
Preprocessing Pipeline Meta-Learning
Using Reliable and Diverse

Meta-Target Selection

Charlie Albietz

University of Groningen

Preprocessing Pipeline Meta-Learning, Using
Reliable and Diverse Meta-Target Selection

Master’s Thesis

To fulfil the requirements for the degree of
Master of Science in Artificial Intelligence

at University of Groningen under the supervision of
Dr. Herbert Jaeger (Artificial Intelligence, University of Groningen)

and
Maik Frye, MSc. (Fraunhofer Institute for Production Technology)

Charlie Albietz (s3058739)

April 6, 2023

3

Contents
Page

Acknowledgements 5

Abstract 6

1 Introduction 7
1.1 Research Questions . 8
1.2 Thesis Outline . 9

2 Background 10
2.1 Machine Learning Process . 10

2.1.1 Data Understanding . 11
2.1.2 Data Preprocessing . 11
2.1.3 Modelling . 11

2.2 Dataset Preprocessing Methods . 13
2.2.1 Data Cleaning . 14
2.2.2 Data Transformation . 15
2.2.3 Data Reduction . 16
2.2.4 Data Resampling . 17
2.2.5 DPP Pipelines . 17

2.3 Automated Machine Learning . 18
2.3.1 Types of AutoML Schemes . 19
2.3.2 Meta-Learners . 20
2.3.3 Advantages and Disadvantages of Meta-Learning 21

2.4 Related Work . 21

3 Methods 24
3.1 Knowledge Base . 25

3.1.1 Usecases . 25
3.1.2 DPP Pipeline Combinations . 27
3.1.3 Collection . 30
3.1.4 Ranking . 33

3.2 Meta-Dataset Creation . 33
3.2.1 Meta-Feature Extraction . 34
3.2.2 Meta-Target Selection . 36
3.2.3 Testing Sets . 43

3.3 Training . 44
3.3.1 Preprocessing . 45
3.3.2 Learning Algorithms . 45
3.3.3 Cross Validation . 45

3.4 Model Assessment . 46
3.4.1 General Rank Accuracy . 46
3.4.2 Ideal Ordering . 47
3.4.3 Best Pipeline . 47

4 CONTENTS

4 Experimental Setup 48
4.1 Experiment 1: Pipeline Selection Evaluation . 48
4.2 Experiment 2: Recommended DPP Pipeline Performances 48

5 Results 49
5.1 Cross Validation Results . 49
5.2 Reliable vs Diverse Selection Method . 51
5.3 Recommended DPP Pipeline Performance . 52

6 Conclusion 54
6.1 Meta-Target Selection . 54

6.1.1 Classification Usecases . 54
6.1.2 Regression Usecases . 55

6.2 Meta-Learner Viability . 57
6.2.1 Diverse vs Reliable Recommendations . 57

6.3 Summary of Main Contributions . 58
6.4 Limitations . 58
6.5 Future Work . 59

References 61

Appendices 68
A Training Set Overview . 68
B Meta-Feature List . 69
C Test Set Overview . 71
D Self Implemented DPP Methods . 72
E Dataset Names . 73
F Chosen Pipelines . 74
G Selected Pipelines for Regression Usecases . 75
H Cross Validation Folds CL . 76
I Cross Validation Folds RE . 77
J Cross-Validation Results . 78
K Final Model Settings . 79
L TPOT DPP Methods . 80

5

Acknowledgments
This project has proven tougher than initially expected and I would like to thank all those who have
supported me throughout the process. I would like to thank those working at Fraunhofer IPT for
allowing me access to the data required to train the models used in this project and specifically Maik
for the supervision. I would also like to thank all those who participated in reviewing and proof
reading the many drafts of this thesis. I would especially like to thank Lynne for everything she did.
This project is dedicated to my Grandad who would have been proud.

6

Abstract
Meta-learning, or learning about learning itself, can be applied to many branches of Machine Learn-
ing (ML). One of such branches aims, like Automated Machine Learning (AutoML) systems, to find
ideal ML model parameters for novel datasets. Meta-learning systems obtain information about how
model parameters will likely affect datasets by evaluating the performance of many previously run
ML models. With this information, meta-models can be trained to predict the performance of future
ML algorithms depending on dataset characteristics and model settings. In this paper, a meta-learning
system was trained to predict the performance of dataset preprocessing (DPP) pipelines, allowing for
automation of the DPP pipeline optimisation process. Previous meta-learning studies have highlighted
a need for improvements concerning meta-model accuracy when predicting ideal DPP pipelines. For
this reason, the current project aims to employ a new method that is expected to help increase meta-
model accuracy for DPP, as well as producing strong DPP pipeline recommendations for incoming
datasets. The method that is proposed in this project is to improve how meta-targets are selected.
Meta-targets are targets that a meta-learner is trying to predict. In a scenario where DPP pipeline
scores are to be predicted by the meta-learner, it is a common practice to define a smaller set of DPP
pipelines to predict the performance of, rather than the entire set of possible DPP pipeline combi-
nations. In this project, a novel method for choosing this subset of DPP pipelines is investigated.
Usually, this subset consists of well-performing DPP pipelines chosen via the introduced principle
of reliability: each DPP pipeline within the subset can show a high average performance across the
training data. The top pipelines are then chosen according to a metric. An alternative method for
meta-target selection is proposed: the principle of diversity. In this method, diverse meta-targets with
high maximum performances for mutually exclusive groups of training inputs are chosen, allowing
for specialist DPP pipelines to be considered in place of average performers. The current meta-learner
was trained and tested on classification and regression datasets using reliable and diverse meta-target
selection methods. The results show that the meta-learning accuracy increased when using diverse
meta-targets instead of reliable meta-targets for classification datasets. However, this result was not
mirrored for regression datasets, likely due to encountered complications. Furthermore, the current
model’s performance, using either reliable or diverse meta-targets, was evaluated by comparing the
top-recommended DPP pipelines to those recommended by a popular DPP pipeline optimisation tool,
TPOT. Though no statistically significant improvements were found, the results suggest that both the
reliable and the diverse pipelines led to better performances than those of TPOT. When comparing the
performance of the recommended pipelines from either the reliable or diverse subset of DPP pipelines,
the results suggested that the reliable meta-target selection method can lead to a better subset of DPP
pipelines than the diverse meta-target selection method since the reliable pipelines lead to slightly
better results than the diverse ones.

Chapter 1 INTRODUCTION 7

1 Introduction

When training machine learning (ML) models, many vital steps must be optimised to achieve the
maximum learning potential. Amongst these steps is dataset preprocessing (DPP). This task consists
of applying several DPP methods to a dataset before training an ML algorithm so that the information
within can be extracted most efficiently. Many DPP methods aim to enhance datasets by removing
their shortcomings. These methods include data cleaning, scaling or reducing and resampling. How-
ever, finding an ideal string of DPP methods that are applied to a dataset is complex. The difficulty
of this task is attributed to no universal pipeline existing that will reliably lead to the maximum per-
formance for any dataset, since different datasets require different DPP methods. Furthermore, there
is no obvious connection between dataset characteristics and the effect of DPP methods. This means,
to determine the utility of a DPP method on a specific dataset, the effect on ML algorithm perfor-
mance must be evaluated after fully training and testing an ML model. Finally, since many different
DPP methods exist, the search space for the optimal configuration of different DPP pipelines is large.
Combined, these factors lead to the complexity of DPP pipeline optimisation, which often requires
much expertise and time to complete successfully. Besides relying on experience to intuitively design
ideal DPP pipelines or employing grid search approaches that take considerable time, more advanced
strategies exist. Such advanced strategies usually aim to solve this task efficiently and automatically.
One such approach consists of training meta-learning models.
Meta-learning, or finding models and algorithms that can learn about learning itself, can be employed
in an extensive range of applications. With the growing popularity of Automated Machine Learning
(AutoML) in recent years, meta-learning is an ideal extension of this trend. However, unlike AutoML
models, where an algorithm will use iterative ML training with directed approaches for optimising
ML model hyperparameters, meta-learning relies on information about the performances of many
previously evaluated ML models. With this, predictions about model performance for future tasks
can be made.
Meta-learning systems are split into two major parts, an offline and an online setting. In the offline
setting, information about previous ML model performances on various datasets is collected. This
collected information is then gathered in a structure known as a knowledge base. By varying model
hyperparameters for each learning task in the knowledge base, information on the effects of these
hyperparameters is accumulated. This information can then be aggregated in meta-datasets. These
meta-datasets take dataset information in the form of dataset meta-features as input and return pre-
dictions about hyperparameter performances as the target output and are used to train meta-models.
Although the offline stage may take extended periods of time to complete, once the meta-model is
trained, it can be used to make quick predictions about ideal model hyperparameters. The main
requirement entails extracting novel datasets’ meta-features and insert them into the trained meta-
model. In the case of DPP pipeline recommendation, the targets relate to DPP pipeline performances
for an incoming dataset.
Recently, researchers have used many methods for applying meta-learning to predict suitable DPP
pipelines for novel datasets. These methods range from varying the target the meta-learner will pre-
dict (Bilalli, Abelló, Aluja-Banet, & Wrembel, 2018) to investigating whether using several smaller
meta-models lead to better results than using a single larger meta-learner (Zagatti, 2021). The result-
ing meta-models from these studies generally report that strong DPP pipelines can be consistently
recommended. However, it is common to encounter low meta-model accuracies when using this
approach. Frye (2023), for instance, reported high DPP pipeline performance after obtaining DPP
pipeline recommendations from a meta-learner; however, the actual meta-model accuracy was report-
edly low. This suggests that the learning task of predicting likely DPP pipeline performance given

8 Chapter 1 INTRODUCTION

task information is complex and not simple to solve. For this reason, the current project aims to
investigate a novel method that could increase meta-model accuracies when making DPP pipeline
recommendations.
The method that this project will investigate deals with the method in which meta-targets are se-
lected. Common DPP pipeline meta-learners reduce the number of possible meta-targets to a subset
of candidate pipelines. This step is required to avoid selecting ideal DPP pipelines from the set of
all possible DPP method combinations. The standard approach to selecting DPP pipeline candidates
follows a general DPP pipeline ranking technique based on average DPP pipeline performances of
the available information obtained from previously run ML algorithms (Laadan, Vainshtein, Curiel,
Katz, & Rokach, 2019; Zagatti, 2021). This approach is named the reliable method since the chosen
pipelines achieve high average performances for any dataset. Choosing such meta-targets fills the
subset with pipelines that will lead to decent dataset transformation, regardless of which is eventually
recommended.
Though having reliable DPP pipelines in the subset of candidate pipelines is beneficial, the perfor-
mances of these pipelines generally show very similar performances across different tasks, making
it harder for learning algorithms to differentiate between them. This issue is expected to contribute
to the low observed meta-learner accuracies for DPP pipeline recommendation. Additionally, since
researchers have established that no universal pipelines exist that lead to maximal performance for
any dataset (Jiao, Li, Chen, & Fei, 2020; Giovanelli, Bilalli, & Abelló Gamazo, 2021), it follows that
no recommended DPP pipeline from a set of reliable pipelines can lead to a maximal performance for
any dataset. Thus, an alternative approach for selecting DPP pipelines is proposed.
Whereas a reliable meta-target selection method may cast aside DPP pipelines that are specialists for
only certain groups of tasks and not others, this project aims to find a set of pipelines that ensures these
specialists are identified. This proposed meta-target selection method is named the diverse method
and aims to obtain a set of more specialised DPP pipelines that each excel for different groups of tasks.
Additionally, since DPP pipelines will be identified that will show more pronounced performance
disparities between one another for a given task, diverse meta-targets are expected to lead to greater
meta-learner accuracy when identifying ideal DPP pipelines.

1.1 Research Questions
The model created in this project will employ a diverse meta-target selection method to see if using
it over a reliable approach can lead to better meta-model performances for both classification and re-
gression datasets. This will be accomplished by using previously collected model evaluations, known
as a knowledge base, to create meta-datasets that will be used to train a meta-learner. Instead of only
predicting the best-performing DPP pipelines, the finished model will predict the performance of each
DPP pipeline chosen by novel meta-target selection methods for a given task. Thus, the performance
of the model can be determined based on its ability to predict model performance, as well as its ability
to identify the best performance pipelines.
This project aims to answer two questions. The first refers to the meta-target selection method. A
comparison of model performance will take place that will look at the meta-learners prediction per-
formance when using diverse meta-target selection methods compared to reliable approaches used in
the literature. Secondly, the model’s ability to recommend well-performing DPP pipelines will be
tested by comparing the recommended pipelines to those recommended by a commonly used DPP
pipeline recommendation tool. The two research questions are summarised as follows:

Q1. Can diverse meta-target selection outperform reliable meta-target selection by improving
classification and regression meta-model performance?

Chapter 1 INTRODUCTION 9

Q2. Will the DPP pipelines recommended by the current model lead to a better model per-
formance than those recommended by current state-of-the-art DPP pipeline recommen-
dation systems?

1.2 Thesis Outline
This thesis will first introduce the background behind the need for DPP meta-learning methods and
AutoML systems to solve this issue. Subsequently, previous DPP recommendation systems will
be introduced briefly. Following the introduction to the source material, the development process
involved in creating the current model will be presented. This overview includes information on
the construction of the knowledge base, initially created by Frye (2023), the meta-dataset creation
process, including dataset meta-feature extraction and the different meta-target selection procedures.
Finally, the training and testing of this model will be analysed, focusing on answering the research
questions mentioned above.

10 Chapter 2 BACKGROUND

2 Background
Machine Learning (ML) is a standard procedure in the current academic and industrial climate. Many
companies see the potential in applying ML algorithms to aid in many situations, including risk
analysis, industrial fault detection, translation and social media recommendations. In general, an
ML model is used to learn the underlying patterns of a dataset and make predictions about future
inputs within the dataset’s domain. Contributing to the popularity of ML techniques, the field of
ML is constantly growing. Where early ML approaches could only hope to solve linearly separable
classification tasks (Haykin & Network, 2004), modern approaches can learn extremely complicated
tasks ranging from classification of tabular data to detailed image classification and online speech
comprehension (Lu, Liaw, Wu, & Hung, 2019; Kano, Sakti, & Nakamura, 2021).
Though the competence of ML models increases with each passing year, the process of successfully
training and deploying ML algorithms to obtain strong model performances is not straightforward.
It requires a structured approach rather than just applying a powerful ML algorithm. Furthermore,
specific steps need to be fulfilled to enhance the success rate of such projects. These steps involve un-
derstanding the data, cleaning the data, finding the ideal model and eventually evaluating the model’s
performance. Only by applying each step can one train models successfully.
Dataset preprocessing is one of the most vital steps of any machine learning project. It refers to the
manipulation and transformation of datasets through various means, each helping to account for a
shortcoming of the dataset. However, adequate data preprocessing is highly dependent on developer
expertise as well as the amount of time invested in the process. Even with much experience, finding
optimal data preprocessing solutions can be time-consuming. To handle this vital stage in the ML
process more reliably and efficiently, a need for automation of data preprocessing emerged.
With a demand for effective solutions for data preprocessing, a push toward automation was achieved
by utilising Automatic Machine Learning (AutoML). AutoML is a modern approach to ML that aims
to, as the name implies, automate parts of the ML protocol and can be used to determine ideal settings
for individual sections or entire ML processes. This is achieved by running and evaluating several ML
models and using optimisation techniques to adapt model hyperparameters across several iterations.
Another approach to obtaining ideal model settings is to make use of meta-learning. Here, information
based on a collection of previously evaluated ML algorithms is gathered and used to predict how ML
algorithms will perform for unseen datasets.
The following literature review will touch on the points mentioned above in greater detail. Initially,
the important steps within a machine learning project will be introduced (Chapter 2.1), followed by
the importance and types of data preprocessing methods (Chapter 2.2). Finally, AutoML systems are
discussed as a way to tackle DPP pipeline recommendation in Chapter 2.3.

2.1 Machine Learning Process

Different approaches may produce different results when developing an ML model. For example,
a novice may employ the most powerful deep neural network, hoping its sheer learning capability
will be enough to solve the given task successfully. Though learning may occur, depending on the
general difficulty attributed to the dataset, a simpler model could have solved the task in a faster, more
explainable manner. On the other hand, a slightly more experienced developer may wish to select an
ideal learning algorithm based on the dataset itself, and another may have analysed the dataset’s
characteristics and determined that feature engineering is required. Though these latter approaches
are more desirable than instinctively resorting to powerful models, much performance disparity is
reported that can be traced back to differing practices (Lee & Giraud-Carrier, 2014; Chandrasekar &

Chapter 2 BACKGROUND 11

Qian, 2016; Alam & Yao, 2019; Fischer et al., 2020). In an effort to make sure that ML projects adhere
to best practices and obtain high-performing models, process models have been designed that aim to
standardise specific procedures. Thus, process models such as CRISP-DM (Shearer, 2000), and more
recently CRISP-ML(Q) (Studer et al., 2021) have been used to outline essential steps within any ML
project that should be adhered to, ensuring optimal model performance. In Chapters 2.1.1-2.1.3, the
essential steps relevant to this project will be introduced.

2.1.1 Data Understanding

The first step to any ML project is understanding the dataset or task one aims to solve. Shearer (2000)
defines four steps that can be completed in this stage: collecting, describing and exploring the data
and verifying its quality. When the data is of decent quality, the information obtained from the data
understanding section will be used to structure the subsequent step.

2.1.2 Data Preprocessing

After the data has been explored, its flaws are targeted. Dataset Preprocessing involves cleaning,
transforming and otherwise manipulating the data to ensure that the model used in the subsequent
stage can achieve the best performance possible. This manipulation is accomplished through various
methods applied to the dataset, each fulfilling a different function. Which methods should be applied
is determined from the previous processing step. Since data preprocessing (DPP) is such a vital part
of the current project, the intricacies and importance of this step will be explained in greater detail in
Chapter 2.2.

2.1.3 Modelling

The heart of any ML project is the training of ML models. Many different techniques can be employed
depending on what a project is aiming to do. For example, models that can help find underlying
patterns, such as clustering methods, may be employed for data mining projects. In contrast, trainable
supervised learning algorithms are used predominantly in ML scenarios. In any case, ideal models
are selected based either on the project’s goal or which model best suits the data.
Once a model is selected, tuning its settings to the dataset ensures the best results. Hyperparameter
optimisation, for instance, refers to the search for the correct configuration of the chosen model. This
crucial step can decide between a successful model and one unable to achieve desired results (L. Yang
& Shami, 2020). There are many different ways hyperparameters can be selected. Manual search,
for example, can be an effective and time-efficient method of selecting well-performing parameters;
however, years of experience correlate strongly with the success of the resulting models (Anand,
Wang, Loog, & van Gemert, 2020). Naturally, developers with less experience often rely on methods
with a degree of automation to make up for such disparities. Besides using grid searches, which
may take unrealistic amounts of time depending on the hyperparameter combination search space
size, other automatic searches employ more intelligent strategies to find suitable model settings. Such
methods include Bayesian optimisation (Wu et al., 2019), reinforcement learning (S. Chen, Wu, &
Liu, 2021), and genetic algorithms (Alibrahim & Ludwig, 2021), each shown to yield reliable results.
In contrast, randomly selecting model hyperparameters is unreliable for achieving high-performing
models (Bergstra & Bengio, 2012), highlighting the need to employ experienced developers, invest
large amounts of time, or use specialised automated methods to achieve the goals which were set.
The models employed in ML are usually trained to solve tasks via supervised learning. To train a
supervised learning model M, a dataset D consisting of a set of input and output pairs di = {xi,yi} ∈

12 Chapter 2 BACKGROUND

D, i = 1, ..., I is required. Over the learning procedure, each of the inputs will be presented to the
model, each producing a predicted value ypred

i = M(xi) and, following a review of the accuracy of
the prediction ypred

i compared to the target value yi, the model’s internal parameters will be adapted.
Two major categories of ML models are generally employed to solve supervised learning tasks. The
choice depends on the task a developer aims to solve and the kind of target value used in the dataset.

Classification Models Classification tasks predict the class membership of a data point, whereby
the membership is given by the target value yi in the training set. This target value corresponds to a
particular class included in a set of classes yi = c j ∈C, j = 1, ...,J. The target values are categorical
for classification tasks, referring simply to the class assigned to an input within. Some practical
applications of classification models are Email spam detection (Chirita, Diederich, & Nejdl, 2005),
production-line fault detection (Basnet, Chun, & Bang, 2020) and sentiment classification (Hadwan,
Al-Sarem, Saeed, & Al-Hagery, 2022).

Regression Models Unlike the classes predicted in a classification task, the target values in a regres-
sion task are continuous. Rather than predicting the target membership yi, the prediction is attributed
to a numerical value associated with the target. The most basic regression model is the linear regres-
sion model. This model is trained by fitting an N-dimensional hyperplane within a space according to
an N dimensional input xi. Since regression aims to predict the size of a specific value, it can be used
in a wide variety of practical applications, for instance, for temperature prediction (Ghosh, Satvaya,
Kundu, & Sarkar, 2022), financial forecasting (Chou & Nguyen, 2018) and time series modelling
(Babii, Ghysels, & Striaukas, 2022).

Model Assessment After selecting and training an ideal model, an assessment is required to de-
termine whether the training was successful. This evaluation is achieved by determining a model’s
ability to accurately predict a subset of the data within a dataset not used during training. This is done
by utilising a train-test split before the model’s training. Here, a section of the data used to train the
model is strictly reserved for evaluation, allowing developers to understand how the trained model
will perform if used actively on novel incoming data.
The quality of predictions on the testing set indicates how the model would perform if employed in
a real-world setting. This performance can be evaluated via several measures depending on the type
of task that the model is learning. For example, in the case of classification tasks, where a predicted
target can either be correct or false, one standard method is to evaluate the model’s accuracy.

Accuracy =
NumberO fCorrectlyClassi f iedTargets

TotalNumberO f Targets
(1)

The Accuracy measure can give a decent idea of how well a model performs. However, in some
cases, this measure can be misleading. For instance, if a significant class imbalance exists and a
model mistakenly learns to predict the majority class label consistently, the Accuracy measure could
still indicate good performance. Therefore, an alternative measure is usually preferred to avoid falsely
inflated performance evaluations. The F1-Score, for example, is a performance measure that penalises
a model for making wrong predictions.

F1−Score = 2∗ Precision∗Recall
Precision+Recall

(2)

With a dataset containing dichotomous targets (for simplicity, inputs are given either positive or neg-
ative labels), Precision refers to the ratio of true positives over the total number of inputs given the

Chapter 2 BACKGROUND 13

positive classification. A model with high Precision might only find some positive targets but is un-
likely to incorrectly classify an item as positive. Recall is the second part of the F1-Score and refers
to the ratio of true positively classified inputs over the total number of positive inputs. A model with
high Recall can correctly identify the positive cases in the data, whereas a model with low Recall may
miss a portion.
If the ML algorithm solves a regression task, a classification performance measure will not be suitable.
Instead, distance measures are used since the targets are continuous values. One way of calculating
the distance between the model’s prediction and the actual value is to employ the mean squared error
(MSE)

MSE =
∑(yi− ŷi)

2

n
(3)

where yi is the target value for input i and ŷi is the corresponding predicted value. The MSE can be
extended by adding the root to the measurement, making the RMSE.

RMSE =
√

MSE (4)

Like the MSE, the RMSE value is used to determine the level of goodness that the fit of a trained
model was to the actual targets being predicted. The main benefit of using the RMSE measurement
over the MSE measurement is the ease of interpreting the resulting value. An MSE value penalises
large deviations from the target value, resulting in a large MSE value for greater distances and lower
interpretability. RMSE, on the other hand, removes this inflated distance score by reverting the scale
of the MSE score down to the scale of the target, increasing interpretability.

