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Abstract

Quantum memories are necessary for efficient long-distance quantum networks. The vanadium (V)
defect in silicon carbide (SiC) exhibits promising qualities for use as a quantum memory in telecom-
compatible quantum communication technologies. While these defects are optically addressable at
telecom wavelengths, the rich hyperfine structure of the ground state makes high-fidelity coherent
control difficult. To solve this, the system needs to be initialised into a pure quantum state. This
research investigates steady-state two-laser initialisation protocols for the neutral charge state V4+

defect in 4H-SiC at 2 K. Based on an exhaustive theoretical framework of the system, the two-laser
perturbed populations of the ground and excited eigenstates were simulated using a Lindbladian
model. These populations were then analysed to find regions of maximised state fidelity. Initialisation
predicted by the simulated model was experimentally verified for an inhomogeneous ensemble of V
defects, motivating its use for developing theoretical initialisation protocols at the single-defect level.
It was found, in both experiment and simulation, that initialisation is strongly dependent on the
spin relaxation of the system (and hence the temperature), the polarisation of the optical driving
fields, and the extent of inhomogeneity in the system. High-fidelity initialisation was only seen in
two ground eigenstates within the strong electron Zeeman regime (≳ 30 mT). For the inhomogeneous
case, the maximum theoretical fidelity found was F < 0.1, suggesting that ensembles of V defects are
not suitable for applications in quantum technology. The maximum theoretical single-defect fidelity
found at 2 K was F > 0.921, with a corresponding qubit candidate that might be coherently driven
with electric fields. Furthermore, a simplified temperature dependence was modelled and resulted
in fidelities of F > 0.999 at 100 mK, similar to previous work done on this system. This research
provides a solid framework to achieve high-fidelity initialisation for V defects in SiC, enabling further
experimental studies on the coherence properties of individual vanadium defects at 2 K.
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1 Introduction

Quantum Networks and Repeaters

Quantum bits (qubits) are the next step in the evolution of computing. A qubit is a two-level
quantum system and the basic unit of information in quantum information theory [1]. A classical bit
can be in one of the binary states 0 or 1. In a qubit however, these binary states are represented by
the quantum state (e.g. spin state) of the system. In this way, a qubit can be in the states 0, 1, or a
coherent superposition of these two binary states. Computers utilising qubits (quantum computers)
are theorised to perform certain calculations at a monumentally faster speed than a classical computer
due to this superposition state, a phenomenon termed quantum supremacy [2]. Since 2019, there
have been several claims of quantum supremacy [3–6]. It is of no doubt then that in the coming
decades qubits will play an essential role in the computing industry and beyond. Qubits can be
used for more than just computation. In fact, to be able to transfer information between quantum
computers, a special network is needed - a quantum network [7]. Similar to a classical network,
a quantum network enables communication between different quantum computers by using qubits
as a messenger of information. Quantum networks can be used for cryptography [8, 9], distributed
computing [10, 11], clock synchronisation [12], and more [13, 14]. Of interest in this research are
quantum networks for use in communication. Generally, there are two communication channels used
in quantum network infrastructure: ground-based fibre-optic channels [15, 16] and satellite-based
free-space channels [17, 18], with each having its unique advantages and disadvantages. A particular
advantage of optic fibre channels is that much of the required infrastructure already exists from
current telecommunication networks. In the future, quantum networks are likely to be composed
of a combination of fibre-optic and free-space channels. Fibre-optic channels are typically used for
smaller, more localised scales (e.g. within a city district), whereas free-space channels are used for
communication at larger scales (e.g. between cities) [19–22].

That being said, fibre-optic channels do not need to be restricted to small scales. The basic structure
of a quantum network involves two end nodes (quantum processors) connected via a communication
channel [7, 23] over which qubits are sent. For fibre-optic channels, the distance of information
transmission is severely limited by photon losses [24, 25]. Furthermore, classical amplifiers cannot
be used as due to the no-cloning theorem quantum states cannot be simply copied [26]. To achieve
efficient long-distance transmission of qubits with optical fibres, it is necessary to introduce quantum
repeaters (or repeater nodes) between the end nodes [27]. A simplified picture of the conventional
method used by quantum repeaters is as follows [7, 28–37]: repeater nodes are equipped with a
writable quantum memory; a memory capable of storing (and retrieving) quantum states. Quantum
memories between adjacent repeater nodes are then entangled through the transmission of photons
which themselves are entangled with the memory from one of the nodes. Then, via entanglement
swapping [38], the distant end nodes can eventually be entangled and a quantum communication
channel established between the end nodes. There has been a lot of progress made in the past decades
on quantum repeaters, both in experimental proposals [32, 34, 39–41] and practical demonstrations
[42–45]. However, a network-scalable quantum repeater is yet to be built. Since repeater systems
write on and read out of a quantum memory using photons in the infrared (i.e. via optical fibres),
a high degree of coherent control (controlling quantum phenomena with light [46]) over the qubit
system is necessary. Nitrogen-vacancy (NV) centres in diamond have shown a lot of promise for
coherent control at room temperature [47–50]. However, NV centres are optically active in the
visible and near-infrared regions [47, 51, 52] resulting in high levels of attenuation in optical fibres
[53, 54]. While wavelength conversion techniques exist, the conversion efficiencies are still less than
50% [55, 56]. What is needed then, is a system with high coherent control that is also optically
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1 INTRODUCTION

active in the telecom band 1260 − 1675 nm (optimal spectral band for optical fibres - defined by
the International Telecommunications Union [54]). One such system is the vanadium (V) defect in
silicon carbide (SiC).

Vanadium Defects in Silicon Carbide

In this thesis, the neutral (and stable [57]) charge state V4+ in 4H-SiC is investigated. It will be
referred to hereafter as the V defect in SiC. The V defect in SiC has been subject to considerable
scrutiny in the past years due to its favourable qualities for technological applications, and in particu-
lar, for its possible use as a quantum memory. Firstly, silicon carbide is a staple of the semiconductor
industry with mature fabrication technology dating back to 1955 [58, 59]. Vanadium in 4H-SiC has
a low-temperature zero-phonon line (ZPL) at ∼ 1280 nm [60–62] commonly referred to as the α-line,
which sits comfortably in the telecom O-band (1260 − 1360 nm [54]). Naturally occurring 51V also
has a nuclear spin of 7/2, which when combined with the 1/2 effective spin of the strongly localised
3d electron in vanadium, results in a rich hyperfine structure. A 2022 study was able to measure co-
herence times T2 of this spin structure that went beyond tens of microseconds [62]. Studies on other
solid-state systems have shown that qubits utilising electron-nuclear spin coupling (i.e. hyperfine
coupling) can achieve coherence times sufficient for quantum memory purposes, in particular due to
the long-lived coherence of nuclear spins (resulting from their small magnetic moments), while still
maintaining optical accessibility through the electron spin states [63–66]. Thus the V defect in SiC
with its optical accessibility, and hyperfine-coupled states with coherent times sufficient for basic
quantum operations, is a very plausible candidate.

The properties of V defects in SiC are still being characterised. Work has been done to largely
characterise the optical and spin-state energy structure of these defects [61, 67–71], along with the
system Hamiltonian [70, 72]. Furthermore, work done by Gilardoni [72] (Chapter 6) and Astner
et al. [73] show spin-relaxation times T1 exceeding seconds, and as mentioned, work by Hendriks
et al. [62] showed coherence times T2 of at least tens of microseconds. These studies are the first
steps towards achieving full coherent control of the V defect in SiC. For technological applications,
quantum systems must be in a pure state, or in other words, have a high fidelity. In general, quantum
systems in thermal equilibrium are in a mixed state and have a low fidelity. To go from a mixed state
to a pure state, the system must be spin polarised, or initialised. The specific methods of initialising
are called initialisation protocols. Since characterisation studies of V defects in SiC for quantum
technology applications have only been conducted recently, so far, there has been seldom research
done on initialising this system. Initialising V defects in SiC is not a trivial task, as the ground-state
hyperfine structure is composed of 16 levels. Currently, only one initialisation protocol exists for V
defects in SiC. Tissot et al. [74] developed a ratchet-type dissipative initialisation protocol at 100 mK.
While simulated fidelities of > 0.999 were achieved, 100 mK is a less practical and more expensive
operating temperature than 2 K, and requires the use of dilution fridges. This then motivates the
development of initialisation protocols suited for 2 K, enabling further study of high-fidelity coherence
of V defects in SiC at and around this temperature.

Research Aim and Thesis Outline

In this work, steady-state dissipative initialisation protocols are developed for V4+ defects in 4H-
SiC at an operating temperature of 2 K. This is achieved using a simulated Lindbladian model.
The ultimate aim of this research is to achieve high-fidelity initialisation with these protocols, while
simultaneously investigating the underlying dynamics of initialisation. In this way, regardless of the
fidelities achieved, important properties of the system can be determined and used to develop better
protocols in the future.

2



1 INTRODUCTION

The outline of this thesis is as follows. In Section 2, the theoretical foundation of this research is
introduced. Most importantly, this section outlines the Lindbladian model which is used to determine
the eigenstate populations in the steady state, and also introduces the theoretical measures used for
initialisation. In Section 3, a brief overview of the experimental methods used to verify the model is
given. In Section 4, experimental and simulated results for an inhomogeneous ensemble are analysed
and compared, experimentally verifying an inhomogeneous protocol developed with the model. In
Section 5, theoretical single-defect initialisation protocols are outlined, along with a thorough analysis
of the spin-state dynamics of the system. Finally, in Section 6, the conclusions and outlook of this
research are given.
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2 Theoretical Overview

2.1 System Overview

The characterisation of the system, including the symmetry analysis and the derivation of the sys-
tem Hamiltonian, was done by Gilardoni [72] (Chapters 2, 4-6) and collaborators in 2019-2021 for
transition metal defects in silicon carbide. The theoretical foundation of this research is based on
this characterisation.

2.1.1 Vanadium Defects in 4H-SiC: Energy and Spin-State Structure

This research focuses specifically on neutral charge state (V4+) vanadium defects in 4H-SiC, a poly-
type of silicon carbide. Vanadium has a strongly localised 3d electron with a five-fold degeneracy.
When a vanadium atom is substituted into a silicon lattice site in 4H-SiC, this five-fold degeneracy is
first lifted by the defect-site crystal field potential with Td symmetry, and then by the surrounding
crystal field potential with C3v symmetry. The crystal structure can be seen in Figure 2.1a. Finally
spin-orbit (S-O) coupling completely lifts the degeneracy into five distinct S-O coupled states. With
the inclusion of S-O coupling, the states then transform as the irreps of the double group C3v. The
effect of the different crystal fields and S-O coupling on the electronic energy structure can be seen
in Figure 2.1b. A1, 2 and E are irreps of C3v, and Γ4 and Γ5, 6 are irreps of C3v. The S-O coupled
states are labelled in the community as, in ascending energy, GS1 (Γ4), GS2 (Γ5, 6), ES1 (Γ5, 6), ES2
(Γ4), and ES3 (Γ4). GS and ES stand for ground state and excited state, respectively. Only GS1
and ES1 are considered in this research, due to their favourable energy structure and symmetry-
related selection rules. Each S-O coupled state consists of a Kramers doublet (KD), which acts as
an effective-spin S̃ = 1/2 system with quantization along the crystal c axis. For the remainder of
this thesis, the effective-spin states of the GS1 KD will be symbolically represented in the basis
{|↑⟩ , |↓⟩} and the effective-spin states of the ES1 KD in the basis {|↗⟩ , |↙⟩}. The slight shift in
arrow direction between the two bases serves only as a label to distinguish the GS1 effective-spin
basis from the ES1 effective-spin basis.

More than 99.7% of naturally occurring vanadium is 51V [75], which has a nuclear spin I = 7/2 [76].
This nuclear spin I couples to the effective-spin S̃ to form an effective hyperfine structure F̃ = S̃+I.
This results in each S-O coupled state (i.e. GS1 and ES1) having 16 hyperfine levels, corresponding
to eight hyperfine-mediated eigenstates in each of the effective-spin states (↑, ↓, ↗,↙) of the
KD. This can be seen in Figure 2.2, which also shows the Zeeman splitting of the hyperfine-mediated
eigenstates. Since each effective-spin state actually consists of 8 hyperfine-mediated eigenstates, each
KD effective-spin state will be referred to as an effective-spin manifold. The energy spacing between
the hyperfine levels is on the order of 10−8 − 10−7 eV (10 − 100 MHz) depending on the Zeeman
splitting, while the energy spacing between GS1 and ES1 is on the order of 1 eV (∼ 1278 nm). Since
this is an optically-active transition, excitation (relaxation) between GS1 and ES1 will be referred to
as optical excitation (relaxation) or optical driving. The cryostat used in experiment was operated
at 2 K. The thermal energy supplied to the system is on the order of kBT ≈ 10−4 eV, far smaller
than the optical transition, but much larger than the hyperfine energy spacing. Therefore, at 2 K,
there is sufficient thermal energy to cause mixing of a once initialised state.

2.1.2 System Hamiltonian and its Eigenstates

The Hamiltonians describing GS1 and ES1 are distinct due to their different S-O symmetries (GS1
transforms as Γ4, ES1 transforms as Γ5, 6). A full description, and derivation, of the respective
Hamiltonians can be found in Gilardoni [72] (Chapter 5). For use as a quantum memory, the
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Figure 2.1: a Crystal structure of 4H-SiC with a V defect substituting a Si lattice site. The V and C atoms
combined have a Td symmetry, and the V, C, and Si atoms combined have a C3v symmetry. The crystal c
axis is parallel to the symmetry axis (i.e. the three-fold rotational axis) of C3v. b The effect of symmetry
on the electronic energy structure. The superscript 2 represents the two-fold degeneracy of each state arising
from the electron spin. The strongly localised 3d electron (2D) has a five-fold degeneracy (10 states when
including the electron spin) which is split by the defect-site Td symmetry into a ground orbital doublet 2E
and an excited orbital triplet 2T2. The crystal field C3v symmetry splits the excited triplet into a doublet 2E
and a singlet 2A1. Finally, S-O coupling (S-OC in the figure) splits the ground and excited doublets, resulting
in five distinct S-O coupled state. Each S-O state is a Kramers doublet (KD), which acts as an effective-spin
S̃ = 1/2 doublet. Only GS1 and ES1 are of interest in this research, with corresponding transition energy
∼ 1278.81 nm.

hyperfine-coupled vanadium system must be coherently controlled, and hence the hyperfine-mediated
eigenstates must be accessible. As a result of the Zeeman interaction, applying a constant magnetic
field splits the 16 hyperfine-mediated eigenstates of GS1 (and ES1), allowing for better accessibility.
This can be seen in Figure 2.2. Furthermore, as the magnetic field increases, the eigenstate energy
levels change as a result of the competing hyperfine and Zeeman interaction. This results in certain
points where the transition energy between two eigenstates is stable with respect to minor fluctuations
in the magnetic field (magnetic noise), an experimentally favourable quality. These are called zero
first-order Zeeman shift (ZEFOZ) transitions or clock transitions (for their use in atomic clocks).
It is therefore preferable for qubit candidates selected in an initialisation protocol to be ZEFOZ
transitions.

Since there are two non-zero spins in the effective hyperfine interaction F̃ = S̃ + I, there are two
Zeeman contributions to the Hamiltonian, an electronic Zeeman interaction and a nuclear Zeeman
interaction. Denoting the hyperfine contribution as HF, the electronic (S̃) Zeeman contribution as
Z:el, and the nuclear (I) Zeeman contribution as Z:nuc, the Hamiltonian for effective spin states
transforming as Γ4 and Γ5, 6 is given by

HΓx = Heff
HF, Γx

+Heff
Z:el, Γx

+Heff
Z:nuc:, Γx

, (2.1)

where for Γx = Γ4

Heff
HF, Γ4

= a∥, Γ4
S̃zIz + a⊥, Γ4(S̃+I+ + S̃−I−) +QzzI

2
z

Heff
Z:el, Γ4

= −µB
(
g∥, Γ4

BzS̃z + g⊥, Γ4(BxS̃x +ByS̃y)
)

Heff
Z:nuc:, Γ4

= −µNgn(BzIz +BxIx +ByIy)

(2.2)

5



2 THEORETICAL OVERVIEW

and for Γx = Γ5, 6

Heff
HF, Γ5, 6

= (a∥, Γ5, 6
S̃z + a⊥, Γ5, 6S̃x)Iz +QzzI

2
z

Heff
Z:el, Γ5, 6

= −µBg∥, Γ5, 6
BzS̃z

Heff
Z:nuc:, Γ5, 6

= −µNgn(BzIz +BxIx +ByIy).

(2.3)

S̃x, y, z, and Ix, y, z are the effective-spin and nuclear spin operators (defined in Appendix B.I), respec-
tively, and (Bx, By, Bz) is the applied static magnetic field vector. The ẑ axis is taken to be parallel
with the crystal c axis. Here a is a term characterising the hyperfine interaction, g is the electronic
g-factor, gn is the nuclear g-factor, µB is the Bohr magneton, and µN is the nuclear magneton. The
term QzzI

2
z characterises the nuclear electric quadrupole moment, with Qzz being the strength of

the quadrupole interaction experienced by the vanadium nucleus due to a ẑ-direction electric-field
gradient [62, 77]. The factors a and g used in this research were determined by Wolfowicz et al [61].
The exact values can be found in Appendix B.I. Parallel and perpendicular terms are with respect to
the crystal c axis, which is also the C3v symmetry axis. One important note is that while symmetry
allows for perpendicular magnetic fields to drive transitions between spin manifolds, vanadium has an
accidental g⊥ ≈ 0.1 Therefore, a magnetic field parallel to the crystal c axis results in the strongest
Zeeman splitting. A parallel magnetic field is used, in both experiment and simulation, to produce
the Zeeman splitting.

In general, the system is not in a pure state but a mixed state, as systems in thermal equilibrium
tend towards mixed states. Pure states, including coherent superpositions, can be represented by a
single ket vector |ψ⟩. Mixed states however, are a statistical ensemble of pure states. In this way,
they can only be described by a density matrix ρ (density operator defined in the basis {|ϕi⟩})

ρ =
∑
n

pn |ψn⟩ ⟨ψn| (2.4)

where {|ψn⟩} are pure states of the system, pn is the statistical weight associated with the pure state
|ψn⟩ (

∑
n pn = 1), and the (weighted) sum goes over all possible pure states that the system can

be in. The diagonal terms ρii ≡ Pi of a density matrix are called populations, as they represent
the probability to find the system in the basis state |ϕi⟩, whereas the off-diagonal terms are called
coherences, and quantify the magnitude of coherence between the basis states. Upon application of
a laser resonant with the GS1-ES1 transition, the hyperfine-coupled vanadium system is described
by a 32× 32 density matrix, as there are 16 energy eigenstates in both GS1 and ES1. The 16 energy
eigenstates of GS1 labelled {|gi⟩} and of ES1 labelled {|ei⟩}, with i = 1, . . . , 16, are given by the
eigenvalue equations

HΓ4 |gi⟩ =Egi |gi⟩ ,
HΓ5, 6 |ei⟩ =Eei |ei⟩ .

