
 
 
 
 
 

 
 

faculty of science 
and engineering 

 mathematics and applied 
mathematics 

 

 
Regularity Tests for 
Pattern DAEs 
 
 
 
 
 
 
 
 
 

Bachelor’s Project Mathematics 

March 2023 

Student: L.L.Tamba    

First supervisor: Prof. dr. S. Trenn 

Second assessor: dr.ir. H.J. (Henk) van Waarde  

 
 



Contents

Abstract 3

Introduction 4

Preliminaries 6
DAE(Differential Algebraic Equations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Weierstrass Canonical Form(WCF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Nilpotent DAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Pattern Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Graph Representation of a Pattern Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Pattern DAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Results 12
Rank Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Rank Test with Nilpotent DAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Rank Test with Regular DAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Conclusion 28

Reference 30

2



Abstract

This thesis will use a graph theoretical approach in the framework of the regularity of DAEs. The
DAEs considered will be of the pattern matrix form. The method used in this thesis will follow one of
the literature on strong structural controllability, where they also used a graph theoretical approach.
Some necessary and sufficient conditions surrounding regularity will be discussed. Beforehand,
some preliminaries on regular DAE, Weierstrass Canonical Form, Nilpotent DAE, graph theory,
and pattern matrix will be introduced. Then, a rank test based on graph theory will be introduced.
And lastly, a necessary condition on the nilpotency of a DAE along with some sufficient conditions
on the regularity of a DAE will be introduced.
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Introduction

Differential Algebraic Equations or DAE is a term used to describe any differential equations with
algebraic constraints. DAEs prove to be useful in modeling in different kinds of disciplines. They
are used in physics, economics, and even medicine among many others. DAE is derived using the
attributing laws that govern the system which is going to be modeled. For example, suppose that
we want to find out the DAE of an LC electrical circuit in Figure 1

Figure 1: LC Circuit taken from [9]

The attributing law involved is the Kirchoff Law. The law would produce the following differential
equations:

−IL + IC = 0 (1)

UL + u1 = 0 (2)

UC − u1 = 0 (3)

CU̇C − IC = 0 (4)

L ˙IL − UL = 0 (5)

or equivalently, 
C 0 0 0 0
0 L 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



U̇C

˙IL
˙IC

U̇L

u̇1

+


0 0 −1 0 0
0 0 0 −1 0
0 −1 1 0 0
1 0 0 0 −1
0 0 0 1 1



UC

IL
IC
UL

u1

 = 0 (6)

with inductance L, capacitance C, UC and IC the voltage and current through the capacitor,
respectively, UL and IL the voltage and current through the inductor, respectively, and a potential
u1. The inductance L and capacitance C are assumed to be positive but unknown. In order to
express the family of DAE for all values of C and L, we can use pattern matrices.

∗ 0 0 0 0
0 ∗ 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



U̇C

˙IL
˙IC

U̇L

u̇1

+


0 0 ∗ 0 0
0 0 0 ∗ 0
0 ∗ ∗ 0 0
∗ 0 0 0 ∗
0 0 0 ∗ ∗



UC

IL
IC
UL

u1

 = 0 (7)
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where the entry ”*” denotes a non-zero real number entry and the entry ”?” is used to denote an
arbitrary zero or non-zero entry. This is done to anticipate an entry taking any real value, which
could be the case for some parameters. Denote a DAE being modeled with pattern matrices to be
Pattern DAE.

Pattern DAE represents a family of DAE with real-valued matrices. DAE has a unique solution if
it is regular. Pattern DAE is called regular if all possible DAE representations of it are regular.
Besides regularity, there is another property of DAE that we are interested in, namely nilpotency.
As with the regular case, Pattern DAE is called nilpotent if all possible DAE representations of it are
nilpotent. A nilpotent DAE is a simpler case of a regular DAE, in terms of solvability. Investigating
regular DAEs is generally more complex than investigating nilpotent DAEs. Certainly, it is useful
to know if the system that is being modeled is nilpotent or otherwise. We can characterize the
nilpotency of a DAE by a certain rank condition on the matrix pencil of the DAE.

Due to its nature, the matrix pencil of a Pattern DAE will involve also pattern matrices in its
corresponding matrix pencil.

[1] proposes a rank test to also check the same rank condition, although for a slightly different
matrix pencil. This rank test test will serve as the main tool in this thesis. This thesis will also
use a similar approach as was done in [1] to characterize a necessary graph condition for nilpotency
of a Pattern DAE. Moreover, some minor results on sufficient graph conditions of the regularity of
a Pattern DAE will be derived in a similar manner. As a remark, [8] has introduced a necessary
and sufficient graph condition for the regularity of DAEs, although not for Pattern DAE. [8] used
weighted graphs to analyze the DAE, which unfortunately cannot be used in this Pattern DAE
case.

In the Preliminaries section, the concept of DAE, regular DAE, WCF, and nilpotent DAE will be
introduced along with graph and pattern matrix theory. Then in the Results section, the rank test
will be introduced along with its applications on nilpotency and regularity of Pattern DAE.
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Preliminaries

DAE(Differential Algebraic Equations)

DAEs are equations of the form F (x, ẋ, t) = 0. Although, the scope of this thesis only deals with
its linear form,

Eẋ = Ax+ f (8)

E and A are matrices of Rm×n and f is some inhomogeneous input. A notion (E,A) is used to
denote such a system. Like ODE(Ordinary Differential Equations), a general solution for DAE can
be obtained. However, due to a more complex nature of DAE, a different approach than what was
done for ODE needs to be taken. In general, DAE can be categorized into 2 types; regular DAE
and singular DAE.

Definition 1. The matrix pencil sE − A ∈ Rm×n[s] is called regular if, and only if, n = m and
det(sE−A) is not the zero polynomial. The matrix pair (E,A) and the corresponding DAE is called
regular whenever sE −A is regular.

DAE which are not regular are called singular DAE. In [2], solutions of both regular and singular
DAE are discussed. For regular DAE, the existence and uniqueness of solution is guaranteed for
all initial values and input f . On the other hand, singular DAE does not guarantee to have these
properties.

Example 1. Consider the DAE:0 1 0
0 0 0
0 0 0

 ẋ =

1 0 0
0 1 0
0 0 0

x+ f (9)

The DAE is singular, since det(sE−A) = 0. The DAE gives a couple of relations, namely x2 = −f2,
x1 = ẋ2 − f1 = −ḟ2 − f1 and f3 = 0.

