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Abstract

Fixed point problems are essential to a lot of work in engineering and applied
sciences nowadays. In this paper, we look into perturbed inertial Krasnoselskii-Mann
iterations, building on the known-to-converge Krasnoselskii-Mann iterations and their
inertial or perturbed versions. We consider a general inertial scheme, which includes
both the heavy-ball method by Polyak and the momentum approach by Nesterov.
The perturbations are added on each step and show the stability of the provided
algorithm. We first establish weak convergence in the quasi-nonexpansive case and
strong convergence in the quasi-contractive setting. We then lay out generalisations and
examples, from which the real interest in these iterations surfaces. Finally, we explore the
link between Krasnoselkii-Mann iterations and the solutions to minimisation problems,
namely by the three-operator splitting method. We then illustrate this splitting scheme
through an application to the image inpainting problem.

Keywords Krasnoselskii-Mann iterations, Fixed point iterations, Nonexpansive
operators, Inertial methods, Perturbed methods, Minimisation problems, Image
inpainting
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1 INTRODUCTION

1 Introduction

The fixed point problem is a frequently encountered mathematical concept in various fields
of engineering and applied sciences. In this problem, the objective is to find a point, called
a fixed point, that does not move under the action of a self-mapping T : H → H on a real
Hilbert space H, namely a point x̂ ∈ H such that T x̂ = x̂. Fixed point problems arise in
various areas of mathematics, and iterative solution schemes are actively studied and utilised.

A first approach to the problem, established by Émile Picard in 1893 [28], consists of applying
the operator recursively. This scheme is one of the simplest methods to approximate a fixed
point and is called the Picard iterative scheme. It is given by

xk+1 = Txk,

for an initial guess x0 ∈ H. These iterations were proven to converge for contractive operators
by Stefan Banach in 1922 [2].

Mark Krasnoselskii’s work in 1955 showed that Picard iterations don’t always converge for
nonexpansive operators [16], which created a need for a new algorithm. The intuition behind
this new algorithm is that the point xk obtained from the previous iteration was likely to be
a good approximation, so it could be beneficial to incorporate it into the next iteration. This
led to the development of the now-known-as Krasnoselskii-Mann iterations [16, 21], which
provide a weighted average between the Picard iterate and the previous point. The iteration
can be expressed as

xk+1 = (1− λk)xk + λkTxk,

where (λk) are relaxation parameters. The proof for nonexpansive operators was
established by Bernard Martinet in 1972 [22]. The importance and interest of studying
Krasnoselskii-Mann iterations lie in how they generalise many known splitting algorithms
and thus allow for a unified convergence analysis study. To cite a few, these iterations include
the Douglas-Rachford method [11], the forward-backward method [33], the primal-dual method
[6], the proximal method [30] and the three-operator splitting method [7].

Although the aforementioned iterations are known to converge theoretically, any small error
can render the guarantee for convergence invalid. Such errors could arise due to rounding
errors or imprecisions when evaluating the operator T at the point xk. In some scenarios, such
as for proximal operators, evaluating Txk exactly may not be possible, further enhancing the
errors. Hence, a more realistic version of the Krasnoselskii-Mann iteration can be expressed
as

xk+1 = (1− λk)xk + λk(Txk + ek) + rk,

where (ek) represent the imprecisions in the evaluation of Txk, and (rk) account for rounding
errors.

To ensure convergence in the presence of these added errors, researchers have proposed
studying a perturbed version of the Krasnoselskii-Mann iterations [15, 18, 35]. The perturbed
Krasnoselskii-Mann iteration is given by

xk+1 = (1− λk)xk + λkTxk + εk,
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1 INTRODUCTION

where (εk) represent perturbations. By selecting εk := λkek + rk, this perturbed version
incorporates the previous imprecisions and rounding errors. It is also interesting to note that
the perturbations do not need to account for errors.

The addition of momentum has proven to be a useful technique in optimisation. The
concept was first introduced by Boris Teodorovich Polyak in 1964 [29], who showed that the
heavy-ball method accelerates convergence in certain problems. Although originally proposed
for gradient descent methods, it may be extended to Krasnoselskii-Mann iterations [9]. The
accelerated Krasnoselskii-Mann iteration is given by{

yk = xk + αk(xk − xk−1)

xk+1 = (1− λk)yk + λkTxk,

where (αk) are acceleration parameters.

The concept was later generalised by Yurii Nesterov in 1983, also initially proposed on gradient
methods for faster convergence [24]. Since then, many algorithms have been improved by
the addition of this more popular acceleration step [13, 31]. It has also been proposed to
extend the Krasnoselskii-Mann iterations with such an inertial step [10, 12, 32]. The inertial
Krasnoselskii-Mann iteration is given by{

zk = xk + βk(xk − xk−1)

xk+1 = (1− λk)zk + λkTzk,

where (βk) are acceleration parameters.

The previous two acceleration schemes may be combined into a more general algorithm,
incorporating both types of inertia [8]. The general inertial Krasnoselskii-Mann iteration is
then given by 

yk = xk + αk(xk − xk−1)

zk = xk + βk(xk − xk−1)

xk+1 = (1− λk)yk + λkTzk,

where (αk) and (βk) are acceleration parameters. One can observe that setting βk ≡ 0
results in the heavy-ball method proposed by Boris Polyak, whereas αk ≡ βk results in the
acceleration scheme proposed by Yurii Nesterov. As such, this scheme does indeed generalise
both previously mentioned acceleration methods. By taking the final natural choice of
parameters αk ≡ 0, we get another algorithm, referred to as the reflected Krasnoselskii-Mann
iterations [8], inspired by the reflected gradient method [19, 20], obtained through a similar
acceleration. The latter shall however not be covered here.

In this paper, we shall combine the addition of perturbations and the addition of inertia. We
note that errors can occur in the Krasnoselskii-Mann step and both the acceleration steps of
the algorithm, and hence there is a need to account for them in all phases. The perturbed
general inertial Krasnoselskii-Mann iteration is then given by

yk = xk + αk(xk − xk−1) + εk

zk = xk + βk(xk − xk−1) + ρk

xk+1 = (1− λk)yk + λkTzk + θk,
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1 INTRODUCTION

where (εk), (ρk) and (θk) are perturbations. For the rest of this paper, we shall drop the
term“general” to make the name less cumbersome.

We shall moreover solve a more general problem than the earlier fixed point problem, namely
we seek a shared fixed point of a family of operators Tk : H → H. To this end, we use the
same algorithm as before, with the slight change that we apply the operator Tk at iteration k
instead of the constant operator T , inspired by the recent work of Ignacio Fierro, Juan José
Maulén and Juan Peypouquet [12]. The algorithm that we study is thus given by

yk = xk + αk(xk − xk−1) + εk

zk = xk + βk(xk − xk−1) + ρk

xk+1 = (1− λk)yk + λkTkzk + θk.

This algorithm is particularly useful for problems that involve multiple operators, as it allows
to simultaneously converge to a common fixed point of all of them.

In addition to accounting for errors, perturbations in the algorithm may also be chosen
artificially to solve a specific problem. For instance, if the operators Tk do not have a common
fixed point, then we can shift all the operators towards new operators T̃k that share a fixed
point, and incorporate the shift within the perturbations. This modified algorithm can then
be used to prove convergence for a broader class of operators, including those that do not
necessarily share a fixed point. This might be useful in scenarios where the operators Tk are
successive approximations of a difficult-to-compute operator, such as a proximal or integral
operator, where the approximate operators do not necessarily share a fixed point but the fixed
point of interest is that of the limiting operator.

The paper is divided into five sections. In Section 2, we create a comprehensive list of the
results used throughout this thesis. In Section 3, we lay out proofs of the weak and strong
convergence of the aforementioned algorithm, and present some generalisations and examples.
In Section 4, we link the fixed point problem to an optimisation problem and realise that the
present algorithm includes a well-known splitting scheme. In Section 5, we present an example
of the optimisation algorithm developed earlier, namely by applying it to the image inpainting
problem. Visual results and plots shall be given to illustrate the matters. Finally, in Section
6, we conclude the paper and give some directions for further work, as well as a personal
reflection on the work done.
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2 PRELIMINARIES

2 Preliminaries

Some basic definitions and properties from functional and convex analysis, as well as linear
algebra and subdifferential calculus, are given below. A reader well familiar with those subjects
may skip to the next section, as every result presented shall be well-known and established.
Although listed with the main ideas required for the proofs, the results shall not be proven,
as they do not enter the main focus of the paper.

2.1 From Linear Algebra

We assume the basics of linear algebra and only mention a non-standard result by John
von Neumann from 1937. An elementary proof, relying on doubly-stochastic matrices, was
developed in 1973 by Leon Mirsky [23].

Theorem 2.1 (von Neumann Trace Inequality). For any two real matrices X,Y ∈ Rn×n,

|tr(XTY )| ≤
n∑

i=1

σi(X)σi(Y ),

where σi(X) and σi(Y ) represent the ordered singular values of X and Y respectively.

This result will prove itself useful when determining the proximal operator of the nuclear
norm in a later section.

2.2 From Functional Analysis

We recall a few needed definitions and basic properties from functional analysis [27], as well
as establish the notation used, and introduce some new results.

Throughout this thesis, we let H denote a real Hilbert space with associated inner product
⟨·, ·⟩, and induced norm ∥ · ∥. We denote strong (or norm) convergence by → and weak
convergence by ⇀, and define Fix(T ) := {x ∈ H : Tx = x}, the fixed points of T , Zer(T ) :=
{x ∈ H : Tx = 0}, the zeros of T , and Graph (T ) := {(x, y) : x ∈ H, y = Tx}, the graph of T .

We introduce the notion of Kuratowski convergence [5] in the context of a Hilbert space H,
which describes the limit of a sequence of sets. Namely, for a sequence (An) of subsets of H,
the Kuratowski limit inferior of (An) as n→∞ is defined as

Li An := {x ∈ H | for all open neighbourhoods U of x, U ∩An ̸= ∅ for large enough n}.

Intuitively, we may regard Li An as the set of points where the sets An accumulate.

We will employ various adjectives to describe operators and their properties that characterise
their behaviour in different contexts. An operator T : H → H is called

� nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ H,

� quasi-nonexpansive if Fix(T ) ̸= ∅ and ∥Ty− p∥ ≤ ∥y− p∥ for all y ∈ H and p ∈ Fix(T ),

� q-contractive for q ∈ (0, 1) if ∥Tx− Ty∥ ≤ q∥x− y∥ for all x, y ∈ H,

7



2 PRELIMINARIES

� q-quasi-contractive for q ∈ (0, 1) if Fix(T ) ̸= ∅ and ∥Ty − p∥ ≤ q∥y − p∥ for all y ∈ H
and p ∈ Fix(T ),

� firmly nonexpansive if ∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩ for all x, y ∈ H,

� τ -cocoercive for τ > 0 if τT is firmly nonexpansive, namely if τ∥Tx − Ty∥2 ≤ ⟨Tx −
Ty, x− y⟩ for all x, y ∈ H,

� γ-averaged for γ ∈ (0, 1) if there exists a nonexpansive operator R : H → H such that
T = (1− γ)I + γR, and

� demiclosed at y ∈ H if, for any sequence (xk) ⊂ H with xk ⇀ x and Txk → y, it holds
that Tx = y.

The previous definition may be extended to a family of operators (Tk), where Tk : H → H.
Indeed, (Tk) is called asymptotically demiclosed at y ∈ H if, for every sequence (xk) ⊂ H such
that xk ⇀ x and Tkxk → y, it follows that Tkx = y for all k. Note that this definition is not
standard.

Determining whether an operator is demiclosed may appear arduous at first. William Browder
first introduced an important result that aids in determining this in 1966, and a simplified
proof was presented by Zdzislaw Opial in 1967 [26, Lemma 2].

Theorem 2.2 (Browder’s Demiclosedness Principle). Let T : H → H be a nonexpansive
operator. Then I − T is demiclosed at any y ∈ H.