(2.5)

The states {|gi⟩ , |ei⟩} form the basis of the 32 × 32 density matrix. Egi is the energy of state |gi⟩,
and Eei is the energy of state |ei⟩. For brevity, the bra-ket notation will sometimes be omitted when
describing the eigenstates, such that gi means |gi⟩. These (pure) eigenstates are linear combinations
of the effective-spin basis states {|g, mS̃ , mI⟩} for GS1 and {|e, mS̃ , mI⟩} for ES1, with projection
along the crystal c axis (ẑ axis). This effective-spin state mixing of the eigenstates is primarily due

1Note that for states transforming as Γ5, 6 symmetry dictates that g⊥ = 0, while for states transforming as Γ4, g⊥
is near zero. For the purpose of this work however, where static magnetic fields below 1 T are used, g⊥ can be set to
zero for both Γ4 and Γ5, 6 states. For more information, refer to Gilardoni [72] (Chapters 5, 6).
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Figure 2.2: Zeeman splitting of the hyperfine-mediated eigenstates of GS1 (Γ4) and ES1 (Γ5, 6). The plot
shows the energy of each eigenstate (with respect to the corresponding S-O state, GS1 or ES1) as a function
of the magnetic field strength of an applied static magnetic field parallel to the crystal c axis. The GS1 (ES1)
eigenstates are labelled gi (ei) for i = 1, . . . , 16. At ≳ 30 mT (dashed green line in figure), the system
Hamiltonian is dominated by the electronic Zeeman interaction. In this magnetic field regime, each eigenstate
can be approximated by a single spin state |mS̃ , mI⟩. The spin-state values mS̃ , mI corresponding to each
eigenstate in this regime are given next to the eigenstate labels.
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to the nuclear electric quadrupole perturbation QzzIz to the Hamiltonian. Here, g and e are added
as a label in the ket to distinguish between GS1 and ES1 effective-spin states. The eigenstates can
then be written as

gi =
∑
k

Cg
k |g, mS̃ , mI⟩ ,

ei =
∑
k

Ce
k |e, mS̃ , mI⟩ .

Here the sum over k represents the summing over the different effective-spin states (i.e. summing
over combinations of mS̃ = −1/2, 1/2 and mI = −7/2, −5/2, . . . , 7/2). The coefficients Cg, e

k are
the probability amplitudes of the kth state given by a specific mS̃ and mI . The sum of the prob-
ability densities is

∑
k |C

g
k |

2 =
∑

k |Ce
k|2 = 1. The probability amplitudes Cg, e

k are magnetic field
dependent due to the Zeeman terms in the Hamiltonian. In the electronic Zeeman dominated regime
(B ≳ 30 mT), the effective spin S̃ is strongly aligned with the external field. In this magnetic field
regime, the probability amplitudes Cg, e

k tend to zero except for one value of k; the eigenstates can
then be approximated by the effective-spin state associated with k. The state with the lowest energy,
g1, corresponds to the spin state |↑, 7/2⟩. This is because an effective spin aligning with the magnetic
field minimises the energy,2 and a nuclear spin aligning with the effective spin further minimises the
energy. The associated effective-spin states of the other eigenstates in the high-field limit can be seen
in Figure 2.2.

While the eigenstates of the system are (necessarily) pure states, the full state description of the
hyperfine-coupled vanadium system in equilibrium is given by a density matrix ρ. As will be seen,
the model calculates the populations (diagonal terms of ρ) in the steady state. One assumption of
the model is that in steady-state initialisation, the coherences disappear. This is not entirely true,
as coherent population trapping (CPT) can occur. CPT happens when the transitions gi − ej and
gk − ej are driven simultaneously, and can lead to coherence between the states gi and gk. As will
be seen, at 2 K, these driving schemes (denoted as Λ-schemes) do not initialise the system, and
CPT is therefore not included in the model. At lower temperatures however, Λ-schemes do appear.
This is discussed further in Section 5.3. Ignoring CPT means that the density matrix describing the
hyperfine-coupled vanadium system is purely diagonal and can be written as

ρ = diag
(
P⃗
)
= diag

((
P⃗g, P⃗e

))
(2.6)

where P⃗ =
(
P⃗g, P⃗e

)
, and P⃗g = (Pg1 , . . . , Pg16) and P⃗e = (Pe1 , . . . , Pe16) are the population vectors

of GS1 and ES1 respectively, with Pgi (Pei) being the population of state gi (ei).

2.1.3 Inhomogeneous Broadening of GS1−ES1 Transition

Each defect is situated in a different part of the 4H-SiC crystal lattice and feels differing electrostatic
inhomogeneities arising from lattice imperfections and other environmental factors. These inhomo-
geneities result in unique changes in the energy structure of the different defects, and as such causes an
inhomogeneous broadening of the GS1−ES1 optical-transition linewidth (i.e. the transition energy).
In the sample studied here, the inhomogeneous broadening is roughly 20 GHz. The consequence of
this is that the same laser frequency can be resonant with different transitions between the defects,
and the overall energy resolution decreases. With two lasers the hyperfine-mediated energy levels of

2Above 30 mT, the electronic Zeeman contribution to the Hamiltonian is on average 103 times as much as the
nuclear Zeeman contribution, so the effective electronic spin plays a bigger role than the nuclear spin in minimising
energy.
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2 THEORETICAL OVERVIEW

GS1 can still be resolved. While the actual inhomogeneity is ∼ 20 Ghz, an effective inhomogeneity
∆, on the order of a few GHz, was applied in the model. Further explanation on the effective inho-
mogeneity can be found in Appendix A.I, and more information on how the inhomogeneities were
implemented in the model can be found in Appendix B.1.

The case where there is no inhomogeneous broadening of the GS1−ES1 transition linewidth is termed
the single-defect case. In this research only the inhomogeneous case could be studied experimentally.
Both the inhomogeneous and single-defect cases were theoretically modelled. When initialising with
two lasers in the inhomogeneous case, only the frequency of one laser is scanned over while the
other laser is kept fixed. This is because it is not the individual frequencies that matter, but their
difference, since the inhomogeneities cause one laser frequency to be resonant with several different
transitions at once within the ensemble. In the single-defect case however, the laser frequencies
must be considered individually. With the appropriate technique, V defects in SiC are individually
accessible [78].

2.2 Relaxation Processes

Work done by Gilardoni et al. [79] approximated the system spin relaxation within a KD to four
effective-spin processes. The four processes happen both in GS1 and ES1 but with differing relative
strengths, and are dependent on environmental factors (e.g. magnetic field, temperature). The
processes are the electronic spin flip (ESF), the nuclear spin flip (NSF), the flip-flop (FF), and
the ẑ-axis flip-flop (FFz). The electronic spin flip is a change in the effective-spin of a state (e.g.
|↑⟩ ⇒ |↓⟩). The nuclear spin flip is a change in mI of a state, with ∆mI = ±1 changes having
the strongest relaxation pathways. The flip-flop and ẑ-axis flip-flop are processes in which both the
effective electronic spin and nuclear spin change. The difference between the two processes being
that the operators mediating the flip-flop are the ladder operators S+, S−, I+, I− while the ẑ-axis
flip-flop is mediated by the projection operators Sz, Iz. This means that in the high-field limit,
where the spins are strongly aligned with the projection axis (ẑ-axis), the projection operators have
a much weaker effect on the quantized spins as compared to the ladder operators. In this thesis the
operators associated with these relaxation processes will be denoted by ONSF, OESF, OFF, and OFFz,
with the subscript corresponding to the abbreviations in the brackets above. The operator for optical
relaxation (from ES1 to GS1) is denoted by Oopt. The operators are defined in Appendix B.I.

It must be noted that in terms of the formulation developed above, the four spin processes are all
effective processes, even at the eigenstate level. Relaxation between two eigenstates is mediated
by all four processes, as all the eigenstates are composed of effective-spin states. For example, at
0 mT, g9 can be approximated by |Ψ⟩ = 0.57

(
|↑, −1/2⟩ − |↓, 1/2⟩

)
+ 0.4

(
|↓, −3/2⟩ − |↑, 3/2⟩

)
with

| ⟨g9|Ψ⟩ |2 > 0.98. It also has a strong relaxation pathway with g11, which can be approximated by
|Φ⟩ = 0.64

(
|↑, −3/2⟩ − |↓, 3/2⟩

)
+ 0.3

(
|↓, −5/2⟩ − |↑, 5/2⟩

)
with | ⟨g11|Φ⟩ |2 > 0.999. Thus, going

from g9 to g11 involves a combination of spin processes, and is not as simple as stating that it is
a pure electronic spin flip or flip-flop process. Fortunately, as mentioned, in the electronic Zeeman
dominated regime the eigenstates can be represented by one effective-spin state, which makes it
considerably easier to determine the relevant processes.

2.3 Lindbladian Model

As mentioned prior, the system is calculated in the steady state, that is

ρ̇ = 0. (2.7)

9



2 THEORETICAL OVERVIEW

Since it is assumed that there are no coherences, so that ρ is only composed of diagonal terms
(populations), ρ can be replaced with a 32-entry column vector ρ⃗diag. Explicitly

ρ = diag
(
P⃗
)
→ ρ⃗diag = P⃗ T = (Pg1 , Pg2 , . . . , Pe16)

T = (P1, P2, . . . , P32)
T. (2.8)

The subscripts gj , ej have been replaced with i = 1, . . . , 32 for brevity. Replacing the 32×32 matrix
ρ with a 32-entry vector ρ⃗diag makes it more (computationally) efficient to solve for the populations.
In this way, Eq. (2.7) is a system of 32 linear differential equations (DEs). The evolution of an open
quantum system (a system that interacts with its environment) is governed by the master Lindblad
equation [80], given by

ρ̇ = Lρ (2.9)

where L is the Lindbladian. For the system studied here, the Lindbladian L can be represented by
a 32× 32 matrix M . Eqs. (2.7), (2.8), and (2.9) can then be combined to give

Mρ⃗diag = 0⃗ (2.10)

where 0⃗ is a 32-entry column vector of zeros. Eq. (2.10) is the foundation of the simulated model
used in this research. Now, instead of 32 linear DEs, Eq. (2.10) is a system of 32 linear equations.
Eq. (2.10) can be rearranged to give

ρ⃗diag =M−10⃗.

After normalisation of the populations
∑

i Pi = 1 for i = 1, 2, . . . , 32, the above equation can be
solved for ρ. The Lindbladian matrix M takes the general form (a derivation of M , and further
explanation on the normalisation of the populations, can be found in Appendix A.II)

M =



−Ω− γg +γg . . .

+γg
. . . +Γ

...
. . .

−Γ− γe +γe . . .

+Ω +γe
. . .

...
. . .


≡
(
Mg MΓ

MΩ Me

)
(2.11)

where Ω are driving rates, Γ are the optical relaxation rates between excited and ground eigenstates,
and γg (γe) are relaxation rates between ground (excited) eigenstates. The Lindbladian matrix is
split into four 16 × 16 matrices. Starting from the upper left and going clockwise, these represent
the GS1 dynamics (Mg), optical relaxation from ES1 to GS1 (MΓ), optical driving from GS1 to
ES1 (MΩ), and the ES1 dynamics (Me). The last step in solving ρ is to now find the rates Ω, Γ,
and γ. This was done in a semi-empirical manner. The probability of an x-mediated relaxation
(with x an effective-spin process) between two states |i⟩, |j⟩ is given by the transition probability
| ⟨j|Ox|i⟩ |2, with Ox a dimensionless operator corresponding to the effective-spin process x.3 In an
open system, this transition probability is affected by environmental effects which are not considered
by the Hamiltonian nor the operator (which are both derived for a closed system). To incorporate
these environmental effects, and especially temperature, the rate coefficient Rx of the effective-spin
process x, can be multiplied with the respective transition probability. The rate coefficient is an
experimentally determined parameter. As mentioned, there are four processes in GS1 and ES1

3Note that the dimensionless operators Ox only provide information on the strength of an effective-spin process at
a very generic level. They do not give any quantitative physical information on a process, as opposed to, for example,
the electric dipole moment (with SI units Coulomb-metre).
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2 THEORETICAL OVERVIEW

which govern spin transitions, with operators OESF, ONSF, OFF, and OFFz. Therefore, the relaxation
rates γg ≡ γgi−gj from gi to gj and γe ≡ γei−ej from ei to ej are given by

γgi−gj =Rg
ESF| ⟨gj |OESF|gi⟩ |2 +Rg

NSF| ⟨gj |ONSF|gi⟩ |2+
Rg

FF| ⟨gj |OFF|gi⟩ |2 +Rg
FFz| ⟨gj |OFFz|gi⟩ |2,

(2.12)

γei−ej =Re
ESF| ⟨ej |OESF|ei⟩ |2 +Re

NSF| ⟨ej |ONSF|ei⟩ |2+
Re

FF| ⟨ej |OFF|ei⟩ |2 +Re
FFz| ⟨ej |OFFz|ei⟩ |2.

(2.13)

As mentioned, the operators are defined in Appendix B.I. It is generally difficult to individually de-
termine the GS1 relaxation rates γgi−gj , especially for a 16-level system. What is typically measured
instead is some weighted average of these rates γ̄g, with the inverse of γ̄g designated the spin-
relaxation time T1 ∼ 1/̄γg. The effective-spin relaxation rate coefficients Rg, Re were determined by
optimising simulated two-laser spectra with experimental two-laser spectra for a range of magnetic
fields between 0− 300 mT at 2 K (Appendix B.I). Therefore, these effective-spin rate coefficients are
only valid at 2 K, and are referred to as the standard rate coefficients. They were also kept constant
throughout the magnetic field range. The implications of this can be found in Appendix C.II. The
optical relaxation rate Γei−gj between state ei to gj (including i = j) is given by

Γei−gj = Rrlx
opt| ⟨gj |Orlx

opt|ei⟩ |2 (2.14)

where the subscript ‘opt’ stands for optical, and the superscript ‘rlx’ stands for relaxation. The optical
relaxation rate coefficient Rrlx

opt = Γopt, the optical linewidth. The driving rates Ωgi−ei between state
gi and ej are derived in a similar way, but the effects of a finite optical linewidth must be incorporated.
This is done by introducing a Lorentzian probability density function (PDF) f(ω; ω0, Γopt), where
ω is the laser frequency, ω0 is the transition (resonance) frequency of the gi − ej transition, and the
optical linewidth Γopt is ∼ 10 MHz (an optical lifetime of ∼ 100 ns, fitted from experimental data
[60, 61]) for vanadium defects in 4H-SiC. The Lorentzian PDF is given by

f(ω; ω0, Γopt) =
1

π

Γopt

(ω0 − ω)2 + Γ2
opt
. (2.15)

The driving rate Ωgi−ei is then given by

Ωgi−ei = f(ω; ω0, Γ) ·
(
Rdrv

opt| ⟨ej |Odrv
opt |gi⟩ |2

)
. (2.16)

The rate coefficient Rdrv
opt reflects the power of the incident laser. The populations are calculated as a

function of the laser detunings δ1, 2 = ω0 −ω1, 2 with respect to the GS1−ES1 transition energy, per
magnetic field B⃗. In the inhomogeneous case, since the inhomogeneities cause one frequency to be
resonant with several different transitions at once, it is the frequency difference of the two lasers that
is the relevant quantity. The populations are then a function of the frequency difference (also referred
to as the detuning) ∆δ = δ1 − δ2 = ω1 − ω2 between the two lasers. This can be seen schematically
in Figure 2.3. The detunings δ1 and δ2 will sometimes be referred to as δF and δS if one laser is kept
fixed in frequency (δF ) while the other is scanned (δS). Typically in the inhomogeneous case one of
the lasers is kept fixed and is not detuned, δF = 0, since this will be resonant with several transitions
anyway. The detuning ∆δ then reduces to ∆δ = δS . The relaxation rates Eqs. (2.12)-(2.14) are
detuning independent and are constant for a specific magnetic field strength.
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}

GS1

ES1
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δ1 = δ1 + δ1
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δ2 = δ2 + δ2
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Figure 2.3: Guide on detunings used in this thesis. The detuning δa2 (δb2) corresponds to the energy Egi

(Eei) of state gi (ei). For a single defect, the two laser detunings δ1, δ2 are considered separately. For an
inhomogeneous ensemble however, it is their difference ∆δ = δ1 − δ2 that is the relevant quantity. Typically,
one laser is kept fixed at δ2 = 0, so the inhomogeneous ensemble detuning ∆δ reduces to ∆ = δ1. In this
driving scheme, laser 1 is the short leg, and laser 2 is the long leg. Note that in this detuning description,
the 1278 nm optical transition energy is not included.

2.3.1 Circular Polarisation

It should be noted that there are two optical operators, Odrv
opt and Orlx

opt. These operators are actually
equal if the driving fields are linearly polarised, that is

Odrv: linear
opt = Orlx

opt =

(
I8 08, 8
08, 8 I8

)
= I16.

The linear driving operator (and optical relaxation operator) favours optical transitions in which the
spin (mS̃ , mI) is conserved, but still weakly allows transitions where the spin is not conserved (due
to effective-spin-state mixing in the eigenstates). The upper I8 matrix acts on states in the lower
spin manifolds (↑ in GS1, ↗ in ES1), while the lower I8 matrix acts on states in the upper spin
manifold (↓ in GS1, ↙ in ES1). Since linearly-polarised light is a superposition of the two angular
momentum states (or polarisation states) of light, it can access transitions in both effective-spin
manifolds. However, circularly-polarised light is composed of purely one angular momentum state,
and therefore heavily suppresses transitions in one of the spin manifolds. This can be represented in
the circularly-polarised driving operators O+ and O− with

O+ =

(
I8 08, 8
08, 8 08, 8

)
O− =

(
08, 8 08, 8
08, 8 I8

)
.

The choice of +, − is physically arbitrary, but once defined must be kept consistent. Using the
handedness convention of the quarter-wave plate used in experiment [81], it was experimentally
determined (Section 4.2) that O+ corresponds to left-hand circularly polarised, and O− to right-
hand circularly polarised. The operator O+ amplifies ↑=⇒↗ transitions and suppresses ↓=⇒↙
transitions, and vice versa for O−. In terms of notation, the polarisation σ± corresponds to the
operator O±. Since the linearly-polarised driving operator and optical relaxation operator are the
same, they will both be denoted as Oopt. A schematic of the selection rules can be found in Appendix
A.III.
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2.4 Effective-Spin Driving (ESD)

After the system is initialised, two of the GS1 eigenstates are driven by an applied oscillating magnetic
or electric field. If these eigenstates are driven coherently, it effectively creates a qubit. However,
incoherent driving can still result in measurable resonance. The operator driving these effective-
spin transitions will be denoted as the effective-spin driving (ESD) operator Oesd. Any field driving
transitions between eigenstates mediate the transitions via the four effective-spin processes (ESF,
NSF, FF, and FFz). Thus, the effective-spin driving operator Oesd can be defined as

Oesd = OESF +ONSF +OFF +OFFz

and the ESD transition probability is given by

| ⟨gj |Oesd|gi⟩ |2 =
∣∣∣ ⟨gj |OESF +ONSF +OFF +OFFz|gi⟩

∣∣∣2
=
∣∣∣ ⟨gj |OESF|gi⟩+ ⟨gj |ONSF|gi⟩+ ⟨gj |OFF|gi⟩+ ⟨gj |OFFz|gi⟩

∣∣∣2.
It was found that pure electronic spin flip transitions ∆mS̃ = 1, ∆mI = 0 either had ESD probabili-
ties which were too low, or neither state in the transition could be well initialised. Thus, only states
with ∆mI ̸= 0 were subsequently analysed. Effective-spin driving between states with ∆mI ̸= 0
is a hyperfine-mediated process, and as such both magnetic dipole and electrical quadrupole tran-
sitions are possible (higher multipole transitions are also possible, but are very weak). In general,
transitions strongly mediated by a ∆mI = 1 effective-spin process are magnetic dipole transitions,
whereas ∆mI = 2 are electric quadrupole transitions. This means that both magnetic and electric
field driving is possible, depending on the transition. What also needs to be considered is the ori-
entation of the driving field, whether parallel or perpendicular to the spin-quantisation axis (which
is parallel to the crystal c axis upon application of a parallel static B field). Due to the g⊥ ≈ 0,
perpendicular magnetic fields are not efficient in driving effective-spin transitions. In experiment
then, an oscillating magnetic field parallel to the crystal c axis is used. For further information on
electric field driving, refer to Appendix C.VI.