Not for all inhomogeneity input f the solution exists. Let f = [a b c] with a, b, c ∈ Z̸=0, then since
f3 = c ̸= 0, the solution does not exist. Given that the value x3 is not restricted, the uniqueness of
solution is also not present.

In order to demonstrate the solvability of regular DAE, the concept of Weierstrass Canonical Form
will be introduced in the next section.

Weierstrass Canonical Form(WCF)

In [4], the concept of equivalence of matrix pairs is used to obtain classical solutions of DAE,

Definition 2. (E1, A1) ∼= (E2, A2) ⇔ ∃ matrices S ∈ Rm×m and T ∈ Rn×n both invertible such
that (E1, A1) = (SE2T, SA2T )

An observation of the consequence of this equivalence relation is that existence and uniqueness of
solution of one DAE transfers to another. If x solves E1ẋ = A1x + f , then let z = Tx, it can be
easily seen that z solves E2ż = A2z + S−1f .
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Theorem 1. The matrix pencil sE − A ∈ Rn×n[s] is regular if, and only if, there exist invertible
matrices S, T ∈ Cn×n such that sE−A is transformed into the Weierstrass Canonical Form (WCF)

S(sE −A)T = s

[
I 0
0 N

]
−

[
J 0
0 I

]
(10)

where J ∈ Cn1×n1, N ∈ Cn2×n2, n1 + n2 = n, are matrices in Jordan canonical form and N is
nilpotent.

Proof. See [3]

Recall that the matrix pair (E,A) is regular whenever sE−A is regular. To illustrate the theorem
in the sense of the matrix pair, the matrix pair (E,A) is regular given the existence of invertible
matrices S, T ∈ Cn×n such that (SET, SAT ) = (Ee, Ae) such that

Ee =

[
I 0
0 N

]
and Ae =

[
J 0
0 I

]
(11)

with matrices J and N as described in Theorem [1]. This can be seen by looking at how the matrix
pencil sE − A is transformed into the matrix pencil sSET − SAT by these invertible matrices
S, T ∈ Cn×n. Therefore, given sE − A regular, by Definition 2, (E,A) ∼= (Ee, Ae). Therefore, the
problem of showing the solvability of a regular DAE reduces to proving the existence and uniqueness
of the solution of (Ee, Ae).

Consider now the matrix pair (Ee, Ae) with Ee and Ae as in (13). In terms of (8), (Ee, Ae) can be
written as

[
I 0
0 N

]
ẋ =

[
J 0
0 I

]
x+ f (12)

for some x and f such that

x =

[
x1

x2

]
and f =

[
f1
f2

]
(13)

with x having dimension n, x1 and x2 will in turn have dimensions n1 and n2 such that n1+n2 = n.
The same applied to f with dimension n such that f1 and f2 have dimension n1 and n2, respectively.
This in turn will decouple the DAE (Ee, Ae) into an ODE and another simpler DAE called a
Nilpotent DAE,

ẋ1 = Jx1 + f1 (14)

Nẋ2 = x2 + f2 (15)

(14) is the ODE and (15) is the Nilpotent DAE. ODE is already guaranteed to have a unique
solution. What remains to be seen is the existence and uniqueness of solution of a Nilpotent DAE.
In the next section, Nilpotent DAE will be discussed.
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Nilpotent DAE

Nilpotent DAE is a special case of DAE where in terms of the matrix pair it can be written as
(N, I). Nilpotent DAE is a regular DAE, since it can be transformed into the Weierstrass Canonical
Form by setting the ODE part of the decoupling 0. Explicitly, Nilpotent DAE is of the form:

Nẋ = x+ f (16)

for some f inhomogeneous input and N Nilpotent matrix. A nilpotent matrix N is a matrix
N ∈ Rn×n such that there exists an integer v ∈ R with this relation:

Nv = 0 (17)

w is called the index of nilpotency of the corresponding DAE if w is the smallest possible integer
such that Nw = 0. The index of nilpotency describes how close is the Nilpotent DAE to an ODE.
In more complicated cases of DAE, possibly nonlinear, there are other forms of index. Amongst
them are Kronecker index, differentiation index, perturbation index, tractability index, geometric
index, and strangeness index. These indexes in the framework of this thesis are equivalent, since
we are considering only linear DAE.

Due to the unique property of a nilpotent matrix, a solution formula for a nilpotent DAE can be
formed. Consider the Nilpotent DAE (N, I) with index of nilpotency n. Apply N d

dt into both sides
of (16) successively up to n times

Nẋ = x+ f (18)

N2ẍ = Nẋ+Nḟ = x+ f +Nḟ (19)

N3 ...x = N2ẍ+N2f̈ = x+ f +Nḟ +N2f̈ (20)

... (21)

Nnx(n) = x+

n−1∑
i=0

N if (i) (22)

Since Nn = 0, the last iteration of the above operation will result in:

x = −
n−1∑
i=0

N if (i) (23)

This shows that the solution x is determined by the inhomogeneity input f uniquely. Therefore,
the solution of Nilpotent DAE exists and is unique.

Graph Theory

A graph is G(V,E) such that V is the set of vertices(or nodes) and E the set of edges with
V = 1, 2, ..., p. p corresponds to the total number of vertices. An edge is an unordered {i, j} or
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ordered (i, j) pair of vertices such that i, j ∈ V . There are many ways that we can construct a
graph. Consider one type of graph, namely the directed nonsimple graph. A directed graph is a
graph where the edge is an ordered pair. In a directed graph, an edge (i, j) corresponds to an arrow
that goes from vertex i to vertex j. A nonsimple graph is a graph where multiple edges and loops
are allowed. A loop is an edge (i, j) where i = j. In the graph drawing, a loop corresponds to an
arrow that goes from a vertex to itself. In the directed nonsimple graph, there are also the notions
of out-neighbor and in-neighbor. For a vertex v ∈ V , the set of out-neighbors and in-neighbors of
v are denoted by O(v) and I(v), respectively. They are defined by:

O(v) = {w|(v, w) ∈ E}. and I(v) = {w|(w, v) ∈ E}. (24)

Example 2. Example of a directed nonsimple graph G(V,E) with V = {1, 2, 3, 4} is given in Figure
1.

