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Abstract: The Game of Skull is a multi-player board game, which similarly to poker and other
bluffing games, is characterized by its partially observable outcomes. While easy to learn for
humans, it poses a challenge to Artificial Intelligence algorithms due to the partial observability
and its game mechanics - it has a large number of short stages where different actions are legal.
In this paper, we are investigating to what extent Deep Q-Network agents could learn how to play
the Game of Skull. Furthermore, by adapting and incorporating the scaffolding learning technique
from the field of psychology with our Multi-Agent Deep Reinforcement Learning methods, we are
researching if these methods are an effective tool to learn the game and how they compare to the
Vanilla DQN agents. According to the results outlined in this paper, the agents successfully learn
to play the game and consistently reach the final stage, however, using those algorithms results in
deterministic agents that deploy rigid strategies, and can hardly adapt to new playing styles. In
addition to that, the agents that learned through the scaffolding technique perform slightly better
than Vanilla DQN agents, which is a possible direction for future research on the topic.

1 Introduction

Multi-agent Deep Reinforcement Learning
(MADRL) refers to the usage of deep reinforcement
learning methods in a multi-agent environment.
The investigation of multi-agent problems is slowly
gaining traction due to its relevancy in real-world
applications (Gronauer & Diepold, 2022). These
problems include coordination of autonomous
vehicles (Shalev-Shwartz, Shammah, & Shashua,
2016), traffic control (Ma & Wu, 2020) and
financial trading models (Lux & Marchesi, 1999).
As multi-agent learning is inherently more complex
and computationally expensive than single-agent
learning, games are often used as stepping stones in
investigating that field. For instance, Multi-Agent
Reinforcement Learning(MARL) models have been
used to tackle some of the most challenging esports
such as Starcraft II (Vinyals et al., 2019) and Dota
2 (Berner et al., 2019), achieving performance
comparable to the top human players in those
games.

Game theory plays a big role in formally rep-
resenting MARL models. As described by Koller
and Pfeffer (1997), one way of classifying games
would be whether the agents have perfect or im-
perfect information for the current state of the
world. A large portion of the existing research
focuses on games with pimpeformation such as
Chess, Shogi, and Go (Silver et al., 2017). How-
ever, complete state observability is rare in real-life

scenarios, as often either the environment or the
interactions between the agents contain some un-
certainty. Therefore, imperfect information games
are valuable research topics due to their possible
applications, e.g. auctions, cybersecurity, negotia-
tion (Brown & Sandholm, 2017). Some examples
of these types of games are Poker with all its vari-
ations, Bridge, and Liar’s Dice.

This research will be focused on one imperfect
information game - Skull (Gragera Aguaza, Baffier,
& Suppakitpaisarn, 2015). The game of Skull is
a multiplayer turn-based card game characterized
by little stochasticity and partially observable out-
comes. According to Gragera, Baffier, and Suppak-
itpaisarn (2013), Skull has a shorter learning curve
for humans than some other popular turn-based
games such as Go and Shogi due to its large num-
ber of short stages. The number of possible actions
is small in each stage, which makes the gameplay
intuitive. However, due to its game mechanics,
which will be explained further in this paper, im-
plementing an AI strategy can be challenging.

In this research, the Game of Skull will be for-
malized as a Partially Observable Stochastic Game
(POSG)(Hansen, Bernstein, & Zilberstein, 2004).
As a POSG, the Game of Skull provides an appro-
priate environment and rules for implementing a
Multi-Agent Deep Reinforcement Learning algo-
rithm (Du & Ding, 2021). One way of implement-
ing MADRL is by using a Deep Q-network (DQN)
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model (Mnih et al., 2013). In a DQN, an action
and a state value are used as input for a neural
network in a Q-learning framework. The output
of the network is the estimate of the reward given
the input state and action. However, as described
by Heinrich and Silver (2016), DQN learns a de-
terministic strategy that can impose an obstacle
in imperfect-information games. A deterministic
strategy could be a disadvantage due to it being
very predictable in a deterministic environment
and can essentially take away the bluffing aspect
of the game. Furthermore, a DQN agent learns
the best response to the historical experience, and
consequently, if there is a change in the opponent’s
strategy, the performance of the DQN agent might
stagnate. Therefore, it is relevant to investigate
how a DQN algorithm performs in a MARL model
of the imperfect-information game Skull and more
specifically, to what extent can the DQN agents
learn to play the game. Furthermore, how would
different hyperparameters for the Deep Q-Networks
influence the gameplay of two agents that train and
play against each other?
When it comes to single-agent environments,

OpenAI’s Gym (Brockman et al., 2016) has pro-
vided a standardized API and a wide collection
of environments with a common interface, which
prompted and facilitated the research in the field.
However, despite Gym’s success in single-agent
modeling, it is not thoroughly optimized for MARL
as described by Terry et al. (2021). For that reason,
in this research, we will utilize PettingZoo (Terry
et al., 2021), which is designed to be a Multi-agent
equivalent to Gym. PettingZoo takes advantage of
the Agent-Environment Cycle (AEC), which pro-
vides a novel approach for multi-agent games.

The rest of this research will explore the two-
player game in three different experiments. The
first experiment will be focused on the normal
implementation of the DQN algorithm and the
effect of different training durations and values
of the exploration coefficient. After that, we will
introduce a modified version of the DQN algorithm
using scaffolding that aims to improve the learning
of the different phases. And finally, in the last
experiment, a tournament will be held to determine
how the algorithms perform against each other.

