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Abstract: Games have been a subject in various studies, and one of these well-researched sub-
jects is Theory of Mind. Theory of Mind allows a person to understand the thoughts and mental
states of another person. In games, a player will want to predict and know as much about the
opponents’ thoughts and their possible strategies. For example, theory of mind is needed to bluff
effectively, by reasoning about how the beliefs of others can be incorrect. Research has found that
bluffing can be a vital part of a player’s strategy in games like Poker and Liar’s Dice. A similar
type of game with little research is the auction game of Skull. In this three to six player game,
the players bid on the number of cards they believe they can turn over without revealing a skull
card. The study aims to determine whether there is a good strategy against the bluff of another
player to win the game of Skull. To measure this, an agent model was constructed to play these
games. These agents can play the game with bluffing or counter strategies. The model generated
data by playing 1000 games using different agent setups. The results showed that bluffing was a
good strategy for a player and improved the chances of winning. However, the counter strategy
was not considered to be a better approach. Future research could look into a more complete

strategy to counter bluffing players.

1 Introduction

Bluffing can be found in many areas of life, even
though we tend to associate it with games more of-
ten. One of the games bluffing is always associated
with is poker. This has been a topic for many stud-
ies. Such as the research of Friedman (1971), which
focuses on the optimal bluffing strategies in poker.
He showed that calling a potential bluff half of the
time can be a good strategy. In another study by
Guazzini & Vilone (2009), it was shown that agents
in multiple adaptive models would quickly learn to
bluff. It even showed that the agent who learned
bluffing the best would win more often.

Another type of game where bluffing plays a part
is auction games. Bluffing becomes a part of auc-
tion games in the bidding stage. During the bid-
ding stage, having the skill of bluffing can be an
advantage to a player. One of these auction games
is Liar’s Dice, also known under the name ‘Bluff*.
Sum & Chan (2003) looked at this version and how
the players should be modelled to include lying and
telling the truth. In the model, they went for an ap-
proach using probabilities. Another study by Free-

man (1989) looked at the tactics and strategies of
Liar’s Dice. The study did find tactics that allowed
the player to catch a liar more often. However, it
mentioned that bluffing strategies need to be re-
searched more in the future.

As shown from this previous research, bluffing
can significantly benefit a player. When a player
is bluffing, it can be hard for an opponent to read
this player. Reading other people and knowing their
thoughts is called Theory of Mind. Various research
has been done on Theory of Mind in a game envi-
ronment. A study by Goodie et al. (2012) focused
on the levels of Theory of Mind players would use
in a game. Lower levels imply a player focusing
more on their own strategy and less on the oppo-
nents. However, in a game where bluffing plays a
significant role, it is important that a player focuses
on their opponent. In this study, they found that
in simpler games, players were able to make real-
istic assumptions about their opponents by using
Theory of Mind reasoning. To prevent other people
from reading you, people will use bluffing strategies
to deceive their opponents. Bluffing can make it dif-
ficult for the opponents to know what a player is



doing. Therefore, a counter-strategy that can read
a player’s bluffing strategy can be beneficial.

In this thesis, we will investigate the game of
Skull (Marly, 2011), an auction game in which
bluffing can take a significant role. Therefore, the
question of this research is, ”Does a bluff predicting
strategy improve a player’s chances of winning the
game of Skull?”.

1.1 The game of Skull

A game that has excellent potential for bluffing is
Skull (Marly, 2011). This card game is played with
three to six players and feels similar to Perudo or
Liar’s Dice. The game Skull is played with four
cards per player, consisting of three roses and one
skull. The first stage begins with the players taking
turns laying down one of their cards face down on
their own stack. After laying down the first card,
players can lay down a second card or decide to
make a bid. This bid is the number of roses a player
thinks can be turned over on the table without pick-
ing a skull card. When a player makes a bid, the
other players can no longer lay down a new card,
and the game moves on to the next stage.

In the second stage, players take turns either rais-
ing the current highest bid or passing their turn. A
player must consider their bid well. When a bid is
too high, the player may not be able to satisfy this
bid. However, when a bid is too low, another player
may win the game instead. In this stage, bluffing
can be crucial in tricking others or securing the bid
for yourself. The different types of bluffing will be
explained in the methods section. Once all but one
player has passed, the game continues to the last
stage with the highest-bidding player.

In the third stage, the player with the highest
bid can start turning over cards and try to satisfy
the bid. First, the player will turn over their own
cards. If a player has played a skull card themselves
in the first stage, they will have to turn over that
skull and thus lose their bid. However, if the player
did only play roses and turns them over, they can
continue to the cards of the opposing players. The
player can choose which top card they want to turn
over from any of the opponents’ stack of cards. The
cards on the table may only be turned over from
top to bottom. When a player finds a skull, the
player loses one randomly selected card from their
hand. If the correct number of roses is found, the

player earns one point, and a new round begins.
The game continues until one player has won two
points or when all but one player lost all their cards.

