
The Importance of Filters: Using Shapley Value

Pruning to Optimize Convolutional Neural

Networks

Bachelor’s Project Thesis

Romanas Munovas, s4004981 (r.munovas@student.rug.nl)

Supervisors: dr. C.P. Lawrence

Abstract: This paper presents an analysis of the importance of filters in Convolutional Neu-
ral Networks (CNNs) and the use of Shapley value pruning to optimize these architectures.
CNNs have become the industry standard for computer vision tasks, but their growing depth
and parameter size are demanding more resources for training and inference. To optimize these
architectures, the practice of pruning is often used to remove redundant filters or layers. The
current state-of-the-art criterion for pruning in a low-data regime approximates Shapley values
via Monte Carlo sampling (Ancona et al., 2020). Computing the actual Shapley values would
be optimal, however, calculating the Shapley value for a single image has a high computational
complexity, which limits the application of this method. To solve this problem, this paper pro-
poses a hybrid approach that uses a variation of Monte Carlo approximation and actual Shapley
value calculation when the number of activations allows it. This approach is designed to tackle
the issue of the dangers of pruning a wanted unit due to the inevitable variance created by Monte
Carlo approximation in a low-sample setting. The results show that this hybrid approach signif-
icantly outperforms random pruning and slightly outperforms the exclusive use of Monte Carlo
approximation. This paper also investigates the mechanisms behind the decision making of the
Shapley criterion in order to gain more insight into how the scores for activations are attributed.

1 Introduction

Convolutional Neural Networks (CNNs) have be-
come the industry standard for computer vision
tasks involving object detection, recognition, and
classification, and so the demand for state-of-the-
art CNNs to be deployed on mobile platforms has
never been higher. At the same time, CNNs are
also becoming deeper, thus growing in parameter
size and demanding significantly more resources for
training and inference (Gu et al., 2015). It is often
the case, however, that these architectures have pa-
rameters that do not contribute to the performance
of the inference. In order to optimize the architec-
ture, the redundant parameters are often removed
in a process known as pruning.

Network pruning has been around for awhile. In
LeCun, Denker, & Solla (1990), unstructured prun-
ing was introduced with the goal to reduce the

size of an architecture. Han et al. (2015) utilizes
a salience heuristic to nullify single weights with-
out affecting the architecture’s structure; the pro-
cess is illustrated in Figure 1.1. While this does
reduce the number of parameters and size of the
CNN, it does not actually decrease the computa-
tional cost because the network will still have to
do the same amount of floating-point operations
(FLOPs) during forward and backward passes as
the weights are not removed per se. Instead, we
will focus on structured pruning (further on, just
pruning) — which, removes whole filters (as seen
in Figure 1.2) and the in-out connections associ-
ated with them instead (Mittal et al., 2018) — as
a means to also reduce the inference time.

Pruning of an architecture is done in a top-down
manner, — starting with a complete model, —
by ranking the chosen units and removing, or
pruning, the ones with the smallest importance

1



Figure 1.1: Graphic illustrating unstructured
pruning. In this example, weights are being
pruned but the number of the feature maps
stays the same.

Figure 1.2: Graphic illustrating structured
pruning. In this example, a filter is being pruned
which results in a smaller number of feature
maps in total.

score (Li et al., 2016). The pruned architecture is
more compact, and if done successfully does not
show a significant drop in performance (Hu et al.,
2016).

The standard procedure for network pruning
is:

1. Train a network

2. Prune n units with the lowest importance score

3. Fine-tune the network

4. Repeat steps 2-3 until a significant drop in ac-
curacy

While there is not a unified criterion standard
that has been accepted as the correct way of cal-
culating the importance score, attempts have been
made to introduce one. Molchanov et al. (2016) cri-
terion involved approximating the changes of the
cost function using first-order Taylor Expansion. Li
et al. (2016) used L1-norm criterion to reduce the
network size by 38% while retaining an accuracy
similar to the original model. In Hu et al. (2016),
they used percentage of zeros in a filter as an im-
portance metric, allowing them to compress VGG-
16 and LeNet-5 by 2-3 times without losing the
accuracy. Surprisingly, Mittal et al. (2018) showed
that random pruning is on par with other prun-
ing strategies, managing to prune up to 50% of the
network without losing accuracy given enough fine-
tuning resources. This would mean that the impor-
tance score is a redundant metric. However, Ancona
et al. (2020) showed that while random pruning
may be effective in some cases, Shapley value crite-
rion is the preferred importance score metric due to
also working in low-data settings, where fine-tuning
is either ineffective or not possible.