2.5 Initialisation: Fidelity and Population Contrast

Before an initialisation protocol can be developed, a quantitative definition of initialisation must
be given. Ultimately, initialisation means preparing the system into a pure quantum state, and
specifically in the context of this work, an eigenstate of GS1. In terms of the 32× 32 density matrix
ρ, this means going from the mixed state ρ (with nonzero populations along the diagonal) to a pure
state σ, where there is only one nonzero population equal to 1. Since this population is associated
with an effective-spin state, initialisation in this way is also commonly called spin polarisation, as
the system is polarised into one (effective-)spin state. The question then is, how close is the mixed
state ρ to the pure state σ. To answer this, it is useful to introduce the concept of fidelity F (ρ, σ)
defined as [82]

F (ρ, σ) = Tr
(√√

ρσ
√
ρ

)
.

The fidelity is symmetric F (ρ, σ) = F (σ, ρ) and reduces to the state overlap F = ⟨ψρ|ψσ⟩ when ρ
and σ are pure states. It is a measure of the distance between two quantum states, such that when
ρ = σ, F (ρ, σ) = 1. When working with density matrices without coherences, and comparing them
to pure eigenstates as is done here, the fidelity of an initialised state ρ and eigenstate gi is simply
given by

F (ρ, gi) =
√
Pgi (2.17)
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where Pgi is the population of eigenstate gi in ρ. A derivation of Eq. (2.17) can be found in
Appendix A.IV. With a quantitative measure for initialisation now defined, an initialisation approach
can be developed. While it is important that high-fidelity initialisation into a GS1 eigenstate gi is
achieved, gi also has to be coherently driven with some other eigenstate gj . In general, the higher the
fidelity, the higher the population of one particular eigenstate. However, there is no certainty that
initialisation with a fidelity of F >

√
0.5 can be achieved, meaning that the population of the two

relevant eigenstates can still be near equal. For resonant (and coherent) driving, if two eigenstates
have near equal populations, the measured signal will be very low. Thus, it is not just the fidelity
that is important when initialising, but also the absolute difference in population between the two
coherently driven states - the population contrast. The population contrast between the states gi
and gj is given by

∆P (gi, gj) = |Pgi − Pgj |. (2.18)

In this thesis the population contrast ∆P is given as a percentage for clarity. For example, a
population contrast of ∆P (gi, gj) = |0.62− 0.29| = 0.33 is written as ∆P = 33%. In this example,
the state fidelities are F (ρ, gi) =

√
0.62 ≈ 0.79 and F (ρ, gj) =

√
0.29 ≈ 0.54. Besides the population

contrast ∆P , the effective-spin driving (ESD) probability also has to be considered. For example,
if the states gi and gj were initialised with a population contrast of ∆P > 90%, but the ESD
transition probability | ⟨gj |Oesd|gi⟩ |2 is very small, then the states cannot be resonantly driven (and
hence neither coherently). To incorporate this, a new measure is needed: the Useful Spin-Resonance
Number (USRN or USR number). The USRN is an ad hoc measure defined as

USRN(gi, gj) = | ⟨gj |Oesd|gi⟩ |2 ·∆P (gi, gj). (2.19)

The USRN was used to find promising points of initialisation for experimental verification. It turns
out however, that when attempting to initialise for coherent driving, ∆P holds more importance
than | ⟨Oesd⟩ |2, and consequently the USRN is not a reliable measure. This is because a strong ESD
matrix element ⟨gj |Oesd|gi⟩ does not only facilitate strong driving, but also implies strong relaxation
between the states gi and gj . Hence, a very high ESD transition probability can result in a low
population contrast ∆P (gi, gj). This is further discussed in Appendix C.V. The USRN is still
mentioned here however, as it was an integral part of the experimental approach.
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To reinforce the credibility of the theoretical single-defect initialisation protocols (Section 5), ex-
perimental verification of a theoretical protocol was conducted. Simulated results showed that the
system could initialise very well into g8 (and g16), with maximum fidelities of ≳ 0.9 in the single-
defect case, and ∼ 0.1 in the inhomogeneous case (which is still significant for an inhomogeneous
ensemble). Furthermore, since ODMR had been previously measured between g6 and g8 [62] the
g6 − g8 transition was chosen as a qubit candidate. A theoretical initialisation approach was de-
veloped as follows. The USRN was calculated for g6 − g8 between 0 and 50 mT in 1 mT steps
and for laser detunings in the range of 100− 900 MHz (started from 100 MHz due to experimental
limitations). This was done for both the inhomogeneous and single-defect case. The laser detunings
(δ1, δ2) are considered separately in the single-defect case, while in the inhomogeneous case one laser
is kept fixed (δF = 0) while the other is scanned over the detuning δS (see Figure 2.3 for further
explanation). After experimental measurements were taken, it was discovered that the USRN is not
a good measure for initialisation and subsequent coherent driving. Therefore, when developing the
single-defect initialisation protocols, the population contrast ∆P was used instead (see Section 2.5
and Appendix C.V for more information). Two lasers were used for initialisation as it is standard for
most quantum optics laboratories and also convenient for commercial applications. Using one laser
is not sufficient to resolve hyperfine structure in an inhomogeneous ensemble. Even in the single-
defect case, one-laser initialisation will generally result in lower contrast as there is less control over
the system. Spectral diffusion can also affect the one-laser resolution, but it is possible to mitigate
these effects [83]. Restrictions of allowed g6 − g8 transition energies were applied due to the effective
range of the microwave antenna (200 − 600 MHz), which applied the coherent driving (microwave)
field. Ultimately, 40 mT was chosen for verification, as it showed very promising initialisation (via
a maximised USRN) both in the single-defect and inhomogeneous cases. Prior to conducting the
primary measurements, verification of the GS1−ES1 transition frequency was performed via resonant
excitation spectroscopy, and verification of the g6 − g8 transition energy at 40 mT was performed
via optically detected magnetic resonance (ODMR). These measurements can be found in Appendix
B.III.

3.1 Optically Detected Two-Laser Spin Resonance (OD2LSR)

The technique used to experimentally verify the protocol utilised two lasers to initialise the system,
a microwave (MW) to resonantly drive the transition, and a subsequent optical readout using one of
the two lasers. For this reason, the technique is termed optically detected two-laser spin resonance
(OD2LSR). The OD2LSR pulse sequence and the experimental setup can be seen in Figures 3.1b,
c, respectively. In OD2LSR, two laser beams are continually incident on the sample, with one beam
fixed in frequency and the other scanned over (100 − 800 MHz in 1 MHz steps). In this setup, an
electro-optic modulator (EOM), paired with a Fabry-Perot cavity, enables the detuning of the scan
beam (from 100 MHz). The two beams are created from an initial laser beam which is split by a
beamsplitter. The beams are then made to align on the sample to ensure that they are accessing the
same part of the defect ensemble, but do not align prior to incidence. When the laser light leaves
the sample, the scan beam is detected with a photodiode but the fixed beam is blocked. Microwave
pulses with the B⃗-field (B1 in Figure 3.1c) component parallel to the crystal c axis are applied to the
sample at a fixed repetition rate. The MW frequency is set to the frequency of the relevant transition
gi − gj . The two incident lasers attempt to initialise the system into state gi for each detuning δS of
the scan laser. Then, the MW drives the transition gi − gj , and the detected scan laser probes the
change in population of state gj . If the driving scheme (δF = 0, δS = ω0) results in good intialisation,
this will be detected as an increase in the absolute value of the MW-induced signal. This can be
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seen schematically in Figure 3.1b. Simultaneous measurements are done with only one laser, to
compare the one-laser (uninitialised) and two-laser (initialised) spin resonance. A lock-in amplifier
set to the MW pulse repetition rate is used, meaning only the changes in gj are probed. Ultimately,
an OD2LSR scan measures initialised spin-resonance - resonance between two GS1 eigenstates, with
system initialisation into one of the eigenstates. The closest analog the measured signal has with the
simulated model is the population contrast ∆P , and thus the population contrast is compared with
the lock-in signal. Finally, a repump laser beam is used after each measurement period of 30 seconds
to counteract charge-state switching, by bringing ionized V defects back to the neutral V4+.
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Figure 3.1: a The pulse sequence for optically detected two-laser spin resonance (OD2LSR). b Energy-level
schematic showing how the system is probed: i. The system is two-laser initialised into gi with a driving
scheme that includes the gj − e transition. ii. Microwaves drive the population between states gi and gj . iii.
The initialisation laser that is resonant with the transition gj − e (transition energy ω0) probes the change in
population in state gj , effectively acting as an optical readout. This results in an increased OD2LSR signal
at frequency ω0. c Experimental setup for OD2LSR. The lock-in amplifier gets the reference (REF) for the
microwave repetition rate (T, MW) from the digital delay generator (DDG). The detuning δS frequency signal
is sent from a signal generator (19) to the EOM. The EOM creates detuned sidebands (first-order detuned
by δS), and the Fabry-Perot cavity (narrow band-pass filter) lets through the first-order sideband.
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4 Experimental Results: g6 − g8 Transition at 40 mT

4.1 Linear Polarisation

Figures 4.1a, b show the experimental results of an OD2LSR scan at 40 mT with linearly-polarised
lasers. The two-laser signals have been normalised with respect to the corresponding one-laser signal
(optically detected one-laser spin resonance). The one-laser signal can be seen in Figures 4.1a, b
as a line at lock-in signal 1. The one-laser signal did not show any initialisation features, which
is as expected since one laser cannot resolve hyperfine levels in an inhomogeneous ensemble. The
microwave frequency was set to be resonant with the g6 − g8 transition (determined by an ODMR
measurement, see Appendix B.III). Figure 4.1a has the scan laser as the short leg (δS < δF = 0) of the
driving scheme, and Figure 4.1b has the scan laser as the long leg (δS > δF = 0) of the driving scheme
(refer to Figure 2.3 for further clarification on the short and long legs of a driving scheme). The
difference between the two OD2LSR signals is due to different transitions being accessed depending
on whether the scan laser is the short or long leg of the driving scheme. Figure 4.1c shows the
population contrast ∆P between g6 and g8 at 40 mT, for both one- and two-lasers, and uses the
standard GS1 rate coefficients Rg (see Appendix B.I).4 Due to the way the inhomogeneities are
implemented in the simulated model, there is no difference between the scan laser being the short or
the long leg of the driving scheme, and so the simulated ∆P contains the information of both.

It can be seen that the model predicts some initialisation features quite well, especially the peak
at ∼ 525 MHz. This peak corresponds to several5 Π-schemes which initialise into g8. However,
there are some discrepancies. The relative amplitudes of some simulated initialisation features are
not consistent with the experimental relative amplitudes. Furthermore, there are simulated peaks
and dips which are not present in the experimental results. The relative amplitude problem arises
from the assumption that the rate coefficients R are only temperature dependent (the coefficients
were determined at 2 K). These coefficients are kept constant for other experimental factors such as
the applied static magnetic field strength and the number (and power) of applied oscillating fields.
This causes some of the effective-spin processes in the simulation to be stronger or weaker than they
actually are, ultimately resulting in inconsistencies between the simulated and experimental relative
amplitudes. Features seen in the simulation but missing in experiment are due to the lack of an
optical readout state; while the simulation calculates all the eigenstate populations, in experiment
the scan beam (i.e. the detected beam) can only probe one eigenstate at a time. If a driving scheme
causes a population imbalance between g6 and g8, but the scan beam is probing neither g6 nor g8,
this population difference will go undetected in an OD2LSR measurement. Therefore, the simulated
population contrast is not a direct reflection of an OD2LSR measurement, but still provides a good
measure of comparison. Further analysis on the different initialisation driving schemes, the optical
readout problem, and the relative amplitude problem, along with suggested improvements for the
model, can be found in Appendices C.I and C.II. As expected for an inhomogeneous ensemble, the
average fidelity is < 0.1, which is far too small for quantum technology applications [32, 84]. However,
inhomogeneous ensembles can still be useful for characterising, as is the case here.

A significant result from the experiment is the difference in the one- and two-laser signals. Figure
4.1c predicts a two-laser ∆P that is on average 0.4 percentage points higher than the one-laser ∆P ,
which is a significant difference for an inhomogeneous ensemble. However, in Figures 4.1a, b it can be

4Note that in the simulated inhomogeneous ensemble the absolute percentage value of ∆P does not hold significant
physical meaning, as the simulation sums over a uniform ±1 GHz inhomogeneity to calculate the populations. However,
it is still useful in comparing relative values of ∆P , and hence, in predicting good points of initialisation. See Appendix
B.I for more information.

5In the inhomogeneous case, one detuning (difference) ∆δ can correspond to several different driving schemes.
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4 EXPERIMENTAL RESULTS: g6 − g8 TRANSITION AT 40 MT
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Figure 4.1: Two-laser driving schemes have one laser fixed, δF = 0, and one laser scanned over the detunings
δS . The one-laser schemes only have one laser which is scanned over the detunings δS . a, b OD2LSR
measurements with microwave frequency set to g6 − g8 transition energy at 40 mT (microwave frequency
used was 358.7 MHz, see Appendix B.III), normalised with respect to the one-laser signal. In the OD2LSR
measurement of a, the scan beam δS is the short leg of the driving scheme (δS < δF ), while in b the scan
beam δS is the long leg (δS > δF ). c Simulated population contrasts ∆P (g6, g8) = |Pg6 −Pg8 | with standard
rate coefficients. d Simulated population contrasts ∆P (g6, g8) with increased NSF, ESF rate coefficients.

seen that the experimental two-laser signal is always below the one-laser signal. A consistently larger
one-laser signal, which does not initialise the system, implies that two-laser initialisation is generally
less effective. It is therefore imperative to understand the reason behind this signal difference, and
to subsequently find ways to increase the two-laser signal to the extent that it surpasses the one-
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4 EXPERIMENTAL RESULTS: g6 − g8 TRANSITION AT 40 MT

laser signal.

It was found that the most probable reasons behind the signal difference involved some form of en-
hanced effective-spin relaxation. To test this in the simulation, the rate coefficients R were revised.
By increasing the GS1 NSF rate coefficient Rg

NSF from 1 kHz to 3.5 kHz, and the GS1 ESF rate
coefficient Rg

ESF from 10 kHz to to 20 kHz, the two-laser population contrast decreased by around
0.6 percentage points, as seen in Figure 4.1d (standard rate coefficients used for the one-laser case).
This decrease results in a two-laser ∆P that is consistently lower than the one-laser ∆P , reflecting
experiment. Furthermore, the detuning accuracy between the simulated and experimental initialisa-
tion features increased on average by ∼ 5 MHz. The reason the GS1 NSF and GS1 ESF were changed
is as follows. The addition of a second laser is not expected to cause an order (or several orders) of
magnitude change to the spin-relaxation time. Thus, only the relaxation processes (x : ESF, NSF,
FF, FFz in GS1 and ES1) that significantly affect the simulation response when making only minor
changes to the corresponding rate coefficient Rg, e

x were considered. Note that these processes are not
the dominant processes - they are only the processes that the simulation is most sensitive to. At 40
mT, these were the GS1 NSF, followed by the GS1 ESF (refer to Appendix B.I for more information
on how this was determined).

The ratio between the simulated one-laser and two-laser contrasts is to some extent arbitrary, since
as mentioned, the population contrast is not a direct reflection of an OD2LSR measurement. Fur-
thermore, although the choice to increase the GS1 NSF and ESF rate coefficients was justified within
the model, the new assigned values were determined by trial and error (while being guided by the
observed trends), and done simply to give a closer fit to the experimental data. This is also why the
rate coefficients for the two-laser case were changed, as opposed to the one-laser case, even though the
standard rate coefficients were determined using two-laser spectroscopy data. Thus, while increasing
the rate coefficients for the two-laser case implies a decrease in the GS1 spin-relaxation time T1, it
does not provide accurate quantitative information on this decrease. What is of importance however,
is that a clear decrease in the two-laser population contrast, paired with an increased detuning accu-
racy between simulated and experimental initialisation features, was seen. Several other hypotheses
which were considered to explain the signal difference (Appendix C.III) were unable to replicate this
behaviour. This strongly suggests that this signal difference is caused by some spin-relaxation effect.

Increasing the GS1 NSF and ESF rate coefficients implies a decreased spin-relaxation time T1. A
possible reason for this is that an additional electric field (i.e. the second laser) may cause perturba-
tions in the surrounding lattice sites. In turn, this might affect charge-state configurations, phonon
modes, and other lattice and defect characteristics. These environmental changes could then affect
the crystal field potential, and in turn, the spin-state dynamics of the system, ultimately resulting in
a decreased spin-relaxation time T1. The most efficient way to verify this would be to conduct one-
and two-laser time-resolved T1 measurements (refer to Astner et al. [73] and Gilardoni [72] Chapter
6 for more information on measurement procedures), and check if the two-laser T1 is shorter than the
one-laser T1. If the signal difference is indeed caused by a T1 effect, this will affect initialisation for
both the inhomogeneous and single-defect cases. The increased T1 effect could possibly be mitigated
by decreasing the temperature. Astner et al. [73] measured T1 ≈ 25 s at 100 mK. In general, de-
creasing the temperature results in higher spin-relaxation times, and thus allows for better control of
the system. However, as will be seen in Section 5.3, decreasing the temperature means new protocols
need to be developed. At 2 K, the initialisation protocols necessarily rely on GS1 and ES1 relaxation.
If these relaxation rates substantially decrease, the protocols must change accordingly.

While increasing the GS1 NSF and ESF rate coefficients implies a T1 decrease, there is another spin-
relaxation mechanism that could possibly manifest as an effective T1 decrease. Adding a second laser
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4 EXPERIMENTAL RESULTS: g6 − g8 TRANSITION AT 40 MT

could enhance ES1 spin relaxation, which over the entire ensemble causes population to leak from
g8. While this population leakage would not cause an actual change in the GS1 spin-relaxation time
T1, it could result in an effective change in the measured T1. This only happens in an inhomogeneous
ensemble, and can be understood as follows. In general, perturbing the system will cause a population
imbalance between all the eigenstates. This is why there is still a nonzero signal measured with only
one laser. Furthermore, it was mentioned in Section 3 that the system tends to initialise very well
into g8 (or g16). As will be discussed in Section 5.1, this is due to the spin-state dynamics and
relaxation pathways at 2 K. This means that one laser incident on the sample with frequency ω1, at
the right magnetic field strength,6 will inadvertently cause a greater population imbalance between
g8 and the other GS1 eigenstates. Adding a second laser with frequency ω2 allows for the resolution
of hyperfine structure, which is why clear initialisation features (peaks, dips in the OD2LSR signal)
can be seen in Figures 4.1a, b. At the same time, adding a second laser causes more of the population
to be driven into the excited state ES1. For a single defect, this aids the initialisation, provided that
the appropriate driving scheme (ω1, ω2) is chosen (see Section 5.2). However, in an inhomogeneous
ensemble, the scheme (ω1, ω2) will only be efficient in initialising one part of the ensemble. For other
defects in the ensemble, (ω1, ω2) will form driving schemes that are resonant with other transitions.
Here is where the second laser causes a problem. By driving more of the population into ES1 with
driving schemes that do not initialise (well) into g8, the population becomes more evenly distributed
amongst the excited eigenstates via the ES1 relaxation processes, especially when considering that
these processes have a lifetime (∼ 10 ns [79]) an order of magnitude smaller than the optical lifetime
(∼ 100 ns [60, 61]). This then results in the GS1 populations in these uninitialised defects being
more evenly distributed (after optical relaxation), and over the entire ensemble, results in an effective
leakage of population from the initialised state (g8). This population leakage decreases the fidelity
of g8 and reduces the strength of the OD2LSR signal. In addition, since the GS1 population is
now more evenly distributed, it takes a shorter time for the system to relax. While the true GS1
spin-relaxation time T1 has not actually changed, the population leakage causes an effective change
in the measured T1.