2 Methods

To determine whether detecting bluffing players
can be beneficial in the game of Skull, we im-
plement an agent-based model capable of playing
this game. The agent model was implemented in
Python. The model will provide data on how many
wins a player has, the number of points a player
has won and how many times a player may have
lost a bid.

2.1 Model

The game of Skull has two main parts, which each
have their own function in the game. These parts
are the players and the game itself. The game
part will handle the different stages, keep track of
the players, and other important information. The
players will perform different actions per stage and
will keep track of their own information. How the
player makes a decision will be handled differently
per strategy.

2.1.1 Game Class

For the game, a class has been made to handle the
stages and hold the information. The game keeps
track of the following variables:

e winner: A Boolean that keeps track if a player
has won the game

e players: A list of all the active players

e deadPlayers: A list of players who have lost
all their cards

e totalCardsPlaced: Total amount of cards
placed on the table

e winningPlayer: The winning player

e passedPlayers: The number of players who
have passed

e bluffMemory: A dictionary of the number of
times a player lost due to bluffing



totalRoundsHighestBidder: A dictionary of

the number of times a player was the highest
bidder

These variables are needed to play a round of the
game, and some are used for the strategy, which will
be explained later.

The game class has the following functions:

setupGame ()
playRound ()
reorderPlayers ()

resetGame ()

The setupGame () function is used to set up the
players and add them to the list of players. Af-
ter setup, the game will start playing by using the
playRound () function. The playRound () function
will play one round of the game by going through
all three stages of the game.

2.1.2 Player Class

The player class represents the players and the in-
formation they need to keep track of. This class
keeps track of the following variables:

Name: The player’s name

Strategy: A Boolean that implies if the user
will use strategy or not

Deck: A list of the cards that remain in the
deck (hand)

Placed: A list of the cards that have been
placed on the table

Points: The number of points a player has won
that game

Passed: A Boolean that is true when a player
has passed

Bid: The last bid that a player has made on
the cards on the table

RemovedCards: A list of the cards that the
player has lost

LostBid: A Boolean that is true when a player
has lost/grabbed a skull

e PassProbability: A variable that is 1 or 0

depending on whether a skull has been played

e 0BSLevel: A variable used to implement the

overbid bluffing strategy for the players

e SBSlevel: A variable used to implement skull

bluffing strategy for the players

These variables are paired with the following
functions to make the game work:

e SetBlufflevels: Initializes the different bluff

levels a player can use

ResetPlayer: This function resets players af-
ter each round

MakePlay: Chooses a card to put on the table

MakeBid: Generates a bid for the current num-
ber of cards

PlayStageOne: Plays the first stage of the
game

PlayStageTwo: Plays the second stage of the
game

FindBidProbability: Standard function used
to find probability to bid

StrategyBidProbability: Finds probability
to bid depending on the strategy

PlayStageThree: Plays the third stage of the
game

2.2 Game Stages

The game consists of three stages:
e The first stage: the card placing stage
e The second stage: the bidding stage
e The third stage: the card flipping stage

In the following section, we will discuss each of
these stages in more detail.



2.2.1 Stage One

The first stage of the game starts with players lay-
ing down cards on their own stack in turns and
ends when one player makes the first bid. This
bid is the number of rose cards a player thinks
can be turned over on the table. If a player de-
cides to make the first bid on the number of roses,
the Boolean variable challenge is set to true. The
variable challenge receives a new state after the
player has played a turn in the first stage. This
turn is done by calling the playStageOne() func-
tion of the player class. This function has two possi-
ble actions: laying down a card or making a bid. No
particular strategy has been implemented for this
stage. Therefore, when placing a card, this card is
chosen at random from the cards left to the player.
The first bid can only be made when all players
have at least placed one card on their stack. If a
bid has been made, the first stage is over, and the
second stage begins. The first is made randomly in
the range of cards currently placed on the table.

2.2.2 Stage Two

The second stage of the game centres around the
bidding stage. The players will start bidding on the
number of roses they think can be turned over on
the table. This is done in turns, and the players
will have to think about whether bidding higher is
a smart thing to do. To implement rational think-
ing in this decision, there are two important things
to keep in mind. First, the probability of the cards
being a rose. As three out of the four cards a player
starts with are a rose, the likelihood that any given
card is a rose is high. Adding to this rationality, a
player should not want to win the bidding if this
player has placed a skull on their stack. One of the
reasons is that a player would rather have an oppo-
nent turn over this skull and lose a card. The sec-
ond reason is that when a player wins the bidding,
all their own cards must be turned over first. This
would mean that playing a skull and winning the
bid ensures that you turn over your own skull card.
For this scenario, the passProbability variable is
used to decrease the probability that a player will
bid higher than the current bid. The decision to
raise the bid or pass is made through a threshold.
A random number is generated between 0 and 100.
When this random number is lower than a given

threshold, a player will raise the bid. If this num-
ber is higher than the threshold the player will pass.
These thresholds are calculated through the use of
multiple formulas. The function will check what
type of strategy the player uses and will choose the
correct probability function for the threshold.