Lastly, we introduce a result that owes its name to Zdzislaw Opial. The proof is based on an
argument by contradiction, and on simple identities in Hilbert spaces [26].

Lemma 2.3 (Opial’s Lemma). Let H be a real Hilbert space, S a nonempty subset of H, and
(xk) a sequence in H. Assume

� the quantity limk→∞ ∥xk − s∥ exists for every s ∈ S and

� every weak limit point of (xk) lies in S.

Then xk ⇀ x for some point x ∈ S.

This result is convenient in proving the weak convergence of a sequence.

2.3 From Convex Analysis

We shall now introduce some notions from convex analysis [4, 25]. Through the rest of this
paper, A : H⇒ H denotes a set-valued operator, in comparison to A : H → H which denotes
a value-valued operator. For a set-valued operator A : H⇒ H, we denote the set of zeros of A
by Zer(A) := {x ∈ H : 0 ∈ Ax} and the graph of A by Graph (A) := {(x, y) ∈ H×H : y ∈ Ax},
similarly to the notation previously introduced. Moreover, an operator A : H ⇒ H is called
firmly nonexpansive if ∥u− v∥2 ≤ ⟨x− y, u− v⟩ for all (x, u), (y, v) ∈ Graph (A).

We extend the concept of monotonicity from scalar functions to operators. An operator
A : H⇒ H is called monotone if ⟨x−y, u−v⟩ ≥ 0 for all (x, u), (y, v) ∈ Graph (A). Moreover,
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2 PRELIMINARIES

A is called maximally monotone if there does not exist another monotone operator B : H⇒ H
such that Graph (A) ⊊ Graph (B).

We introduce the following theorem by Jean-Bernard Baillon and Georges Haddad from 1977,
which allows us to link Lipschitz continuity of a gradient with its cocoercivity. The proof relies
on different basic inequalities on convex functions, manipulated to obtain the desired result
[1, Corollary 10].

Theorem 2.4 (Baillon-Haddad Theorem). Let f : H → R be convex and differentiable, and
let β > 0. Then f has 1/τ -Lipschitz continuous gradient if and only if ∇f is τ -cocoercive.

Finally, for a given operator A : H⇒ H, we define its resolvent as

JA : H⇒ H, x 7→ (I +A)−1(x).

It should be noted that the resolvent operator, denoted by JA, is firmly nonexpansive and
single-valued when A is maximally monotone.

2.4 From Subdifferential Calculus

Finally, we introduce some notions of subdifferential calculus [4, 27, 34], which deals with
the study of subdifferentials, which are generalisations of derivatives to convex functions that
are not necessarily differentiable. We also recall the notion of proximal operators and their
relationship with subdifferentials.

For a proper, convex, and lower-semicontinuous function f : H → R ∪ {+∞} we define its
subdifferential at a point x ∈ H as

∂f(x) := {u ∈ H : f(x)− f(y) ≤ ⟨u, x− y⟩ ∀y ∈ H}.

Subdifferentials play a crucial role in determining the minimisers of functions. In fact, for
f : H → R ∪ {+∞} a proper, convex, and lower-semicontinuous function, it holds that x̂ is a
minimum of f if, and only if, 0 ∈ ∂f(x̂). This is known as Fermat’s Rule. It is also worth
recalling that if we furthermore require f to be strictly convex, then we can guarantee a
unique minimiser.

The first result about subdifferentials concerns the chain rule, which is similar to the chain rule
of multivariate functions. A proof presented by Juan Peypouquet is an interesting application
of the Hahn-Banach Separation Theorem [27, Proposition 3.28].

Theorem 2.5 (Subgradient Chain Rule). Let f : H → R ∪ {+∞} be proper, convex, and
lower-semicontinuous, and let L : H → H be a bounded linear operator. It holds that

∂(f ◦ L)(x) ⊃ L∗ ◦ ∂f ◦ L(x)

for all x ∈ H. Equality holds for all x ∈ H if there exists a x0 ∈ ran(L) such that f is
continuous at x0.

The following theorem by Jean-Jacques Moreau and Ralph Tyrrell Rockafellar is similar in
its proof, although somewhat more technical [27, Theorem 3.30].
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2 PRELIMINARIES

Theorem 2.6 (Moreau-Rockafeller Theorem). Let f, g : H → R ∪ {+∞} be proper, convex,
and lower-semicontinuous functions. It holds that

∂(f + g)(x) ⊃ ∂f(x) + ∂g(x)

for all x ∈ H. Equality holds for all x ∈ H if there exists a x0 ∈ dom(g) such that f is
continuous at x0.

Finally, for a proper, convex, and lower-semicontinuous function f : H → R∪{+∞} we define
its proximal operator at the point x ∈ H as the point

proxf (x) := argminu∈H

(
1

2
∥x− u∥2 + f(u)

)
.

Notice that the strongly convex nature of the objective functions assures a unique minimum.

We recall that the proximal operator is tightly linked with the resolvent. Indeed, it holds that
for a proper, convex, and lower-semicontinuous function f : H → R∪{+∞}, ∂f is maximally
monotone, and J∂f ≡ proxf is single-valued and firmly nonexpansive.
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3 Perturbed Inertial Krasnoselskii-Mann Iterations

Recall we aim to solve a problem of the following form: For a family of operators (Tk) on a
real Hilbert space H,

find x̂ ∈ H such that x̂ ∈
⋂
k≥1

Fix(Tk). (1)

This section explores the convergence of perturbed inertial Krasnoselskii-Mann iterations. The
algorithm in its most general form, for an initial guess x0, x1 ∈ H, is given by, for k ≥ 1,

yk = xk + αk(xk − xk−1) + εk

zk = xk + βk(xk − xk−1) + ρk

xk+1 = (1− λk)yk + λkTkzk + θk,

(2)

where (αk) ⊂ (0, 1) and (βk) ⊂ [0, 1) are sequences of inertial parameters, (λk) ⊂ (0, 1) is
a sequence of relaxation parameters, (εk), (ρk), (θk) ⊂ H are sequences of perturbations and
(Tk) is a family of operators on the real Hilbert space H.

To simplify the proof of convergence, we set θk ≡ 0. As such, the algorithm is given by, for
k ≥ 1, 

yk = xk + αk(xk − xk−1) + εk

zk = xk + βk(xk − xk−1) + ρk

xk+1 = (1− λk)yk + λkTkzk.

(3)

The equivalence of Algorithms (2) and (3) is proven later in the section, and our simplification
assumption is thus justified.

In Section 3.1, we delve into some basic properties needed for the following proofs. In Section
3.2 we prove, in the quasi-nonexpansive case and under some additional restrictions, the weak
convergence of (xk), (yk) and (zk) to a same fixed point of all (Tk). In Section 3.3 we establish,
in the quasi-contractive case and under some different assumptions, the strong convergence
of (xk) to the, under the newly imposed conditions, unique fixed point of all (Tk). In Section
3.4, we lay out generalisations of the convergence theorems. Finally, in Section 3.5, we present
some examples of the previously obtained results.

3.1 Basic Properties

This part is dedicated to some fundamental properties which will be made use of extensively
over the next sections. Their proofs are brief and depend largely on elementary principles.

The first property allows to bound the norm of a sum by the weighted sum of the norms. This
is particularly useful when a significant amount is known about one term, but not so much
about the other.

Property 3.1. For any x, y ∈ H and γ > 0, it holds that

(1− γ) ∥x∥2 +
(
1− 1

γ

)
∥y∥2 ≤ ∥x+ y∥2 ≤ (1 + γ) ∥x∥2 +

(
1 +

1

γ

)
∥y∥2.

11



3 PERTURBED INERTIAL KRASNOSELSKII-MANN ITERATIONS

Proof. Fix x, y ∈ H and γ > 0. First, observe that the Cauchy-Schwarz Inequality and the
Arithmetic-Geometric Inequality imply that

|⟨x, y⟩| =
∣∣∣∣〈√2γx,

1√
2γ

y

〉∣∣∣∣ ≤ ∥√2γx∥ ·
∥∥∥∥ 1√

2γ
y

∥∥∥∥ ≤ γ∥x∥2 + 1

γ
∥y∥2.

The right-most inequality follows, because

∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x, y⟩ ≤ ∥x∥2 + ∥y∥2 + γ∥x2∥+ 1

γ
∥y2∥.

The left-most inequality follows in a similar fashion, by expanding −∥x+ y∥2.

We also introduce a property that permits the deduction of the summability of a sequence.

Property 3.2. Let a ∈ (0, 1), (dk) ⊂ R be nonnegative and summable, and (Ωk) ⊂ R be some
sequence such that, for all k ≥ 1,

Ωk+1 ≤ aΩk + dk.

Then
∑∞

k=1[Ωk]+ is convergent, where [·]+ = max(0, ·).

Proof. Taking [·]+ on both sides does not interfere with the given inequality since it is an
increasing operation. Hence, for all k ≥ 1,

[Ωk+1]+ ≤ [aΩk + dk]+

=

{
aΩk + dk if aΩk ≥ −dk
0 else

=


aΩk + dk if Ωk ≥ 0

aΩk + dk if 0 ≥ aΩk ≥ −dk
0 else

≤


aΩk + dk if Ωk ≥ 0

dk if 0 ≥ aΩk ≥ −dk
dk else

= a[Ωk]+dk.

Iterating this argument yields

[Ωk+1]+ ≤ a[Ωk]+ + dk ≤ · · · ≤ ak[Ω1]+ +
k∑

j=1

ak−jdj .

12



3 PERTURBED INERTIAL KRASNOSELSKII-MANN ITERATIONS

Summing over all values of k ≥ 1 gives

∞∑
k=0

[Ωk+1]+ ≤
1

1− a
[Ω1]+ +

∞∑
k=0

k∑
j=1

ak−jdj

=
1

1− a
[Ω1]+ +

∞∑
i=0

∞∑
j=1

aidj

=
1

1− a
[Ω1]+ +

1

1− a

∞∑
j=1

dj .

Since
∑∞

j=1 dj converges, we conclude that
∑∞

k=1[Ωk]+ is convergent, as wanted.

Finally, we introduce a property allowing us to determine the convergence of a given sequence.

Property 3.3. Let (ξk) ⊂ R be a sequence such that ξk+1 − ξk ≤ dk, where (dk) ⊂ R is
summable, and such that ξk ≥ ηk − ηk−1, where (ηk) ⊂ R is nonnegative. Then (ξk) is
convergent. Moreover, if (dk) is nonnegative, the limit of (ξk) is nonnegative.

Proof. We first define χk := ξk−
∑k−1

i=1 di. By assumption, it holds that χk+1−χk ≤ 0, so (χk)
is nonincreasing. Additionally, we shall prove that (χk) is bounded by below by −Λ where
Λ :=

∑∞
i=1 di < +∞. To this extent, suppose that there exists a k0 such that χk0 < −Λ.

Then, for all k ≥ k0, it would hold that

χk0 ≥ χk ≥ ξk − Λ ≥ ηk − ηk−1 − Λ,

and hence we deduce that
ηk ≤ χk0 + Λ+ ηk−1.

Iterating this will then yield

0 ≤ ηk ≤ (k − k0) (χk0 + Λ) + ηk0 .

The right-hand side is a linear function in k with a negative slope, which is impossible since
it is positive for arbitrarily large values of k. Hence we conclude that (χk) must be bounded
by below by −Λ, and its nonincreasingness thus guarantees its convergence. Since we know
that (dk) is summable, this also guarantees the convergence of (ξk).

If (dk) is nonnegative, it follows from the summability of (dk) that
∑∞

i=k di → 0. Since
χk ≥ −Λ, it holds that ξk ≥ −

∑∞
i=k di, proving that the limit of (ξk) is nonnegative.

With these properties in mind, we are ready to tackle the proof of weak convergence of the
sequence produced by Algorithm (3).