2 Background

2.1 Game of Skull

Originally, the Game of Skull is an analog mul-
tiplayer card game that involves bluffing. The
number of players can be between two and six, but
in this paper, we will focus on the two-player setup.
At the beginning of the game, each player is dealt
four cards - one skull and three roses. Afterward,

the possible actions a player can take depend on
the current phase of the game. The game consists
of three different phases. In the first phase, which
we will call the playing cards phase, the players
put a card face-down on the board in turns. Once
all players have placed at least one of their cards,
they can either play another card or place a bet. If
a player decides to place a bet, they would essen-
tially have to declare the number of cards with a
rose symbol, that they can flip from the face-down
cards on the table. When there is a bet in place,
the second phase, or the betting, begins. In this
phase, which is again sequential, the players can
either raise the bet, if they believe that they can
flip more roses, or pass a turn. After all of the
players, besides the one that raised the highest bet,
have passed a turn, the game enters into the last
phase - the flipping phase. This phase is substan-
tially different than the previous two, as the only
allowed action is to flip a card from the ones on the
board. Additionally, there are no turns, i.e. only
one player (the one that bet the most previously)
acts in this phase. This player has to flip the same
number of cards as the bet that they raised. If all
of the cards they flip are roses, they win the game.
Otherwise, they lose if they flip a skull.

As mentioned before the focus of this study will
be on the two-player variant of the game. As a re-
sult of that, it is appropriate to formalize the game
as a two-player zero-sum game. This indicates that
the sum of the payoffs of the players will be zero
at the final stage, in other words, when one player
wins, the other loses, and vice-versa.

2.1.1 Partially Observable Stochastic
Games

When an agent is playing the Game of Skull, they
do not know explicitly the actions of the other
player. For instance, the cards of the opponent are
placed with their face downwards, as well as, the
opponent might bet more than they can success-
fully play in order to deceive others. Therefore,
when the game is analyzed from the point of the
players it is stochastic, although its action space is
deterministic in nature. Furthermore, this also im-
plies that the game has partially observable states
since the agents are only able to definitively know
their own actions. As a result, we will represent the
Game of Skull as a Partially Observable Stochastic
Game mark(POSG).

As described by Hansen et al. (2004) POSG is a
tuple of ⟨I,S, {b0},A,O,P,R⟩ where:

• I is a finite set of agents, in this case: {i, j}

• S is a set of states

• b0 ∈ ∆S indicates the initial state
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• A is the set of actions

• O is the set of observations

• P(s′|s, a) is the set of transition probabilities
given state s and an action a

• R : S ×A → RI is the reward function for the
agents

2.2 Reinforcement Learning

Before we continue with our implementation, it
is important to explain the fundamentals of the
RL and DRL in order to provide the appropriate
context for this research. In essence, reinforcement
learning is the process of learning through inter-
acting with an environment and receiving positive
or negative feedback as the result of that inter-
action. This feedback then propagates change in
the agent’s behavior depending on the differences
between the outcome of their actions and the de-
sired outcome, similar to how humans learn a new
task. Respectively, when RL is applied to a multi-
agent problem, the joint actions of all of the agents
determine the rewards and the state transitions.

Most of the problems in RL are formalized as a
Markov Decision Process (MDP), however, for the
Game of Skull, we will use a POSG model, which
closely resembles a Partially Observable Markov
Decision Process (POMDP). The main difference
between a POSG and a POMDP is that the former
includes a set of agents. Nonetheless, they both are
characterized as problems that have the Markov
property. Meaning that the current state provides
complete information for future decision-making,
and therefore a transition model can be successfully
used to map a state-action pair at time t to the
probabilities of transitioning to a state st+1. In
order to illustrate that better, we can compare an
MDP to an environment that does not possess the
Markov Property. In such an environment, the
probability of moving to a state st+1 from a state
st when making an action at depends on all of the
previous actions and spaces.
In contrast, in a Markov environment, the next

states depend only on the current state:

P(s′|s, a) = Pr{rt+1 = r, st+1 = s′|st, at} (2.1)

This results in a more efficient estimation of
the state transitions, as the previous game states
are effectively irrelevant. This is important in the
context of Skull, as it provides clear constraints for
how to represent the states of the environment.
In a general POMDP model the state of the

environment at timestep t can be represented as
state st ∈ S. Consequently, an agent in such an
environment observes the state, performs an action

Figure 2.1: Agent-Environment Cycle

at ∈ A, and the environment transitions to a new
state st+1. Usually, a reward rt ∈ R is given to the
agent after they perform action at. However, in the
Game of SKull due to the partial observability and
the large gamespace of the environment, a reward
will be given only after the end of a full game cycle.

During the training of the RL agents, a number of
games are repeated. The reason for this is that the
agent is trying to gather the information that would
allow for devising an optimal policy π : S → A that
maximizes the expected sum of the future rewards.

When it comes to multi-agent environments this
needs to occur for multiple agents at a time, where
each agent should devise their own policy, based
not only on their actions but on their opponents’
actions as well. In the two-player case, the agent
would receive an observation ot of the state st,
make an action at and the state of the environment
will change to st+1. It is important to note that the
observations give some, but not complete, informa-
tion on the state of the game. Afterward, the other
agent receives an observation ot+1 of the state st+1,
makes an action at+1 and the state transitions to
st+2. This cycle is illustrated in figure 2.1.