2.2 Dataset Preprocessing Methods

It is expected that, when working with real-world data, not all records in the data are helpful or
even ready to be used. Some features may contain missing values due to data collection issues,
and others may be less critical and do not contribute significantly to predicting the targets. Dataset
preprocessing (DPP) methods are transformations a user can perform on a given dataset to account
for shortcomings that the dataset may possess. To illustrate the importance of using DPP methods
optimisation in combination with tuning learning algorithm hyperparameters, Giovanelli et al. (2021)
aims to optimise an ML model for 100 iterations. Here, over the first 50 iterations, the optimisation
process that was used only focused on selecting ideal hyperparameter configurations. As seen in
Figure 1, the model’s performance plateaus after around five iterations. This result emphasises that
after a good combination of hyperparameters was found, no further significant improvements could be
made. Then, after the 50th iteration, the optimisation process included DPP method optimisation. We
can see from the plot that accuracy increases once again after DPP methods are employed. The results
highlight the importance of the interplay between hyperparameter optimisation and DPP pipeline
selection and help explain why researchers spend a considerable amount of time within a project on
finding the correct way to process the data (Munson, 2012).
DPP methods can help extract the largest potential from a dataset and can be sorted into several cat-
egories according to what issue a method aims to solve (Garcı́a, Ramı́rez-Gallego, Luengo, Benı́tez,
& Herrera, 2016; Li, 2019). In this paper, the following four categories will be used to identify
the underlying functionality of a DPP method: Data Cleaning, Data Transformation, Data Reduction
and Data Resampling. Each category will be introduced in Chapters 2.2.1-2.2.4. Of course, datasets
usually require the employment of multiple DPP methods. This is usually achieved by combining
DPP methods into DPP pipelines, a process introduced in Chapter 3.1.2. Since this project deals with

14 Chapter 2 BACKGROUND

Figure 1: Accuracy increase of ML algorithms (Naive Bayes:NB, K-Nearest Neighbours:KNN and
Random Forest:RF) during the optimisation process. Only hyperparameter settings are optimised
between iteration 0 and iteration 50, leading to a plateau. After iteration, 50 DPP methods are also
included in the optimisation process, leading to further increases in model accuracy (Graph taken
from Giovanelli et al. (2021)).

tabular data and not image, time-series or language data, only preprocessing methods relevant to the
project will be introduced. For this reason, many preprocessing methods that are useful for differ-
ent ML domains, such as several augmentation methods and other image, time series and text-based
processing methods, will be left out.

2.2.1 Data Cleaning

Data cleaning methods aim to fix imperfections in the dataset that may include missing values or out-
liers. Missing values are usually a result of faulty data collection and can be a major issue for datasets.
One way to deal with missing values is to remove any data point that contains a missing value. This
technique allows the remaining data points to consist of complete recorded values; however, if many
values are missing or the data is not abundant and hard to obtain, decreasing the size of the dataset
may be detrimental.
An alternative solution is to impute missing values through various techniques. These techniques
include simply replacing missing values with a corresponding feature’s mean, median or most fre-
quent values. Additionally, more complex statistical methods exist, such as linear regression or least
squares models, that are used to predict the missing values (Lin & Tsai, 2019). Since many ML algo-
rithms require datasets to include zero missing values in order to run, missing value imputation can
be considered a mandatory step in dataset preprocessing.
Besides faulty data collection methods leading to missing values in the data, other artefacts can ap-
pear as outliers. Outliers are data points with values that lie far away from the values of other data
points. In some cases, a large distance may reflect the ground truth, such as recording the age of an
individual who has reached the age of 120; however, in most cases, these outliers result from inac-
curate measurements (Li, 2019). To deal with such instances, one must first identify outliers so they
can be removed. For smaller datasets, this can be done using simple distance measures. For example,
using box plots and interquartile range or relying on the standard deviation of specific attributes are
popular and reliable methods in these cases (Ben-Gal, 2005). On the other hand, cluster-based outlier
detection might be the preferred technique for larger datasets and produce similarly reliable outcomes
while being more efficient (Ben-Gal, 2005; Duan, Xu, Liu, & Lee, 2009).

Chapter 2 BACKGROUND 15

Another simple form of data cleaning is to remove any features of instances that can be assured to
not aid in the training. Examples of such parts of data are duplicate rows or columns. Suppose a
row or column of a dataset is a duplicate of another. In that case, no additional information can be
obtained by including it in the final dataset and may even be dangerously misleading in the modelling
process (Brownlee, 2020). In such a case, it is best to remove these rows of columns in the interest
of simplicity. Data cleaning methods are usually the first step into dataset preprocessing and make
datasets easier to work with, less error-prone and more interpretable.

2.2.2 Data Transformation

As the name implies, data transformation methods transform data and make it more accessible for
learning algorithms to interpret. Furthermore, since many ML algorithms prefer working with num-
bers over other variable types, such as categorical features represented as strings, using methods to
transform such attributes into more suitable types can be considered another mandatory step during
the data processing phase.
There exists a large variety of feature encoders that can each affect a dataset differently. One of the
most popular encoding methods is the One-Hot-Encoder. This encoder will create a sparse set of
features such that one feature for each category within an attribute is constructed. This method is
viable for datasets with higher cardinality since the transformation can lead to more easily optimised
datasets. However, should a large number of categorical features exist within a dataset, the sparse na-
ture of the returned transformation that the One-Hot-Encoder produces can cause the dimensionality
of the datasets to explode (Seger, 2018). In such instances, encoders that, by design, aim to maintain
a lower dimensionality after encoding, such as the hashing encoder or target encoder, may be the
preferred option (“A preprocessing scheme for high-cardinality categorical attributes in classification
and prediction problems”, 2001; Seger, 2018; Cerda & Varoquaux, 2019; Gupta & Asha, 2020).
Just as categorical features can be encoded into numerical ones, the same can be applied to continuous
features. Discretisation is a DPP step aiming to simplify datasets. They help boost explainability by
transforming continuous variables into countable numerical ones. This widely popular approach not
only helps to represent features more precisely but can also help speed up and increase the accuracy of
ML models (H. Liu, Hussain, Tan, & Dash, 2002; Elhilbawi, Eldawlatly, & Mahdi, 2021). Discretisa-
tion is achieved by splitting continuous variables into meaningful bins, which can be done simply by
manually or automatically defining bin sizes or using other ML models, such as using decision trees
to split up the data (Li, 2019). Of course, more advanced approaches such as MDLP and Chi2 can be
employed to discretise features, and these have been linked with consistently higher accuracy at the
cost of complexity (Lavangnananda & Chattanachot, 2017).
The final notable step that belongs to data transformation is data normalisation. This essential DPP
technique involves centring data around specific anchor points or within common ranges and pri-
marily aims to increase the potential impact some attributes have on the dataset (Li, 2019). Data
normalisation steps are highly effective in boosting model performance by helping to minimise bias
from features that may overshadow others in magnitude. Essentially, this attribute centring allows
each feature to contribute equally to the task at hand (Singh & Singh, 2020). However, though this
technique levels the playing field, it does not guarantee that all features will end up as necessary as
the rest. Mean and standard deviation-based normalisation methods such as the mean-centred (MC),
z-score normalisation and power transformer techniques, and other normalisation techniques like min-
max scaling and Hyperbolic Tangent scaling belong to the notable normalisation methods and can be
found in many DPP solutions (Sharma, 2022).

16 Chapter 2 BACKGROUND

2.2.3 Data Reduction

The datasets nowadays are increasingly large; however, an extensive number of attributes does not
necessarily correlate with high model accuracy. Thus, removing features that do not contribute
strongly to the prediction performance is often beneficial in the pursuit of less complex and more
efficient models (Khalid, Khalil, & Nasreen, 2014). Removing redundant features is known as fea-
ture selection. It aims to employ methods that help select only those features that contain the most
information about the model while keeping it as simple as possible.

Figure 2: Probability density functions of the dis-
tance between the corner of a hypercube and a ran-
dom point with an increasing number of dimen-
sions (Graph taken from (Crespo Márquez, 2022).

A further reason for striving to keep the size of
a dataset small is to avoid the curse of dimen-
sionality. This curse can be traced back to the
mathematical account that, as the dimensional-
ity of an object increases, so too does the space
within the object. Figure 2 illustrates this. Here
we have the probability density functions regard-
ing the distance between the corner of an N di-
mensional hypercube and a random point within.
It can be seen that the distance of a randomly
inserted point within the hypercube to the cor-
ner of that hypercube becomes constant as the
dimensionality increases. Statistically, the prob-
ability of a randomly allocated point being close
to the corner reaches 0 as the dimensionality of
the hypercube reaches infinity. The reason for
this convergence can be understood in that the
hypercube’s volume is concentrated around the
centre. The volume of the regions close to the
corners, on the other hand, reaches 0 with increasing dimensionality (Crespo Márquez, 2022). Con-
cerning ML models, the curse of dimensionality implies that a model will benefit from a lower-
dimensional dataset since there is less space for the data to occupy. Thus, better relational informa-
tion can be learnt since the data points will generally be closer together (Steinbach, Ertöz, & Kumar,
2004). Besides the distance increase between points of a high-dimensional dataset, the curse of di-
mensionality is also linked to the number of data points required for proper training. The number
of data points needed to represent the model correctly will increase exponentially as the number of
dimensions increases (Bühlmann & Van De Geer, 2011).

Numerous methods can be used to reduce the dimensionality of datasets. One of the most popular
methods is to conduct a principal component analysis (PCA) (Li, 2019). During PCA, new attributes
(principal components) are constructed along the dataset’s most prominent variance axes. From here,
the top N principal components represent the top N directions in which the data is spread (Abdi
& Williams, 2010). It is then up to the researcher to determine how many principal components
should remain after PCA, allowing many attributes in the original dataset to be reduced to a much
smaller number. Besides PCA, various methods exist to reduce the dimensionality of datasets, in-
cluding K-Means Clustering (Napoleon & Pavalakodi, 2011), Linear Discriminant Analysis (LDA)
(Xanthopoulos et al., 2013), and other clustering methods and can be an essential tool when working
with ML models.

Chapter 2 BACKGROUND 17

2.2.4 Data Resampling

Real-world data is often unbalanced, meaning that the number of targets in one class may be on a
different scale than targets of other classes, which can be simply due to the nature of the task. For
instance, when working with medical data, there is often much more available data that describes
healthy patients than patients with rare diseases. As a result, problems arise when using learning
algorithms to identify targets from the minority class. Often, a high rate of false negative predictions
can result when a dataset has a severe class imbalance (Longadge & Dongre, 2013). To reduce the
effect of class imbalance, processing methods can be employed to even out the asymmetry of classes
by means of data resampling methods.
The simplest way a dataset can be balanced is to undersample the data. Here, a portion of instances
from the majority class is removed to lower the level of class imbalance in the data. Undersampling,
however, results in a loss of information and can only be recommended in some instances (Batista,
Prati, & Monard, 2004; Garcı́a et al., 2016; Dal Pozzolo, Caelen, & Bontempi, 2015). Other tech-
niques aim to rebalance datasets by oversampling, a form of data augmentation that involves creating
new data points belonging to the minority class. The Synthetic Minority Oversampling Technique
(SMOTE) is an example of such a method (Fernández, Garcı́a, Herrera, & Chawla, 2018). It aims to
generate new instances by constructing them between existing pairs of instances (see Figure 3). This
technique has been shown to produce balanced datasets that do not lead to unwanted outcomes such
as overfitting, which may result from oversampling by just duplicating examples from the minority
class. Overall, resampling is an important step that can improve dataset performance and is a vital
measure in fields where the likelihood of attaining balanced datasets is low.

Figure 3: New data points, denoted r, are generated along the axes connecting existing data points,
denoted x) (Image taken from Fernández et al. (2018)).

2.2.5 DPP Pipelines

There are a large number of ways that a dataset can be preprocessed, with each method accounting
for different issues. Usually, more than one DPP method is required to ensure the dataset is optimally
prepared. Thus, a DPP pipeline can be created by combining multiple DPP methods into a chain of
DPP methods that transform the dataset sequentially.

18 Chapter 2 BACKGROUND

Naturally, the order in which DPP methods occur within a pipeline affects how well a dataset will
be transformed. Testing the resulting accuracies of different DPP method type pairs, Giovanelli et
al. (2021) found that specific orderings were more promising than others. Specifically, they found
that data cleaning and encoding methods are most effective at the beginning of pipelines with data
transformation steps in the middle, followed by feature creation and resampling methods (see Figure
4). Since we can string different DPP methods together in an ideal order, the question of an ideal,
universal pipeline arises. Would it not be possible to combine all the DPP methods to improve model
accuracy into one large pipeline and avoid time spent on dataset-specific optimisation?

Figure 4: Optimal consecutive DPP steps (I - imputation, E - encoding, N - normalisation, D - dis-
cretisation, R - rebalancing/resampling, F - feature engineering). Image taken from Giovanelli et al.
(2021).

Though each dataset will likely benefit from preprocessing, not every pipeline will benefit each dataset
(Giovanelli et al., 2021). Various studies have shown that no universal pipeline will achieve the high-
est performance for every dataset (Quemy, 2019; Jiao et al., 2020; Giovanelli et al., 2021). Besides
different datasets requiring specific treatments and redundant methods unnecessarily increasing com-
plexity distortion, the choice of ML algorithm to be applied after processing has a considerable influ-
ence on which DPP steps will lead to better results (Bilalli et al., 2018). For this reason, it remains
a challenging task to design a fitting pipeline for a given dataset. However, as hyperparameter opti-
misation can be automated, so can DPP pipeline selection. The subsequent section will discuss how
automated ML can help search for ideal DPP pipelines.

2.3 Automated Machine Learning

Automated Machine Learning (AutoML) was first defined as ”software capable of being trained and
tested without human intervention”. It was initially the concept of the 2015 ChaLearn challenge,
where participants were instructed to design such systems (Guyon et al., 2015). Though there were
instances of automated systems created before the ChaLearn challenge (Hutter, Hoos, & Leyton-
Brown, 2011; Thornton, Hutter, Hoos, & Leyton-Brown, 2012; Komer, Bergstra, & Eliasmith, 2014),
the popularity surrounding AutoML has increased since then to the point where using these systems
is more commonplace than ever before. Reasons for the popularity increase are likely due to the
increasing availability of computing power and the problems mentioned earlier: creating a well-
performing model is a tedious process that requires either large amounts of time or high levels of
experience (He, Zhao, & Chu, 2019). Having a ready-to-use solution that can reliably produce well-
trained models, even for novice developers, has been a noteworthy milestone in the world of ML and
has spurred the development of AutoML systems in recent years (Nagarajah & Poravi, 2019).

Chapter 2 BACKGROUND 19

2.3.1 Types of AutoML Schemes

Given that the previously mentioned definition of AutoML systems is broad, a substantial collection
of different types of automated models exist. For instance, complete AutoML systems are available
that span the entire ML process, including model selection, hyperparameter optimisation and DPP
pipeline selection (Laadan et al., 2019; Olson et al., 2016). In addition, an AutoML system can also
refer to automating individual steps within the ML process (Escalante, 2020). Examples of such
systems are, those that automate model selection (Rice, 1976; C. Yang, Akimoto, Kim, & Udell,
2018), hyperparameter optimisation (Wu et al., 2019; S. Chen et al., 2021; Alibrahim & Ludwig,
2021; Chatterjee, Bopardikar, Guerard, Thakore, & Jiang, 2022), Combined Algorithm Selection
and Hyperparameter optimisation (CASH) (Chatterjee et al., 2022; Thornton et al., 2012), or neural
network architecture search (Wistuba, Rawat, & Pedapati, 2019).
Since the different tasks that an AutoML system aims to solve are closely related, making it chal-
lenging to distinguish between them, Z. Liu et al., 2019 proposed a unifying view that characterises
a three-level formulation of AutoML schemes depending on the level of automation (see Figure 5).
The α-level scheme refers to a search for a functional mapping of an input to an output. To reach this
goal, no level of automation is required, meaning that this function could be heuristically designed by
either building rule-based classification systems, setting the weights and hyperparameters of learning
models manually or via a random procedure. An α-level solution is a model that makes a prediction
after having been trained on a particular dataset and is the result of the more commonly found models
that are acquired using higher level schemes.

Figure 5: The three AutoML schemes as proposed by Z. Liu et al. (2019). The lowest level, the
α-level, consists of an estimator or functional mapping that can produce a prediction, given an input.
The goal of each model on a subsequent level is to produce an ideal model on the prior level given
based on many performance evaluations of lower-level models. For instance, a β-level model must
evaluate the performance of many α-level models to return a finished model capable of producing
an optimal prediction performance. On the other hand, a γ-level model evaluates the performance
of many β-level models to recommend an ideal β-level model, configurations that the ideal β-level
model would possess that will ultimately lead to an optimal α-level model.

The β-level scheme requires a level of automation to search for an optimal α-level model. To achieve
this, an automatic procedure is used to test multiple α-level models to determine which model weights

20 Chapter 2 BACKGROUND

or hyperparameters lead to good performances. This solution, for example, can be a trained ML
algorithm that has learnt to find a decision function using stochastic gradient descent. However, aβ-
level scheme can also entail the search for ideal ML algorithm hyperparameters and DPP pipelines
by iteratively evaluating the performance several α-level models using different model configurations
on the dataset in question.
The final level, the γ-level scheme, refers to meta-learning, whereby a knowledge base is exploited
to make predictions about the performance of ML models with regard to a specific measurement,
including but not limited to ML algorithm performance, hyperparameter configuration performance,
DPP pipeline effects or even ML model speed. A knowledge base is a collection of results of pre-
viously trained and evaluated β-level algorithms that can be used for informed decisions and make
recommendations on which β-level algorithm to use for a particular task. To summarise, each level
of the AutoML schemes return the model used during the realisation of the level below (Escalante,
2020). Thus, the difference between current AutoML models and whether they fulfil a β or γ-level
scheme can be determined by considering the origin of the model’s knowledge. The results are either
derived from the dataset itself or information regarding previous models’ performance.

2.3.2 Meta-Learners

Meta-learners solve a γ-level AutoML problem and thus aim to recommend ML models with ideal
model hyperparameters (Feurer, Springenberg, & Hutter, n.d.). As previously mentioned, meta-
learners require a knowledge base that can be used as a resource to help produce model recom-
mendations. This knowledge base can be collected individually or extracted from existing meta-data
repositories (Vanschoren, van Rijn, Bischl, & Torgo, 2014). Within a knowledge base, performance
evaluations are collected after training ML algorithms on a set of prior ML tasks t j ∈ T . For each
task, the performance of models is recorded after varying model configurations θi ∈ Θ. In a meta-
learning system, the performance differences are attributed to the variation of model configurations
being performed. It is these performance differences attributed to various configurations that are to
be learnt by the meta-learning system. For example, if the meta-learner’s goal is to recommend ideal
ML algorithm hyperparameters, the configurations within its knowledge base would refer to different
hyperparameter compositions. For each different configuration applied to each of the tasks, a per-
formance measure Pi, j = P(θi, t j) ∈ P is collected. The goal of a trained meta-learner is that it will
be able to understand how a model will perform given a new task tnew and a particular set of model
configurations (Vanschoren, 2019). If its task is to recommend ideal hyperparameter combinations,
the combinations with the highest predicted model performance will be recommended.
A meta-learner will make predictions about ideal model configurations given tnew by exploiting the
information about previous tasks contained within the knowledge base. Similarities between the new
task and the previous tasks can be identified by extracting meta-features that characterise each task.
Many meta-features can be extracted from a task ranging from straightforward to complex. Starting
with simple meta-features such as those describing elements of the dataset, including the number of
attributes, classes, outliers and missing values, to more involved meta-features that analyse the feature
independence, task complexity, feature importance, sparsity, and quality (Krouwer & Schlain, 1993;
Peng, Flach, Soares, & Brazdil, 2002; Pfahringer, Bensusan, & Giraud-Carrier, 2000).
Meta-features are descriptors of tasks and function in vector form. Each task t j ∈ T can be described
by the meta-feature vector m⃗t j = (m j,1, ...,m j,K) of K meta-features. These meta-feature vectors are
later used as inputs in meta-datasets, with the targets being the performance evaluations for a model
configuration on that particular task P(θi, m⃗t j). Meta-datasets are then employed as training sets to
train the resulting meta-learning system. The learning task relies on the expectation that if two tasks

Chapter 2 BACKGROUND 21

seem similar based on the extracted meta-features, then the configurations should lead to similar
model evaluations. From here, the relationship between the task’s meta-features and the effects of
the specific configurations can be learnt using different ML algorithms known as meta-models. In
the literature, this method has proven an effective way to make quick predictions for ideal model
configurations on new tasks (Brazdil, Giraud-Carrier, Soares, & Vilalta, 2009; Peng et al., 2002;
Garouani et al., n.d.; Rivolli, Garcia, Soares, Vanschoren, & de Carvalho, 2022).

2.3.3 Advantages and Disadvantages of Meta-Learning

There are significant benefits to using a γ-level over a β-level AutoML system. For one, a meta-
learner consists of two phases: online and offline. The most time-consuming section is the offline
phase, where the information about previous tasks is collected, and meta-models are trained. On
the other hand, the online phase is where the meta-learning system is applied to produce predictions
about a new task. Here, all that is required from the system is the extraction and insertion of meta-
features of the new task into the previously trained meta-model to obtain configuration predictions.
Furthermore, since any model training has been completed offline, the speed at which the predictions
can be made in the online phase of the developed models is very fast (Dyrmishi, Elshawi, & Sakr,
2019). In contrast, β-level methods complete the entire task in the online phase and are given a time
budget that can be expended during the optimisation processes. Therefore, the more time one invests
in finding optimal model solutions, the greater the chances of obtaining a positive outcome. It can thus
be rather time-consuming to find ideal fitting solutions for a given task. A second benefit of using a
γ-level model is that the information within the knowledge base used to train the resulting models can
be continuously extended over time, improving its prediction accuracy (Dorfman & Tamar, 2020).
On the other hand, the performance of β-level models depends predominantly on the systems put in
place on the model’s release, only increasing performance when newer updates to the software are
available.
Besides the benefits, some substantial drawbacks exist when using γ-level over β-level models. For
instance, a knowledge base requires information on the performance of previously run ML algorithms,
ideally using many heterogeneous datasets. However, obtaining large numbers of unique datasets can
be challenging, especially if a specific dataset domain is required (Griffiths et al., 2019). Not only is
the training task harder with smaller training sets, but this lack of data often leads to generalisation
difficulty and overfitting (Rajendran, Irpan, & Jang, 2020; Yao et al., 2020). To counter this problem,
dataset augmentation can be applied to increase the number of datasets (Frye, 2023). This drawback
does not exist for β-level models since the calculations are independently performed on each new
task, and thus no dataset augmentation is required.