13



3 PERTURBED INERTIAL KRASNOSELSKII-MANN ITERATIONS

3.2 Weak Convergence

To facilitate and make possible the proof of weak convergence, we shall gradually add some
restrictions to the parameters. Additionally, to facilitate future notations, for all p ∈ H and
γ1, γ2 > 0, we define, for k ≥ 1,

νk := λ−1
k − 1,

∆k(p) := ∥xk − p∥2 − ∥xk−1 − p∥2,
Bk(γ1, γ2) := (1 + γ1)

[
(1− λk)αk(1 + αk) + λkβk(1 + βk)

]
+ (1− γ2)νkαk(1− αk),

Ak(γ1, γ2) :=
(
1 + γ−1

1

) [
(1− λk)∥εk∥2 + λk∥ρk∥2

]
+ νk

(
γ−1
2 − 1

)
∥εk∥2.

Intending to deduce an inductive relationship between ∆k+1 and ∆k, we introduce the
following lemma. The subsequent results will aim to simplify most terms not related to ∆k+1

or ∆k, and eventually prove the convergence of ∥xk − p∥ for any p ∈
⋂

k≥1 Fix(Tk), which
then will lead to the weak convergence of (xk).

Lemma 3.4. Let (αk) ⊂ (0, 1) be nondecreasing, let (βk) ⊂ [0, 1], let (λk) ⊂ (0, 1) be such
that 0 < λ ≤ λk for all k ≥ 1, let (εk), (ρk) ⊂ H, and let Tk : H → H be quasi-nonexpansive
such that F :=

⋂
k≥1 Fix(Tk) ̸= ∅. Also let (xk, yk, zk) be generated by Algorithm (3). Then,

for all p ∈ F , γ1 > 0, γ2 ∈ (0, 1), and k ≥ 1,

∆k+1(p) ≤(1 + γ1)
[
(1− λk)αk + λkβk

]
∆k(p) + γ1∥xk − p∥2

+Bk(γ1, γ2)∥xk − xk−1∥2 − (1− γ2)νk(1− αk)∥xk+1 − xk∥2

− (1− γ2)νkαk∥xk+1 − 2xk + xk−1∥2 +Ak(γ1, γ2).

Proof. Fix some p ∈ F . Using the definition of xk and the quasi-nonexpansiveness of Tk, it
follows that

∥xk+1 − p∥2 = ∥(1− λk)yk + λkTkzk − p∥2

= ∥yk − p∥2 + λ2
k ∥Tkzk − yk∥2 + 2λk⟨yk − p, Tkzk − yk⟩

= (1− λk) ∥yk − p∥2 − λk(1− λk) ∥Tkzk − yk∥2 + λk∥Tzk − p∥2

≤ (1− λk) ∥yk − p∥2 − λk(1− λk) ∥Tkzk − yk∥2 + λk∥zk − p∥2.

(4)

The first term of the right-hand side of Equation (4) may be rewritten, using the definition
of yk and Property 3.1, as

∥yk − p∥2 = ∥xk − p+ αk(xk − xk−1) + εk∥2

≤ (1 + γ1)∥xk − p+ αk(xk − xk−1)∥2 +
(
1 + γ−1

1

)
∥εk∥2

= (1 + γ1)
(
∥xk − p∥2 + α2

k∥xk − xk−1∥2 + 2αk⟨xk − p, xk − xk−1⟩
)

+
(
1 + γ−1

1

)
∥εk∥2

= (1 + γ1)
(
(1 + αk)∥xk − p∥2 + αk(1 + αk)∥xk − xk−1∥2 − αk∥xk−1 − p∥2

)
+
(
1 + γ−1

1

)
∥εk∥2,

(5)

14
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for any γ1 > 0. Analogously, the last term of Equation (4) may be bounded by

∥zk − p∥2 ≤ (1 + γ1)
(
(1 + βk)∥xk − p∥2 + βk(1 + βk)∥xk − xk−1∥2 − βk∥xk−1 − p∥2

)
+
(
1 + γ−1

1

)
∥ρk∥2.

(6)

Using once again the definition of xk and yk, along with Property 3.1, we may rewrite the
middle term of Equation (4) as

−λ2
k∥Tkzk − yk∥2 = −∥xk+1 − yk∥2

= −∥xk+1 − xk − αk(xk − xk−1)− εk∥2

≤ −(1− γ2)∥xk+1 − xk − αk(xk − xk−1)∥2 +
(
γ−1
2 − 1

)
∥εk∥2

= −(1− γ2)∥xk+1 − xk∥2 − (1− γ2)α
2
k∥xk − xk−1∥2

+ (1− γ2)αk⟨xk+1 − xk, xk − xk−1⟩+
(
γ−1
2 − 1

)
∥εk∥2

= −(1− γ2)(1− αk)∥xk+1 − xk∥2 + (1− γ2)αk(1− αk)∥xk − xk−1∥2

− (1− γ2)αk∥xk+1 − 2xk + xk−1∥2 +
(
γ−1
2 − 1

)
∥εk∥2,

for all γ2 ∈ (0, 1). We multiply this equation by νk to rewrite it as

−λk(1− λk)∥yk − Tkzk∥2 ≤ −(1− γ2)νk(1− αk)∥xk+1 − xk∥2

+ (1− γ2)νkαk(1− αk)∥xk − xk−1∥2

− (1− γ2)νkαk∥xk+1 − 2xk + xk−1∥2

+
(
γ−1
2 − 1

)
νk∥εk∥2.

(7)

Combining Equations (4), (5), (6) and (7), gives, for all γ1 > 0, γ2 ∈ (0, 1),

∆k+1(p) ≤(1 + γ1)
[
(1− λk)αk + λkβk

]
∆k(p) + γ1∥xk − p∥2

+Bk(γ1, γ2)∥xk − xk−1∥2 − (1− γ2)νk(1− αk)∥xk+1 − xk∥2

− (1− γ2)νkαk∥xk+1 − 2xk + xk−1∥2 +Ak(γ1, γ2),

which yields the wanted inequality.

The term ∥xk−p∥2 presents certain difficulties since it is not accompanied by a corresponding
−∥xk−1 − p∥2, but the following proposition allows us to bound it in terms of ∆k+1 and ∆k,
which is closer to what we are trying to achieve.

Proposition 3.5. For all p ∈ F , ξ > 0, γ ∈ (0, 3ξ/4] and k ≥ 1, it holds that

γ∥xk − p∥2 − ξ∥xk+1 − 2xk + xk−1∥2 ≤
ξ

4
∆k+1(p)− ξ∆k(p).

Proof. Firstly we apply Property 3.1 twice with γ = 1
2 to obtain

−∥xk+1 − 2xk + xk−1∥2 = −∥(xk+1 − p)− 2(xk − p) + (xk−1 − p)∥2

≤ −1

2
∥(xk+1 − p)− 2(xk − p)∥2 + ∥xk−1 − p∥2

≤ 1

4
∥xk+1 − p∥2 − 2∥xk − p∥2 + ∥xk−1 − p∥2.
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Adding the term γ∥xk − p∥2 then yields that

γ∥xk − p∥2 − ξ∥xk+1 − 2xk + xk−1∥2 ≤
ξ

4
∥xk+1 − p∥2 + (γ − 2ξ) ∥xk − p∥2 + ξ∥xk−1 − p∥2.

Substituting γ ≤ 3ξ/4 generates the wanted result.

We may now introduce the main ingredient for the proof of weak convergence.

Proposition 3.6. Let (αk) ⊂ (0, 1) be nondecreasing, let (βk) ⊂ [0, 1], let (λk) ⊂ (0, 1) be such
that 0 < λ ≤ λk for all k ≥ 1, and let (εk), (ρk) ⊂ H be such that

∑∞
k=1 ∥εk∥2,

∑∞
k=1 ∥ρk∥2 <

∞. Let Tk : H → H be quasi-nonexpansive such that F :=
⋂

k≥1 Fix(Tk) ̸= ∅. Furthermore,
assume that

lim sup
k→∞

(1− λk)αk(1 + αk) + λkβk(1 + βk) + νkαk(1− αk)− νk−1(1− αk−1) < 0.

Let (xk, yk, zk) be generated by Algorithm (3). Then
∑∞

k=1 ∥xk−xk−1∥2 and
∑∞

k=1 ∥Tkzk−yk∥2
are convergent. Moreover, ∥xk − p∥ is convergent for all p ∈ F .

Proof. Firstly, fix p ∈ F . For the rest of this proof, we define ∆k := ∆k(p).

Notice that the assumption is never verified if lim supλk = 1. As we are interested in
asymptotic results, we may shift the sequence and suppose that supλk < 1, and thus define

ν := min (1, inf νk) > 0.

Additionally, α = supαk = 1 also contradicts the assumption, and thus α < 1.

We select γ1 > 0 and γ2 ∈ (0, 1) such that (1 + γ1)((1− λk)αk + λkβk) < 1 for all k ≥ 1, such
that γ1 ≤ 3(1− γ2)να0/4, and such that

lim sup
k→∞

(1 + γ1)
[
(1− λk)αk(1 + αk) + λkβk(1 + βk)

]
+ (1− γ2)

[
νkαk(1− αk)− νk−1(1− αk−1)

]
< 0.

(8)

For the remainder of this proof, we shall define Ak := Ak(γ1, γ2) and Bk := Bk(γ1, γ2).

Inequality (8) means that there exists an ε > 0 and a k0 > 0 such that, for all k ≥ k0,

Bk − (1− γ2)νk−1(1− αk−1) = (1 + γ1)
[
(1− λk)αk(1 + αk) + λkβk(1 + βk)

]
+ (1− γ2)νkαk(1− αk)− (1− γ2)νk−1(1− αk−1)

≤ −ε.

Since we are interested in asymptotic results, shifting the sequence does not affect the outcome,
and we can thus assume for simplicity that k0 = 1.
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Combining Lemma 3.4 with the above, and using that ν ≤ νk and α0 ≤ αk, we get that

∆k+1 ≤(1 + γ1)
[
(1− λk)αk + λkβk

]
∆k + γ1∥xk − p∥2

+Bk∥xk − xk−1∥2 − (1− γ2)νk(1− αk)∥xk+1 − xk∥2

− (1− γ2)νkαk∥xk+1 − 2xk + xk−1∥2 +Ak

≤(1 + γ1)
[
(1− λk)αk + λkβk

]
∆k + γ1∥xk − p∥2

+ (1− γ2)νk−1(1− αk−1)∥xk − xk−1∥2 − (1− γ2)νk(1− αk)∥xk+1 − xk∥2

− ε∥xk − xk−1∥2 − (1− γ2)να0∥xk+1 − 2xk + xk−1∥2 +Ak.

By Proposition 3.5 with ξ = (1 − γ2)να0 ∈ (0, 1) using that γ1 ∈ (0, 3ξ/4], by using that
(1+ γ1)((1−λk)αk +λkβk) ≤ 1, and by setting δk := (1− γ2)νk−1(1−αk−1)∥xk − xk−1∥2, we
obtain

(1− ξ/4)∆k+1 ≤ (1− ξ)∆k + δk − δk+1 − ε∥xk − xk−1∥2 +Ak. (9)

We now define Ck as

Ck := (1− ξ/4) ∥xk − p∥2 − (1− ξ) ∥xk−1 − p∥2 + δk.

Combining this with the previous gives us

Ck+1 − Ck ≤ (1− ξ/4)∆k+1 − (1− ξ)∆k + δk+1 − δk

≤ −ε∥xk − xk−1∥2 +Ak.
(10)

Notice that, by construction,

Ck ≥ (1− ξ/4) ∥xk − p∥2 − (1− ξ/4) ∥xk−1 − p∥2.

Applying Property 3.3 with ξk = Ck, dk = Ak and ηk = (1− ξ/4) ∥xk − p∥2 ≥ 0 shows that
(Ck) is convergent.

By Inequality (10), we obtain that

lim
k→∞

Ck − C1 =
∞∑
k=1

[Ck+1 − Ck] ≤ −ε
∞∑
k=1

∥xk − xk−1∥2 +
∞∑
k=1

Ak.

Since ε > 0, and since
∑∞

k=1Ak <∞, we can conclude that
∑∞

k=1 ∥xk−xk−1∥2 is convergent.

