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Abstract: Threshold models are used to study how information, behaviours, new technologies,
fashions, viruses, etc. diffuse through a social network. These models visualise diffusion through
networks; a collection of nodes (vertices) and edges that connect nodes together. A threshold
value is assigned to each node. An agent will adopt a behaviour/technology/fashion when the
proportion of their neighbours who also have this behaviour meets the threshold. We define
threshold models as a Social Networks Model for discussing properties of structural/distance-
based social selection and threshold based social influence. We then introduce extended models for
similarity-based social selection as well as social abandonment of behaviours for both selection
and influence. This paper studies the properties and states of the social networks that these
updates create. We first explore properties of the updates using the theoretical framework. We
then build a simulation to explore the extended updates empirically.

1 Introduction

Our behaviour is shaped by our surroundings. The
people we interact with (unconsciously or con-
sciously) influence our decisions, behaviours and
beliefs. We can be influenced into conforming to
a new technology or specific diction, dressing a cer-
tain way or behaving differently. This is social in-
fluence, which determines the way a diffusing novel
(or renewed) behaviour gets adopted by a popula-
tion. Social influence can be explored in networks
through the use of threshold models. Threshold
models are primarily visualised using graph net-
works, which are a collection of agent nodes and
edges that connect the nodes. They are used to
study the dynamics of diffusion by exploiting con-
formity in the form of threshold-based influence
(Easley & Kleinberg, 2010); A threshold model as-
signs to each node (person) a threshold that de-
termines the proportion of neighbours that must
adopt a behaviour for that node to do so as well.
These models of social influence have especially
gained popularity in logic-based studies of diffusion
Baltag et al. (2019), (Granovetter & Soong, 1983),
Christoff et al. (2022).

As in Dodds & Watts (2011) we limit social in-
fluence to binary decisions, where there are exactly
two distinct and alternate options to choose from.

There is much hidden complexity in the behaviour
of binary decision making. For example, Schelling
(1969) modelled binary decisions as a question of
race i.e. you are either of a certain ethnicity or you
are not. In this demographic abstraction, Schelling
showed ethnic communities tend towards segrega-
tion by race. Individuals tend towards others of
the same race. This shows race is a shared sim-
ilarity factor, and those who are the same more
readily connect. Not only restricted to race, peo-
ple can be segregated by their acquired traits e.g.
hobbies, professions, etc in a binary manner; either
you can play the guitar or you can’t. Social me-
dia platforms allow this expression, where a user
curates the information they see online based on
their traits (acquired or innate). The accounts one
follows, their friends and the groups they join all
determine their social profile in a binary manner.
Platforms such as Linkedin, Facebook and Insta-
gram exploit these profiles to recommend to each
other individuals with similar social profiles (Aiello
et al., 2012).

Furthermore, many logic-based accounts of so-
cial influence and diffusion permit nodes to
adopt behaviours and abandon them (Smets &
Velázquez-Quesada, 2019). These are known as
non-monotonic updates i.e. a monotonic update
prevents abandoning a behaviour. In a monotonic

1



world, I would forever use a fax machine had I
adopted the use of one. However, simply put, peo-
ple change.
We have described here not only social influ-

ence but social selection. Social selection deter-
mines when two people connect based on how sim-
ilar they are to one another, be it race or hobbies.
This is encapsulated by homophily; the principle
that similarity breeds connection McPherson et al.
(2001). It has been studied in many disciplines,
for example Hebbian learning in neuroscience; Cells
that fire together wire together. Computer science
makes use of homophily in systems through data
clustering. Recommender systems for example ex-
ploit homophily to group users who display similar
purchase patterns (Sarwar et al., 2002). By group-
ing these individuals, recommender systems can
provide suggestions that are most pertinent. For
example a person who purchases with an interest
in fashion would be clustered with other ’fashion-
able’ individuals all being suggested online fashion
stores instead of music stores.
Homophily has been studied in many ways by

varying how one defines similarity. In one, similar-
ity between two people in a population can be ap-
proached structurally. Two people are more sim-
ilar when they share relationships to others. In
laymans terms, connection is brought about based
on the structure of ones social network (Jeh &
Widom, 2002). In another, homophily is brought
about through trait similarity (Smets & Velázquez-
Quesada, 2020). Two people are more similar when
they share more similar traits i.e. race and hobbies.
There are other ways in which to define similarity,
however these are two of the most prominent and
this paper will focus solely on these two forms of
homophily.
The goal of this paper is to explore differ-

ent forms social influence and social selection
through the use of threshold models. Social influ-
ence and selection are interrelated processes that
constantly change the shape of a population (Smets
& Velázquez-Quesada, 2019). A result of social in-
fluence directly affects the way in which social se-
lection takes place. If one abandons a behaviour
those the relationships they formed based on this
behaviour may wither, and as the connections one
has changes they are less susceptible to the confor-
mity effect of certain behaviours.
We will construct a theoretical framework of

a threshold model and compare both theoreti-
cally and experimentally diffusion of behaviour(s)
through a social network with different forms of so-
cial influence and selection.

This paper proceeds as follows: Section 2 con-
structs the threshold model framework in the form
of a Social Networks Model (SNM). It will pro-
vide the basis for exploring updates on threshold
models. Section 3 defines social selection and influ-
ence in addition to defining apparatus that allows
us to study the evolution of an SNM such as the
states or the relationship between nodes in the net-
work. Section 4 defines further model updates to
describe more complex network evolution. Section
5 describes the simulation used to explore the fur-
ther updates. Section 6 evaluates the experimental
results of the simulation and discusses limitations.
In section 7 the paper is summarised and some con-
clusions drawn.

2 Threshold Models

We are concerned with studying social influence
and social selection. We start by defining the no-
tion of threshold models. In this paper a threshold
model is an SNM defined below. This model frame-
work will be used in the following section as a basis
for describing social influence and selection.