2.2.1 Q-learning

There are multiple ways to solve a RL problem, de-
pending on the available information. For example,
if the transition model is available, or the agents
are receiving enough information to estimate it,
the problem can be solved through model-based
learning. In such scenarios, the agents are trying
to estimate a model of the environment in order to
maximize the rewards of every action entirely based
on the transition probabilities. Another approach
would be to use model-free algorithms, where the
agents are adjusting their policy depending on the
consequences of their actions. In this study, the
transition model is only known from an outsider’s
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perspective, therefore we will be approaching the
problem with model-free learning. One way for
implementing model-free learning is Q-learning.
This method allows us to use a state-action-value
Qπ(s, a) to calculate the expected return(see equa-
tion 2.2), instead of using the transition probabil-
ities provided by the model P(st+1|st,at

). In this
formulation, γ is used to denote a discount factor
between 0 and 1, which determines the evaluation
of the rewards, e.g. if γ is higher future rewards
would be favored over immediate rewards and vice-
versa. This will be further explained later on.

Qπ(s, a) = E[

∞∑
n=0

γnrt+n+1|s, a, π] (2.2)

Due to the aforementioned Markov Property, the
Q-value of the future state could be used to improve
the estimation of the current state. This is referred
to as bootstrapping and an agent can use it to
learn a policy Qπ. This process is formalized by
the Bellman equation shown in 2.3.

Qπ(st, at) = Est+1
[rt+1 + γQπ(st+1, π(st+1))]

(2.3)

2.2.2 Deep Q-Networks

For problems with full observability and with small
state and action spaces, we can compute the Q-
values for each state-action pair and store them
in a Q-table. However, due to the complex game
space of Skull (Gragera et al., 2013), this is not an
appropriate solution to our problem. Therefore, a
Deep Reinforcement Learning algorithm such as a
Deep Q-Network is a more suitable approach.
The DQN is a neural network that maps the

input observation to an output action which is
essentially represented by the predicted Q-value.
As a consequence, the action that an agent would
choose would be the one with the highest predicted
Q-value. After each training iteration, the Tem-
poral Difference target is calculated and updated
using the Bellman equation (see Equation 2.4). Af-
terwards the DQN can be retrained with the next
batch.

Q(St, at) = (Rt + λmax
a

Q(St+1, a)) (2.4)

2.2.3 ϵ-greedy

We will be using the ϵ-greedy Exploration strategy
(Sutton & Barto, 2018)to choose an action in order
to assure exploration in the initial stages of the
training and exploitation in the later ones. Usually,
it starts with a high value of 1 and it decreases
linearly during the training until it reaches the

predefined minimum. The probability of an agent
choosing to explore a random action is ϵ and the
probability to exploit the predicted best action by
the DQN is 1− ϵ. The value of ϵ is a probability,
therefore it is between 0 and 1.

2.2.4 Experience Replay

In our algorithm, we will be using Experience Re-
play in this implementation. This a technique, in
which the states of the game are stored in batches
of size N and then used to train the agent. On one
hand, this proves efficient in terms of time complex-
ity, as the agent only needs to be trained at every
episode N rather than at each time step. Its other
benefits are that, instead of using the collected
data once and throwing it away after training, it
can be reused multiple times and it improves the
stability of the DQN as discussed by Fedus et al.
(2020). Because of that, it is less likely that the
agents forget how to play the games in the first
part of the training.

3 Methods

3.1 Skull Environment

Due to the lack of preexisting environments for the
Game of Skull, in this research, we have created
and used a custom one built in Python. In order to
take advantage of the Agent Environment Cycle(see
Figure 2.1) that PettingZoo offers, this custom en-
vironment inherits the AECEnv class provided in
their documentation. An AEC reinforcement learn-
ing environment in Python requires a init (),
reset(), and step() functions. The other important
aspects are the representation of the state, rewards,
and the action space.

3.1.1 Observations

Due to the partial observability of the environ-
ment, the agent’s representation of the state is
done through observations. In the game of Skull, a
player has knowledge about the cards in their own
hand, the cards that they played, the number of
cards that the opponent played, the current bet,
and the number of cards that have to be flipped
once the flipping phase starts. The cards that the
opponent has played and whether they are bluffing
during the betting phase are unknown. The obser-
vations only include information about the current
state of the game, since, due to the Markov Prop-
erty, the next state only depends on the current
one. In the implementation within the environ-
ment class, this is represented through a dictionary
consisting of discrete values. The step() and the
reset() function however return a one-dimensional
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named tuple with the same values in order to pro-
vide a vector input for the DQN algorithm of the
agent.

The observations in our implementation consist
of the following 12 discrete values:

• self(self0, self1, self2, self3): The number
of cards that the agent making the observation
has played.

• opponent(opp0, opp1, opp2, opp3): The
number of cards that the opponent has played.

• current bet: The raised bet so far in the
game

• cards to flip: The number of cards that have
to be flipped in the last phase of the game

• skull: The location of the skull of the current
player

• phase: The current phase of the game

3.1.2 Action Space

In Skull, the player essentially has 5 actions that
he is able to make through a game(playing a skull,
playing a rose, betting, passing, and flipping), how-
ever, whether or not those moves are legal depends
on the phase. For example, an agent cannot start
flipping cards when there is no bet in place in the
playing cards phase of the game. Therefore, the
action is represented through a single value with
12 possible discrete outcomes. The possible actions
in this representation are:

1. play skull

2. play rose

3. raise bet

4. pass on betting

5. flip the card in slot 0(from the agent’s own
cards)

6. flip the card in slot 1(from the agent’s own
cards)

7. flip the card in slot 2(from the agent’s own
cards)

8. flip the card in slot 3(from the agent’s own
cards

9. flip the card in slot 0(from the opponent’s
cards)

10. flip the card in slot 1(from the opponent’s
cards)

11. flip the card in slot 2(from the opponent’s
cards)

12. flip the card in slot 3(from the opponent’s
cards)

3.1.3 Rewards

As previously explained, the game is a two-player
zero-sum game, which means that the agents re-
ceive rewards only after a full game cycle is com-
pleted. Following that formalization, the rewards
of the game are 1 for the agent that won, and -1 for
the opponent. Furthermore, the game has differing
legal and illegal actions in the three stages. Rather
than including a knowledge-based rule-following,
we chose to give a reward of -100 when an agent
performs an illegal action. If that is the case, the
reward for the opponent is 0.