Additionally, by Property 3.1 with γ = 1, it holds that

λ2
k∥Tkzk − yk∥2 = ∥xk+1 − yk∥2

= ∥xk+1 − xk − αk(xk − xk−1)− εk∥2

≤ 2∥xk+1 − xk − αk(xk − xk−1)∥2 + 2∥εk∥2

≤ 4∥xk+1 − xk∥2 + 4α2
k∥xk − xk−1∥2 + 2∥εk∥2.

As such,
∑∞

k=1 ∥Tkzk − yk∥2 is convergent.
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Finally, we prove that ∥xk − p∥ is convergent. Recall Equation (9), which implies that

∆k+1 ≤ a∆k + dk,

where

a :=
4− 4ξ

4− ξ
and dk :=

4

4− ξ
δk +

4

4− ξ
Ak.

It holds that a ∈ (0, 1) since ξ ∈ (0, 1). By definition, assumption, and the previous, we know
that (dk) is nonnegative and summable. Thus, by Property 3.2,

∑∞
k=1[∆k]+ is convergent.

We define ξk := ∥xk − p∥2 −
∑k

j=1[∆j ]+, which is bounded by below by −
∑∞

k=1[∆k]+, and is
nonincreasing since

ξk+1 − ξk = ∥xk+1 − p∥2 − ∥xk − p∥2 − [∆k+1]+ = ∆k+1 − [∆k+1]+ ≤ 0.

It must thus be convergent, which implies that ∥xk − p∥2 is convergent, as wanted.

With all these results, we may finally conclude the weak convergence of (xk), (yk) and (zk)
to a point in F .

Theorem 3.7. Let (αk) ⊂ (0, 1) be nondecreasing, let (βk) ⊂ [0, 1], let (λk) ⊂ (0, 1) be such
that 0 < λ ≤ λk for all k ≥ 1, and let (εk), (ρk) ⊂ H such that

∑∞
k=1 ∥εk∥2,

∑∞
k=1 ∥ρk∥2 <∞.

Let Tk : H → H be quasi-nonexpansive such that (I − Tk) is asymptotically demiclosed and
such that F :=

⋂
k≥1 Fix(Tk) ̸= ∅. Furthermore, assume that

lim sup
k→∞

(1− λk)αk(1 + αk) + λkβk(1 + βk) + νkαk(1− αk)− νk−1(1− αk−1) < 0.

Let (xk, yk, zk) be generated by Algorithm (3). Then (xk), (yk) and (zk) converge weakly to a
same point in F as k →∞.

Proof. Firstly notice that (xk+1 − xk) converges strongly to 0 by Proposition 3.6. Hence, by
the definition of yk and zk, it follows that (xk), (yk) and (zk) share the same set of weak limit
points, since εk, ρk → 0. Moreover,

yk − zk = (αk − βk)(xk − xk−1) + εk − ρk → 0.

By Proposition 3.6 again, we know that limk→∞ ∥xk − p∥ exists for all p ∈ F . Additionally,
Proposition 3.6 also shows that

(I − Tk)zk = (yk − Tkzk)− (yk − zk)→ 0.

The asymptotic demiclosedness of (I − Tk) thus implies that for any weak limit point z of
(zk), thus also for any weak limit point of (xk), we have z ∈ F .

We now apply Opial’s Lemma 2.3 to deduce that (xk) must converge weakly to some value
x ∈ F , and by earlier discussion, (yk) and (zk) must also converge weakly to this same
x ∈ F .
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3.3 Strong Convergence

We now tackle the strong convergence of the sequence. We start by again defining, for all
γ1, γ2 > 0 and for k ≥ 1,

νk := λ−1
k − 1,

Bk(γ1, γ2) := (1 + γ1)
[
(1− λk)αk(1 + αk) + λkq

2
kβk(1 + βk)

]
+ (1− γ2)νkαk(1− αk),

Ak(γ1, γ2) := (γ−1
1 + 1)

[
(1− λk)∥εk∥2 + λkq

2
k∥ρk∥2

]
+ νk(γ

−1
2 − 1)∥εk∥2.

The following proves the strong convergence of the given sequence.

Theorem 3.8. Let (αk) ⊂ (0, 1) be nondecreasing, let (βk) ⊂ [0, 1], let (λk) ⊂ (0, 1) be such
that 0 < λ ≤ λk for all k ≥ 1, and let (εk), (ρk) ⊂ H such that

∑∞
k=1 ∥εk∥2,

∑∞
k=1 ∥ρk∥2 <∞.

Let Tk : H → H be qk-quasi-contractive with Fix(Tk) = {p∗} and qk ≤ q < 1. Furthermore,
assume that

lim sup
k→∞

(1−λk)αk(1+αk)+λkq
2
kβk(1+βk)+νkαk(1−αk)−

(
(1−λk)αk+λkq

2
kβk

)
νk−1(1−αk−1) < 0

Let (xk, yk, zk) be generated by Algorithm (3). Then (xk) converges strongly to p∗ as k →∞.

Proof. Firstly, define

Rk := (1− λk)αk + λkq
2
kβk, Qk := 1− λk + λkq

2
k, and Q := 1− λ+ λq2,

and notice that it holds that Rk ≤ Qk ≤ Q for all k ≥ 1. Select γ1 > 0 and γ2 ∈ (0, 1) such
that (1 + γ1)Q < 1 and such that, for some k0 > 0,

Bk(γ1, γ2)− (1 + γ1)(1− γ2)Rkνk−1(1− αk−1) ≤ 0 (11)

holds for k ≥ k0, which is possible by the limiting inequality assumption. Since we are
interested in limiting results, we may suppose that k0 = 1.

Observe that by the qk-quasi-contractivity of Tk, we may write

∥xk+1 − p∗∥2 = ∥yk − p∗ + λk(Tkzk − yk)∥2

= ∥yk − p∗∥2 + λ2
k∥Tkzk − yk∥2 + 2λk⟨yk − p∗, Tkzk − yk⟩

= (1− λk)∥yk − p∗∥2 + λk(λk − 1)∥Tkzk − yk∥2 + λk∥Tkzk − p∗∥2

≤ (1− λk)∥yk − p∗∥2 + λk(λk − 1)∥Tkzk − yk∥2 + λkq
2
k∥zk − p∗∥2.

We notice that Equations (5), (6) and (7) still hold, and that they yield

∥xk+1 − p∗∥2 ≤ (1 + γ1)
[
(1− λk)(1 + αk) + λkq

2
k(1 + βk)

]
∥xk − p∗∥2

− (1 + γ1)
[
(1− λk)αk + λkq

2
kβk

]
∥xk−1 − p∗∥2

+Bk(γ1, γ2)∥xk − xk−1∥2

− (1− γ2)νk(1− αk)∥xk+1 − xk∥2

− (1− γ2)νkαk∥xk+1 − 2xk + xk−1∥2 +Ak(γ1, γ2).
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Using the definitions of Rk and Qk, along with Equation (11) and the fact that ∥xk+1−2xk+
xk−1∥2 ≥ 0, we rewrite the previous as

∥xk+1 − p∗∥2 ≤(1 + γ1)(Rk +Qk)∥xk − p∗∥2

− (1 + γ1)Rk∥xk−1 − p∗∥2

+ (1 + γ1)(1− γ2)Rkνk−1(1− αk−1)∥xk − xk−1∥2

− (1− γ2)νk(1− αk)∥xk+1 − xk∥2

+Ak(γ1, γ2).

Since (1 + γ1)Qk−1 < 1 and Rk ≤ Q, this may be written as

Ck+1 ≤ (1 + γ1)RkCk +Ak(γ1, γ2), (12)

where

Ck := ∥xk − p∗∥2 − (1 + γ1)Qk−1∥xk−1 − p∗∥+ (1− γ2)νk−1(1− αk−1)∥xk − xk−1∥2.

We notice that all coefficients present in Ak are bounded by above, thus implying the
summability of (Ak(γ1, γ2)). In specific, Property 3.3 guarantees the convergence of (Ck) to
some C ≥ 0 by setting ξk = Ck, dk = Ak(γ1, γ2) ≥ 0, and ηk = (1 + γ1)Q∥xk − p∗∥2.

As such, for any ε > 0, there exists a k0 ≥ 1 such that, for all k ≥ k0, it holds that
Ck ∈ (C − ε, C + ε) and Ak(γ1, γ2) < ε. The latter follows since (Ak(γ1, γ2)) is nonnegative
and summable. Hence Inequality (12) implies that

C − ε ≤ (1 + γ1)Q(C + ε) + ε,

or equivalently that

ε ≥ (1− (1 + γ1)Q)C

2 + (1 + γ1)Q
.

As such we see that C = 0, since if C > 0, the right-hand side would be strictly positive,
contradicting that ε > 0 was arbitrary. As such, we can conclude that Ck → 0.

Note that ∥xk − xk−1∥2 is always positive, and hence we must see that

lim sup
k→∞

∥xk − p∗∥2 − (1 + γ1)Qk−1∥xk−1 − p∗∥2 ≤ 0.

Hence, for all ε > 0, there is a k0 ≥ 1 such that, for all k ≥ k0, it holds that

∥xk − p∗∥2 ≤ (1 + γ1)Q∥xk−1 − p∗∥2 + ε.

Iterating this then yields

∥xk − p∗∥2 ≤ ((1 + γ1)Q)k−k0∥xk0 − p∗∥2 + ε

1− (1 + γ1)Q
,

from which it follows that (xk) converges strongly to p∗, since ε > 0 is arbitrary.
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3.4 Generalisations

In this subsection, we present two generalisation directions of Theorem 3.7, in which we allow
for a stronger algorithm and a broader range of operators.

Stability in Krasnoselskii-Mann Step

The convergence of Algorithm (3) proves that the inertial steps are stable under perturbations.
We recall that in Algorithm (2) we have a third sequence of perturbations (θk) ⊂ H, which
perturb the Krasnoselskii-Mann step of the algorithm. As mentioned earlier, the convergence
of Algorithm (3) also implies the convergence of Algorithm (2). Indeed, by setting x̃k =
xk − θk−1, the latter is equivalent to

yk = x̃k + αk(x̃k − x̃k−1) + θk + αk(θk − θk−1) + εk

zk = x̃k + βk(x̃k − x̃k−1) + θk + βk(θk − θk−1) + ρk

x̃k+1 = (1− λk)yk + λkTkzk.

As such, if (εk), (ρk) and (θk) are square-summable, then (θk + αk(θk − θk−1) + εk) and
(θk + βk(θk − θk−1) + ρk) are square-summable, and hence Algorithm (2) is equivalent to
Algorithm (3) with different perturbation parameters and initial guess, and thus does still
converge. As such, Theorem 3.7 also proves that the Krasnoselskii-Mann step of the algorithm
is stable under perturbations.

Operators Not Sharing a Fixed Point

We could also relax the condition of all (Tk) to share a common fixed point. Instead, we shall
suppose that F̃ := Li(Fix(Tk)) ̸= ∅. In specific, this means there exists a sequence (pk) ⊂ H
such that pk ∈ Fix(Tk) such that pk → p∗. We define, for each k ≥ 1,

T̃k : H → H, x 7→ Tk(x+ pk − p∗)− pk + p∗. (13)

We notice that p∗ ∈ Fix(T̃k) for all k ≥ 1, such that p∗ ∈ F :=
⋂

k≥1 Fix(T̃k). We also realise

that if q ∈ F , then q ∈ Fix(T̃k) for all k ≥ 1, and as such

q = T̃k(q) = Tk(q + pk − p∗)− pk + p∗ =⇒ q + pk − p∗ ∈ Fix(Tk),

which, since ∥pk − p∗∥ → 0, implies that q ∈ F̃ . Hence we conclude that F ⊂ F̃ .