Definition 1 (Social Network Model) A So-
cial Network Model (SNM) is a tuple M =
⟨A,O, β, F, θa⟩ where:

1. A ̸= ∅ is a finite set of agents

2. O ̸= ∅ is a finite set of behaviours

3. β(σ) ⊆ A is the set of agents that are adopters
of behaviour σ ∈ O

4. F ⊆ AxA is an irreflexive, symmetrical and
serial binary relation with (a, b) ∈ F showing
that agents a and b are connected.

5. θa is an adoption threshold

To clarify how an SNM is defined, below is an ex-
ample of an SNM according to definition 1.

Example 1 Fix the set of agents A = {a, b, c, d}.
The behaviour O = {o} be an arbitrary spread-
ing behaviour. θa ∈ [0, 1]. Consider a SNM M =
⟨A,O, β, F, θa⟩ where:
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β = {a, b} (a, b) ∈ F (b, c) ∈ F (c, d) ∈ F
(b, a) ∈ F (c, b) ∈ F (d, c) ∈ F

Figure 2.1: SNM presented in example 1

This SNM should be interpreted as follows. There
are 4 unique agent nodes a, b, c and d. There is
a single diffusing behaviour o. Nodes a and b are
adopters of this behaviour. Links exist between
agents a and b, b and c and c and d. There are 3
edges in the network however due to the symmetric
nature of these edges, formally there are 6. θa
is the adoption threshold that determines the
proportion of a nodes neighbours that must adopt
a behaviour before that node does so as well; it
is any value chosen between 0 and 1. You could
interpret the edges as social influence. An edge
between two nodes shows that these two nodes
are able to influence one another i.e. they share
information. A behaviour can be interpreted as
such; perhaps the tendency to play a sport, use
specific diction, etc. There can be one or more be-
haviours diffusing through the network at any time.

3 Social Network Image Up-
date

One has the freedom to share information. For ex-
ample a passerby can look at a protest and actively
engage with those who are protesting. This is a
direct exchange of influence where the protesters
(adopters) attempt to convert the passerby (non-
adopters). An anti-war protest assumes such be-
haviour and attempts to convert those who are pro-
war. Whether the passerby is anti-war or not, by
interacting with the protesters they have opened
themselves up to influence i.e. formed a connec-
tion. Given an SNM we propose updates that al-
low nodes in the network to behave as agents shar-
ing information and forming connections. We will
define here conditions that determines when and

why an agent would adopt a behaviour from their
neighbours and how two agents become neighbours.
Further, we introduce definitions that help describe
formally the states in the temporal evolution of a
SNM.

3.1 Social Influence of Surroundings

People will choose to adopt information from their
surroundings if their surroundings motivate said
adoption. Consider again the war protest exam-
ple. A passerby who is pro-war seeing the anti-
war protest may interact and not change their
stance i.e. they remain non-adopters. Note that the
connection has been made either way (the edge
has been formed) as they have shared informa-
tion. However, in returning home they may find
that their family has adopted an anti-war stance.
The accumulated influence of their surroundings
may be sufficient to encourage the adoption of an
anti-war behaviour. In other words, we could de-
scribe a threshold for each person that defines how
many people must adopt anti-war behaviour them
to adopt it as well. Agents are similarly influenced
by their surroundings. They can adopt a behaviour,
technology, opinion, etc when the proportion of
their neighbours who also adopted it is greater than
a given threshold.

Definition 2 (Adoption) For a given SNM M =
⟨A,O, β, F, θa⟩, let θ ∈ [0, 1] be the adoption thresh-
old. For a ∈ A let F [a] := {i ∈ A | (a, i) ∈ F} de-
note all the neighbours of a. We define the updated
model M△ = ⟨A,O, β△, F, θa⟩ to be such that it is
a SNM after an adoption step. As such adoption is
as follows:

a ∈ β△ iff (F [a]∪β
F [a] ≥ θa OR a ∈ β)

A node a will adopt when one of two conditions
is met. Either the proportion of F [a] who also
have this behaviour must be greater than the adop-
tion threshold. Alternatively a must already have
adopted this behaviour. Note that this definition of
adoption is monotonic. A node will only accumulate
new behaviours. For example once the agent has
adopted the anti-war behaviour (or any behaviour)
it cannot be abandoned. Furthermore, this shows
that adoption is not idempotent as adoption relies
on the behaviour of a node’s neighbours, which is
altered by this operation. Therefore (M△)△ ̸= M△
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for any model M , unless M has reached a stable
state (a stable state is rigorously defined later).

3.2 Agents Shaping their Surround-
ings

People will choose to connect with other people in
many different situations. In one, we meet people
through a shared friend i.e. a friend introducing
you to their friend(s). Agents are also able to shape
their surroundings in this way. They form edges to
other agents with whom they share a common con-
nection. This mirrors how we form connections with
people who are introduced to us by our existing net-
work of connections. We propose here a distance-
based (or structure-based) policy for edge updates
(Jeh & Widom, 2002). It is not the same has having
a metric distance between two points. The notion of
distance-based similarity connects two nodes that
are connected to similar nodes.

Definition 3 (Friendship Selection) For a
given SNM M = ⟨A,O, β, F, θa⟩, let a, b, c ∈ A.
We define MΠ = ⟨A,O, β, FΠ⟩ to be such that it is
a SNM after a friendship selection step. As such,
friendship selection is as follows:

(a, b) ∈ FΠ iff ((a, c) ∈ F ∧ (b, c) ∈ F ) OR
(a, b) ∈ F

The definition for friendship selection in Def 3
states that two nodes will have a link in the network
if they have a common/shared neighbour or if they
were already linked in the previous step. Similar
to adoption, this operation is monotonic. A node
can only accumulate new edges. This operation is
also idempotent since it updates the edges in the
graph, which is what determines the formation of
new edges. As such, (MΠ)Π ̸= MΠ for all M unless
it has reached a stable state.

