
Improving the Flow Pattern in Pipes
by Using Elbows as Flow

Straighteners

How can the flow pattern after an elbow be improved by

modifying the structure of the elbow in order to prevent vortices?

Sophie La Rondelle

S4520394

s.la.rondelle@student.rug.nl

Bachelor Research Project

WBCE901-15

Faculty of Science and Engineering

University of Groningen

The Netherlands

21 June 2023

Dr. Ir. P. D. Druetta

Asst. Prof. D. Parisi



Sophie La Rondelle

Abstract

In this paper, four different flow straighteners inside the elbow part of a pipe were designed. The

behaviour of a turbulent water flow through these flow straighteners in three different piping

systems was simulated. The aim was to improve the flow pattern after an elbow by modifying

the structure of the elbow. This paper documents the plots of the velocity streamlines, pressure

distribution and vorticity field for the simulations that have been made to predict the behaviour

of the flow. The research was performed by developing Computational Fluid Dynamic (CFD)

simulations in COMSOL Multiphysics while employing the κ-ε model as the RANS turbulence

model to analyse the turbulent flow. The mesh and geometry of the models were also created

in COMSOL. The study focuses on the vorticity development and pressure distribution of the

fluid through the systems. One of the main findings was that Disturbance Plate A, which

contained a pipe in the center of the elbow with a diameter of 0.5·D and ten smaller pipes with

diameter of 0.2·D around it, showed the best results in reducing the vortex formation in a short

straight pipe run after the elbow. Furthermore, after analysing the experimental results for the

pressure drop, the relation between the pressure drop and the surface area was found to be

exponential. Finally, some recommendations were made to improve the accuracy of the results

in the experiments.
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Sophie La Rondelle NOMENCLATURE

Nomenclature

Variables

ϵ dissipation rate of turbulent kinetic energy [m2/s3]

η dynamic viscosity [Pa · s]

κ turbulent kinetic energy [J/kg]

⟨ui⟩ mean velocity field of flow [m/s]

ν kinematic viscosity [m2/s]

u′2 time-average fluid velocity [m/s]

ρ density of water [kg/m3]

τ turbulent stress tensor [N/m2]

A area [m2]

F scalar force potential [N ]

f arbitrary function [−]

f body force [N ]

ni outward-pointing unit normal of control volume [−]

P (u) probability density function [−]

p pressure [Pa]

Rij(u) Reynolds stress tensor [N/m2]

S surface of control volume [m2]

Sij rate-of-strain tensor [s−1]

t time [s]

u′i fluctuating velocity field of flow [m/s]

u random variable [−]

ui velocity field of flow [m/s]

V (control) volume [m3]

x position of particle [m]
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1 Introduction

Accurate measurement of the total volumetric flow rate through a piping system is one of the
main challenges in monitoring the production behavior in industry. Pipe systems in industry
rarely consist of straight sections solely [1], but rather consist of a combination of straight
sections and disturbances in the form of elbows, tees and valves that distort the flow pattern.
For upstream disturbances, a straight run piping of twenty five to forty pipe diameters is required
to obtain a restored flow profile and for downstream disturbances a straight run of four to five
pipe diameters is required [2]. Providing sufficient straight run piping to obtain a fully developed
flow profile is not always possible in industry, therefore flow straighteners are used.

Several flow straighteners in straight pipes have been developed over the years to improve the
measurement accuracy of the flow by reducing its disturbances [3], however the disturbances
itself are not created in the straight pipe but in the elbow of the pipe. By designing a flow
straightener inside the elbow, the swirl of the fluid in the elbow can be eliminated and a
repeatable velocity profile can be created to restore the flow pattern at a shorter distance in
the straight pipe [4]. The purpose of this work was to investigate the flow pattern of water
inside three different piping system when four different flow straighteners are placed inside the
elbows, using Computational Fluid Dynamics (CFD) models. The first system consisted of an
upstream flow with one 90◦ elbow, the second system contained two 90◦ elbows located in-plane
and the third systems contained two 90◦ elbows located out of plane relative to each other.

The behaviour of laminar and turbulent fluid flows can be described by the Navier-Stokes
equations. The Navier-Stokes equations are named after the French physicist and engineer
Claude-Louis Navier and the Irish physicist George Gabriel Stokes. The equations show how
the density, temperature, pressure and velocity of a moving fluid are related via diffusion and
convection [5]. The equations are derived from the Euler equations and are used to determine
the velocity of a specific component of the flow at a particular position and time [6]. The effect
of the viscosity of the fluid is neglected in the Euler equations, but this effect is taken into
account in the Navier-Stokes equations, making the Navier-Stokes equations more complete
to describe the behaviour of fluids. For non-Newtonian fluids, the relationship between the
shear rate and the shear stress can be time dependent, which would make the Navier-Stokes
equations not valid [7]. Water was chosen as fluid in this research paper, which is a Newtonian
fluid, hence the Navier-Stokes equations can be applied to stimulate the flow of water. These
equations cannot be solved analytically without making approximations and simplifications to
the equations, but high-speed computers are capable of approximating the equations. CFD can
be used as a numerical computation method to simulate many physical phenomena, including
the velocity profile of a fluid through a piping system [6]. COMSOL Multiphysics is used as
CFD software in this research paper.