Most of the present pruning literature focuses on
finding a criterion or method that is the most effec-
tive in reducing the size without significantly penal-
izing the accuracy of a network. But the reasoning
behind the decisions to prune a particular filter over
another remains widely unexplored. Understanding
the mechanics behind the decision making of a cri-
terion could help design better networks. One way
to do so is by analyzing the feature maps, that is,
intermediate representations of images after being
passed through a filter. This allows us to inspect

2



what kind of features are being passed in-between
layers and into the final inference.

1.1 Shapley values

Shapley values (Shapley, 1952) were introduced as
a solution concept to cooperative games. In a co-
operative game, coalitions of players compete and
cooperate toward achieving a unified goal. The out-
come of each game depends only on the subset of
players that are found within that coalition.

Shapley (1952) provides a way to calculate how
much each player contributes to the game. Assume
P = 1, 2, ..., n is a finite set of n players i called the
grand coalition; if vx : S ⊂ P → R maps out the
outcome of the game in which a subset of players
S ⊂ P participate, where x1, ..., xk ∈ X is the vari-
ation of the game that is being played, the marginal
contribution of a single player can be found by the
difference of the game’s outcome with and without
the player:

mx(S, i) := vx(S)− vx(S \ {i}) (1.1)

The advantage of this solution is that it takes into
account the interaction between players, as opposed
to naively computing the contribution of a single
player vx(i). However, the equation only calculates
the player’s contribution for a given coalition S. In
order to calculate the Shapley value for player i and
game x, we have to average the marginal contribu-
tions over all subsets that contain i:

ϕx(i) :=
1

n!

∑
S⊆P\{i}

(|S|!(n− |S| − 1)!) ·mx(S, i)

(1.2)

For each player, there are infinitely many solu-
tions. However, some of them are considered to be
more ’fair’ than other ones. For Shapley value to
be a unique solution it must satisfy the following
properties of ’fairness’ (that is, the worth of the
goal vx(P ) is split in a way that all players in P
are considered upon calculation) as adapted from
Strumbelj & Kononenko (2010):

1. The Efficiency Axiom: the sum of Shapley
values is equal to the difference between the
valuation of the grand coalition and an empty

coalition ∑
i∈P

ϕx(i) = vx(P )− vx(Ø) (1.3)

2. The Symmetry Axiom: If for two players i
and j vx(S ∪ i) = vx(S ∪ j) holds for every S,
where S ⊂ P and i, j /∈ S, then ϕx(i) = ϕx(j).

3. The Null Axiom: If vx(S ∪ i) = vx(S) holds
for every S, where S ⊂ P and i ̸⊂ S, then
ϕx(i) = 0

4. The Additivity Axiom: For any two game-
evaluation functions vx and wx: vϕx(S) +

wϕx(S) = (v+w)ϕx(S) for all S and any game
x, where vx(S)+wx(S) = (vx+wx)(S). Nota-
tion vϕx(S) denotes that the game-evaluating
function v was used in the computation of the
Shapley values ϕx for all S.

