second part γMi

∑
j∈Ni

(x̂j − x̂i),
responsible for the convergence of the agents towards each other. When the
coupling gain γ is taken large enough, we can see convergence of the agents.

As one can imagine, the coupling gain determines how fast the agents con-
verge towards each other. A larger coupling gain however, does not necessarily
guarantee a faster convergence of the entire distributed observer towards the
state. The other side of the coin of the distributed observer is the eigenvalue
placement of (A− LiCi). When the eigenvalues are placed very negatively, the
convergence towards the state will be increased, but does not guarantee that
the agents will find consensus quickly.

In Figure 6 the first 5 dimensions of the state (thick lines) and the agents
(striped lines) is displayed in 4 scenarios. The communication graph used was
the one displayed in 4 and the system and output matrices can be found in the
appendix. The top left showcases the scenario with not very negatively placed
eigenvalues of (A−LiCi) (between -1 and -10) and a coupling gain that is high
enough to ensure convergence, but relatively is quite low (368.4957 in this case).
As we can see, it takes long for the agents to find each other and the state. In the
top right, the coupling gain is increased (to about 3 times the lowest possible,
or 1105.486), but the eigenvalue placement has been left as is. We now see that,
as expected, the agents find each other much more quickly. The convergence to
the state however sees no major advancements. Similarly, the bottom left with
the low coupling gain and very negatively placed eigenvalues of (A−LiCi) (now
between -20 and -30), shows an increase in convergence to the state, but some
of the agents have not found each other before they get very close to the state.
This is however not the case in the bottom right example, where the eigenvalues

16

Figure 6: Figures displaying the effect of eigenvalue placement and coupling
gains.
Left top: Not very negative eigenvalue placement with small coupling gain,
Left bottom: Very negative eigenvalue placement with small coupling gain,
Right top: Not very negative eigenvalue placement with high coupling gain,
Right bottom: Very negative eigenvalue placement with high coupling gain

of (A−LiCi) have been placed very negatively, and the coupling gain has been
taken very high.

5.3 Effect of the amount of connections in the graph

When looking at the distributed Luenberger observer, one could reasonably
postulate that an increase in the sharing of information would lead to a faster
convergence rate. To this end, we have taken a system with no observable agents.
After fixing a gamma (making sure that it is still generally large enough) and
the eigenvalues of the A − LiCi matrices, we added a random connection to
the adjacency matrix until every agent was connected with every other agent.
By plotting the total error of the individual agents, we get the plot as given in
Figure 7.

As we can see from the plot, more connections leads to a faster convergence
in the beginning, but as we get further on, the fewer connections seem to perform

17

Figure 7: Greener lines have graphs with fewer connections, while redder lines
have graphs with more.

Figure 8: Same plot as in Figure 7, at the time interval [9, 10]

better. Furthermore, the final error at time t = 10 for these adjacency plots
was given as in table 1.

As can be seen in the table, this data does not support the idea that more
connections lead to an increase in convergence. All examples that were tested
after this shared a similar outcome, where always the most connected graph
performed the worst. As could be seen in the graph, the error plot seems to
oscillate downwards, where the more connected plots oscillate more aggressively.
One could argue that the outcome of the table could be explained by the fact
that there is a peak at time t = 10. This however seems to not be the case when
we look at the time interval [9, 10] in figure 8. As we can see, no such peak can
be found. Another explanation could be that with the increase in connections,
the agents begin to pull each other in different directions, which would weaken
the effect of the coupling, hence convergence slows down.

18

Connections errors at t=10
5 0.0130
6 0.01359
7 0.0132
8 0.0169
9 0.0307
10 0.0245
11 0.0264
12 0.0165
13 0.0153
14 0.0223
15 0.0160
16 0.0166
17 0.1525
18 0.2340
19 0.7332

Table 1: Table containing the different total errors at time t = 10, compared to
the connections of the graph.

5.4 Observable vs Unobservable

Another interesting case to consider is the difference between the observer ap-
plied to a system with only observable agents, the observer applied to a system
with only unobservable agents, and a mix of the first 2 cases. In the case
that all agents are observable we would expect that when the eigenvalues of
the A − LiCi matrices are set negatively enough that the convergence rate is
significantly faster than the case where some or all agents are observable. How-
ever, in the case that the eigenvalues are all set moderately negative (between
-15 and -25), it remains to be seen which would converge faster. Furthermore,
since observable agents converge without coupling by design, one could wonder
whether convergence is faster when the observable agents are not coupled or if
convergence is faster when they are. To this purpose, we have tested 1200 cases
of random system and input matrices.