2.2.2.1 Strategies

The model has five different strategies a player can
use during the bidding stage. First, there is the
Probability-Based Strategy (PBS). This strategy is
used for the base model and has players make ratio-
nal decisions based only on the cards on the table
and what the player knows about their own cards.
This strategy was also described in the previous
section. There are three different bluffing strate-
gies. The first bluffing strategy is called the Overbid
Bluffing Strategy (OBS). In this strategy, a player
using it is more likely to raise the bid even if the
probability of succeeding is not high. The player
will take more risks in overbidding. The second
bluffing strategy focuses on the skull card. As men-
tioned previously, when a player has placed a skull
card on their own stack, winning the bid will mean
that this player must turn over their own skull card.
Therefore, a rational player will not be as likely to
overbid in this scenario. However, overbidding in
this scenario can be considered an excellent bluff-
ing move if it causes another player to bid even
higher. A player using the Skull Bluffing Strategy
(SBS) is more likely to raise the bid in the case of
having placed a skull card and using this bluffing
strategy to try and trick other players into poten-
tially picking a Skull. The third bluffing strategy
combines the first two types of bluffing. This strat-
egy is called the Dual Bluffing Strategy (DBS). The
last strategy a player can use is the Bluff Tracking
Strategy (BTS). This is the strategy that will be
researched. The Bluff Tracking Strategy will keep
track of the bluffing habits of all the players. The
section of stage three explains how these bluffing
habits are tracked. The player using the BTS strat-
egy will use the gathered information to predict
whether an opponent is bluffing. This prediction is
taken into account in the decision to overbid or not.



2.2.2.2 Probabilities

There are two different functions used for the prob-
ability of bidding higher than the current bid. Both
functions are extended from the following base for-
mulas for the rational part of the decision. The
probability will be calculated for a bid that is one
higher than the current higher bid. For this, for-
mula 2.1 is used. Then the probability that the
new bid can be satisfied is calculated first. This
probability is found using formula 2.2, which looks
at the number of cards a player can already turn
over and how many cards still need to be found in
the cards of the other players. In formula 2.2, it
is assumed that the cards are only roses. For the
chance that a player has played a skull themselves,
the passProbability (ppass) variable is used in the
player class. When a player plays a skull in the first
stage of the game, this variable is set to 1. If not, it
stays at 0. In formulas 2.3 and 2.5, it is shown how
this passProbability influences the threshold. For
the two functions, this base threshold will be in-
creased or decreased depending on what a player’s
strategy is. The PBS strategy only uses these base
formulas to decide the threshold.

Bid,ew = Bidhighest +1 (2.1)
Bidnew - Selfplaced

rational = 2.2

Prational cardsOtherUsers (2:2)

Increasing this threshold hold will increase the
chance that a player will raise the bid, and this is
the direction used for bluffing players. The play-
ers that bluff will take more risk and will not take
all rationality into account. The first probability
function is findBidProbability (). This function
is used by the players using one of the bluffing
strategies of OBS, SBS, or DBS. In this function,
the following formulas are used to calculate a prob-
ability.

Poluff = prational_(0~5_SBSlevel)*ppass+OBSlevel
(2.3)

In this formula, bluffing is implemented by in-
creasing the probability. When used, the 0BSLevel
and SBSlevel variables are set to 0.25 at the be-
ginning of the game. In the formula, these proba-
bilities can then increase the threshold. This num-
ber was decided through testing different settings.

These different settings showed that 0.25 was the
better option (see Appendix A). In the function, the
passProbablity will reduce the threshold when a
skull card has been played. The two types of bluff-
ing strategies are Overbid Bluffing Strategy and the
Skull Bluffing Strategy (the third type Dual Bluff-
ing Strategy combines the two). The first type uses
the OBSLevel variable and is a constant increase of
0.25 on the threshold. The Skull Bluffing Strategy is
used in the scenario a player has placed a skull card
in the first stage. This setting uses the SBSLevel
variable to reduce the passProbability. In the for-
mula, the middle part shows how to decrease the
chance of overbidding if a player has played a skull
card. In SBS, this passProbability is decreased.
This makes the player more likely to overbid in the
case they had played a skull, which is a part of the
Skull Bluffing Strategy.