1.1.1 Parallels with Neural Networks

In the context of our problem, let us assume we
have a simple feedforward CNN f with L layers:

f(x) = (f (1) ◦ f (2) ◦ ... ◦ f (L))(x) (1.4)

where x is an input example, such as an image,
fed through each layer for classification, and f l is a
transformation function used on the activation zl−1

of the previous layer:

z(l) = f (l)z(l−1); z0 = x (1.5)

If we assume that zli is a filter on a particular
layer l, the goal of the pruning task can be reduced
to finding a set Z of filters to prune which will
reach a goal of choice, such as maximizing the per-
formance metrics.
It is important to note that the output of the

model does not depend on the activations of pre-
vious layers, that is, the loss only depends on the
units in zl.
In such case, we can write the network loss func-

tion as a function of zl (Ancona et al., 2020):

L(zl; y) = L((f (l+1) · ... · f (L))(z(l)); y) = L(x; y)
(1.6)

If we consider the filters or layers of a neural
network in a classification task as players working

3



together towards achieving a unified goal, such as
maximizing accuracy or minimizing the loss, the
whole process can be viewed as a cooperative game.
In such cases, Shapley values also have an advan-
tage over other methods as they provide a game-
theoretic foundation and explanation behind the
contribution of each player.
We can assume that every prunable filter

zl1, ..., z
l
n ∈ P is a player in a game of coalitions,

where the loss function Lx : S ⊂ P− > R is a
way to assign the contribution of each filter. In this
case, x1, ..., xk ∈ X would denote the input image,
where X is the set of all images to be fed into the
network. We can then rewrite (1.1) and (1.2) in the
following way:

mx(S, z
l) := Lx(S)− Lx(S \ {zl})

ϕx(z
l) :=

1

n!

∑
S⊆P\{zl}

(|S|!(n− |S| − 1)!) ·mx(S, z
l)

(1.7)
Note that viewing cooperative games through the

lens of a neural network does satisfy all four Shap-
ley value axioms and assumptions of ’fairness’ of the
solution ϕ (as adapted from Ancona et al. (2020)):

1. The Efficiency Axiom: The sum of attribu-
tions equals to the difference between the loss
obtained when all activations are present and
the loss obtained when all activations are re-
moved. Similarly, in Shapley, the sum of the
Shapley values for all the players in the grand
coalition P will be equal to the difference be-
tween valuation function when all of the play-
ers are present and when none are.

2. The Symmetry Axiom: If swapping the
values of two activations doesn’t affect the
loss, then those two activations are attributed
equally; in Shapley, when the outcome of the
game-evaluating function vx(S) when player i
participates (i.e. vx(S ∪ i)) equals to the value
of the function when player j participates in-
stead, then the Shapley Values of those players
will be the same, given i, j /∈ S.

3. The Null Axiom: If a particular activation
zl has no impact on the loss, then its attribu-
tion is considered to be zero, similarly to how
in Shapley, if the game-evaluating function vx

does not depend on a particular player i, then
the Shapley value ϕx(i) for that player is 0.

4. The Additivity Axiom: Suppose the loss
function f can be expressed as a linear combi-
nation of two sub-networks’ loss functions (i.e.,
f = a× f1 + b× f2). In that case, any attribu-
tion computed on the overall network should
also be a linear combination of the attribu-
tions computed on the sub-networks, with the
same weights (a and b). From the perspective
of Shapley, calculating the Shapley value ϕx(S)
for any S using the combination of two game-
evaluating functions vx and wx is the same as
the sum of two Shapley value computations,
one which uses vx and another which uses wx.

In the context of a neural network, using a sin-
gle image x for calculating the loss of a forward-
propagation algorithm moving from one layer to
another will have high variance and, — if used in
the context of calculating Shapley values — will
likely not give a good representation of the contri-
bution of each filter i in regards to the goal. For this
reason, a set of k images x ∈ X — independent of
the images used for training, validating, or testing
the network — should be used. The Shapley values
for each image x are then aggregated and averaged
for each filter i to gain the true contribution of each
filter for the image set(1.8):

Sh(X, i) =
1

k

∑
x∈X

ϕx(i) (1.8)

1.1.2 The Problem with Shapley values

Intuitively, computing the Shapley value ϕx for fil-
ter zl in a single layer l for a single image has

the computational complexity of O(2|z
l|) and is

NP-complete (Deng & Papadimitriou, 1994). The
computation for a single image requires evaluat-
ing the network for every single filter permutation
and therefore is often limited by the computational
power of the hardware at hand. Various methods
of approximating Shapley values have been pro-
posed (Strumbelj & Kononenko, 2010; Castro et
al., 2009), but the most practical and easy to im-
plement is that of Castro et al. (2009) which uses
the Monte Carlo method to sample the permuta-
tions. This reduces the computational complexity

4



to just O(C ∗ |zl|), were C is the number of sam-
ples taken. However, while Monte Carlo does have
a convergence property, in cases where the num-
ber of samples is limited (again, due to computa-
tional power constraints), the approximation may
suffer from high variance and introduce a strong
bias (James, 1980) which may hinder the perfor-
mance of the pruning algorithm.