In this comparison the communication graph, the eigenvalues of the A−LiCi,
the convergence rate alpha and the amount of steps taken in the Euler method
have been taken the same to try and see the impact with no other factors. The
only things that has been varied are the starting positions of the agents and the
state, which have been taken randomly, the system matrix A ∈ R10×10 and the
output matrix C ∈ R5×10, which ensures the variance of the observability of the
agents, and the coupling gain, since a specific value was required for convergence
in the first place. First we tested coupling only the unobservable agents. We
find the averages of the errors at time 10 as follows:

Next, we tried coupling the Observable agents as well. Since there is no
method of computing the gamma for the case where all agents are observable,
so the agents have remained uncoupled as a control. Similarly, the case where

19

Observable agents not coupled
amount of observable agents average total error of the agents at time 10

5 -2.9284
4 -2.5067
3 -3.0183
2 -3.1408
1 -3.5383
0 -3.5829

all agents are unobservable has remained the same and has been left in as a
control.

Observable agents coupled
amount of observable agents average degree of error of the agents at time 10

5 -2.2701
4 -2.6626
3 -2.8873
2 -3.3460
1 -3.4169
0 -4.0280

Table 2: Amount of unobservable agents compared to their convergence rates

As we can see, when the observable agents are not coupled it results in a
higher error for the cases where there is a mix of observable and unobservable
agents, but as is expected, the error decreases with the decrease in the amount
of observable agents. There is however barely any difference in the coupled
and uncoupled results, indicating that this coupling of the observable agents
is neither beneficial nor detrimental for the convergence rates. In either case
we can see that the more unobservable agents are present in the distributed
observer, the stronger the convergence is. An explanation for this is that the
more unobservable agents the distributed observer has, the higher the chance is
that one of the agents requires a large gamma for convergence. Hence a higher
average gamma could cause a faster average convergence.

5.5 Funnel control

We can use funnel control not only to control a system with an input, but also
systems that make use of coupling gains. In our case, the different agents all
have dynamics that we can expand from (12) into the following:

˙̂xi = Ax̂i + Li(yi − Cx̂i) +Mi

∑
j∈Ni

γji(x̂j − x̂i) (24)

Rather than having one global coupling gain, we divide the coupling gain
up into smaller parts. Thus, for every agent we can set as the reference signals

20

the states of the other agents in its information set. This gives as the error the
expression xj − xi, with j ∈ Ni. We can use the same basic funnel feedback
law as it has been introduced in the theory section to attempt to improve on
the convergence rates. We try using γji = γ

1−φ∥e(t)∥ , where γ is the gamma

computed which is put in to ensure convergence. We implement it with the
φ function given as φ(t) = 10−m − eln(10

−m−0.01)−0.1t. As can be seen quite
easily, the function is continuous and its derivatives and itself are bounded.
Furthermore, φ(0) = 0.01, which means that the initial upper bound is given
as 100 and the lower bound as -100. This means that using this function allows
the agents to have an initial distance between each other of 100. The variable
m is the order of magnitude that one would like the error to be like. Lastly, it
is fairly straightforward to see that the limit inferior is greater than zero.

Taking m = 2 and a random system with unobservable agents, we obtain the
results displayed in Figure 9. As can be seen, the funnel control implementa-
tion yields a decent improvement. Of course however, the distributed observer
without funnel control catches up later on.

Figure 9: Error of the agents over time, striped lines are the agents with funnel
coupling, unstriped are the agents without.

6 Conclusion

The distributed observer is a promising observer that will be increasingly more
used in the future. The Luenberger observer is a good starting point for the
design of these, and it is quite susceptible to all sorts of different improvements.
The method investigated in this paper is best applied to systems with a low
number of observable agents, with a graph that is not overly connected. It
could be improved upon slightly with the introduction of simple funnel control.

21

7 Discussion

In section 5.4 one should note that there is a pretty significant disparity between
the controls of the two tests. The difference between uncoupled fully observable
agents and coupled fully observable agents should have acted as a control on
the two computations, as they are both computed the same way. The same
holds for the fully unobservable agents. We can see however that the difference
is relatively high. It should thus be noted that this could indicate a too low
sample size. Due to the large amount of computations that are required, no
larger sample size has been attempted yet in this research.

For future research, it could prove to be interesting to investigate not only
cases where the agents are 1 × n. Furthermore, studying systems of a greater
magnitude could reap some interesting results.