This research paper aims to answer the following research question:

How can the flow pattern after an elbow be improved by modifying the
structure of the elbow in order to prevent vortices?

Vortices or eddies are swirling fluid structures and reverse currents that are created in turbulent
flows (Reynolds number > 4000). This results in a movement and direction of the fluid that
deviates from the general flow of the fluid. As the velocity of the fluid flow increases, the number
of eddies in the flow will also increase [8]. Turbulent flows contain large and small eddies,
however small eddies are usually not described in the numerical simulations. The behaviour of
turbulent flows therefore cannot be described accurately with the Navier-Stokes equations. An
alternative approach for this is called the Reynolds-averaged Navier Stokes (RANS) equations,
which predicts the average behaviour of turbulent flows [9].
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2 Model Description

2.1 Physical Model

An elbow in a piping system creates resistance that is translated into a pressure drop. The
shape and curve radius of this elbow make a large difference in the size of the resistance that
is created. In this study, the radius of the curve, the diameter of the pipe and the inlet and
outlet pipe length are kept constant. The system is defined to be isothermal with a constant
temperature of 363.15 K. The independent constants can be found in Table 1 [10].

Table 1: Independent Constants.

Name Value Description

D 0.0355 m Pipe diameter

Lin 0.07 m Inlet length

Lout 0.35 m Outlet length

Rc 0.05 m Coil radius

ρfluid 965.35 kg/m3 Density of fluid

µfluid 3.14 × 10−4 Pa·s Dynamic viscosity

uavg 5 m/s Average velocity

T 363.15 K Temperature of system

2.1.1 Elbow Structures and Benchmark Cases

The constants described in Table 1 are used to create three-dimensional benchmark models to
validate the found results. The geometries for the three different benchmark cases that were
created for the purpose of this study are depicted in Figure 1. The first system contains an
upstream flow with one single 90◦ elbow (Figure 1a), the second system contains two 90◦ elbows
that are located in-plane relative to each other (Figure 1b) and the third system contains two 90◦

elbows out of plane (Figure 1c). For the model with one elbow and the model with two elbows
in-plane, only half of the pipe was modelled since models that are in-plane are symmetrical.
For the model that contained two elbows out of plane, the entire pipe had to be modelled.

(a) One elbow. (b) Two elbows in-plane. (c) Two elbows out of plane.

Figure 1: Three different benchmark cases.
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A total of four different elbow structures was designed to improve the flow pattern in the piping
systems. The goal was to create a flow pattern of water through the systems for which the
velocity profile would not be distorted after the elbow. In industry, flow straighteners in straight
pipelines for turbulent flow contain tubes or disturbance plates [3], therefore two different types
of disturbance plates were designed in this study.

The first flow straightener that was designed was a fin type flow straightener. This flow straight-
ener consisted of eight blades that all come together at the centre of the pipe. Each blade makes
an angle of 45 degrees relative to blades next to it. The blades are only placed in the part of the
pipe that contains the elbow, not in the straight pipelines. All the blades were defined as interior
walls in COMSOL. For the second flow straightener, a disturbance plate with pipes of different
sizes was designed (this flow straightener will be referred to as Disturbance Plate A). The centre
of the elbow contained a smaller pipe with a diameter equal to 0.5·D. Around this centre pipe, a
total of ten smaller pipes with a diameter of 0.2·D were placed, each with equal distance to the
wall, the centre pipe and the other small pipes. The third flow straightener contained sixteen
equally sized pipes in a disturbance plate throughout the entire elbow (Disturbance Plate B).
The diameter of one single pipe is equal to 0.15·D. The vertical and horizontal distance between
two pipes is 0.04·D and the pipes are located in an array with three pipes in the top and bottom
rows and five pipes in the middle rows. The fourth and final flow straightener that was designed
contained a netting structure. This netting structure was designed by creating three parallel
horizontal and three parallel vertical interior walls that were separated by a distance of 0.25·D.
All four different elbow structures are depicted in Figure 2.

Figure 2: Four different models for flow straighteners in elbows.

2.1.2 Meshing

After the geometry for all the models had been designed, a meshing had to be built before the
simulations with the different flow straighteners could be run. The mesh of a model affects the
accuracy by which a model is solved [11]. The size, number of elements and the element quality
of the mesh can be customized in COMSOL. Ideally, the mesh would be extremely dense, but
since solving an extremely dense mesh takes a lot of time, compromises had to be made. In
COMSOL, the mesh can be generated automatically by using the physics-controlled mesh as a
sequence type in which the element size can be varied from extremely fine to extremely coarse.
The mesh can be customized with the user-controlled mesh. The settings for the global size,
corner refinement and boundary layers of the mesh can be adjusted for this type of mesh.