Decreasing the threshold will be used for the
players using BTS. The probability of making a
new bid will be influenced by the likelihood that
the current highest bidder is bluffing. If the cur-
rent highest bidder is bluffing, the player should
be less likely to overbid the current bid. The sec-
ond function is StrategyBidProbability () which
uses the formulas 2.4 and 2.5. This function is used
for the player using the Bluff Tracking Strategy
(BTS). In this formula, the player uses the two
dictionaries that the game class keeps track of.
These dictionaries include the bluffMemory and
totalRoundsHighestBidder. The first dictionary
provides the number of times a player is believed
to have been bluffing. The players are classified to
have been bluffing during the third stage. This clas-
sification of bluffing will be explained more in the
section on stage three. And the second dictionary
provides how many times a player has been the
highest bidder and made a mistake. With these
two numbers, the function calculates the percent-
age of times a player has ended up bluffing. This
percentage is then used in the formula to lower the
probability that the player will bid higher than the
current bid. In BTS, the player only uses the ratio-
nal type of the passProbability. In this version,
the threshold is lowered by 0.5 when a player has
played a skull in the first round. Continuing, in this
case, would be a risky move.

bluffshighestBidder
bidSLOSthighestBidder

Poluffs = (2.4)



PStrategy = Prational — (05 * ppass) — Pbluffs (25)

2.2.3 Stage Three

In the third stage, the highest bidder will try to
turn over the number of roses corresponding with
the bid they have made. This stage will end when
the highest bidder is able to find all the roses
needed to satisfy the bid or when the highest bidder
has picked a skull card. The playRound () function
keeps track of the bid the player has made during
this stage. When the player picks a rose, this bid
is reduced by one. If the bid is reduced to zero,
the bid is satisfied, and the player receives a point.
However, if a player does pick a skull card before
reducing the bid to zero, this player will lose the
bid, and the lostBid Boolean is set to true. Set-
ting the lostBid Boolean to true will end the while
loop and, with it, the third stage. If a player wins
a second time and thus earns a second point, this
player will win the game, and the winner Boolean
is set to true, ending the game.

The player uses the playStageThree() function
to perform the actions for this stage. This func-
tion will first pop all cards from their own stack.
A player must always take the top card from a
pile. Therefore, the stack data type is used. When
a player has been able to pop all their own cards
without turning over a skull, the player can move
on to the piles of other players. The player will pick
a card randomly from one of the piles left. If a rose
is picked, the bid is reduced by one, and the player
will pick another card. However, if a skull is picked,
there are two scenarios. The first scenario is when
a player chooses the skull from their own pile; this
is classified as a bluff. As playing a skull and con-
tinuing to bid is a very risky move, the player will
likely try to trick other players into raising the bid.
When a player does end up as the highest bidder,
the bluff did not succeed, and the player ends up
picking their own skull card. The other scenario is
when a player picks the skull from another player.
This is not always classified as bluffing, as a player
can make a rational bid but reveal a skull very
quickly. Therefore, the model looks at how many
cards are left to satisfy the bid, when 90 percent
of the bid has been met, a player has overplayed
themselves. A player has overplayed themselves, as

they bluffed or played with high risk believing that
almost all the cards on the table would be a rose.
When a loss is classified as a bluff, this is saved in
the bluffMemory dictionary of the game class and
available to all players using it in their strategy.
This will be used for the strategy in stage two.

When a round is won, the playRound() func-
tion will reorder the players so that the highest
bidder starts the next round. The original order
is used starting from the highest bidder. After re-
ordering the players, the resetPlayer () function
is called to reset the variables for the next round.
In each round, the player will get their cards back.
However, if a player has revealed a skull in stage
three, they must hand in a card. This is checked in
the resetPlayer () function through the lostBid
Boolean; if true, a random card is taken from
the deck and added to the removedCards list.
This list will ensure that the cards will remain re-
moved in future rounds, as the decks are reset to
the original four cards every round in the func-
tion. Other variables that need to be reset are the
placedCards list, the passed Boolean, the bid,
and the passProbability. After this, the round
is finished, and a new round can be played.

2.2.4 Game End

If the game has ended due to a player attain-
ing two points and winning the game, the whole
game must be reset. Resetting the game is done
in the game class. As explained earlier, the func-
tion resetGame() will reset all the players, the
winner Boolean, and the winningPlayer variable.
However, it does not reset the bluffMemory and
totalRoundsHighestBidder. These two dictionar-
ies are kept for future games to be played. Adding
more game results to these dictionaries improves
the knowledge that the player has over the other
players.

Once the game has been reset, the next game
can be started. The model plays as many games as
requested in the terminal.