When pruning filters from a single layer, the sig-
nificance of the effect (as seen later in the result
section) of each pruned filter on a chosen metric,
— for example, accuracy — differs in magnitude.
Intuitively, the trend is logarithmic; each consecu-
tive filter pruned will have a bigger effect on the
accuracy (i.e. it will degrade faster) because there
are less filters to replace its role in classification.
Hence, at some point during the pruning procedure,
the choice of which filter to prune can become the
difference between having a network that performs
almost as well as its unpruned counterpart and a
network that is not able to predict the classes cor-
rectly at all.

In Ancona et al. (2020), they use Monte Carlo
approximation with a constant number of samples
across all pruning iterations for DNNs (Deep Neu-
ral Networks). As discussed previously, the problem
with using a Monte Carlo approximation of Shap-
ley values is that if the number of samples is not
high enough, the results will be exposed to high
variance. Since the main reason for using Monte
Carlo is that it does not require as many compu-
tational resources as calculating the actual Shapley
value, the problem can be at least partially solved
by introducing an amelioration hyper-parameter t
(1.9):

Cq+1 := Ct
q, where t > 1 (1.9)

where Cq is the number of samples taken at itera-
tion q, which would increase the number of samples
taken whenever a filter is pruned. A larger num-
ber of filters (and hence more voluminous permu-
tations) requires a bigger number of forward passes
for the calculation of the marginal contribution of
each filter; hence, there exists a value t which in-
creases the number of samples taken — reducing
the variance in the approximation of the Shap-
ley values, — without exceeding the computational
power limits, assuming the C chosen initially en-
compasses the limitations.

Even then, while the variance may be reduced, it

will most likely exist even when the number of sam-
ples is increased. To tackle the issue of the dangers
of pruning a wanted filter due to inevitable vari-
ance created by Monte Carlo approximation in a
low-sample setting, I propose a hybrid approach to
calculating the Shapley values. Instead of reserving
to just one method of Shapley value calculation, as
was done in Ancona et al. (2020) (i.e. exclusively us-
ing Monte Carlo approximation in situations where
calculating the actual Shapley value is unfeasible),
we can use a mix of both Monte Carlo approxi-
mation and the actual Shapley value calculation
when the number of activations allows it. Since each
consecutive filter pruned has a more significant im-
pact on the standard scoring metrics (accuracy and
loss), approximating the Shapley values instead of
computing the exact values is unreasonable.

1.2 Research Question

The goal of this work is to investigate whether
the Hybrid Shapley value pruning pipeline per-
forms better than the exclusive approximation of
the Shapley values, and to examine the mecha-
nisms behind the decision making mechanism of the
Shapley pruning algorithm by analyzing the feature
maps of the underlying architecture.

2 Methodology

2.1 Data and Architecture

The performance of the Hybrid Shapley value prun-
ing algorithm in a low-data regime was evaluated
and analyzed in the following experiments. Low-
data is characterized by a setting where fine-tuning
of the network is either not effective or not possible.
Consequently, in-between iterations of the experi-
ments we prune the filter with the lowest Shap-
ley value, but the network is not fine-tuned. The
Hybrid Shapley value pruning algorithm is com-
pared to the Shapley value Monte Carlo Sampling,
with the random pruning algorithm serving as the
baseline. The feature maps produced by the filters
are also later analyzed with their Shapley scores in
mind.