A user-controlled mesh was applied to all the models in this study. For the models with
one elbow and two elbows in-plane, a custom element size for the mesh was generated. The
parameters for this custom mesh are shown in Table 2. These parameters were also used to
generate a mesh for the benchmark model and the fin type model for the piping system with
two elbows out of plane. For the other three models that contained two elbows out of plane,
it quickly became evident that simulating these models with the same mesh would take days.
Hence, a predefined mesh with a global element size of normal was rendered to solve these
models. The cell arrangement that was used for the meshing in this study was free triangular
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and rectangular. A close-up of the element distribution over a part of the elbow in the meshing
is shown in Figure 3.

Table 2: Meshing Parameters

Name Value

Maximum element size D/20 m

Minimum element size 8.03 × 10−5 m

Maximum element growth rate 1.08

Curvature factor 0.3

Resolution of narrow regions 0.95

Figure 3: Element distribution of the mesh.

2.1.3 Turbulence Model

A numerical method is used for the calculation of turbulent flows. COMSOL provides eight
different Reynolds-Averaged Navier-Stokes (RANS) models to model turbulent flow in the CFD
Module. These models are used to predict turbulent flow. Laminar fluid flow is modelled by
means of the Navier-Stokes equations that consist of multiple non-linear and time-independent
equations. For turbulent flow, the velocity field varies with times, making the Navier-Stokes
equations not accurate to predict the behaviour of turbulent flow. Hence, time-dependent
Navier-Stokes equations in the form of the RANS equations are used to predict turbulent flow.
In the RANS equations, the average behaviour of the flow is used to describe the motion of
turbulent flows.

The RANS model that is used in this thesis is the nonlinear κ-ϵmodel, which solves the turbulent
kinetic energy κ and the dissipation rate of turbulent kinetic energy ϵ. The model is developed by
Launder and Spalding and it is based on computational fluid dynamics. It relatively accurately
calculates the flow through pipes with elbows for low Reynolds numbers and it is known for its
good convergence rate [12].
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The turbulent kinetic energy per unit mass κ is described by

κ =
1

2
u′2 (1)

where u′2 is the time-average of the fluid velocity.

2.2 Mathematical Model

2.2.1 Navier-Stokes and Reynolds-Averaged Navier-Stokes equations

The Navier-Stokes equations for incompressible Newtonian fluids such as water at constant
temperature are described by

∂ui
∂xi

= 0, (2a)

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ 2ν

∂Sij(u)

∂xj
+

1

ρ
fi. (2b)

As described earlier, the Reynolds-Averaged Navier-Stokes equations predict the behaviour of
turbulent flow by obtaining information about the average behaviour of turbulent flows. With
the publication of Papers on Mechanical and Physical Subjects, Vol . 3 by Osborn Reynolds in
1895, the term Reynolds decomposition was introduced [13]. This term comprises the decom-
position of the velocity field of flows ui ,

ui = ⟨ui⟩+ u′i, (3)

into the mean velocity ⟨ui⟩ and the relative velocity u′i. The mean velocity can be determined
with a statistical averaging method that is known as Reynolds averaging [14]. The Reynolds
average can be expressed as

⟨u⟩ =
∫ ∞

u=−∞
uP (u) du. (4)

The probability density fuction P(u) has to be non-negative and normalized for Eq. 3 to be
valid [14]. The normalization of the probability density function is described by

∫ ∞

u=−∞
P (u) du = 1. (5)

A more general way to describe the Reynolds average is defined through the equation

⟨f(u)⟩ =
∫ ∞

u=−∞
f(u)P (u) du. (6)

in which f (u) can be any arbitrary function.
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To obtain the Reynolds-Averaged Navier-Stokes equations, the Reynolds averaging procedure
described by Eq. 4 to 6 are applied to the Navier-Stokes equations (Eq. 2a and 2b). The RANS
equations can be written as

∂⟨ui⟩
∂xi

= 0, (7a)

∂⟨ui⟩
∂t

+
∂

∂xj
(⟨ui⟩⟨uj⟩) = −1

ρ

∂⟨p⟩
∂xi

+ 2ν
∂Sij(⟨u⟩)

∂xj
+

∂Rij(u)

∂xj
. (7b)

In these Reynolds-Averaged Navier-Stokes equations, ⟨ui⟩ describes the average velocity and
⟨p⟩ represents the pressure fields. Sij(⟨u⟩) represents the average rate-of-strain tensor that is
described by

Sij(⟨u⟩ =
1

2

(
∂⟨ui⟩
∂xj

+
∂⟨uj⟩
∂xi

)
. (8)

It is not possible to express the Reynolds stresses Rij(u) in terms of the mean velocity ⟨ui⟩. This
results in more unknowns than equations in Eq. 7, making the RANS equations unsolvable. To
simulate turbulent flows in COMSOL, solutions for the average velocity ⟨ui⟩ and pressure fields
⟨p⟩ are approximated by using the Reynolds stresses.

