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Abstract

In this work, a maintenance and reliability model is developed for the virtual heat assets in the

digital twin of WarmteStad’s heat plant. The maintenance schedule of the assets is optimised

using a maintenance optimisation algorithm that minimises the cost of maintenance and the

cost of unexpected failures of the assets while imposing a lower bound on the reliability of the

assets over a given time horizon. A unit commitment algorithm is developed to simulate the

activation and deactivation of the heat assets based on the digital twin simulation data. The

feature of modelling maintenance and random failures of the assets, and compensating for the

production loss caused by downtime of the assets is included in the algorithm. Monte Carlo

simulation is performed to quantify the availability of the assets and reliability of the entire

heat plant. The performance of the maintenance optimisation model is assessed in terms of

substandard heat supply hours that can potentially lead to a heat supply failure of WarmteStad’s

heat plant. Results of the experiments showed that substandard heat supply occurs in 85 out

of 10,000 simulated years; hence, a heat supply failure is unlikely to occur. The observed high

reliability of the heat plant is explained by the fact that WarmteStad has built-in redundancy in

the number of production assets in the heat plant and that the asset with the greatest thermal

production capacity is highly reliable.

Keywords— Reliability analysis, Preventive maintenance scheduling, Mathematical optimisation, Monte

Carlo simulation, Multi-energy systems, Digital twin
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Chapter 1

Introduction

Industrial systems are in general subject to deterioration through usage and exposure to envi-

ronmental factors over time. This degradation ultimately leads to system failure, with safety

issues, equipment damage, and unexpected machine unavailability as a consequence [1]. Re-

liability is a key performance measure with a profound impact on the economy and safety of

industrial systems [2]. System reliability generally depends on age and usually decreases as com-

ponents deteriorate. To overcome the effects of deterioration on system reliability, maintenance

is performed to the system by improving the condition of its components [3],[4].

Maintenance can be classified into two main categories. The first is corrective maintenance,

which is usually performed when the machine has failed [5]. The second is preventive main-

tenance, which corresponds to the scheduled actions performed at regular intervals to avoid

machine breakdowns [6]. During the maintenance period, the system is in an unproductive state

[7]. Hence, preventive maintenance activities are costly when frequently performed as they in-

crease the system’s downtime [8]. Therefore, it is desirable to reduce maintenance costs without

significantly reducing the system’s reliability [9]. In this research, work is done on developing

a reliability assessment model and optimisation of maintenance for the industrial assets of a

digital twin of a heat plant in Groningen.

KWR is a not-for-profit research institute that ’bridges science to practice’ and works at the

interface of science, business and society [10]. The research group Energy and Circular Systems

within KWR has developed a digital twin of the heat plant of WarmteStad, a heat provider

located in Groningen that operates a heat plant with combined heat and power (CHP) units,

heat pumps (HP) and gas heaters (GH). These industrial machines are referred to as assets

and are used to generate heat and electricity from natural gas and increase the temperature of

residual heat from two nearby data centres. The generated heat is transported to the customers

through a district heating network.

The digital twin is a model used to simulate the assets of the heat plant. Currently, there

is no restriction to the utilisation of the virtual assets, i.e. the simulated assets in the digital

twin. However, this is not an accurate representation of the physical heat plant. In the physical

heat plant, assets are subjected to deterioration through usage, hence, require maintenance and

experience downtime. KWR wants to improve the accuracy of the digital twin by implementing

constraints on the availability of the assets. Therefore, this research is conducted to provide a

method for assessing the availability of the assets in the heat plant.

The scope is limited strictly to the heat-producing assets. A maintenance model is developed

to optimise the maintenance schedule of the heat assets with respect to costs, while imposing

lower bounds on the system reliability. Based on this optimal maintenance schedule, the avail-

ability of the assets in the virtual heat plant is assessed. Furthermore, the maintenance costs
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Chapter 1. Introduction

can be quantified more specifically as the number of maintenance actions is computed by the

model. This allows for cost optimisations of the heat plant by relaxing the constraint imposed

on the reliability of the heat plant.

The contribution of this research is the novelty to combine maintenance optimisation and

Monte Carlo simulation for the reliability analysis of heat assets in energy system modelling. In

this research, maintenance optimisation is applied to the assets in a virtual heat plant of a digital

twin. Monte Carlo simulation is used to assess the availability of the assets and to quantify the

reliability of the entire heat plant.