Moreover, we realise that T̃k is quasi-nonexpansive since Tk is. Indeed, Fix(T̃k) is nonempty
as it contains p∗, and for any fixed point p̃ of T̃k, p̃+ pk − p∗ is a fixed point of Tk, and thus,
for any x ∈ H, we see that

∥T̃kx− p̃∥ = ∥Tk(x+ pk − p∗)− (p̃+ pk − p∗)∥ ≤ ∥x− p̃∥,

which proves that T̃k is quasi-nonexpansive.

We also realise that Algorithm (2) boils down to
ỹk = x̃k + αk(x̃k − x̃k−1) + [pk−1 − pk + αk(pk−1 − pk−2) + εk]

z̃k = x̃k + βk(x̃k − x̃k−1) + [pk−1 − pk + βk(pk−1 − pk−2) + ρk]

x̃k+1 = (1− λk)ỹk + λkT̃kz̃k + θk,
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where x̃k = xk−pk−1+p∗, ỹk = yk−pk+p∗, and z̃k = zk−pk+p∗. Applying Algorithm (2) with
the operators (Tk), initial guesses x0, x1 ∈ H, and perturbations (εk), (ρk) and (θk) is thus
equivalent to applying it with the operators (T̃k), initial guesses x̃0, x̃1,∈ H, and perturbations
(pk−1 − pk + αk(pk−1 − pk−2) + εk), (pk−1 − pk + βk(pk−1 − pk−2) + ρk) and (θk). Since (εk),
(ρk) and (θk) are already assumed square-summable, the latter are square-summable when
∥pk − pk−1∥2 is summable, since (αk) and (βk) are bounded.

We note that it is not necessary to implement T̃k or any of the auxiliary variables x̃k, ỹk or z̃k,
which were only used to prove the convergence. Moreover, the choice of p∗ and the sequence
(pk) do not affect the result, since Li(Fix(Tk)) is independent of those quantities.

The Generalisations

Both discussions above may be combined, proving that Algorithm (2) converges for a broader
range of operators. As such, they give rise to the following corollary of Theorem 3.7.

Corollary 3.9. Let (αk) ⊂ (0, 1) be nondecreasing, let (βk) ⊂ [0, 1], let (λk) ⊂ (0, 1)
be such that 0 < λ ≤ λk for all k ≥ 1, and let (εk), (ρk), (θk) ⊂ H such that∑∞

k=1 ∥εk∥2,
∑∞

k=1 ∥ρk∥2,
∑∞

k=1 ∥θk∥2 < ∞. Let Tk : H → H be quasi-nonexpansive such
that F := Li((Fix(Tk))) ̸= ∅ such that there exists a sequence (pk) ⊂ H with pk ∈ Fix(Tk),
(pk) → p∗,

∑∞
k=1 ∥pk − pk−1∥2 < ∞, and such that (I − T̃k) is asymptotically demiclosed,

where T̃k is given by Equation (13). Furthermore, assume that

lim sup
k→∞

(1− λk)αk(1 + αk) + λkβk(1 + βk) + νkαk(1− αk)− νk−1(1− αk−1) < 0.

Let (xk, yk, zk) be generated by Algorithm (3). Then (xk), (yk) and (zk) converge weakly to a
same point in F as k →∞.

Of course, the same discussion may be applied to Theorem 3.8, and thus yield the following
result.

Corollary 3.10. Let (αk) ⊂ (0, 1) be nondecreasing, let (βk) ⊂ [0, 1), let (λk) ⊂ (0, 1)
be such that 0 < λ ≤ λk for all k ≥ 1, and let (εk), (ρk), (θk) ⊂ H such that∑∞

k=1 ∥εk∥2,
∑∞

k=1 ∥ρk∥2,
∑∞

k=1 ∥θk∥2 < ∞. Let Tk : H → H be qk-quasi-contractive
with Fix(Tk) = {pk}, qk ≤ q < 1, and pk → p∗ with

∑∞
k=1 ∥pk − pk−1∥2 < ∞. Furthermore,

assume that

lim sup
k→∞

(1−λk)αk(1+αk)+λkq
2
kβk(1+βk)+νkαk(1−αk)−

(
(1−λk)αk+λkq

2
kβk

)
νk−1(1−αk−1) < 0

Let (xk, yk, zk) be generated by Algorithm (3). Then (xk) converges strongly to p∗ as k →∞.

3.5 Examples

This final subsection is dedicated to examples of the results established previously. These are
often more friendly to apply, as the complicated conditions are relaxed.
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3 PERTURBED INERTIAL KRASNOSELSKII-MANN ITERATIONS

Averaged Operators

If we suppose that Tk ≡ T is nonexpansive, then Browder’s Demiclosedness Principle 2.2
assures that (I − T ) ≡ (I − Tk) is asymptotically demiclosed.

By letting Tk = (1−γk)I+γkR be γk-averaged, where γ > 0 and R is nonexpansive, Algorithm
(2) may be rewritten as

δk = [(1− λk)αk + (1− γk)λkβk]/(1− γkλk)

yk = xk + δk(xk − xk−1)

zk = xk + βk(xk − xk−1) + ρk

xk+1 = (1− γkλk)yk + γkλkRzk + [(1− λk)εk + (1− γk)λkρk + θk].

Hence applying Algorithm (2) with the γk-averaged operator Tk, relaxation parameters (λk),
acceleration parameters (αk) and (βk), and perturbations (εk), (ρk) and (θk) is completely
equivalent to applying it with the nonexpansive operator R, relaxation parameters (γkλk) ⊂
(0, 1), acceleration parameters (δk) and (βk), and different perturbations. Additionally, I −R
is asymptotically demiclosed, making the check for asymptotic demiclosedness redundant.
Since it is easily checked that Fix(R) = Fix(Tk), the found solution will be valid. If moreover
γkλk → η ∈ (0, 1), βk → β and δk → δ, the inequality conditions becomes

(1− η)δ(1 + δ) + ηβ(1 + β)− (η−1 − 1)(δ − 1)2 < 0.

As such, if the inequality is satisfied, (δk) is nondecreasing, and the remaining conditions of
Theorem 3.7 are satisfied, the convergence is guaranteed.

The interest in this lies in the fact that it is not necessary to implement the algorithm with the
operator R implicitly. We also do not need to test for asymptotic demiclosedness in Theorem
3.7 anymore, which substantially simplifies the conditions. Moreover, since we only require
(γkλk) ⊂ (0, 1), it might be interesting to overrelax and set 1 < λk < γ−1

k .

Uniformly Convergent Continuous Operators

Instead of supposing that all the operators are averaged with respect to the same operator,
which is a strong condition, we might simply suppose that the operators are nonexpansive
and converge uniformly to some operator T with Fix(T ) ̸= ∅. For a somewhat representative
solution to exist, we shall suppose that Fix(Tk) = Fix(T ) + {dk}, where (dk) ⊂ H such that
dk → 0 and such that

∑∞
k=1 ∥dk− dk−1∥2 <∞. We also assume that T is weakly sequentially

continuous, to make the following observations possible.

It holds that T is nonexpansive. Indeed, we notice that

∥Tx− Ty∥ ≤ ∥Tx− Tkx∥+ ∥Tkx− Tky∥+ ∥Tky − Ty∥,

for all k ≥ 1, and x, y ∈ H. The first and last terms go to zero due to the uniform convergence
of (Tk), and the second term is smaller than ∥x− y∥ by nonexpansiveness of Tk. As such, we
conclude that

∥Tx− Ty∥ ≤ ∥x− y∥,
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for all x, y ∈ H, which means that T is nonexpansive.

We then observe that Li Fix(Tk) = Fix(T ). Indeed, fixing an x ∈ Fix(T ) means that x+ dk ∈
Fix(Tk), and since dk → 0, x ∈ Li Fix(Tk). On the other hand, if x ∈ Li Fix(Tk), then there
must exist a sequence (δk) ⊂ H such that δk → 0 with x+δk ∈ Fix(Tk). As such, we can write
x+ δk = xk + dk, where xk ∈ Fix(T ), which is equivalent to xk = x− dk + δk. As dk− δk → 0,
we obtain xk → x. Finally, using that Fix(T ) is closed since T is assumed weakly sequentially
continuous, we get that x ∈ Fix(T ).

Now, since Fix(T ) ̸= ∅, we may select p∗ ∈ Fix(T ), and define pk := p∗+dk ∈ Fix(Tk) such that
pk → p∗. Moreover, since

∑∞
k=1 ∥dk − dk−1∥2 < ∞, we obtain that

∑∞
k=1 ∥pk − pk−1∥2 < ∞.

Defining the operators T̃k as in Equation (13) produces operators T̃k such that Fix(T̃k) =
Fix(T ) by construction. Moreover, it holds that T̃k → T uniformly too, since, for all x ∈ H,

∥T̃kx− Tx∥
∥x∥

≤ ∥Tk(x+ dk)− T (x+ dk)∥+ ∥T (x+ dk)− Tx∥+ ∥dk∥
∥x∥

≤ ∥Tk − T∥ · ∥x+ dk∥
∥x∥

+
2∥dk∥
∥x∥

→ 0,

since T is nonexpansive, Tk → T uniformly and dk → 0.

Additionally, if we have a sequence (xn) ⊂ H such that xn ⇀ x, we observe that

|⟨y, T̃kxk − Tx⟩| ≤ |⟨y, T̃kxk − Txk⟩|+ |⟨y, Txk − Tx⟩|

for all y ∈ H. The first term goes to 0 because (xk) is bounded since weakly convergent, and
∥T̃k−T∥ → 0 by uniform convergence of (T̃k). The second term goes to zero since T is assumed
weakly sequentially continuous. As such, T̃kxk ⇀ Tx. If we also have (I − T̃k)xk → 0, we
firstly get that T̃kxk ⇀ x, and hence by unicity of the weak limit, Tx = x, or equivalently that
x ∈ Fix(T ) = Fix(T̃k) for all k ≥ 1. As such, the family of operators (I− T̃k) is asymptotically
demiclosed.

Finally, by Corollary 3.9, under the right choice of parameters, the sequences generated by
Algorithm (2) converge weakly to a point in Li Fix(Tk) = Fix(T ).

Although the condition Fix(Tk) = Fix(T ) + {dk} seems rather restrictive, it is interesting to
notice it is automatically verified if each operator has a unique fixed point.
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4 APPLICATION TO OPTIMISATION

4 Application to Optimisation

Optimisation problems occur in various scenarios and are often represented as

min
x∈C

f(x),

where C ⊂ H is a subset of the Hilbert space H, called the constraint set, and f : H →
R ∪ {+∞} is a function, called the objective function.

In our case, we will be interested in solving minimisation problems over the entire space, where
the objective function can be written as the sum of three functions. Such a scheme is called
a three-operator splitting scheme [7]. We shall start by rewriting the minimisation problem in
the form of Problem (1) depending on various operators emerging from the problem. Next,
we prove that these operators verify certain conditions, allowing us to prove the convergence
of Algorithm (2) to a solution of the problem. Finally, we provide the algorithm in terms of
the objective function.

4.1 To a Fixed Point Problem

We aim to solve the following unconstrained minimisation problem

min
x∈H

f(x) + g(x) + h(Lx), (14)

where f, g : H → R are proper, convex, and lower-semicontinuous, h : H → R has
a 1/τ -Lipschitz-continuous gradient, and L : H → H is a bounded linear operator.
Furthermore, we assume the objective function is strictly convex, such that the problem has
a unique minimiser.

We first notice that by Fermat’s Rule, the Subgradient Chain Rule 2.5 and the
Moreau-Rockafeller Theorem 2.6, this is equivalent to finding x̂ ∈ H such that

0 ∈ ∂(f + g + h ◦ L)(x̂) = (∂f + ∂g +∇(h ◦ L))(x̂).

We know that ∂f and ∂g are maximally monotone, and that ∇(h ◦ L) is τ/∥L∥op-cocoercive
by the Baillon-Hadded Theorem 2.4.

With this in mind, we reformulate the problem into the following more general problem: For
A,B : H⇒ H maximally monotone operators and C : H → H a cocoercive operator,

find x̂ ∈ H such that x̂ ∈ Zer(A+B + C). (15)

A little manipulation is still required to write this as a fixed point problem, which the next
lemma should clear up [7, Lemma 2.2].