2.4 Related Work

When predicting DPP pipelines using AutoML, a sizeable amount of literature has been collected
over the years. One of the influential and most often referenced models is the Tree-based Pipeline
Optimisation Tool (TPOT) designed by Olson et al. (2016). Like many earlier AutoML models, this
system aimed to simultaneously automate most of the ML pipeline, excluding data cleaning (see Fig-
ure 6). The model generates parameters via a genetic algorithm over several generations, including
feature selection methods, feature transformation methods and models with different hyperparame-
ters. The fitness of each tree structure in a generation is determined by recording the accuracy measure
of the desired task by sending it through the tree structure and evaluating the final model contained
in the structure. Although the process takes considerable time to run a model for each candidate tree

22 Chapter 2 BACKGROUND

structure, this β-level AutoML method gained much recognition over the years due to its reliability in
achieving high accuracies with little to no need for expertise in the topic.
Following the success of TPOT, several other approaches were designed to improve some of the
shortcomings that TPOT possesses. For instance, to search for full pipelines, B. Chen, Wu, Mo,
Chattopadhyay, and Lipson (2018) designed a similar model that is also trained with a genetic al-
gorithm. As a result, their Autostacker model outperforms TPOT in accuracy and speed by using
more advanced ensemble methods and including the search for optimal data cleaning methods in the
optimisation process. Since then, further progress has been made by increasing automation and using
γ-level meta-learning strategies to determine good ML pipelines. Though creating models that predict
complete ML processes, including DPP pipeline selection and hyperparameter optimisation, is still
actively pursued (C. Yang, Fan, Wu, & Udell, 2020), the ML community has increasingly focused on
automating individual steps of the ML pipeline.
To this extent, the meta-learning model PRESISTANT was designed to recommend a set of DPP
pipelines, given new datasets. Furthermore, PRESISTANT aimed to produce recommendations that
achieve similar performances to pipelines created by experienced data scientists (Bilalli et al., 2018).
This γ-level meta-learner uses the impact that different DPP methods have on the performance of a
selection of ML algorithms, measured as the difference in accuracy before and after the transforma-
tion, to determine the effectiveness of different DPP methods. Each evaluation was then categorised
into either causing a positive, neutral or negative impact. A pool of candidate pipelines was then se-
lected using a rule-based approach. Finally, the predicted overall impact for the remaining pipelines
was predicted, and the system would recommend the pipeline with the highest positive impact. The
results showed that a meta-learning technique is a viable solution for DPP pipeline recommendation
since the recommended pipelines, as expected, performed similarly to those designed by a group of
experienced data scientists.

Figure 6: Overview of automated steps tackled by TPOT according to Olson et al. (2016).

Several similar models were also created, each possessing slight variations during the training or
evaluation collection process. RankML collected a knowledge base of DPP pipelines and ranked
them according to the accuracy scores obtained from model predictions (Laadan et al., 2019). From
here, the top N were used to train individual ML models to determine which DPP pipeline returns

Chapter 2 BACKGROUND 23

the highest accuracy. Again, the average accuracy was greater than the scores achieved by previous
DPP pipeline recommendation models, including TPOT. To reduce online prediction time by avoid-
ing multiple training models in an online setting, Zagatti (2021) designed a meta-learner trained to
predict the single best DPP pipeline for a given dataset. A dataset was crafted using meta-features
by ranking each DPP pipeline in the knowledge base by accuracy. Each instance was assigned the
best-performing DPP pipeline obtained from selecting the top-performing pipelines in the knowledge
base constituting a set of DPP pipeline candidates. This step was improved by changing how the DPP
pipeline candidates were selected. Instead of ranking the DPP pipeline evaluations in the knowledge
base ordinally, Frye (2023) performed a Scaled Ranking procedure, where the distance between rank-
ings was proportional to the accuracy measures and scaled between 0 and 1. As a result, each of
these models could provide good DPP pipeline recommendations that achieved high accuracies for
new datasets quickly.

24 Chapter 3 METHODS

3 Methods

Figure 7: Overview of the important steps within
the project to obtain a DPP pipeline rank prediction
meta-model.

The current project aims to obtain a trained
multi-output regression meta-model to predict
the goodness of DPP pipelines for new datasets.
Figure 7 shows the methodological approach to
achieve this goal. It consists of data collection,
followed by the creation of meta-datasets and fi-
nally, the training of a meta-model using these
datasets.
An AutoML model of type γ performing meta-
learning based on previous knowledge will be
employed to predict the performance of DPP
pipelines. Since the model’s goal is to pre-
dict the performance of DPP pipeline combina-
tions, this prior knowledge must contain infor-
mation on the effect of many DPP pipelines on
the performance of different ML tasks. Thus,
many datasets that can be used to train ML al-
gorithms are needed, as well as an extensive set
of DPP pipelines. To obtain this information, the
project’s first significant step is the data collec-
tion phase and, more specifically, constructing
the knowledge base. This section will be detailed
in Chapter 3.1. The knowledge base is obtained
by collecting a series of ML model evaluations
after transforming different datasets using vari-
ous DPP pipelines. Afterwards, the raw model
evaluation scores, contained within the knowl-
edge base, are transformed into rank scores to
help mitigate the effect of DPP pipeline perfor-
mance scaling issues resulting from dataset dif-
ficulty and target scaling. This process results in
a ranking table described in Chapter 3.2. From
here, the information from the ranking table can
be extracted to begin the meta-dataset creation
phase. Meta-datasets train the meta-model and, like usual ML datasets, consist of inputs and outputs.
The inputs, in this case, consist of meta-features extracted from the different datasets and algorithms
whereby each instance in the input data describes a single usecase (i.e. a pairing of a dataset and
an ML algorithm). Since the meta-model will learn a multi-output regression task, more than one
output is used. This means that multiple meta-targets are used instead of a single target variable.
Here, the different targets represent the performance of specific DPP candidate pipelines, comprising
a DPP pipeline candidate pool, over the different usecases. The pipeline candidates are chosen based
on several meta-target selection methods. Chapter 3.2.2 provides an overview of the different meth-
ods used. After the construction of the meta-dataset has been completed, the training phase begins.
First, cross-validation is used to train the meta-model and determine ideal meta-model parameters,
including model type, DPP pipeline transformations for the meta-dataset and model hyperparameters.

Chapter 3 METHODS 25

These model settings will then train the final meta-model to predict DPP pipeline performance. A
testing set, constructed using the same methods as the training meta-dataset, is used to evaluate the
final meta-model performance.

3.1 Knowledge Base
The project aims to create a meta-model to produce DPP pipeline performance predictions for any
incoming (single target) classification or regression dataset. This tool is intended to be employed
in the domain of production datasets; however, the scope can be increased further by extending the
current knowledge base. Since learning a classification task is fundamentally different from regression
tasks, especially with respect to the target variables and evaluations (see Table 1), two knowledge
bases K will be collected separately Kt , t ∈{CL,RE}. A knowledge base can be defined as a collection
of evaluations Kt

i, j = Kt(ut
i,θ j) ∈ Kt , whereby each evaluation is a result of the outcome obtained

from the training of usecase ut
i, and a single DPP pipeline combination θ j ∈Θ, j = 1, ...,J. A usecase

consists of an ML algorithm at
m ∈ A,m = 1, ...,Mt and ML dataset dt

n ∈ D,n = 1, ...,Nt pairing ut
i =

u(dt
n,a

t
m) ∈U, i = 1, ..., It where the total number of usecases within Kt is N ∗M. Since a knowledge

base is used for classification and regression tasks, the usecases ut are split into two groups depending
on their machine learning task t.

Machine Learning Task Target Values Evaluation Type
Classification Categorical Classes Accuracy Measures
Regression Continuous Values Distance Measures

Table 1: Differences in targets and evaluation types between classification and regression tasks.

The following sections will explain the details regarding usecases and DPP pipeline combinations.
After briefly describing the structure of a usecase, including information on the datasets and algo-
rithms used in the knowledge base in Chapter 3.1.1, the construction process of the DPP pipeline
combinations will be introduced. Subsequently, the algorithms used to run the collection of the model
evaluations, as well as an overview of the collection results, will be presented in Chapter 3.1.3. Fi-
nally, a ranking method will be described, whereby the knowledge base raw scores are transformed
into more manageable Scaled Ranks. These are introduced in Chapter 3.1.4 and allow for a better
comparison of DPP pipelines without the direct influence of ML task and ML dataset difficulty.

3.1.1 Usecases

As mentioned in the previous section, a usecase consists of the pairing of a dataset and an ML algo-
rithm. The ML algorithm within a usecase is trained using the dataset previously transformed by each
DPP pipeline. Combining an ML algorithm with a dataset avoids the concern of selecting an optimal
model. Furthermore, if the resulting meta-model is used in practice, a developer can choose which
ML model to employ for which DPP pipeline suggestions will be generated. Furthermore, if the
trained meta-model is part of a more extensive AutoML-system that handles optimal model selection,
this hypothetically suggested model could be used as an input to return DPP pipeline suggestions. Of
course, to cater to a system that can recommend an ideal ML algorithm for a specific dataset, the set
of ML algorithms included in the collection of usecases must be extensive. Otherwise, any predicted
DPP pipeline performance would not be applicable should the intended algorithm be absent from the
knowledge base Kt .

26 Chapter 3 METHODS

Datasets The set of datasets D consisted of publicly available datasets collected by the Fraunhofer
Institute of Production Technology (IPT). An overview of the datasets can be found in Appendix A.
Many of these datasets were used in several other publications, including additional research based
on meta-learning models (Laadan et al., 2019; Bilalli et al., 2018; Zagatti, 2021; Frye, 2023). Each
dataset used was tabular and in the industrial and mechanical engineering domain. Since the Fraun-
hofer Institute IPT primarily works in a practical and industrial domain, industrial datasets were ex-
clusively used instead of a collection of datasets from a broader range of domains. Thus, in most
cases, the datasets contained features associated with sensory information during a mechanical pro-
cess with the targets relating to fault and anomaly detection, performance and efficiency increases
of mechanical processes or behaviour prediction of measures within aeronautical systems. Since the
datasets were mainly production datasets that record measurements or other sensor recordings during
production to identify faults or unusual activity, there was a high degree of class imbalance for classifi-
cation datasets. Thus, the average minority class to majority class ratio was 0.203 in the classification
datasets, and the average number of target classes was 2.95 (see Figure 8). These values indicate
a strong need for resampling approaches in the recommended DPP pipelines. Besides the datasets
being limited to production settings, diversity between the datasets in terms of size was present (see
Table 2).

(a) Classification minority class ratio (b) Classification class counts

Figure 8: General information on target classes for classification datasets.

By restricting the choice of datasets to those in the domain of industry and production, the eventual
meta-model’s ability to recommend DPP pipelines well is also restricted to be used only for datasets
within the same domain. The knowledge base would need to be extended using a more varied col-
lection of different datasets to obtain a model that can make DPP pipeline recommendations for any
incoming tabular dataset. Despite this restriction, a meta-model’s ability can still be assessed given
that, when it comes to model evaluation, the testing data comes from the same domain. With the
datasets selected and after some initial cleaning and the splitting of several datasets, a total of 28
classification and 18 regression datasets were available for the knowledge base.
An augmentation method was employed on compatible datasets (15 classification and seven regres-
sion sets) to increase the number of datasets. The augmentation consisted of two methods that each
aimed to change the dataset such that new insights could be gained. The first method increased the

Chapter 3 METHODS 27

number of missing values in a dataset by removing a random percentage of values between 0.04 and
0.06 from each column. The second method involved the conversion of numerical columns into cat-
egorical ones. This augmentation process was achieved by randomly selecting a set of columns and
then discretising the numerical values into ten bins of equal frequency. Each numerical value within
a given column was converted into a categorical value depending on its membership in one of the
ten bins. For each augmented dataset, three different datasets were made, one increasing the number
of missing values, the next increasing the number of categorical columns and the final applying both
augmentation methods. After augmentation, the total number of datasets was 106, consisting of 73
classification and 33 regression datasets.

ML Task Measure Average Std Range

Classification
Num. Classes 2.959 2.071 13
Num. Attributes 60.205 137.314 586
Num. Instances 6710.027 10632.907 75960

Regression
Num. Attributes 23.061 63.89 372
Num. Instances 6844.091 9597.026 41164

Table 2: Dataset descriptives for classification and regression datasets

ML Algorithms An extensive selection of ML algorithms at
m ∈ At ,m = 1, ...,Mt were used to col-

lect the knowledge base evaluations from the scikit-learn python library. A list of all the classifi-
cation and regression algorithms that were used can be found in Table 3.
Ideally, each learning algorithm would have used a set of different hyperparameters. This is because
the effect of different hyperparameter settings can have vastly different impacts on not only the algo-
rithm’s performance but also on its behaviour (Lee & Giraud-Carrier, 2014). Thus, the results col-
lected in the final knowledge base may not only differ based solely on algorithm performance, should
the algorithm hyperparameters be tuned, but the effect of the DPP pipelines may also be largely dif-
ferent. However, since running each model with each hyperparameter configuration available would
have significantly extended the time required to run the model evaluations, this loss of information
was tolerated.
Though it was intended to run each of the 18 classification or regression algorithms for each dataset,
there were instances where some algorithms could not be successfully run on specific datasets. These
unsuccessful attempts mainly consisted of errors occurring somewhere along the DPP pipeline trans-
formations that led to premature program terminations. Due to these unresolved errors, a decreased
number of usecases, specifically for classification datasets. Overall the average number of ML al-
gorithms for classification and regression datasets was 17.01 and 17.75, respectively. In total, the
amount of all usecases It = ∑

Nt

n=1(Mn) for classification amounted to ICL = 1242 and for regression
amounted to IRE = 586, where Nt is the number of datasets for ML task t and Mn is the number of
algorithms used on a particular dataset dt

n.

3.1.2 DPP Pipeline Combinations

The DPP pipeline combinations θ j ∈ Θ, j = 1, ...,J of the knowledge base Kt refer to how a dataset
will be transformed before training the ML algorithm and obtaining the evaluation score Ki, j =
K(ui,θ j). The usecase ui ∈ U t indicates which dataset and algorithm will be used. The set of all

28 Chapter 3 METHODS

Classification Algorithms Regression Algorithms
AdaBoost Bagging AdaBoost Bagging
Decision Tree ExtraTrees Decision Tree Elastic Net
Gaussian NB Gaussian Process Extra Trees Gaussian Process
Gradient Boosting Hist Gradient Boosting Gradient Boosting Hist Gradient Boosting
KNeighbors LGBM KNeighbors LGBM
Logistic Regression MLP Linear Regression MLP
Random Forest Ridge Random Forest Ridge
SGD SVM SGD SVM
Stacking Voting Stacking Voting

Table 3: Classification and regression algorithms, taken from the scikit-learn python library, used in
the knowledge base usecases. Note: the names of the models within the scikit-learn library include
either the suffix Classifier or Regressor, depending on if they are regression or classification algo-
rithms.

DPP methods used to create the different DPP pipelines consisted of methods spanning the DPP cat-
egories mentioned in Chapter 2.2. A list of the DPP methods and their membership to the categories
can be found in Table 4. Most methods were taken from online python libraries, mainly including
the scikit-learn python library and the category encoders library (McGinnis & Westenthanner,
2015). The Z-Score Substitution, Random Noise Addition, and Remove Correlated Features meth-
ods, however, were implemented specifically for the project (see Appendix D for pseudo code of these
methods, which were implemented by Frye (2023)).
DPP pipelines were constructed employing an exhaustive iterative procedure, iterating through each
DPP task category (see Table 4) and selecting one method from within that category. Also included
in a group of DPP methods was an option to choose a Dummy Method that would not transform the
dataset. With the list of possible DPP methods that can be combined, a factorial process was carried
out for each DPP task. Since nine DPP tasks were present, the maximum length of a DPP pipeline
was nine (i.e. Imputation, Encoding, Substitution, Noise Addition, Gaussian Transformation, Scaling,
Feature Extraction, Feature Selection and Over and Undersampling). Furthermore, as the Dummy
Method was included as an option within each DPP task, some DPP pipelines did not transform the
dataset in any way. These baseline pipelines allowed for comparing model performance before and
after preprocessing. In many cases, however, this exact comparison was not possible since running a
large portion of datasets without applying any DPP methods would not run successfully. The datasets
in question would be those with missing values or non-numerical categorical columns. Thus, in
datasets where imputation methods or encoding methods were necessary to be able to run, no true
baseline results could be obtained. Instead, the minimum number of DPP method transformations
was used as baselines. Scores were obtained after transforming the datasets using either encoding,
imputation, or both, depending on which were required.
The order in which the DPP methods occurred within a pipeline was fixed. For example, in a pipeline
with a maximum of nine steps, the first methods would refer to those deemed mandatory, including
imputation and encoding steps. Subsequently, transformation methods (substitution, transformations
and scaling) followed. After these methods, the dimensionality of the data would be reduced using
feature extraction and feature selection methods. Finally, random noise would be added to the model,

Chapter 3 METHODS 29

and the data would be resampled. A fixed order of possible DPP methods was required as the number
of possible DPP pipeline combinations had to be kept manageable, with the maximum number of
DPP method combinations in the current configuration being Imax = 15360. If, on the other hand,
the different method types could occur in any order, this number would be taken to the power of the
number of method types reaching a total combined count of 4.7∗1037. This amount of methods are
infeasible and unnecessary. For one, many transformations require that no missing and non-numerical
values are contained within a dataset. Thus the mandatory steps were required to be at the beginning
of pipelines. Furthermore, as highlighted by Giovanelli et al. (2021), the order in which some methods
follow others can lead to better results. For instance, data reduction methods are best suited to appear
after data transformations since better reduction occurs when the values have been optimally scaled.
In the case of resampling methods, the best results can be expected when the newly created data,
obtained by employing these methods, were generated based on scaled and transformed data (Bagui
& Li, 2021).

Category DPP Task DPP Method

Data Cleaning

Imputation
Median Imputer
Mean Imputer
Last Observed Imputer

Encoding
One-Hot Encoder
Target Encoder
Ordinal Encoder

Data Transformation

Substitution ZScore Substitution
Noise Random Noise
Gaussian Transformer Power Transformer

Scaling
Standard Scaler
Min-Max Scaler

Data Reduction

Feature Extraction PCA

Feature Selection
Recursive Feature Elimination
Variance Threshold
Remove Correlated

Data Resampling Undersampling/Oversampling
Random Undersampling
SMOTE
SMOTEENN
SMOGN

Table 4: Overview of all DPP methods in their respective category. Implementations from
scikit-learn were used for most of the methods. On the other hand, the encoders were sourced
from the category encoders library. For the Remove Correlated method and ZScore Substitution
method, personally developed implementations were created

DPP pipelines were created for each usecase in the knowledge base. As mentioned, the maximum
number of possible DPP pipeline configurations was Imax = 15360. However, the number of combi-
nations eventually used to transform the usecases was much lower. The reason for this lower pipeline

30 Chapter 3 METHODS

count can be traced to several factors. For one, only datasets that contained missing values were given
DPP pipelines that included imputation steps, and only those with categorical features had pipelines
that included encoding steps. Naturally, if a dataset contained either no missing values or categorical
features, the number of pipelines would decrease by a factor of 3 (or 32 if a dataset had no missing val-
ues and no categorical features) since each pipeline included neither encoding nor imputations steps.
A further reason for the lower DPP pipeline count was a set of rules applied to constructing DPP
pipelines. These rules aimed to reduce the number of errors caused by DPP pipelines during the data
collection. After applying these rules, PCA and Variance Threshold steps were only allowed if the
pipeline included a power transformer, allowing for better scaling of the data before these reduction
methods. This helped with the performance of these two DPP methods and avoided certain erroneous
infinite value transformations. Finally, since classification datasets only benefited from resampling
methods, many combinations were left out for regression datasets. On top of the systematic reasons
for the reduction of DPP pipeline combinations, a small percentage of different DPP pipelines were
caused by errors that hindered the production of a performance evaluation for those specific pipelines
on a certain usecase. For an overview of the actual numbers of DPP pipelines successfully evaluated
for classification and regression, usecases, see Table 5.

ML Task Imputation Required Encoding Required Both Required No Cleaning Required
Classification 1738.92 1719.6 5014.44 573.43
Regression 654.23 515.1 1581.75 169.31

Table 5: Average number of different DPP pipelines that a single regression or classification usecase
was successfully transformed by depending on the level of data cleaning required

3.1.3 Collection

To obtain the performance evaluations Ki, j = K(ui,θ j) that make up the knowledge bases Kt , t ∈
{CL,RE}, the same algorithm designed by Frye (2023) was employed to collect each model perfor-
mance after DPP pipelines were applied to the usecase datasets. The process was carried out for both
regression usecases and classification usecases.

Procedure The collection algorithm automated several steps to amass model evaluations for differ-
ent ML algorithms on a dataset. First, before training any models or using DPP pipelines, necessary
transformations were applied to the datasets. The necessary transformations consist of a handful of
modifications that benefit each dataset and thus were not included in the DPP pipelines. They handle
the removal of rows and columns that will not contribute to the model’s success, such as constant and
duplicate rows and columns. Next, the list of all possible DPP methods was created, depending on
whether or not the dataset included missing values and categorical features and if the dataset was a
regression or a classification dataset. With the list of all applicable DPP pipelines to be used on a
dataset formed, the data could be split into a training and testing set. This was done before the appli-
cation of DPP methods to avoid data leakage. The train-test split separated the data into a stratified
sample (in the case of a classification dataset) of 70% training data and 30% testing data. The training
data was then used to fit the DPP methods, which subsequently transformed the testing data.
Rather than running each DPP method in a pipeline from start to finish, some transformations were
only allowed to affect parts of the datasets. The reason for this lies with the categorical encoders. The

Chapter 3 METHODS 31

methods within a pipeline follow a particular order as mentioned in Chapter 3.1.2, whereby if both
dataset encoding and dataset transformation steps are in the pipeline, the encoding will always happen
first. The problem with this stems from the behaviour of encoding methods. The resulting transfor-
mation after encoders, such as binary and especially One-Hot encoders, can potentially leave the
dataset with a vastly inflated number of columns. As mentioned in Chapter 2.2.2, a One-Hot encoder
will add columns for each of the different instances within a categorical column. Thus, encoders,
besides Target encoders, have the potential to litter the dataset with large numbers of sparse columns.
Although sparse columns are known to benefit the knowledge acquisition of ML algorithms, feature
reduction steps such as PCA would remove them. This issue was avoided by removing the categorical
columns generated using encoding methods and returning them after the subsequent transformation
and reduction methods had been run on the dataset.
After successfully transforming a dataset using a DPP pipeline, each of the corresponding ML algo-
rithms was trained using default parameters on the training set, resulting in a performance evaluation
of that model. For example, if the dataset required a classification algorithm, the F1-Score was calcu-
lated. Conversely, the Root Mean Squared Error (RMSE) was calculated for regression datasets.

Outcomes The resulting model evaluation obtained from running the collection algorithm over each
dataset shows that the DPP pipelines can cause significant differences in the performance of a model.
The example of the usecase using the dataset ”Steel Plates Faults both”, and an SVM classifier can be
taken to illustrate this effect (see Figure 9).

Figure 9: F1-Score distribution of a Steel Plates Faults both datasets using SVC.

In this particular usecase, the range of F1-Scores equates to 0.71, with the best-performing pipeline
helping the model to achieve an F1-Score of 0.77 and the worst pipeline leading to an F1-Score of
0.06. Furthermore, these results show that using DPP pipelines can greatly improve the performance
of ML algorithms since the baseline pipeline, in this case, an encoder and an imputer, only led to an
F1-Score of 0.12. This effect was found for almost all usecases, whereby the best-performing pipeline
for a given usecase had a higher performance than the baseline scores. When taking the average scores
achieved on each classification dataset over all of the ML algorithms into account, we can see that
the average best DPP pipeline performance achieved an F1-Score of 0.78. In contrast, the average
baseline F1-Score is 0.65 (see Figure 10), indicating that, just by optimising the DPP pipelines for a
given dataset, one can, on average, increase the F1-Score by 0.13.

32 Chapter 3 METHODS

The calculation of the regression scores is more complex to compare since only the RMSE was col-
lected in the knowledge base. Furthermore, given that the RMSE value depends on the scale of
the target values used in the dataset, datasets that naturally contain target values on a larger scale
will also have distance-measure outcomes on larger scales. The values of the optimal scores across
datasets illustrate the effect of the different scales. The smallest optimal RMSE score that was
recorded was argmini(argmin j RMSEi, j) = 1.26∗10−5 and the largest optimal RMSE measure being
argmaxi(argmin j RMSEi, j)= 21.81, both the median and mean values indicate that best DPP pipelines
outperform the baseline model evaluations. Here, the mean difference was 7.42 RMSE in favour of
DPP methods. Unfortunately, since collecting the model evaluations for each DPP pipeline combi-
nation within the knowledge base took a substantial amount of time, each evaluation was collected
only once. Thus, no tests of statistical significance made conducted. Following this, no claims can
be made about the significance of improvements observed in the models when using DPP pipelines
compared to not using DPP pipelines. However, these results prop up the already established finding
that using DPP pipelines will improve model performances.