3.3 A Holistic Update

We have previously defined two distinct updates;
Def 2 defines a way in which an agent is influenced
by their surroundings and Def 3 a way in which
an agent influences their surroundings. Applying
each of these updates to a network leads to distinct
model states namely M△ and MΠ respectively. We
have presented them as two distinct processes how-
ever in reality these two can happen simultaneously.

People are not restricted to performing these be-
haviours in sequence, in a single conversation one
could form a new connection and adopt a new be-
haviour. We must define formally an update that
incorporates both Def 2 and Def 3.

Definition 4 (Holistic Update) For a
given SNM M = ⟨A,O, β, F, θa⟩ we define
M ′ = ⟨A,O, β′, F ′⟩ such that it is a SNM after a
holistic update step. β′ is as defined in Def 2 and
F’ as defined by Def 3.

These two updates occur simultaneously in a single
time step. This operation satisfies the same prop-
erties as adoption and friendship selection. (M ′)′ ̸=
M ′ for all M unless it has reached a stable state.

3.4 Network Descriptions

Now we have constructed a model that describes
what network changes occur but not yet a way in
which to study them. We intend to explore the
speed at which a behaviour cascades through a
network with this model. Returning once again to
our protest example, it is interesting to see how
quickly a behaviour such as an anti-war stance
spreads through a community. However, studying
the spread of behaviour extends to other phenom-
ena such as new technologies, fashion or deadly
viruses. Studying diffusion requires evaluating the
sequences of updates of models as the agents inter-
act according to Def 2 and Def 3. These sequences
are a collection of discrete time steps. The following
definitions will aid evaluating these sequences.

Foremost it is important to define what a se-
quence of updates entails formally.

Definition 5 (Sequence of Updates) Let M =
⟨A,O, β, F, θa⟩ be an SNM. Furthermore, let M0 =
M . Then

Mn+1 = M?
n

where ? ∈ {△,Π,′ }.

A sequence of updates is a collection of updates on
a SNM. Each model is assigned a discrete numeri-
cal value n that defines its place in the collection.
For example, M2 is an update that occurs after M1.

Next, for the evaluation of speed there must
be terminal states. A sprinter, marathon runner,

4



swimmer, etc is not faster than their competition
unless they win the race. However it is still true
that a sprinter can be faster than the others even if
they lose i.e. their top-speed. Sequences allow us to
determine the same with models as we can directly
compare equal time steps. Like a finish line, ter-
minal states define when a behaviour has finished
cascading through a network. There are two that we
will consider; stable state and complete cascade.

Definition 6 (Stable State) Let M =
⟨A,O, β, F, θa⟩ be an SNM. We say that a
model is stable iff.

M = M?

where ? ∈ {△,Π,′ }.

A stable state occurs when two successive models
in the sequence of updates are equal. This means
applying another update to the current model Mn

will lead to the same model.

Definition 7 (Complete Cascade) Let M =
⟨A,O, β, F, θa⟩ be an SNM that has reached a stable
state. A complete cascade occurs when all nodes in
M have adopted behaviour O.

A = β

A graph has an incomplete cascade when not all
nodes in M have adopted behaviour O.

A ̸= β

There are two ways in describing the terminal
state of a cascading behaviour. The first is a
complete cascade wherein all nodes in the network
have adopted. The second is the opposite; an in-
complete cascade where all nodes have not adopted.

The term ’speed’ in this paper is a direct compar-
ison of the terminal states of two complete cascaded
models. As such, ’speed’ could be thought of as how
long it takes for a sequence of updates to cause a
complete cascade in a network in which a complete
cascade can happen.

Definition 8 (Speed to Cascade) Let M,N =
⟨A,O, β, F, θa⟩ be two SNMs that have reached a
full cascade. Model M has a faster speed to cascade
compared to N if

M?
n and N?

m and n < m

where ? ∈ {△,Π,′ }.

M is faster than N for some sequence of updates if
M reaches a complete cascade in less steps than N.

Definition 9 (Cluster of density d) Let M =
⟨A,O, β, F, θa⟩ be an SNM. A cluster of density d
is a set of nodes N ⊆ A in M s.t. each node in the
set N has at least d proportion of neighbours in the
set. Let θa ∈ [0, 1] be the adoption threshold, if N
has density d > 1−θ then we say that n is a cluster
of critical density.

It is well known that a graph with clusters of critical
density will have an incomplete cascade. This has
been proved in Easley & Kleinberg (2010).

Nodes are connected by edges in the network.
The existence of these edges implies a distance be-
tween nodes. We exploit this with friendship selec-
tion (3), allowing nodes to connect if they share a
neighbour. In a network a shared neighbour indi-
cates that two nodes have an edge converging to the
same neighbour. In other words, these two nodes
are separated by two edges. We can think of dis-
tance in this way and define it inductively as in
Baltag et al. (2019).

Definition 10 (Distance between nodes)
Let M = ⟨A,O, β, F, θa⟩ be an SNM with agents
A = {a, b, c}. Let N [a] denote the set of neighbours
of a, let d0(a) = {a}.:

• dn+1(a) = dn(a) ∪ {b ∈ A : ∃c ∈ N [a] and
b ∈ N [c]}

The distance between nodes is the minimum num-
ber of links connecting two nodes; the distance be-
tween node a and the rest in example 1

d0(a) = {a}
d1(a) = {a, b}
d2(a) = {a, b, c}

for nodes where no such path exists, then

d∞(a) = ∅

However, this distance is less exact in that the
set contains nodes that are within distance n
not exactly at distance n. As such the nodes
that are exactly n distant are those in the set
dn+1(a) and not in the set dn(a); or more precisely
dn+1(a)/dn(a). The distance between two nodes is
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the path containing the minimum number of edges
between them. In complex networks it is plausible
that there can be several paths connecting two
nodes and so we must emphasize that in this paper
it is the minimum path.

The following definitions describe the properties
of a sequence of updates; heterogeneous and homo-
geneous.