This population leakage also happens in the one-laser case, but to a lesser degree, since there is only
one driving field instead of two. Thus, since one laser can still cause a population imbalance between
g6 and g8, and since there is less population leaking into the other GS1 eigenstates, the result is a
one-laser signal that is greater than the two-laser signal. Since this population leakage can manifest
as a T1 effect, developing an experimental method to verify this is not trivial. A possible way would
be to decrease the temperature and conduct OD2LSR measurements. At very low temperatures the
spin-state dynamics of both GS1 and ES1 change and new protocols are required (Section 5.3), so
when decreasing the temperature the ES1 spin-relaxation time cannot exceed the optical lifetime
(100 ns). If the ES1 spin-relaxation time increases (but still < 100 ns), the population will be less
effectively distributed amongst the ES1 eigenstates, and hence the population leakage effect will
reduce. Since this reduction happens for both one and two lasers, the two-laser baseline signal is
still expected to be lower than the one-laser baseline. However, this suppressed population leakage
might result in a higher two-laser signal at detunings which form good initialisation driving schemes.
In fact, preliminary experimental results show that at 1.8 K the peak at ∼ 525 MHz surpasses the
one-laser signal. This is a strong indication that the signal difference is caused by a population
leakage. These preliminary results can be found in Appendix C.IV.

Since reducing the temperature increases T1, it is necessary to simultaneously verify that this is
not a T1 effect. This could be done by studying the laser power dependency of one- and two-laser

6Whether the system initialises more into g8 or g16 is dependent on several factors, including the magnetic field
strength.
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4 EXPERIMENTAL RESULTS: g6 − g8 TRANSITION AT 40 MT

T1 measurements. If a one-laser T1 measurement shows no dependency on laser power, this would
indicate that adding another electric field is unlikely to affect the system. At the same time, if a
two-laser T1 measurement shows a dependency on laser power this would imply that a population
leakage, resulting from enhanced ES1 relaxation over the ensemble, might be responsible for the
signal difference. Here, the intensity of the second laser would govern the extent of the leakage.
Preliminary experimental results have shown that the one-laser T1 has no dependency on power,
while the two-laser T1 decreases with increasing fixed beam (i.e. undetected beam) power [85], again
indicating that the signal difference is caused by a population leakage. If this signal difference is
indeed caused by a population leakage, as opposed to a T1 effect, this is promising for single-defect
initialisation. The population leakage is a result of an initialisation driving scheme simultaneously
driving other non-initialising transitions in the inhomogeneous ensemble. As such, it is not present
at the single-defect level. ES1 spin relaxation still occurs for single defects, but it forms an integral
part of the initialisation process, as will be seen in Section 5.2.

Unfortunately, while initialised spin resonance was seen for the qubit candidate g6−g8, no coherence
was able to be measured (i.e. Rabi oscillations were not observed). The reason for this might be
due to the fact that the g6 − g8 transition is mediated by a ∆mI = 2 process, meaning that it is an
electric quadrupole transition (as opposed to a magnetic dipole transition, ∆mI = 1). This means
that a magnetic field is unlikely to drive the transition coherently. An electric field might be able to
drive coherence however. Further information on this can be found in Appendix C.VI.

4.2 Circular Polarisation

Section 2.3.1 outlined a procedure to implement circular polarisation within the simulated model.
This was also experimentally tested, and the results can be seen in Figure 4.2 (simulated results
with increased NSF, ESF coefficients). As explained in Section 2.3.1, using circularly polarised
light suppresses one of the effective-spin transitions (i.e. ↑=⇒↗ or ↓=⇒↙ transitions). In both
experiment and simulation, it can be seen that σ− polarisation (right-hand circularly polarised,
quarter-waveplate at +45°) results in clear initialisation features, similar to the linearly-polarised
results. The ∼ 525 MHz peak seen in Figure 4.2a is slightly higher (around 0.3 lock-in signal
units) than the peak in Figure 4.1a, although this may be attributed to noise. The ∆P value of the
simulated ∼ 525 MHz peak with σ− polarisation, seen in Figure 4.2c, is roughly double the simulated
∆P peak with linear polarisation (Figure 4.1d). Both these results indicate that the appropriate
circular polarisation may aid initialisation. As expected from simulation, the initialisation with
σ+ polarisation is worse than the linear and σ− polarisations. While there are some discrepancies
between the experimental and simulated circularly-polarised results, the general trend shows that
the operators O± are able to predict the significant differences in behaviour between the two circular
polarisations seen in experiment. Thus, O± will also be implemented in the theoretical single-defect
protocols.

4.3 Conclusions

To conclude, it can be seen that the simulation (with the increased rate coefficients) is able to predict
initialisation features with a relatively high degree of accuracy (around ±10 MHz), provided that
said features can be optically read out. Furthermore, the experimental initialisation features were
predicted by both the inhomogeneous and single-defect simulations. As mentioned in Section 2.3,
to go from a single-defect driving scheme (δ1, δ2) to an inhomogeneous driving scheme ∆δ, the
laser detunings have to simply be subtracted ∆δ = δ1 − δ2. In terms of the single-defect case,
the ∼ 525 MHz peak is the result of several driving schemes that all have single-defect fidelities of
> 0.35. Note that while this is quite a low fidelity, the experimental limitations (∆δ > 100 MHz,
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Figure 4.2: Two-laser driving schemes have one laser fixed, δF = 0, and one laser scanned over the detunings δS .
The one-laser schemes only have one laser which is scanned over the detunings δS . a, b OD2LSR measurement
normalised with respect to the one-laser signal. Both lasers are circularly polarised, σ− polarisation (right-
hand circularly polarised) in a and σ+ polarisation (left-hand circularly polarised) in b. c, d Simulated
population contrast ∆P (g6, g8) with σ− polarisation in c and σ+ polarisation in d. The drops in the one-laser
∆P are broadened single-defect peaks, which disappear when the inhomogeneities increase. Since they are
a result of the small effective inhomogeneity range used in the simulation (-1 GHz to 1 GHz, see Appendix
A.I), they can be considered simulation artefacts.

MW frequency between 200 − 600 MHz) prevented better initialisation points from being studied.
This experimental verification, of both the (simulated) inhomogeneous and single-defect initialisation
protocols at 40 mT, motivates the use of the simulated model in developing theoretical single-defect
protocols over a larger range of magnetic fields and laser detunings. Finally, it can be clearly seen that
high-fidelity initialisation in an inhomogeneous ensemble (with ∼ 20 GHz inhomogeneous broadening)
is not possible. The simulated fidelities were all< 0.1, and the OD2LSR contrasts were in general very
low, indicating that inhomogeneous ensembles are not suited for quantum technology applications.
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5 Theoretical Single-Defect Initialisation

Although preliminary experimental results suggest that the signal difference discussed in Section 4.1
is an inhomogeneous ensemble effect, this was not known when the (single-defect) results in this
section were simulated and processed. Thus, the two-laser simulated results in this section use the
increased NSF and ESF rate coefficients. The rate coefficients R were determined at T = 2 K,
meaning that the following analysis is only applicable for neutral V4+ defects in 4H-SiC at 2 K. The
effects of temperature changes are considered in Section 5.3. Instead of using the detuning ∆δ as in
the inhomogeneous case, now the individual laser detunings δ1, δ2 (or δF , δS) are considered.

To acquire a more complete picture in the single-defect case, the 32 populations in GS1 and ES1 were
simulated as a function of (δ1, δ2) for three polarisations and the magnetic fields 0− 99 mT in 1 mT
steps. From this data, the population contrasts ∆P between all 16 GS1 eigenstates were calculated
per magnetic field, with the threshold requirements that ∆P (gi, gj) ≥ 75% and | ⟨gj |Oesd|gi⟩ |2 ≥
10−6. A more restrictive threshold was applied on ∆P as it plays a bigger role than the ESD transition
probability in initialised spin-resonance, as explained in Appendix C.V, but the choice of 75% was
arbitrary. The ESD transition probability threshold was kept low to maintain an overview of all
possible multipole transitions. No limits were imposed on the GS1 eigenstate transition frequencies
as the limits previously imposed (between 200− 600 MHz) were due to limitations of the microwave
antenna used in experiment. The detuning ranges used were -900 to 900 MHz in 1 MHz steps for
both lasers, as explained in Appendix B.II.

Prominent initialisation into g8 and g16 was found at a range of different magnetic fields. The low-
est magnetic field found with ∆P ≥ 75% was at 34 mT, indicating that the hyperfine and mixed
hyperfine-electronic Zeeman regimes7 have relaxation pathways which are too strong for good initial-
isation. Since the only good points of initialisation were found in the electronic Zeeman dominated
regime (≳ 30 mT), the following analysis will be focused on this regime. The eigenstates gi, ei
can then be approximated by the effective-spin basis states |{g, e}, mS̃ , mI⟩ where {g, e} indicates
whether the state is in GS1 (g) or ES1 (e).

5.1 Spin-State Dynamics in the Zeeman Regime

Above ∼ 30 mT, the system is dominated by the electronic Zeeman interaction. As such, the
spin-state dynamics of the system are to some extent magnetic field independent. To show this,
a normalised average of the GS1 and ES1 relaxation Lindbladians including rates8 was calculated
for the magnetic fields 40 − 99 mT. This is shown in Figure 5.1. It is clear to see a prominent
general trend for this magnetic field range. For all the GS1 eigenstates, the flip-flop is the strongest
relaxation process due to both its high transition probability | ⟨OFF ⟩ |2 and its relatively large rate
coefficient Rg

FF (Appendix B.I). The flip-flop process entail a simultaneous nuclear spin flip ∆mI

and effective-spin flip ∆mS̃ . For a given state i, the state j with the strongest flip-flop transition
probability is one which minimises both the change in spin, so ∆mS̃ = 1, ∆mI = 1, and the total
energy of the system. The strength of the flip-flop causes an asymmetric relaxation configuration
between the GS1 eigenstates, following the pattern g1 − g15, g2 − g14, and so on until g6 − g10 and
g7 − g9.9 This can be seen by comparing the blue diagonal line with the pink off-anti-diagonal line

7The hyperfine regime (0 − 10 mT) is the magnetic field range where the hyperfine interaction is the dominant
interaction in the Hamiltonian, while in the mixed hyperfine-electronic Zeeman regime (10−30 mT) the two interactions
have roughly equal strengths.

8With increased NSF, ESF rate coefficients.
9The relaxation rate of the transition gi − gj is the element ij in the corresponding relaxation Lindbladian matrix.

See Section 2.3 for further details.
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5 THEORETICAL SINGLE-DEFECT INITIALISATION

(hence asymmetric) in Figure 5.1a. The preferred flip-flop eigenstate for g16 is g2, but g2−g14 is lower
in energy. The preferred flip-flop eigenstate for g8 is with g10, but g10 has a strong flip-flop with g6.
While g8 − g10 is lower in energy than g6 − g10, the flip-flop relaxation scheme that includes g8 − g10
leads to the asymmetric pattern g2−g16, g3−g15, . . ., g6−g12, g7−g11, g8−g10. This scheme results
in all other transitions being much higher in energy, making it energetically unfavourable, and as
such it is not the dominant relaxation configuration. In fact, the strongest relaxation pathways that
g8 and g16 have are nuclear spin flip and electronic spin flip mediated, with corresponding relaxation
rates that are several hundred times less than the average relaxation rate (coming from the flip-flop
mediated relaxation processes). This leaves both g8 and g16 without any strong relaxation pathways.
For this reason it is easiest to initialise the system into either g8 or g16. From this point on these
states will be referred to as the static states, since they are relatively static in relaxation. In ES1,
the relaxation is dominated by electronic spin flip mediated processes. This strong ESF results in a
symmetric relaxation configuration, where eigenstates in one effective-spin manifold are paired with
eigenstates in the opposite manifold with the same nuclear spin mI . Explicitly, g1 − g16 (mI = 7/2),
g2 − g15 (mI = 5/2), . . . , g8 − g9 (mI = −7/2). In Figure 5.1b, this symmetric pattern can be seen by
comparing the blue diagonal line and the pink anti-diagonal line.
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Figure 5.1: a The GS1 relaxation Lindbladian matrix Mg normalised to the maximum absolute rate in Mg

averaged over the magnetic field range 40−99 mT. The maximum rates are on the order of 1 MHz. To obtain
a clearer picture of the effective-spin relaxation dynamics, the driving rates −Ω on the diagonal are omitted.
b The ES1 relaxation Lindbladian matrix Me normalised to the maximum absolute rate in Me averaged over
the magnetic field range 40− 99 mT. The maximum rates are on the order of 10 MHz. For the same reasons
as a, the optical relaxation rates −Γ on the diagonal have been omitted. For a (b), the term ij gives the
normalised relaxation rate from state gj (ej) into state gi (ei). The negative rates on the diagonal ii indicate
population leaving the state gi (ei) (the −γg, e terms in the Lindbladian matrix, Eq. (2.11)). This population
goes to the other states, indicated by positive rates in the relaxation Lindbladian matrix, such that each
column in the matrix sums to zero. Note that the green off-diagonal terms have normalised relaxation rates
slightly above zero.
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5 THEORETICAL SINGLE-DEFECT INITIALISATION

The combination of using two lasers, the strong GS1 flip-flop mediated relaxation, and the strong
ES1 electronic spin flip mediated relaxation, causes a phenomenon whereby if both lasers are driving
transitions within an effective-spin manifold, the static state in the opposite manifold is initialised.
The reason for this is as follows. Consider two eigenstates gi, gj in the ↑ manifold, where necessarily
i, j < 8. Suppose these eigenstates are being driven by the direct (spin-state-conserving) optical
transitions gi − ei and gj − ej . The states ei, ej in the ↗ manifold effectively relax via the strong
ES1 electronic spin flip mediated process to ek, el respectively. The eigenstates ek, el are in the ↙
manifold and optically relax into their corresponding GS1 states, gk and gl (↓ manifold, k, l > 8).
Then, the strong GS1 flip-flop results in an effective relaxation of the system into the states gm,
gn (↑ manifold) which are strongly flip-flop coupled to gk, gl (↓ manifold), respectively. Due to the
asymmetry of the flip-flop, m, n = i, j − 1 and m, n = 16− k, l (this also applies if starting in the
↓ manifold). Now this process continues until the majority of the population sits in gm, gn and their
respective flip-flop coupled states gk, gl. After the flip-flop, nuclear spin flip mediated transitions
are the next strongest GS1 relaxation process. The states gm and gn can relax into their adjacent
effective-spin states (adjacent states have ∆mI = 1), but if they relax upwards into gi or gj , the
population will be driven (and relax) back into gm and gn. The same applies to their flip-flop coupled
states, gk and gl, when relaxing downward towards gi and gj . Thus, gm, gn can effectively only relax
downward (states lower than m, n) while gk, gl can effectively only relax upward (states higher than
k, l). Through a series of nuclear spin flip and flip-flop mediated processes, the system eventually
tends towards g1 and its strongly flip-flop coupled state g15. All the while, weak relaxation channels
between g1 and g15 with g16 (ESF and NSF mediated relaxation, respectively) slowly populate g16.
Since g16 has very weak coupling with all other GS1 eigenstates, the population stays in g16. In
the steady-state, this eventually leads to a strong spin polarisation of the system into g16. If driving
↓=⇒↙ transitions, the system is initialised into g8 by the same mechanism (weak relaxation channels
with g7 and g9, a flip-flop pair). This process can be seen schematically in Figures 5.2b, d. It is
clear to see here that any steady-state initialisation protocol is then dependent on the longest spin
relaxation timescale; this is further elaborated in Section 5.3.

As a general rule, driven transitions which involve an excited eigenstate ei which is coupled via
the ES1 electronic spin flip to the ES1 analog of the static state (i.e. e8 or e16) will initialise the
system better. This is because there are no intermediate pathways. For g16, the transition g1 − e1
results in an ES1 electronic spin flip mediated effective relaxation into e16, and subsequent optical
relaxation into g16. The transition g9 − e9 results in an electronic spin flip mediated transition into
e8, and subsequent relaxation into g8. Furthermore, the above analysis does not consider the fact
that the optical linewidth is around 10 MHz [60, 61], meaning that neighbouring mI states are
also weakly driven by the applied optical fields, which only serves to amplify the spin polarisation.
Due to this and the spin-state dynamics of the system, the most efficient initialisation happens by
driving neighbouring optical transitions (e.g. g1 − e1, g2 − e2 for g16 initialisation). This is also
the case for inhomogeneous ensembles, but since the experimental setup could not detune below
100 MHz, these small detunings ∆δ were not accessible. Since the static states are each associated
with specific effective-spin-manifold optical transitions, implementing circular polarisation amplifies
the initialisation. The ↑=⇒↗ transitions initialise into g16, and since σ+ polarisation amplifies said
transitions, σ+ polarisation initialises into g16 better than linear polarisation. The same applies for
σ− and g8. Seeing that in the steady-state g8 and g16 can be very well initialised, these states and
their respective initialisation protocols were analysed further.

When the driving scheme includes both ↑=⇒↗ and ↓=⇒↙ direct transitions or spin-manifold-cross
transitions such as ↑=⇒↙ the two optical transitions compete, and it is harder to initialise the system.
Spin-manifold-conserving cross transitions, where there is a change in mI but the effective-spin
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manifold is conserved, are generally very weak and do not significantly affect the system. Fidelities
above 0.8 can still be achieved with spin-manifold-cross transitions, but the scheme must include one
transition that initialises into the static state very well (typically not a cross transition), and the
cross transition must be chosen carefully. These transitions are only necessary in continuous-wave
experiments, where one of the initialisation lasers must also act as an optical readout laser. This is
further elaborated in Appendix D.I.

5.2 Analysis of g8 and g16 Initialisation

The 0 − 99 mT 16 GS1 eigenstate analysis found several areas of system initialisation into g16
with fidelities above 0.92, and initialisation into g8 with fidelities above 0.88. The highest fidelity
achieved was an initialised g16 at 99 mT with σ+ polarisation with a maximum fidelity of > 0.921,
as seen in Figure 5.2a. There is one detuning scheme which attains this level of fidelity, using the
detunings δ1 = −259 MHz and δ2 = −252 MHz. The −259 MHz detuning corresponds to a very
strong (| ⟨O+⟩ |2 > 0.99) g1 − e1 optical transition, while the −252 MHz corresponds to a very
strong (| ⟨O+⟩ |2 > 0.99) g2 − e2 optical transition. It can be seen in Figure 5.2a that when one of
the lasers is fixed at a detuning δF = −252 MHz, the baseline fidelity (i.e. the fidelity away from
any peaks or dips) is ∼ 0.15 less than the baseline fidelity of when the fixed laser is detuned to
δF = −259 MHz. This is because the −252 MHz g2 − e2 transition has an intermediate pathway
g2 −−−−−→

Opt.Exc.
e2 −−→

ESF
e15 −−−−−→

Opt.Rlx.
g15 −−→

FF
g1 in initialising g16, as can be seen in the initialisation

schematic Figure 5.2b. This intermediate step also results in a leaking of population, whereby other
states are populated via weaker but still prominent relaxation pathways, and hence a lower population
contribution to g16.