(a) Classification Datasets

(b) Regression Datasets

Figure 10: Affects of applying DPP pipelines to each dataset (numbers associated with datasets can be
found in Appendix E). Optimal DPP Score refers to the averaged F1-Score or RMSE score achieved
by the best-performing pipeline over each usecase using the same dataset. The Baseline score refers to
the score achieved when not performing any or only the strictly necessary DPP methods (categorical
encoding or missing value imputation).

Chapter 3 METHODS 33

Though difficult to compare the performance of ML algorithms on different regression datasets with
one another, the internal order of the distance measures within a usecase allows for the ideal pipelines
to be identified and used for learning. The subsequent section will document how the information
within the knowledge bases was transformed, which allowed for the comparison of DPP pipelines
between datasets.

3.1.4 Ranking

The final step in the knowledge base collection procedure was ranking the ML model evaluation re-
sults within the knowledge base. So far, the knowledge bases Kt , t ∈ {CL,RE} consist of raw model
evaluations depending on a usecase and a DPP pipeline configuration Ki, j = K(ui,θ j). Though these
raw scores represent the actual scores that were achieved, there are several reasons why transform-
ing them into a more convenient structure is advantageous. For one, the performance measures are
inverted in the regression and classification knowledge bases. Where a large value indicates a well-
performing model for the classification knowledge base, a small value is ideal for regression. More
importantly, as previously noted, the RMSE scores in the KRE depend on the overall scale of the values
within the dataset, making a comparison between regression model evaluation impossible. Though
the scale of the F1-Scores is the same for the outcomes over each usecase, classification datasets
have a similar problem as some datasets are easier than others for ML algorithms to solve. Thus, a
top-performing pipeline that helps an ML algorithm achieve an acceptable accuracy score for a chal-
lenging dataset will become overshadowed by the accuracy scores attributed to any DPP pipeline that
transforms easier datasets. These issues were rectified by using a transformation technique used by
(Frye, 2023), whereby the model evaluations within the knowledge bases are transformed into ranking
tables Rt , t ∈ {CL,RE}.
The ranking was carried out by ranking the performance measures of each DPP pipeline within a
usecase Ri, j = R(ui,θ j) using a Scaled Distance Ranking method.

ScaledDistanceRank =
K(ui,θ j)−min(K(ui,θall))

max(K(ui,θall)−min(K(ui,θall)))
(5)

This method negates the problems stemming from the differing inter-dataset scales and difficulty
levels since the Scaled Ranks were not only bound between the same limits, but the maximal and
minimal Scaled Rank scores were now identical between datasets. Following this, the pipeline that
scored the optimal score (either the highest F1-Score or lowest RMSE score) would be given a Scaled
Rank score of 1, and the least optimal score would be set to 0. Besides solving the scaling issues,
using the Scaled Rank to rank the usecase pipelines also allowed the shape of the distribution of the
usecase model evaluations to be maintained (see Figure 11). Thus, the ranking procedure can be seen
as a mapping from the knowledge base to the ranking tables Kt 7→ Rt .

3.2 Meta-Dataset Creation
To be able to train a meta-learning model, the information contained in the knowledge bases must
be organised into meta-datasets dt

meta, t ∈ {CL,RE} so that a meta-model can learn to predict DPP
pipeline performances. Like regular datasets that train ML models, the meta-datasets consist of inputs
and outputs. The inputs, in this case, describe usecases and are constructed by extracting meta-
features from the individual datasets, which, in turn, describe datasets and algorithm characteristics.
The outputs or meta-targets contain information about DPP pipeline performance (see Figure 12). As
previously mentioned, the meta-model used in this project will be a multi-output regression model

34 Chapter 3 METHODS

(a) F1-Scores (b) Scaled Ranks

Figure 11: F1-Score (a) and Scaled Rank (b) distribution of a Steel Plates Faults both dataset using
SVC. It can be seen that the shape of the distribution remains the same after the transformation to
Scaled Rank scores.

predicting the values associated with several meta-targets. Thus, a smaller set of DPP pipelines will
be chosen as candidates for regression and classification datasets to avoid predicting the performance
of all DPP pipeline combinations.
In the following sections, the construction of the meta-datasets will be presented. First, the method
of obtaining input values via meta-feature extraction is described in Chapter 3.2.1, whereby each
instance of the meta-dataset inputs characterises a usecase in terms of dataset and ML algorithm
used. Subsequently, the creation of the meta-dataset outputs via meta-target selection is described
in Chapter 3.2.2. Initially, the notions of reliable and diverse meta-target selection are introduced,
followed by a description of the novel and commonly used meta-target selection methods. In addition,
the DPP pipelines, chosen by the different meta-target selectors, are described. Finally, the datasets
used to test the final meta-model are introduced in Chapter 3.2.3.

3.2.1 Meta-Feature Extraction

The first step towards constructing the meta dataset is to obtain the input values (see inputs in Figure
12). Then, as mentioned in Chapter 2.3.2, meta-features are used to describe a task numerically, help-
ing to identify similarities between tasks. By identifying task similarities, the meta-model can learn
underlying patterns representing the effect of DPP pipelines on the Scaled Rank scores. The meta-
features aim to characterise the dataset of a particular usecase. They range from simple handcrafted
meta-features, such as the number of missing values, instances and attributes of a dataset, to complex
ones for which the python library pymfe was used. A list of the handcrafted meta-features can be
found in Table 6. Additionally, a description of the 89 meta-features used from external libraries can
be found in Appendix B.
With the two sets of meta-features (handcrafted and pymfe meta-features), the overall number of
columns in the meta-dataset dt

meta was 100 for the classification dataset and 103 for regression datasets.
The difference in the number of meta-features between classification and regression sets stems from
the nature of some meta-features. For example, those describing classes, such as Number of Classes
and Class Distribution, were specific for classification usecases. In contrast, the meta-features: Tar-
get Skewness,Target Kurtosis, and Number of Target Outliers were specific to regression usecases.
Since some of these meta-features are categorical, the datasets required mandatory encoding, which

Chapter 3 METHODS 35

Figure 12: An overview of the structure of the meta-dataset. Each instance of the dataset (usecase)
consists of meta-feature information describing the dataset and algorithm characteristics. For each
usecase, the Scaled Rank scores of N DPP pipelines, in this case four, are used as training targets.
This meta-dataset is used to train the resulting meta-model.

was accomplished using a binary encoder. A binary encoder was chosen over a One-Hot encoder to
keep the dimensionality increase as low as possible. Since the ML algorithms that were eventually
chosen to become the meta-model were not neural networks (see Chapter 3.3.2), the usual decrease
in performance usually observed when using binary encoding was preferred over the explosion in
dimensionality.
An alternative would have been using a Target encoder with the average meta-target scores for each
category as an encoding, as this method does not increase the number of columns within a dataset.
However, this was not implemented since the Target encoder from the categorical encoders li-
brary does not support multi-output encoding. After encoding, the respective dataset dimensions were
1142x132 for classification usecases and 1142x130 for regression usecases.
The attribute-to-instance ratio is quite large, which can cause problems during training due to the
curse of dimensionality. Therefore, data reduction DPP methods were used on each meta-dataset
to counteract this issue. This was accomplished via the PCA feature reduction method. PCA was
employed since it is a commonly used method for continuous features, combining many features into
principal components rather than removing entire features. Additionally, since only DPP methods
contained within the selection of DPP pipelines used as meta-targets are to be considered, more
involved methods, such as tSNE reduction, were excluded. Furthermore, a PCA variance analysis
can determine the ideal number of principal components to be included in the final dataset. The
results of the variance analysis run on the numeric columns of the datasets show that approximately
99% of the variance is achieved by only using 25 principal components for both classification and
regression datasets. Thus, the datasets were reduced to 25 principal components plus the encoded
categorical columns before training began.

36 Chapter 3 METHODS

Universal Meta-Features Classification Specific Regression Specific
Number of attributes Number of Classes Target Skewness
Number of Instances Class Distribution Target Kurtosis
Number of Numeric Features Number of Target Outliers
Number of Categorical Features
Number of Missing Values
Number of Outliers Zscore
Number of Outliers Boxplot

Table 6: Overview of the handcrafted meta-features directed towards datasets and algorithms

3.2.2 Meta-Target Selection

The output or meta-target is the item the meta-model is trained to predict. Depending on the task the
meta-model has been given, the targets may consist of different classes c belonging to a set c ∈ C.
Usually, the size of C is kept relatively small since increasing the size of classes to be predicted, in
turn, increases the difficulty of the task. This increase in task difficulty is a major problem when
recommending the best DPP pipelines for a dataset. Therefore, research involving DPP pipeline rec-
ommendation has consistently resorted to drastically reducing the set of pipelines instead of predicting
the best possible pipeline from the entire set.
Unlike the PRESISTANT meta-model, designed by Bilalli et al. (2018), which uses a rule-based
approach to determine which DPP pipelines would be used to transform incoming datasets, this
shortened set C∗ of pipeline candidates usually consists of well-performing DPP pipelines. Often,
the candidate pipelines are chosen based on a DPP pipeline ranking obtained from knowledge bases
(Laadan et al., 2019; Zagatti, 2021; Frye, 2023). Thus, the choice of which DPP pipelines can be
predicted depends on a statistical approach.
Given that little has been written about different meta-target selection methods, the current project
aims to shed light on the effect of using different approaches. Furthermore, since the current model
will predict the Scaled Rank score R(ui,θ

∗
j) of several DPP pipelines θ∗j ∈ Θ∗, j = 1, ...,J∗, inves-

tigating different methods for meta-target selection will not only help further the information about
meta-learning but also aid in achieving better performance for the current meta-learner. Given that
the current project aims to use a knowledge base, a rule-based approach was not considered. Instead,
methods were designed based on the performance information of DPP pipelines with different use-
cases. With this in mind, the first step in defining a new pipeline selection method was to define what
desirable characteristics a DPP pipeline should have to be selected to be a member of the candidate
pool.

Reliability vs Diversity The Meta-Targets chosen in previous DPP pipeline meta-learning studies
were predominantly based on average performances. In most cases, the top N pipelines were selected
after being ranked according to achieved evaluation metrics attributed to DPP pipeline transformations
(Laadan et al., 2019; Zagatti, 2021). An alternative method was employed by Frye (2023). Here DPP
pipelines were chosen by identifying DPP pipelines that appeared in the most top N ranked pipelines
of usecase subgroups. In this study, the groups were determined by the algorithm used.
Nevertheless, these approaches limit the candidate pool to pipelines that consistently produce favourable

Chapter 3 METHODS 37

results for all tasks within a knowledge base. The objective is thus to select pipelines with high relia-
bility and is illustrated theoretically in Figure 13a. Here we can see an example of four pipelines and
their performances after transforming the datasets within the usecases represented along the x-axis.
The scores achieved by the red and the blue pipeline both obtain solid results in all usecases, whereas
the scores achieved by the orange and green pipelines are weak. Therefore, the desired choice would
be to include the blue and the red pipeline in the candidate pool but exclude the orange and green.

(a) Reliability (b) Diversity

Figure 13: The objectives for selecting pipelines based on reliability (a) and diversity (b) are illustrated
in the two hypothetical plots. The lines represent Scaled Rank scores achieved by a specific pipeline of
a given usecase, the different colours represent different pipelines, the y-axis represents the achieved
Scaled Rank score, and the x-axis represents different usecases sorted by similarity. Thus, the usecase
on the far left is the least related to the usecase on the far right. In both cases, the better choice of
the pipeline would be those producing the red or blue data points. In a, the red and blue are shown to
achieve better Scaled Rank scores over the different usecases than the orange pipeline that consistently
returns low scores. In b, the red and blue pipelines are the ideal choice for specific usecases and would
make selecting the better pipeline according to usecase similarity easier. On the other hand, the orange
pipeline’s performance appears not to be well related to usecase similarity and would make learning
difficult.

When the meta-learner aims to recommend the ideal pipelines for a usecase, this pipeline selection
method is helpful to ensure that, no matter which pipeline is predicted, it will likely increase prediction
performance. However, regarding the model’s ability to distinguish which pipeline is the ideal choice
for a specific usecase, the meta-learner must be very precise to successfully distinguish one DPP
pipeline from the next since the difference between pipelines is small. Chosen pipelines based on high
reliability will thus lead to lower meta-model accuracies if the model’s margin of error is considerable.
Furthermore, selecting DPP pipelines based solely on average performance increases the danger of
crowding the candidate pool with well-performing, homogeneous pipelines. For example, should the
distribution of the usecases be biased toward a particular attribute, for instance, a need for scaling,
then the top N pipelines may consist of DPP methods that only perform data transformations that
focus on scaling. For this reason, a new pipeline selection objective is proposed.
An alternative to choosing reliable meta-targets that will perform similarly for many usecases is to
choose meta-targets that perform well for specific ones. This pipeline selection objective is to select

38 Chapter 3 METHODS

pipelines with high diversity, illustrated in Figure 13b. Here the blue and the red pipelines achieve
strong or even optimal performances in only specific usecases and are not well suited for others. With
the optimal pipeline being more distinguishable than reliable pipelines, the task of the meta-learner is
more straightforward. On the other hand, the difference between the orange and green pipeline results
in Scaled Rank scores that are similar across the usecases and makes the task of the meta-learner more
difficult. Furthermore, since the orange and green pipelines were chosen based on high reliability,
their average score over all usecases may be high; however, specialised pipelines may outperform
them in the ideal usecases. The idea behind diverse pipelines is to select heterogeneous pipelines and
focus on specific problems within datasets to be optimally processed. This paper will give no precise
definition of reliability and diversity, and the above explanation and that given in Figure 13 is only
a suggestive take on the issue. However, two intuitive approaches for the different pipeline selection
methods were designed to highlight the differences between the meta-target objectives. The aim is to
test whether using a diverse selection method can lead to increased meta-learning accuracy. The first
method refers to grouping methods, which aim to select pipelines with high diversity. The second
method follows a simplified approach that targets reliable pipelines. Both pipeline selection types
will be explained in the following sections.

Grouping Methods The first pipeline selection type aims to identify pipelines that perform well
for different subsets of usecases and thus find pipelines with high diversity. The subsets are defined
by grouping usecases and finding the best-performing pipelines for each selected group. Given that
the algorithm type is the most important feature in determining ideal DPP pipelines, according to
Frye (2023), the usecases were grouped according to the different classification or regression ML
algorithms at

m ∈ At ,m = 1, ...,M, t ∈ {CL,RE}. In total, three grouping methods were designed for
this project Gr,r ∈ {IAG,SAG,RAG}, each following a different strategy to combine usecases ui ∈
U, i = 1, ..., I according to their ML algorithms. The resulting groups obtained after employing a
grouping method Gr

n were thus a subset of all usecases Gr
n = G(At∗

n ⊆ At)⊂U,n = 1, ...,N <= M.
The first grouping method was adapted from a similar approach taken by Frye (2023). This method,
the Individual Algorithm Grouper (IAG) GIAG grouped the usecases by each algorithm individually
Gn ∈ GIAG,n = 1, ...,N = M, meaning there were as many groups as there were ML algorithms.
Although the IAG method was adapted from Frye (2023), the steps taken in this project are aimed
at selecting diverse DPP pipelines rather than following a reliable approach. The Similar Algorithm
Grouper (SAG) GSAG, on the other hand, combined algorithms into subgroups according to similar
algorithm characteristics. These characteristics were based on the algorithms’ functionalities, such
as training methods and structures. Table 7 shows the algorithm subgroups used in this grouping
method. Finally, the Random Algorithm Grouper (RAG) GRAG grouped algorithms randomly into
five similar-sized groups. This method was included to highlight the importance of usecase similarity
when aiming to select pipelines with high diversity. It was expected that the pipelines chosen using
the random grouping method would show similar scores across the five groups, resulting in pipelines
with high reliability rather than a high diversity.
During the selection process, the best-performing pipelines within a group were identified by extract-
ing the usecases from the ranking tables Rt

n = R(Gr
n,Θ) where ui ∈ Gr

n, i = 1, ..., In, which contained
the Scaled Rank scores over all DPP pipelines for the usecases specified by each algorithm Gr

n. From
here, the median scores over the usecases within a group were calculated median(Rt

n(G
r
n,θ j)), j =

1, ...,J. This resulted in a collection Rt
Ave of median scores that each pipeline achieved for usecases

defined by the different groups Rt,Ave
n, j = median(R(Gr

n,θ j)) ∈Rt,Ave,n = 1, ...,N, j = 1, ...,J. The me-
dian scores were taken instead of average scores to reduce the impact of outliers. Five subsequent
steps were used to obtain pipelines that were likely to be diverse:

Chapter 3 METHODS 39

Group Algorithm

Ensemble-Based Algorithms

Voting C/R
Gradient Boosting C/R
AdaBoost C/R
Bagging C/R
Stacking C/R
Histogram Gradient Boosting C/R
LGBM C/R

Linear Algorithms / SVM

SGD C/R
Ridge C/R
Logistic Regression
Elastic Net
Linear Regression
SVM C/R

Bayes Algorithms
Gaussian Process C/R
Gaussian Naive Bayes

Tree-Based Algorithms
Random Forest C/R
Decision Tree C/R

Clustering Methods KNN C/R
Neural Networks MLP C/R

Table 7: Groups of algorithms used in the algorithm groups pipeline selection method. Note: C/R
stands for Classifier/Regressor. For these algorithms, the implementation used for both classification
and regression datasets were included. Additionally, SVM was included in the linear group since the
prediction is linear after the kernel trick has been performed and if a linear kernel is used.

• Max Scores
Only pipelines that perform exceptionally well for specific usecases are wanted in the candidate
pool. Thus the total number of pipelines in the search space was reduced. Pipelines θ j ∈Θ were
removed whose maximum group performance of a pipeline max(Rt,Ave

j did not appear in the
90th percentile of scores for the group of the pipelines maximum performance. This resulted
in a reduced set of possible pipelines to be considered Rt,Red

n,k = mean(R(Gr
n,θk)) ∈ Rt,Red,n =

1, ...,N,k = 1, ...,K < J.

• Pipeline Group Ranks
The pipelines in the resulting candidate pool should perform well only in specific usecases
rather than in all. Each pipeline’s performance over the different groups was used to help
select pipelines that perform well in certain groups instead of others. This information was
obtained by transforming the median pipeline group scores into pipeline group rankings by
ranking the scores achieved by each pipeline according to the achieved scores for each of the
groups Rt,Rank

n,k = rank(Rt,Red
N,k) ∈ Rt,Rank. Thus for each pipeline, the group scores are replaced

with rankings Rt,Rank
n,k ∈ {1, ...,N} for each of the groups Gr

n,n = 1, ...,N

40 Chapter 3 METHODS

• Highest Pipeline Rank Count
Since there are usually more groups than selected pipelines, a single pipeline that will perform
well for only one usecase group cannot be chosen. Instead, the grouping pipeline selection
method aims to search for pipelines that show top performances over multiple groups, narrow-
ing the search to candidates that perform well for as many usecase groups as possible. Thus,
the number of pipelines in the reduced ranking table Rt,Red were further reduced to pipelines
that achieved high rank scores in multiple groups. This second reduction resulted in a ranking
table of potent pipelines Rt,Pot

n,l ∈ Rt,Pot ⊂ Rt,Red, l, ...,L < K.

• Group Limiting
The number of total pipelines was again limited by choosing the top three pipelines per group
based on the maximum score achieved in each group to avoid unbalanced amounts of potent
pipelines, which may occur from some groups leading to better results than others. This step
was the final reduction performed on the list of pipelines Rt,Limited

n,o ∈Rt,Limited ⊂Rt,Pot),o, ...,3∗
N and helped to ensure that remaining pipelines are among the best in the list of pipelines for
the different groups. Furthermore, this step reduced the search space for the following steps in
the pipeline selection methods.

• Potent Pipeline Combinations
With a selection of pipelines that perform well in the different groups and the goal of finding
a candidate pool of pipelines that each have strengths in as many different groups as possible,
an ideal combination of pipelines was needed. A grid search over all possible combinations
of the pipelines within the limited ranking table Rt,Limited was then conducted to obtain this
ideal combination. These combinations are potential candidate pipeline pools and consist of J∗

pipelines. Throughout the search, the number of times pipelines within a particular combination
achieved the highest group ranks is counted. Pipeline combinations that achieve the highest
number of maximal ranks over the pipelines within the combination are collected for the final
step.

• Pipeline Candidate Pool Selection With a selection of pipeline pools collected that achieved
the highest possible total of top group ranks, the best pipeline candidate pools can now be
chosen. This choice is based on each pipeline’s overall highest average performance within the
pipeline candidate pool.

This method of selecting a DPP pipeline candidate pool allowed for pipelines to be chosen that per-
formed well in a subset of usecases while disregarding the performance achieved in others. This
allowed for greater differences in pipeline performance across different usecases, simplifying the
learning task that the eventual meta-model will attempt to solve.

Statistical Methods A second method for pipeline selection was used to compare the grouping
method’s motivation of searching for pipelines with high diversity. This Statistical Pipeline Selec-
tor (SPS) was much more straightforward. Instead of grouping the usecases into separate groups,
the median Scaled Rank score was collected over all usecases U t in the ranking tables Rt,ave

j =

median(Rt(U t ,θ j)). Then, the ranking tables were sorted according to the median values Rt,ave
j .

Subsequently, the pipeline candidate pool was chosen θ∗j ∈ Θ∗, j = 1, ...,J∗ by selecting the top J∗

pipelines from the sorted DPP pipeline ranking table. Pipelines chosen using only statistics over all
usecases allow for a more straightforward pipeline selection method but only look for pipeline re-
liability. Models will be trained using the pipelines obtained by both selection types, and the best
approach will be used for the final model.

Chapter 3 METHODS 41

Chosen Pipelines Four pipelines were chosen to be in the resulting pipeline candidate pools (J∗ =
4). These pipeline sets differed for the four pipeline selection methods PSr,r∈{IAG,SAG,RAG,SPS}.
Appendix F provides an overview of which pipelines were selected.

Figure 14: Performance of pipelines selected by the different pipeline selectors (IAG, SAG, RAG) for
the groups specified by the individual pipeline selector for classification usecases. The performance
of pipelines chosen by the SPS method on the groups of the corresponding grouping methods is
displayed as a comparison. The difference in pipeline performance can be seen, whereby the grouping
methods (left) produce more spread-out pipelines. The pipelines chosen by the statistical method
(right) perform consistently over the different groups.