Definition 11 (Heterogeneous Sequence)
Given an SNM M = ⟨A,O, β, F, θa⟩ a heteroge-
neous sequence of updates is defined as follows.

M?
0 , M

?
1 , M

?
2 ... M

?
n

where ? ∈ {△,Π,′ }.

A heterogeneous sequence of updates is a sequence
of model updates where each discrete time step is
not equal to the rest. In other words, more than
one update is applied in the sequence.

Definition 12 (Homogeneous Sequence)
Given an SNM M = ⟨A,O, β, F, θa⟩ a heteroge-
neous sequence of updates is defined as follows.

M?
0 , M

?
1 , M

?
2 ... M

?
n

where ? is exactly one element of the set {△,Π,′ }.

A homogeneous sequence of updates is the oppo-
site. In the sequence of model updates exactly one
update occurs.

Fact 1 There exist models M = ⟨A,O, β, F, θa⟩
with behaviour o ∈ O diffusing with adoption
threshold θ from an initial set of adopters s.t. after
any application of update 4, no cluster of critical
density is formed and M ′ is faster than M△.

If a node adopts a behaviour at some time step n
then we know they had a sufficient proportion of
neighbours who also adopted at n. This is the case
for adoption updates in Def 2. However the holis-
tic update in Def 4 has simultaneous link additions
meaning there exists a situation for a node wherein
the proportion of neighbours meeting the thresh-
old is only true for this update and not adoption;
the new edges may sway the proportion in favour
of adoption. Consider the following example that
illustrates the fact above:

Example 2 Let M = ⟨A,O, β, F, θa⟩ be an SNM
with agents A = {a, b, c, d} and a spreading topic
o ∈ O from initial adopter β = a with threshold
θa = 1

3 . The connections in F are as follows:

(a, b) ∈ F (b, c) ∈ F (c, d) ∈ F
(b, a) ∈ F (c, b) ∈ F (d, c) ∈ F

At n=0, M is a straight line graph with each node
successively connected to the next. Applying only
adoption the model reaches a complete cascade at
M△

3 , whereas the holistic update does so at M ′
2.

This is due to the formation of links (b, d) ∈ F ′

and (d, b) ∈ F ′ at n=1.
Based on these findings, we conjecture that if M ′

is faster than M△ then M has properties s.t.

1. the application of the rule defined in 4 doesn’t
create clusters of critical density for M ′

2. there are nodes a, z ∈ A s.t. a ∈ β and z /∈ β
and z ∈ dn(a) and n ≥ 3

If applying Def 4 to some network leads to a clus-
ter of critical density then it is obvious that it will
be slower than applying Def 2 to that network.
Networks with a cluster of critical density never
reach a full cascade. Since we have defined speed
as the steps necessary for a network to reach a full
cascade, networks that do not are infinitely slow.
For edge formation in Def 15 to affect a network,
the longest distance between an adopter and non-
adopter node must be larger than the edge forma-
tion distance. The formation of a new edge must
create a shorter path for the behaviour to reach
a non-adopter node. In sufficiently small networks,
any edges do not create shorter paths than those
that already exist. As such, new edges will not make
cascades faster.

Fact 2 There exist models M = ⟨A,O, β, F, θa⟩,
where behaviour o ∈ O is spreading with adoption
threshold θa from an initial set of adopters s.t. af-
ter any application of rule in definition 3, no cluster
of critical density is formed. Then two unique se-
quences of M△ and MΠ can generate full cascade
models Mn that have the same edges and same dis-
tribution of adopters.

As per link formation 3, agents form a link if their
distance d = 2. This means that a homogeneous se-
quence of MΠ updates will always lead to the same
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final model MΠ
n independent of M△ updates. How-

ever, these link updates change adoption behaviour.
Heterogeneous applications of M△ and MΠ can
form a cluster of critical density in a unique se-
quence, as nodes connect with others that aren’t
necessarily adopters. This alters the proportion of
neighbours who are adopters. However, under the
assumption that no critical clusters are formed, two
heterogeneous sequences of updates will terminate
with identical full cascade models if they have the
same proportion of updates. This is not too hard
to imagine since any sequence of MΠ will lead to
the same FΠ and a full cascade means A = β as de-
fined in 7. If we were to remove the assumption that
critical clusters are never formed, then it is possible
that two unique sequences don’t lead to the same
final model. Consider the following example:

Example 3 Let M = ⟨A,O, β, F, θa⟩ be an SNM
with agents A = {a, b, c, d, e} and a spreading topic
o ∈ O from initial adopter β = a with threshold θ =
1
3 . The connections in F at n = 0 are as follows:

(a, b) ∈ F (b, c) ∈ F (c, d) ∈ F (c, e) ∈ F
(b, a) ∈ F (c, b) ∈ F (d, c) ∈ F (e, c) ∈ F

There are sequences that result in both incomplete
and complete cascades with this SNM. The two se-
quences 1 and 2 have an identical final model as
they terminate with a complete cascade and have
equal proportions of updates.

1. M△
0 , M△

1 , MΠ
2 , MΠ

3 , M△
4

2. M△
0 , MΠ

1 , M△
2 , M△

3 , MΠ
4

3. MΠ
0 , -

4. M△
0 , MΠ

1 , MΠ
2 , M△

3

The same model can have heterogeneous sequences
that don’t lead to an identical final model. The se-
quence of updates in 3 leads to an incomplete cas-
cade. The MΠ

0 update leads to 2 new connections
from b to non-adopters (b, e), (b, d), (e, b), (d, b) ∈
FΠ. At n=1, the proportion of neighbours of b who
have adopted is 1

4 < θa. Sequence 4 again leads to a
complete cascade. This displays again how the for-
mation of links can increase speed to cascade since
4 reaches a complete cascade at M4 whereas both
1 and 2 reach a complete cascade at M5.