2.2.2 Conservation of Mass

In 1789, Antoine Lavoisier formulated the Law of Conservation of Mass that stated that mass
cannot be created nor destroyed in a closed system [15]. For a fluid with a density ρ that flows
through a pipe with a boundary surface S of a fixed controlled volume V , this results in a rate
of change of mass flow in the controlled volume of

d

dt

∫
V
ρ dV =

∫
V

∂ρ

∂t
dV = −

∮
S
ρuini dS. (9)

ui is a velocity field vector of the flow that contains components in all three spatial directions
in the Cartesian coordinate system. The normal unit that is pointing outwards of the control
volume is described by ni . The final term of Eq. 9 describes the origin for the change in mass
flow that the control volume S contains. The mass flow is transported through the surface S
by the velocity ui , hence Eq. 9 describes the conservation of mass.

For fluids with a so-called smooth density (i.e. no unexpected results), Eq. 9 can be rewritten
as

d

dt

∫
V
ρ dV =

∫
V

∂ρ

∂t
dV = −

∫
V

∂

∂xi
(ρui) dV. (10)

For the pipe systems in this study, the control volume V is chosen arbitrarily. Therefore, the
conservation of mass is equal to

∂ui
∂t

+
∂

∂xj
(uiuj) = 0. (11)
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Equation 11 is the differential formulation that describes the density as a function of position in
an inertial reference frame [14]. For an arbitrarily volume, the differential formulation is equal
to the integral formulation.

Since water is a Newtonian fluid, the density ρ of water is constant over time and uniform in
space. Consequently, the conservation of mass in Eq. 9 can be reduced to

∂ui
∂xi

= 0, (12)

which is the incompressibility condition of the flow. The mass in a system is conserved if the
velocity field or incompressible flow does not diverge. An incompressible fluid like water has
a incompressible flow as a consequence of the constant density of water. The rate of change
between the mass that enters and leaves the system is zero, meaning that the local volume
expansion rate is also zero.

2.2.3 Rheology

The flow of liquids is described with rheology. The viscosity of a fluid is a term that is used to
express how resistant a fluid is to flow. As explained before, water is a Newtonian fluid. The
strain rate, which is the rate of change of deformation of the fluid over time, is linearly related
to the viscous stresses of the fluid for Newtonian fluids. These viscous stresses are directly
proportional to the rate of change of the velocity vector of the fluid [16].

The relation between the viscous stresses and the strain rate can best be described by the
two − plate model . This model consists of two plate with a fluid that is placed between those
plates. One of the plates is stationary and not moving, while the other plate shifts very slowly.
The shift of this plate causes the fluid to experience a shear stress that is parallel to the surface
of the plate. The shear stress is defined as the force that is applied to shift the plate divided by
the area of the plate τ = F

A [17]. The shear rate dv
dr can also be calculated with this two-plate

model by introducing the dynamic viscosity η which results in

τ =
F

A
= η

dv

dr
. (13)

2.3 Boundary Conditions

Before the Reynolds-Averaged Navier-Stokes equations can be solved, boundary conditions have
to be specified. In COMSOL, a boundary system can be specified in terms of a vector system
to create boundary conditions in normal or tangential directions on the boundary that is not
aligned with the Cartesian coordinate system. In this study, 3D models are simulated in which
the coordinate system is defined by (t1, t2, n). The vectors t1 and t2 represent the tangential
directions while n reflects the normal direction. The cross product between the vector n and
the vector t1 is described by t2.

A boundary condition that can be used to solve the incompressible Navier-Stokes equation is
to set the velocity field to zero at the solid boundaries. This results in no tangential velocity
at the solid boundaries (no − slip condition). A second condition called the impermeability
condition is used to specify the boundary conditions in which no normal velocity is allowed at
solid boundaries [14].
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The first boundary of the fluid domain is the symmetry plane at z = 0. At this border, the
change in velocity is equal to zero for all the flow variables. The second boundary is the inlet
of the pipe (x = 0). If the axial velocity would be equal to the average velocity, the no-slip
condition would not be satisfied, which is not realistic. Therefore, a non-uniform axial velocity
profile should be enumerated. The outlet of the system is the third boundary. One of the
requirements is that gauge static pressure should be reached at the outlet of the system. The
walls are the fourth and final boundaries of in the systems. The no-slip condition results in a
velocity of zero for all three Cartesian coordinates at the wall [18]. Lastly, the walls of the pipes
are defined to be smooth.

3 Results and Discussion

In the presentation of the results, the focus will be on the vorticity development and the pressure
distribution. Furthermore, variables such as the pressure drop and velocity streamlines will be
analysed. Fifteen simulations were carried out in COMSOL; three benchmark models and
twelve models with various flow straighteners. The three different benchmark models are used
to validate various aspects of the numerical method, such as the pressure drop and the vortex
generation. The vortex development was measured at multiple points in the piping system.
The total length of the horizontal outlet pipe was 0.4 m (radius of elbow was 0.05 m and outlet
length of pipe was 0.35 m). Two cut planes in the horizontal pipe were created, the first plane
at a distance of 0.1 m (0.05 m after the elbow) and the second plane at a distance of 0.2 m (0.15
m after the elbow). Subsequently, the values and graphs for the benchmark cases are analysed
and compared to the values and graphs for the modelled flow straighteners to see if the flow
pattern of the fluid is restored with the help of flow straighteners inside the elbows.