Figure 14 shows the performances of the different pipelines selected by the different pipeline selection
methods for classification usecases. The figure shows the average performance scores of the pipelines
selected by the corresponding selector on the groups of usecases described by that selector. As a
comparison, the pipelines chosen by the SPS selector are plotted next to each grouping selector. The
plots show that, as intended, the pipelines selected by the IAG and SAG selectors are more diverse,
as individual pipelines perform better for individual usecases and are somewhat spread out. On the
other hand, the SPS pipelines perform consistently well for each usecase group, with only minor inter-
pipeline performance differences. As expected, the pipeline performances displayed by the pipelines
selected by the RAG method resemble those chosen to be reliable. This result confirms that when
grouping usecases to select top-performing pipelines to cater to individual strengths, the usecases
should be grouped meaningfully rather than randomly. Doing so will negate grouping, and pipelines
that perform well for all usecases are chosen.
Similar results were also found for the regression usecases (see Appendix G); however, looking more
closely, a diverse split was only achieved for specific groups. A handful of pipelines selected by the

42 Chapter 3 METHODS

IAG selector, indicated by the numbers 15 to 17 (Gaussian Process Regressor, MLP Regressor and
SGD Regressor), show similar rank performance across pipelines. The same behaviour is found for
the usecases grouped by Bayesian algorithms in the SAG selector. This behaviour exhibits the same
characteristics as reliable pipelines and might lead to a different meta-learner performance when
training using the classification usecases and the regression usecases. A possible reason for this
discrepancy may be attributed to the skewed nature of regression Scaled Rank distribution and will
be addressed in the conclusion.
Besides finding pipelines ideal for only a subset of usecases and making the pipelines more distin-
guishable, as opposed to all usecases equally, the second idea motivating diverse pipeline selection
was directed toward performance. Ideally, since a pipeline did not need to be universal and could be
more specifically oriented towards solving the issues related to individual groups, the maximum per-
formance attributed to diverse pipelines would be expected to outperform those attributed to reliable
ones. This, however, was not accomplished by the grouping method pipelines. When the maximum
values for each group score were compared, there was only a small difference between reliable and
diverse pipelines for classification and regression usecases. The IAG pipelines achieved an average
Scaled Rank score of 0.001 higher than the statistical pipelines, SAG pipelines achieving 0.01 higher
and RAG 0.003 higher for classification usecases. For regression usecases, the average maximum
Scaled Rank performance increased for the IAG, SAG and RAG selectors by 0.004, 0.001 and 0.017,
respectively. Since the difference between the two methods is so small, the benefit of choosing diverse
pipelines outperforming reliable ones in some instances was not found.

Combining Diverse and Reliable Meta-Targets The way the meta-targets are chosen using diverse
or reliable meta-target selection methods is expected to have different benefits. Thus, it is natural to
assume that using a combination of reliable and diverse meta-target together may be beneficial. There
is, however, a danger of doing so. Since a reliable meta-target is likely to perform well for most
usecases, compared to diverse meta-targets designed to maximise model accuracy of certain groups
of usecases, a meta-model may begin only to recommend the reliable meta-targets over the diverse
ones. The reason for this is that, by design, number of usecases that a diverse pipeline performs well
for is much smaller than the number those a reliable pipeline performs well for. Thus, this project
will not include a setting in which both meta-target selection methods are used simultaneously.

Number of Meta-Targets Only four different meta-targets were chosen for each meta-dataset,
meaning the final model will only have four possible DPP pipeline recommendations depending on
which meta-target selection method is used. This is a weakness of the system and something that
can be improved on in future studies (more details as to possible future studies can be found in the
Future Work section in Chapter 6.5). The reasoning behind choosing only to use four meta-targets
was twofold. Firstly, it has become clear from previous studies that the prediction performance of
meta-learning models aimed at predicting ideal DPP pipelines is a difficult task. Thus, having to pre-
dict more Scaled Rank scores from a larger pool of DPP pipelines would likely lower the prediction
scores even further (Frye, 2023). Secondly, the diverse meta-target selection method was created with
a low number of DPP pipelines in mind, making a selection based on top performers for multiple
archetypes of DPP problems, as indicated by the groups. Due to the nature of meta-learning with
DPP pipelines and the sheer number of possible meta-targets, a choice must be made regarding the
number of meta-targets used. However, unless each possible DPP pipeline is included, a complete
model is out of reach. This remains an issue with this method of meta-learning that future studies can
improve upon.

Chapter 3 METHODS 43

3.2.3 Testing Sets

In order to draw valid conclusions about the performance of the final meta-learner, a meta-testset
dtest

meta is required so that the model’s performance can be evaluated on previously unseen data. To
construct the new testing sets, additional information was collected by evaluating novel datasets and
constructing further knowledge bases Kt

test , t = {CL,RE}. Following the same methods outlined in
the previous sections, the information contained within the testing knowledge bases was extracted to
create a meta-testing set for each of the four pipeline selection methods. The meta-target pipelines
were identical to those used in the corresponding meta-training sets.
In total, 12 new datasets were used in the testing set. These 12, split into six classification and six
regression datasets, originated from eight publicly available datasets (see Appendix C). The same 18
ML algorithms were used in combination with the six testing datasets to create the testing usecases,
leading to a total of 108 testing usecases for both classification and regression meta-testing sets.
Like the training sets, the testing sets were shown to benefit from DPP pipeline transformations.
The optimal DPP pipeline increased the average performance achieved by the models when no DPP
pipeline was used (see Figure 15). More specifically, the average optimal increase that can be expected
from using DPP pipelines was an improvement in F1-Score of 0.096 for classification datasets and
an improved distance of 1.73 RMSE for regression datasets. Again, no tests of statistical significance
could be carried out; however, like in Chapter 3.1.3, the results show a similar trend that DPP pipelines
improved model performance.

(a) Classification Testsets

(b) Regression Testsets

Figure 15: Best performing pipeline F1-Score and baseline pipeline F1-Score averaged over each ML
algorithm used on a single testset for each classification and regression testset.

44 Chapter 3 METHODS

3.3 Training

Referring back to the overview of the methodology of the project, shown in Figure 7, so far, the
previous sections described how the information obtained from running many different ML algorithms
was collected and transformed into a meta-dataset. The following section will explain how this data is
exploited using a meta-model. In general, this meta-model is nothing more than a regular supervised
learning ML algorithm that takes the meta-dataset as input and predicts the ranks of the pipelines in
the candidate pool for each instance. Thus, the training of the meta-model follows the same procedure
as any other ML algorithm optimisation approach. This includes an initial preprocessing of the inputs
followed by the search for an ideal learning algorithm. Additionally, these learning algorithms were
subjected to hyperparameter optimisation (see Figure 16 for an overview of the training process).

Figure 16: Overview of the meta-model training process involving preprocessing steps, hyperparame-
ter optimisation and model selection (KNN, Decision Tree and Random Forest). The best-performing
model will be saved and tested

The training procedure consisted of using cross-validation to achieve the best-performing model.
Before training began, however, the meta-dataset was preprocessed, and an ideal ML algorithm was
selected. The best model was determined by utilising a grid search over the search space of all training
settings. This included the set of all meta-datasets, each produced by employing a different meta-
target selection method dmeta,i ∈Dmeta, i = 1, ..., I = 4, the set of all DPP pipelines that a meta-dataset

Chapter 3 METHODS 45

would be transformed by pi, j∗ ∈ Pi, j = 1, ...,J∗ = 4, the set of ML algorithms used to train the multi-
output regression model µa ∈M,a = 1, ...,A and the set of all combinations of model hyperparameters
for a given ML algorithm hµ,k ∈ Hµ,k = 1, ...,Kµ. In total, the number of cross-validations CVnum to
be completed is CVnum = I ∗ J∗ ∗∑

A
a=1(Kµa) = 2112.

3.3.1 Preprocessing

The training process’s goal is to attain the best model performance possible. From Chapter 2.2, it
follows that the highest possible performance can only be achieved after the dataset undergoes DPP
pipeline optimisation. To avoid adopting and running the collection algorithm from chapter 3.1.3, a
more straightforward method was chosen to obtain well-performing DPP pipelines. Since the DPP
pipelines selected to represent meta-targets by the meta-target selection methods were chosen based
on high performance for either different algorithm groups or overall average performances, these
meta-target pipelines were used to prepare the meta-datasets. Thus for each meta-dataset, dmeta,i, its
respective target pipelines were chosen as preprocessing pipelines.
Once the pipelines were obtained, the meta-datasets could be transformed. However, due to some
characteristics of the meta-datasets, not every method in the DPP pipeline was used to transform the
datasets. For one, since the datasets had been created by hand, there were no missing values to be
expected. This assumption led to imputation steps being redundant that were thus removed. The
same can be said for encoders since the categorical meta-features had already been dealt with using
the binary encoder.

3.3.2 Learning Algorithms

Since the focus of this project was to improve a meta-learning system using meta-target selection
methods rather than better, more powerful models, the set learning algorithms that were chosen to
learn the task of predicting the Scaled Rank score of DPP pipelines for different usecases were lim-
ited to commonly found ML algorithms used for many ML applications. Thus, the Decision Tree
Regressor, the KNeighbors Regressor and the Random Forest models were chosen from the
scikit-learn library.
Besides training each of the chosen models to determine which produces the best training result,
different hyperparameter settings were applied to each model. A grid search was run over a selection
of different hyperparameter settings since the number of hyperparameter settings was manageable.
For an overview of the different hyperparameter settings, see Table 8.

3.3.3 Cross Validation

When training a supervised learning model, one must constantly be vigilant to avoid overfitting.
Overfitting can occur through unfortunate/fortunate ways that a train test split can stack the data into
producing better or worse results than are available in the ground truth. K-fold cross-validation can
be employed as a countermeasure to this problem, which aims to avoid any outcomes dependent on
the train-test split (Refaeilzadeh, Tang, Liu, et al., 2009). In K-fold cross-validation, the idea is to
train and test the model for the different K folds in a dataset. Here, a fold refers to a subset of the data
used as a validation set to obtain a validation score. The main idea with using K-Fold cross-validation
is that each part of the data is the validation set, with the data outside of the fold being used to train
the model. After the evaluation scores are obtained over each of the K folds, the scores are averaged,
making the resulting evaluation score more reliable and less likely to be a result of overfitting.

46 Chapter 3 METHODS

ML Algorithm Hyperparameters Values

KNN
Weights ’uniform’, ’distance’
Algorithm ’auto’, ’ball tree’, ’kd tree’, ’brute’
Number of Neighbours 2,3,4,5,6,7,8

Decision Tree

Criterion ’squared error’, ’friedman mse’, ’poisson’,
’absolute error’,

Min Sample Required to Split 2,3,4,5
Min Samples in Leaf 1,2,3,4,5

Random Forest
Criterion ’squared error’, ’poisson’, ’absolute error’,
Min Sample Required to Split 2,3,4,5
Min Samples in Leaf 1,2,3,4,5

Table 8: Hyperparameter setting for each ML algorithm used as meta-models.

Usually, the folds are randomly selected; however, this is impossible for the current dataset. This is
because certain instances or usecases in the meta-datasets depend highly on one another as a result
of the dataset augmentation. When variations of datasets were created, making datasets with more
missing values, more categorical features or both, their targets were still unchanged. Data leakage is
inevitable if some of these instances were to be found, partially in a fold and partially in the training
set. This pitfall was avoided by manually defining the folds. The methodology behind this manual
definition was to insist that datasets with a common base (i.e. augmented from a shared dataset) are
to always be together within a fold. A list of the folds used for the cross-validation can be found in
Appendices H and I.

3.4 Model Assessment

As mentioned in the previous section, cross-validation scores were obtained by averaging a perfor-
mance measure calculated using the predicted and actual values (validation values) over each fold.
Using different performance measures makes it possible to choose the best-performing model de-
pending on different model behaviours. To this end, selecting a performance measure to cater to
specific needs is possible. For instance, depending on what is deemed ideal behaviour, a model that
performs well while evaluating that behaviour can be chosen. With this in mind, three different per-
formance measures were created to select models that perform well for three tasks: general Scaled
Rank prediction accuracy, best pipeline recommendation and correct ordering of pipeline prediction
ranks.

3.4.1 General Rank Accuracy

The accuracy of a regression model is evaluated via distance measures from the desired targets to the
achieved targets. In the knowledge base (chapter 3.1.3), RMSE was used to obtain the distance score.
This evaluation measure cannot be used in the meta-model since there is no single target, given that
the model learns a multi-output regression task. Instead, the average-RMSE (ARMSE) was used.

ARMSE =
∑

J∗
j∗=1 RMSE(ypred

j∗ ,yval
j∗)

J∗
(6)

Chapter 3 METHODS 47

The ARMSE measure indicates the distance from the predicted Scaled Ranks to the actual Scaled
Ranks in the training sets. A good measure suggests that the accuracy of the Scaled Ranks is high
and that for each of the J∗ candidate pipelines, the predicted Scaled Rank is, on average, close to
reality. This measure is ideal for selecting models used to get a general idea of how well the candidate
pipelines will perform on a new task. A high ARMSE, however, does not guarantee that ordering the
pipeline ranks within the candidate pipeline pool is accurate. Different performance evaluations can
pick models that perform well in those tasks.

3.4.2 Ideal Ordering

Another possible use of the meta-model would be to have it return a list of potential DPP pipelines in
the order of predicted performance. As mentioned, having a model that accurately predicts the ranks
of each of the pipelines on average may not guarantee a correct ordering of the pipelines, especially if
the actual ranks of the pipeline candidates are similar. A method to help with this model application
was designed to evaluate the model based on its ability to order the DPP pipeline ranks correctly.
Kendall’s τ is a non-parametric measure of relationships between columns of ranked data. The Tau
correlation coefficient returns a value between -1 and 1, with a 0 indicating no correlation between
ranks, a 1 implying a perfect correlation and a -1 implying a perfect reverse correlation. To use
this correlation coefficient, Kendall’s τ was calculated over the actual and predicted rankings of the
pipeline ranks of a given instance (usecase).

τui =
Ci−Di

Ci +Di
(7)

Where C is the number of concordant pairs or the number of times two elements are ranked in the
correct order in both lists. In this case, the ranked lists refer to the predicted and actual ranks (element
one ranked higher or lower than element two in both cases). Conversely, D is the number of discordant
pairs or the number of times two elements are ranked incorrectly for both ranked lists.
To obtain a value concerning the model’s ordering ability for the entire prediction, the average−τ (aτ)
was calculated by averaging the τ values over the prediction and validation scores for each usecases
in the meta-dataset.

aτ =
∑

I
i=1 τui

I
(8)

The value obtained from the aτ thus defines a model’s ability to be able to predict the DPP pipeline
ranks in the proper order correctly. This type of model performance may be an ideal choice when a
subset of possible pipelines within the pipeline candidate pool is required.

3.4.3 Best Pipeline

Often, the most sought-after results when dealing with meta-recommendations are the ones that are
likely to perform the best. Therefore, a further performance measure was implemented to select
trained models that accurately predict the best-performing pipeline amongst the DPP pipeline in the
candidate pipeline pool. First, the pipelines with the highest rank for the actual and predicted ranks
for a given usecase of the meta-dataset were extracted. This resulted in two lists of DPP pipelines:
the best-predicted pipelines and the best actual pipelines according to Scaled Rank scores. Then, to
evaluate the model’s ability to identify the best pipeline accurately, the F1-Score was calculated with
respect to these two lists.

48 Chapter 4 EXPERIMENTAL SETUP

4 Experimental Setup
This project aimed to investigate the effect of using diverse meta-targets over reliable ones and
whether doing so would positively affect meta-learning accuracy. Thus, a final meta-model was
trained following the insights gained from the cross-validation results from the training phase and
evaluating its performance based on the three evaluation criteria mentioned in Chapter 3.4. To reiter-
ate, these consisted of measures testing the model’s ability to predict accurate DPP pipeline ranks, to
predict the order of the DPP pipeline performances correctly and to be able to determine which DPP
pipelines performed the best correctly. Additionally, the effectiveness of the current meta-learner was
assessed by comparing the performance of the selected pipelines to both a baseline performance and
the performance achieved by a commonly used DPP pipeline recommendation system, TPOT. Two
experiments were carried out, each addressing one of the previous questions.

4.1 Experiment 1: Pipeline Selection Evaluation
The first experiment determined the effectiveness of diverse meta-target selection methods compared
to reliable selection methods. This was achieved by comparing the performance of the best diverse
pipeline selector, either the Individual Algorithm Grouper (IAG), the Similar Algorithm Grouper
(SAG) or the Random Algorithm Grouper (RAG), to the performance of the traditional Statistical
Pipeline Selector (SPS) which was shown to choose reliable pipelines. The best pipeline selector
was chosen by analysing the results obtained by training the meta-model using cross-validation.
Since three different evaluation methods are considered, the ideal settings, including the ideal di-
verse pipeline selector, were chosen for each evaluation metric. Once the best model settings and
best pipeline selectors were identified, a subsequent model was trained using the full meta training
set dmeta and tested on the meta testing set dtest

meta. Finally, a comparison was made between the per-
formance of the final model that predicts the ranks of reliable pipelines compared to the final model
trained to predict diverse pipeline ranks.

4.2 Experiment 2: Recommended DPP Pipeline Performances
The second experiment carried out in this project evaluated the current model’s usefulness and its
ability to recommend DPP pipelines that enhance the performance of ML models. This was ac-
complished by obtaining model performances after transforming testing datasets using recommended
DPP pipelines compared to the baseline (not using any DPP pipeline). Additionally, the perfor-
mance achieved by a commonly used alternative AutoML system that can be used to recommend
DPP pipelines was collected to test the viability of the current model through comparison.
The AutoML system that was used to compare the pipelines recommended by the model developed
in this project was the TPOT model developed by Olson et al. (2016). Although more modern ap-
proaches to DPP recommendation exist, a handful of issues lead to using TPOT exclusively as a
benchmark comparison, explained in the Limitations section in Chapter 6.4. As mentioned in Chap-
ter 2.3.1, TPOT can be used to optimise the entire ML pipeline, including hyperparameter optimi-
sation. However, since the current model was only trained to suggest DPP pipelines and does not
take hyperparameters of the different ML algorithms into account, this feature was removed from the
optimisation process. Besides hyperparameters, however, TPOT performed model selection and DPP
pipeline optimisation. The learning algorithms considered are the same ones used in the usecases (see
Table 3). However, each possible DPP method, including DPP method hyperparameters available for
TPOT, was included in the search space (see Appendix L for an overview of the DPP methods).

Chapter 5 RESULTS 49

5 Results
In the following section, the results of the project will be evaluated. Since not only the hyperparame-
ters of the final meta-model were obtained from the cross-validation but also the optimal meta-target
selection methods for each evaluation measure, the analysis of the cross-validation results will be
analysed prior to the three experiments in Chapter 5.1. Naturally, the cross-validation results are
obtained using only the training data and the averaged validation values across the different folds, as
mentioned in Chapter 3.3.3. On the other hand, each of the experimental results was obtained by train-
ing the final-meta models using the entire training data, and testing using the testing sets described
in Chapter 3.2.3. The outcomes of Experiment 1 and Experiment 2 will be presented in Chapters 5.2
and 5.3 respectively.

5.1 Cross Validation Results

The results obtained from the cross-validation will be analysed to choose the best pipeline selectors
for use in the training of the final models. The cross-validation results were obtained through training
and validating the different meta-datasets described by the pipeline selection method used to obtain
target variables. Different multi-output regression models were trained using cross-validation for
each evaluation and pipeline selection method. After training, models that produced the best cross-
validation results were saved, along with the different DPP and hyperparameter that led to the highest
performance. This collection of models resulted in the best models for each of the different ML
algorithms, which could then be compared. This process was repeated for the different measurements
and pipeline selection methods. Due to the large amount of time required to obtain the cross-validation
scores for each meta-learner configuration, this procedure was only performed once. This means
that no significance values could be calculated between the differences in meta-learner performance
since only one result per meta-learning strategy was collected. Nonetheless, the outcomes of the
cross-validation suggest which models and model hyperparameters should be used for the subsequent
experiments.
The results of the best-performing models can be found in Table 9. At first glance, the results high-
light the difficulty of learning an accurate representation of how different DPP pipelines will lead to
different cross-validation results depending on dataset meta-features. This finding is indicated by an
optimal ARMSE value of 0.179 for classification usecases and 0.197 for regression usecases achieved
by the SPS selector. Since the ARMSE values can be interpreted with respect to the targets themselves
(see Chapter 2.1.3), the accuracy of the meta-learner has a minimum error of approximately 18%. The
ARMSE cross-validation results suggest that this error’s size depends on the method of pipeline se-
lection. Where the spread of the possible Scaled Rank scores is small, so too is the general error
of the predictions. Besides the RAG method, which achieved the second-best score, confirming that
the RAG selector will behave similarly to the SPS method, the remaining selection methods per-
formed worse (see Appendix J for a complete overview of the cross-validation results). The better
of the two was the SAG method for classification usecases and the IAG method for regression use-
case. These results support the idea that different meta-target selection methods affect the outcome of
meta-learning.
Unlike the reliable pipeline selectors delivering better results for the ARMSE distance measure, the
diverse pipelines were shown to be more successful when the order of the predicted pipeline ranks
was assessed. The results for both the F1-Score and the aτ measure suggest that having diverse
pipelines can enhance the ability of a meta-learner to predict the performance of distinct targets in
relation to others. For classification pipelines, the pipeline chosen by the SAG selector leads to the

50 Chapter 5 RESULTS

Measurement ML Task Best Selector Best Algorithm Score

ARMSE
Classification SPS Random Forest 0.17994
Regression SPS Random Forest 0.19732

aτ
Classification SAG Decision Tree 0.15166
Regression IAG Decision Tree 0.29487

F1-Score
Classification SAG Decision Tree 0.31945
Regression IAG Decision Tree 0.3493

Table 9: Best cross-validation results for each performance measurement, pipeline selection method
and ML algorithm. See Appendix J for a complete overview of all cross-validation outcomes.

best meta-model aτ and F1-Score values; for regression pipelines, the same was achieved by the IAG
selector. The difference between the two pipeline selectors for regression and classification usecases,
specifically the lower scores achieved by the SAG selector for regression usecases, may be attributed
to the spread of the selected pipelines in the SAG selector (Figure 17).

Figure 17: Difference between the selected pipelines for the SAG selector in classification and re-
gression usecases. The plots show the differences in the spread of the selected pipelines. Specifically
in the Bayes and Neural Network groups, the spread of the pipeline results is less diverse in the re-
gression usecases compared to the classification usecases, which may have led to the lower aτ and
F1-Score cross-validation results.

To summarise, the cross-validation results show that reliable pipeline selection outperforms diverse
pipeline selection in a meta-model’s capability to predict the rankings of DPP pipelines as the pre-
dicted values are nearer to the actual ranks of the DPP pipelines. This is likely due to the range of
the possible ranking values having a smaller spread. In contrast, the diverse pipeline selection meth-
ods are better suited for tasks that predict which pipelines are better or worse than other pipelines
given a certain usecase. Since the question of whether diverse or reliable pipelines will lead to greater
model performances remains, the best reliable and diverse selector will be chosen for the subsequent
experiment. Thus, for classification usecases, the SAG selector will be used. For regression usecases,
the IAG selector will be the diverse selector. Finally, the SPS selection method will be the reliable
selector for classification and regression usecases. Concerning the choice of ML algorithm for the fi-

Chapter 5 RESULTS 51

nal meta-model, the cross-validation results show that the Random Forest is best suited for DPP rank
prediction and Decision Trees are best suited for predicting DPP pipeline orders. An overview of the
remaining meta-model settings, including hyperparameter settings and DPP pipeline transformations,
can be found in Appendix K.

5.2 Reliable vs Diverse Selection Method
The first experiment’s results were collected to answer whether reliable or diverse meta-targets will
lead to better meta-learner performances. For classification and regression usecases, meta-models
were trained with reliable or diverse targets and using the optimal model configurations obtained
from cross-validation for a total of 30 times. These configurations included the ideal DPP pipeline,
ML algorithm and hyperparameter setting for each performance measurement. The ideal model con-
figurations can be found in Appendix K. In addition, the resulting scores can be found in Table 10.

ML Task Measure
Reliable Diverse

Difference
Mean Std Mean Std

Classification
ARMSE 0.2005 0.004 0.1974 0.0028 -0.0031∗∗

aτ 0.0606 0.0409 0.1481 0.0312 0.0875∗∗

F1-Score 0.2471 0.0606 0.3282 0.0589 0.0811∗∗

Regression
ARMSE 0.267 0.007 0.2879 0.0029 0.0209
aτ 0.1225 0.0699 0.1037 0.0336 -0.0188
F1-Score 0.3218 0.0617 0.2304 0.0529 -0.0914

Table 10: Mean and standard deviation of test results for meta-models that predict reliable or diverse
meta-targets. The difference between the two scores is also included with an improvement from
reliable to diverse pipelines, indicated by a positive value for aτ and F1-Score measures and a negative
value for ARMSE. For clarity, improvement is marked in bold. A significance value of α∗ = 0.05 and
α∗∗ = 0.01 were used; however, after using a Bonferroni correction to account for running multiple
significance tests, these values were updated to α∗ = 0.0083 and α∗∗ = 0.0016.