This initialised g16 state at 99 mT with σ+ polarisation had the largest population contrast ∆P with
g2 (∼ 83.92%), but the g2−g16 ESD transition probability is around 10−3 orders of magnitude lower
than the ESD transition probability (| ⟨g9|Oesd|g7⟩ |2 ≈ 8 · 10−2) of the coherently drivable g7− g9 30
mT clock transition. Taking the ESD transition probability of this clock transition as a spin-resonance
benchmark, the g2 − g16 probability is too small. Furthermore, g2 − g16 is not a ZEFOZ transition.
The transition with the next highest population contrast (∼ 83.86%) was between g16 and g14, also at
99 mT with σ+ polarisation, with an ESD transition probability roughly half that of | ⟨g9|Oesd|g7⟩ |2
at the 30 mT clock transition. If the ESD transition probability between two eigenstates is too high
(> 0.1) the two-state population contrast will be extremely low. If the ESD transition probability
is too low (< 0.01), it will increase the population contrast but driving spin resonance is unlikely,
and even less so for coherence. The dynamics of this are further explained in Appendix C.V. Since
the g14 − g16 ESD transition probability is on the order of the g7 − g9 ESD transition probability,
the g14 − g16 transition is likely to be coherently driven with a suitable oscillating field, especially
considering that the fidelity of g16 can reach > 0.92 with the appropriate protocol. g14 − g16 is also
a ZEFOZ transition. States like g14, which show promising population contrasts and ESD transition
probabilities with the relevant static state, will be referred to as coherent partner (CP) states. The
static state and the CP state combined make a qubit candidate. Thus, g14 is the coherent partner
(CP) state of g16, and g14 − g16 is the corresponding qubit candidate. The g14 − g16 transition at 99
mT is mediated by a ∆mI = 2 nuclear spin flip mediated transition. This is an electric quadrupole
transition, and hence is likely to be coherently driven with an electric field. Magnetic spin resonance
is still likely to be possible however, as was measured for g6 − g8 at 40 mT in Section 4. Further
information can be found in Appendix C.VI.

The g8 initialised states had slightly lower fidelities than g16 but still provided promising areas of
initialisation. The highest population contrast achieved was between g8 and g10, with a contrast
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Figure 5.2: a Fidelity of g16 as a function of scan-laser detuning δS at 99 mT with σ+ polarisation. The purple
(orange) plot is for a fixed-laser detuning of δF = −259 MHz (δF = −252 MHz), corresponding to the g1 → e1
(g2 → e2) transition. Note that the peaks of both plots with fidelities of F > 0.921 correspond to the same
driving scheme (δ1, δ2) = (−259 MHz, −252 MHz). c Fidelity of g8 as a function of scan-laser detuning δS at
48 mT with σ− polarisation. The purple (orange) plot is for a fixed-laser detuning of δF = 108 MHz (δF = 71
MHz), corresponding to the g9 → e9 (g10 → e10) transition. b, d Energy-level diagram showing initialisation
of g16, g8 with the driving scheme (δ1, δ2) = (−259 MHz, −252 MHz), (δ1, δ2) = (108 MHz, 71 MHz)
labelled with 1. Additional steps 3, 4, 1, 2 involved in initialising results in a population leakage (weak GS1,
ES1 relaxation into other eigenstates), and hence a lower baseline fidelity for δF = −252 MHz, δF = 71 MHz
in the steady state.
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∆P of ∼ 77.5% and a corresponding g8 fidelity of > 0.88, at 41 mT and σ− polarisation. However,
the corresponding ESD transition probability is an order of magnitude lower than the g7 − g9 clock
transition ESD transition probability. The following highest contrast was between g6 and g8 at 48
mT,10 with a contrast of ∼ 77.4% and a g8 fidelity also > 0.88. The fidelity can be seen in Figure
5.2c. The corresponding ESD transition probability is on the same order of magnitude as the g7− g9
clock transition ESD transition probability, and as such g6 − g8 at 48 mT is a promising transition
for coherent driving. Further considering that this is a ZEFOZ transition, g6 is a suitable CP state
for g8. The highest fidelity is achieved with the driving scheme (δ1, δ2) = (108 MHz, 71 MHz).
With the fixed laser at 108 MHz, the baseline fidelity is ∼ 0.66, roughly 30% higher than with the
fixed laser at 71 MHz. Similar to the g16 case this can be understood in terms of the driving and
relaxation pathways. The 108 MHz detuning corresponds to the g9 − e9 transition, which after an
ES1 electronic spin flip mediated relaxation, goes into e8, which optically relaxes and initialises into
g8. The 71 MHz detuning corresponds to the g10 − e10 transition, which has an intermediate step
before initialising into g8. This can be seen schematically in Figure 5.2d.

5.3 Experimental Recommendations for Initialisation

Initialisation at 2 K

The initialisation driving schemes in Section 5.2 do not optically address any of the candidate
qubit states, and as such, do not provide optical readout. For continuous-wave experiments such
as OD2LSR, this is problematic. While this section focuses on pulsed protocols, for which this is
not a problem, Appendix D.I provides more information on how this optical readout problem can
be mitigated for continuous-wave experiments. In a steady-state pulsed protocol, the system is first
initialised by two simultaneous laser pulses, with a pulse time sufficiently long enough to reach the
steady state. Then, operations and readout are conducted after initialisation. This is in contrast to
the continuous-wave OD2LSR process, whereby coherent driving and readout were conducted while
the lasers were still incident on the sample. The focus remains on g8 and g16, using the same driving
schemes introduced in Section 5.2. For a V defect in a 4H-SiC sample kept at 2 K, the following
steady-state initialisation protocol is developed. First, the qubit candidates g6 − g8 at 48 mT and
g14 − g16 at 99 mT are selected. These qubit candidates have high population contrasts, and ESD
transition probabilities on the order of the coherently drivable g7 − g9 clock transition at 30 mT.
Furthermore, they are both ZEFOZ transitions, and are thus protected from magnetic noise. Other
qubit candidates involving g8 and g16 are also possible, but the aforementioned candidates are most
favourable. As seen in Figure 5.2, the recommended driving scheme for initialisation into g16 at 99
mT is g1 − e1 (−259 MHz) and g2 − e2 (−252 MHz), with σ+ polarisation for g1 − e1 and linear
polarisation for g2 − e2. Despite the linear polarisation, this still results in a state ρ fidelity of
F (ρ, g16) > 0.921. The reason linear polarisation is chosen for g2 − e2 is because one of the beams
must be linearly polarised for optical readout on g14, as is discussed further below. Seeing that
g1 − e1 is the stronger initialising transition, it is kept polarised in σ−. The recommended driving
scheme for initialisation into g8 is g9 − e9 (108 MHz, σ− polarisation) and g10 − e10 (−252 MHz,
linear polarisation). The polarisations are chosen for the same reasons as for g16. This results in a
state ρ fidelity of F (ρ, g8) > 0.886.

It is clear to see from the driving schemes, which do not include the static states g8 and g16, that
this is a process reliant on the spin-relaxation of the system. Without the strong ES1 electronic spin
flip processes, or the strong GS1 flip-flop processes, the excited states (e1, e2 and e9, e10) would not

10In Section 4, the optimal magnetic field found for g6 − g8 was 40 mT. This was determined using a different (now
defunct) approach utilising the USRN and with the standard rates (i.e. no increased NSF, ESF rate coefficients).
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relax into the respective static states. Since the populations (and hence fidelities) are calculated in
the steady state, the initialisation is dependent on the longest relaxation timescale involved. The
optical relaxation is on the order of 100 ns [60, 61], and the ES1 relaxation is on the order of 10 ns
[79]. At 2 K, the GS1 spin-relaxation time T1 is the longest timescale, since T1 ≲ 1 ms [73]. Thus, for
this steady-state initialisation protocol, the lasers should be on sufficiently long enough to allow for
a few cycles of GS1 relaxation (mediated primarily by the flip-flop). This means that the two lasers
should be on for at least 1 ms. Therefore, a pulsed protocol where two lasers are simultaneously
incident on the sample in 1 ms pulses can be implemented. After the 1 ms pulse, the system is
initialised, and operations can be carried out on the qubit. The system is then optically read out.

The necessity of optical readout is why linear polarisation is required. At 2 K, circularly-polarised
lasers can be used to increase the efficiency of initialisation. However, this circular polarisation will
greatly suppress readout on the CP state. For example, σ+ polarisation is used for g16 initialisation,
but cannot be used for readout on g14 since | ⟨e14|O+|g14⟩ |2 ∼ 10−11. This makes it necessary for
one of the lasers to be linearly polarised (using the previous example, | ⟨e14|Oopt|g14⟩ |2 > 0.99). It is
possible to keep both the initialisation lasers circularly-polarised by either introducing an additional
readout laser, or by using a Pockels cell to quickly switch the polarisation of one of the initialisation
lasers. Furthermore, cross transitions can also be used for readout, but these are weaker than direct
transitions and so will result in a lower readout contrast. For the qubit candidate g14 − g16 at 99
mT, the readout transition g14− e14 (260 MHz) can be used, while for g6− g8 at 48 mT, the readout
transition g6 − e6 (−56 MHz) can be used. Since the necessary operations have already been carried
out on the qubit, the state fidelity does not need to be conserved after readout. In other words, it
is not a problem if the readout has adverse effects on the system. This is in contrast to continuous-
wave steady-state initialisation; since one beam acts as both an initialisation and readout beam, it
is necessary that the readout does not negatively affect the system.

Initialisation at 100 mK with ES1 Spin Relaxation

The pulsed protocol recommended above, if initialising into g16, can result in a state fidelity >
0.921. Tissot et al. [74] reported fidelities of > 0.999 for the same system, but at 100 mK. It
was recommended in Section 4.1, that a temperature decrease can result in better control of the
system, since the spin-relaxation rates are reduced. The temperature dependence of the system is
characterised by the rate coefficients R. These coefficients were only determined at 2 K, but since
they also characterise T1 times, a simplified temperature dependence can be modelled. Astner et al.
[73] measured a T1 ∼ 25 s at 100 mK (using a dilution refrigerator) corresponding to a spin relaxation
rate of γg ∼ 10−8 MHz. The simulation models the spin relaxation to be mediated by four distinct
processes (x: ESF, NSF, FF, FFz) with the individual rates γg ≡ γgj−gk given by Eq. (2.12). Since
the strongest relaxation probabilities | ⟨Ox⟩ |2 ∼ 0.1 the GS1 rate coefficients can be approximated
by Rg ≡ Rg

x ∼ γg/| ⟨Ox⟩ |2 ∼ 10−8/0.1 MHz = 10−7 MHz. Of course, this approximation does not
incorporate other important experimental and environmental factors (such as the magnetic field),
but is sufficient to obtain an order of magnitude estimate for the fidelity at these temperatures.
Setting all the GS1 rate coefficients Rg = 10−7 MHz resulted in an overall increase of fidelities.
However, new protocols had to be introduced. Note that experimental considerations, such as using
a linear polarisation for optical readout, are not considered for brevity.

Due to time limitations, not all magnetic fields could be studied. Therefore, the effect of reducing
Rg to 10−7 MHz was only studied for initialisation into g16 at 99 mT (with σ+ polarisation) and
g8 at 48 mT (with σ− polarisation) for the detuning range of −5000 to 5000 MHz, to include large
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transition energies.11 For initialisation into g16, the fixed laser was set to δF = −259 MHz (the
prominent initialisation detuning in the 2 K case, see Figures 5.2a, b) corresponding to the g1 − e1
transition. The fidelity reached F (ρ, g16) > 0.997 at δS = −3291 MHz, corresponding to the g15−e1
transition

(
| ⟨e1|O+|g15⟩ |2 ∼ 5 · 10−3

)
. For initialisation into g8, the fixed laser was set to δF = 108

MHz (corresponds to g9 − e9) with a maximum fidelity of F (ρ, g8) > 0.998 at δS = 709 MHz,
corresponding to the g7 − e9 transition

(
| ⟨e9|O−|g7⟩ |2 ∼ 0.1

)
. Figure 5.3a shows this schematically.

It can be seen immediately that these initialisation driving schemes are all mediated via the ES1
electronic spin flip and optical relaxation. Since the GS1 flip-flop is now heavily suppressed, the
relaxation processes g15 −−→

FF
g1 (Figure 5.2b) and g7 −−→

FF
g9 (Figure 5.2d) which formed an integral

part of the 2 K protocols, are not strong enough for good initialisation. Despite the high fidelities, it
must be noted that these are Λ-schemes. Λ-schemes can lead to coherent population trapping (CPT),
wherein the system goes into a dark state which is a superposition of the two GS1 eigenstates (g1, g15
or g7, g9) being driven - this is not favourable for initialisation into g8 or g16. CPT is not considered
nor included in the model, meaning that this initialisation protocol might not be entirely reliable.
CPT might be able to be avoided by pulsing the lasers in an alternating fashion (one laser on,
other laser off, vice versa) over the necessary timescale needed for initialisation. However, due to the
relaxation of states resonant with the off-laser, this could increase the time needed to reach the steady
state. Seeing as this initialisation combines both ES1 and optical relaxation, and that one of the
driving transitions is a cross transition (weaker than direct transitions, | ⟨O⟩ |2 < 0.9), steady-state
initialisation is likely to be achieved on the order of 1 µs, allowing for several cycles of driving, ES1
relaxation (lifetime ∼ 10 ns), and optical relaxation (lifetime ∼ 100 ns).

Initialisation at 100 mK without ES1 Spin Relaxation

In reality, by reducing the temperature to 100 mK, the relaxation rates in ES1 γe ≡ γei−ej are
also bound to change, since the energy separations of the ES1 eigenstates are on the same order
of magnitude as the energy separations of the GS1 eigenstates (∼ 100 MHz). The temperature
dependence of γe is not known, and the relation between γg and γe is likely nonlinear. Therefore, no
concrete conclusions can be made here regarding 100 mK fidelities. However, it is possible to use an
approach similar to Tissot et al., where the relaxation within ES1 is ignored, by setting the ES1 rate
coefficients Re ≡ Re

x = 0 (and keeping Rg = 10−7). Since now both the GS1 and ES1 relaxation
processes are suppressed, the protocol must rely on optical relaxation. Using the same parameters
(g8: 48 mT, σ− polarisation and g16: 99 mT, σ+ polarisation), a fidelity of F (ρ, g16) > 0.998 can be
achieved using the driving scheme g1− e16 (3407 MHz, | ⟨e16|O+|g1⟩ |2 ∼ 10−3) and g15− e16 (−3291
MHz, | ⟨e16|O+|g15⟩ |2 ∼ 10−6). The driving scheme g9 − e8 (−595 MHz, | ⟨e8|O−|g9⟩ |2 ∼ 10−2) and
g7 − e8 (6 MHz, | ⟨e8|O−|g9⟩ |2 ∼ 10−3) results in a fidelity of F (ρ, g8) > 0.999. Figure 5.3b shows
this schematically. Unsurprisingly, the transitions used in the g8 (g16) driving scheme have the largest
optical driving probabilities | ⟨O−⟩ |2

(
| ⟨O+⟩ |2

)
for all optical transitions between gi and e8 (e16),

excluding the direct transition g8 → e8 (g16 → e16) which would deplete g8 (g16). The g8 driving
scheme also has larger driving probabilities as compared to g16, resulting in better initialisation.

Similar to the 100 mK process outlined previously, these driving schemes are also Λ-schemes, and
could lead to CPT. Same as before, CPT can be avoided by using alternating pulsed lasers. Seeing
as this is almost a purely optical process (with very little contribution from GS1 relaxation and no
contribution from ES1 relaxation) involving optical driving transitions that are even weaker than
before, the time at which the steady state is reached is likely to be on the order of 10 µs. This will
ensure several hundred optical excitation and relaxation cycles (optical lifetime is ∼ 100 ns), while

11This detuning range was not used for the general 0− 99 mT analysis due to computational limits.
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Figure 5.3: a Initialisation driving and relaxation scheme for g8 and g6 with GS1 rate coefficients Rg = 10−7

(reflecting 100 mK T1) and standard ES1 rate coefficients Re (Appendix B.I). The lasers are pulsed in an
alternating fashion (dashed lines represent alternating pulses) to prevent coherent population trapping (CPT).
Note that with GS1 relaxation now suppressed, the best initialisation scheme does not include the GS1 flip-
flop, as opposed to the 2 K case. b Initialisation driving and relaxation scheme for g8 and g16 with GS1 rate
coefficients Rg = 10−7 and ES1 rate coefficients Re=0. Same as before, the lasers are pulsed in an alternating
fashion to prevent CPT. Now with ES1 relaxation suppressed, the initialisation scheme is purely optical (i.e.
no effective-spin relaxation).

still allowing for a small amount of GS1 relaxation to contribute to the initialisation.12 The maximum
fidelity attained here is very similar to that of Tissot et al. [74], and when considering that the two
approaches used were quite different (Tissot et al. use a ratchet-type time-resolved method involving
a repump for initialisation, as opposed to two-laser steady-state), is a promising indication that good
initialisation is possible for V defects in SiC. Currently, the temperature of the ES1 spin-relaxation
time has not been characterised. It is therefore not possible to make any definitive conclusions on
the 100 mK cases. However, if the GS1 spin-relaxation time has been experimentally measured to
increase between 2 K and 100 mK (by 103 orders of magnitude), it is not unreasonable to suppose
that something similar happens to the ES1 lifetime. In this way, the latter case (Re

x = 0) is likely to
be the most physically accurate.

12Due to the population imbalance between the GS1 eigenstates which are driven, and the other GS1 eigenstates,
GS1 relaxation will be directed into the driven eigenstates. Normally this process is slow at 100 mK, but the population
imbalance helps to speed it up. Furthermore, the finite optical linewidth (∼ 10 MHz) causes several transitions to be
driven simultaneously, further accelerating initialisation.
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Summary of Observed Trends

On a final note, it is interesting to see how the initialisation driving scheme changes significantly
depending on the temperature. At 2 K, since the GS1 flip-flop is prominent, the initialisation scheme
drives direct transitions in the spin-manifold opposite to the static state. For g16 this was g1 − e1,
g2 − e2 and for g8 this was g9 − e9, g10 − e10. These are Π-schemes with very strong optical driving
probabilities | ⟨Oopt, ±⟩ |2. The g2 − e2 and g10 − e10 transitions can only initialise with the aid of
the GS1 flip-flop (see Figures 5.2b, d). Suppressing the GS1 relaxation means that the g2 − e2 and
g10 − e10 transitions are no longer useful in initialisation. The driving scheme then becomes a Λ-
scheme, where the excited eigenstate initialises into the static state via the ES1 electronic spin flip
and optical relaxation. Suppressing both GS1 and ES1 led to driving schemes where the excited
state analog ei of the static state gi was directly populated. These schemes are not possible when
GS1 and ES1 relaxation is prominent. Both the 100 mK cases (suppressed spin relaxation) led to
initialisation using Λ-schemes, which can lead to CPT. While CPT was not included in the model,
it might be possible to avoid this experimentally by pulsing the lasers in an alternating fashion over
the necessary initialisation timescale. Despite this, the presence of Λ-schemes at low temperatures
could possibly be advantageous. Upon further analysis, it may be possible to use CPT to initialise
the system for another qubit candidate, not unlike what has been done for NV centres in diamond
[86, 87] and quantum dots [88]. Coherent population trapping has also been seen with molybdenum
spins [89] and divacancies [90] in SiC, although not for initialisation purposes.
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6 Conclusion

This work aimed to develop initialisation protocols for the neutral charge-state V4+ defect in SiC at
2 K, to achieve high-fidelity initialisation for coherent control. These protocols were developed with
the use of a theoretical Lindbladian model, which was used to simulate the eigenstate populations
of the quantum system. For an inhomogeneous ensemble, no theoretical initialisation protocol with
a fidelity of F > 0.1 was found. This strongly suggests that inhomogeneous ensembles of V defects
in SiC are not a good candidate for quantum memory applications, where much higher fidelities
are required. Furthermore, in experiment, the one-laser (uninitialised) signal was higher than the
two-laser (initialised) signal. Possible reasons for this signal difference were given, but have yet to
be verified. Despite this signal difference and the low fidelities, the simulation was able to accurately
predict (accuracy of ±10 MHz) points of two-laser initialised spin resonance which were experimen-
tally verified using a vanadium-doped SiC sample with inhomogeneous broadening of ∼ 20 GHz at
2 K. This motivated using the model to develop theoretical single-defect initialisation protocols.