Lemma 4.1. Let A,B : H ⇒ H be maximally monotone and C : H → H cocoercive. Define,
for a fixed ρ > 0,

T := I − JρB + JρA ◦ (2JρB − I − ρC ◦ JρB).

Then Zer(A+B + C) = JρB(Fix(T )).
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Proof. Take any element x ∈ Zer(A + B + C). Then it follows that −ρCx ∈ ρAx + ρBx,
and hence there exists elements α ∈ ρAx and β ∈ ρBx such that α + β = −ρCx. Define
y := β + x, to obtain that there exists a y ∈ H such that

y − x = β ∈ ρBx and x− y − ρCx = α ∈ ρAx.

From this, it follows directly that

y ∈ (I + ρB)(x) and 2x− y − ρCx ∈ (I + ρA)(x).

As such, using that JρA and JρB are single-valued since A and B are maximally monotone,

x = JρB(y) and x = JρA(2x− y − ρCx).

Combining these two equations yields that

JρB(y) = JρA(2JρB − I − ρC ◦ JρB)(y).

As a consequence, y ∈ Fix(T ), proving that x ∈ JρB(Fix(T )), and hence Zer(A + B + C) ⊂
JρB(Fix(T )).

We notice all the steps are equivalences, hence proving that Zer(A+B+C) = JρB(Fix(T )).

As such, Problem (15) may be rewritten as follows: For A,B : H ⇒ H maximally monotone
operators and C : H → H a cocoercive operator, where T is defined as in Lemma 4.1,

find x̂ ∈ H such that x̂ ∈ Fix(T ).

Setting Tk ≡ T would thus bring this problem into the form of Problem (1). It thus gives
a chance to Algorithm (2) to converge, if certain conditions are verified. In that case the
generated sequence (xk) would converge to a point x̂ ∈ Fix(T ), and JρB(x̂) would be a zero
of A+B + C, and hence the unique solution to Problem (14).

4.2 Proof of Convergence

To prove that Algorithm (2) produces a convergent sequence under the right parameters with
the definition of T given in Lemma 4.1, we will prove that T is averaged and apply the
discussion of Section 3.5.

However, before proving that T is averaged, we introduce an alternative characterisation of
averaged operators [3, Proposition 2.2].

Property 4.2. Let T : H → H and let γ ∈ (0, 1). Then T is γ-averaged if and only if, for
every x, y ∈ H, it holds that

∥Tx− Ty∥2 ≤ ∥x− y∥2 − 1− γ

γ
∥(I − T )x− (I − T )y∥2.
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Proof. Let R = (1/γ)T + (1− 1/γ)I. Then T is γ-averaged if and only if R is nonexpansive.
Note that, for some fixed x, y ∈ H, it holds that

2

〈
x− y,

(T − I)x

γ
− (T − I)y

γ

〉
= ∥Rx−Ry∥2 − ∥x− y∥2 − ∥(I − T )x− (I − T )y∥2

γ2

and that

2

γ
⟨x− y, (T − I)x− (T − I)y⟩ = ∥Tx− Ty∥2

γ
− ∥x− y∥2

γ
− ∥(I − T )x− (I − T )y∥2

γ
.

Combining those yields

∥x− y∥2 − ∥Rx−Ry∥2 = 1

γ
∥Tx− Ty∥2 − 1

γ
∥x− y∥2 − 1

γ

(
1− 1

γ

)
∥(I − T )x− (I − T )y∥2.

If R is nonexpansive, the left-hand side is nonnegative for every x, y ∈ H, implying the wanted
inequation. Similarly, if the original equation holds for every x, y ∈ H, then the right-hand
side is nonnegative for every x, y ∈ H, proving that R is nonexpansive.

A first step towards proving that the operator T is averaged lies in the following lemma [7,
Lemma 3.3], which will help reach an inequality similar to the one obtained in the alternative
characterisation above.

Lemma 4.3. Let T := U + T1 ◦ V and W := I − (2U + V ), where U, T1 : H → H are firmly
nonexpansive, and V : H → H. Then, for all x, y ∈ H, we have

∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(I − T )x− (I − T )y∥2 − 2⟨T1 ◦ V x− T1 ◦ V y,Wx−Wy⟩.

Proof. Fix some x, y ∈ H, and denote T̃ = T1 ◦ V such that T = U + T̃ . Then it follows that,
since U and T1 are firmly nonexpansive,

∥Tx− Ty∥2 = ∥Ux− Uy∥2 + ∥T̃ x− T̃ y∥2 + 2⟨Ux− Uy, T̃x− T̃ y⟩
≤ ⟨Ux− Uy, x− y⟩+ ⟨T̃ x− T̃ y, V x− V y⟩+ 2⟨Ux− Uy, T̃x− T̃ y⟩
= ⟨Ux− Uy, x− y⟩+ ⟨T̃ x− T̃ y, (I −W )x− (I −W )y⟩
= ⟨Tx− Ty, x− y⟩+ ⟨T1 ◦ V x− T1 ◦ V y,Wx−Wy⟩.

Next, we notice that

2⟨Tx− Ty, x− y⟩ = ∥x− y∥2 + ∥Tx− Ty∥2 − ∥(I − T )x− (I − T )y∥2,

which, combined with the previous equation, yields the wanted result.

Now we may show that T is averaged under certain conditions [7, Proposition 3.1]. Note that
the choice of ρ in the following lemma corresponds to the step size.

Lemma 4.4. Let T1, T2 : H → H be firmly nonexpansive, and let C : H → H be τ -cocoercive.
Then, for any ρ ∈ (0, 2τ), the operator

T := I − T2 + T1 ◦ (2T2 − I − ρC ◦ T2)

is γ := 2τ
4τ−ρ -averaged.
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Proof. Let U := I − T2, V := 2T2 − I − ρC ◦ T2, and W := ρC ◦ T2 = I − (2U + V ). For any
ε > 0 and x, y ∈ H,

−2⟨T1 ◦ V x− T1◦V y,Wx−Wy⟩
= 2⟨(I − T − T2)x− (I − T − T2)y,Wx−Wy⟩
= 2⟨(I − T )x− (I − T )y,Wx−Wy⟩ − 2⟨T2x− T2y,Wx−Wy⟩
≤ 2⟨(I − T )x− (I − T )y,Wx−Wy⟩ − 2ρτ∥C ◦ T2x− C ◦ T2y∥2

≤ ε∥(I − T )x− (I − T )y∥2 + ∥Wx−Wy∥2

ε
− 2ρτ∥C ◦ T2x− C ◦ T2y∥2

= ε∥(I − T )x− (I − T )y∥2 + ρ
(ρ
ε
− 2τ

)
∥C ◦ T2x− ρC ◦ T2y∥2,

where the first inequality follows from the cocoercivity of C and the second from the
Cauchy-Schwarz Inequality and the Arithmetic-Geometric Inequality. In specific, the
inequality holds for ε = ρ/2τ > 0, for which it reduces to

−2⟨T1 ◦ V x− T1 ◦ V y,Wx−Wy⟩ ≤ ρ

2τ
∥(I − T )x− (I − T )y∥2.

On the other hand, since T2 is assumed firmly nonexpansive, we know U is too. Note that
T = U + T1 ◦ V , hence Lemma 4.3 applies, giving us

−2⟨T1 ◦ V x− T1 ◦ V y,Wx−Wy⟩ ≥ ∥Tx− Ty∥2 − ∥x− y∥2 + ∥(I − T )x− (I − T )y∥2.

Combining the two previous inequalities yields

∥Tx− Ty∥2 − ∥x− y∥2 + ∥(I − T )x− (I − T )y∥2 ≤ ρ

2τ
∥(I − T )x− (I − T )y∥2,

which in turn implies that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + ρ− 2τ

2τ
∥(I − T )x− (I − T )y∥2.

Since 2τ−ρ
2τ = 1−γ

γ for γ = 2τ
4τ−ρ , T is γ-averaged by Property 4.2.

Setting T1 = JρA and T2 = JρB, which are firmly nonexpansive as they are the resolvents of
maximally monotone operators, makes the definitions of T in Lemmas 4.1 and 4.4 coincide.
As such, T is averaged with parameter 2τ

4τ−ρ .

By the discussion in Section 3.5, Algorithm (2), under the right parameters, generates a weakly
convergent sequence (xk) to a fixed point x̂ of T , such that JρB(x̂) = proxρg(x̂) corresponds
to a solution of Problem (14).

4.3 Back to Optimisation

Recall that we are solving a problem of the following form: For f, g : H → R proper,
lower-semicontinuous, and convex functions, h : H → R a function with 1/τ -Lipschitz
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continuous gradient, and L : H → H a bounded linear operator such that f + g + h ◦ L is
strictly convex, find

min
x∈H

f(x) + g(x) + h(Lx).

In Section 4.1, the solution set was shown to be the singleton Jρ∂g(Fix(T )) = proxρg(Fix(T )),
where T is defined as

T := I − proxρg + proxρf ◦ (2proxρg − I − ρL∗ ◦ ∇h ◦ L ◦ proxρg). (16)

This operator T was proven averaged with parameter γ := 2τ
4τ−ρ∥L∥op in Section 4.2. Hence

Corollary 3.9 applies as per our discussion about averaged operators in Section 3.5, which
guarantees the weak convergence of (xk) under certain conditions on the parameters. We
also simplify some other conditions. We namely require (αk) ⊂ (0, 1) and (βk) ⊂ [0, 1]
to be nondecreasing converging to α ∈ (0, 1) and β ∈ [0, 1], (λk) ⊂ (0, 1/γ) to be
converging to λ > 0 such that λ ≤ λk for all k ≥ 1, and (εk), (ρk), (θk) ⊂ H such that∑∞

k=1 ∥εk∥2,
∑∞

k=1 ∥ρk∥2,
∑∞

k=1 ∥θk∥2 <∞. We also require that

(1− γλ)δ(1 + δ) + γλβ(1 + β)−
(
(γλ)1 − 1

)
(δ − 1)2 < 0, (17)

where
δ := [(1− λ)α+ (1− γ)λβ]/(1− γλ),

and that [(1−λ)αk+(1−γ)λβk]/(1−γλ) is nondecreasing, although the latter is guaranteed
by the nondecreasingness of (αk) and (βk).

The shared weak limit point of (xk), (yk) and (zk) will be a fixed point x̂ of T , such that
proxρg(x̂) solves Problem (14).

Breaking down the algorithm into smaller steps avoids the unnecessary overhead of computing
proxρg multiple times. The algorithm thus becomes the following.

Require: x0, x1 ∈ H, ρ ∈ (0, 2τ/∥L∥op), (αk) ⊂ (0, 1) and (βk) ⊂ [0, 1] nondecreasing
converging to α ∈ (0, 1) and β ∈ [0, 1], (λk) ⊂ (0, 1/γ) converging to λ ∈ (0, 1/γ) such that
Equation (17) holds, ε > 0, (εk), (ρk), (θk) ⊂ H such that

∑
∥εk∥2,

∑
∥ρk∥2,

∑
∥θk∥2 <∞,

and an error function R : H×H → R+.
k ← 1
while R(xk, xk−1) > ε do

yk ← xk + αk · (xk − xk−1) + εk
zk ← xk + βk · (xk − xk−1) + ρk
xgk ← proxρg(zk)

xTk ← zk − xgk + proxρf (2 · x
g
k − zk − ρL∗(∇h(L(xgk)))

xk+1 ← (1− λk) · yk + λk · xTk + θk
k ← k + 1

end while
return proxρg(xk)
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5 Image Inpainting

Given an image and a region of erased pixels in the image, the image inpainting problem
consists of restoring these erased pixels in order not to stand out with respect to their
surroundings, recreating a complete image looking realistic to the human eye. The region
of erased pixels may be a contiguous area covering an unwanted part of the image, such as a
scratch or fold mark, but might also be a set of randomly lost data in the image.