As mentioned in Chapter 3.2.2, it was hypothesised that selecting diverse pipelines would lead to
better meta-model results than reliable pipelines, as having larger differences in pipeline performance
would allow pipelines to be better distinguishable. The results show that significant improvements
were achieved for classification usecases. Most notably, the aτ and the F1-Score improved by 0.087
and 0.081, respectively. Interestingly, the ARMSE value also improved, though the difference be-
tween the ARMSE score attained by the diverse pipelines over the reliable pipelines is slight.
These results do not carry over when looking at the performance achieved by the meta-model using
pipelines for regression usecases. In contrast to the classification results that showed no improvement
could be observed when using diverse meta-targets over reliable ones. In fact, each evaluation metric
showed a decrease in performance. Since the results obtained by using regression pipelines contradict
those obtained by using classification pipelines hypothesis of diverse pipelines outperforming reliable
ones when training meta-learning systems can only be partially confirmed. A possible reason behind
the discrepancy between the two results may be attributed to the problems noticed in Chapter 3.2.2
with respect to regression pipelines selector only selecting pipelines that are diverse for certain groups
of usecases for both the SAG and IAG selectors. Further investigations on the issue will be carried
out in the discussion.

52 Chapter 5 RESULTS

5.3 Recommended DPP Pipeline Performance
The final experiment was aimed at testing the practicality of the current meta-learner by testing the
DPP pipelines that were the most highly recommended from the set chosen by either meta-target se-
lection method. The Scaled Rank scores of these recommended pipelines chosen by the best diverse
and reliable selectors are first compared to the Scaled Rank score achieved when not using any DPP
pipeline to transform the datasets. Figure 18 shows all DPP pipelines’ rank performances after trans-
forming each testing set. Additionally, the baseline performance and the average Scaled Rank score of
the pipelines that performed best are indicated. The results show that, should the maximal pipeline be
chosen to transform the datasets, the performance is much higher than when no DPP transformations
are used.

Classification Regression

Figure 18: The average Scaled Rank score achieved by the best-performing pipelines chosen by the
reliable meta-target selector and diverse meta-target selector compared to the average performance
when no DPP pipelines are used to transform the classification and regression test-usecases. It can
be seen that a considerable benefit can be obtained by using the DPP pipelines recommended by the
current model.

Besides comparing the potential performance that can be achieved by the pipelines selected by the
pipeline selectors to the baseline scores, the following test aims to compare the performance of these
pipelines to those recommended by a commonly used external DPP recommendation system. First,
the popular DPP optimisation tool, TPOT, was used to find DPP pipelines for each dataset using the
classification and regression usecases in the testing sets. Then, these pipelines were compared to ones
obtained from the current meta-learning system. The pipelines with the highest predicted Scaled Rank
score and the best possible pipeline for each usecase from either the set of diverse or reliable pipelines
were used for this comparison. The median scores over the different Ml algorithms for each dataset
were gathered for the baseline, current model and the TPOT results. As before, the F1-Score was used
to evaluate the performances of the classification dataset sets. However, to improve interpretability
when looking at the results for regression datasets, NRMSE values were used over the regular RMSE.
The results of this experiment can be found in Table 11.

NRMSE =
RMSE

maxValue(datasettargets)−minValue(datasettargets)
(9)

It can be seen that not only do the DPP pipelines that achieved the optimal score per usecase selected
by both reliable and diverse outperform TPOT, but also those that were predicted by the meta-learner.

Chapter 5 RESULTS 53

This outcome shows that this method of DPP pipeline recommendation can be used reliably in a real-
world setting, despite the low F1-Scores achieved by the meta-models (see Table 10). When looking
at the difference in performance between the reliable and diverse pipelines, the results suggest that
reliable pipelines lead to slightly better dataset transformations than those chosen by diverse meta-
target selection methods.
It is important to note that none of the differences measured in this experiment was statistically sig-
nificant. For example, even the difference between using no DPP pipeline and the optimal, reliable
pipelines for classification and regression usecases achieved a p-value of 0.162 and 0.151, respec-
tively. This lack of statistical significance leads back to only using six testing datasets. Therefore,
a lack of statistical power was present and decreased the likelihood of obtaining significant results.
Thus, no claims can be made about significant differences in observed performance between results
in this experiment. However, the observed scores suggest what could be expected from the different
models if more datasets were used.

Classification Dataset Baseline ML-DP ML-RP ML-DO ML-RO TPOT
Pd Catalyst 0.5111 0.6489 0.6771 0.6595 0.6711 0.5869
Sea Temp CL 0.7883 0.8037 0.8442 0.8306 0.8482 0.7867
Segment 0.9864 0.9934 0.9903 0.9967 0.9935 0.9908
Pd Decorated Catalyst 0.5313 0.6556 0.6815 0.6597 0.6841 0.5591
Activation Humidity 0.5891 0.6674 0.6693 0.6882 0.6518 0.6596
Pt Catalyst 0.6255 0.7276 0.7607 0.772 0.7863 0.6311
Average 0.6720 0.7494 0.7705 0.7678 0.7725 0.7024
Std 0.1828 0.1331 0.1271 0.1312 01322 0.1619

Regression Dataset Baseline ML-DP ML-RP ML-DO ML-RO TPOT
Cement Strength 0.1074 0.0736 0.0684 0.0711 0.0706 0.1003
WaterWasteKws 0.0295 0.031 0.0346 0.0291 0.0291 0.0374
Sea Temp RE 0.0922 0.0832 0.0815 0.0691 0.0691 0.0821
NationalCapability 0.0522 0.0263 0.0271 0.0263 0.0253 0.0468
Used Cars 0.0822 0.0823 0.081 0.0748 0.0748 0.0794
WaterWasteGallons RE 111.5009 0.1172 0.0937 0.0912 0.0912 0.1138
Average 18.644 0.067 0.062 0.0603 0.06 0.0766
Std 45.4904 0.0342 0.0261 0.0264 0.0267 0.0297

Table 11: Overview of DPP pipeline results on classification and regression testing sets (F1-Score for
classification datasets and NRMSE for regression datasets). The results for the baseline scores (no
DPP pipelines used), Meta-Learner-Diverse Predictions (ML-DP), Meta-Learner-Reliable Predictions
(ML-RP), Meta-Learner-Diverse Optimal (ML-DO), Meta-Learner-Reliable Optimal (ML-RO) and
TPOT Pipelines are shown.

54 Chapter 6 CONCLUSION

6 Conclusion

In this project, a meta-learning model was designed to predict the performance of several DPP
pipelines for incoming datasets and ML algorithm pairings (usecases). The proposed model was cre-
ated by gathering information regarding the performance of many DPP pipelines on various datasets
and ML algorithms. Subsequently meta-datasets were created to train a multi-output regression meta-
learning model. The goal was to investigate whether different meta-target selection methods could
enhance the prediction performance of the meta-model. Thus, two research questions were set that
would be answered through different experiments.

6.1 Meta-Target Selection

The first question investigated in this project aimed to explore alternative meta-target or candidate
DPP pipeline selection techniques. Whereas the standard method for selecting DPP pipeline meta-
targets was based on selecting reliable DPP pipelines, DPP pipelines with an overall high average
performance (Laadan et al., 2019; Zagatti, 2021), this project introduced an alternative pipeline meta-
target selection method. The method in question aimed to select diverse DPP pipeline meta-targets.
Instead of selecting targets that perform consistently well across the individual usecases, the alterna-
tive approach involved choosing a number of DPP pipelines that would each perform exceptionally
for different groups of usecases. The motivation for diverse pipeline selection was two-fold. Firstly,
locate DPP pipelines that lead to maximum performance for specific types of usecases that would
otherwise not be considered due to low average performance across all usecases. Secondly, find
meta-targets that are more distinguishable to increase meta-learning prediction accuracy.
Three evaluation measures were used to test the performance of the meta-learner to investigate the
effects of different pipeline selection methods. The first of which, the ARMSE value, inspects the
distance from the predicted ranks to the actual ranks in the testset and is seen as the general accu-
racy of the model. The remaining methods focus on the ordering with the aτ value inspecting the
model’s accuracy in predicting the ranks of the DPP pipeline meta-targets in the correct order and
the F1-Score inspecting the model’s ability to determine the best-performing pipeline. Since reli-
able selection methods were expected to select pipelines with only small inter-pipeline fluctuations
between usecases, limiting the amount of spread observed in the DPP pipeline ranks and thus in
the pipeline rank predictions. Thus, reliable pipelines were expected to perform better than diverse
pipelines. In contrast, since the remaining two measures benefit from better distinguishing between
pipelines, it was expected that using diverse pipelines would improve the meta-learning results for aτ

and F1-Score.

6.1.1 Classification Usecases

The results of Experiment 1, documented in Chapter 5.2, show that using diverse pipelines for multi-
output meta-targets affects the meta-learning prediction performance. It was found that the perfor-
mance of the meta-learner improved for each of the evaluation measures for classification usecases.
For these usecases, the trained meta-learner significantly improved its performance when selecting the
best-performing pipeline and predicting pipeline ranks in the correct order (see Figure 10). Addition-
ally, a slight improvement was observed in general rank prediction accuracy. This outcome suggests
that using diverse pipelines instead of the standard methodology of selecting reliable pipelines may
be worth pursuing and investigating in the future.

Chapter 6 CONCLUSION 55

Some possible explanations can be made about why diverse pipelines performed better than reli-
able pipelines for classification usecases. First, it was argued that they cause pipelines to be more
distinguishable, as reliable pipeline ranks fluctuate around smaller ranges. However, for many well-
performing ML algorithms, the target values’ scale and range is not an essential factor and can be
trained successfully, given enough training examples to solve the problem efficiently. If only a few
training examples are available or the learning task is difficult, on the other hand, the accuracy of a
meta-model may be low. In such cases, making the targets that are to be predicted more distinct can
improve its performance. The final meta-model results show that the general error, as conveyed by the
ARMSE scores, is relatively high. The model’s accuracy produced rank predictions with an average
error of approximately 20%. Thus the benefit of predicting pipeline ranks that are further apart from
each other increases the likelihood of the predictions being representative of the ground truth as the
error tolerance is larger. With this in mind, it may be worth further investigating in what situations
diverse meta-target selection can improve meta-learning and if it can be employed to boost the learn-
ing performance when training data is difficult to obtain or when the learning tasks are challenging to
learn.

6.1.2 Regression Usecases

The findings observed when looking at the results for the classification usecases were not reflected
when predicting the ranks of the regression usecases. Here, the meta-learner performed slightly worse
for all three evaluation metrics when using diverse meta-target selection methods compared to diverse
ones. As mentioned previously, a possible reason for this lower performance might be due to the
pipelines that the diverse pipeline selector selected. Figure 17 highlights the disparity between the
selected diverse pipelines for classification and regression usecases. It can be seen that where the
pipelines for classification usecases are more clearly distinguishable for each group, those selected
based on regression usecases have low inter-pipeline performance differences.
An explanation for why the diverse meta-target selector does not find pipelines of the same quality
as those selected based on classification usecases can be found when looking at the distribution of
the Scaled Rank scores achieved by every pipeline on each usecase. When comparing the Scaled
Rank distribution of classification pipelines (Figure 19a) to the Scaled Rank distribution of regression
pipelines (Figure 19b), it can be seen that the regression ranks are skewed towards the maximum
Scaled Rank score of 1.0. Though many pipelines are also found to reach the top of the distribution for
the classification pipelines, the Scaled Rank scores are more evenly distributed than with regression
pipelines. Since the diverse pipeline selector selects pipelines based on maximum Scaled Rank values,
it becomes likely that more homogeneous pipelines will be selected for regression usecases.
To investigate why regression pipelines are found at higher Scaled Rank values than classification
pipelines, the distribution of RMSE values, from which the Scaled Ranks are established, is shown
in Figure 19c. Due to the nature of RMSE values being highly dependent on the scale of the targets
in the dataset, we can see a considerably large spread of RMSE scores. The vast majority lies close
to 0.0; however, some RMSE scores are much larger, with the maximum RMSE value reaching an
extreme value of 2.32∗1014. As the Scaled Rank scores maintain the original shape of the distribution
of the RMSE scores (see Figure 11), it becomes clear why so many Scaled Rank scores are close to
the maximum. The obvious solution to this problem would be a method of outlier removal. Employ-
ing such a strategy, however, raises further problems. After further investigation, it was determined
that many of these extreme values are not outliers, as the third standard deviation for RMSE Scaled
Rank scores is 1.43 ∗ 1012. Removing all values greater than this would not change the distribution
meaningfully. Even if the range of RMSE values is restricted between 0 and 1, the distribution of

56 Chapter 6 CONCLUSION

scores is still highly skewed while losing over 44% of the total pipelines within the knowledge base
(see Figure 19d). Thus, this issue seems to be fundamental to meta-learning for regression usecases
with the RMSE as the performance metric.

(a) Scaled Rank distribution for classification pipelines (b) Scaled Rank distribution for regression pipelines

(c) RMSE distribution for all regression pipelines (d) RMSE distribution between 0.0 and 1.0

Figure 19: Graphs aiding the investigation of the difference in meta-target selection results between
classification and regression training usecases. Figures a and b show the difference in the shape of
the Scaled Rank distribution, showing that the Scaled Rank scores for regression usecases are heavily
skewed to the maximum value. An explanation for the shape of the Scaled Rank distribution can
be found when looking at the distribution of the RMSE scores for regression usecases. This RMSE
distribution is shown in Figure c. It shows that, due to differences in target variable scales between
datasets, most values lie close to 0.0, with a large spread reaching much larger values. In Figure d, the
distribution of the regression usecases is shown in a range between 0.0 and 1.0. Here, the distribution
is still heavily skewed; however, over 44% of the data points have been removed, ruling out outlier
removal as a tool to solve the issue easily.

A solution to this problem is to use the NRMSE instead of the RMSE value within the knowledge
bases. The NRMSE was not used over the RMSE value originally because it was expected that the
Scaled Rank conversion would solve the issues related to scaling sufficiently. However, these issues
permeate more severely than expected. Using this metric over the RMSE value would allow the
Scaled Rank values to be more evenly distributed around less extreme bounds, allowing for much
easier comparison between datasets that would benefit pipeline selection methods. An alternative
approach to solving the scaling issue between datasets would include a mandatory scaling of the

Chapter 6 CONCLUSION 57

regression target value before the model evaluation collection. This method is more drastic than
normalising the response value since this changes the actual target values of datasets and may have
unforeseen consequences when wanting DPP pipeline recommendations for regression datasets with
unscaled target variables. Nonetheless, the net gain may outweigh the downsides of using RMSE
values in the knowledge base, as observed in this project.

6.2 Meta-Learner Viability

Experiment 2 was directed at testing the usefulness of the model created in this project and answering
whether using this meta-leaner would be a viable alternative to currently available DPP pipeline op-
timisation solutions. This was done by comparing the performance of both the optimal pipelines, as
well as those that were predicted to have the highest Scaled Rank for given usecases (dataset and ML
algorithm pairings) to the baseline results (not using any DPP pipelines), as well as the TPOT model
optimisation tool limited to optimising DPP pipelines. The results, found in Table 11, show that the
potential benefit that the current meta-learning system can achieve is substantial. Both the optimal
pipelines within the reliable and diverse pipeline pool and those predicted show greater accuracy im-
provements than the baseline and those achieved by the DPP pipeline optimisation ability of TPOT.
This suggests that meta-Learning systems can compete with modern DPP pipeline optimisation tools
when aiming to complete a DPP pipeline optimisation task. These results were found for both the
classification and regression testing sets.

6.2.1 Diverse vs Reliable Recommendations

In Chapter 3.2.2, it was theorised that when selecting meta-tarts using a diverse meta-target selection
procedure, the eventual pipelines in the resulting set will be more specialised toward different types of
datasets than pipelines, selection using a reliable approach. The reason for this expectation was that a
set of diverse meta-targets contain pipelines that only aim to score high for some groups of usecases
while disregarding the scores achieved for others. This creates a collection of pipelines, each with an
ideal type of usecase that can be processed exceedingly well. For a reliable pipeline to be selected, on
the other hand, it must perform well for all usecases leading to a set of similarly good tools that can
be used interchangeably for incoming usecases.

When comparing the resulting evaluation scores observed after transforming the testing usecases
using the best fitting pipeline within the set of selected pipelines, we see that the reliable pipeline
performs better than diverse ones (see Table 11). Disregarding the performances for regression use-
cases due to the scaling issues that may have led to opposing results in Experiment 1 (see Chapter
6.1.2), the current results suggest that, despite diverse meta-target selection leading to an increase in
meta-learner accuracy, this technique is not guaranteed to improve DPP pipeline recommendations.
A potential reason for the lower performances could be due to the current model only using four
meta-targets. This restriction may have been too severe, forcing the pipelines within the set of diverse
meta-targets to perform well for a number of usecases that was too large. In future work, it would
be beneficial to investigate the effect of increasing the number of meta-targets when using diverse
meta-target selection to see if the recommended pipelines can outperform those chosen by reliable
meta-target selection methods.

58 Chapter 6 CONCLUSION

6.3 Summary of Main Contributions

This project aimed to develop a DPP pipeline performance prediction meta-learner that can be used as
a DPP pipeline recommendation tool. More importantly, this project investigated whether alternative
meta-target selection methods could increase meta-model prediction performance. These methods
focused on highlighting the difference in performance when the selected meta-targets were reliable or
diverse. If they were reliable, the ranks attributed to the selected DPP pipelines were consistently high
on average across each usecase. On the other hand, when the meta-target selection method favoured
diverse DPP pipelines, a set of meta-targets were chosen such that each target becomes a specialist
for only particular groups of usecases, allowing for greater differences between the meta-targets.
The overall results of the project indicate that a diverse meta-target selected can improve the per-
formance of meta-learning systems by making the learning task easier, especially when the learning
task is difficult and limited training data is available. Furthermore, the results showcase that pipelines
predicted by the current meta-learner perform well compared to modern DPP pipeline optimisation
tools and when not using DPP pipelines. However, when comparing the recommended pipelines’
usefulness from diverse meta-target selection methods to those originating from reliable meta-target
selection methods, the results show that reliable pipelines lead to more favourable transformations
than diverse pipelines. Thus, although diverse meta-target selection does increase meta-target predic-
tion accuracy, the pipelines chosen by the current version of the diverse method do not lead to better
DPP pipeline recommendations.

6.4 Limitations

Several problems occurred during this project that would have to be addressed in future studies. The
first significant issue that, if solved, could lead to more prominent meta-model performance was
the small training set size. Since the knowledge base was taken from Frye (2023), which focuses
mainly on creating DPP pipeline recommendation systems for production datasets, the pool of avail-
able datasets was naturally smaller. This issue was addressed by augmenting the datasets by adding
missing values or categorical columns or employing both augmentation strategies. However, doing so
led to many similar meta-features and performance scores and not adding much variety to the training
data. Having so few fundamentally different datasets may have been the cause for the high difficulty
level of the learning task, indicated by the relatively poor evaluation metric scores. Future studies
would benefit greatly from a more extensive and less exclusive dataset collection.
Another area for improvement that resulted from the collection of the information contained in the
knowledge base was the fact that several erroneous model evaluations were encountered when pro-
ducing the evaluation results for the extensive list of DPP pipelines. In certain circumstances, an error
was made when calculating either the RMSE scores or F1-Scores for a particular DPP pipeline, result-
ing in missing values for these specific cases. This led to subsequent problems during the creation of
the meta-datasets. Because of the errors made during this collection period, a pipeline selected by one
of the meta-target selectors contained missing values for specific usecases. The usecases had to be
removed in such a situation since no target Scaled Rank score could be learned. Given that the Scaled
Rank scores of several DPP pipelines were required, the chance of encountering target variables with
missing values grows as the number of meta-targets increases. In the future, developing a more robust
knowledge base collection method would be beneficial to produce fewer missing values.
A new method for knowledge base evaluation collection should also account for the loss of infor-
mation that is traced back to using only the default learning algorithm hyperparameters during the
collection of model scores. Since model performances and general behaviour depend severely on

Chapter 6 CONCLUSION 59

the choice of hyperparameter settings, the performances of the different DPP pipelines will also be
vastly different. This means that once model hyperparameters are changed, the recommended DPP
pipeline a user has received using the current model will not be directly applicable. One way that a
future project could solve this issue would be to include each different hyperparameter configuration
in the model evaluation collection process. The severe increase in necessary computation time could
be balanced by limiting the number of different learning algorithms used.
A further issue that led to inconsistent results is the nature of regression scores within the regres-
sion knowledge base and the Scaled Ranks produced. As previously discussed, the distribution of the
Scaled Rank scores for all DPP pipelines was highly skewed towards the maximum, resulting from us-
ing RMSE values on unscaled target values within the regression datasets contained in the knowledge
base. Since the RMSE values depend on the regression targets’ scale, the evaluation results collection
was initially on vastly differing scales. This issue led to the disparities between diverse pipeline se-
lection for regression usecases compared to classification usecases. Future studies on meta-learning
systems using knowledge bases should consider using NRMSE response variables or including a tar-
get value scaling to the set of mandatory transformations during the collection phase to overcome
these issues.
An improvement could also be made during the training period of the meta-models. For example,
when determining ideal ML algorithms, DPP pipeline transformations and hyperparameter tuning,
this project employed a grid search for each training model. To save time, this grid search was also
kept relatively small. However, to achieve better-performing model settings, either a more extensive
search space would be required, or better still, and more in line with the source material, automatic op-
timisation tools, such as Bayesian Optimisation, could be deployed (Klein, Falkner, Bartels, Hennig,
& Hutter, 2016).
Finally, the benchmark that the performance of the recommended DPP pipelines selected by the cur-
rent model was only compared to those selected by TPOT. This is naturally only a partially satisfac-
tory comparison since newer, more popular DPP pipeline selection methods have become available.
The two most accessible models that could have been used for comparison are AutoSklearn and
AutoClean. Unfortunately, some problems hindered the employment of said models. For one, as
the current meta-learner was only used to obtain DPP pipeline recommendations, the performance
obtained used to evaluate the effectiveness of the chosen DPP pipelines was done without optimis-
ing hyperparameter settings. This limitation does not align with the options available when using
AutoSklearn since the search space always includes various ML algorithms and hyperparameter
settings. Thus, the comparison would not have been accurate. Regarding AutoClean, the current
implementation was unstable at the time of writing, and a working version could not be run. Thus,
this paper was limited to using TPOT as a comparison.