4 Extensions

So far we have reasoned about a network that has a
single diffusing behaviour which has limited agents’
ability to form meaningful connections. In real life
there is more information passing through a net-
work which we use to selectively determine our
best fit neighbours. We can be introduced to peo-
ple but not necessarily connect with them. Previ-
ously we have presented examples of social influ-
ence and selection regarding protesters. However
consider now more personal social relationships;
close friends or intimate relationships. These such
relationships form when people have much in com-
mon. You are most likely to share common inter-
ests (behaviours) with your close friends or signifi-
cant others. Note that now we state the plural be-
haviours, as closer relationships entail sharing mul-
tiple behaviours. Following are new definitions re-
garding social influence and selection that will sup-
port reasoning about multiple behaviours diffusing
in the network.

Definition 13 An extended Social Network Model
(eSNM) is a tuple M = ⟨A,O, β, F, θa, θE⟩ where
A, 0, β, Fθa are as defined in Def 1.

• θE is a friendship threshold

To clarify how an eSNM is defined, consider again
example 1. We extend this SNM to an eSNM as
follows:

Example 4 Fix the set of agents A = {a, b, c, d}.
The behaviours O = {w, x, y, z} be arbitrary spread-
ing behaviours. θa ∈ [0, 1] and θE ∈ [0, 1]. Consider
a SNM M = ⟨A,O, β, F, θa, θE⟩ where:

β(w) = {c} β(x) = {a, b}
β(y) = {a, b, d} β(z) = {a, c}

(a, b) ∈ F (b, c) ∈ F (c, d) ∈ F
(b, a) ∈ F (c, b) ∈ F (d, c) ∈ F

This eSNM should be interpreted as follows. There
are 4 unique agents a, b, c, d. There are 4 diffus-
ing behaviours, w, x, y, z. c is an adopter of w; a, b
are adopters of x; a, b, d are adopters of y; a, c are
adopters of z. Links exist between a and b, b and
c and c and d. As before there are 3 edges however
formally there are 6. θa is the adoption threshold;
any value between 0 and 1. θE is the friendship
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threshold determining the proportion of behaviours
that two nodes must coincide for them to connect;
any value between 0 and 1. This value will be fur-
ther explained rigorously later.

4.1 Update Variations

Those who form a community share similar be-
haviour (Das & Biswas, 2023). Previously in Def
3 we have defined a structural/distance-based ap-
proach where two nodes are connected if they are
connected to similar nodes. However as agents with
behaviour these nodes can have a notion of similar-
ity; the behaviours in which they share and those
in which they differ (Smets & Velázquez-Quesada,
2020). Close relationships tend to coincide many
behaviours. This provides a further condition for
the formation of edges and will affect how nodes
shape their surroundings. The similarity between
two agents is the set of behaviours that two agents
both share and that neither have. In a single be-
haviour model, homophily is restricted by the bi-
nary nature of similarity i.e. two agents can either
be fully similar or not at all. Consequentially, sim-
ilarity in these models would result in non adopted
and adopted agents never interacting. With addi-
tional behaviours agents can be somewhat similar.
Importantly for edge formation, two agents can now
connect if they are sufficiently similar. The similar-
ity of agents is derived from the adopter (β) sets.
For example, β(w) = {c} shows that agents a, b
and d are similar in that they are all non-adopters
of this behaviour (they do not appear in the set).
On the other hand, β(x) = {a, b} shows that a and
b are similar in that they are both adopters (they
both appear in the set).

Definition 14 (Similarity) Let M =
⟨A,O, β, Fθa, θE⟩ be an SNM with agents a, b ∈ A.
Let Va denote the set of behaviours a has and Va

denote the set of behaviours a does not have. We
therefore define similarity as

sim(a, b) = (Va ∩ Vb) ∪ (Va ∩ Vb)

Sa,b = |sim(a, b)|

Two agents have a similarity equal to the number
of behaviours that they coincide. These are the be-
haviours that both agents agree on and disagree on.
Consider example 4. The following table shows the

similarity between some pairs of nodes in example
4.

sim(a, a) = {w, x, y, z} sim(a, b) = {w, x, y}
sim(b, c) = ∅ sim(a, c) = {z}

Sa,a = |O| Sa,b = 3
Sb,c = 0 Sa,c = 1

In example 4 there are 4 behaviours diffusing in
the network: w, x, y and z with initial adopters.
The similarity between agents a and c is 1. This
means there is exactly one behaviour in which both
agents either agree on and both agents disagree on.
The similarity between agents a and b is 3; there
are exactly 3 behaviours that these two nodes both
agree and disagree on.

Now that agents have a measure of similarity,
they can use this knowledge to form more mean-
ingful connections. Just as in real life, closer re-
lationships can form through shared similarity. As
with adoption there must be a certain number of
behaviours that makes two agents similar enough to
connect (in other words a threshold). Perhaps your
closest friends play the same sport and listen to the
same music. Extended friendship selection incorpo-
rates this and implements a similarity-based policy
(Smets & Velázquez-Quesada, 2020).

Definition 15 (Extended Friendship Selection)
Let M = ⟨A,O, β, Fθa, θE⟩ be an SNM. Let
ME = ⟨A,O, β, FEθa, θE⟩ be an SNM after an
extended friendship selection update. Additionally,
let θE ∈ [0, 1] be the friendship threshold.

(a, b) ∈ FE iff {(a, c) ∈ F ∧ (b, c) ∈ F or (a, b) ∈ F

and
Sa,b

|O| > θE

Extended friendship selection allows an edge to
form between two nodes if they have a common
neighbour as in Def 3 but they must also have a
proportion of similar behaviours greater than the
friendship threshold θE .

Previously in Def 2 and 3 the updates were mono-
tonic. This meant that agents could not abandon a
behaviour once learned e.g. once you play a sport
you never stop. Adding another layer of complex-
ity to 15 permits agents to disconnect from another
agent if their similarity drops below the thresh-
old i.e. non-monotonic. People are not bound to
the relationships they have formed, at any point
they have the agency to disconnect to those who

8



they have connected with. We provide the same to
agents in the network.