2

1

3

4

Figure 2: Graph G(V,E) with V={1,2,3,4}

This graph has edges E = {(1, 2), (1, 1), (2, 3), (3, 4)}. O(1) = {2}, I(2) = {1}. The graph has
directed edges and also a loop, therefore it is a directed nonsimple graph.

Pattern Matrix

Let M be a matrix such that M ∈ {0, ∗, ?}m×n. * denotes an arbitrary non zero entry and ?
denotes an arbitrary zero or non-zero entry. This M matrix is called a pattern matrix. Examples
of 3× 3 pattern matrices:

M1 =

 ∗ 0 ∗
0 ? ∗
∗ ∗ ∗

 ,M2 =

 ∗ ∗ ?
? 0 0
0 0 0

 ,M3

 ∗ ? ?
? 0 ∗
? ? ∗



For a given pattern matrix M ∈ {0, ∗, ?}m×n, the pattern class of M is defined as:

9



Definition 3. P(M) := {M ∈ Rm×n|Mij = 0 if Mij = 0 and Mij ̸= 0 if Mij = ∗}

Example 3. Take a pattern matrix M1 in one of the examples of 3× 3 pattern matrices. Here are
some elements of P(M1): 1 0 −1

0 0 2
10 −5 7

 ,

 3 0 1
0 5 −2
10 10 10

 ,

 1 0 1
0 1 1
1 1 1



Next, a definition of a nilpotent pattern matrix is introduced:

Definition 4. a pattern matrix N ∈ {0, ∗, ?}n×n is nilpotent if for all N ∈ P (N ), N is nilpotent

Graph Representation of a Pattern Matrix

Next, an association between a graph and a pattern matrix will be introduced. Let G(V,E) be a
graph representation for a pattern matrix M ∈ {0, ∗, ?}m×n with m ≤ n. Then, V = {1, 2, ..., n}
and E ⊆ V ×V . Denote the graph representation of matrix M as G(M). An edge (j, i) ∈ E if and
only if Mij = ∗ or Mij =?. To further characterize the matrix from the graph, we define the new
sets E∗ and E? as

Definition 5. E∗ = {(j, i)|Mi,j = ∗} and E? = {(j, i)|Mi,j =?}

E∗ and E? will contain the set of edges corresponding to the * entries of the matrix and the ?
entries of the matrix, respectively. The set of edges E of the pattern matrix will be partitioned into
E∗ and E? such that E = E∗∪E? and E∗∩E? = ∅. This is because an entry can only be either * or
? and the edges are defined as ordered pairs. This way, the graph will preserve all the information
that the pattern matrix has. An example for a graph representation of a pattern matrix will be
given.

Example 4. Let M ∈ {0, ∗, ?}3×3 be a pattern matrix such that:

M =

 0 ∗ 0
0 ? ∗
∗ 0 0


Figure 3 depicts the graph representation of the matrix M := G(M):

2

1

3

Figure 3: Graph G(M)
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The black arrows and the red arrows denote E∗ and E?, respectively. This will remain the consensus
for further graph drawing.

Pattern DAE

Recall that a DAE is often denoted as a matrix pair (E,A) with E,A ∈ Rm×n such that

Eẋ = Ax+ f (27)

Instead of using real-numbered matrices, consider a Pattern DAE. Roughly speaking, Pattern DAE
is a DAE described with pattern matrices. To be precise,

Definition 6. Pattern DAE (E ,A) is a family of DAEs such that ∀(E,A) ∈ P (E) × P (A), each
matrix pair (E,A) corresponds to a DAE (E,A).

Pattern DAE (E ,A) has a characteristic ”A” if for all (E,A) ∈ P (E)×P (A), the corresponding DAE
(E,A) has characteristic ”A”. The characteristic ”A” can be taken as regularity, or nilpotency, etc.
Formally, here is an example of when the characteristic ”A” is taken as regularity,

Definition 7. Let E ,A ∈ {0, ∗, ?}m×n, then the Pattern DAE (E ,A) is regular ⇔ for all (E,A) ∈
P (E)× P (A), the DAE (E,A) is regular.

For this reason, the term family does not mean that the DAEs have similar properties other than
belonging to the same pattern class. For example,

Example 5. Consider a regular DAE (E,A) such that,0 1 0
0 0 0
0 0 0

 ẋ =

1 0 0
0 1 0
0 0 1

x+ f (28)

Observe that the matrix E ∈ R3×3 is nilpotent with En = 0 and A ∈ R3×3 is the identity matrix.
The DAE above is regular since it takes the form of a Nilpotent DAE. Consider the Pattern DAE
(E ,A) such that,

E =

 0 ∗ 0
0 0 0
0 0 0

 ,A =

 ∗ 0 0
0 ∗ 0
0 0 ?



It can be seen easily that (E,A) ∈ P (E)×P (A). Moreover, the pair (E,A) ∈ P (E)×P (A) is regular
even though (E ,A) is not, since there exists at least an element of the pattern class P (E) × P (A)
which is not regular, namely the general DAE in (9).

Considering Pattern DAE allows for easier ways to determine the properties of a system with
variable constraints. For example, (7) is the Pattern DAE representation for the DAE description
of the electrical circuit. By examining this Pattern DAE, any attributing properties attached to
this Pattern DAE will also hold true for all its corresponding DAE pattern classes.

11



Results

Rank Test

Given a pattern matrix M ∈ {0, ∗, ?}m×n with m ≤ n, [1] introduces a rank test using G(M). This
rank test will determine if the pattern matrix M has full row rank. The rank test will rely on the
notion of colorability. G(M) will start off with all white nodes. Then, a certain procedure will be
applied to change the color of some of the nodes black. The procedure is as follows:

1. if a node i has exactly one white out-neighbor j and (i, j) ∈ E∗, we change the color of j to
black;

2. repeat step 1 until no more color changes are possible.

Recall that j is an out-neighbor of i if (i, j) ∈ E and that a loop is also an edge. After applying
the procedure, a graph G(M) for a pattern matrix M ∈ {0, ∗, ?}m×n is colorable if and only if
the nodes 1, 2, ...,m are colored black following the procedure above. By graph theory, the nodes
m + 1, ..., n are not out-neighbors of any nodes 1, ..., n, therefore they will never be colored black.
An example of colorability will be given below:

Example 6. Let us check the colorability property of the graph G(M) in Figure 3. Recall that this
graph corresponds to the matrix M ∈ {0, ∗, ?}3×3 in Example 4. Node 1 has exactly 1 out-neighbor,
namely Node 3. Furthermore, Node 3 is the only white out-neighbor of Node 1 and (1, 3) ∈ E∗.
Therefore, Node 1 colors Node 3 black.