3.1.4 Game mechanics

In our implementation, the init () function ini-
tializes and sets all of the parameters to their de-
fault values. Since the starting state of a Skull
game is deterministic, these values are the same for
every start of a game. Consequently, the reset()
function is essentially the same as the init (),
however, the init () function does not return
anything, while the reset() returns the initial ob-
servation which is used to train the model.

It is important to note that usually in multiplayer
games, the agents are still trained through self-play
before facing the opponent. In this implementation,
however, two agents train while playing against
each other, which leads to sequential learning of
the two agents due to the turn-based nature of
the game. In other words, while illegal actions are
expected from both parties, the agent that starts a
game first will be able to figure out which actions
are illegal before the other agent gets the chance to
play. As the turn of the game is not randomized,
i.e. agent 0 always plays first, we can see this trend
clearly through the training.

3.1.5 Deep Q-Network

As explained previously, we will be using a Deep Q-
Network with Experience Replay and an ϵ-greedy
policy to train the agents. We chose a three-layer
design for the neural network - an input layer, a
hidden layer, and an output layer. This was imple-
mented with PyTorch and our DQN class inherits
its nn.Module(). The input of the neural network is
a one-dimensional vector of size 12, and we directly
use the observation returned by the step() and the
reset() functions of the environment class for that.
The output layer is also a one-dimensional vector
of size 12, but it indicates the best possible action
based on the input observation. The hidden layer
is of size 256. The layers use a Relu activation func-
tion. For more information on the layers, weights,
and biases of the Deep Q-Network see Listing 1. We
use the Mean Squared Error loss function provided
by PyTorch’s nn.Module() to calculate the loss, as
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it is one of the most commonly used functions in
RL problems. For the experience replay batches of
size 64 were used.

Listing 1: DQN State Dictionary

f c 1 . weight
torch . S i z e ( [ 2 5 6 , 1 2 ] )

f c 1 . b i a s torch . S i z e ( [ 2 5 6 ] )
f c 2 . weight

torch . S i z e ( [ 2 5 6 , 256 ] )
f c 2 . b i a s torch . S i z e ( [ 2 5 6 ] )
f c 3 . weight

torch . S i z e ( [ 1 2 , 256 ] )
f c 3 . b i a s torch . S i z e ( [ 1 2 ] )

3.1.6 Agents

The agent class effectively represents a player in
the game of Skull. Using PyTorch in this context
allowed us to calibrate precisely the hyperparame-
ters. In the init () function of this class, we can
set up a γ, ϵ value, ϵ decay coefficient, minimum ϵ,
learning rate, maximum memory size, as well as the
shape of the observation and the number of actions
that are available to the agent. Additionally, each
agent has a Q eval device, which is essentially an
instance of the Deep Q-Network class explained
above.

Each agent has three important functionalities -
storing transitions for the Experience Replay, choos-
ing an action, and learning. Choosing an action is
either done randomly while the epsilon is high in
order to promote exploration in the initial episodes
of the training or based on the predicted best ac-
tion by the DQN of the agent in the later epochs.
After each step, the agent stores the transitions
of one state to the other in its state, new state,
reward, action, and terminal memory slots. These
transitions are eventually used for learning as they
are sent in batches to the DQN in the form of ten-
sors. Subsequently, the loss is calculated and the
epsilon is decreased if it has not already reached
the minimum possible value.

4 Experiments

Three experiments were designed in order to test
the extent to which an agent can learn to play the
game in such a setting. In all three experiments,
Agent 0 refers to the agent that plays the first move
in the game, and Agent 1 to the second player.

4.1 Experiment 1

The first experiment is aimed to investigate how a
Vanilla DQN algorithm performs in the setting and
what is the behavior of the agents after they learned
to play the game in such a way. We conducted three

Training 1 Training 2 Training 3
Average Score Agent 0 -0.36 0.84 0.28
Average Score Agent 1 0.02 -0.3 -5.48

trials with a different number of games played in
each of them. Naturally, we chose different values
for the epsilon decay parameter in the three trials,
as we changed the number of games played. We
chose very small numbers to represent that because
exploration is highly desired when learning the
game. This is the case due to different actions
being legal and illegal in the three stages of the
game. After each trial, the playing behavior of each
agent will be investigated over 100 games, where
the ϵ will be set to 0 to avoid random actions during
the testing.