Figure 1: Original image (left), image with erased pixels (centre), and restored image (right).
Process not obtained through the described algorithm.

5.1 Mathematical Model

In this subsection, we develop a mathematical model of the image inpainting problem
described above.

Let us represent an image X of M by N pixels by a tensor in H := [0, 1]M×N×3, in which each
of the three layers represent the red, green and blue colour channels. We note that H is a
Hilbert space with the Frobenius inner product and norm naturally extended to 3-dimensional
tensors.

Let Ω be an element of {0, 1}M×N such that Ωij = 0 indicates that the pixel at position (i, j),
on all colour channels, has been damaged. Denote by A the linear operator that maps an
image to an image whose elements in Ω have been erased. More formally,

A : H → H, X 7→ X̃, where X̃ijk = Ωij ·Xijk.

One easily observes that A is a projection map since Ωij takes values in {0, 1}, and thus, for
any X ∈ H,

AAX =
∑
i,j,k

Ω2
ijXijk =

∑
i,j,k

ΩijXijk = AX.

It is also self-adjoint as, for any X,Y ∈ H,

⟨AX,Y ⟩ =
∑
i,j,k

ΩijXijkYijk = ⟨X,AY ⟩.
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As a final observation, we notice that A is bounded since

∥AX∥2 =
∑
i,j,k

Ω2
ijX

2
ijk ≤

∑
i,j,k

X2
ijk = ∥X∥2.

The equality takes place for X ∈ ran(A), proving that ∥A∥op = 1.

Let X be an image and call Xcorrupt = AX the damaged image. The objective is to recover
an image from Xcorrupt that could be a “good approximation” to X. Here, we define a “good
approximation” to be an image that mainly overlaps on the points where Ωij = 1, and which
looks smooth. If the damaged area is not too important, this should resemble the original
image.

One way to describe the smoothness of an image involves low-rank approximations [17].
Indeed, smooth images typically have a lower rank, and images with more complicated, or
irregular, details, such as noise, tend to have a higher rank. This is because complex details
require more basis functions to be represented, whereas simple smooth patterns often rely
linearly on each other.

It is thus natural to imagine that a good smoothened version of a non-smooth image can be
found via its low-rank approximation. This may be visualised by the idea in Figure 2.

Figure 2: The original (noisy) image (left), its low-rank approximation (centre), and the
remains (right).

Hence we could formulate the image inpainting problem as

min
X∈H

1

2
∥AX −Xcorrupt∥2 subject to rank(X) ≤ k,

for some pre-fixed integer value k.

This formulation however is cumbersome in that it requires to choose a k before the execution
of the program, and hence to try multiple values of k. Additionally, the rank of a matrix
is a discrete value, thus not leaving as much room for optimisation as a continuous variable
would. Instead, we may replace the constraint by adding the nuclear norm of X to the
objective function, which is defined by ∥X∥∗ :=

∑
i σi(X) and consists of a continuous value

representing how linked the columns are [14]. A lower value represents a strong linkage, often
also characterised by a low rank, although this is not necessarily the case. The nuclear norm
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not only measures the linear dependence of each row to each other as the rank does but also
takes into consideration the difference between linearly dependent rows. Although slightly
different, this quantity is still of interest and preserves the wanted properties.

Since the nuclear norm is only defined for matrices, and not for 3-dimensional tensors, we
construct the two matrices

X(1) := [X··1 X··2 X··3] and X(2) :=
[
XT

··1 XT
··2 XT

··3
]T

.

We define the image inpainting problem, for σ ∈ R>0 a regularisation parameter, as

min
X∈H

1

2
∥AX −Xcorrupt∥2 + σ∥X(1)∥∗ + σ∥X(2)∥∗. (18)

Notice this problem fits Problem (14), by writing f(X) = σ∥X(1)∥∗, g(X) = σ∥X(2)∥∗, h(X) =
1
2∥X−Xcorrupt∥2, and L = A. Since f and g are positive multiples of a norm, they are proper,
lower-semicontinuous, and convex. Since h is the square of a norm, it is strongly continuous,
and one can easily verify that ∇h(X) = X−Xcorrupt. Thus ∇h has a 1/τ -Lipschitz continuous
gradient, for τ = 1. Moreover, A is a linear bounded operator with operator norm 1, as
discussed earlier. As such, the discussion in Section 4 applies and ensures the convergence of
the presented algorithm.

5.2 Adapted Algorithm

The algorithm given at the end of Section 4.3 boils down to the following in the case of image
inpainting. Using the self-adjointness of A, that ∥A∥op = 1, that A is a linear projection map,
that A(Xcorrupt) = Xcorrupt, that τ = 1, and that ∇h(X) = X −Xcorrupt, help to simplify it
substantially. We denote γ := 2/(4− ρ).

Require: X0, X1 ∈ H = [0, 1]M×N×3, ρ ∈ (0, 2), (αk) ⊂ (0, 1) and (βk) ⊂ [0, 1] nondecreasing
converging to α ∈ (0, 1) and β ∈ [0, 1], (λk) ⊂ (0, 1/γ) converging to λ ∈ (0, 1/γ) such that
Equation (17) holds, ε > 0, (εk), (ρk), (θk) ⊂ H such that

∑
∥εk∥2,

∑
∥ρk∥2,

∑
∥θk∥2 <∞,

and an error function R : H×H → R+.
k ← 1
while R(Xk, Xk−1) > ε do

Yk ← Xk + αk · (Xk −Xk−1) + εk
Zk ← Xk + βk · (Xk −Xk−1) + ρk
Xg

k ← proxρg(Zk)

XT
k ← Zk −Xg

k + proxρf
(
2 ·Xg

k − Zk − ρ ·
(
A(Xg

k)−Xcorrupt

))
Xk+1 ← (1− λk) · Yk + λk ·XT

k + θk
k ← k + 1

end while
return proxρg(Xk)

This algorithm makes use of the proximal operator of the nuclear norm, which should thus
be computed. We first introduce another proximal operator, namely the one of the absolute
value, also called the Soft Threshold operator.

32



5 IMAGE INPAINTING

Proposition 5.1. Let λ > 0 and f(x) = λ|x|. Then it holds that

proxf (x) = sgn(x) ·max(|x| − λ, 0).

Proof. We recall that

proxf (x) = argminy∈R

(
1

2
(x− y)2 + λ|y|

)
.

We notice that the objective function is strongly convex, hence there is a unique minimiser
y∗ ∈ R. If y∗ is strictly positive, then it must be a root of the derivative of the objective
function since it is differentiable on R>0. In specific, it must hold that

y∗ = x− λ.

Since we assumed y∗ > 0, we deduce that proxf (x) = x−λ for x > λ, and that the minimiser
cannot be strictly positive for x ≤ λ. Analogously, if x < −λ, we can conclude that proxf (x) =
x + λ, and that the minimiser cannot be strictly negative if x ≥ −λ. Combining the two
secondary remarks we conclude the minimiser must be 0 for −λ ≤ x ≤ λ. Hence we have that

proxf (x) =


x− λ if x > λ,

x+ λ if x < −λ,
0 otherwise,

which is equivalent to the Soft Threshold operator.

Next, we introduce the proximal operator of the nuclear norm. We recall the nuclear norm of
a matrix X ∈ Rn×n is given by ∥X∥∗ =

∑n
i=1 σi(X).

Proposition 5.2. Let λ ∈ R>0 and f(X) = λ∥X∥∗. Then it holds that, for X ∈ Rn×n with
singular value decomposition X = UΣV T ,

proxf (X) = U [Σ− λI]+V
T ,

where [·]+ = max(·, 0) is evaluated component-wise.

Proof. Denote by F (Y ) = 1
2∥X − Y ∥2 + λ∥Y ∥∗ and by X∗ the minimiser of F , which exists

and is unique since F is strongly convex.

Recall that the associated inner product to the Frobenius norm is given by ⟨A,B⟩ = tr(ATB)
for matrices A,B ∈ Rn×n, and that ∥A∥2 = tr(ATA) =

∑n
i=1 σi(A)2. We thus get that, for

any X,Y ∈ Rn×n,

1

2
∥X − Y ∥2 = 1

2
∥X∥2 − tr(XTY ) +

1

2
∥Y ∥2 = 1

2

n∑
i=1

σi(X)2 − tr(XTY ) +
1

2

n∑
i=1

σi(Y )2.

Applying the von Neumann Trace Inequality 2.1 yields

1

2
∥X − Y ∥2 ≥ 1

2

n∑
i=1

σi(X)2 −
n∑

i=1

σi(X)σi(Y ) +
1

2

n∑
i=1

σi(Y )2 =
1

2

n∑
i=1

(σi(X)− σi(Y ))2 .
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As such, using the definition of the nuclear norm,

F (Y ) ≥ 1

2

n∑
i=1

(
(σi(X)− σi(Y ))2 + λσi(Y )

)
.

Now it holds that

F (X∗) = min
Y ∈Rn×n

F (Y )

≥ min
Y ∈Rn×n

n∑
i=1

(
1

2
(σi(X)− σi(Y ))2 + λσi(Y )

)

≥
n∑

i=1

min
Y ∈Rn×n

(
1

2
(σi(X)− σi(Y ))2 + λσi(Y )

)

=
n∑

i=1

min
σ∈R≥0

(
1

2
(σi(X)− σ)2 + λσ

)

≥
n∑

i=1

min
σ∈R

(
1

2
|σi(X)− σ|2 + λ|σ|

)
.

We know that each minimisation problem is independent of the others and is solved by
proxλ|·|(σi(X)), which by Proposition 5.1 is equal to [σi(X) − λ]+ since σi(X) is always
positive. Hence the previous reduces to

F (X∗) ≥
n∑

i=1

σi(X) ·min(σi(X), λ).

Now define X̃ = U [Σ−λI]+V
T . Since the right and left singular vectors of X and X̃ coincide

by construction, it is easy to see that the inequality in the von Neumann Trace Inequality 2.1
results in an equality, and thus that

F (X̃) =
n∑

i=1

((
σi(X)− σi(X̃)

)2
+ λσi(X̃)

)
.

Now using that σi(X̃) = [σi(X)− λ]+, we deduce that

F (X̃) =

n∑
i=1

σi(X) ·min(σi(X), λ).

Hence we conclude that it holds that F (X∗) ≥ F (X̃), and since X∗ is the unique minimiser
of F , this implies that X∗ = X̃, as wanted.

Now we may deduce the proximal operators of the functions f and g provided above. We
denote by ι1 and ι2 the inverse operators of ·(1) and ·(2), namely

ι1 : RM×3N → RM×N×3, [A B C] 7→ [A,B,C]
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and
ι2 : R3M×N → RM×N×3, [A B C]T 7→ [AT , BT , CT ].

We observe that ·(i) and ιi are linear norm-preserving bijections, and as such,

proxρf (X) = argmin
Y ∈RM×N×3

(
1

2
∥X − Y ∥2 + ρf(Y )

)
= argmin

Y ∈RM×N×3

(
1

2
∥X(1) − Y(1)∥2 + ρσ∥Y(1)∥∗

)
= ι1

(
argmin

Ỹ ∈RM×3N

(
1

2
∥X(1) − Ỹ ∥2 + ρσ∥Ỹ ∥∗

))
= ι1

(
proxρσ∥·∥∗(X(1))

)
.

Analogously, we deduce that

proxg(X) = ι2

(
proxρσ∥·∥∗(X(2))

)
.

Everything required for implementing the algorithm has thus been provided. The next
subsection will focus on the results of the given algorithm.

5.3 Numerical Results

In this part, we will study the algorithm given in the previous subsection. The image to be
inpainted has dimensions 512× 512. We shall pick a fixed tolerance of ε = 10−3, and a fixed
error function R : H×H → R+ defined by

R(Xk, Xk−1) =
∥Xk −Xk−1∥
∥Xk−1∥

.

All corrupted images shall be so randomly, with a certain percentage of pixels erased. To
ensure the termination of the algorithm, we enforce a maximal number of iterations of 100,
after which we consider that the algorithm did not converge. We always set X0 to be the zero
matrix, and X1 = Xcorrupt, such that the inertial effect is on a good trajectory at the start.