2

1

3

Figure 4: Graph G(M)

By similar reasoning, Node 3 colors Node 2 black.

2

1

3

Figure 5: Graph G(M)

Node 2 has 2 out-neighbors, namely node 2 and node 1. However, Node 1 is the only white out-
neighbor of Node 2 and (2, 1) ∈ E∗. Therefore, Node 2 colors Node 1 black.
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2

1

3

Figure 6: Graph G(M)

Since the Nodes 1,2,3 are colored black following the procedure, therefore the graph is colorable.

Following the procedure, now we will be able to determine if G(M) is colorable given a pattern
matrix M. The next theorem will relate the notion of colorability with the row rank of the pattern
matrix.

Theorem 2. Let M ∈ {0, ∗, ?}p×q be a pattern matrix with p ≤ q. Then, M has full row rank if
and only if G(M) is colorable.

Proof. In order to prove Theorem 2, an additional lemma needs to be introduced,

Lemma 3. Let M ∈ {0, ∗, ?}p×q be a pattern matrix with p ≤ q. Consider the directed graph
G(M). Suppose that each node is colored white or black. Let D ∈ Rp×p be the diagonal matrix
defined by

Dkk =

{
1, if node k is black

0, otherwise

Suppose further that j ∈ {1, 2, ..., p} is a node for which there exists a node i ∈ {1, 2, ..., p}, possibly
identical to j, such that j is the only white out-neighbor of i and (i, j) ∈ E∗. Then, for all M ∈
P (M), we have that [M D] has full row rank if and only if [M D+ eje

T
j ] has full row rank, where

ej denotes the jth column of I.

The proof of this lemma can be found in [1]. Now we can start to proof Theorem 2. ”sufficient”
Suppose that G(M) is colorable. Let M ∈ P (M). Apply lemma 3 to G(M) with all nodes 1, ..., p
colored white. Then,

[M ] has full row rank ⇔ [M 0 + ep1
eTp1

] has full row rank (30)

for some p1 ∈ 1, 2, ..., p. p1 exists since G(M) is colorable. Again, apply lemma 3, but now to
G(M) with all nodes 1, 2, ..., p colored white except the node p1, which are colored black. Then,

[M 0 + ep1
eTp1

] has full row rank ⇔ [M 0 + ep1
eTp1

+ ep2
eTp2

] has full row rank (31)

Since G(M) is colorable, Repeat this process for all nodes 1, 2, ..., p. The last iteration would look
like:

[M 0+e1e
T
1 + ...+ep−1e

T
p−1] has full row rank ⇔ [M 0+e1e

T
1 + ...+epe

T
p ] has full row rank (32)

13



Combining all the results together,

[M ] has full row rank ⇔ [M 0 + ep1e
T
p1
] has full row rank ⇔ ...

⇔ [M 0 + e1e
T
1 + ...+ epe

T
p ] has full row rank (33)

By definition of ej , observe that the matrix [0+ e1e
T
1 + ...+ epe

T
p ] is nothing but an identity matrix

I ∈ Rp×p. Therefore,

[M ] has full row rank ⇔ [M I] has full row rank (34)

Observe that the matrix [M I] has a full row rank. Therefore, we can conclude that [M ] has a full
row rank for all M ∈ P (M) and that M has full row rank. ”necessary” Suppose that M has full
row rank, but G(M) is not colorable. Let C be the set of nodes that are colored black by repeated
application of the color change rule until no more color changes are possible. Then, C is a subset
of 1, 2, ..., p with a dimension stricly smaller than p. Thus, after reordering the nodes, M can be
partitioned as

M =

[
M1

M2

]
(35)

withM1 ∈ {0, ∗, ?}p1×q containing all the rows corresponding to the subset C andM2 ∈ {0, ∗, ?}p2×q

the remaining rows of M such that p1+p2 = p. Observe that none of the columns of M2 containing
only one * entry, while all other entries of the column are 0. Therefore, the structure of the column
of M2 will be either one of the following cases:

1. all the entries are 0.

2. One of the entries is ? with the rest of the entries 0.

3. At least two entries belong to the set {∗, ?}.

Take a matrix M2 ∈ P (M2) such that the entries of the columns are:

1. all 0 for a column corresponding to case 1

2. Take 0 as the entry for ? for a column corresponding to case 2

3. if the column is corresponding to case 3, then set the pattern entries as real numbers such
that their sum is 0. Observe that this is possible, since there are at least 2 pattern entries
belonging to the set {∗, ?}

Observe that the matrix M2 ∈ P (M2) has its row sums zero, that is 1TM2 = 0, where 1 denotes
the vector of all ones with size p2.

Take such M2 and any M1 ∈ M1, then

M =

[
M1

M2

]
∈ P

([
M1

M2

])
= P (M) (36)

such that [0T 1T ]M = 0 with 0 denotes the vector of all zeros with size p1 and 1 denotes the vector
of all ones with size p2.

By definition, M does not have full rank. Therefore, M does not have full rank, which is a
contradiction. Therefore, G(M) is colorable.
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Example 7. Let M ∈ {0, ∗, ?}3×3 be a pattern matrix in Example 4. Then, by Example 6, the
graph G(M) is colorable. By Theorem 2, M has full row rank.

Example 8. Let M ∈ {0, ∗, ?}10×10 such that

M =



0 0 0 ∗ 0 0 0 0 0 0
0 0 ∗ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ∗
0 0 0 0 0 0 ∗ 0 0 0
0 0 0 0 0 ∗ 0 0 0 0
0 0 0 0 ∗ 0 0 0 0 ?
0 0 0 0 0 ? 0 0 ∗ 0
∗ ? 0 0 0 0 0 0 0 0
0 ∗ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ∗ 0 0


(37)

1 2

3 4

5 6

7 8

9 10

Figure 7: Graph G(M)
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1 2

3 4

5 6

7 8

9 10

Figure 8: Graph G(M) after the rank test procedure. The sequence of coloring goes as follows: 1 colors 8, 2 colors 9, 3
colors 2, 4 colors 1, 5 colors 6, 7 colors 4, 8 colors 10, 9 colors 7, 10 colors 3, 6 colors 5

.