1. Training agent0 and agent1 with eps decay =
5 ∗ 10−4 for 10 000 games

2. Training agent0 and agent1 with eps decay =
5 ∗ 10−5 for 100 000 games

3. Training agent0 and agent1 with eps decay =
2 ∗ 10−5 for 300 000 games

4.1.1 Results

We ran all three trials of the experiment. The
general pattern of learning of the agents throughout
training is relatively similar - Agent0 has lower
scores than Agent1 in the first part of training,
which then increases while Agent1’s scores decrease.
During the testing, Agent 0 was exclusively the
winner for all games in trial 2 and trial 3(see Figure
4.4 and 4.6). In trial 1, however, as we can see on
Figure 4.2, Agent 1 won all of the games. Regarding
the playing behavior, the agents in each trial, were
playing the same game over and over. In trial 1,
the bet at the last stage was 4 and the game ended
due to Agent 1 flipping 4 roses. In trial 2 and 3,
the final bet was 1.

4.1.2 Discussion

After running the experiment, we can see that a
longer training period does not necessarily indicate
a better performance at the last stages of training.
Furthermore, the learning patterns are heavily in-
fluenced by the design of the game mechanics in
this research. Due to Agent0 always having the
first turn it learns how to play the game first, there-
fore it is also not surprising that in two out of the
three trials, Agent0 has a higher average score than
Agent1. However, as expected the vanilla DQN al-
gorithm is very rigid in terms of learning a strategy,
which is shown by the fact that the agents repeat
the same gameplay. Considering that the game
is deterministic, the action space is deterministic,
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Figure 4.1: Experiment 1 Trial 1 Training
Agent0 & Agent1

Figure 4.2: Experiment 1 Trial 1 Testing Agent0
& Agent1

Figure 4.3: Experiment 1 Trial 2 Training
Agent0 & Agent1

Figure 4.4: Experiment 1 Trial 2 Testing Agent0
& Agent1
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Figure 4.5: Experiment 1 Trial 3 Training
Agent0 & Agent1

Figure 4.6: Experiment 1 Trial 3 Testing Agent0
& Agent1

and the agents act in the same manner once they
are trained, we can conclude that the agents also
act deterministically.

4.2 Experiment 2

The second experiment focuses on a different ap-
proach. As the game consists of three phases, the
training is split into three parts. Due to our for-
malization of the problem as a zero-sum one, we
cannot provide the agents with intermediate re-
wards. Thus, we adopted an approach similar to
the scaffolding technique (Zydney, 2012) in psy-
chology. Initially, the agents are trained for 100 000
epochs only in the third stage of the game. The
initial observations are randomly generated com-
plying with the rules for a valid state in this phase.
The turn of the agents is also random because this
stage is essentially a single-player subgame. After-
ward, the models are saved, the epsilon coefficient
is reset and the agents are retrained from the sec-
ond phase onward. The initial observations are
again randomly generated based on the rules of
the game. Finally, we save the models and retrain
them once more but on the whole game, i.e. all
three phases.

1. Training agent0 and agent1(same hyperparam-
eters) with eps decay = 0.0001 for 200 000
games only on the third stage

2. Reusing the model and training on the second
and third stages with the same eps decay

3. Reusing the model and training on all stages
with the same eps decay

Afterwards, the final models will be tested for a
100 games with ϵ set to 0.

4.2.1 Results

During the first part of this experiment, where
the agents learn by only playing the last phase
of the game, we can already see a substantially
different learning pattern compared to the previ-
ous experiment (see Figure 4.7). The agents are
no longer learning sequentially, but rather in a
randomized manner, which results in very similar
learning curves throughout the training period of
this part of the game.

A similar pattern can be noticed during the sec-
ond part of training (see Figure 4.8), where the
agents start from the second phase and continue
until the end of the game. However, during the
last part of training, where the initial turn was no
longer randomized, these agents learn in a similar
way to the agents in Experiment 1 (see Figure 4.9).
After Agent 1’s initial lead in the games, we can
see a drop in its performance, and a consequential
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Figure 4.7: Experiment 2 Part 1 Training
Agent0 & Agent1

improvement of the performance of Agent 0, which
continues until the end of the training period. The
average scores were 0.15 and -1.25 for Agent 0 and
Agent 1 respectively.

Subsequently, the agents were tested once again
on a 100 games (see Figure 4.10). The agents were
once again repeating the same gameplay over and
over, with Agent 0 being exclusively on top. In
all of the games the bet at the final stage was 1,
which means that Agent 0 only had to flip one rose
card to win the game. That indicates that Agent
1 was effectively losing the game over and over by
passing on their last turn.

4.2.2 Discussion

During the first two parts of the experiment, we
can see how a randomized starting turn completely
changes the learning patterns compared to a fixed
turn. Furthermore, this results in a more normally
distributed training through this period, where
there is no clear player leading at any given point
between Agent 0 and Agent 1. However after letting
the agents play the whole game with a fixed turn,
we can see the familiar pattern from Experiment
1 in the beginning of the training. In addition to
that, the results and the playing behaviour also
overlap with the ones from Experiment 0 - for every
game without illegal actions, the same gameplay is
repeated and one of the agents wins consistently.
Therefore, we can again conclude that the agents
act deterministically 99% of the time as they only
have 0.01(ϵmin) chance of performing a random
action. However, the results from the randomized
turn in the first two parts of this experiment lead

Figure 4.8: Experiment 2 Part 2 Training
Agent0 & Agent1

Figure 4.9: Experiment 2 Part 3 Training
Agent0 & Agent1
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Figure 4.10: Experiment 2 Testing Agent0 &
Agent1

to the question if the stochasity introduced by
making the starting state uncertain, would lead to
a substantially different behaviour.