5



2.1.1 MNIST

The MNIST dataset of 28x28 images of handwrit-
ten digits consisting of 70,000 examples was used.
The MNIST dataset consists of ten classes for
each digit from 0 to 9. Out of the given datset,
60,000 were used for training, 8,000 for testing, and
1,000 each for validation and Shapley. The MNIST
dataset was chosen for the ease of visual analysis
and minimizing the computational power that cal-
culations of the Shapley values require, as it is small
in dimensions and hence memory size, and requires
no preprocessing for the chosen architecture.

2.1.2 LeNet-1

An architecture essentially identical to LeNet-1 (as
described in LeCun, Boser, et al. (1990)) was used
in the experiments. The experiments were imple-
mented in PyTorch framework. LeNet-1 was cho-
sen for this task as the simplest (to our knowledge)
CNN capable of solving the MNIST dataset with
a great performance. The architecture has five hid-
den layers, out of which two are convolutional, two
averaging/subsampling, and a single output layer
(Figure 5.1) It is important to note that only the
convolutional layers are prunable due to being mu-
table. A detailed discussion of the architecture can
be found in LeCun, Boser, et al. (1990).

It is generally not recommended to prune the fil-
ters in the first layer or the first layer as a whole,
as it possesses the most important information
(Molchanov et al., 2016) that is passed onto the
next layers, — which is unrecoverable if pruned, —
and can result in a significant drop in performance
within a single iteration as it is divided across only
four filters. On the other hand, most of the pa-
rameters are spread out between the connections
of the second convolutional layer and the first fully
connected layer. Consequently, we only prune the
filters found in the second convolutional layer.

2.2 Procedure

For each pruning strategy we start with the fully
trained LeNet-1 architecture, and prune only the
12 filters found in the second layer.

2.2.1 Monte Carlo pruning

For the Monte Carlo pruning algorithm, we used
C = 100 samples throughout the experiment. Each
iteration is repeated until there is a single filter left.

At the start of each iteration, the original loss
is computed by doing a forward-pass on a set of
MNIST images (separate from the training, valida-
tion, and testing sets) when all filters are present.
For each sample n we randomly permute the set of
all filters Z. Each filter z ∈ Z is sequentially masked
and the loss for the updated model is computed
through a forward-pass. The intermediate Shapley
value is then found by computing the difference be-
tween the loss when the filter was present and when
it was pruned, over the number of samples; this
process is repeated until the intermediate Shapley
value is calculated for each filter. After all sampling
episodes, the intermediate Shapley values are ag-
gregated over the samples to find the approximate
Shapley value for each filter; the one with the low-
est Shapley value is pruned, but the model is not
fine-tuned.

2.2.2 Hybrid Shapley pruning

For Hybrid Shapley, we used the Monte Carlo Sam-
pling with C = 100 samples and t = 1.08 ameliora-
tion parameter to approximate the Shapley values
until there were 6 filters left (process described in
section 2.2.1, except after a filter has been pruned,
the number of samples at the next iteration in-
creases as shown in Formula 1.9), at which point the
algorithm would start computing the actual Shap-
ley values. The only difference between computing
Shapley values through Monte Carlo sampling and
computing actual Shapley values is that instead of
sampling random permutations, the latter instead
uses all possible permutations.

The amelioration parameter was chosen to be
high enough to create a significant increase in the
number of samples (at 5 filters, the number of sam-
ples taken is C = 859, almost 9 times larger) with-
out sacrificing the computational time by too much.
We used accuracy and cross-entropy loss as the cri-
teria for measuring performance of the algorithms.
In addition to that, we used Area Under the Curve
(AUC) of the loss and accuracy as a quantitative
measure of the results; a lower value for loss and
a higher value for accuracy generally indicated a

6



AUC Random Monte Carlo Shapley values Hybrid Shapley values

Accuracy 0.65±0.03 0.78±0.00 0.79
Loss 0.83±0.02 0.39±0.00 0.37

Table 3.1: Area under the curve for accuracy
and loss. A lower value for loss and a higher
value for accuracy indicates a slower decay in
performance. Standard deviation over 3 trials is
reported where applicable.

slower degradation of the performance.