Definition 16 (n-Friendship Selection)
Let M = ⟨A,O, β, Fθa, θE⟩ be an SNM. Let
MY = ⟨A,O, β, FY θa, θE⟩ be an SNM after an
extended friendship selection update. Additionally,
let θE ∈ [0, 1] be the friendship threshold.

(a, b) ∈ FY iff {(a, c) ∈ F ∧ (b, c) ∈ F and
Sa,b

|O| > θE

Importantly, n-friendship selection in comparison
to the extended variant is a non-monotonic update.
This allows for nodes to leave social groups if their
similarity drops below the friendship threshold. In
other words, the neighbour set of a node F [a] can
shrink. Otherwise, the same properties hold.

Similarly, we extend adoption by adding non-
monotonic updates, allowing for nodes in the graph
to abandon a behaviour if their proportion of neigh-
bours with this behaviour drops below the thresh-
old.

Definition 17 (Extended Adoption) Let M =
⟨A,O, β, Fθa, θE⟩ be an SNM. let MN =
⟨A,O, βN , Fθa, θE⟩ be M after an extended adop-
tion step.

a ∈ βN iff F [a]∪β(σ)
F [a] ≥ θa

Just as in 2, a node will adopt behaviour σ ∈ O
if their proportion of neighbours is greater than a
threshold θa. The operation displays the same be-
haviour of non-monotonicity as in 15. Nodes can
now drop a behaviour σ if the proportion of σ neigh-
bours is less than a threshold. Otherwise the same
properties hold.
Defined previously in section 3.4 were a num-

ber of definitions used to describe network states.
These definitions were bound to the network states
that were created by applying one of three updates,
namely adoption, friendship selection and network
adoption update. These definitions must now in-
clude the new updates extended friendship selec-
tion and adoption and n-friendship selection. Def-
initions 5, 6, 8, 11 and 12 are now redefined such
that the set of possible updates includes those de-
fined in section 4. Formally, ? ∈ {△,Π,′ } is rede-
fined to ? ∈ {△,Π,′ , E,N}.

5 Simulation

Due to the complexity of the extended updates we
will explore the new models of social influence and
selection using a simulation to provide empirical re-
sults. The updates Def 15, 16 and 17 will be com-
bined into 3 different rules similar to the holistic
update 4 that determine how agents behave. The
first rule connects agents based on their similarity
and allows them to abandon behaviours. The sec-
ond rules is as the first, however agents can aban-
don edges as well. In the third no edge manipulation
is permitted i.e. agents can neither form new edges
or abandon old ones. With the simulation our ob-
jective is to provide empirical evidence regarding;
(1) how readily these rules lead to stable state mod-
els, (2) how readily these rules lead to full cascade
models and (3) the speed at which (1) and (2) oc-
cur.

Definition 18 (Simulation Rules) Let M =
⟨A,O, β, F ⟩ be an SNM. let M1 = ⟨A,O, βN , FE⟩
be M after applying R1. Let M2 = ⟨A,O, βN , FY ⟩
be M after applying R2. Let M3 = ⟨A,O, βN , F ⟩
be M after applying R3.

R1 updates the network M by applying extended
adoption (17 and extended friendship selection (15)
simultaneously. R2 updates the network M by ap-
plying extended adoption (17 and n-friendship se-
lection (15) simultaneously. R3 is simply the appli-
cation of extended adoption in 17. We will apply
each of the 3 rules independently to each of the
randomly generated networks. We will collect data
on the number of steps taken until the network ei-
ther stabilised or is terminated after 50 steps. The
data will be aggregated to compare the difference
in average steps between the 3 rules. The code for
the simulation was designed in Python and can be
found here.

5.1 Random Networks

Networks are generated randomly using the
Erdős–Rényi model described in Gilbert (1959). We
use the networkx package in python to perform this.
It implements the G(N,Pedge) model that gener-
ates a random networkG ofN nodes with each edge
in the graph having a probability Pedge of forming
in G0. For G(N, 0.1) each node has an independent
10 percent chance of having an edge with all other
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nodes. As Pedge approaches 1, the probability that
G has complete edges approaches 1. Likewise as
Pedge approaches 0, the probability of G being an
empty graph approaches 0. We must highlight that
the time it takes to generate a random graph G
and subsequently perform updates on G increases
exponentially with the number of nodes. For any
n ∈ N there are N − 1 possible links, meaning for
all nodes there are N ∗ (N −1) possible links in the
network.

5.2 Network Values

We will generate 1000 random networks
G(N,Pedge) for each size N ∈ {10, 20, 50, 100}
with constant Pedge = 0.1. Each simulation run
will have the same identical factors:

1. Padopt = 0.2

2. θa = 0.3

3. θE = 0.5

4. O = {A,B,C,D}

Padopt declares a 20 percent chance for a node
to be an initial adopter for each behaviour. On
average for each behaviour 20 percent of the
population will be initial adopters. This value
does not change the behaviour of the network but
rather the generation of them. A higher Padopt

will create networks where the diffusion is closer
to a terminal state. The opposite it true for lower
values. It is important that this value supports
the adoption threshold. Small values of Padopt

will have small populations of initial adopters.
Since they are assigned randomly there is a higher
probability that these initial adopters don’t have
the necessary size to cause a cascade and the
behaviour instead dissipates. We are interested
in studying full cascade networks. Padopt was
sufficiently high enough to allow nodes in the
initial network to begin adopting.

This was also the reason for the adoption thresh-
old θa = 0.3. This value was the maximum value
at which for this distribution of initial adopters,
behaviours would only dissipate in rare conditions.
It defines that 30 percent of an agent’s neighbours
must adopt a behaviour before they do so.