At the single-defect level, an analysis in the range 0 − 99 mT found that below 34 mT, where the
hyperfine interaction still has a significant contribution to the Hamiltonian, there were no qubit
candidates with a population contrast ∆P ≥ 75%. This suggests that the pure hyperfine and mixed
hyperfine-electron Zeeman regimes have relaxation pathways which are too strong for good initiali-
sation. Therefore, any initialisation protocol should be focused on the electron Zeeman dominated
regime (≳ 30 mT). Within this regime, there were two GS1 eigenstates, g8 (|↑,−7/2⟩) and g16 (|↓, 7/2⟩),
that could be initialised well with a steady-state two-laser protocol. At 2 K, the maximum fidelities
achieved were F (ρ, g8) > 0.886 and F (ρ, g16) > 0.921, using Π-schemes, with different requirements
for the magnetic field and laser frequencies. An analysis on the spin-state dynamics of GS1 and
ES1 found that at 2 K, any steady-state initialisation protocol heavily relies on the spin relaxation
within GS1 and ES1. Furthermore, which state (between g8 and g16) the system would initialise into
was found to be dependent on which effective-spin manifolds the applied optical fields were driving.
Due to the fact that circular polarisation amplifies transitions for a specific effective-spin manifold,
and suppresses transitions in the other, circularly-polarised light was utilised in the initialisation.
Since the initialisation protocol at 2 K relies on GS1 relaxation, which has the longest relaxation
time (≲ 1 ms [73]), a pulsed initialisation protocol would require pulses of at least 1 ms to obtain
steady-state conditions. An approximated temperature dependence of the GS1 and ES1 relaxation
rates was also developed, and at 100 mK, fidelities of F > 0.999 were achieved. While not determined
with a rigorous method, this result is very similar to that of Tissot et al. [74]. When considering that
the two approaches used were quite different, it is a promising indication that good initialisation can
be achieved for V defects in SiC.

It was found, in both experiment and simulation, that steady-state two-laser initialisation protocols
for V defects in SiC are highly dependent on spin relaxation (and hence temperature), incident laser
polarisation, and the degree of inhomogeneity in the system. For quantum technology applications,
inhomogeneous ensembles cannot be used owing to their low state fidelities, even after attempted
initialisation. The single-defect case was more promising however, showing theoretical fidelities of
up to F > 0.921 at 2 K. Although fidelities of F > 0.999 are extremely favourable for quantum
technology applications, it seems that these fidelities are only achievable with very low temperatures,
on the order of 100 mK, requiring the use of dilution refrigerators. This is a less practical, and more
expensive, operating temperature than 2 K. A single-defect fidelity of F > 0.921 at 2 K is suitable
for use in quantum repeater applications [32], and also indicates that high initialisation can be
achieved at more practical operating temperatures and without the use of dilution refrigerators.
Further studies to fully quantify the dependence of all the spin-relaxation processes (GS1 and ES1)
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on experimental factors (temperature, number and power of incident electric and magnetic fields),
along with an analysis over a larger range of magnetic fields and laser frequencies, may help lead to
previously undiscovered areas of high-fidelity initialisation at 2 K. It was also found that the high-
fidelity states g8 and g16 each formed qubit candidates with states that have an effective ∆mI = 2
transition. Initialised spin resonance was experimentally measured for one of these qubit candidates
(g6 − g8), but unfortunately no coherence was seen, which is a fundamental requirement for qubits.
These ∆mI = 2 transitions arise from the nuclear electric quadrupole, indicating that it might be
necessary to use electric fields to coherently drive this transition. In fact, achieving highly-initialised
coherent control with electric fields is a sought after feat in the community [62]. This could be
investigated further by applying electric fields and studying the initialised coherence properties of
these qubit candidates.

While this work is by no means an exhaustive guideline for high-fidelity initialisation, it has provided
valuable insight into the complicated dynamics of V defects in SiC. Most importantly, it provides
a framework for the community to achieve high-fidelity initialisation of V defects in SiC at 2 K.
Through these high-fidelity initialisation protocols, this work enables experimental study of the
coherence properties of individual vanadium defects at 2 K.
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A Appendices to Section 2: Theoretical Overview

A.I Effective Inhomogeneity

Each defect is situated in a different part of the 4H-SiC crystal lattice and feels differing electrostatic
inhomogeneities arising from lattice imperfections and other environmental factors. These inhomo-
geneities result in unique changes in the energy structure of the different defects, and as such causes
an inhomogeneous broadening of the GS1−ES1 optical transition linewidth (i.e. transition energy).
In the sample studied here, the broadening is on the order of roughly 20 GHz. The consequence of
this is that the same laser frequency can be resonant with different transitions between the defects,
and the overall energy resolution decreases. However, the effective inhomogeneity is on the order of
a few GHz. This is because the energy difference ∆EES1 between e1 and e16 from 0 to 99 mT is
between 1−4 GHz. Thus, a laser with frequency ω resonant with some transition gi−ej in one defect
can only be simultaneously resonant with a transtion gk − el in another defect if the inhomogeneous
broadening ∆ between the two defects is ∆ ≲ ∆EES1. Otherwise, another part of the inhomogeneous
ensemble is accessed, where the same rule applies. This means that at any one time, the lasers are
accessing an ensemble of defects which have an effective inhomogeneous broadening of 1−3 GHz. In
the magnetic field range studied, the difference between e1 and e16 is always larger than the difference
between g1 and g16, which makes the ES1 difference the limiting factor in the inhomogeneity. This
can be seen in Figure A.1. The inhomogeneity range used in the simulation was −1 GHz to 1 GHz.
The range was kept relatively small to maximise computational efficiency.

A.II Derivation of a Four-Level Lindbladian

As mentioned prior, the system is calculated in the steady state, that is

ρ̇ = 0. (A.1)

Since it is assumed that there are no coherences, so that ρ is only composed of diagonal terms
(populations), ρ can be replaced with a 32-entry column vector ρ⃗diag. Explicitly

ρ = diag
(
P⃗
)
→ ρ⃗diag = P⃗ T = (Pg1 , Pg2 , . . . , Pe16)

T = (P1, P2, . . . , P32)
T (A.2)

where the subscripts gj , ej have been replaced with i = 1, . . . , 32 for brevity. Replacing the 32× 32
matrix ρ with a 32-entry vector ρ⃗diag makes it more (computationally) efficient to solve for the
populations. In this way, Eq. (A.1) is a system of 32 linear differential equations (DEs). The
evolution of an open quantum system (a system that interacts with its environment) is governed by
the master Lindblad equation [80], given by

ρ̇ = Lρ (A.3)

where L is the Lindbladian. For the system studied here, the Lindbladian L can be represented by
a 32× 32 matrix M . Eqs. (A.1), (A.2), and (A.3) can then be combined to give

Mρ⃗diag = 0⃗. (A.4)

Eq. (A.4) is the foundation of the theoretical model used in this research. Now, instead of 32 linear
ODEs, Eq. (A.4) is a system of 32 linear equations. To determine the populations ρ, the matrix M
must first be constructed. From there, Eq. (A.4) can be rearranged to give

ρ⃗diag =M−10⃗.
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GS1

ES1 {∆EES1
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[clip, trim= 0cm 7.8cm 18.2cm 0cm]

Figure A.1: Schematic showing the effective inhomogeneity ∆ES1. The first three GS1, ES1 manifolds have
inhomogeneities ∆ < ∆ES1, and can be accessed by either the long leg or short leg laser. The last manifold
however, has an inhomogeneity ∆ > ∆ES1, and as such cannot be accessed by any laser (the long leg is shown
in the figure). Therefore, ∆ES1 acts as an effective inhomogeneity, as the last manifold is not addressed in
this driving scheme.
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However, there is a problem with the above equation - the only solution is the trivial solution
ρ = 0⃗. This is because the populations have not been normalised. The population Pi represents
the probability to find the system in state |ψi⟩ with i = 1, 2, . . . , 32. As such, the normalisation
condition

∑
i Pi = 1 is necessary. Then, ρ⃗diag can be modified by adding the total population Ptot = 1

to the bottom of the vector to give ρ̃diag, satisfying the normalisation condition, with M and the
zero vector 0⃗ being treated in the same way to give M̃ and 0̃. This then gives

M̃ρ̃diag ≡

 M
1 . . . 1




P1

P2
...
P32

1

 =


0
0
...
0
1

 −→ ρ̃diag =
(
M̃
)−1

0̃.

which has a non-trivial solution for ρ̃diag, and hence for ρ⃗diag. All that is left to solve for ρ is to
determine the Lindbladian matrix M - once M is determined, ρ can be easily solved. To understand
how M is constructed, it is best to consider a simple four-level system. This can be seen in Figure
A.2. Let the ground states be called |0⟩ and |1⟩, and the excited states |2⟩ and |3⟩. Then, upon
applying two lasers that are resonant with the transitions |0⟩ − |2⟩ and |1⟩ − |3⟩, with driving rates
Ω0−2 and Ω1−3 respectively, and allowing for cross relaxation between all states, the rate of change
of each state population Ṗi can be modelled as follows

Ṗ0 = −(Ω0−2 + γ0−1)P0 + γ1−0P1 + Γ2−0P2 + Γ3−0P3,

Ṗ1 = −(Ω1−3 + γ1−0)P1 + γ0−1P0 + Γ2−1P2 + Γ3−1P3,

Ṗ2 = −(Γ2−0 + Γ2−1 + γ2−3)P2 +Ω0−2P0 + γ3−2P3,

Ṗ3 = −(Γ3−0 + Γ3−1 + γ3−2)P3 +Ω1−3P1 + γ2−3P2

where Γi−j is the relaxation rate between excited state i and ground state j, and γm−n is the
relaxation rate between two states in the same ground or excited state manifold. Writing the four
equations above in the matrix equation Mρ, gives


Ṗ0

Ṗ1

Ṗ2

Ṗ3


=



−(Ω0−2 + γ0−1) γ1−0 Γ2−0 Γ3−0

γ0−1 −(Ω1−3 + γ1−0) Γ2−1 Γ3−1

Ω0−2 0 −(Γ2−0 + Γ2−1 + γ2−3) γ3−2

0 Ω1−3 γ2−3 −(Γ3−0 + Γ3−1 + γ3−2)





P0

P1

P2

P3


.

The matrix in the above equation is the Lindbladian matrix M for the system. Splitting the Lind-
bladian matrix into four 2× 2 matrices (2 states in each manifold), a general trend can be seen. The
diagonal of the upper left matrix gives the total rate of population decrease for state |i⟩ in the ground
state manifold. This includes depletion from driving −Ω, and a population decrease via relaxation
−γg to the other ground state. The off-diagonal terms in the upper left matrix are the rates of
population increase via ground state relaxation +γg. In the same way, the terms in the upper right
matrix are the rates of population increase via relaxation +Γ from the excited states into the ground
states, and the terms in the lower left matrix gives the rates of population increase in the excited
states via driving +Ω from the ground states to the excited states. The diagonal in the lower right
matrix gives the total rates of population decrease for the excited states. This includes relaxation
from excited to ground states −Γ, and relaxation between excited states −γe. Much in the same way
as the upper left matrix, the off-diagonal terms in the lower right matrix are the rates of population
increase via excited state relaxation +γe. Therefore, the term Mij represents the contribution of
population from state j into state i, and each row i is associated with the behaviour of Ṗi. The

3
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diagonal terms Mii < 0 represent the total contribution of state i to all other states, and as such,
each column in the Lindbladian matrix sums to zero. This approach is easily extendable to a 32-state
system. Note that for the system studied in this research, the GS1 and ES1 effective-spin relaxation
rates are symmetric - that is γi−j = γj−i.

|0

|1

|3

|2

Ω0−2
Ω1−3

γ0−1 γ1−0

γ2−3 γ3−2

Γ3−1

Γ3−0

Γ2−0

Γ2−1

Figure A.2: Four-level system driven by two incident lasers with driving rates Ωi−j between ground state |i⟩
and excited state |j⟩. The spin relaxation within the ground and excited manifolds from state |i⟩ to state |j⟩
is denoted by γi−j , while optical relaxation from state |i⟩ to state |j⟩ is denoted by Γi−j .

A.III Optical Operators: Selection Rules Schematic

Figure A.3 shows the selection rules for driving optical transitions with linearly-polarised light, and
σ± circularly-polarised light. Note that cross transitions are also possible, but these are weaker than
direct transitions. For brevity, only two mI states are shown in each effective-spin manifold.

A.IV Derivation of Fidelity F =
√
P

Before an initialisation protocol can be developed, a quantitative definition of initialisation must
first be given. Ultimately, initialisation means preparing the system into a pure quantum state, and
specifically here an eigenstate of GS1. In terms of the 32 × 32 density matrix ρ, this means going
from the mixed state ρ (with nonzero populations along the diagonal) to a pure state σ, where there
is only one nonzero population equal to 1. Using the four-level system above as an example, the
density matrix ρ of the system at thermal equilibrium is given by (neglecting coherences)

ρ = diag(0.25, 0.25, 0.25, 0.25).

If the system must be prepared in the ground eigenstate |1⟩, by applying the appropriate protocol,
ρ must be brought to the pure state σ

σ = diag(0, 1, 0, 0) = |1⟩ ⟨1| .

In reality, it is near impossible to achieve the state σ. However, it is possible to get very close. For
example, upon applying some protocol, ρ is brought to

ρ = diag(0.0025, 0.9925, 0.0025, 0.0025).

4
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Linear polarisation σ+ polarisation

Strong transitions
Weak transitions

Strong transitions
Weak transitions

σ− polarisation

[clip, trim=0cm 19.5cm 8.9cm 0cm]

Figure A.3: Selection rules for different polarisations of light. Note that cross transitions are also allowed,
but are weaker than direct transitions. Cross transitions have been omitted from the schematic for brevity.

The question now is how close is the mixed state ρ to the pure state σ. To answer this, it is useful
to introduce the concept of the fidelity F (ρ, σ). The fidelity is defined as [82]

F (ρ, σ) = Tr
(√√

ρσ
√
ρ

)
and if ρ and σ commute (which is the case here), this becomes

F (ρ, σ) = Tr
(√
ρσ
)
.

The fidelity is symmetric F (ρ, σ) = F (σ, ρ) and reduces to the state overlap F = ⟨ψρ|ψσ⟩ when ρ
and σ are pure states. In the context of the four-level example, √ρσ = diag(0, 0.9962, 0, 0). All
other terms in ρσ are zero, except the square-rooted population of the quantum state to be prepared.
Then, the fidelity becomes F = Tr

(
diag(0, 0.9962, 0, 0)

)
= 0.9962. This is equal to

√
0.9925, which

was the population of state |1⟩ in the initialised ρ. Generalising this to a 32× 32 system

ρ = diag(P1, P2, . . . , P32),

σ = diag(0, 0, . . . , Pi = 1, . . . , 0).

with i ≤ 16 as the system is initialised into one of the GS1 eigenstates. Then

ρσ = δijPj .

Thus, when working with density matrices without coherences, and comparing them to pure eigen-
states as is done here, the fidelity of an initialised state ρ and eigenstate gi is simply given by

F (ρ, gi) =
√
Pgi (A.5)

where Pgi is the population of eigenstate gi in ρ.
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B Appendices to Section 3: Methods & Approach

B.I Implementation of Lindbladian Model

Contact the author (Adrian P.J. Sidhu) for more information on the computational implementation
of the Lindbladian model.

Mathematical Description of Operators

In total there were seven operators used in the Lindbladian model. Four of these were the four
effective-spin processes - electron spin flip (ESF), nuclear spin flip (NSF), flip-flop (FF), and the ẑ-
axis flip-flop (FFz). The ESF entails a change in the effective spin ∆mS̃ = 1, the NSF a change in the
nuclear spin ∆mI , and the FF and FFz a change in both the effective electron spin and nuclear spin,
∆mS̃ = 1 and ∆mI . Then there were the optical relaxation and linearly-polarised driving operator
Oopt, and finally the circularly-polarised driving operators O±. The four effective-spin operators
used in the model are

OESF =
(
S̃+ + S̃−

)
· II , (B.1)

ONSF = (I+ + I−) · IS̃ , (B.2)

OFF = I+S̃+ + I−S̃−, (B.3)

OFFz = IzS̃z. (B.4)

where S̃± = S̃x ± iS̃y and I± = Ix ± iIy are raising and lowering operators for the effective-spin and
nuclear spin, respectively. The spin operators used in the model are given by

S̃z =
1

2

(
J8 08, 8
08, 8 −J8

)
,

S̃+ =

(
08, 8 J8
08, 8 08, 8

)
,

S̃− =

(
08, 8 08, 8
J8 08, 8

)
,

Iz =

(
iz iz
iz iz

)
with iz = diag(mI) = diag(7/2, 5/2, 3/2, 1/2, −1/2, −3/2, −5/2, −7/2),

I± =

(
i± i±
i± i±

)
with i± = diag±

(√
j(j + 1)−mI(mI ± 1)

)
In is an n×n identity matrix, Jn is an n×n matrix of ones, and 0n, n is an n×n matrix of zeros. The
diag±(x) operator places the elements x just above (+) or just below (−) the main diagonal. The
matrices II and IS̃ are to ensure that there are no flip-flops in OESF and ONSF, respectively. Since
the eigenstates are composed of a linear combination of effective-spin states, the raising and lowering
effective-spin operators S̃± weakly allow changes in the nuclear spin (projection number) mI , which
results in S̃+ + S̃− being an effective (weak) flip-flop. The same applies to I± with changes in mS̃ .
To ensure S̃+ + S̃− remains a pure electron spin flip it is multiplied with the matrix II , which is
defined in the model by

II =

(
I8 I8
I8 I8

)
.

6



B APPENDICES TO SECTION 3: METHODS & APPROACH

The matrix IS̃ works in a similar way to restrict ONSF to pure nuclear spin flips, and is given in the
model by

IS̃ =

(
J8 08, 8
08, 8 J8

)
The optical driving and relaxation operators are given in Section 2.3.

Values Used for Model Parameters

The Hamiltonian used for the system is given in Section 2.1.2, but will be given here again for clarity.
Denoting the hyperfine contribution as HF, the electron (S̃) Zeeman contribution as Z:el, and the
nuclear (I) Zeeman contribution as Z:nuc, the Hamiltonian for effective spin states transforming as
Γ4 and Γ5, 6 is given by

HΓx = Heff
HF, Γx

+Heff
Z:el, Γx

+Heff
Z:nuc:, Γx

, (B.5)

where for Γx = Γ4

Heff
HF, Γ4

= a∥, Γ4
S̃zIz + a⊥, Γ4(S̃+I+ + S̃−I−) +QzzI

2
z

Heff
Z:el, Γ4

= −µB
(
g∥, Γ4

BzS̃z + g⊥, Γ4(BxS̃x +ByS̃y)
)

Heff
Z:nuc:, Γ4

= −µNgn(BzIz +BxIx +ByIy)

(B.6)

and for Γx = Γ5, 6

Heff
HF, Γ5, 6

= (a∥, Γ5, 6
S̃z + a⊥, Γ5, 6S̃x)Iz +QzzI

2
z

Heff
Z:el, Γ5, 6

= −µBg∥, Γ5, 6
BzS̃z

Heff
Z:nuc:, Γ5, 6

= −µNgn(BzIz +BxIx +ByIy).

(B.7)

S̃x, y, z, and Ix, y, z are the effective-spin and nuclear spin operators, respectively, and (Bx, By, Bz)
is the applied static magnetic field vector. The ẑ axis is taken to be parallel with the crystal c axis.
The parameters used in the simulated model were taken from Wolfowicz et al. [61] and are given by

a∥, Γ4
= 232 MHz

a⊥, Γ4 = 162 MHz
g∥, Γ4

= 1.664

g⊥, Γ4 = 0

a∥, Γ5, 6
= 215 MHz

a⊥, Γ5, 6 = 70.5 MHz
g∥, Γ5, 6

= 2.1

g⊥, Γ5, 6 = 0.