Since all the nodes of 1, 2, ..., 10 are colored black, G(M) is colorable and by Theorem 2, M has full
row rank.

From the example, observe that the red edges do not have the power to color a node. Therefore
its existence will not be able to increase the chance of a graph being colorable. Furthermore, red
edges also prevent colorability. Take for example this graph,

2

1

3

Figure 9: Graph G(M) for some pattern matrix M

Observe that if the red edges are removed, then the graph will be colorable. This can also be
seen when looking at one of the requirements of the colorability procedure which states that the
in-neighbor of a black-colored node has to be exactly 1. The existence of red edges might increase
the number of in-neighbors of a node.

Based on these observations, we can conclude that if a graph G(M) is colorable then G(M) with

16



its red edges removed is colorable. This is because G(M) is still colorable despite the existence of
possibly more than 1 red edge, which can prevent colorability. However, the inverse is not true also
because the existence of red edges might prevent colorability.

Rank Test with Nilpotent DAE

As we have seen above, a regular DAE can be partitioned into 2 separate algebraic equations. One
of which is nilpotent DAE. Knowing a regular DAE is nilpotent tells us that the DAE has no ODE
part on its Weierstrass Canonical Form (WCF). This would allow an easier computation of the
WCF.

A rank criterion to determine if a regular DAE is nilpotent will be introduced. This will give way
for us to put the rank test to use.

Theorem 4. Let E,A ∈ Rn×n and (E,A) be regular, then rank(λE−A) = n ∀λ ∈ C if and only if
(E,A) ∼= (N, I) for some matrix N, I ∈ Rn×n such that N is nilpotent and I is the identity matrix.

Proof. ”sufficient” Let rank(λE − A) = n ∀λ ∈ C. Assume that (E,A) ≇ (N, I) for some matrix
N, I ∈ Rn×n such that N is nilpotent and I is the identity matrix. Since (E,A) is regular, by
Theorem [1], there exist S, T ∈ Cn×n invertible matrices such that (E,A) is transformed into the
Weierstrass Canonical Form,

n = rank(λE −A) = rank(λSET − SAT ) = rank(λI − J) + rank(λN − I) (38)

with J ∈ Cn1×n1 and N ∈ Cn2×n2 such that n = n1 + n2. Let Nn be the Jordan Canonical Form
of the matrix N . Then, rank(λN − I) = rank(λNn − I). Let m be a positive integer such that
Nm = 0 and λ ∈ C is an aribtrary eigenvalue of N with its corresponding eigenvector x ∈ Cn, then

λmx = Nmx = 0 (39)

Since x is an eigenvector, λ is therefore 0. This shows that eigenvalues of N are all 0. Therefore,
Nn will be:

Nn =


0 x

. . .
. . .

. . . x
0

 (40)

with x ∈ {1, 0}. Therefore,

λNn − I =


−1 y

. . .
. . .

. . . y
−1

 (41)

with y ∈ {λ, 0}. Since λNn − I is an upper triangular matrix with non-zero entries in the diagonal,
therefore λNn−I has a full rank. In other words, rank(λN−I) = rank(λNn−I) = n2. On the other

17



hand, for all λ eigenvalues of the matrix J , rank(λI−J) < n1. Therefore, rank(λE−A) = n1+n2 <
n and we reach a contradiction. Therefore, (E,A) ∼= (N, I). ”sufficient” Let (E,A) ∼= (N, I). From
the ”necessary” proof, λN − I has full rank. Due to the equivalence relation, there exist invertible
matrices S, T ∈ Cn×n such that

λE −A = λSNT − ST (42)

Multiplication of a matrix with invertible matrices from the right or left or both does not change
its rank, since the invertible linear transformations conserve its number of linearly independent
vectors. Therefore,

rank(λE −A) = rank(λSNT − ST ) = rank(λN − I) (43)

Since λN − I has full rank, rank(λE −A) = n ∀λ ∈ C

By checking the rank of the corresponding matrix pencil, Theorem 4 tells us that we can determine
if the regular DAE is a nilpotent DAE or otherwise. An important observation is that the idea
of Theorem 4 can be extended to Pattern DAE. First, we define the equivalence relation for the
nilpotency of Pattern DAEs,

Definition 8. Let E ,A ∈ {0, ∗, ?}n×n such that the Pattern DAE (E ,A) is regular, then (E ,A) ∼=
(N , I) for some matrices N ∈ {0, ∗, ?}n×n nilpotent and I ∈ Rn×n the identity matrix ⇔ for all
(E,A) ∈ P (E)× P (A), (E,A) ∼= (N, I) for some nilpotent DAE (N, I)

Then, the corollary below will give rank conditions for a Pattern DAE to be nilpotent.

Corollary 1. Let E ,A ∈ {0, ∗, ?}n×n and (E ,A) be regular, then for an arbitrary pair (E,A) ∈
P (E) × P (A), rank(λE − A) = n ∀λ ∈ C if and only if (E ,A) ∼= (N , I) for some matrices
N ∈ {0, ∗, ?}n×n and I ∈ Rn×n such that N is nilpotent and I is the identity matrix.

Proof. Similar to Theorem 4.

In [1], checking the rank of a matrix pencil is also considered. Although, being in the framework of
controllability, they considered a different kind of matrix pencil. In order to check controllability,
they use the Hautus test,

Theorem 5. Given an ODE such that ẋ = Ax + Bu with the state x ∈ Rn, input u ∈ Rm,
A ∈ {0, ∗, ?}n×n, B ∈ {0, ∗, ?}n×m, the ODE is controllable if and only if rank(λI − A B) = n
∀λ ∈ C for all (A,B) ∈ P (A)× P (B)

[1] then proposed a theorem that together with the rank test will be able to determine controllability
for the Pattern ODE. A similar theorem as in [1] (Theorem 6) is introduced below for checking
nilpotency of a Pattern DAE:

Theorem 6. Assume E ,A ∈ {0, ∗, ?}n×n. rank(λE − A) = n for all λ ∈ C and (E,A) ∈ P (E) ×
P (A) ⇒ The conditions below are satisfied

1. A has full rank

2. Ā has full rank with Ā = E +A

for all A ∈ P (A) and Ā ∈ P (Ā) such that Ā = E +A .
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Proof. To proof the 1st condition, take λ = 0 on the assumption. This will result in A having a
full rank for all A ∈ P (A). To proof the second condition, take an arbitrary Ā ∈ P (Ā). Consider
a matrix Ē ∈ Rn×n such that

1. Ēij = 1 if Āij =?, Aij =? and Eij ∈ {∗, ?}

2. Ēij = −Āij if Āij = ∗ and Aij = 0

3. Ēij = −Āij if Āij =? and Aij = 0

4. Ēij such that Ēij ̸= −Āij and Ēij ̸= 0 if Āij =? and Aij ̸= 0 and Eij = ∗

5. Ēij ̸= −Āij if Āij =? and Aij ̸= 0 and Eij =?