In the last decades, numerous papers have been published on preventive maintenance mod-

elling and optimisation. In [11], the authors introduce hazard rate and age improvement factors

for a sequential preventive maintenance policy. It is assumed that the failure time follows a

Weibull distribution, and preventive maintenance reduces the age of the system. [12] gener-

alises an imperfect maintenance optimisation problem to multi-state systems, where reliabil-

ity is defined as the ability to satisfy a given demand. The effective age reduction concept

characterises the imperfect preventive maintenance actions. A genetic algorithm, an evolution-

ary search algorithm, is used as an optimisation technique to obtain the optimal sequence of

maintenance actions. [13] proposes two models to optimise the maintenance interval for multi-

component systems connected in series and parallel. One model minimises costs subject to a

reliability constraint. The other model maximises reliability subject to a budget constraint. The

model consists of elementary analytical equations and is solved using Microsoft Excel solver that

uses a generalised reduced gradient algorithm. [8] studies preventive maintenance and renewal

scheduling for multi-unit systems. An integrated optimisation method is developed to sched-

ule maintenance and renewal activities by grouping them and finding an optimal balance. The

problem is modelled as a pure integer linear program that minimises maintenance and renewal

costs and downtime costs over a planning horizon. In [7], a preventive maintenance schedule

for high-speed trains is optimised using a binary programming model. The problem is solved

using a meta-heuristic algorithm called simulated annealing, a stochastic search algorithm. The

performance of simulated annealing is compared to an exact method using Gurobi solver. It is

observed that simulated annealing is better suited for large-scale problems in terms of solving

time and that the solution gap between the two methods is almost negligible. In [14], a district

heating network is designed through a thermofluid dynamics and reliability modelling approach.

Unexpected failures are modelled using an exponential distribution and the reliability of the flow

network is assessed through Monte Carlo simulation.

The outline of this report is structured as follows: In Chapter 2, a problem analysis is

performed and the design goal of the thesis is presented. Chapter 3 describes the materials

and tools, such as mathematical model formulations and data required for this research. In

Chapter 4, the operationalisation of the maintenance and reliability modelling is explained.

Chapter 5 describes the scenarios for the three experiments and provides the results of the

experiments, including an analysis. The discussion and future work are provided in Chapter 6

and the final conclusion is presented in Chapter 7.
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Chapter 2

Problem Analysis

This chapter presents the problem analysis that forms the basis of the research. First, a research

context is provided, where the functioning of WarmteStad’s heat plant and the different assets

is explained. Then, the system description and scope are presented followed by the goal. A

conceptual model is used to describe the relationship of the elements of the artefact developed

during this research. The chapter ends with a review of the business case and an explanation of

functioning of the thermal buffer.

2.1 Research Context

WarmteStad is a heat provider situated in Groningen. Their goal is to contribute to a more sus-

tainable future for Groningen by providing sustainable heat to the customers through a district

heating network (DHN). This DHN is under development and will eventually be expanded to

provide heat to 12,500 customers in 2026 [15]. The heat is generated in a heat plant located

at Zernike in the north west of Groningen, where residual heat from two nearby data centers

is used as one of the heat sources. In the future, solar thermal energy will be used as an ad-

ditional sustainable heat source in combination with mid-temperature aquifer thermal energy

storage (MT-ATES). The combination of solar thermal and MT-ATES is crucial, as solar energy

is widely available in the summer when the heat demand is low. However, in the winter, the

converse is true; the solar thermal yield is low, and heat demand is high. Therefore, MT-ATES

is required as a seasonal buffer.

The heat plant is set up to produce heat as follows: heat pumps extract thermal energy

from a low-temperature residual heat supply from two nearby data centres QTS and Bytesnet.

The electricity for the heat pumps is generated using gas-fired combined heat and power (CHP)

units. These units consist of a large reciprocating gas engine that is connected to a generator.

The electricity is used for the heat pumps or can be provided to the electricity grid. The thermal

energy produced in the process is used for the DHN. A buffer that can store thermal energy for

one day is used for smoothing the heat demand profile such that the heat-producing assets can

work at a near-constant and efficient production capacity.

The expansion of the DHN has the consequence that WarmteStad must increase its thermal

energy production capacity to guarantee reliable heat supply in periods of high demand. As a

result, the heat plant must be expanded by deploying more heat-producing assets and increasing

the size of the thermal buffer. Due to the complexity of the energy system with varying heat

demand and production capacity, a digital twin can be used to optimise the future design of the

heat plant. A digital twin is a digital representation of a physical entity that enables the same

functional services as its physical counterpart [16]. Driven by data and modelling, the digital
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Chapter 2. Problem Analysis

twin can perform simulation and optimisation of the heat plant with respect to the heating

strategy, control of the assets, efficiency and costs [17]. KWR is working on the development of

a digital twin for WarmteStad [18]. The digital twin is modelled using graph theory, where the

nodes in the graph represent the different assets, and the edges that connect the nodes represent

the thermal energy flow between those assets. A schematic overview of the heat plant is provided

in Figure 2.1.