2.3 Data Collection

The research will be done based on the results of
the first player on the list. This player is called So-
phie. In all the games Sophie will be using the Bluff



Tracking Strategy (BTS), except for the base game.
From each game, certain values about Sophie will
be stored. These values are generated through play-
ing multiple games of Skull. After each game, the
following variables are saved to a panda data frame:

e Wins: if Sophie has won or not

e Points: the number of Points Sophie has won
that game

e lostBids: the number of times Sophie’s bid
was wrong

e roundsPlayedUntilwinner: the number of
rounds played until a player won

e nameOfWinner: name of the winning player

The setup per game can be adjusted at the start
of the model. When running the model, these set-
tings will be asked for in the terminal. The settings
are the following:

e Number of players: between 3 and 6

e Type of bluffing: No bluffing (PBS), Skull
bluffing (SBS), Overbid bluffing (OBS), and
Dual Bluffing (DBS)

e Number of players using BTS strategy

e Number of games to play

For the results, the following standard settings
were used. The number of players was set at 6.
The number of games played was set at 1000. For
the baseline results, the model was set up with all
players using PBS. The Bluff Tracking Strategy is
tested against the baseline model and all bluffing
strategies. These setups are run in two different
ways, the first being where only Sophie uses BTS
and the second where all but one player uses BTS.
In table 2.1, the different setups that were used
are shown. The second column shows if the oppo-
nents used PBS, OBS, SBS, or DBS. The last col-
umn shows the number of players using BTS. This
means that with one player using BTS, the other
players use a different strategy.

The names are set up as follows: the name of the
strategy that the opponents use - the number of op-
ponents using this strategy. The remaining players
will use the Bluff Tracking Strategy (BTS). This

Table 2.1: Settings used to run different games

| Name | Opponent Strategy | BTS Users |
PBS-6 (Base) | PBS (6 Players) 0 Players
PBS-1 PBS (1 Players) 5 Player
PBS-5 PBS (5 Players) 1 Player
SBS-1 SBS (1 Player) 5 Players
SBS-5 SBS (5 Players) 1 Player
OBS-1 OBS (1 Player) 5 Players
OBS-5 OBS (5 Players) 1 Player
DBS-1 DBS (1 Player) 5 Players
DBS-5 DBS (5 Players) 1 Player

group can be only Sophie or Sophie and four other
players that will use BTS. For example: in Overbid-
5, five players will use the Overbid Bluffing Strategy
and the one remaining player (Sophie) will use the
Bluff Tracking Strategy.

3 Results

In the methods section, it is explained for which
different settings the model has generated data.
This data will focus on the results that Sophie has
produced. By comparing these different settings,
results can show how effective the Bluff Tracking
Strategy (BTS) was for Sophie. As mentioned in
the methods, the model plays 1000 games per set-
ting. The data for all of the settings are saved in a
CSV file and analysed in R.

Wins per player with Base Settings
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Figure 3.1: Model win results with only PBS is
used and no tactics or bluffing

In figure 3.1, the wins are shown per player.
These results were from the model run where all



players used the Probability Based Strategy. These
results show how the players would perform if only
rational actions were taken. In the graph, it is visi-
ble that there is not one player that outperformed
the other players. The dispersion of wins is very
similar. The graph shows that Sophie was able to
win 152 out of the 1000 games played.

3.1 Game Wins

First, the results of the wins will be inspected to see
whether there has been a performance increase. An
increase in wins would imply that the performance
has increased.

Total Games Won
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Figure 3.2: Number of games Sophie won in each
different setting out of a 1000 games. Each bar
represents a different setting.
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In Figure 3.2, the number of games that Sophie
has won is displayed. In all of these settings, So-
phie is using the BTS strategy. The difference be-
tween settings is the types of bluffing strategies and
the number of agents using them. For each bluffing
strategy, there are two different settings, the first
is where five players use the bluffing strategy, and
only Sophie uses the BTS. Second is the case where
five players (including Sophie) use the BTS, and
only one player uses the bluffing strategy.

The yellow bar represents the base setting where
all players use PBS as their strategy.

First, the blue bars show the wins when the op-
ponents use the PBS strategy. The light blue bar
represents the setting where five players use the
BTS strategy, and in the dark blue bar only Sophie
uses BTS. These bars show that the number of wins
did not drop as much as for the last bars/settings
where DBS was used. This could mean that the

BTS strategy does react more when other players
are bluffing, which it was designed for.

Second, the green bars represent the wins for the
setting where the opponent used the Skull Bluff-
ing Strategy. By continuing the bid after playing
a skull, the players would increase the chance of
having to pick their own skull and lose. In this set-
ting, Sophie did win more. However, this was only
the case for the setting when five of the six players
were using the BTS strategy.

Looking at the settings where the opponents use
the Overbid Bluffing Strategy represented by the
red bars. The results also did not drop as much
as the orange bars for DBS. Indicating that the
strategy did not decrease the performance much
for the setting with the Overbid Bluffing Strategy.