6. Ēij = 0 otherwise

for i, j ∈ {1, 2, ..., n}. Claim: Ē ∈ P (E). Proof: By tracing back the pattern of E from Ā and A, it
can be checked if the matrix Ē follows the pattern of E from these cases: Let i, j ∈ {1, 2, ..., n},

1. If Āij =? and Aij =?, and Eij ∈ {?, ∗}. The entry Ēij = 1 satisfies the pattern entry of Eij in
both possible cases, since 1 ∈ ∗ and 1 ∈?.

2. If Āij = ∗ and Aij = 0, then this implies that Eij = ∗. The entry Ēij = −Āij satisfies the
pattern entry of Eij , since −Āij ∈ ∗.

3. If Āij =? and Aij = 0, then this implies that Eij =?. The entry Ēij = −Āij satisfies the
pattern entry of Eij , since −Āij ∈?.

4. If Āij =? and Aij ̸= 0 and Eij = ∗, the entry Ēij such that Ēij ̸= −Āij and Ēij ̸= 0 satisfies
the pattern entry of Eij , since Ēij is a nonzero entry.

5. If Āij =? and Aij ̸= 0 and Eij =?, the entry Ēij ̸= −Āij satisfies the pattern entry of Eij ,
since −Āij ∈?.

6. The rest of the conditions deal with the identity mapping from Aij to Āij , aside from case 1,
in terms of patterns. This implies that Eij = 0. Since also Ēij = 0, therefore Ēij satisfies the
pattern entry of Eij .

Therefore, Ē ∈ P (E). Another claim is that: Â = Ā+ Ē ∈ P (A). Proof: Let i, j ∈ {1, 2, ..., n},

1. If Āij =? and Aij =?, then Āij + Ēij ∈ Aij .

2. If Āij = ∗ and Aij = 0, then by construction, Ēij = −Āij . Therefore, Āij + Ēij = 0.
Therefore, Āij + Ēij ∈ Aij .

3. If Āij =? and Aij = 0, then by construction, Ēij = −Āij . Therefore, Āij+Ēij = 0. Therefore,
Āij + Ēij ∈ Aij .

4. If Āij =? and Aij ̸= 0, then by construction, Ēij ̸= −Āij . Therefore, Āij+Ēij ̸= 0. Therefore,
Āij + Ēij ∈ Aij .

5. For the rest of the other conditions, as seen from the previous proof of Ē ∈ P (E), Āij + Ēij =
Āij ∈ Aij , since the pattern does not change for Āij from Aij .
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Therefore, Â = Ā+ Ē ∈ P (A). Since Â ∈ P (A) and Ē ∈ P (E), therefore rank(λĒ − Â) = n for all
λ ∈ C. By taking λ = 1:

n = rank(Ē − Â) = rank(Ē − Ā− Ē) = rank(−Ā) = rank(Ā) (44)

Therefore, Ā has full rank for all Ā ∈ P (Ā).

Integrating the theorem with the rank test will result in the following corollary:

Corollary 2. Assume E ,A ∈ {0, ∗, ?}n×n. rank(λE − A) = n for all λ ∈ C and (E,A) ∈
P (E)× P (A) ⇒ The conditions below are satisfied

1. G(A) is colorable.

2. G(Ā) is colorable.

for Ā = E +A.

Proof. Assume that E ,A ∈ {0, ∗, ?}n×n and rank(λE − A) = n for all λ ∈ C and (E,A) ∈
P (E)× P (A). Then, by Theorem 6, A and Ā both have full rank for all A ∈ P (Ā) and Ā ∈ P (Ā)
such that Ā = E + A. In other words, A and Ā both have full rank. Since A and Ā are square
matrices, having full rank is equivalent to having full row rank. By Theorem 2, G(A) and G(Ā)
are colorable

The other direction unfortunately has not been able to be fully proven yet. However, we could still
say something for λ ∈ R,

Theorem 7. Assume E ,A ∈ {0, ∗, ?}n×n. rank(λE − A) = n for all λ ∈ R and (E,A) ∈ P (E) ×
P (A) ⇐ The conditions below are satisfied

1. G(A) is colorable.

2. G(Ā) is colorable.

for Ā = E +A.

Proof. Consider 2 cases. For λ = 0, then rank(λE − A) = rank(−A) = n for all (E,A) ∈ P (E)×
P (A) since G(A) is colorable and by Theorem 2, −A = A has full rank (due to A being a square
matrix, row rank corresponds to rank). For λ ̸= 0, since λE ∈ P (E), therefore λE −A ∈ P (Ā). By
assumption, G(Ā) is colorable and by Theorem 2, Ā has full rank (due to Ā being a square matrix,
row rank corresponds to rank). Therefore, rank(λE −A) = n for all (E,A) ∈ P (E)× P (A)

Showing Theorem 7 for all λ ∈ C instead of just λ ∈ R would produce a stronger result such that if
paired with Corollary 1, we could determine if a Pattern DAE (E ,A) is Nilpotent or otherwise by
checking the graphs of the pattern matrices proposed.

Nevertheless, by using Corollary 1 and Corollary 2, we could use the rank test to check a necessary
condition for nilpotency of a regular Pattern DAE. One of its applications is shown below:
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Example 9. Take S, T ∈ R10×10 invertible matrices such that (SNT, SIT ) = (E,A) for some
matrices N, I,E,A ∈ R10×10 with N nilpotent and I the identity matrix. By the equivalence relation,
(E,A) ∼= (N, I). Recall that (E,A) ∼= (N, I) implies that (E,A) is a Nilpotent DAE.