Figure 2.1: A schematic overview of the structure of the assets in WarmteStad’s heat plant, modelled in

the digital twin. The system consists of two main circuits: one circuit that provides residual heat from

the data centres to the heat pumps, and one network circuit that connects the heat assets, thermal buffer

and DHN. Energy is provided to the CHP and GH by the gas grid in the form of natural gas.

Currently, only the fundamental physics that describes the working principle of the physical

assets is modelled for the assets in the digital twin. This means that these virtual assets function

the same as their physical counterpart in terms of production capacity and efficiency. However,

what is not included is the downtime associated to maintenance or unexpected failures of the

assets, meaning that the asset availability in the digital twin is 100%. The availability of the

assets in an energy system is the ratio of the up-time to the up-time plus downtime. The

reliability of the system is determined by the ability of the system to provide an adequate

supply of energy for a given period [19].

In the physical heat plant, assets are subjected to degradation by wear through usage. Hence,

the assets require maintenance on a regular basis. The maintenance protocols for the assets han-

dled by WarmteStad are primarily based on operating time, and some inspections are performed

based on calendar time. More detailed information on the current maintenance protocols is

provided in Subsection 3.3.3.

Performing maintenance implies that the assets in the physical heat plant experience down-

time throughout their operational life. KWR wants to include these features in the digital twin,

as the availability of the assets has a profound impact on the reliability of the entire energy

system.
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Chapter 2. Problem Analysis

2.2 System Description and Scope

The system for this research is the digital twin of WarmteStad’s heat plant. However, in this

digital model of the heat plant, the assets are not modelled individually. Though, individual

assets are required for the maintenance and reliability modelling. Therefore, the schematic

overview of the digital twin in Figure 2.1 is modified to the one given in Figure 2.2. Here

the individual assets are considered, which are four CHP units, five heat pumps and three gas

heaters.

Figure 2.2: The system diagram for this research. The blocks and arrows are elaborated in the legend.

The scope of this research is limited to the three production assets: the CHP units, heat

pumps and gas heaters. These three assets are the most complex assets in the heat plant, in

terms of their number of components and moving parts. Hence, they are most prone to failure.

Therefore, developing a reliability and maintenance model for these assets will contribute the

most to assessing the reliability of the entire heat plant.

2.3 Goal Statement

The goal of this research is to develop a maintenance and reliability model for the virtual assets

in the digital twin of WarmteStad’s heat plant. Optimising the maintenance intervals of the

assets with respect to costs and reliability ensures cost-optimal operation of the heat plant with

improved up-time. Furthermore, uncertainty in the reliability of the assets is quantified through

the application of Monte Carlo simulation. By analysing the results of ten thousand simulation

runs, the likelihood of heat supply failure is assessed through statistical inference.
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Chapter 2. Problem Analysis

2.4 Conceptual Model

A conceptual model is developed to display the interrelationship between the different elements

that make up the maintenance and reliability model to satisfy the design goal and is presented

in Figure 2.3.

The digital twin is used to generate simulation data of the heat plant for a certain scenario.

This data includes the hourly average heat production of the assets in kWh. The data is pre-

processed to extract the hourly production and utilisation of the individual assets, as it is not

an output variable in the simulation data.

Then, the asset utilisation information is used in a unit commitment algorithm to commit

the required number of assets to satisfy the heat demand and keep track of their operating time.

The reliability of the assets is based on the operating time and a parametric lifetime distribution

of the assets.

The maintenance interval is determined by the maintenance optimisation algorithm. Here,

an optimal maintenance schedule is computed based on the optimisation of a cost function that

captures the costs of corrective and preventive maintenance, while imposing lower bounds on

the reliability of the assets. When maintenance is due, preventive maintenance is scheduled, and

the asset is taken out of operation.

Lastly, the model also includes unexpected failures of the assets. These failures are stochastic

and occur according to the failure distribution corresponding to the assets. When an unexpected

failure occurs, the asset is out of operation, and corrective maintenance is applied. Monte Carlo

simulation is performed to quantify the risk of a heat supply failure of the entire heat plant, by

iterating the maintenance and reliability model 10,000 times.

Figure 2.3: A conceptual model that describes the relationship between the different elements of the

maintenance and reliability model. The green frame demarcates the part of the maintenance and reliability

model that is iterated during MCS.
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2.5 Risks of Heat Supply Failure

WarmteStad is primarily focused on supplying heat reliably, as they do not want to leave their

customers in the cold. To emphasise the importance of this core task of heat suppliers, the

legislator is working on a heat law 2.0 where reliable heat supply is enacted in the law. The

legislation is incentivised by attributing a financial penalty to the event of a heat supply failure

under special conditions.