3.1 Pressure Distribution

The pressure distribution on the symmetry surface of the inlet of the pipe system is uniform.
The elbow has a significant effect on the pressure in the system, as can be seen in Figure 4. The
pressure distribution on the symmetry plane relative to the atmospheric pressure illustrates
the higher pressure region inside the elbow part that is generated by the curvature and the
centrifugal force of the pipe. The pressure gradually decreases towards the inner wall of the
bend. The pressure gradient inside the pipe contributes to the high velocity at the outer curve
after the elbow, which is shown in Figure 7a.

Furthermore, it can be observed that the pressure at the outlet of the system is lower than
the pressure at the inlet of the system. This is the result of frictional head loss of the flow
along the pipe wall due to the viscosity of molecules. The pressure distributions for the other
benchmark cases are depicted in Figure 5 and 6. Figure 5 shows the pressure distribution for the
benchmark model with two elbows out of plane, while Figure 6 shows the pressure distribution
for the two elbows out of plane. Both figures clearly show that the pressure of the inlet stream
of the systems is higher than the pressure of the outlet systems. The pressure on the outside of
the elbow is higher for both models than on the inside of the elbow, which was also observed
for the benchmark case with one elbow.
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Figure 4: Pressure distribution on symmetry plane over pipe in system with one elbow.

Figure 5: Pressure distribution over pipe in system with two elbows in-plane.

(a) Inlet of System. (b) Outlet of System.

Figure 6: Pressure distribution of pipe in system with two elbows out of plane.
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3.2 Vorticity Field for Piping System with One Elbow

3.2.1 Benchmark Case with Velocity Streamlines

The velocity streamlines for the benchmark case with one elbow are depicted in Figure 7a. The
contour of the velocity streamline plot shows a fully developed turbulent flow at the inlet op the
pipe. Here, the fluid at the wall of the pipe has a velocity of zero as a result of friction with the
wall. The velocity of the flow gradually increases to a maximum value of 6.5 m/s at the centre
of the pipe. It is observed that the velocity streamlines are not parallel to each other inside
the elbow part. The curved shape of an elbow actuates centrifugal forces on the fluid inside
the pipe that influence the direction of motion of the fluid. This results in a flow separation
in which the velocity towards the inside of the elbow is higher than the velocity towards the
outside of the elbow. The fluid is moved towards the outside of the elbow due to the velocity
gradient that is caused by the centrifugal forces, which results in vortices. At the end of the
pipe in Figure 7a, the velocity streamline pattern is still distorted, meaning that the flow is
not steady. The vorticity field (y-component) at the end of the elbow in Figure 7b shows that
vortices are created at the inside of the elbow relative to the stream before the elbow. The
goal of the flow straighteners is to reduce the size of the vortices that are created to restore the
velocity streamline pattern before the end of the pipeline in this system.

After the bend, two vortices are formed that are counter-rotating. Theses vortices are caused
by the centripetal force. For fluids flowing through a curved pipe, the Dean number is used as
an additional dimensionless number to describe the flow pattern. The Dean number describes
how the flow is influenced by the longitudinal and transverse curvature of a bend [1]. The force
that makes a fluid follow the curve of a pipe is called the centripetal force. The direction of this
force is perpendicular to the direction of the fluid and points towards the centre of the curve of
a pipe. This force was described as “a force by which bodies are drawn or impelled, or in any
way tend, towards a point as to the centre” by Isaac Newton [19]. The direction of motion of
the fluid is influenced by the centripetal forces in the curve due to the formation of a pressure
gradient. This results in a lower velocity of the fluid close to the wall compared to the velocity
in the centre of the pipe. The fluid close to the centre of the curve is drawn towards the wall
of the curve while the fluid near the wall returns to the centre of the curve. This motion is
described by Dean vortices [20].

Since one of the vortexes is located on the other side of the symmetry plane, only one of the
vortices is visible in Figure 7a.
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(a) Velocity Streamlines.

(b) Vorticity field.

Figure 7: Velocity streamlines and vorticity field for one elbow benchmark model.