4.3 Experiment 3

The goal of this experiment is to determine whether
the different ways of learning the game that we out-
lined in Experiments 1 and 2 provide an advantage
in a competitive setting. For this purpose, during
our first two experiments, we saved agents at dif-
ferent checkpoints in the last stage of the training,
depicted in Figure 4.11. As we saved both agent
0 and agent 1 at each checkpoint in each experi-
ment, we ended up with 20 agents. However, as
the turn in the game is constant, i.e. agent0 always
starts the game, and in addition to the conclusion
after Experiment 1 and 2 that the agents act de-
terministically, we will always let an agent0 start
first and play against an agent1 in the tournament.
Furthermore, as agents from the same experiment
have already been tested against each other, we
will only explore games where agents from different
experiments compete. Therefore, there will be in
total 50 games. The exact pairing in those games
is explained in Table 4.1.

4.3.1 Results

The experiment resulted in a large number of games
ending due to an invalid action - 19 out of 50, with
the larger part of them(14 games) being when the
starting agent was from the first experiment. The
complete results of this experiment can be found
in Appendix B.

• Games 1-25: Agent 0 from Experiment 1,
Agent 1 from Experiment 2

During the first 25 games, Agent 1(from Ex-
periment 2) caused 5 of them to end due to
making an illegal move, while Agent 0(from
Experiment 1) played legally in all of them. In
addition to that, during the valid rounds from
these 25 games, Agent 0 won 13 times, while
Agent 1 won only 5 times. However, while

agents playing first from Experiment 1 Check-
points 1-3 were exclusively winning, the ones
from Checkpoints 4 and 5 were losing against
the agents from the second experiment. In
terms of their playing behavior, it is worth
noting that each Agent 0 rarely changed their
card placing strategy, and consequently, that
led to the same behavior in the multiple Agents
1, that played against the same opponent. The
bets that were played were around 3 on aver-
age, reaching a maximum of 5 in the first two
games and a minimum of 1 in games 4 and 19.

• Games 26-50: Agent 0 from Experiment 2,
Agent 1 from Experiment 1

Throughout games 26 to 50, the agent that
played first was from the second experiment,
and its opponent was from the first experiment
respectively. Agent 1 performed an invalid
action in all 14 games that ended for this rea-
son. In terms of the 11 valid games, Agent
0 from Experiment 1 was almost exclusively
winning, more specifically, Agent 0 won a total
of 10 games. In terms of playing behavior, the
agents place their cards in a similar way as the
agents in games 1 to 25, however, the placed
bet in all valid games but game 31 is 1.

Overall, out of the 31 valid games, the agents
from the second experiment won a total of 17 times,
while the ones from the first experiment - 14 times.

4.3.2 Discussion

In this experiment, we can see a distinct strategy in
all of the games that are started and won by Agent
0. This strategy was not explicitly present when the
first player was from Experiment 1. Mainly, the bet
does not rise above 1, and all of the games are won
due to Agent 0 flipping all cards without revealing
a skull. This perhaps indicates that the Agents
that learned through scaffolding found a loophole
in the strategy, by deducing that the higher bet
leads to a higher chance of flipping a skull. It
is important to note that this behavior was not
present while the agent playing first was trained in
the first experiment.

Nonetheless, it cannot be ignored that a large
part of the games that were played in Experiment
3 ended due to an illegal action being made by one
of the agents. This is supported by the findings
of Heinrich and Silver (2016), which note that the
DQN algorithm leads to learning a deterministic
strategy, and therefore it is sub-optimal against
new opponents. Due to that, although the agents
that learned through the scaffolding technique per-
formed better overall, we cannot derive any defini-
tive conclusions due to the small margin in win
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Figure 4.11: Experiment 3 - Setup

Agents Opponents

Checkpoint 1 Checkpoint 1 Checkpoint 2 Checkpoint 3 Checkpoint 4 Checkpoint 5

Checkpoint 2 Checkpoint 1 Checkpoint 2 Checkpoint 3 Checkpoint 4 Checkpoint 5

Checkpoint 3 Checkpoint 1 Checkpoint 2 Checkpoint 3 Checkpoint 4 Checkpoint 5

Checkpoint 4 Checkpoint 1 Checkpoint 2 Checkpoint 3 Checkpoint 4 Checkpoint 5

Agent 0
Experiment 1
vs
Agent 1
Experiment 2 Checkpoint 5 Checkpoint 1 Checkpoint 2 Checkpoint 3 Checkpoint 4 Checkpoint 5

Checkpoint 1 Checkpoint 1 Checkpoint 2 Checkpoint 3 Checkpoint 4 Checkpoint 5

Checkpoint 2 Checkpoint 1 Checkpoint 2 Checkpoint 3 Checkpoint 4 Checkpoint 5

Checkpoint 3 Checkpoint 1 Checkpoint 2 Checkpoint 3 Checkpoint 4 Checkpoint 5

Checkpoint 4 Checkpoint 1 Checkpoint 2 Checkpoint 3 Checkpoint 4 Checkpoint 5

Agent 0
Experiment 2
vs
Agent 1
Experiment 1 Checkpoint 5 Checkpoint 1 Checkpoint 2 Checkpoint 3 Checkpoint 4 Checkpoint 5

Table 4.1: Experiment 3 - Tournament
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rates and a large number of invalid games. In addi-
tion, it seems like there is a first-player advantage
in the game. In both combinations of players, the
one that acts first outperforms the other.
Regarding the illegal actions, they were mostly

made in the second and third phases of the game
when they were caused by the Experiment 1 agent.
On the other hand, in all 4 invalid games that an
Experiment 2 agent caused, the invalid move was
made in phase 1. Since agents from Experiment
1 caused 14 out of the 19 games to end illegally,
we suppose that it was caused because the Ex-
periment 1 Agents were not introduced to a large
variety of phase 2 and phase 3 gameplays. And re-
spectively, perhaps the games that ended in phase
1 were caused because the Experiment 2 Agents
were not trained sufficiently in the first phase by
that checkpoint of their training.