When the event of a heat supply failure occurs, WarmteStad is obliged to financially com-

pensate its customers, which can lead to a significant expense. The implications of a heat supply

failure are quantified using the number of substandard heat supply hours. This is the number

of consecutive hours WarmteStad fails to supply heat to its customers.

According to a concept version of the heat law 2.0, a heat supplier has to compensate its

customers if1:

• The heat supply failure lasts 8 to 12 hours. The heat supplier has to compensate those

affected by it 35 EUR.

• For each subsequent period of 4 hours, the heat supplier has to compensate 20 EUR.

• No compensation is necessary when:

– The heat supply failure lasts less than 24 hours and is the first failure that year.

– The heat supply failure is due to an extreme situation that cannot be attributed to

the heat supplier.

– The heat supply is interrupted due to planned work.

Assessing the expense attributed to a heat supply failure is a difficult task as it requires

knowledge of the Dutch legal system, which is beyond the scope of this research. Therefore,

quantifying the costs attributed to a heat supply failure is not part of this research. Though,

the amount of substandard heat supply is quantified in this research. Based on this information,

an estimation of the risk of incurring costs attributed to a heat supply failure is possible.

2.6 Thermal Buffer

The thermal buffer at WarmteStad consists of two large tanks of 750 m3 each. For simplicity, the

thermal buffer is considered as one large tank of 1500 m3. In the top of the buffer, the thermal

fluid is stored at a maximum temperature of 93 °Celsius. In the bottom of the buffer, the thermal

fluid has a minimum temperature of 60 °Celsius. With this 33 °C temperature difference, the

thermal buffer stores roughly 58 MWh of thermal energy when completely saturated. This is

roughly 10% of the average energy demand during the top 10% highest energy demand days.

A schematic representation of the buffer is presented in Figure 2.4. A thin layer with a

high temperature gradient called a thermocline is in between the “hot” and “cold” top and

bottom of the buffer. The level of the thermocline indicates the saturation of the buffer. The

energy content of the thermal buffer is a variable computed by the digital twin. Based on

this information, the amount of substandard heat supply can be quantified by subtracting the

1The criteria are taken from a KWR internal document.
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amount of lost production from the energy content at the beginning of the period.

Figure 2.4: Schematic representation of WarmteStad’s thermal buffer with a temperature gradient in its

thermal fluid of 33 °Celsius. The left right double arrows indicates the inlet/ outlet of the buffer. Figure

retrieved from [20] and modified by author.
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Chapter 3

Methods and Materials

This chapter provides a theoretical background to the maintenance optimisation problem and

how the problem is solved. Then, Monte Carlo simulation (MCS) is introduced to provide a

method for quantifying the reliability of the heat plant through statistical methods. The chapter

ends with an analysis of the data available during this research. This includes data from the

digital twin, asset production data and WarmteStad’s maintenance information.

3.1 Maintenance Schedule Optimisation

In a repairable system, maintenance is required to keep the reliability of the system within an

acceptable range. When a repairable unit has failed, it is restored to an operating condition

by applying corrective maintenance to its components without replacing the entire unit [21].

Due to the costs attributed to maintenance actions and downtime of the system, it is desired to

optimise maintenance for a specific time horizon. In this section, the underlying mathematics for

maintenance optimisation are presented. The optimisation model is based on the ones described

in [22] and [23]. Here, a maintenance schedule is optimised for a system of components for

a specific time horizon, where costs attributed to maintenance and unexpected failure of the

system are minimised while imposing lower bounds on the system’s reliability.

3.1.1 Mathematical Formulation

Notation

A. Parameters

N : number of assets

T : planning horizon

J : number of intervals

β: shape parameter Weibull distribution

η: scale parameter Weibull distribution

α: improvement factor maintenance

F : cost of unexpected failure of an asset

M : cost of maintenance

Rmin: lower bound asset reliability

B. Decision variables

Xi,j : effective age of asset i at start of period j

X ′
i,j : effective age of asset i at end of period j

mi,j =

1 if asset i is maintained at period j

0 otherwise

Life time modelling

The lifetime distribution of the assets is assumed to follow a Weibull distribution, as it is the

most commonly used distribution to model the age of industrial machines and components and
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Chapter 3. Methods and Materials

provides a good prediction for many types of lifetime distributions [24]. A Weibull distribution

can be fitted to both complete and right censored data, i.e. data of assets that have not yet

failed [25]. Statistical estimation methods such as the maximum likelihood estimate, least square

regression and method of moments can be used to estimate the parameters of the Weibull distri-

bution [26], [27], [28]. The probability density function of a two-parameter Weibull distribution

is

f(t) = βη−βtβ−1e
−
(

t
η

)β

, (3.1)

where β > 0 is the shape parameter, η > 0 is the scale parameter and 0 ≤ t ≤ ∞. The shape

parameter of a Weibull distribution determines the shape of the hazard rate function. With