3.2.2 Fin Type Flow Straightener

For the vorticity field study of the fin type flow straightener, multiple cut planes in the model
were created to compare the vorticity development at multiple points in the pipe. The vorticity
field contour plots at five different stages in the model are shown in Figure 8. Figure 8a depicts
the vorticity field at the start of the elbow. The red colour indicates that no vortices are formed
inside the straight inlet pipe run. At the 90-degree outlet of the elbow, big vortices are formed
close to the interior walls of the flow straightener and at the wall of the pipe, which can be
seen in Figure 8b. From Figure 8c it can be concluded that the vortices at distance of 0.05
m after the elbow have shifted from the interior walls to the outside wall of the pipe. In the
center of the pipe, the magnitude of the vortices that are present lies between 0 and 100 1

s ,
while the magnitude of the vortices around the wall of the pipe is close to 300 1

s . The vortices
in Figure 8d have a magnitude that varies between 0 and 100 1

s . When comparing the size of
the vortices formed in the fin type flow straightener to the vortices in the benchmark model, it
can be concluded that the fin type flow straightener reduces the vorticity field in the y-direction
with about 75 percent after a straight run of 0.2 m compared to the benchmark case. The
vorticity contour plots with their colour legends can be seen in Appendix A.
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(a) Start of Elbow. (b) End of Elbow. (c) L = 0.1 m. (d) L = 0.2 m. (e) End of Pipe.

Figure 8: Vorticity field for fin type flow straightener.

3.2.3 Disturbance Plate Flow Straightener

The vorticity field contour plots for the two disturbance plate flow straighteners are depicted
in Figure 9 and 10. The colour pattern of the vorticity field for both disturbance plates at a
distance of 0.05 m after the elbow is significantly more even than the colour patterns for the
benchmark case and the fin type flow straightener. Also the magnitude for the biggest vortices
for Disturbance Plate A is about three times smaller than the magnitude for the fin type flow
straightener. For Disturbance Plate B, the vorticity magnitude is of similar order to that of
the fin type flow straightener. By looking at the vorticity field, it can be concluded that the
disturbance plate flow straighteners prevent the formation of eddies more successfully than the
fin type flow straightener does at a distance of 0.05 m after the elbow.

(a) Start of Elbow. (b) End of Elbow. (c) L = 0.1 m. (d) L = 0.2 m. (e) Halfway Elbow.

Figure 9: Vorticity field for disturbance plate A flow straightener.

Note that the magnitude for vorticity field in Figure 9c-d is about five times smaller than the
magnitude in Figure 10c-d (see Appendix A). This has to be taken into account when comparing
the vorticity generation for both models.

(a) Start of Elbow. (b) End of Elbow. (c) L = 0.1 m. (d) L = 0.2 m. (e) Halfway Elbow.

Figure 10: Vorticity field for disturbance plate B flow straightener.

3.2.4 Netting Structure Flow Straightener

Figure 11 illustrates the contour plots of the netting structure flow straightener at all five stages
in the piping system. The formation of vortices was not prevented with this flow straightener.
In the outlet of the system, vortices are still present in the fluid. The colour of the plot in
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Figure 11e ranges from red to dark blue, which indicates that vortices of multiple sizes are still
present. For the benchmark model, there were almost no vortices present after a straight pipe
run of 0.35 m. Hence, the benchmark model performs better in preventing the formation of
vortices than the netting structure flow straightener.

(a) Start of Elbow. (b) End of Elbow. (c) L = 0.1 m. (d) L = 0.2 m. (e) End of Pipe.

Figure 11: Vorticity field for netting structure flow straightener.

3.3 Vorticity Field for Pipe Systems with Two Elbows

The vorticity contour plots for the models with two elbows in and out of plane are given in
Appendix B and C. Note that some vorticity contour plots in Appendix C do not have a perfect
circular shape, which is the result of using a less detailed meshing in the simulations. Figure
12 shows the velocity streamlines for both models.

The benchmark cases show similar results as the benchmark case with one elbow. Vortices are
formed in the elbows of the pipe systems and the vortices remain present in most of the straight
pipe run. At the outlet of the systems, after a straight pipe run of four times the diameter,
nearly all the vortices have disappeared and the flow pattern is sufficiently restored to measure
a constant velocity pattern.

The fin type flow straightener shows a increased formation of vortices for the system with two
elbows out of plane. For the two elbows in plane, this flow straightener does show a decrease
in vortex formation, but after the entire straight run vortices are still present in the system.

The Disturbance Plate A clearly performs better than Disturbance Plate B for both systems.
This was also the case in the system with one elbow. At the end of the straight pipe run,
almost no vortices are present in the system for both disturbance plates. After a straight pipe
run with a length of one diameter, the largest vortices present in the system have similar size
as the vortices present at the end of the system for the benchmark model for Disturbance Plate
B. Therefore, the model with Disturbance Plate A shows a significant improvement to prevent
vortices in the system.

The netting structure flow straightener also shows an improvement for the system with two
elbows out of plane. Interesting to notice is that the magnitude of the vortices at the end
of the system are bigger than the magnitude at earlier points in the straight pipe run. No
clear explanation for this result was found, except that the meshing of this piping system was
not as detailed as for the other piping systems. For the system with two elbows in plane, the
magnitude of the vortices decreased throughout the straight pipe run. This result is more in
accordance with the expected results.