Lastly, in the figure, there are two orange bars for
the settings where the Dual Bluffing strategy was
used. Here it shows that Sophie wins less than in
the base setting, where PBS was used (the yellow
bar). The number of wins drops by almost a third.
It does seem that when the opponent bluffs, Sophie
does not have an edge by using the BTS strategy.
This does not imply that she does not learn more
from the bluffing players. It can also mean that
she is more careful in bidding, and thus the other
players are able to play more often for the points.

From these results, it still needs to be shown why
the strategy decreases and increases the wins for
certain settings. Therefore, the results that were
found on the number of points and the number of
bids lost will be looked at next.

3.2 Number of Points Won

Looking at the points that Sophie has won during
the games will show whether Sophie did make more
good calls on the bid. Sophie wins a point when she
is able to satisfy the bid she made during the second
stage and won the bidding. Making more points
shows that the performance increased overall.

For the blue bars in the first setting, Sophie does
show a decrease in points won. Indicating that So-
phie did not do as well as in the base setting.

In the second setting (green bars), where the
players only used SBS, Sophie did not increase her
points as well. However, it does show that in this
setting, Sophie did obtain more points when five
players were using BTS as opposed to only Sophie
using BTS. For the other settings, when all play-
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Figure 3.3: Number of points Sophie won in to-
tal for each setting. The total of points over a
1000 games. Each bar represents a different set-
ting

ers but Sophie were bluffing, Sophie would obtain
more points. The result of the last settings aligns
with the wins Sophie obtained as Sophie was able
to win more games in the last setting.

In the third setting (red bars), where opponents
used OBS, Sophie also had a decrease in perfor-
mance. The points obtained were more than in the
prior settings where the opponents used DBS and
PBS. However, it does show that Sophie did not
make more points than in the base settings either.

In the last settings (orange bars) where DBS was
used, Sophie obtained fewer points than in the base
setting (yellow bar). This would mean that either
Sophie has passed more on bids and thus has made
fewer points, or Sophie revealed more a skull more
often in stage three.

3.3 Bids Lost

When a bid is lost, this means that the player
revealed a skull card and thus lost the bid. If
Sophie could decrease the number of lost bids, it
would increase the performance.

Figure 3.4 shows the number of bids Sophie lost
in stage three for the different settings.

In the settings where the PBS strategy was used
(blue bars), Sophie does make around the same mis-
takes as she did in the base model. This would im-
ply that the BTS strategy was not able to prevent
Sophie from making fewer mistakes in this setting.
As the players were not bluffing, the BTS strategy
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Figure 3.4: Total number of times Sophie’s bid
was wrong over a 1000 games. Each bar repre-
sents a different setting.

could be making the wrong calls by assuming that
the players are bluffing.

The next setting (green bars) shows that Sophie
has lost more bids than before. Losing more would
imply that the BTS strategy needs to learn better
when the opponent is using the SBS strategy. How-
ever, as players may only sometimes play a skull
card, more games could be played with a less risk-
involved strategy by most players. Therefore, So-
phie would have the chance to win the auction in
stage two more often. In this setting Sophie loses
more bids and wins more points, and this also in-
creased her wins overall. This shows that being the
highest bidder more often, increases the chance of
winning. It does show that Sophie has also made
the most mistakes in this setting.

For the third setting (red bars), Sophie did make
fewer mistakes as well. However, the mistakes did
not decrease as much as in the last setting (orange
bars). This is due to how Sophie classifies bluffing
in the strategy. If a player loses a bid with ten per-
cent of the bid left or less, this loss is classified as
Overbid Bluffing by Sophie. This would imply that
a player has made a bid close to the total amount of
cards on the table, which is a high-risk play. How-
ever, as the chance that a player loses early on in
the third stage is also a possibility, Sophie may have
yet to pick up the bluffing tendencies of the oppo-
nents as well as with the other setting.

Looking at the last two settings (orange bars),
the BTS strategy does help Sophie to make fewer
mistakes than in the base game. Making fewer mis-
takes would happen because Sophie is more careful



and passes earlier in the second stage.

Overall looking at the figure, Sophie does make
fewer mistakes when she is the only player using
the BTS strategy. Sophie can classify other players
as bluffing when this could not be the case. The
strategy will become less reliable when more players
anticipate other players to bluff by using the BTS
strategy.

3.4 Overall Auctions Won

Combining the last two graphs will show what So-
phie did overall with the auction. The previous re-
sults can also be explained through the percentage
of the total auctions won. When a player wins more
auctions, this gives a chance for more wins or mis-
takes.