θE = 0.5, the friendship threshold, defines that
two agents must coincide in half of their behaviours
for them to connect. Finally, O is simply the set of
behaviours diffusing in the network, here denoted
arbitrarily as A, B, C and D. For this number of
behaviours there are only 3 meaningful intervals of
similarity between nodes; 1

4 ,
2
4 ,

3
4 i.e. quarter inter-

vals. These intervals are what determines behaviour
not the number of behaviours i.e. 8 behaviours will
have more intervals (eighths) but the behaviour of
the network at the half interval threshold 4

8 would
mirror that of 2

4 . The half threshold was chosen as it
was high enough that networks wouldn’t form com-
plete networks in too few steps but not high enough
that networks would become empty with R2. There
is a trade-off in the number of behaviours between
computational complexity and data. 4 behaviours
was the compromise that provided data in reason-
able time. For the same reason we restrict network
sizes to a maximum of 100 nodes.

6 Results

We will first look at the data in aggregate mean-
ing networks either stabilised or stopped simulat-
ing after 50 steps. Then restrict the data to only
networks that stabilised and finally networks that
stabilised and had a full cascade. For each of these
conditions we present a pair of graphs that display
(1) the average number of steps until stabilisation
(or stoppage) and (2) the difference in the average
number of steps between each rule. The differences
between rules are calculated as follows.

∆orange = R̄1− R̄2
∆green = R̄1− R̄3
∆blue = R̄2− R̄3

Deltas can be negative or positive, the sign indi-
cates which rule had fewer steps until stabilisation
or stoppage i.e. +∆orange for stable network data
indicates that R̄1 > R̄2 and therefore R2 took fewer
steps to stabilise a network. For example consider
∆orange = −1 in networks that stabilised. This
shows that R1 on average takes 1 less step than R2
to stabilise a network. Conversely, ∆orange = +1
shows R1 on average takes 1 more step to stabilise
than R2 i.e. R1 is slower than R2 by one step.
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6.1 Stable or Stoppage

Figure 6.1 displays the mean number of steps un-
til the network either stabilised or was terminated
after 50 steps. Observations worth highlighting in

Figure 6.1: Average steps until stabilisation or
stoppage after 50 steps for all network sizes. Y-
axis displays the network size, the x-axis dis-
plays average steps value and the rules are cat-
egorised by colour; R1 (orange), R2 (green), R3
(blue). Standard deviations are also shown.

Figure 6.1. First, all rules decrease in steps as net-
work size increases i.e. steps and network size ap-
pear inversely related. Significant decreases happen
at the boundary between 20 and 50 node networks
for R1 and R2. R3 has a consistent decrease in steps
across all network sizes. Second, variance in sta-
bilisation decreases significantly with network size
for R1 and 2 but not for R3. This suggests that
R3 networks do not readily reach a steady state
at all sizes and the manipulation of links increases
the probability that a network will reach a steady
state. Figure 6.2 further clarifies the disparity in
stabilisation between rules. Clearly, R1 and 2 dif-
fer insignificantly in comparison to how they differ
to R3. Only with 10 node networks does there ap-
pear to be a significant difference between rules 1
and 2. Note 100 node networks. The step difference
between R1-R3 and R2-R3 decreases significantly.
We conjecture that due to the size of the net-

work, the number of edges in the network at n = 0
are sufficient to decrease the effect of edge manip-

Figure 6.2: Deltas of stabilisation or stoppage.
Y-axis displays network size. X-axis displays
delta values. Comparisons are categorised by
colour; R1-R2 (orange), R1-R3 (green), R2-R3
(blue).

ulation on the speed of stabilisation. Recall that
the number of edges in the network increases ex-
ponentially as network size increases. This means
that larger networks are generally more intercon-
nected than small networks even though there are
more nodes. As such, proportionally, new links have
a smaller effect on the process of diffusion. We
explore these notions further by running pairwise
t-tests between rules with the bonferroni correc-
tion. The difference in steps between R1 and 2 are
insignificant (p = 0.84 < 0.05). However, for all
comparisons of R3, there are significant differences
(p < 2e− 16 < 0.05).

6.2 Stable

We are also interested in relationship between rules
when the networks stabilise. Figure 6.3 displays the
mean number of steps until the network stabilised.
What is immediately apparent in contrast to what
was found in aggregate is that the mean number of
steps does not decrease as network size increases.
This suggests that the high number of average steps
for small networks in aggregate was skewed by the
inclusion of networks that never reached a steady
state. In other words, the previously suggested in-
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Figure 6.3: Average steps until stabilisation. Y-
axis displays network size. X-axis displays aver-
age step values. Rules are categorised by colour;
R1 (orange), R2 (green), R3 (blue).

verse relationship between network size and steps
resulted only from networks that never reached
a stable state. The mean steps increases from 10
node networks to 20 for all rules. However this in-
crease does not happen for all other network sizes.
Rule 3 performs similarly to rules 1 and 2 in 10
node networks whereas before it was significantly
slower. Otherwise, there is a significant difference
between mean steps for each rule. We perform a
two-way anova to verify both the significance of the
rule and network size as predictors of the number
of steps until stabilisation. The results show that
both network size and rule are significant predic-
tors (p < 2e−16 < 0.05). We run the same pairwise
t-test with bonferroni correction for stable network
data and find that there is a significant difference
in steps between rules 1 and 2 (p < 2e−16 < 0.05).
This is in contrast to the aggregate data wherein
the difference in rules 1 and 2 was insignificant.
This is visualised in figure 6.4. Except for 10 node
networks, the difference between rules 1 and 2 is
more pronounced. 10 node networks appear to be
anomalous in that rules 1 and 2 perform similarly
to rule 3. This supports our conjecture that link for-
mation increases the speed of diffusion in networks
only when the longest path between an adopted
node and non-adopter is greater than 2. However,

Figure 6.4: Deltas of stabilisation. Y-axis dis-
plays network size. X-axis shows delta values.
Comparisons are categorised by colour; R1-R2
(orange), R1-R3 (green), R2-R3 (blue).

it is also possible that the decrease in steps results
from behaviours being dropped from the network.
There are so few nodes and edges that adoption
is less likely to occur in these networks even at
low thresholds. As such, these stable states stem
from the abandonment of behaviours rather than
the adoption. Additionally, only in 10 node net-
works we see rule 2 stabilises faster than rule 1.
The removal of links may lead to 10 node networks
becoming fully disconnected such that nodes can-
not influence each other or form new links. Other
than for 10 node networks, the relationship between
rules is similar to those shown in figure 6.2.