S =



0 −1 0 0 0 0 0 0 1 0
−1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 −1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0


,T =



0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 −1 0 0 1 0
1 −1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0


(45)

N =



0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0


,E =



0 0 0 0 0 0 0 1 0 −1
0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0


(46)

A =



0 1 −1 0 0 0 0 0 0 0
0 0 0 −1 0 −1 0 0 1 0
0 0 0 0 0 2 0 0 −1 0
1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 −1
0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0


(47)
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Then, take one Pattern DAE (E ,A) representation of (E,A) such that (E,A) ∈ P (E)× P (A).

E =



0 0 0 0 0 0 0 ∗ 0 ∗
0 0 ∗ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 ∗ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ∗
0 0 ∗ 0 0 0 0 0 0 0
0 0 0 0 0 ∗ 0 0 0 0


,A =



0 ∗ ∗ 0 0 0 0 0 0 0
0 0 0 ∗ 0 ∗ 0 0 ∗ 0
0 0 0 0 0 ∗ 0 0 ∗ 0
∗ ∗ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ∗ 0 0
0 0 0 0 0 0 0 0 0 ∗
0 0 0 0 ∗ 0 0 0 0 ∗
0 0 ∗ 0 0 0 0 0 0 0
0 0 0 ∗ 0 0 0 0 0 0
0 0 0 0 0 0 ∗ 0 0 0


(48)

Ā = E +A =



0 ∗ ∗ 0 0 0 0 ∗ 0 ∗
0 0 ∗ ∗ 0 ∗ 0 0 ∗ 0
0 0 0 0 0 ∗ 0 0 ∗ 0
∗ ? 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ∗ 0 0
0 0 0 0 0 0 0 0 0 ∗
0 0 0 0 ∗ 0 0 0 0 ∗
0 0 ∗ 0 0 0 0 0 0 ∗
0 0 ∗ ∗ 0 0 0 0 0 0
0 0 0 0 0 ∗ ∗ 0 0 0


(49)

Next, use the rank test in order to determine if A and Ā both have full rank. First, determine G(A)
and G(Ā):

1 2

3 4

5 6

7 8

9 10

Figure 10: Graph G(Ā)
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1 2

3 4

5 6

7 8

9 10

Figure 11: Graph G(A)

Then, apply the coloring procedure to both G(Ā) and G(A).

1 2

3 4

5 6

7 8

9 10

Figure 12: Graph G(Ā) after the rank test procedure. The coloring procedure for G(Ā) is done in this sequence: 1 colors
4, 2 colors 1, 5 colors 7, 7 colors 10, 8 colors 5
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1 2

3 4

5 6

7 8

9 10

Figure 13: Graph G(A) after the rank test procedure. The coloring procedure for G(A) is done in this sequence: 1 colors
4, 2 colors 1, 3 colors 8, 5 colors 7, 7 colors 10, 8 colors 5, 10 colors 6

Since the nodes 1, .., 10 in both G(A) and G(Ā) are not colored black following the procedure, there-
fore G(A) and G(Ā) are not colorable. By taking the contrapositive of Corollary 2, rank(λE−A) <
n for some λ ∈ C and (E,A) ∈ P (E) × P (A). By applying Corollary 1, (E ,A) ≇ (N , I) for any
arbitrary Nilpotent Pattern DAE (N , I). In other words, (E ,A) is not a Nilpotent DAE.

Now, one might wonder why (E ,A) is not a Nilpotent DAE even though (E,A) is a Nilpotent DAE.
This is a similar phenomena as the one happening in Example 5. By looking at where the rest of
the nodes which are still colored white after the procedure for G(A), namely the nodes 2, 9, 3, the
corresponding rows 2, 9, 3 are clearly dependent, since

R2 −R3 −R9 = 0 (50)

Therefore, A is not invertible and (E ,A) ≇ (N , I), since ∄S, T invertible matrices such that SAT =
I. This is due to rank(I) ̸= rank(A) = rank(SAT ).

Rank Test with Regular DAE

Another possible application of the rank test is on showing the regularity of a DAE. As seen in the
Preliminaries section, knowing that a DAE is regular guarantees the DAE has a unique solution.
The approach done here will follow the subsection ”Rank Test with Nilpotent DAE”. Firstly, some
rank conditions are introduced,

Theorem 8. Let E ,A ∈ {0, ∗, ?}m×n such that (E ,A) is a Pattern DAE with m = n, if A is
invertible then (E ,A) is regular.
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Proof. Take arbitrary E ∈ P (E) and A ∈ P (A). Since A is invertible, det(A) = det(−A) ̸= 0.
Observe that det(sE − A) ̸= 0 at s = 0, since det(sE − A) = det(−A). Therefore, det(sE − A)
is not the zero polynomial. By definition, (E,A) is regular. Since the proof is done for arbitrary
elements of P (E) and P (A), therefore (E ,A) is regular.

Theorem 9. Let E ,A ∈ {0, ∗, ?}m×n such that (E ,A) is a Pattern DAE with m = n, if E is
invertible then (E ,A) is regular.

Proof. Take arbitrary E ∈ P (E) and A ∈ P (A). Since E is invertible, E−1 ∈ Rn×n exists such that
E−1 ∈ Rn×n is the inverse of E. From linear algebra,

rank(sI − Ē−1A) = n for all s /∈ eigenvalues of Ē−1A (51)

Recall that multiplying a matrix with an invertible matrix does not change its rank. Multiply the
matrix (sI − E−1A) from the right and left by E and I of appropriate dimensions, respectively.
Therefore, for all s /∈ eigenvalues of E−1A,

n = rank(E(sI − E−1A)I) = rank(sE −A) (52)

Therefore, det(sE − A) is not the zero polynomial and by definition (E,A) is regular. Since the
proof is done for arbitrary elements of P (E) and P (A), therefore (E ,A) is regular.

Secondly, integrating the rank test into Theorem 8 and Theorem 9,

Corollary 3. Let E ,A ∈ {0, ∗, ?}m×n such that (E ,A) is a Pattern DAE with m = n, if either
G(A) or G(E) is colorable then (E ,A) is regular.

Proof. Consider 2 cases:

1. Let G(A) be colorable, then by Theorem 2, A has full row rank. Since A is a square matrix,
then A has full rank. By Theorem 8, (E ,A) is regular.