2.2.3 Feature Maps

For the feature maps, we passed the images through
all the layers up to the last convolutional before
visualizing them for each filter. The feature maps
were normalized between 0 and 1 for better visual
inference. One of each digit from the subset of im-
ages used for Shapley experiments was plotted.

2.3 Code Repository

The entire code repository along with the pre-
sentation in this paper are available on Github
at https://github.com/Zarathustrai/Shapley-
Pruning. The source directory contains two
Jupyter notebooks; ’shapley-value-pruning.ipynb’
can be used to reproduce the results, while ’graph-
ing.ipynb’ can be used to partially reproduce the
illustrations used in this paper.

3 Results and Discussion

3.1 Algorithms

The experiment was repeated three times; the av-
erage results are seen in Table 3.1. Hybrid Shapley
produces a significantly slower performance degra-
dation compared to random pruning. In compari-
son to Monte Carlo sampling, Hybrid Shapley also
performs better, but only by a minuscule amount.
This can also be seen in Figures 3.1 and 3.2, where
the loss and accuracy curves for Monte and Hybrid
Shapley are almost identically the same.
For both of the Shapley value methods we can see

that until 10 filters have been pruned the decrease
in the performance seems to be consistent, and
in some cases even improves the performance. In
comparison to the random pruning algorithm, the
decrease in the performance is significantly lower

Figure 3.1: Average loss comparison between
different Shapley value algorithms. The red line
indicates at which point the Hybrid Shapley
algorithm started computing the full Shapley
value. Note that the standard deviation across
3 trials has been reported where applicable.

for the Shapley algorithms. It is also important to
note that the Hybrid Shapley algorithm chooses to
prune filters differently from Monte Carlo Shapley
at two points in time as can be seen by the small
deviations between the two graphs, namely at 3 and
8 filters removed. At 3 filters removed, the Hybrid
Shapley still samples the values, meaning that the
higher number of samples (due to the amelioration
parameter) did make a difference when approximat-
ing, hence the difference. And again, at 8 filters, Hy-
brid Shapley outperformed Monte Carlo Shapley,
meaning that the classic sampling algorithm failed
to approximate the Shapley values correctly. How-
ever, the significant drop in accuracy only occurs
when 10 filters have been removed, so the algorithm
choice potentially has no difference depending on at
which point the pruning is stopped.

3.2 Feature Maps

The plotted feature maps of each digit for every
convolutional layer can be seen in Figure 5.2. While
our first intention was to inspect the feature maps
produced by the second convolutional layer, we
soon realized that the features are far too abstract
for analysis and discussion. This is because deeper
layers tend to focus on more complex features such
as edges, while shallow layers focus on the shape
of the objects as a whole. Instead, we will focus
on the feature maps produced by the first convo-
lutional layer, specifically on the filters with the

7



Figure 3.2: Average accuracy comparison be-
tween different Shapley value algorithms. The
red line indicates at which point the Hybrid
Shapley algorithm started computing the full
Shapley value. Note that the standard deviation
across 3 trials has been reported where applica-
ble.

highest and lowest Shapley values. Note that the
feature maps from the first convolutional layer are
passed onto the second one, and hence are of equal
value in the discussion of their mechanisms.

In Figure 3.3, the first thing to notice is that the
digits in the feature maps produced by the filter
with the highest Shapley value are ’complete’, that
is, the digits are presented as if drawn with a sin-
gle stroke. On the other hand, the feature maps
with the lowest Shapley values are only recogniz-
able due to the phenomenon known as Gestalt’s
closure principle (Wertheimer, 1938) which states
that humans tend to fill out gaps to perceive objects
as being whole, even when fragments are missing.
Even then, if the white color were to be isolated
it would be hard to recognize the digits as they
are fragmented. For the architecture, it might be
even more difficult, as the feature maps are com-
pletely different compared to the input images and
may not capture all the unique features that distin-
guish the digits from one another. And while these
are not the feature maps that are passed on to the
final inference, they are passed onto the next con-
volutional layer which infers more complex features
from them. Hence, the low score could partially be
explained by the idea that features which do not
contribute or contribute negatively to the inference
are passed on to the next convolutional layer.