By looking at the vorticity plots solely, the Disturbance Plate A shows the biggest improvement
in the reduction of vortices at the length of 0.05 m after the elbow.
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Figure 12: Velocity streamlines for benchmark models with two elbows in- and out of plane.

3.4 Pressure Drop over Elbows

Since the fluid is streaming upwards in the systems in this study, the pressure of the inlet
stream will be higher than the pressure of the outlet stream. The pressure drop of the water
flow over the elbows is shown in Table 3. For the benchmark cases, the pressure drop over
the first elbow is similar for all three piping systems. The pressure drop over the second elbow
is also similar for the systems with two elbows, but lower than the pressure drop in the first
elbow. Generally, the pressure drop over a 90-degree elbow bend is equivalent to the pressure
drop over a straight pipe with a length of 30 - 50 pipe diameters [21]. Since the inlet pressure
of the second elbow is lower than the inlet pressure of the first elbow, the loss of pressure is
also smaller. This relationship is also found for the fin type flow straightener and the netting
structure flow straightener. The pressure drop over the elbows for the disturbance plate is
significantly bigger than the pressure drop for the other models. This has to do with the surface
area inside these elbows. For disturbance plate A, the surface area inside the elbow is 65 %
of the surface area without a flow straightener. For disturbance plate B, the surface is even
more decreased to 35 %. The pressure and surface area are inversely proportional. Hence, the
pressure drop increases exponentially when the surface area of the pipe decreases. In Appendix
D, a plot for the relative surface area against the pressure drop can be found.
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Table 3: Pressure Drop over Elbows in Pascal.

Flow
Straightener

One Elbow Elbow 1
in-plane

Elbow 2
in-plane

Elbow 1 out
of plane

Elbow 2 out
of plane

Benchmark
Case

842.8 808.6 517.6 820.4 465.5

Fin Type 1035.5 748.9 657.5 1076.3 905.2

Disturbance
Plate A

30885 22708 23271 44555 44952

Disturbance
Plate B

158287 156123 162578 209750 320182

Netting
Structure

1244 1118 980.5 1821 878.8

3.5 Discussion

The κ-ϵ model was the only turbulence RANS model that was used to model turbulent flow in
a pipe. It is recommended to also examine other simulation models such as the LES (Large-
Eddy Simulation) or the ReNormalization Group (RNG) theory to validate the results. The
RNG model contains more terms than the κ-ϵ model and therefore computes turbulent flows
with swirl more accurately. Both the RNG and κ-ϵ model predict the turbulent flow without
computing instantaneous fluctuations u′i. The LES method is a more sophisticated method that
simulates the largest eddies but also takes the effects of the smaller eddies into account [18].
However, simulations that use the LES method do take on much more time than simulations
with the κ-ϵ model.

A simplification that was made in creating the models is associated with the mesh. To evaluate
whether increasing the mesh resolution would significantly changes the simulated results, one
would have to simulate the same models using a progressively finer mesh and increasing the
number elements of the mesh. The run time for these models will increase drastically, which
can be expensive.

Also, the systems were defined to be isothermal. Gravity-related effects such as buoyancy were
therefore not taken into consideration. Since buoyancy was neglected, the flow was considered
to be symmetric for the system with one elbow and the system with two elbows in-plane, but the
buoyancy cannot be neglected when modelling elbow flow straighteners for industrial purposes.
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4 Conclusion

Four different elbow flow straighteners were modelled in COMSOL Multiphysics while using
CFD simulations. The goal was to define how the flow pattern after an elbow can be improved
by modifying the structure of the elbow in order to prevent vortices. The first conclusion that
has been drawn is that the above simulations with flow straighteners show a clear improvement of
the flow pattern over the standard elbows without flow straighteners that are used in industry
nowadays. By looking at the pressure drop, vorticity field and magnitude and the pressure
distribution, it was concluded that Disturbance Plate A, which contained one big pipe at the
center (diameter = 0.5·D) and ten smaller pipes around it (diameter = 0.2·D), showed the most
promising results. The κ-ϵ model was used as RANS model to model the turbulent flow, but
one would have to examine other CFD models to confidently conclude that the Disturbance
Plate A flow straightener shows the best improvement in reducing the formation of vortices.
The pressure drop over the elbows for this disturbance plate was significantly bigger than the
pressure drop for the flow straighteners with a constant surface area throughout the system. On
the other hand, the pressure drop for this disturbance plate was lower than for Disturbance Plate
B, which had a surface area of about 50% compared to Disturbance plate A. The simulation’s
general results for the pressure drop over the elbow is in reasonable agreement with experimental
data. The pressure drop increases exponentially when the surface area of the bend is decreased.
Also the pressure distribution over the system is in accordance with the expected results as a
result of the centripetal force in the elbow.
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6 Appendix

A Vorticity Contour Plots for One Elbow Systems

(a) Start of Elbow. (b) Halfway Elbow. (c) End Elbow.

(d) L = 0.1 m. (e) L = 0.2 m. (f) End of System.

Figure A.1: Vorticity contour plots for benchmark model at different stages with colour legend
for system with one elbow.