5 Discussion

The first and the second experiments that were
conducted were in general successful in terms of
investigating the learning and playing behavior of
DQN agents in the context of Skull. They were
consistently reaching an end game. Regarding the
small number of games that ended due to an illegal
move, we suppose that it was caused by encoun-
tering a completely unfamiliar observation space.
In this research, we made very specific decisions
regarding the checkpoints for saving the agents,
the learning steps, and the hyperparameters of the
neural network. Some of them were chosen based
on preexisting literature, others due to the results
of the first and the second experiment. The number
and the position checkpoints were chosen with the
purpose of saving the most amount of versions of
agents that are trained on the whole game while al-
lowing for large enough training periods in between
the checkpoints so that the agents could learn more,
or start implementing a different strategy. Perhaps
different design choices could improve the agent’s
performance, but it would not lead to a drastically
different strategy.

Due to the game having simple rules in general,
perhaps a knowledge-based approach in combina-
tion with reinforcement learning could prove more
efficient in minimizing invalid games. A point for
future investigation would be to map actions to a
specific phase and encode the information before
letting the agents play, similar to the approach
used by Nan, Perumal, and Zaiane (2022). Possi-
bly, this might reduce the duration of the training
in addition to the number of invalid games.

Furthermore, in terms of playing behavior both
the agents in Experiments 1 and 2 performed sim-
ilarly when tested - they were playing the same
game over and over. These results overlap with the

conclusions in the analysis of the game by Gragera
et al. (2013) and provide an overview of what a
straightforward learning curve for a DQN agent
looks like. Perhaps an algorithm that estimates
an optimal non-deterministic strategy could prove
more efficient in the context of playing against mul-
tiple different opponents or at least very different
strategies. Moreover, the Constructivist Antici-
patory Learning Mechanism proposed by Perotto,
Buisson, and Alvares (2007) seems like a promising
learning mechanism for partially observable ad par-
tially deterministic environments such as the Game
of Skull. Another approach for training more well-
versed agents would be to introduce more stochas-
ticity in the environment. For instance, during the
first and the second part of the training in Exper-
iment 1, we observed more randomly distributed
results due to the 50% chance of an agent being the
first player instead of having a fixed turn. Such an
investigation could lead to agents that play equally
“well” when starting first and when starting second,
instead of being specialized in being the first or the
second player.

Subsequently, the scaffolding, which indeed al-
lowed the agents to successfully and consistently
reach a final state of the game, essentially broke
down the game into simplified problems that the
agents would have to learn one at a time before
tackling the game as a whole. This approach pro-
duced slightly better results than the Vanilla DQN
algorithm, and although not enough to draw any
meaningful conclusions, a more in-depth investiga-
tion of this method in different environments or in
combination with different reinforcement learning
algorithms would be an interesting topic for future
research.

Undoubtedly, the most interesting result in this
paper was that the scaffolding method lead to
agents finding a “loophole” in the game while the
Vanilla DQN agents did not despite playing in
the same environment and being trained with the
same algorithm. In addition to that, the scaffold-
ing agents performed fewer illegal actions against
an entirely new opponent than the Vanilla DQN
agents in the same setting. The duration of the
training for these two experiments was the same,
therefore, this result could be attributed to the fact
that the scaffolding agents had the opportunity to
deploy the ϵ-greedy exploration strategy indepen-
dently in each of the three phases. This led them
to explore more in the second and third phases of
the game. Moreover, due to the random generation
of the initial states in the first and second part of
the training in Experiment two, they perhaps were
exposed to a larger number of possible observation
states which lead to slightly better learning of the
game. In comparison, the epsilon of the agents
from the first experiment reached its minimum at
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approximately 1/6 of the training, and through
this period the games were rarely entering stage 2
and stage 3. Consequently, for almost 90% of the
training, their probability of acting randomly was
only 1%. This suggests that they mostly explored
the different strategies in the first phase, and acted
even more deterministically in the later phases.
In conclusion, the scaffolding method could be a
valuable tool in environments with a large num-
ber of sequential stages as it allows an exploration
strategy to be deployed in each one of them.

6 Conclusions

The experiments that were conducted in this re-
search have been mostly successful in playing the
Game of Skull through MADRL methods. Despite
the fact that the agents were playing deterministi-
cally, which would not result in optimal gameplay
against a human, there are some key takeaways
that can be drawn from this study.

1. Both the Vanilla and the scaffolding DQN
algorithms could be successfully used to teach
an agent how to play the Game of Skull.

2. Using a Deep Q-Network is not the most op-
timal algorithm for learning how to play the
Game of Skull against new opponents, as it
results in an agent with a rigid strategy op-
timized to play against another deterministic
agent.

3. Using the scaffolding technique in problems
with a large number of short stages might
prove beneficial for finding unexpected strate-
gies.

4. A scaffolding DQN algorithm seems to per-
form slightly better than a Vanilla DQN in
the context of the Game of Skull.

5. A partially observable game with a determinis-
tic initial state and deterministic actions seems
to lead to deterministically behaving agents,
despite the partial observability.