In addition to that, some of the feature maps for
the low contribution score filter share some identi-

Figure 3.3: The comparison of feature maps be-
tween the filter with the highest and lowest
Shapley value of the first convolutional layer.
Edges highlighted with the same color are iden-
tical to one another. Best seen in digital format.

cal features, which can be seen in Figure 3.3, high-
lighted by different colors. While the same identical
features are also found in the feature maps of the
filter with the highest Shapley score, since the fea-
ture maps are a somewhat accurate and whole rep-
resentation of the digits, the features extracted by
the second convolutional layer have a high proba-
bility to be useful in the final inference stage. Since
some of the highlighted edges in the low contri-
bution filter feature maps make up a significant
part of the whole feature map, the feature maps af-
ter being passed through the second convolutional
layer could share a significant amount of similar-
ities. These similarities could make it difficult for
the architecture to distinguish the differences be-
tween different digits during the final inference,
which could explain the low Shapley value.

3.3 Limitations

Shallow CNNs such as LeNet-1 are no longer used
for image classification as more modern architec-
tures are available which can achieve better perfor-
mance on such tasks. These state-of-the-art archi-
tectures are also deeper and have many more filters.
In such scenarios, reaching the point of being able
to compute full Shapley values during the pruning
process instead of approximating them using Monte
Carlo is most likely unfeasible; this is because the
percentage of filters to be pruned before reaching
the breaking point of computing actual Shapley val-
ues increases in a logarithmic manner.

In addition to that, the discussion of the feature
maps is purely speculative; since there is no stan-
dardized way to report the results, we reserve to
qualitative analysis. We attempt to interpret the
decision making of the architecture using human
reasoning and pattern recognition. Consequently,
the conclusions derived from the discussion of the

8



mechanisms behind the decision making of the
Shapley algorithm should be taken with a grain of
salt.

3.4 Future directions

While computing the actual Shapley values of fil-
ters may not be feasible for most architectures
due to the presence of a high number of filters, it
could be possible in a layer-wise pruning scenario,
as CNNs always have significantly less layers than
filters. Modern architectures such as VGG-16 (Si-
monyan & Zisserman, 2014), which consists of 16
layers, could benefit from the ability of the Hybrid
Shapley to compute actual Shapley values in later
stages of pruning, although further investigation on
the effects would be needed.
In order to further analyze the mechanics behind

the decision making of the Shapley Criterion, addi-
tional information would have to be derived for dis-
cussion. One such way is to compute image-specific
class salience maps (Simonyan et al., 2014) which
show what features the architecture pays atten-
tion to during inference. The salience maps might
provide more insight into what features the CNN
deems to be important which could partially con-
firm whether the speculations drawn from subsec-
tion 3.2 are true.

4 Conclusion

The present study explored the effectiveness of the
Hybrid Shapley Value pruning pipeline in a low-
data setting in comparison to other Shapley meth-
ods for convolutional neural networks (CNNs) and
examined the underlying decision-making mecha-
nisms. The experiments were conducted using the
MNIST dataset and a CNN architecture identi-
cal to LeNet-1, with the second convolutional layer
pruned. The results showed that the Hybrid Shap-
ley method performed significantly better than
random pruning and slightly better than Shapley
Value Monte Carlo Sampling. The feature maps
produced by the filters were also analyzed to under-
stand the network’s decision-making process. Al-
though the feature maps of the second convolu-
tional layer were too abstract for any concrete anal-
ysis, the feature maps from the first convolutional
layer potentially provide insights into the mecha-

nisms behind the decision making of Shapley Value
pruning algorithms. Overall, this work contributes
to the ongoing research on improving the efficiency
and interpretability of Shapley Value pruning algo-
rithms.