6.3 Stable and Full Cascade

We restrict the data further to the networks that
both stabilised and had a full cascade. Figure 6.6
shows the deltas in steps in networks that both
stabilised and had a full cascade and figure 6.5
shows the mean steps until stabilisation in these
networks. It is important to note that this restric-
tion shrank the data for both 10 and 20 node
networks significantly. This suggests that networks
of those sizes rarely reached a full cascade. This
likely results from the sparse distribution of initial
adopters and edges in comparison to larger net-
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works. In 100 node networks there are 20 initial
adopters per behaviour, whereas in 10 node net-
works there are only 2. Considering the adoption
threshold Padopt = 0.3 the existence of 2 adopters
has fewer networks where there exist node(s) with
a sufficient proportion of neighbours to cascade a
behaviour. Except for 10 node networks, the data
is strikingly similar to our analysis of figure 6.3 and
6.4.

Figure 6.5: Average steps until stabilisation in
full cascade networks. Y-axis shows the network
size. X-axis shows mean step values. Rules are
categorised by colour; R1 (orange), R2 (green),
R3 (blue).

7 Conclusion

In this paper we explored different updates on
threshold models. These updates revolved around
social influence and selection and their relation-
ship. First we defined social influence that allowed
agents to learn new behaviours and social selection
that connected nodes that were related to similar
agents. It was found that this form of social
selection can lead to faster cascades of informa-
tion through a network. However we conjecture
that this phenomenon is only the case under
two conditions; first, only networks in which the
social selection doesn’t prevent information from
spreading and second only if there is a significant
distance between an agent that has adopted a

Figure 6.6: Deltas of stabilisation in full cascade
networks. Y-axis shows the network size. X-axis
shows delta values. Comparisons are categorised
by colour; R1-R2 (orange), R1-R3 (green), R2-
R3 (blue).

behaviour and an agent that hasn’t. Next it was
shown that unique sequences of network updates
involving social influence and selection can lead to
the same final model.

Then we extended these definitions of influence
and selection to allow nodes to abandon behaviours
as well as abandon connections. Furthermore, the
redefined social selection required that the nodes
had enough similar behaviours to be connected.
This allowed agents to evaluate their similar-
ity to each other and conversely decide if they
are similar enough to remain connected. These
are more complex updates and were explored
empirically by building a simulation in python.
Data from the simulations lead to the following
observations. In networks that only featured
the redefined influence update networks did not
readily reach stable states. Selection lead to more
stable networks. There was a significant difference
in network stabilisation when agents could and
could not remove connections from their networks.
Finally, network size is a significant predic-
tor for network behaviour, however there is not a
clear trend presented on how these are interrelated.
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In the properties of the model outlined in sec-
tion 5, variation in both θa and θE have significant
impacts on the final network. Clearly, increasing
θa increases the resistance towards a diffusing be-
haviour. Interestingly, there was a soft boundary
between 0.3 and 0.4 for the adoption threshold with
all things equal where behaviours would begin be-
ing collectively unlearnt. All adoptions would trend
towards zero adopters.
There are many ways in which further research

can adapt this study. We used random network
generation, however there are many other types of
graphs that can be explored with this framework.
For example, small world networks (Watts & Stro-
gatz, 1998) have been shown to be a more realistic
distribution of populations. Nodes are grouped ac-
cording to neighbour clusters, that most nodes are
not neighbours but the neighbours of a node are
highly likely to be each others neighbours.
Additionally we used a homogeneous adoption

threshold, however there is emerging research on
the idea of heterogeneous thresholds that assigns
a threshold to each node based on some distribu-
tion of values e.g. (Ryan & Tucker, 2012), (Bauer &
Hein, 2006), (Chatterjee & Eliashberg, 1990). This
is to show that different entities in a network have
different standards of adoption.
Variation in the adoption threshold used to sim-

ulate these results can lead to wildly different find-
ings. Our goal with the simulation was to evaluate
in practise, the environment required for informa-
tion to fully cascade. It was important for our ex-
periment that a behaviour be allowed to cascade
through a network with adoption taking place more
often than abandonment. This motivated these se-
lections of network factors, however it is possible
that there exists a different combinations of val-
ues that leads to only full cascades. This is espe-
cially important for 10 and 20 sized networks where
the scarcity of edges and nodes lead to more cases
of cyclic or empty networks where the number of
adopters was reduced to zero.
The nature of friendship selection in this experi-

ment is a combination of trait and network relation-
ships. However, network distance became increas-
ingly less relevant as network size grew. Longest
paths of networks began converging. As network
size grows, edges grow exponentially. The influence
of a single node in the network increases exponen-
tially with edges as they can influence more nodes.

This helps explain why R1 and R2 did not find dif-
ficulty in converging to stable states. Many cyclic
relationships are closed by triangular closure.

There are edges that connect nodes to each other
symmetrically. With social media there has been
more emphasis on exploring the idea of asymmetri-
cal edges where one individual influences the other
but not the other way around (Hangal et al., 2010).
This paper will focused solely on symmetric edges
as these edges exist more commonly in close inter-
personal relationships that require both parties to
participate for the connection to exist. However,
further research can explore these updates with
asymmetry by including a weighting factor to each
edge. These would influence the strength of influ-
ence from one node to another.

Further research should assess the updates pro-
posed in this paper with different threshold values
to study how these rules lead to behaviours fully
disappearing from a network i.e. instead of full cas-
cade, all nodes in the network abandon some be-
haviour. It is not only important to understand how
information spreads but also under what conditions
it won’t.
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