To simplify the algorithm, we set the relaxation parameters λk ≡ λ ∈ (0, 1/γ) to be constant.
We run multiple versions of the algorithm, listed below.

1. Accelerated version: The acceleration parameters are set to αk ≡ (1−1/k)α and βk = 0,
where α ∈ (0, 1) is such that

(1− γλ)δ(1 + δ)−
(
(γλ)−1 − 1

)
(δ − 1)2 < 0

is tight, where δ := (1 − λ)α/(1 − γλ). The perturbation parameters εk, ρk, θk ≡ 0 are
identically zero.

2. Inertial version: The acceleration parameters are set to αk ≡ βk ≡ (1 − 1/k)α, where
α ∈ (0, 1) is such that

α(1 + α)−
(
(γλ)−1 − 1

)
(α− 1)2 < 0

is tight. The perturbation parameters εk, ρk, θk ≡ 0 are identically zero.
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To each version of the algorithm, we also introduce a perturbed version of the same algorithm,
in which the perturbations are randomly distributed with mean O(k−1).

All experiments are run in Python, on a single-core 2.3 GHz Intel i7-1068NG7. The code may
be found on https://github.com/DanielCortild/Perturbed-Inertial-KM-Iterations.

Ratio of Erased Pixels

We first study the evolution of the number of iterations and the execution time required by
our algorithms to inpaint a randomly corrupt image at a certain percentage in (0, 1), whilst
fixing the step size ρ = 1, the relaxation parameter λ = 0.5 and the regularisation parameter
σ = 1. The results are shown in Figure 3.

Figure 3: Variation of the ratio of erased pixels for ρ = 1, λ = 0.5, and σ = 1.

We observe that the larger the ratio of deleted pixels, the more iterations are required and
the longer the algorithm runs before terminating, either by reaching the maximum number
of iterations or by reaching the required tolerance. This was of course expected, as an image
with nearly all pixels corrupted should be harder to recover than an image close to the original
smooth version.

We also see that the accelerated version is slightly worse than the inertial version of the
algorithm. Interestingly, we also notice that the algorithms do not seem to suffer from the
addition of perturbations. The perturbed versions consistently outperform the non-perturbed
versions by a few iterations. The experiments were repeated multiple times, and the same
results were observed in all of them.

Step Size

Next, we fix the relaxation parameter λ = 0.5 and the regularisation parameter σ = 1, and
randomly corrupt 50% of the pixels in the image. We iterate over representative values of the
step size ρ ∈ (0, 2). The results are shown in Figure 4.
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Figure 4: Variation of the step size ρ for λ = 0.5, σ = 1, and a ratio of erased pixels of 50%.

We observe that the number of iterations, along with the time spent to run the algorithm,
decreases as the step size increases. As such, for both versions of the algorithms, it is beneficial
to select a large step size. By selecting ρ ≈ 2, we see that γ ≈ 1, where γ is the averagedness
parameter of the operator T , such that T becomes nonexpansive. Any value of ρ within the
interval (1.5, 2) converges in a relatively low number of iterations, and we select ρ = 1.5 as an
ideal choice of step size, to allow for overrelaxation.

Once again, we observe that the addition of perturbations does not render slower the
algorithm, and even speeds it up by a few iterations, and that the inertial version of the
algorithm converges faster than the accelerated version.

Relaxation Parameter

Now we fix the step size ρ = 1 and the regularisation parameter σ = 1, and run the algorithms
on some representative values of the relaxation parameter λ ∈ (0, 1.5), on a fixed image with
50% of its pixels randomly erased. Notice that convergence is guaranteed for all such values
of λ, due to the lower value of γ. The results are illustrated in Figure 5.

Figure 5: Variation of the relaxation parameter λ for ρ = 1, σ = 1, and a ratio of erased
pixels of 50%.
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As for the step size, we observe it to be beneficial to select a large relaxation parameter. We
observe that selecting λ ≈ 1.3 yields better results than keeping λ in a neighbourhood of 1.

As in the previous two experiments, we observe that the inertial version is slightly faster than
the accelerated version and that the perturbations speed up the algorithm by a small factor.

Regularisation Parameter

Finally, we run a test on the regularisation parameter σ. Note that this parameter is not
directly correlated with the convergence rate of the algorithm, but it is used in the definition
of the problem. The purpose of the regularisation parameter is to indicate how much we
prone smoothness, represented by ∥X(1)∥∗ + ∥X(2)∥∗, over resemblance on the known pixels,
represented by ∥AX −Xcorrupt∥2.

As such, we set the step size ρ = 1 and the relaxation parameter λ = 0.5, and run the
algorithms on some representative values of the regularisation parameter σ > 0, on a fixed
image with 50% of its pixels randomly erased. The final outputs are given in Figure 6.

Figure 6: Results of the non-perturbed inertial version of the algorithm for different values of
σ, for ρ = 1, λ = 0.5, and a ratio of erased pixels of 50%.

We observe that σ = 0.0625 and σ ≥ 1 are unsuitable, as the first considers the smoothness
too little and the latter does it too much. The results for both σ = 0.25 and σ = 0.5 seem
acceptable, although the version recovered with σ = 0.5 does look better.

5.4 Visual Results

We may now group the results of the previous experiments. We shall still consider a randomly
corrupted image with a fixed percentage of 50% of erased pixels. We select a regularisation
parameter σ = 1, a step size ρ = 1.8, and a relaxation parameter λ = 1.3. We include the
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visual results of each version of the algorithm in Figure 7, and the convergence rates in Figure
8.

Figure 7: Inpainted image with λ = 1.3, ρ = 1.8, and σ = 0.5.

Figure 8: Convergence plots of the residuals of the iterations. F is the objective function to
be minimised, and X∗ and F ∗ represent the minimiser and minimal value of F .

We do observe, as earlier, that the perturbed versions of the algorithms outperform the
non-perturbed versions slightly. We also notice that, as previously observed, the inertial
version of the algorithm performs better than the accelerated version. However, all versions
do converge to a smooth picture resembling the original image, as wanted.
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6 Conclusion

This thesis focused on the convergence and practical applications of the perturbed inertial
Krasnoselskii-Mann iterations. By introducing perturbations, we were able to establish the
stability of both the inertial steps and the Krasnoselskii-Mann step. We also expanded the
range of operators that this algorithm could be applied to, such as those not necessarily
sharing a common fixed point.

Additionally, we drew a connection between fixed point problems and optimisation problems,
enabling us to develop an algorithm for solving minimisation problems. This algorithm is a
perturbed and inertial variant of the three-operator splitting method, and our convergence
proof generalised a previously proposed approach by Damek Davis and Watao Yin [7].

Furthermore, we demonstrated the practical applicability of our method by presenting an
example on the image inpainting problem. Through an extensive parameter study, we achieved
visually pleasing results.

Overall, this thesis contributes to the advancement of numerical optimisation techniques and
provides a framework for solving a broader range of problems in the future.

6.1 Further Research

The present paper does not represent a definitive study of perturbed inertial Krasnoselskii-Mann
iterations. There remain several intriguing questions and conjectures that have yet to be
explored. For instance, one could dive into the study of various rates of convergence, the
convergence for a larger class of parameters, or a detailed analysis of Bregman updates,
which will be elaborated on in the following passages.

Rates of Convergence

In Proposition 3.6, we proved that ∥xk − xk−1∥2 and ∥Tkyk − yk∥2 converge to 0. The exact
rate of convergence was not determined and certainly depends on the rate of convergence of
the perturbations. Following the results found in the paper by Juan José Maulén, Ignacio
Fierro and Juan Peypouquet [12], I conjecture the convergence to be at least O(1/k), provided
that

∑
k∥εk∥2,

∑
k∥ρk∥2 <∞.

Moreover, in Theorem 3.8, we proved the strong convergence of (xk) towards p
∗. In the paper

mentioned above, the convergence was also proven linear. This again cannot hold under the
simple square-summability condition of (εk) and (ρk), but if the sequence of perturbations
converges linearly to 0 the convergence might become linear.

Larger Class of Parameters

Theorems 3.7 and 3.8 prove convergence in the case α0 > 0. As such, this does not include
the reflected algorithm, in which αk ≡ 0, or the static algorithm, in which αk ≡ βk ≡ 0. For
further research, the main theorems could be extended to include the case αk ≡ 0.
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Bregman Updates

Instead of considering only Problem (14), we could consider the family of problems

min
x∈H

f(x) + g(x) + hk(Lx),

where f, g : H → R are proper, convex, and lower-semi-continuous, hk : H → R have
1/τ -Lipschitz-continuous gradients and are strongly convex such that ∇hk → ∇h uniformly
for some continuously differentiable function h : H → R, and L : H → H is a bounded linear
operator.

The operator mentioned in Section 4.3 then becomes the following family of operators (Tk),
defined by

Tk := I − proxρg + proxρf ◦ (2proxρg − I − ρL∗ ◦ ∇hk ◦ L ◦ proxρg).

As such, we could find a fixed point of the limiting operator Tk → T by using the algorithm
presented in Section 4.3, with non-constant h. Per Section 3.4, this will converge under certain
conditions.

To speed up convergence or to produce clearer results, mostly in the case of image processing,
the addition of a Bregman update might be beneficial. The idea is that, as above, the operator
h is non-constant, and the approximate solution xk is used to define the function hk+1 in a
recursive manner. These updates need not occur at every iteration but could be applied
based on different rulings, such as whenever a certain residual becomes small enough, or after
a constant number of iterations.

Several conditions need to be verified by these updates to guarantee convergence. Most
importantly, the updates need to be such that ∇hk → ∇h, where hk now depends on xk−1,
which is no longer defined at the start. Experimentally, this does not always hold for naive
implementations. As such, one could explore under what conditions these updates produce a
converging sequence, and whether they are beneficial or not.

6.2 Personal Reflection

Reflecting on my thesis work, I am pleased with the overall outcome. Through proper time
management and consistent effort, I was able to avoid the stress of last-minute rush and
maintain steady progress throughout the entire project.

In hindsight, I realised that I could have saved myself some time by not delving too deeply
into the proofs of the preliminary statements. Despite having removed them from the final
version of my thesis, I found that this exercise allowed me to develop a deeper understanding
of the underlying concepts and reasoning behind those results.

Overall, this experience taught me the value of patience and persistence in research, as well
as the importance of balancing depth of understanding with efficient time management. I feel
confident that the skills I have gained during this project will serve me well in future academic
pursuits.
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Convergence of Closed Sets. Journal of Convex Analysis, 17(3&4):805–826, January
2010.

[6] A. Chambolle and T. Pock. A First-Order Primal-Dual Algorithm for Convex Problems
with Applications to Imaging. Journal of Mathematical Imaging and Vision, 40:120–145,
April 2011.

[7] D. Davis and W. Yin. A Three-Operator Splitting Scheme and its Optimization
Applications. Set-Valued and Variational Analysis, 25:829–858, June 2017.

[8] Q.-L. Dong, Y. J. Cho, and T. M. Rassias. Applications of Nonlinear Analysis, chapter
General Inertial Mann Algorithms and Their Convergence Analysis for Nonexpansive
Mappings, pages 175–191. Springer International Publishing, Cham, June 2018.

[9] Q.-L. Dong and H. Yuan. Accelerated Mann and CQ algorithms for finding a fixed point
of a nonexpansive mapping. Fixed Point Theory and Applications, 125, July 2015.

[10] Y. Dong. New inertial factors of the Krasnoselskii-Mann iteration. Set-Valued and
Variational Analysis, 29:145–161, March 2021.

[11] J. Douglas and H. H. Rachford. On the Numerical Solution of Heat Conduction Problems
in Two and Three Space Variables. Transactions of the American Mathematical Society,
82(2):421–439, December 1956.

[12] I. Fierro, J. J. Maulén, and J. Peypouquet. Inertial Krasnoselskii-Mann Iterations.
October 2022.
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