(a) Start of Elbow. (b) Halfway Elbow. (c) End Elbow.

(d) L = 0.1 m. (e) L = 0.2 m. (f) End of System.

Figure A.2: Vorticity contour plots for fin type flow straightener at different stages with colour
legend for system with one elbow.

Page i



Sophie La Rondelle 6 APPENDIX

(a) Start of Elbow. (b) Halfway Elbow. (c) End Elbow.

(d) L = 0.1 m. (e) L = 0.2 m. (f) End of System.

Figure A.3: Vorticity contour plots for Disturbance plate A at different stages with colour legend
for system with one elbow.

(a) Start of Elbow. (b) Halfway Elbow. (c) End Elbow.

(d) L = 0.1 m. (e) L = 0.2 m. (f) End of System.

Figure A.4: Vorticity contour plots for Disturbance plate B flow straightener at different stages
with colour legend for system with one elbow.
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(a) Start of Elbow. (b) Halfway Elbow. (c) End Elbow.

(d) L = 0.1 m. (e) L = 0.2 m. (f) End of System.

Figure A.5: Vorticity contour plots for netting structure flow straightener at different stages
with colour legend for system with one elbow.

B Vorticity Contour Plots for Two Elbows In-Plane Systems

(a) Start of Elbow 1. (b) Start of Elbow 2. (c) End of Elbow 2.

(d) L = 0.1 m. (e) L = 0.2 m. (f) End of System.

Figure A.6: Vorticity contour plots for benchmark model at different stages with colour legend
for system with two elbows in-plane.
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(a) Start of Elbow 1. (b) Start of Elbow 2. (c) End of Elbow 2.

(d) L = 0.1 m. (e) L = 0.2 m. (f) End of System.

Figure A.7: Vorticity contour plots for fin type flow straightener at different stages with colour
legend for system with two elbows in-plane.

(a) Start of Elbow 1. (b) Start of Elbow 2. (c) End of Elbow 2.

(d) L = 0.1 m. (e) L = 0.2 m. (f) End of System.

Figure A.8: Vorticity contour plots for Disturbance plate A flow straightener at different stages
with colour legend for system with two elbows in-plane.
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(a) Start of Elbow 1. (b) Start of Elbow 2. (c) End of Elbow 2.

(d) L = 0.1 m. (e) L = 0.2 m. (f) End of System.

Figure A.9: Vorticity contour plots for Disturbance plate B flow straightener at different stages
with colour legend for system with two elbows in-plane.

(a) Start of Elbow 1. (b) Start of Elbow 2. (c) End of Elbow 2.

(d) L = 0.1 m. (e) L = 0.2 m. (f) End of System.

Figure A.10: Vorticity contour plots for netting structure flow straightener at different stages
with colour legend for system with two elbows in-plane.
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C Vorticity Contour Plots for Two Elbows Out of Plane Systems

(a) Start of Elbow 1. (b) Start of Elbow 2. (c) End of Elbow 2.

(d) L = 0.1 m. (e) L = 0.2 m. (f) End of System.

Figure A.11: Vorticity contour plots for benchmark model at different stages with colour legend
for system with two elbows out of plane.

(a) Start of Elbow 1. (b) Start of Elbow 2. (c) End of Elbow 2.

(d) L = 0.1 m. (e) L = 0.2 m. (f) End of System.

Figure A.12: Vorticity contour plots for fin type flow straightener at different stages with colour
legend for system with two elbows out of plane.
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(a) Start of Elbow 1. (b) Start of Elbow 2. (c) End of Elbow 2.

(d) L = 0.1 m. (e) L = 0.2 m. (f) End of System.

Figure A.13: Vorticity contour plots for Disturbance plate A flow straightener at different stages
with colour legend for system with two elbows out of plane.

(a) Start of Elbow 1. (b) Start of Elbow 2. (c) End of Elbow 2.

(d) L = 0.1 m. (e) L = 0.2 m. (f) End of System.

Figure A.14: Vorticity contour plots for Disturbance plate B flow straightener at different stages
with colour legend for system with two elbows out of plane.
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(a) Start of Elbow 1. (b) Start of Elbow 2. (c) End of Elbow 2.

(d) L = 0.1 m. (e) L = 0.2 m. (f) End of System.

Figure A.15: Vorticity contour plots for netting structure flow straightener at different stages
with colour legend for system with two elbows out of plane.
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D Pressure Distribution

Figure A.16: Pressure drop plotted against the relative surface area.

Table 4: Pressure Drop vs Surface Area.

Surface Area
(%)

One Elbow Elbow 1
in-plane

Elbow 2
in-plane

Elbow 1 out
of plane

Elbow 2 out
of plane

100 842.8 808.6 517.6 820.4 465.5

100 1035.5 748.9 657.5 1076.3 905.2

65 30885 22708 23271 44555 44952

35 158287 156123 162578 209750 320182

100 1244 1118 980.5 1821 878.8
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