Determining the Rate Coefficients R and Their Limits

The rate coefficients R are used to quantify environmental interactions in the Lindbladian effective-
spin relaxation rates. To determine the rate coefficients, experimental two-laser spectroscopy data
at 15 static magnetic field strengths (0 mT, 2 mT, 4 mT, 6 mT, 8 mT, 13 mT, 18 mT, 23 mT,
28 mT, 33 mT, 38 mT, 43 mT, 48 mT, 75 mT, 300 mT) was used. Since a two-laser spectroscopy
signal directly reflects how much population is in the excited state (see Figure 3.1b), this data was

7
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compared to the sum of the ES1 eigenstate populations in the simulation. The rate coefficients were
then changed to fit this experimental data as best as possible. This was done in a few different
ways - first by eye, then by matching the simulated peaks (dips) with experimental peaks (dips), and
finally by minimising the RMSE. In the end, a set of rate coefficients were determined globally for
the magnetic fields. These are referred to as the standard rate coefficients in the main text, and are
given by

Rg
ESF = 0.01 MHz,

Rg
NSF = 0.001 MHz,

Rg
FF = 0.5 MHz,

Rg
FFz = 5 MHz

Re
ESF = 30 MHz,

Re
NSF = 0.001 MHz,

Re
FF = 0.1 MHz,

Re
FFz = 30 MHz.

Note that a high rate coefficient does not necessarily mean a high relaxation rate, as the relaxation
rate is also dependent on the associated transition probability. For example, while the GS1 flip-flop
has a rate coefficient of 0.5 MHz, it is the dominant relaxation process of GS1. Errors for these
rate coefficients were determined by finding the value for which the RMSE changed by 10% of the
original RMSE (calculated with the standard rate coefficients), at each magnetic field studied. The
rate coefficients with the smallest errors relative to the respective standard rate coefficient were the
coefficients that the simulation response was most sensitive to. As seen in Section 4.1, at 40 mT
this was the GS1 NSF (error of ∆Rg

NSF = 0.007, with ∆Rg
NSF/R

g
NSF = 7) followed by the GS1 ESF

(error of ∆Rg
ESF = 0.13, with ∆Rg

ESF/R
g
ESF = 13).

Summing Over Inhomogeneities

The inhomogeneities ∆inh are implemented in the model through the Lorentzian PDF. For an inho-
mogeneous ensemble, Eq. (2.15) becomes

f(ω, ∆inh; ω0, Γopt) =
1

π

Γopt(
(ω0 +∆inh)− ω

)2
+ Γ2

opt

. (B.8)

For the simulated results in the main text, an inhomogeneous broadening of 2 GHz was used (see
Appendix A.I), with inhomogeneities ranging from -1 GHz to 1 GHz in 2 MHz steps (1001 values
in total). The inhomogeneity distribution (i.e. the spectral density) was uniform. The Lindbladian
matrix was calculated and the populations solved for each inhomogeneity ∆inh (with ∆inh = −1 GHz,
−998 MHz, . . ., 998 MHz, 1 GHz). To then simulate the response of an inhomogeneous ensemble, the
populations were summed over the inhomogeneities. Explicitly, per magnetic field strength, the 32
populations were calculated for each laser detuning and each inhomogeneity. As such, the population
arrays (per magnetic field strength) were of the size 32 × NδS × N∆inh , where NδS is the number
of laser detunings and N∆inh = 1001 is the number of inhomogeneities. The populations were then
summed over the dimension of the inhomogeneities, resulting in a population array size of 32×NδS .
The only terms in the Lindbladian which account for the inhomogeneities are the driving terms, but
the summation also includes the relaxation terms. Summing over both the driving and relaxation
terms of the Lindbladian has the effect of reducing the efficiency of initialisation, as in a physical
inhomogeneous ensemble. However, the relaxation terms of the Lindbladian are summed N∆inh

times with equal strengths, since these terms are inhomogeneity independent (they do not contain

8
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the Lorentzian PDF, Eq. (B.8)). For example, if one of the original (single-defect) relaxation terms
of the Lindbladian is γ, the corresponding term in the inhomogeneous Lindbladian is N∆inh · γ.

To adequately represent the physical system, the distribution (i.e. the spectral density) of inhomo-
geneities needs to be approximately continuous, as is seen in experiment (see Figure B.2). To ensure
approximate continuity in the simulation, a spacing of 2 MHz was used. This was more computa-
tionally efficient than using 1 MHz. Using a spacing of 2 MHz means that in general, for some inho-
mogeneous broadening ∆, the number of inhomogeneities N∆inh will be given by N∆inh = ∆/2 MHz+1
(the +1 is to account for ∆inh = 0). For example, if ∆ = 2 GHz= 2000 MHz, the number of inhomo-
geneities is given by N∆inh = 2000/2+1 = 1001. This linear dependence between ∆ and N∆inh arising
from the necessity of having a continuous inhomogeneity distribution, paired with the summing of
the relaxation terms of the Lindbladian (N∆inh · γ), results in the absolute percentage value of ∆P
being highly dependent on the broadening ∆ used. Taking the ∼ 525 MHz peak in Figure 4.1 as
an example, doubling the inhomogeneous broadening from ∆ = 2 GHz to ∆ = 4 GHz (−2 GHz
to 2 GHz) results in the peak going from ∆P (g6, g8) = 0.48% to ∆P (g6, g8) = 0.23%, which is
just less than half of the initial value (Figure B.1). Note that since the effective inhomogeneity is
only ∼ 2 GHz (Appendix A.1), the behaviour of ∆P does not change. This can be seen in the
right panel of Figure B.1. This means that the absolute percentage value of ∆P is not a physically
significant value. In other words, a population contrast of ∆P (gi, gj) = 1% in the simulated inho-
mogeneous ensemble does not mean that in the physical ensemble there is an actual 1% difference in
population between the states gi and gj . Despite this, the relative differences in ∆P for a constant
inhomogeneous broadening, including differences between different parameters (magnetic field, laser
detunings, qubit candidate), are still significant. For example, if the ∆P between states gi and gj at
a magnetic field strength of B0 and detuning ∆δ0 is higher than the ∆P between states gk and gl
at a magnetic field strength of B1 and detuning ∆δ1, it can be experimentally measured (the peak
at ∼ 525 MHz is evidence of this). This means that the simulated inhomogeneous ensemble can still
be used to determine good points of initialisation (for a constant inhomogeneous broadening). Note
that this does not apply in the single-defect case, as there are no inhomogeneities and as such this
summation problem does not arise.

B.II Computational Limitations

While it was necessary to use single-defect protocols to prepare for the experimental verification
of an inhomogeneous ensemble, as it allows for an indirect verification of the single-defect case,
there was a significant caveat; the two-laser detunings were greatly restricted, specifically between
100 MHz (limit of the electro-optic modulator [EOM]) and 600 MHz. This upper limit was by
no means experimental, as the EOM could detune up to several GHZ. Instead, it was due to the
memory limits of the simulation. Preparing an array of 32 states for each of the two detunings,
and for each magnetic field, pushed the limits of available RAM in MATLAB (the simulation was
built in MATLAB). This was not a problem for the inhomogeneous case, as the inhomogeneities
(which are analogous to the second detuned laser here) were summed over, and hence only saved
as temporary variables. The most efficient way found that would still allow for reasonable analysis
times was to separate the magnetic fields into ten 1 mT steps, from 0− 50 mT. Wanting to maintain
a detuning of ±1200 MHz for one of the lasers for use in the experimental verification of single-defect
initialisation protocols, this meant restricting the other laser to ±600 MHz for memory purposes.
This resulted in each population array being of the size 32 × 2401 × 1201 × 10 = 9.23 · 108, which
on average corresponded to a MATLAB structure of 7 GB - any larger exceeded the available RAM.
For the three polarisations, this was over 100 GB of data. Since the experiment was done with an
inhomogeneous ensemble, any theoretical point of interest had the detunings (δ1, δ2) of its two beams
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Figure B.1: Simulated population contrast ∆P (g6, g8) at 40 mT with two linearly-polarised lasers (and
increased GS1 NSF, ESF rate coefficients). The purple plots show ∆P with an inhomogeneous broadening of
∆ = 2 GHz (same plot as in Figure 4.1d), while the orange plots show ∆P with an inhomogeneous broadening
of ∆ = 4 GHz. The left panel has a linearly-scaled y axis, while the right panel has a logarithmically-scaled
y axis. The plots in the two panels are the same. It can be seen that while the increased broadening causes
∆P to decrease and the plot to flatten (left panel), the behaviour of ∆P remains the same (right panel).
This shows that for a simulated inhomogeneous ensemble, the absolute percentage value of ∆P does not hold
physical significance. However, the relative values of ∆P are still important.

subtracted from each other (see Section 2.3 for more information on single-defect and inhomogeneous
detuning schemes) to attain its inhomogeneous detuning ∆δ. This is where a problem arose - for
δ1 ≥ 600 MHz, the subtraction ∆δ = δ1 − δ2 was not accurate. This was due to the fact that above
an absolute value of 600 MHz, one of the lasers remained at ±600 MHz, its maximum absolute
value. Thus two-laser detunings ∆δ above 600 MHz were in fact the detunings from the ±1200 MHz
beam subtracted by a constant ±600 MHz, rather than the actual difference between the two laser
frequencies. In hindsight, using a detuning of ±900 MHz for both beams would have still allowed
for a thorough single-defect analysis for experimental verification while also increasing the upper
limit on the two-laser detuning. A detuning of ±900 MHz was used for the theoretical single-defect
protocols seen in Section 5 for these reasons.

B.III Verification of GS1−ES1 and g6 − g8 Transition Energy

Resonant Excitation Spectroscopy: GS1−ES1

A resonant excitation spectroscopy measurement was done to determine the GS1−ES1 transition
energy experimentally. This can be seen in Figure B.2. The resonant transition energy is around
1278.81 nm (middle of the dip in Figure B.2). To ensure that there was still a distinct transmission
signal (transmission is minimized at 1278.81 nm) while still addressing the GS1−ES1 transition, a
carrier frequency of 1278.85 nm (and later 1278.86 nm, to increase the signal) was chosen.
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Figure B.2: Resonant excitation spectroscopy measurement done to determine the GS1−ES1 transition energy.

Optically Detected Magnetic Resonance (ODMR): g6 − g8

The simulation was used to predict the transition energy of the qubit candidate g6−g8. An optically
detected magnetic resonance (ODMR) measurement was subsequently done to determine what the
transition energy was experimentally, using the simulated prediction as a guide. The results can be
seen in Figure B.3. The microwaves in the subsequent OD2LSR measurement were then set to 358.7
MHz, based on the experimental ODMR measurement seen in Figure B.3a.
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a         b

Figure B.3: a Experimental ODMR measurement to determine the transition energy of g6 − g8. b Simulated
ODMR measurement to provide a prediction of the g6 − g8 transition energy for experiment.
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C Appendices to Section 4: Experimental Results

C.I Transition Analysis and Optical Readout Problem

Figure 4.1 shows an OD2LSR measurement taken at 40 mT, along with simulated population con-
trasts ∆P (g6, g8). There are three main initialisation features predicted by the simulation - the
series of peaks and dips from 200 − 300 MHz, the peak at ∼ 524 MHz, and the experimental dip
and peak at ∼ 700 MHz and ∼ 732 MHz respectively. The simulation predicts a peak followed by a
dip instead. The reason for this is discussed further on. Some other features seen in the simulation,
especially the dip at 575 MHz, are not present in the experimental data. This is most likely due
to the detection technique. As explained in Section 3.1, and Figure 3.1, the OD2LSR measurement
technique uses one of the initialisation lasers as an optical readout. Thus, to be able to detect an
initialisation feature (i.e. a population contrast between g6 and g8), the detected scan laser must be
resonant with an optical transition involving g6 (or g8, but this would deplete g8, resulting in worse
initialisation). Seeing as g8 is on average 0.4% higher in population than g6, application of a resonant
microwave field would drive this population between the states (see Figure 3.1b). Therefore, the scan
laser is probing g6 for most of the initialisation features seen.

The simulation does not require optical readout. Instead, the full system dynamics are simply
calculated. This results in initialisation features that might be present in the physical system but
that cannot be experimentally probed. For example, within the simulation, a certain two-laser scheme
might result in g8 being depleted. This would consequentially result in a dip in the g6−g8 population
contrast, as the g8 population is always greater at 40 mT. However, if g6 is not simultaneously probed
with one of the two lasers via a strong optical resonance, this will not be detected in experiment.
This is exactly what happens at the 575 MHz dip, where there are two optical transitions g8 − e7
and g8 − e9, forming a V-scheme (two-laser detuning of 574.4 MHz) which depletes g8. There is also
a V-scheme involving g6 at 574.4 MHz, but its overlaps are an order of magnitude lower than the g8
V-scheme, so Pg6 is not as affected as Pg8 . The depletion of g8 leads to a ∼ 0.05 percentage point
decrease in the simulated g6 − g8. This is on the same order of the experimentally-detected peak at
524 MHz. In experiment, a resonant microwave pulse drives population between g6 and g8, resulting
in the g8 depletion being reflected in g6. The g6 V-scheme has a limiting optical driving transition
probability (i.e. the optical transition in the two-laser driving scheme with the smallest transition
probability) of | ⟨Oopt⟩ |2 ≈ 10−6 and the g8 V-scheme has a limiting optical transition probability
of | ⟨Oopt⟩ |2 ≈ 10−5. Compare this to the g7 − e7, 9 and g9 − e7, 9 V-schemes which also occur at a
detuning of 574.4 MHz, with limiting optical transition probabilities of around | ⟨Oopt⟩ |2 ≈ 0.25. It is
clear to see that while the simulation would detect the g8 depletion, in experiment the optical readout
of both g6 and g8 is heavily suppressed by absorption in the g7 and g9 V-schemes. The 524 MHz
peak seen in experiment has an optical readout on g6 (π-scheme with 524.8 MHz detuning), with a
limiting optical transition probability of | ⟨Oopt⟩ |2 ≈ 10−3, more than 1000 (100) times that of the
limiting transition probability of the g6 (g8) scheme at 574.4 MHz. In the single-defect case, it would
be possible to acquire an optical readout of the 575 MHz dip, as the individual laser frequencies are
different for the different V-schemes. However, seeing that this would result in a decreased contrast,
it is not optimal for initialisation.

For both the single-defect and inhomogeneous case, the lack of an optically accessible state could
be solved by the addition of a third, optical-readout laser, though this can be impractical. Thus, a
simulation-based solution is favourable. As mentioned previously, the simulated data gives the entire
system picture, whereas the experiment only shows features which can be optically read. This discon-
nect between experiment and simulation could be improved by integrating an optical readout feature
in the simulation, whereby initialised features that do not have optical transitions corresponding to
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one of the initialised states are not included, or at the least, heavily suppressed. For example, adding
a scaling factor to optical transitions resonant with g6 would highlight initialisation features that are
both optically accessible for readout and correctly represent the dynamics. Thankfully, despite this
optical readout limitation not being imposed prior to experiment, most of the relevant initialisation
features can still be seen.

The reason why the simulation predicts a peak at 700 MHz, as opposed to the dip seen in the
experiment, and a dip at 730 MHz as opposed to a peak goes back to the above mentioned optical
readout problem. The population contrast was calculated by |Pg8 − Pg6 |, and seeing that for all
detunings at 40 mT Pg8 > Pg6 this is equal to Pg8 − Pg6 . Analysis has shown that for the 524 MHz
peak, and the 100− 200 MHz features, it is the changes in Pg8 that are being detected via an optical
readout on g6 (after population driving with microwaves). Upon flipping the contrast to Pg6 − Pg8 ,
the simulation shows the dip and peak like experiment. Thus, it is the changes in Pg6 that are being
probed here (via optical readout on g8) and hence the simulated population contrast calculated as
Pg8 − Pg6 shows the opposite. While it would be possible to add an optical readout scaling factor
that is also sensitive to sign changes, and hence changes in both Pg8 and Pg6 , these features can
still be seen regardless of their sign. When developing protocols for OD2LSR-like measurements (i.e.
continuous-wave) it is thus better to simply check whether promising initialisation features have an
optical readout state, and whether it is reading out the correct state.

The peak at 524 MHz is the result of several initialising driving schemes. There are two prominent
π-schemes involving a g9 − e8 transition. The e8 − e9 relaxation rate is very strong here, γe8−e9 =
Re| ⟨Oe⟩ |2 ≈ 0.8, meaning that both states relax into each other quickly. This is an electron spin flip
mediated relaxation, as explained in Section 5.1. However, the optical relaxation overlap between
e8 and g8 is ∼ 25% greater than the e9 − g9 relaxation. This stronger optical relaxation causes e8
to have a lower population than e9 before steady state, and so the population imbalance between
e8 and e9 causes a faster depletion in e9. Via the optical relaxation of e8, this ultimately results in
a larger Pg8 . There are two similar schemes involving the g10 to e8 transition which work by the
same mechanism. The π-scheme used for optical readout on g6 is composed of the transitions g6-e7
with | ⟨Ooptical⟩ |2 ≈ 10−3 and g9 − e8 with | ⟨Ooptical⟩ |2 ≈ 10−2. This scheme populates g8 via e8
optical relaxation and also depletes g6, increasing the overall g6−g8 contrast, while providing optical
readout on g6.

C.II Relative Amplitudes and the Rate Coefficient Problem

The simulation is able to accurately and precisely determine the detunings at which initialisation
features occur, but struggles to correctly predict the relative amplitudes of the different initialisation
features. A clear example of this can be seen in the peaks and dips in the 200−300 MHz range. Three
dips can be seen in both experiment and simulation, with the difference being that the dip at ∼ 245
MHz has a much larger amplitude in simulation as compared to experiment. To understand this, the
Lindbladian model must be analysed. The states {|ψ⟩} are eigenstates of H with eigenvalues given by
the eigenstate energies, as discussed in Section 2.1.2. The population amplitudes are determined by
the Lindbladian terms, R·| ⟨ψi|O|ψj⟩ |2 for the relaxation terms and f(ω; ω0, Γopt) ·R· | ⟨ψj |O|ψi⟩ |2
for the driving terms. The rate coefficients R are determined empirically. The simulation calculat-
ing accurate transition energies at the hyperfine level provides evidence for a reliable (perturbed)
Hamiltonian. Furthermore, seeing that the optical linewidth has been determined to high precision
[60, 61], either the empirically determined rates, or the operators themselves, are inaccurate in their
predictions.

The operators used in the Lindblad model were derived in a purely phenomenological framework.
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Thus, it is unlikely that the operators are inaccurate, as they are basic quantum mechanical opera-
tions, such as ladder operators. Furthermore, seeing as the transition probabilities | ⟨ψj |O|ψi⟩ |2 are
calculated with the Hamiltonian basis states {|ψ⟩}, and the Hamiltonian has been verified to be ac-
curate via ODMR measurements, these probabilities represent the spin dynamics at the defect level
well. That being said, in both the inhomogeneous ensemble and the single defect case the vanadium
exists in and interacts with the surrounding environment. Therefore some of the processes described
at the theoretical level are suppressed and others enhanced by these environmental interactions.
Admittedly, a big assumption of the model is that the rate coefficients R are electromagnetic-field
independent. One set of standard coefficients were determined using 15 magnetic fields, 14 in the
range of 0−75 mT and one at 300 mT. Additionally, no distinction was made between using one or two
lasers or having microwaves incident on the sample. The power dependencies were not characterised
either. While the coefficients are applied globally to one process, for example the rate coefficient for
a ∆mI = 1 and ∆mI = 2 nuclear spin flip is the same, this still works to favour some transitions
over others depending on the preferred process of a transition. The ability to strengthen or weaken
specific processes directly influences the spin state dynamics, and hence the state populations.

The only way to properly remedy this is to determine field- and sample-dependent coefficients. This
can be done in a similar manner to before, using experimental two-laser data and optimising the
rates for the specific experimental parameters used. In future research, it would be suggested to use
a simple but automated machine learning regression technique, in tandem with a high-performance
computing cluster, to determine the rates more efficiently, and for a larger number of magnetic fields.