Settings Bids lost | Points Won | Total
PBS-6 (Base)|612 1330 1942
PBS-1 606 845 1451
PBS-5 560 905 1465
SBS-1 645 988 1633
SBS-5 625 828 1453
OBS-1 557 1004 1561
OBS-5 498 1109 1607
DBS-1 480 756 1236
DBS-5 441 1058 1499

Table 3.1: Number of bids correct and incor-
rect. Bids lost represent the times that Sophie
was not able to satisfy a bid. The point won rep-
resents the times that Sophie was able to satisfy
the bid. The total is the sum of these two.

First, the total number of auctions will be looked
at. The table above shows the total number of
points and bids lost. Together these numbers rep-
resent the number of times Sophie was the highest
bidder.

The first settings where PBS was used do show a
decrease in the points that Sophie was able to win.
However, looking at the mistakes that Sophie made,
there only is a big decrease for setting PBS-5. The
overall times that Sophie was the highest bidder
and able to convert this to a point decreased. This
can also be seen in the percentages in table 3.2.

The table shows that Sophie lost more bids for
the SBS setting than for other settings. However,
the total number of auctions won remains are sim-

ilar to the other settings (except for base). There-
fore, Sophie will have made more mistakes with the
auctions and should have passed more.

In the third setting, with Overbid Bluffing, So-
phie won more auctions than in the first two set-
tings. This is due to the classification of bluffing
for BTS. Because a loss will be classified as Over-
bid Bluffing when the last 10 percent of the bid is
not satisfied, this may not happen very often. This
would mean Sophie will pick up on bluffing less,
however, this will then also influence her probabil-
ity of raising the bid less.

Sophie lost fewer bids in the last settings than
in the base setting. However, the total shows that
Sophie also has a decrease in the total auctions won.
This would imply that Sophie has passed on more
bids in the game. Due to the players using DBS, the
BTS strategy will decrease the chance of Sophie
overbidding. This will, in turn, make Sophie win
fewer auctions.

The wins and loss percentages will show whether
the BTS strategy made helpful decisions for Sophie.

Moving on to table 3.2, the percentages of the
wins and losses are shown. These percentages tell
whether Sophie made the correct decision to play
or not play a bid.

Settings Bids lost | Points Won | Total
PBS-6 (Base)|[31.51% |68.49% 100%
PBS-1 41.76% |58.24% 100%
PBS-5 38.23% |61.77% 100%
SBS-1 39.50% [60.50% 100%
SBS-5 43.01% |56.99% 100%
OBS-1 35.68% |64.32% 100%
OBS-5 30.01% [69.01% 100%
DBS-1 38.83% |61.17% 100%
DBS-5 29.42% |70.58% 100%

Table 3.2: Percentage of bids correct and incor-
rect. Bids lost represent the times that Sophie
was not able to satisfy a bid. The point won rep-
resents the times that Sophie was able to satisfy
the bid. The total is the sum of these two.

Table 3.2 shows that the bids lost have increased
in the overall percentages. The only time Sophie
has had an increase in wins percentage-wise is in
the last setting. This also being the setting where
Sophie has won more games. Furthermore, table
3.1 showed that Sophie won fewer auctions in the

10



second stage when using the BTS strategy. This,
combined with the percentages in table 3.2, shows
that Sophie also loses more bids.

Overall this table verifies the decrease in perfor-
mance due to the BTS strategy. As can be seen
in the table, the percentage of won auctions that
were converted into points decreased. Even show-
ing that the percentage of these won auctions lost
was higher than in the base setting.

4 Conclusions

After looking at the results, the following conclu-
sions can be made. First, the results showed that
using the BTS strategy did not improve the per-
formance of Sophie. It only increased the number
of wins for Sophie in one of the settings. There are
two possible explanations for these results. First,
Sophie would try to anticipate the opponents’ de-
cisions and whether they are bluffing or not. By
trying to anticipate this, Sophie is taking less risk
when bidding in the second stage. By taking less
risk, Sophie gives herself fewer chances to win the
auction and make it to the third stage. Even when
Sophie managed to win an auction and move on to
the third stage, Sophie would reveal a skull more
times than before and lose. However, this can also
be approached from a different perspective.

Looking at the players that use the different
bluffing strategies, they did succeed in letting oth-
ers make more mistakes. Sophie’s results show that
she made more mistakes and should have passed
more often. Making these mistakes does imply that
the bluffing players may have tricked the other play-
ers correctly. What also helps the bluffing players
is that BTS and the bluffing strategies work in op-
posite ways, as the BTS strategy will make Sophie
more likely to pass. The bluffing players will take
more risks in these plays and, therefore, have more
chances to win a point as these players win more
auctions.

Overall it shows that bluffing in the game of Skull
will improve the chances of winning. As players will
only need to get two points to win the game, playing
with more risk can, most of the time, pay off. The
players start a game with four cards and only lose
one card if they pick a skull. Therefore, playing
with high risk and having 50 percent of the auctions
correct would have you win the game. The high-risk

strategy will thus give an excellent chance to win.
It is essential to be able to play the third stage, as
with a game where the winning condition only is
two points, the game is over before you may have
had the chance to go to the third stage.