6.5 Future Work

Besides improving the issues mentioned in the previous section, several findings in this project war-
rant further investigations. For one, it was found that a diverse meta-target selection method can
increase the performance of meta-learning models. However, it is unclear under which conditions
diverse meta-targets are more beneficial. For this reason, future research focusing on the difficulty of
the meta-learning task would be required. By varying the task difficulty, it is possible to determine
the conditions that warrant diverse meta-target selection methods necessary over reliable meta-target
selection. Additionally, the method for selecting diverse meta-targets could be improved in future
research. It could be possible to increase the robustness of the selected pipelines so that, even with-
out scaling regression target variables, sufficient diverse pipeline selectors will perform as well for

60 Chapter 6 CONCLUSION

regression as they do for classification.
An additional point that could be looked into in future studies would be the effect of the number
of meta-targets on the performance and overall DPP pipeline recommendation of a multi-output re-
gression meta-model. It would be expected that the resulting evaluation metrics would worsen with
an increased number of meta-targets. However, the resulting DPP pipeline recommendations would
likely improve given that having a large sample of possible recommended DPP pipelines increases
the chance of having a recommendation more suited to a particular dataset. Alternatively, one method
of expanding on the current findings would be to incorporate elements from Bilalli et al. (2018) and
include a rule-based approach into pipeline selection. It would be possible to move from a single
meta-dataset to multiple smaller meta-datasets depending on a categorisation of an incoming dataset
that requires a DPP pipeline recommendation. Thus, multiple meta-models could be trained, each
using different meta-targets to solve specific issues according to rule-based categorisation. This ex-
tension would increase the number of possible DPP pipelines that can be recommended and enable
the meta-models to focus on more specialised knowledge bases and theoretically improve prediction
accuracy.

REFERENCES 61

References
Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4), 433–459. doi: 10.1002/wics.101

Alam, S., & Yao, N. (2019). The impact of preprocessing steps on the accuracy of machine learning
algorithms in sentiment analysis. Computational and Mathematical Organization Theory, 25, 319–
335. doi: 10.1007/s10588-018-9266-8

Alcobaça, E., & Siqueira, F. (2018). Meta-feature Description Table — pymfe 0.4.1 documentation.
Retrieved 2022-07-27, from https://pymfe.readthedocs.io/en/latest/auto pages/meta \
features description.html

Alibrahim, H., & Ludwig, S. A. (2021). Hyperparameter optimization: Comparing genetic algorithm
against grid search and bayesian optimization. In 2021 IEEE Congress on Evolutionary Computation
(CEC) (pp. 1551–1559). doi: 10.1109/CEC45853.2021.9504761

Anand, K., Wang, Z., Loog, M., & van Gemert, J. (2020). Black Magic in Deep Learning: How
Human Skill Impacts Network Training. CoRR, abs/2008.05981. Retrieved from https://arxiv
.org/abs/2008.05981

Babii, A., Ghysels, E., & Striaukas, J. (2022). Machine learning time series regressions with an
application to nowcasting. Journal of Business & Economic Statistics, 40(3), 1-33. doi: 10.1080/
07350015.2021.1899933

Bagui, S., & Li, K. (2021). Resampling imbalanced data for network intrusion detection datasets.
Journal of Big Data, 8(1), 1–41. doi: 10.1186/s40537-020-00390-x

Basnet, B., Chun, H., & Bang, J. (2020). An intelligent fault detection model for fault detection in
photovoltaic systems. Journal of Sensors, 2020(1), 1–11. doi: 10.1155/2020/6960328

Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several
methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1),
20–29. doi: 10.1145/1007730.1007735

Ben-Gal, I. (2005). Outlier Detection. Data Mining and Knowledge Discovery Handbook, 131–146.
doi: 10.1007/0-387-25465-X 7

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. J. Mach.
Learn. Res., 13(2), 281-305.

Bilalli, B., Abelló, A., Aluja-Banet, T., & Wrembel, R. (2018). PRESISTANT: Learning based
assistant for data pre-processing. CoRR, abs/1803.01024. Retrieved from http://arxiv.org/
abs/1803.01024

Brazdil, P., Giraud-Carrier, C., Soares, C., & Vilalta, R. (2009). Metalearning: Concepts and
Systems. In Metalearning: Applications to Data Mining (pp. 1–10). Berlin, Heidelberg: Springer
Berlin Heidelberg. doi: 10.1007/978-3-540-73263-1 1

Brownlee, J. (2020). Data Cleaning. In Data preparation for machine learning: data cleaning,
feature selection, and data transforms in Python (pp. 47–51). Machine Learning Mastery, 2020.

https://pymfe.readthedocs.io/en/latest/auto_pages/meta_\features_description.html
https://pymfe.readthedocs.io/en/latest/auto_pages/meta_\features_description.html
https://arxiv.org/abs/2008.05981
https://arxiv.org/abs/2008.05981
http://arxiv.org/abs/1803.01024
http://arxiv.org/abs/1803.01024

62 REFERENCES

Bühlmann, P., & Van De Geer, S. (2011). Statistics for high-dimensional data: methods, theory and
applications. Springer Science & Business Media. doi: 10.1007/978-3-642-20192-9

Cerda, P., & Varoquaux, G. (2019). Encoding high-cardinality string categorical variables. CoRR,
abs/1907.01860. Retrieved from http://arxiv.org/abs/1907.01860

Chandrasekar, P., & Qian, K. (2016). The impact of data preprocessing on the performance of a
Naive Bayes classifier. In 2016 IEEE 40th annual computer software and applications conference
(COMPSAC) (Vol. 2, pp. 618–619). doi: 10.1109/COMPSAC.2016.205

Chatterjee, S., Bopardikar, R., Guerard, M., Thakore, U., & Jiang, X. (2022). MOSPAT: Au-
toML based Model Selection and Parameter Tuning for Time Series Anomaly Detection. CoRR,
abs/2205.11755. Retrieved from https://doi.org/10.48550/arXiv.2205.11755

Chen, B., Wu, H., Mo, W., Chattopadhyay, I., & Lipson, H. (2018). Autostacker: A Compositional
Evolutionary Learning System. CoRR, abs/1803.00684. Retrieved from http://arxiv.org/abs/
1803.00684

Chen, S., Wu, J., & Liu, X. (2021). EMORL: Effective multi-objective reinforcement learning
method for hyperparameter optimization. Engineering Applications of Artificial Intelligence, 104,
104315. doi: 10.1016/j.engappai.2021.104315

Chirita, P.-A., Diederich, J., & Nejdl, W. (2005). MailRank: Using ranking for spam detection. In
International Conference on Information and Knowledge Management, Proceedings (p. 373-380).
doi: 10.1145/1099554.1099671

Chou, J.-S., & Nguyen, T.-K. (2018). Forward forecast of stock price using sliding-window
metaheuristic-optimized machine-learning regression. IEEE Transactions on Industrial Informat-
ics, 14(7), 3132–3142. doi: 10.1109/TII.2018.2794389

Crespo Márquez, A. (2022). The Curse of Dimensionality. In A. Crespo Márquez (Ed.), (Vol. 1, pp.
67–86). Springer International Publishing. doi: 10.1007/978-3-030-97660-6 7

Dal Pozzolo, A., Caelen, O., & Bontempi, G. (2015). When is undersampling effective in unbalanced
classification tasks? In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I 15
(pp. 200–215). doi: 10.1007/978-3-319-23528-8 13

Dorfman, R., & Tamar, A. (2020). Offline Meta Reinforcement Learning (Vol. abs/2008.02598).
Retrieved from https://arxiv.org/abs/2008.02598

Duan, L., Xu, L., Liu, Y., & Lee, J. (2009). Cluster-based outlier detection. Annals of Operations
Research, 168(1), 151–168. doi: 10.1007/s10479-008-0371-9

Dyrmishi, S., Elshawi, R., & Sakr, S. (2019). A decision support framework for AutoML systems:
A meta-learning approach. In 2019 International Conference on Data Mining Workshops (ICDMW)
(pp. 97–106). doi: 10.1109/ICDMW.2019.00025

Elhilbawi, H., Eldawlatly, S., & Mahdi, H. (2021). The importance of discretization methods
in machine learning applications: A case study of predicting ICU mortality. In Advanced Machine
Learning Technologies and Applications: Proceedings of AMLTA 2021 (pp. 214–224). doi: 10.1007/
978-3-030-69717-4 23

http://arxiv.org/abs/1907.01860
https://doi.org/10.48550/arXiv.2205.11755
http://arxiv.org/abs/1803.00684
http://arxiv.org/abs/1803.00684
https://arxiv.org/abs/2008.02598

REFERENCES 63

Escalante, H. J. (2020). Automated Machine Learning - a brief review at the end of the early years.
CoRR, abs/2008.08516. Retrieved from https://arxiv.org/abs/2008.08516

Fernández, A., Garcı́a, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for Learning from Im-
balanced Data: Progress and Challenges, Marking the 15-year Anniversary. Journal of Artificial
Intelligence Research, 61(2), 863–905. doi: 10.1613/jair.1.11192

Feurer, M., Springenberg, J. T., & Hutter, F. (n.d.). Using meta-learning to initialize Bayesian
optimization of hyperparameters. CEUR Workshop Proceedings, 1201, 3–10. doi: 10.1609/aaai
.v29i1.9354

Fischer, L., Ehrlinger, L., Geist, V., Ramler, R., Sobieczky, F., Zellinger, W., . . . Moser, B. (2020).
Ai system engineering—key challenges and lessons learned. Machine Learning and Knowledge
Extraction, 3(1), 56-83. doi: 10.3390/make3010004

FraunhoferIPT. (2022). Machine Learning Datasets for Production. Retrieved 2022-08-01, from
https://www.bigdata-ai.fraunhofer.de/s/datasets/index.html

Frye, M. (2023). Recommending Data Preprocessing Pipelines for Machine Learning Applications
in Production. Not yet published.

Garcı́a, S., Ramı́rez-Gallego, S., Luengo, J., Benı́tez, J. M., & Herrera, F. (2016). Big data prepro-
cessing: methods and prospects. Big Data Analytics, 1(1). doi: 10.1186/S41044-016-0014-0

Garouani, M., Ahmad, A., Bouneffa, M., Lewandowski, A., Bourguin, G., & Hamlich, M. (n.d.).
Towards the Automation of Industrial Data Science: A Meta-learning based Approach. In ICEIS (1
doi = 10.5220/0010457107090716, pages=709–716, year=2021.

Ghosh, A., Satvaya, P., Kundu, P., & Sarkar, G. (2022). Calibration of RGB sensor for estimation
of real-time correlated color temperature using machine learning regression techniques. Optik -
International Journal for Light and Electron Optics, 258, 168954. doi: 10.1016/j.ijleo.2022.168954

Giovanelli, J., Bilalli, B., & Abelló Gamazo, A. (2021). Effective data pre-processing for AutoML.
In Proceedings of the 23rd International Workshop on Design, Optimization, Languages and Analyt-
ical Processing of Big Data (DOLAP): co-located with the 24th International Conference on Extend-
ing Database Technology and the 24th International Conference on Database Theory (EDBT/ICDT
2021): Nicosia, Cyprus, March 23, 2021 (pp. 1–10).

Griffiths, T. L., Callaway, F., Chang, M. B., Grant, E., Krueger, P. M., & Lieder, F. (2019). Doing
more with less: meta-reasoning and meta-learning in humans and machines. Current Opinion in
Behavioral Sciences, 29, 24-30. doi: https://doi.org/10.1016/j.cobeha.2019.01.005

Gupta, H., & Asha, V. (2020). Impact of Encoding of High Cardinality Categorical Data to Solve
Prediction Problems. Journal of Computational and Theoretical Nanoscience, 17(9), 4197–4201.
doi: 10.1166/JCTN.2020.9044

Guyon, I., Bennett, K., Cawley, G., Escalante, H. J., Escalera, S., Ho, T., . . . Viegas, E. (2015).
Design of the 2015 ChaLearn AutoML challenge. In (Vol. 2015-September, pp. 1–8). doi: 10.1109/
IJCNN.2015.7280767

https://arxiv.org/abs/2008.08516
https://www.bigdata-ai.fraunhofer.de/s/datasets/index.html

64 REFERENCES

Hadwan, M., Al-Sarem, M., Saeed, F., & Al-Hagery, M. A. (2022). An improved sentiment clas-
sification approach for measuring user satisfaction toward governmental services’ mobile apps us-
ing machine learning methods with feature engineering and SMOTE technique. Applied Sciences,
12(11), 5547. doi: 10.3390/app12115547

Haykin, S., & Network, N. (2004). A comprehensive foundation. Neural networks, 2(2004), 41.

He, X., Zhao, K., & Chu, X. (2019). AutoML: A Survey of the State-of-the-Art. CoRR,
abs/1908.00709. Retrieved from http://arxiv.org/abs/1908.00709

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based optimization for
general algorithm configuration. In Learning and intelligent optimization: 5th international confer-
ence, lion 5, rome, italy, january 17-21, 2011. selected papers 5 (pp. 507–523). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Jiao, Y., Li, Z., Chen, X., & Fei, S. (2020). Preprocessing methods for near-infrared spectrum
calibration. Journal of Chemometrics, 34(11), e3306. doi: 10.1002/CEM.3306

Kano, T., Sakti, S., & Nakamura, S. (2021). Transformer-based direct speech-to-speech translation
with transcoder. In 2021 IEEE Spoken Language Technology Workshop (SLT) (pp. 958–965). doi:
10.1109/SLT48900.2021.9383496

Khalid, S., Khalil, T., & Nasreen, S. (2014). A survey of feature selection and feature extraction
techniques in machine learning. Proceedings of 2014 Science and Information Conference, SAI
2014, 372–378. doi: 10.1109/SAI.2014.6918213

Klein, A., Falkner, S., Bartels, S., Hennig, P., & Hutter, F. (2016). Fast Bayesian Optimization of
Machine Learning Hyperparameters on Large Datasets. CoRR, abs/1605.07079. Retrieved from
http://arxiv.org/abs/1605.07079

Komer, B., Bergstra, J., & Eliasmith, C. (2014). Hyperopt-sklearn: automatic hyperparameter
configuration for scikit-learn. In ICML workshop on AutoML (Vol. 9, p. 50). Springer International
Publishing. doi: 10.1007/978-3-030-05318-5 5

Krouwer, J. S., & Schlain, B. (1993). A method to quantify deviations from assay linearity. Clinical
Chemistry, 39(8), 1689–1693. doi: 10.1093/clinchem/39.8.1689

Laadan, D., Vainshtein, R., Curiel, Y., Katz, G., & Rokach, L. (2019). Rankml: a meta learning-
based approach for pre-ranking machine learning pipelines. CoRR, abs/1911.00108. Retrieved from
http://arxiv.org/abs/1911.00108

Lavangnananda, K., & Chattanachot, S. (2017). Study of discretization methods in classification.
In 2017 9th International Conference on Knowledge and Smart Technology (KST) (pp. 50–55). doi:
10.1109/KST.2017.7886082

Lee, J. W., & Giraud-Carrier, C. (2014). On the dangers of default implementations: The case
of radial basis function networks. Intelligent Data Analysis, 18(2), 261–279. doi: 10.3233/IDA
-140640

Li, C. (2019). Preprocessing Methods and Pipelines of Data Mining: An Overview. CoRR,
abs/1906.08510. Retrieved from http://arxiv.org/abs/1906.08510

http://arxiv.org/abs/1908.00709
http://arxiv.org/abs/1605.07079
http://arxiv.org/abs/1911.00108
http://arxiv.org/abs/1906.08510

REFERENCES 65

Lin, W. C., & Tsai, C. F. (2019). Missing value imputation: a review and analysis of the literature
(2006–2017). Artificial Intelligence Review 2019, 53(2), 1487–1509. doi: 10.1007/S10462-019
-09709-4

Liu, H., Hussain, F., Tan, C. L., & Dash, M. (2002). Discretization: An enabling technique. Data
Mining and Knowledge Discovery, 6(4), 393–423. doi: 10.1023/A:1016304305535

Liu, Z., Xu, Z., Madadi, M., Junior, J. J., Escalera, S., Rajaa, S., & Guyon, I. (2019). Overview
and unifying conceptualization of Automated Machine Learning. In Proceedings of the automating
data science workshop, wurzburg, germany (Vol. 20). Wurzburg, Germany: Proc. Automat. Data
Sci. Workshop.

Longadge, R., & Dongre, S. (2013). Class Imbalance Problem in Data Mining Review. CoRR,
abs/1305.1707. Retrieved from http://arxiv.org/abs/1305.1707

Lu, C.-P., Liaw, J.-J., Wu, T.-C., & Hung, T.-F. (2019). Development of a mushroom growth
measurement system applying deep learning for image recognition. Agronomy, 9(1), 32. doi: 10
.3390/agronomy9010032

McGinnis, W., & Westenthanner, P. (2015). category encoders. Retrieved from https://github
.com/scikit-learn-contrib/category encoders

Munson, M. A. (2012). A study on the importance of and time spent on different modeling steps.
ACM SIGKDD Explorations Newsletter, 13(2), 65–71. doi: 10.1145/2207243.2207253

Nagarajah, T., & Poravi, G. (2019). A Review on Automated Machine Learning (AutoML) Systems.
In 2019 IEEE 5th International Conference for Convergence in Technology, I2CT 2019. Institute of
Electrical and Electronics Engineers Inc. doi: 10.1109/I2CT45611.2019.9033810

Napoleon, D., & Pavalakodi, S. (2011). A new method for dimensionality reduction using k-means
clustering algorithm for high dimensional data set. International Journal of Computer Applications,
13(7), 41–46. doi: 10.5120/1789-2471

Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, N. A., Kidd, L. C., & Moore, J. H.
(2016). Automating biomedical data science through tree-based pipeline optimization. CoRR,
abs/1601.07925. Retrieved from http://arxiv.org/abs/1601.07925

Peng, Y., Flach, P. A., Soares, C., & Brazdil, P. (2002). Improved dataset characterisation for
meta-learning. In Discovery Science: 5th International Conference, DS 2002 Lübeck, Germany,
November 24–26, 2002 Proceedings 5 (pp. 141–152). doi: 10.1007/3-540-36182-0 14

Pfahringer, B., Bensusan, H., & Giraud-Carrier, C. (2000). Meta-Learning by Landmarking Var-
ious Learning Algorithms. In Proceedings of the Seventeenth International Conference on Ma-
chine Learning ICML2000 (Vol. 951, pp. 743–750). Morgan Kaufmann Publishers Inc. doi:
10.5555/645529.658105

A preprocessing scheme for high-cardinality categorical attributes in classification and prediction
problems. (2001). ACM SIGKDD Explorations Newsletter, 3(1), 27–32. doi: 10.1145/507533
.507538

Quemy, A. (2019). Data pipeline selection and optimization. In CEUR Workshop Proceedings (Vol.
2324).

http://arxiv.org/abs/1305.1707
https://github.com/scikit-learn-contrib/category_encoders
https://github.com/scikit-learn-contrib/category_encoders
http://arxiv.org/abs/1601.07925

66 REFERENCES

Rajendran, J., Irpan, A., & Jang, E. (2020). Meta-Learning Requires Meta-Augmentation. CoRR,
abs/2007.05549. Retrieved from https://arxiv.org/abs/2007.05549

Refaeilzadeh, P., Tang, L., Liu, H., et al. (2009). Cross-validation. Encyclopedia of database
systems, 5, 532–538. doi: 10.1007/978-0-387-39940-9 565

Rice, J. R. (1976). The Algorithm Selection Problem. Advances in Computers, 15(C), 65–118. doi:
10.1016/S0065-2458(08)60520-3

Rivolli, A., Garcia, L. P., Soares, C., Vanschoren, J., & de Carvalho, A. C. (2022). Meta-features for
meta-learning. Knowledge-Based Systems, 240, 108101. doi: 10.1016/j.knosys.2021.108101.

Seger, C. (2018). An investigation of categorical variable encoding techniques in machine learning:
binary versus one-hot and feature hashing. Degree Project Technology 2018:596, 41.

Sharma, V. (2022). A Study on Data Scaling Methods for Machine Learning. International Journal
for Global Academic & Scientific Research, 1(1), 23–33. doi: 10.55938/ijgasr.v1i1.4

Shearer, C. (2000). The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data
Warehousing, 5(4), 13–23.

Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification
performance. Applied Soft Computing, 97, 105524. doi: 10.1016/J.ASOC.2019.105524

Steinbach, M., Ertöz, L., & Kumar, V. (2004). The Challenges of Clustering High Dimensional
Data. In L. T. Wille (Ed.), (pp. 273–309). Berlin, Heidelberg: Springer, Berlin, Heidelberg. doi:
10.1007/978-3-662-08968-2 16

Studer, S., Bui, T. B., Drescher, C., Hanuschkin, A., Winkler, L., Peters, S., & Müller, K.-R. (2021).
Towards CRISP-ML (Q): a machine learning process model with quality assurance methodology.
Machine learning and knowledge extraction, 3(2), 392–413. doi: 10.3390/make3020020

Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2012). Auto-WEKA: Automated
Selection and Hyper-Parameter Optimization of Classification Algorithms. In (Vol. abs/1208.3719).
Retrieved from http://arxiv.org/abs/1208.3719

Vanschoren, J. (2019). Meta-Learning. In F. Hutter, L. Kotthoff, & J. Vanschoren (Eds.), Automated
Machine Learning (1st ed., pp. 35–61). Cham: Springer Nature. doi: 10.1007/978-3-030-05318-5
2

Vanschoren, J., van Rijn, J. N., Bischl, B., & Torgo, L. (2014). OpenML: networked science in
machine learning. CoRR, abs/1407.7722. Retrieved from http://arxiv.org/abs/1407.7722

Wistuba, M., Rawat, A., & Pedapati, T. (2019). A Survey on Neural Architecture Search. CoRR,
abs/1905.01392. Retrieved from http://arxiv.org/abs/1905.01392

Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, H., & Deng, S.-H. (2019). Hyperparameter
optimization for machine learning models based on Bayesian optimization. Journal of Electronic
Science and Technology, 17(1), 26-40. doi: 10.11989/JEST.1674-862X.80904120

Xanthopoulos, P., Pardalos, P. M., Trafalis, T. B., Xanthopoulos, P., Pardalos, P. M., & Trafalis,
T. B. (2013). Linear discriminant analysis. Robust data mining, 27–33. doi: 10.1007/978-1-4419
-9878-1 4

https://arxiv.org/abs/2007.05549
http://arxiv.org/abs/1208.3719
http://arxiv.org/abs/1407.7722
http://arxiv.org/abs/1905.01392

REFERENCES 67

Yang, C., Akimoto, Y., Kim, D. W., & Udell, M. (2018). OBOE: Collaborative Filtering for AutoML
Initialization. CoRR, abs/1808.03233. Retrieved from http://arxiv.org/abs/1808.03233

Yang, C., Fan, J., Wu, Z., & Udell, M. (2020). AutoML Pipeline Selection: Efficiently Navigating
the Combinatorial Space. In (p. 1446-1456). doi: 10.1145/3394486.3403197

Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algo-
rithms: Theory and practice. CoRR, abs/2007.15745. Retrieved from https://arxiv.org/abs/
2007.15745

Yao, H., Huang, L., Wei, Y., Tian, L., Huang, J., & Li, Z. (2020). Don’t Overlook the Support
Set: Towards Improving Generalization in Meta-learning. CoRR, abs/2007.13040. Retrieved from
https://arxiv.org/abs/2007.13040

Zagatti, F. R. (2021). MetaPrep: Data preparation pipelines recommendation via meta-learning. In
2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). doi:
10.1109/ICMLA52953.2021.00194

http://arxiv.org/abs/1808.03233
https://arxiv.org/abs/2007.15745
https://arxiv.org/abs/2007.15745
https://arxiv.org/abs/2007.13040

68 APPENDICES

Appendices

A Training Set Overview

Names and description of datasets used to train the meta model. Many of the datasets were separated
into datasets prediction different target values. List obtained from FraunhoferIPT (2022)

Name Published Description
3D Printer 2018 Dataset aimed toward estimating how adjustment parameters in 3d printers affect print qual-

ity, accuracy and strength.
Airfoil Self-Noise 2014 The NASA data set comprises different size NACA 0012 airfoils at various wind tunnel

speeds and angles of attack. The goal is to predict sound pressure levels.
APS Scania Trucks 2018 Data from heavy Scania trucks in daily usage. Focuses on the Air Pressure system (APS)

which generates pressurised air used in various functions, such as braking and gear shifting.
Bolts 2014 Data from an experiment on the effects of machine adjustments on the time to count bolts.