6. In similar problems scaffolding is effective in
terms of introducing more data to the agents
during training, therefore it is a more suitable
approach than the Vanilla DQN algorithm.
However, more research is needed to determine
its applicability in other scenarios.
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Experiment 1 Experiment 2
Learning rate α 0.03 0.03
Discount
rate γ

0.99 0.99

Maximum
epsilon ϵ

1 1

Minimum
epsilon ϵ

0.01 0.01

ϵ- decay
rate

5e-4(1st trial)
5e-5(2nd trial)
5e-6(3rd trial)

5e-5

A Appendix
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Game Agent 0 Agent 1 Final observation space
1 Winner Loser [1, 1, 1, 0, 1, 1, 1, 1, 5, 0, 0, 2] Agent 0 did not flip a Skull
2 Winner Loser [1, 1, 1, 0, 1, 1, 1, 1, 5, 0, 0, 2] Agent 0 did not flip a Skull
3 Winner Loser [1, 1, 1, 0, 1, 1, 1, 1, 3, 0, 0, 2] Agent 0 did not flip a Skull
4 Winner Loser [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 2] Agent 0 did not flip a Skull

Agent 0 Exp 1 Checkpoint 1
vs

Agent 1 Exp 2 Checkpoint 1-5
5 Illegal action
6 Winner Loser [0, 1, 0, 1, 0, 1, 1, 1, 3, 0, 1, 2] Agent 0 did not flip a Skull
7 Winner Loser [0, 1, 0, 1, 0, 1, 1, 1, 3, 0, 1, 2] Agent 0 did not flip a Skull
8 Winner Loser [0, 1, 0, 1, 0, 1, 1, 1, 3, 0, 1, 2] Agent 0 did not flip a Skull
9 Winner Loser [0, 1, 0, 1, 0, 1, 1, 1, 3, 0, 1, 2] Agent 0 did not flip a Skull

Agent 0 Exp 1 Checkpoint 2
vs

Agent 1 Exp 2 Checkpoint 1-5
10 Illegal action
11 Winner Loser [0, 1, 0, 1, 0, 1, 1, 1, 3, 0, 1, 2] Agent 0 did not flip a Skull
12 Winner Loser [0, 1, 0, 1, 0, 1, 1, 1, 3, 0, 1, 2] Agent 0 did not flip a Skull
13 Winner Loser [0, 1, 0, 1, 0, 1, 1, 1, 3, 0, 1, 2] Agent 0 did not flip a Skull
14 Winner Loser [0, 1, 0, 1, 0, 1, 1, 1, 3, 0, 1, 2] Agent 0 did not flip a Skull

Agent 0 Exp 1 Checkpoint 3
vs

Agent 1 Exp 2 Checkpoint 1-5
15 Illegal action
16 Loser Winner [1, 1, 1, 0, 1, 1, 1, 1, 2, 0, 0, 2] Agent 1 did not flip a Skull
17 Loser Winner [1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 0, 2] Agent 1 did not flip a Skull
18 Loser Winner [1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 0, 2] Agent 1 did not flip a Skull
19 Winner Loser [1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 2] Agent 0 did not flip a Skull

Agent 0 Exp 1 Checkpoint 4
vs

Agent 1 Exp 2 Checkpoint 1-5
20 Illegal action
21 Loser Winner [0, 1, 1, 1, 0, 1, 0, 1, 2, 0, 1, 2] Agent 1 did not flip a Skull
22 Loser Winner [0, 1, 1, 0, 0, 1, 0, 1, 2, 0, 1, 2] Agent 1 did not flip a Skull
23 Loser Winner [0, 1, 1, 0, 0, 1, 0, 1, 2, 0, 1, 2] Agent 1 did not flip a Skull
24 Loser Winner [0, 1, 1, 1, 0, 1, 0, 1, 2, 0, 1, 2] Agent 1 did not flip a Skull

Agent 0 Exp 1 Checkpoint 5
vs

Agent 1 Exp 2 Checkpoint 1-5
25 Illegal action
26 Winner Loser [1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 2] Agent 0 did not flip a Skull
27 Illegal action
28 Winner Loser [1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 2] Agent 0 did not flip a Skull
29 Illegal action

Agent 0 Exp 2 Checkpoint 1
vs

Agent 1 Exp 1 Checkpoint 1-5
30 Illegal action
31 Loser Winner [1, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 2] Agent 1 did not flip a Skull
32 Illegal action
33 Winner Loser [0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 2] Agent 0 did not flip a Skull
34 Winner Loser [0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 2] Agent 0 did not flip a Skull

Agent 0 Exp 2 Checkpoint 2
vs

Agent 1 Exp 1 Checkpoint 1-5
35 Illegal action
36 Winner Loser [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 2] Agent 0 did not flip a Skull
37 Illegal action
38 Winner Loser [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 2] Agent 0 did not flip a Skull
39 Illegal action

Agent 0 Exp 2 Checkpoint 3
vs

Agent 1 Exp 1 Checkpoint 1-5
40 Illegal action
41 Winner Loser [1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 2] Agent 0 did not flip a Skull
42 Illegal action
43 Winner Loser [1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 2] Agent 0 did not flip a Skull
44 Illegal action

Agent 0 Exp 2 Checkpoint 4
vs

Agent 1 Exp 1 Checkpoint 1-5
45 Illegal action
46 Winner Loser [1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2] Agent 0 did not flip a Skull
47 Illegal action
48 Winner Loser [1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2] Agent 0 did not flip a Skull
49 Illegal action

Agent 0 Exp 2 Checkpoint 5
vs

Agent 1 Exp 1 Checkpoint 1-5
50 Illegal action
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