5 Discussion

Overall this study showed that the BTS strategy
does not help the player win more games. The
study gave a positive insight into bluffing strate-
gies and suggested that a counter-strategy needs
more work. Looking at the BTS strategy, the results
show that this strategy is incomplete. As Theory
of Mind suggests, reading an opponent and pre-
dicting their moves are more complex than only
tracking their previous moves. More than tracking
their moves alone will be necessary to improve the
results. The player must also focus on their own
strategy and really play the game themselves. By
using the BTS strategy, Sophie was more focused
on what other players might be doing than decid-
ing what she thought could be a reasonable bid.
It showed that the players using bluffing strategies
would win more games. This comes back to the fact
that these players are focused on their own game
and thoughts. The level of Theory of Mind these
players use is very low. This would suggest that in
a game like Skull, a low level of Theory of Mind is a
better approach. The study was mentioned earlier
by Goodie et al. (2012), and how this study looked
at the levels of Theory of Minds players would use.
This study found that most players tended to use
a lower level in more complex games. Looking at
the results from this study, there could be a trend
where players find that focusing less on their oppo-
nents’ moves is a good strategy. Focusing on what
levels of Theory of Mind a player should use in a
game is a fascinating subject for future research.
Looking at the future of the BTS strategy, some
possible improvements can be made. Currently, the
BTS strategy only looks at whether the player
should overbid, depending on whether the oppo-
nent is bluffing. The BTS strategy could be ex-
tended to encourage a player to use bluffing by look-
ing at the situation and whether it was successful
in previous situations. Extending the BTS strategy
with bluffing is a way of changing the level of The-
ory of Mind. The BTS strategy will also be able
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to focus more on its own decision about a reason-
able bid. The model will have to keep track of more
statistics, such as the number of cards placed, the
highest bid and whether this bid was won or not.
With this information, a player can make a more
balanced decision on whether to overbid or not.

The model showed that the bluffing players did
improve over the BTS strategy players and were
able to win more games. However, for future re-
search, it could be interesting to look at how much
risk is still beneficial for players while bluffing.
Furthermore, looking at how the players can give
their bluff more thought in the games could show
whether there are scenarios that decrease your
chances. Looking at the formulas used, the levels of
bluffing were static numbers. In a newer model, the
players could learn from previous games, and the
bluffing levels could become a variable. This vari-
able number could be deducted from previous re-
sults by using a similar approach to the BTS strat-
egy that Sophie used. This could be a new strat-
egy based on the BTS strategy, a strategy where
the bluffing player will keep track of the situations
when bluffing was not favourable, for example.

In a future study, it could be looked into whether
losing cards has a significant decrease in the chances
of winning than it has in winning. As previously
mentioned that playing with high risk and being
willing to sacrifice some cards to get more opportu-
nities to advance to the third stage would increase
chances to win. Thus determining whether losing
cards and having fewer cards to use in the first
round is worth it overall.
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A Appendix

A.1 Bluffing Probability Settings

To decide on the settings for the 0BSLevel and the
SBSLevel, we looked at the games won by Sophie
for the different settings. We took a range from
0.05 to 1. In the graph below, the different settings
are shown for 0BSLevel and SBSLevel, where five
players use a bluffing strategy and only Sophie uses
BTS. The level of 0.25 was chosen for the model,
as we can see in the graph (first red bars) that So-
phie was able to perform her best against bluffing
with this setting. The graph does show that Sophie
wins more games in 0BSLevel when the level is 0.75
or 1 than in the setting of 0.25. Closer inspection
reveals that for high values of 0BSLevel, the bluff-
ing players consistently win the bidding phase by
overbidding and lose the subsequent turning phase.
Since this puts bluffing players at an unrealistic dis-
advantage, the value of 0BSLevel was set to 0.25
instead.

Total Games Won
200~

I
LN T
Figure A.1: The total games won by Sophie us-
ing BTS. The five opponents use either SBS or

OBS. The different levels are used for SBSLevel
and OBSLevel
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A.2 Bids Won and Lost Graphs

The graphs show the same numbers as in the tables
3.1 and 3.2 in the results section. Here it is shown
in a stacked bar graph.
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Figure A.2: The bars represent the number of
bids Sophie has lost and won. The green bar is
the bids won and the red bar the bids lost.
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Figure A.3: The bars represent the number of
bids Sophie had wrong and right. It is shown
as a percentage of the total of bids Sophie got
to play in the third stage. The green bar is the
bids Sophie had correct and the red bar the bids
Sophie had wrong.
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