Bolts are dumped into a large metal dish.
CNC Milling 2018 Machining data was collected from a CNC machine for variations of tool condition, feed

rate, and clamping pressure.
Condition Monitoring
Hydraulic Systems

2018 The data set addresses the condition assessment of a hydraulic test rig based on multi-sensor
data. Four fault types are superimposed with several severity grades impeding selective
quantification.

Cylinder Bands 1995 Process delays known as cylinder banding in rotogravure printing were substantially miti-
gated using control rules.

Degradation of a Cutting
Blade

2019 Wrapping machine process data over 12 months with a degrading cutting tool.

Flight Software for Earth
Orbiting Satellite

2014 One of the NASA Metrics Data Program defect data sets. Data from flight software for
earth orbiting satellite.

Genesis Demonstrator 2018 The Genesis Demonstrator is a portable pick-and-place demonstrator which uses an air tank
to supply gripping and storage units.

High Storage System En-
ergy Optimisation

2018 Data collected from a demonstrator of a high storage system. The high storage system
consists of 4 short conveyor belts and 2 rails.

Laser Welding 2020 Process parameter recordings for correlation with weld quality indicators such as weld
depth and geometrical dimensions.

Maintenance of Naval
Propulsion Plants

2014 Data generated from a sophisticated simulator of a Gas Turbines (GT), mounted on a Frigate
in a gas propulsion plant.

Mechanical Analysis 1990 Fault diagnosis problem of electromechanical devices. Each instance contains many com-
ponents, each of which has 8 attributes. Different instances in this database have different
numbers of components.

Mercedes-Benz Greener
Manufacturing

2016 This dataset contains an anonymised set of variables, each representing a custom feature in
a Mercedes car.

Milling 2007 Experiments on a milling machine for different speeds, feeds, and depth of cut.
Pulsar Star 2018 A dataset consisting of pulsar candidates collected during the High Time Resolution Uni-

verse Survey
Robot Execution Failures 1999 This dataset contains force and torque measurements on a robot after failure detection.
SECOM 2008 A complex modern semi-conductor manufacturing process is normally under consistent

surveillance via the monitoring of signals collected from sensors.
Steel Plates Faults 2017 A data set of steel plates faults, classified into 7 different types.
Software for Ground
Data

2014 NASA Metrics Data Program defect data sets: Data from software for storage management
for receiving and processing ground data.

Turbofan Engine Degra-
dation Simulation

2020 Run-to-failure trajectories for a small fleet of aircraft engines under realistic flight condi-
tions.

APPENDICES 69

B Meta-Feature List

List of meta-features taken from the pymfe library written by (Alcobaça & Siqueira, 2018). Note: two
meta-features were included for all meta-features denoted by *. For these measures both the average
value and the standard deviation were used as meta-features.

Group Name Description

General

nr inst Compute the number of instances (rows) in the dataset.
attr to inst Compute the ratio between the number of attributes.
inst to attr Compute the ratio between the number of instances and attributes.
nr attr Compute the total number of attributes.
nr bin Compute the number of binary attributes.
freq class* Compute the relative frequency of each distinct class.
nr num Compute the number of numeric features.
nr class Compute the number of distinct classes.

Info-Theory

mut inf* Compute the mutual information between each attribute and target.
eq num attr Compute the number of attributes equivalent for a predictive task.
attr conc* Compute concentration coef. of each pair of distinct attributes.
ns ratio Compute the noisiness of attributes.
class ent Compute target attribute Shannon’s entropy.
class conc* Compute concentration coefficient between each attribute and class.
attr ent* Compute Shannon’s entropy for each predictive attribute.
joint ent* Compute the joint entropy between each attribute and class.

Landmarking

one nn* Performance of the 1-Nearest Neighbor classifier.
naive bayes* Performance of the Naive Bayes classifier.
random node* Performance of the single decision tree node model induced by a ran-

dom attribute.
linear discr* Performance of the Linear Discriminant classifier.
worst node* Performance of the single decision tree node model induced by the

worst informative attribute.
best node* Performance of a the best single decision tree node.
elite nn* Performance of Elite Nearest Neighbor.

70 APPENDICES

Group Name Description

Statistical

kurtosis* Compute the kurtosis of each attribute.
var* Compute the variance of each attribute.
t mean* Compute the trimmed mean of each attribute.
sparsity* Compute (possibly normalized) sparsity metric for each attribute.
skewness* Compute the skewness for each attribute.
sd ratio Compute a statistical test for homogeneity of covariances.
sd* Compute the standard deviation of each attribute.
roy root Compute the Roy’s largest root.
range* Compute the range (max - min) of each attribute.
p trace Compute the Pillai’s trace.
can cor* Compute canonical correlations of data.
cor* Compute the absolute value of the correlation of distinct dataset column

pairs.
nr outliers Compute the number of attributes with at least one outlier value.
cov* Compute the absolute value of the covariance of distinct dataset at-

tribute pairs.
nr norm Compute the number of attributes normally distributed based in a given

method.
eigenvalues* Compute the eigenvalues of covariance matrix from dataset.
nr disc Compute the number of canonical correlation between each attribute

and class.
nr cor attr Compute the number of distinct highly correlated pair of attributes.
g mean* Compute the geometric mean of each attribute.
gravity Compute the distance between minority and majority classes center of

mass.
h mean* Compute the harmonic mean of each attribute.
iq range* Compute the interquartile range (IQR) of each attribute.
min* Compute the minimum value from each attribute.
w lambda Compute the Wilks’ Lambda value.
mean* Compute the mean value of each attribute.
max* Compute the maximum value from each attribute.
mad* Compute the Median Absolute Deviation (MAD) adjusted by a factor.
lh trace Compute the Lawley-Hotelling trace.
median* Compute the median value from each attribute.

APPENDICES 71

C Test Set Overview

Names and description of datasets used to test the meta model. Many of the datasets were separated
into datasets prediction different target values. Each dataset was obtained from the website named in
the ”Loaction” column.

Name Location Description
Civil Engineering: Cement
Manufacturing Dataset

Kaggle The actual concrete compressive strength for a
given mixture under a specific age

Electrochemical Ammonia
Removal and Disinfection of
Aquaculture Wastewater

Havard Data-
verse

electrochemical ammonia removal and disinfec-
tion of wastewater from an aquaculture farm in
Hawaii.

Image Segmentation Sci2s The dataset describes main characteristics of visual
image segmentation data with an imbalanced class
distribution

Membrane Electrode Assem-
bly Activation Procedures

Fuel Cells Etc. This dataset are about Nafion 112 membrane stan-
dard tests and MEA activation tests of PEM fuel
cell in various operation condition.

National Material Capabilities Data.world The National Material Capabilities data set con-
tains annual values for total population, urban pop-
ulation, iron and steel production, energy con-
sumption, military personnel, and military expen-
diture of all state members, currently from 1816-
2007

Single DBFC Dataset Kaggle This dataset includes Direct Borohydride Fuel Cell
(DBFC) impedance and polarization test in anode
with Pd/C, Pt/C and Pd decorated Ni–Co/rGO cat-
alysts.

Used Cars Dataset Kaggle Cars’ data was scraped from tc-v.com and it in-
cluded Information about Japan’s largest online
used car marketplace.

Weather Buoy Network Data.world Real time meteorological and oceanographic data
collected from the Irish moored Weather Buoy net-
work of stations.

72 APPENDICES

D Self Implemented DPP Methods

Algorithm 1: ZScore Substitution
Input: X ← DataFrame
Output: X

1 XZScores←CalculateZScores(X)
2 for Column in XZScores do
3 ColumnMean = Mean(Column)
4 for ZScoreValue in Column do
5 if ZScoreValue >= 3 then
6 X[ColumnIndex, ValueIndex]←ColumnMean

7

Algorithm 2: Random Noise Addition
Input: X ← DataFrame
Output: XNoise

1 µ← 0
2 σ← 0.1
3 Noise← GenerateRandomNoise(µ,σ,Shape(X))
4 NotSelectedColumns← SelectPercentageO fColumns(Noise,20%)
5 X [CategoricalColumns]← 0
6 Noise[NotSelectedColumns]← 0
7 XNoise← X +Noise

Algorithm 3: Remove Correlated Features
Input: X ← DataFrame
Output: X

1 SelectedColumns← GetColumns(X)
2 threshold = 0.8
3 XCorrelationMatrix← GetCorrelationMatrix(X)
4 for Column in XCorrelationMatrix do
5 for CorrelationValue in Column do
6 if CorrelationValue >= threshold then
7 SelectedColumns← SelectedColumns.Remove(Column)

8 X ←X[SelectedColumns]
9

Algorithm 4: Dummy Method
Input: X ← DataFrame
Output: X

APPENDICES 73

E Dataset Names

List of dataset names according to x-axis of Figure 10

.

Classification Datasets 1 Classification Datasets 2 Regression Datasets
0: Mechanical Analysis 37: Degredation NewBlade Cl mvs 0: Turbine
1: Robot Execution Failures 38: Unknown2 both 1: Compressor
2: Accumulator both 39: Degredation NewBlade Cl both 2: Turbine mvs
3: Accumulator mvs 40: Degredation NewBlade Cl cats 3: Compressor mvs
4: Accumulator cats 41: Unknown2 4: Turbine both
5: Accumulator 42: Degredation NewBlade Cl 5: Compressor both
6: FSEOS(1) 43: Unknown2 cats 6: Degredation NewBlade Re
7: Secom 44: EOAO 7: Degredation NewBlade Re mvs
8: SECOM mvs 45: EOAS 8: Turbine cats
9: FSEOS(1) mvs 46: GDMS 9: Degredation NewBlade Re both
10: SFGD cats 47: Cylinder Bands 10: Compressor cats
11: SFGD 48: CNC Mill Tool Wear 11: Degredation NewBlade Re cats
12: SECOM both 49: APS 12: Milling
13: SECOM cats 50: GDAD both 13: Airfoil Self-Noise SPL
14: Pump mvs 51: Flag cats 14: Airfoil Self-Noise SPL mvs
15: FSEOS(1) cats 52: Flag both 15: Milling Spindle
16: Pump 53: Flag mvs 16: Milling Table
17: FSEOS(1) both 54: Pulsar Star cats 17: Airfoil Self-Noise
18: SFGD both 55: Pulsar Star both 18: Airfoil Self-Noise mvs
19: Pump both 56: Flag 19: Airfoil Self-Noise SPL cats
20: SFGD mvs 57: Pulsar Star mvs 20: 3D Printer
21: Unknown1 MT 58: Pulsar Star 21: Airfoil Self-Noise SPL both
22: Unknown1 59: GDAD mvs 22: 3D Printer Elongation
23: Unknown2 MT 60: Cooler 23: Airfoil Self-Noise cats
24: FSEOS mvs 61: Laser Welding 24: Airfoil Self-Noise both
25: FSEOS 62: Valve mvs 25: Laser Welding Depth
26: Unknown1 cats 63: Valve both 26: Turbo Fan 2
27: Steel Plates Faults mvs 64: GDAD 27: Turbo Fan 4
28: FSEOS cats 65: GDAD cats 28: 3D Printer Strength
29: Pump cats 66: Valve cats 29: Mercedes
30: Unknown1 both 67: Valve 30: Turbo Fan 3
31: FSEOS both 68: GDM 31: Turbo Fan 1
32: Steel Plates Faults both 69: Bolts both 32: 3D Printer Roughness
33: Steel Plates Faults cats 70: Bolts cats
34: Steel Plates Faults 71: Bolts
35: Unknown1 mvs 72: Bolts mvs
36: Unknown2 mvs

74 APPENDICES

F Chosen Pipelines

Pipelines and pipeline median rank over all usecases of selected pipeline pool for classification
datasets

.

Selection
Method

DPP Pipeline Median
Rank

Average

IAG

LastObservedImputer, OneHotEncoder, ZScoreSubstitution, StandardScaler, PCA, RemoveCorrelated 0.71012

0.7341
MedianImputer, OneHotEncoder, ZScoreSubstitution, RandNoise 0.7082
MeanImputer, OneHotEncoder, StandardScaler, PowerTransformer, SMOTE 0.74914
MeanImputer, OneHotEncoder, RandNoise, SMOTE 0.76892

SAG

MeanImputer, OneHotEncoder,ZScoreSubstitution, StandardScaler, PowerTransformer, PCA, RemoveCorre-
lated, RandNoise

0.7361

0.7356MedianImputer, OneHotEncoder, ZScoreSubstitution, RandNoise 0.7136
MeanImputer, OneHotEncoder, MinMaxScaler, PowerTransformer 0.76199
MeanImputer, OneHotEncoder, StandardScaler, PowerTransformer, SMOTE 0.73071

RAG

MeanImputer, OneHotEncoder, StandardScaler, RandNoise, SMOTE 0.80105

0.7838
MeanImputer, OneHotEncoder, ZScoreSubstitution, StandardScaler, VarianceThreshold 0.78886
MedianImputer, OneHotEncoder, MinMaxScaler, RandNoise 0.76012
MeanImputer, OneHotEncoder, StandardScaler, SMOTE 0.78518

SPS

MeanImputer, OneHotEncoder, ZScoreSubstitution, StandardScaler, RandNoise, SMOTE 0.85215

0.85016
MedianImputer, OneHotEncoder, ZScoreSubstitution, StandardScaler, VarianceThreshold, RandNoise,
SMOTE

0.85187

MeanImputer, OneHotEncoder, StandardScaler, RandNoise, SMOTE 0.84913
MeanImputer, OneHotEncoder, StandardScaler, SMOTE 0.84748

Pipelines and pipeline median rank over all usecases of selected pipeline pool for regression datasets

.

Selection
Method

DPP Pipeline Median
Rank

Average

IAG

MedianImputer, OneHotEncoder, StandardScaler, PowerTransformer, RemoveCorrelated, RandNoise 0.75587

0.80782
MedianImputer, OneHotEncoder, StandardScaler, RandNoise 0.87953
MedianImputer, OneHotEncoder, PowerTransformer, RandNoise 0.70696
MedianImputer, OneHotEncoder, ZScoreSubstitution, MinMaxScaler 0.8889

SAG

MedianImputer, OneHotEncoder, ZScoreSubstitution, RandNoise 0.76277

0.7744
MedianImputer, TargetEncoder, ZScoreSubstitution, RemoveCorrelated, RandNoise 0.71521
MedianImputer, OneHotEncoder, ZScoreSubstitution, PowerTransformer 0.84719
MeanImputer, OneHotEncoder, ZScoreSubstitution, MinMaxScaler, RemoveCorrelated, RandNoise 0.77243

RAG

MedianImputer, OneHotEncoder, ZScoreSubstitution, RandNoise 0.83339

0.87724
MedianImputer, OneHotEncoder, StandardScaler, RandNoise 0.87778
MedianImputer, TargetEncoder, ZScoreSubstitution, StandardScaler 0.89848
MedianImputer, TargetEncoder, ZScoreSubstitution, StandardScaler, VarianceThreshold 0.8993

SPS

MedianImputer, TargetEncoder, ZScoreSubstitution, StandardScaler, VarianceThreshold 0.91312

0.90587
MedianImputer, TargetEncoder, ZScoreSubstitution, StandardScaler 0.9122
MedianImputer, OneHotEncoder, ZScoreSubstitution, MinMaxScaler 0.90673
MedianImputer, OneHotEncoder, StandardScaler, RandNoise 0.89144

APPENDICES 75

G Selected Pipelines for Regression Usecases

Performance of pipelines selected by the different pipeline selectors (IAG, SAG, RAG) for the groups
specified by the individual pipeline selector for regression usecases as well as the performances of the
SPS pipelines as a comparison.

76 APPENDICES

H Cross Validation Folds CL

Overview of the classification datasets within the meta datasets that were used to define the folds for
cross validation

fold 1 fold 2 fold 3 fold 4
Accumulator EOAO Flag Secom
Accumulator both EOAS Flag both SECOM both
Accumulator cats FSEOS Flag cats SECOM cats
Accumulator mvs FSEOS both Flag mvs SECOM mvs
Degredation NewBlade Cl FSEOS cats GDAD Pump
Degredation NewBlade Cl both FSEOS mvs GDAD both Pump both
Degredation NewBlade Cl cats FSEOS(1) GDAD cats Pump cats
Degredation NewBlade Cl mvs FSEOS(1) both GDAD mvs Pump mvs

FSEOS(1) cats GDM Cooler
FSEOS(1) mvs GDMS Cylinder Bands

APS

fold 5 fold 6 fold 7
SFGD Pulsar Star Unknown1
SFGD both Pulsar Star both Unknown1 both
SFGD cats Pulsar Star cats Unknown1 cats
SFGD mvs Pulsar Star mvs Unknown1 mvs
Laser Welding Steel Plates Faults Unknown1 MT
Robot Execution Failures Steel Plates Faults cats Unknown2 both
Valve Steel Plates Faults mvs Unknown2 cats
Valve both Bolts Unknown2 mvs
Valve cats Bolts both Unknown2 MT
Valve mvs Bolts mvs

Bolts cats
CNC Mill Tool Wear

APPENDICES 77

I Cross Validation Folds RE

Overview of the classification datasets within the meta datasets that were used to define the folds for
cross validation

fold 1 fold 2 fold 3 fold 4
3D Printer Airfoil Self-Noise Compressor Turbo Fan 1
3D Printer Elongation Airfoil Self-Noise SPL Compressor both Turbo Fan 2
3D Printer Roughness Airfoil Self-Noise SPL mvs Compressor cats Turbo Fan 3
3D Printer Strength Airfoil Self-Noise mvs Compressor mvs Turbo Fan 4
Laser Welding Depth Airfoil Self-Noise both Degredation NewBlade Re Milling
Mercedes Airfoil Self-Noise cats Degredation NewBlade Re cats Milling Spindle
Turbine Airfoil Self-Noise SPL cats Degredation NewBlade Re both Milling Table
Turbine both Airfoil Self-Noise SPL both Degredation NewBlade Re mvs
Turbine cats
Turbine mvs

78 APPENDICES

J Cross-Validation Results

Best training results for each performance measurement, pipeline selection method and ML algorithm.
The results suggest that diverse pipelines produce better results when the ordering of pipelines is
required (see F1-Score and aτ), and reliable pipelines produce better ARMSE scores.

Measurement ML Task Selector KNN Decision Tree Random Forest Best

ARMSE

Classification

SAG 0.24505 0.24303 0.23456 0.23456
IAG 0.26165 0.24793 0.2379 0.2379
RAG 0.21142 0.21171 0.20136 0.20136
SPS 0.18956 0.18378 0.17994 0.17994

Regression

SAG 0.28856 0.30235 0.27481 0.27481
IAG 0.25376 0.25252 0.24003 0.24003
RAG 0.24855 0.23797 0.2421 0.23797
SPS 0.20387 0.20244 0.19732 0.19732

aτ

Classification

SAG 0.09137 0.15166 0.11547 0.15166
IAG 0.04998 0.1166 0.08015 0.1166
RAG 0.12565 0.10399 0.13404 0.13404
SPS 0.05227 0.11241 0.1151 0.1151

Regression

SAG 0.16722 0.14019 0.13448 0.16722
IAG 0.12704 0.29487 0.28788 0.29487
RAG 0.12385 0.15421 0.118 0.15421
SPS 0.09421 0.15419 0.1058 0.15419

F1-Score

Classification

SAG 0.29153 0.31945 0.24297 0.31945
IAG 0.25935 0.29945 0.25994 0.29945
RAG 0.29776 0.27733 0.2514 0.29776
SPS 0.27148 0.29277 0.26693 0.29277

Regression

SAG 0.34753 0.30085 0.17588 0.34753
IAG 0.34291 0.3493 0.23836 0.3493
RAG 0.28132 0.33943 0.1515 0.33943
SPS 0.27566 0.32275 0.27428 0.32275

APPENDICES 79

K Final Model Settings

Overview of the optimal settings determined through crossvalidation for each of the different final
meta models. These cover the models for the classification and regression meta models and the three
performance measurements

Measurement ML Task Algorithm Parameters DPP pipeline

ARMSE

CL RF
’criterion’: ’absolute error’,
’min samples split’: 3,
’min samples leaf’: 1

PCA, StandardScaler, SMOTE

RE RF
’criterion’: ’crite-
rion’: ’squared error’,
’min samples split’: 2,
’min samples leaf’: 1

PCA, StandardScaler, RandNoise

aτ

CL DT
’criterion’: ’squared error’,
’min samples split’: 4,
’min samples leaf’: 3

PCA, MinMaxScaler, PowerTrans-
former

RE DT
’criterion’: ’squared error’,
’min samples split’: 3,
’min samples leaf’: 1

PCA, PowerTransformer, Rand-
Noise

F1-Score

CL DT
’criterion’: ’squared error’,
’min samples split’: 4,
’min samples leaf’: 3

PCA, MinMaxScaler, PowerTrans-
former

RE DT
’criterion’: ’squared error’,
’min samples split’: 2,
’min samples leaf’: 2

PCA, PowerTransformer, Rand-
Noise

80 APPENDICES

L TPOT DPP Methods

List of all DPP methods available for the TPOT optimisation.

DPP Method Method
Hyperparameter

Values

Binariser Threshold 0.0,...,1.0
Fast ICA Tol 0.0,...,1.0

Feature Agglomeration
Linkage [’ward’, ’complete’, ’average’]
Affinity [’euclidean’, ’l1’, ’l2’, ’manhattan’, ’cosine’]

Max-Abs Scaler
Min-Abs Scaler
Normaliser Norm [’l1’, ’l2’, ’max’]

Nystroem
Kernel [’rbf’, ’cosine’, ’chi2’, ’laplacian’, ’polynomial’,

’poly’, ’linear’, ’additive chi2’, ’sigmoid’]
Gamma 0.0,...,1.0
Num Components 1,...,10

PCA
Svd Solver [’randomised’]
Iterated Power 1,...,10

Polynomial Features
Degree 2
Include Bias False
Interaction Only False

RBF Sampler Gamma 0.0,...,1.0
Robust Scaler
Standard Scaler
Zero Count

One-Hot Encoder
Minimum Fraction [0.05, 0.1, 0.15, 0.2, 0.25]
Sparse False

	Acknowledgements
	Abstract
	Introduction
	Research Questions
	Thesis Outline

	Background
	Machine Learning Process
	Data Understanding
	Data Preprocessing
	Modelling

	Dataset Preprocessing Methods
	Data Cleaning
	Data Transformation
	Data Reduction
	Data Resampling
	DPP Pipelines

	Automated Machine Learning
	Types of AutoML Schemes
	Meta-Learners
	Advantages and Disadvantages of Meta-Learning

	Related Work

	Methods
	Knowledge Base
	Usecases
	DPP Pipeline Combinations
	Collection
	Ranking

	Meta-Dataset Creation
	Meta-Feature Extraction
	Meta-Target Selection
	Testing Sets

	Training
	Preprocessing
	Learning Algorithms
	Cross Validation

	Model Assessment
	General Rank Accuracy
	Ideal Ordering
	Best Pipeline

	Experimental Setup
	Experiment 1: Pipeline Selection Evaluation
	Experiment 2: Recommended DPP Pipeline Performances

	Results
	Cross Validation Results
	Reliable vs Diverse Selection Method
	Recommended DPP Pipeline Performance

	Conclusion
	Meta-Target Selection
	Classification Usecases
	Regression Usecases

	Meta-Learner Viability
	Diverse vs Reliable Recommendations

	Summary of Main Contributions
	Limitations
	Future Work

	References
	Appendices
	Training Set Overview
	Meta-Feature List
	Test Set Overview
	Self Implemented DPP Methods
	Dataset Names
	Chosen Pipelines
	Selected Pipelines for Regression Usecases
	Cross Validation Folds CL
	Cross Validation Folds RE
	Cross-Validation Results
	Final Model Settings
	TPOT DPP Methods