2. Let G(E) be colorable, then by Theorem 2, E has full row rank. Since E is a square matrix,
then E has full rank. By Theorem 9, (E ,A) is regular.

As a remark, Corollary 3 only serves as sufficient conditions for regularity.

Example 10. Let (E ,A) be a Pattern DAE such that E ,A ∈ {0, ∗, ?}10×10,

A =



0 ? 0 0 0 0 0 0 ∗ 0
? 0 0 0 0 0 ∗ 0 0 0
0 0 0 0 ∗ 0 ? 0 0 0
0 0 0 0 0 0 0 ∗ 0 0
0 0 0 0 0 0 0 0 0 ∗
0 0 ∗ 0 0 0 0 0 0 0
0 0 0 0 0 ∗ 0 0 0 0
0 ∗ 0 0 0 0 0 0 0 0
∗ 0 0 0 0 0 0 0 0 0
0 0 0 ∗ 0 0 0 0 0 0


,E =



? ∗ 0 ? 0 0 0 0 ∗ 0
? 0 0 0 ∗ 0 ∗ 0 0 0
0 0 0 0 ∗ ∗ ? 0 0 0
0 ∗ 0 0 0 ? 0 0 0 ∗
0 0 ? 0 ? 0 0 0 0 ∗
0 ∗ ∗ 0 0 0 0 0 0 0
0 0 ? 0 0 ∗ 0 ? 0 ?
0 ∗ 0 0 0 0 ? 0 0 0
∗ 0 0 0 0 0 0 0 ∗ 0
? 0 ? ∗ 0 ∗ 0 0 ? ∗


(53)
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Apply the procedure of the rank test to A and E,

1 2

3 4

5 6

7 8

9 10

Figure 14: Graph G(A)
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1 2

3 4

5 6

7 8

9 10

Figure 15: Graph G(A) after the rank test procedure. The sequence of the coloring is as follows: 3 colors 6, 4 colors 10, 5
colors 3, 6 colors 7, 7 colors 2, 8 colors 4, 9 colors 1, 10 colors 5, 1 colors 9, 2 colors 8

Since the nodes 1, 2, ..., 10 are colored black after the procedure is complete for G(A), G(A) is
colorable. We can actually stop here and do not need to apply the rank test to E since by Corollary
3, if G(A) is colorable, then (E ,A) is regular.
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Conclusion

This thesis has tried to use graph theory used in the framework of controllability [1] to approach
regularity. The notion of Pattern DAE is introduced and subjected to the graph theoretical approach
of [1]. Then a rank condition on nilpotency is introduced for Pattern DAE. This allows for the
application of the rank test. The first and main result is the necessary condition for a regular
Pattern DAE to be nilpotent presented in Theorem 6. Some other results regarding sufficient
conditions to prove the regularity of a Pattern DAE are also introduced in Theorem 8 and Theorem
9, by following the same method done for the nilpotent case. These theorems then are paired with
the rank test in Corollary 2 and Corollary 3 as the full detailed application of the rank test. In
each Results subsection, examples are also included in order to demonstrate the application of the
theorems and corollaries.

For further research extension of the topic, one might want to attempt to prove the other direction
of Theorem 6, namely giving a sufficient condition for a regular Pattern DAE to be nilpotent. As
this thesis followed the idea of the proof of Theorem 6 in [1] for the necessary condition, it also
might be a good place to start if one wants to attempt the other direction. Another idea to use
graph theory in the framework of regularity is to introduce a sufficient and necessary condition
for the regularity of Pattern DAE. One possible way to do this it to first introduce a similar rank
condition as in Theorem 4. By definition, a DAE (E,A) with square matrices E,A ∈ Rn×n is
regular if and only if det(sE −A) is not the zero polynomial. This is equivalent to

Theorem 10. DAE (E,A) with square matrices E,A ∈ Rn×n is regular if and only if rank(sE-
A)=n for almost all s ∈ C

Proof. ”necessary” Let the DAE (E,A) be regular. Then, det(sE − A) is not the zero polyno-
mial. Suppose that det(sE − A) = P (s) for some nonzero polynomial P (s). Consider cases of the
consequences of this:

1. det(sE −A) ̸= 0 for all s ∈ C NOT the root of P (s)

2. det(sE −A) = 0 for all s ∈ C the root of P (s)

Since P (s) is a nonzero polynomial, P (s) is of degree n integer with n > 0 or P (s) = m with m
strictly positive real value. If P (s) is of degree n integer with n > 0, by the fundamental theorem
of algebra, P (s) has at least one root. Therefore, det(sE − A) = 0 for at least one s ∈ C. if
P (s) = m with m strictly positive real value, then det(sE − A) ̸= 0 for all s ∈ C. Combining
both ”if statements”, we can conclude that det(sE − A) ̸= 0 for almost all s ∈ C. In other words,
rank(sE − A) = n for almost all s ∈ C. ”sufficient” Let rank(sE − A) = n for almost all s ∈ C,
then det(sE − A) = P (s) ̸= 0 for some s ∈ C. Therefore, det(sE − A) is not the zero polynomial.
By definition, (E,A) is regular.

Theorem 10 can be extended into Pattern DAE (E ,A) as was done in the Nilpotent Pattern DAE
case. There are a couple of literature, such as [6],[7] that deal with checking similar rank conditions,
although with a different type of matrix polynomial. For example, in [6], rank of Cλ(sI −Aλ)Bλ is
examined for almost all λ ∈ R. [6] also make use of the graph theory in deriving their results.

In terms of pattern matrices, introducing signs(+ for positive non-zero numbers and - for negative
non-zero numbers) instead of ∗ for all non-zero numbers might be worth looking into. Denote this
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by sign-definite pattern matrix. This would allow for more information retention when adding 2
pattern matrices together. Let Aij = ∗ and Bij = ∗ for some A,B ∈ {0, ∗, ?}n×n. Then Aij+Bij =?
if signs are not included. On the other hand, if signs are included, then

1. ∗
⊕

∗ =?

2. −
⊕

+ =?

3. +
⊕

− =?

4. +
⊕

+ = +

5. −
⊕

− = −

Observe that not all the results of the nonzero elements addition between Aij and Bij are ? in
otherwise would be all ? if only elements of {0, ∗, ?} are considered. it also may be worth considering
invertible pattern matrices S, T ∈ {0, ∗, ?}n×n used in Weierstrass Canonical Form(WCF).
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