The rate coefficients affecting the relative amplitudes has consequences on the initialisation approach.
The approach used to find promising points of initialisation for experimental verification involved
maximising the population contrast (or USRN for experiment). If the accuracy of the population
contrast amplitudes is questionable, this means that maximising it without the appropriate rate
coefficients is not completely reliable. Furthermore, since the population contrast depends on the
rates in a non-linear way, the error arising from these coefficients is not systematic. Fortunately, the
errors in the relative amplitudes between experiment and simulation were not very large (for 40 mT,
the largest error was around 20% for the dip at ∼ 250 MHz) and the simulation was still able to
provide good points for initialisation. This might be due to the fact that both 38 mT and 43 mT
were used in the rate coefficient determination, and these fields have very similar dynamics to 40
mT.

Summary

One of the biggest assumptions made in the model used in this research is that the rates stay
independent of all experimental parameters except temperature (rate coefficients were determined
using experimental data taken at 2 K). Analysis between simulated and experimental results has
shown that the rates are dependent on quite a few experimental parameters (number of incident
oscillating fields, strength of static magnetic field, laser polarisation). Of course, finding a different
set of rate coefficients for each magnetic field and polarisation, and for both the one- and two-laser
cases would be unrealistic. A possible approach would be to determine one set of rates for ranges of,
for example, 10 magnetic fields. Then for one range, determine the difference between the one- and
two-laser cases. In this way there would be two sets of rate coefficients for a range of 10 magnetic
fields. Furthermore, in the electronic Zeeman regime, the rates can be kept more or less constant, as
the dynamics of the system do not change much here.
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C.III Rejected Hypotheses for the One-/Two-Laser Signal Difference

It was first thought that the addition of a second laser could result in g8 being depleted faster,
consequentially reducing the population contrast. To verify this, a series of V-, λ−, π−, and X-
schemes were analysed at 400 MHz, where there were no significant initialisation features in both the
experiment and simulation. In the one-laser case it was concluded that the high contrast between
g6 and g8 was due to the strong relaxation pathways between g8 and all other ground states, as over
the entire detuning range g8 has a ∼ 0.45% larger population than g6. This effect is also present
in the two-laser case however, and does not explain the signal difference. In the end, the analysis
proved unfruitful; there were no one-laser transitions or two-laser schemes which could sufficiently
explain such a difference between the two signals. Another possible explanation was that the optical
linewidth used in the simulation, 10 MHz corresponding to an optical lifetime of 100 ns, was too
narrow. Increasing this linewidth (and in turn decreasing the excited state lifetime) to 20 MHz (50
ns) resulted in the two-laser contrast decreasing, as expected. Despite this, the two-laser contrast was
still higher than the one-laser contrast, and hence was still unable to explain the signal difference.
Increasing the optical linewidth above 20 MHz is not physically reasonable.

It is extremely unlikely that the signal difference is attributed to a temperature increase. It can be
assumed that around 50% of the total beam power (100 µW) is absorbed by the vanadium defects
(SiC is transparent) with a defect concentration of 1017 cm−3. In a 12 hour run that is ∼ 4.3 J
absorbed. The laser beam diameter is 50 µm and the sample thickness is 300 µm. The heat capacity
of V in the sample was calculated to be C ∼ 5×10−12 J·K−1 (molar heat capacity taken from Worley
et al. [91])

C =

(
1017 cm3 · π(25 µm)2 · (300 µm)

6.022 · 1023

)
· Cmol ≈ 5× 10−12J · K−1

The temperature change due to 4.3 J of energy added to the system is given by

∆T =
4.3J

5× 10−12J · K−1 ∼ 10−11K.

A ∼ 10−11 K is wholly negligible and would not be able to cause any discernable change in the
relaxation rates.

C.IV Preliminary Results: OD2LSR at 1.8 K

Figure C.1 shows recent (early May 2023) OD2LSR results at 1.8 K, with the microwave frequency
set to the g6 − g8 transition at 40 mT. It can be seen that although the two-laser baseline signal is
lower than the one-laser signal, at the ∼ 525 MHz peak, the two-laser signal surpasses the one-laser
signal. As explained in Section 4.1, this strongly suggests that the signal difference is due to a
population leakage over the inhomogeneous ensemble.

C.V Inefficacy of the USRN

When developing the protocol for experimental verification, the USRN was maximised to find promis-
ing points of initialisation. When no initialised magnetic resonance was seen for g7 − g9 at the 30
mT clock transition,13 the efficacy of the USRN was evaluated. It was discovered that the ESD
probability cannot be simply maximised to find potential points of good coherence, and hence, the
USRN was not a good measure of possible coherence. The ESD probability is inherently linked to
the spin-relaxation probability (both use the ESF, NSF, FF, FFz relaxation operators). In this way,

13Note that for brevity this was not mentioned in the main text.
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Figure C.1: OD2LSR measurement at 1.8 K normalised with respect to the one-laser signal. Notice that
the two-laser signal surpasses the one-laser signal at the ∼ 525 MHz peak. As explained in Section 4.1, this
strongly suggests that the signal difference is due to a population leakage over the inhomogeneous ensemble.

the higher the ESD probability, the higher the spin-relaxation probability. While a high ESD prob-
ability indicates a good chance of driving coherently, a high spin-relaxation probability means worse
initialisation, and hence a worse ∆P . Therefore, if the ESD probability is too high, the contrast
between the two states being driven will be very low. Conversely, if the ESD probability is too low,
the contrast will improve, but driving the transition coherently is very unlikely. In Figure C.2 it
can be seen that the ESD probability for g7 − g9 at the 30 mT clock transition is around 8 · 10−2.
Since this transition has been coherently driven before [62], it suggests that the ESD probability
should be larger than 10−2 to facilitate coherent driving, but still be lower than the g7 − g9 ESD
probability (∼ 10−1), as no initialisation was seen for g7 or g9, implying relaxation that is too strong
for initialisation. The qubit candidate g6 − g8 at 40 mT can be seen to have an ESD probability of
around 4 · 10−2, half of the clock transition probability. While no coherence was seen for g6 − g8,
initialised magnetic resonance was observed via OD2LSR measurements. The reason for there be-
ing no coherence measured for g6 − g8 might do with the fact that this is an electric quadrupole
transition, and therefore it cannot be coherently driven with a magnetic field. This insight into the
ESD probability means that the USRN is not a good measure of potential initialised coherence, or
even potential initialised resonance. In Section 5, the initialisation approach is purely focused on
maximising the population contrast ∆P for this reason.

C.VI Coherently Driving Effective-Spin Transitions

Before coherently driving an initialised qubit candidate, the main process mediating the transition
must be determined. As outlined briefly in Section 2.4, transitions primarily mediated by a ∆mI = 1
process are magnetic dipole transitions, whereas ∆mI = 2 are electric quadrupole transitions. For
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Figure C.2: ESD transition probability | ⟨gj |Oesd|gi⟩ |2 of three transitions g7−g9, g6−g8, and g14−g16, with
the latter two being qubit candidates in Section 5. It can be seen that below 30 mT (dashed grey line), the
ESD probability is erratic with respect to an increasing magnetic field, reflecting the strong and unpredictable
relaxation pathways in this region. ≳ 30 mT, the system starts to stabilise, as it enters the electron Zeeman
dominated regime.

magnetic field driving (done with microwaves in experiment, see Section 3), only magnetic fields
parallel to the c axis can resonantly (and coherently) drive transitions, as g⊥ ≈ 0 in vanadium [61].
For electric fields, it is not currently known whether a parallel or perpendicular field is needed, as
the resonance/ coherence properties of electric quadrupole transitions are outside the scope of this
work. However, some insight can still be given based on what is seen in experiment and simulation.

The qubit candidate g6 − g8 at 40 mT is mediated primarily by a nuclear spin flip of ∆mI = 2, thus
an electric quadrupole transition. Optically detected magnetic resonance (ODMR), and initialised
spin resonance (OD2LSR measurement, Figure 4.1) with magnetic fields was detected (ODMR of this
transition was also measured in Hendriks et al. [62]), indicating that the transition can be resonantly
driven by magnetic fields. No coherence was measured however (no Rabi oscillations were observed).
Currently, it is thought that this ∆mI = 2 transition can be resonantly driven with magnetic fields
due to a mixing of dipolar spin-states in g6 and g8, with this mixing resulting from the electric
quadrupole perturbation to the Hamiltonian. A simplified picture can be made to understand this.
At 40 mT, eigenstate g8 has an overlap with the spin state |↑, −5/2⟩ of | ⟨g8| ↑, −5/2⟩ |2 ≈ 10−4, and g6
has an overlap | ⟨g6| ↑, −5/2⟩ |2 ≈ 10−5. If the nuclear electric quadrupole is removed, these overlaps
are exactly zero. While these overlaps are small (compared to the largest overlaps | ⟨g8| ↑, −7/2⟩ |2 ≈
0.999 and | ⟨g6| ↑, −3/2⟩ |2 ≈ 0.82) they are not negligible. These nonzero overlaps between g6, g8
and the spin state |↑, −5/2⟩, with both transitions mediated by a ∆mI = 1 process, indicate that
magnetic spin resonance is weakly driven via these dipolar spin-state terms. When the magnetic
field is further increased, the level of spin-state mixing in the eigenstates decreases. At 99 mT for
example, these overlaps become | ⟨g8| ↑, −5/2⟩ |2 ≈ 5 · 10−6 and | ⟨g6| ↑, −5/2⟩ |2 ≈ 10−6. This is an
order of magnitude lower than at 40 mT, and would make magnetic field driving harder.

The solution then seems to be to use electric field driving for these ∆mI = 2 transitions. It is not
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known whether a perpendicular or parallel electric field should be used for the driving. Gilardoni [72]
(Chapter 4) uses symmetry arguments to show that transitions between the effective-spin manifolds
of a Kramers doublet (KD) cannot be driven by electric fields perpendicular to the crystal c axis.
Whether this is the case for nuclear spin transitions is not known. Theoretically, this could be
investigated further by utilising a similar operator to the effective-spin driving operator Oesd to
quantify electric quadrupole transitions. Experimentally, electric spin resonance can be tested by
using a capacitor (e.g. via gold deposition on SiC sample) to apply homogeneous electric fields.
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D.I Suggestions for Continuous-Wave Experiments

Despite the high fidelities achieved in the single-defect initialisation processes developed in Section
5.2, a problem arises when applying this to experiments utilising continuous-wave lasers, such as
the optically-detected two-laser spin resonance (OD2LSR) measurements. If attempting to probe,
characterise, or initialise with an approach involving two lasers which are continuously on (also during
the application of the coherent driving field e.g. microwaves), one of the lasers has to be resonant with
the CP state for optical readout. Thus, the initialisation driving scheme must include a transition
with a CP state. The detunings suggested (48 mT, g8: 71 MHz, 108 MHz and 99 mT, g16: −252
MHz, −259 MHz) are not resonant with the proposed CP states, g6 and g14. Furthermore, due to
the dynamics explained in Section 5.1, optical resonance with these CP states is greatly suppressed
in circularly-polarised driving schemes. For example, | ⟨e14|O+|g14⟩ |2 ∼ 10−11 at 99 mT, making it
practically very difficult to drive. If linear polarisation were to be used instead, another problem
arises; driving these CP states redistributes the population. For example, if attempting to initialise
g16 at 99 mT using the e1 − g1 transition (−259 MHz), which results in a fidelity of ≳ 0.8,14 while
simultaneously accessing g14 − e14 (260 MHz with | ⟨e14|Oopt|g14⟩ |2 ∼ 0.99) for optical readout, the
fidelity of g16 drops to ∼ 0.3. This is less than half of the initial fidelity, as seen in Figure D.1b.
This is because the g14 − e14 transition, which is a ↓=⇒↙ transition, initialises into g8 in the ↑
manifold, as explained previously. Furthermore, cross transitions within the same spin manifold (in
this case, g14− ei for i = 9− 13, 15, 16) are much weaker than direct transitions, with the strongest
spin-manifold-conserving cross transition being an order of ∼ 105 weaker than the direct transition.
These cross transitions would result in a weaker population redistribution effect, but would be much
harder to drive and require stronger driving fields. This in turn could accelerate relaxation rates,
and might even cause temperature increases in the sample. Therefore spin-manifold-conserving cross
transitions are not ideal for optical excitation.

It should be noted that in applications where the system is directly manipulated after initialisation,
this lack of an optical readout transition is not a problem. As was seen in Section 5.3, using a pulsed
initialisation protocol negates the need for optical readout during initialisation. However, continuous-
wave experiments (e.g. OD2LSR) have much simpler pulse sequences, and can still provide valuable
insight into the system. Therefore, it is important to find a remedy for this optical readout problem.
Currently, there are three possible solutions for this. The first would be to use two linearly-polarised
lasers, wherein one laser drives the prominent initialisation transition, and the other drives a CP spin-
manifold-cross transition. Linear polarisation is required as cross transitions are greatly suppressed
in circular polarisations. Carefully chosen cross transitions can help maintain the fidelity while
accessing the relevant CP state. For example, initialising into g16 at 99 mT by driving the g1 − e1
transition to achieve a baseline fidelity of ≳ 0.8, a cross transition can be found to access g14 while
also maintaining the fidelity above 0.8. The strongest g14 cross transition at 99 mT is g14−e2 with an
overlap of | ⟨Ooptical⟩ |2 ∼ 10−2 and a detuning of −3079 MHz. Conducting a two-laser initialisation
with the detunings −259 MHz (g1 − e1) and −3079 MHz (g14 − e2) yields a promising result. The
fidelity actually increases from the baseline, albeit by less than 0.01 (i.e. F < 0.801). The reason it
increases is because via a combination of GS1 and ES1 relaxations, population from e2 eventually
ends up in g1 and is subsequently driven. This relaxation pathway is quite weak however, which is
why the increase is less than a percent. Nonetheless, this is a two-laser initialisation scheme resulting

14Of course, due to spectral diffusion and other environmental factors, one-laser initialisation is practically very hard
to achieve. Spectral diffusion is not included in the model however, and as such, one-laser initialisation (for single
defects) is possible within it. Therefore, values relating to one-laser initialisation are to simply give an indication of
the effect of different driving schemes on the overall fidelity.
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Figure D.1: Two-laser initialised fidelities of g16 at 99 mT (a, b) and g8 at 48 mT (c, d) and 41 mT (e,
f) as a function of scan laser detuning δS (other laser detuning δF kept fixed) for different magnetic fields.
The left panels show the fidelity using the relevant circular polarisation (σ+ for g16, σ− for g8) while the
right panels show the fidelity using linear polarisation. Each peak and dip represents resonance with some
optical transition. Due to the optical linewidth, some resonances cannot be fully resolved and appear as a
combination of peaks and/ or dips. Optically addressing the coherent partner (CP) states, g6 (48 mT) and
g10 (41 mT) for g8 and g14 for g16, for optical readout with linear polarisation results in a redistribution of
population and a consequential reduction in the fidelity of g8 and g16, as can be seen in b, d, and f.
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in a fidelity of > 0.8 with simultaneous optical readout. The same can be done for g8 at 48 mT,
wherein the scheme g9 − e9 (108 MHz) paired with the g6 − g10 (933 MHz) results in a fidelity of
> 0.75. The fidelities from this method are not as high as in the previous method, but the CP states
can be read out which is an experimental necessity in continuous-wave experiments.

The second solution would be to change the CP states from g6 and g14 to states in the opposite
effective-spin manifold, such that the qubit is either flip-flop or electron spin flip mediated. This
would allow for initialisation and readout with only two circularly-polarised lasers. As discussed
previously, the strongest interactions in GS1 are flip-flop mediated. However, g8 and g16 have weak
flip-flop coupling, and even weaker electron spin flip coupling, which is why they are easy to initialise
into. Therefore, the contrast between the new CP state with the respective static state must be high,
while also having an ESD probability which is not too small relative to the g7 − g9 clock transition.
There are unfortunately no spin-manifold-cross transitions with ESD probabilities on the order of
the clock transition ESD probability. That being said, the transitions g8 − g10 and g2 − g16 had
the highest contrasts and are initialised by driving schemes15 which are resonant with the CP state.
While the state overlaps of these transitions are small as compared to the clock transition, with the
appropriate driving field power, the transitions should still be able to be driven. However, increasing
the driving field power might lead to unwanted effects in the sample, such as a temperature increase.
Additionally, the transitions g8− g10 and g2− g16 are not ZEFOZ transitions, meaning that they are
not protected from magnetic noise. Nonetheless, this approach would allow for fidelities of > 0.92
for a g16 initialised state, and > 0.88 for g8 initialised states. Similar to the flip-flop mediated g7−g9
clock transition at 30 mT, these transitions are also driven via magnetic spin resonance (due to the
hyperfine magnetic dipole resulting from ∆mI = 1) as opposed to electric spin resonance.

Finally, a third laser could be introduced for optical readout. The third laser should have either
linear polarisation, or the opposite circular polarisation to the initialisation lasers, such that the
required readout probability | ⟨Oopt, +, −⟩ |2 is not suppressed. It also needs to be resonant with a
transition involving the CP state, preferably a direct transition (highest probabilities). In this way,
the system can be two-laser initialised to the highest achievable fidelity, an oscillating magnetic or
electric field applied to drive the transition between the static and CP states, and the third laser used
to read out the CP state. This is similar to the protocol that will be outlined in Section 5.3, except
here the two initialisation lasers are kept incident on the sample. A caveat of this approach is the
practical feasibility. Introducing a third beam would involve either the addition of another laser or
adding a beam splitter to split one of the original two beams (Section 3.1 explains that the two beams
used in the OD2LSR measurement already come from a beam splitter), which are not convenient
modifications to make. Furthermore, the optical readout laser must be pulsed to ensure that it is not
on during initialisation. If the readout laser were to be on while initialising, it could redistribute the
GS1 eigenstate population (especially if it is a direct transition involving the CP state) and it could
cause T1 and contrast effects, as discussed in Section 4.1. However, pulsing the optical readout laser
has complications for the OD2LSR measurement method. The lock-in frequency in the OD2LSR
measurements was fixed to the microwave repetition rate. Introducing a pulsed optical readout laser
means that the lock-in frequency must incorporate this. While possible, it is not trivial. This method
is theoretically the most favourable, but has the most practical limitations.

With each of the above methods there is a trade-off between fidelity and practicality. The first
method, wherein one laser is resonant with a CP state (g6 or g14), allows for optical readout and
uses ZEFOZ transitions, but results in a non-negligible decrease in the fidelity. For g16 this was a

15Driving schemes are g1 − e1 and g2 − e2 for initialisation into g16, and g9 − e9 and g10 − e10 for initialisation into
g8.
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decrease from ∼ 0.92 to ∼ 0.8, while for g8 it was from ∼ 0.88 to ∼ 0.75. The second method,
wherein the CP states are changed such that the qubits are flip-flop mediated, allows for high-
fidelity initialisation but low ESD probabilities. This means that the coherent driving field must be
considerably more powerful, which could lead to unwanted effects on the initialisation. Furthermore,
the qubits proposed are not ZEFOZ transitions. The last method, wherein an additional laser is used
for optical readout, is theoretically the most favourable. This is because high initialisation can be
achieved with ZEFOZ qubit candidates. However, this method is practically the most inconvenient.
The quantitative advantages and disadvantages of these methods have not yet been fully determined.
Ultimately, seeing as the theoretical model is a simplified picture of the physical system and as such
cannot provide all the necessary information, it would be best to implement these different methods
experimentally. Only then can a more informed conclusion be made on the efficacy of these methods.
What can be concluded however, is that g8 and g16 in the electron Zeeman dominated regime are
prime candidates for initialisation, reaching fidelities far above any other GS1 eigenstate.
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