References

[1] B. Besselink. Linear systems lecture notes.

[2] BN Biswas et al. “A discussion on Euler method: A review”. In: Electronic
Journal of Mathematical Analysis and Applications 1.2 (2013), pp. 2090–
2792.

[3] George Ellis. Observers in control systems: a practical guide. Elsevier,
2002.

[4] Leonhard Euler. Institutionum calculi integralis volumen primum... Vol. 2.
1769.

[5] Seong Han and Jang Lee. “Fuzzy Echo State Neural Networks and Fun-
nel Dynamic Surface Control for Prescribed Performance of a Nonlinear
Dynamic System”. In: Industrial Electronics, IEEE Transactions on 61
(Feb. 2014), pp. 1099–1112. doi: 10.1109/TIE.2013.2253072.

[6] Weixin Han et al. A simple approach to distributed observer design for
linear systems. 2017. doi: 10.48550/ARXIV.1708.01459. url: https:
//arxiv.org/abs/1708.01459.

[7] David Luenberger. “Observers for multivariable systems”. In: IEEE Trans-
actions on Automatic Control 11.2 (1966), pp. 190–197.

[8] Richard M. Murray. Feedback Systems: Notes on Linear Systems Theory.
Oct. 2020.

[9] Theresah oppong-kyekyeku. Numerical analysis on initial Value Problem.
Feb. 2016. doi: 10.13140/RG.2.1.2290.4082.

[10] Francisco F. C. Rego et al. “A design method for distributed luenberger
observers”. In: 2017 IEEE 56th Annual Conference on Decision and Con-
trol (CDC). 2017, pp. 3374–3379. doi: 10.1109/CDC.2017.8264153.

[11] Timo Reis, Sara Grundel, and Sebastian Schöps. Progress in Differential-
Algebraic Equations II. Jan. 2020. isbn: 978-3-030-53904-7. doi: 10.1007/
978-3-030-53905-4.

22

[12] Haik Silm et al. “A simple finite-time distributed observer design for linear
time-invariant systems”. In: Systems Control Letters 141 (July 2020). doi:
10.1016/j.sysconle.2020.104707.

8 appendix

Matrices used in their respective sections

Section 5.2

A =

0 −1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 0

C =

7 −8 −7 −8 3 5 4 7 −1 0
9 −5 10 −2 −10 5 −10 4 −2 −1

−8 1 10 9 7 −2 −5 −4 6 3
9 10 0 6 9 3 −10 9 6 4
3 10 6 10 4 −7 −8 −10 −7 5

Section 5.3

A =

−4.0000 10.0000 7.0000 0 5.0000 −3.0000 −8.0000 4.0000 −10.0000 −7.0000
−4.1465 −4.8565 −0.5237 1.2678 −1.5241 0.1720 3.4204 −1.1041 −1.3261 2.6303
−10.4394 −17.5696 6.4288 4.8035 4.4278 1.5160 18.2613 −9.3122 6.0218 −5.1092
1.6591 22.3543 0.3567 4.2947 −5.6417 0.7259 −25.3919 6.9683 3.4673 −1.3361

−8.2197 −9.7848 10.2144 −7.0982 −4.7861 6.7580 −0.8694 −9.6561 −0.4891 9.4454
−7.0000 0 9.0000 −1.0000 1.0000 −1.0000 −6.0000 4.0000 8.0000 9.0000
3.5126 11.4978 −11.1670 0.5626 −1.1657 −0.1021 −11.9715 5.8642 −6.8587 4.2941
7.3409 −18.3543 1.6433 6.7053 4.6417 14.2741 14.3919 −13.9683 7.5327 7.3361
9.8535 −14.8565 9.4763 2.2678 8.4759 7.1720 13.4204 −10.1041 −8.3261 −3.3697
1.0732 1.9283 1.2619 4.3661 4.2620 3.4140 −11.7102 −6.4480 0.1630 −8.8151

C =

8 −2 −8 −4 −5 −6 −7 −6 −9 −1

−2 7 −5 −2 6 −10 −8 0 −1 10
−8 −2 −9 −8 −9 −7 2 −3 −7 6
−1 −2 −1 0 −2 −8 8 0 −10 −10
−4 −3 −5 4 −10 −5 9 −5 10 4

MATLAB code determining the necessary tools for the dis-
tributed observer

23

24

MATLAB code that determines the trajectory and error
of the agent states

25