References

Ancona, M., Öztireli, C., & Gross, M. (2020). Shap-
ley value as principled metric for structured net-
work pruning. arXiv. doi: 10.48550/ARXIV.2006
.01795

Castro, J., Gómez, D., & Tejada, J. (2009). Poly-
nomial calculation of the shapley value based
on sampling. Computers Operations Research,
36 (5), 1726-1730. doi: https://doi.org/10.1016/
j.cor.2008.04.004

Deng, X., & Papadimitriou, C. H. (1994). On
the complexity of cooperative solution con-
cepts. Mathematics of Operations Research,
19 (2), 257–266.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A.,
Shuai, B., . . . Chen, T. (2015). Recent advances
in convolutional neural networks. arXiv. doi:
10.48550/ARXIV.1512.07108

Han, S., Pool, J., Tran, J., & Dally, W. J. (2015).
Learning both weights and connections for effi-
cient neural networks. arXiv. doi: 10.48550/
ARXIV.1506.02626

Hu, H., Peng, R., Tai, Y.-W., & Tang, C.-K. (2016).
Network trimming: A data-driven neuron prun-
ing approach towards efficient deep architectures.
arXiv. doi: 10.48550/ARXIV.1607.03250

James, F. (1980, sep). Monte carlo theory and
practice. Reports on Progress in Physics, 43 (9),
1145. doi: 10.1088/0034-4885/43/9/002

LeCun, Y., Boser, B., Denker, J. S., Howard, R. E.,
Habbard, W., Jackel, L. D., & Henderson, D.
(1990). Handwritten digit recognition with a
back-propagation network. In Advances in neural
information processing systems 2 (p. 396–404).
San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

9



LeCun, Y., Denker, J. S., & Solla, S. (1990). Op-
timal brain damage. In D. Touretzky (Ed.), Ad-
vances in neural information processing systems
(Vol. 2). Morgan-Kaufmann.

Li, H., Kadav, A., Durdanovic, I., Samet, H., &
Graf, H. P. (2016). Pruning filters for effi-
cient convnets. arXiv. doi: 10.48550/ARXIV
.1608.08710

Mittal, D., Bhardwaj, S., Khapra, M. M., & Ravin-
dran, B. (2018). Studying the plasticity in
deep convolutional neural networks using ran-
dom pruning. arXiv. doi: 10.48550/ARXIV.1812
.10240

Molchanov, P., Tyree, S., Karras, T., Aila, T., &
Kautz, J. (2016). Pruning convolutional neural
networks for resource efficient inference. arXiv.
doi: 10.48550/ARXIV.1611.06440

Shapley, L. S. (1952). A value for n-person games.
Santa Monica, CA: RAND Corporation. doi: 10
.7249/P0295

Simonyan, K., Vedaldi, A., & Zisserman, A. (2014).
Deep inside convolutional networks: Visualising
image classification models and saliency maps. In
Workshop at international conference on learn-
ing representations.

Simonyan, K., & Zisserman, A. (2014, 09). Very
deep convolutional networks for large-scale image
recognition. arXiv 1409.1556 .

Strumbelj, E., & Kononenko, I. (2010, mar). An
efficient explanation of individual classifications
using game theory. Journal of Machine Learning
Research, 11 , 1–18.

Wertheimer, M. (1938). Laws of organization in
perceptual forms. In A source book of gestalt psy-
chology (p. 71-88). London.

10



5 Appendix

Figure 5.1: An illustration of the full LeNet-1 architecture inference process for a randomly selected
sample of digit ’7’. In our experiments, only the 12 filters in the second convolutional layer are
pruned. The first layer remains untouched.

11



Figure 5.2: A figure illustrating the process of obtaining feature maps for each convolutional
layer from the given inputs and their respective Shapley values obtained through Monte Carlo
algorithm. Best seen in digital format.

12


	Introduction
	Shapley values
	Parallels with Neural Networks
	The Problem with Shapley values

	Research Question

	Methodology
	Data and Architecture
	MNIST
	LeNet-1

	Procedure
	Monte Carlo pruning
	Hybrid Shapley pruning
	Feature Maps

	Code Repository

	Results and Discussion
	Algorithms
	Feature Maps
	Limitations
	Future directions

	Conclusion
	Appendix