0 < β < 1, the hazard rate is a decreasing function of time. This indicates early life failures,

so-called “infant mortality”. With β = 1, the hazard rate is constant over time, indicating

the “useful life” period of a component. With β > 0, the hazard rate is increasing; hence the

probability of failure increases with time [29].

The objective is to find a schedule of future maintenance actions for each asset over a specific

time horizon [0, T ]. The interval is divided into J discrete intervals of length T/J . At the end

of period j, the asset is either maintained or no action is performed. The notion of virtual

age is introduced to model the effect of maintenance actions, which was first introduced in

[30]. It is assumed that an asset starts with zero virtual age when put into operation and will

experience degradation throughout its operational life. Maintenance actions performed on an

asset are assumed to remove these damages using an improvement factor, effectively reducing

the system’s age. The real age of a system is the time elapsed since the asset was put into

operation [30]. Throughout this research, the notions virtual age and effective age are used

interchangeably.

For simplicity, it is assumed that maintenance activities are instantaneous, i.e., the time

required to perform maintenance is negligible with respect to the length of the interval and is,

therefore, zero in the optimisation problem. However, a cost associated to maintenance actions

is considered. The initial age for every asset is set to zero. Then, let Xi,j denote the effective

age of asset i at start of period j, and X ′
i,j denotes the effective age of component i at the end

of period j, thus

X ′
i,j = Xi,j +

T

J
for i = 1, . . . , N ; and j = 1, . . . , T. (3.2)

Effect of Maintenance

When an asset i is maintained at the end of period j, the maintenance action effectively reduces

the age of that asset in the next period as

Xi,j+1 = αX ′
i,j+1 for i = 1, . . . , N ; j = 1, . . . , T ; and 0 ≤ α ≤ 1. (3.3)

Here, α denotes the improvement factor of the maintenance action, effectively reducing the age

of the asset. For α = 0, the effective age is reduced to zero, implicating that the asset is “as-

good-as new”. When α = 1, the maintenance action has no effect, meaning that the asset is

“as-bad-as-old”. The maintenance action at the end of period j leads to an instant failure rate
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reduction. When maintenance is performed to component i in period j, a constant cost Mi is

incurred at the end of the period.

Do nothing

If no maintenance action is performed in period j, the effective age of the assets propagates

through the periods as

X ′
i,j = Xi,j +

T

J
for i = 1, . . . , N ; and j = 1, . . . , T, (3.4)

Xi,j+1 = X ′
i,j for i = 1, . . . , N ; and j = 1, . . . , T. (3.5)

Cost of unexpected failure

When optimising the maintenance schedule for a system, the costs caused by unexpected failure

must be incorporated into the objective function. As the age of a system increases, a higher rate

of occurrence of failure is inevitable, resulting in higher costs of unexpected failure. Conversely,

when the effective age of an asset is sufficiently small, the probability of an asset failure is low,

thus yielding a lower cost of failure. To take the costs of an unexpected failure into account, the

probability of an asset failure Pf is calculated in each period for each asset in the system as

Pf [Ni,j ] =

∫ X′
i,j

Xi,j

f(t) dt for i = 1, . . . , N ; and j = 1, . . . , T. (3.6)

Under a Weibull distribution for the lifetime of an asset, the probability of failure occurring in

a given time interval is given by

Pf [Ni,j ] =

∫ X′
i,j

Xi,j

βη−βtβ−1e
−
(

t
η

)β

dt = e
−
(

Xi,j
η

)β

− e
−
(

X′
i,j
η

)β

for i = 1, . . . , N ; and j = 1, . . . , T.

(3.7)

The cost attributed to an unexpected failure of an asset at time i is denoted by Fi in units of

cost per failure event. Hence, the costs attributed to the failure of a component i in period j is

given by

Fi,j = Fi · Pf [Ni,j ] = Fi

(
e
−
(

Xi,j
η

)β

− e
−
(

X′
i,j
η

)β)
for i = 1, . . . , N ; and j = 1, . . . , T. (3.8)

Component reliability

When the lifetime of a component follows aWeibull distribution, the reliability of that component

at any given time is the probability that the component has not yet failed. The reliability function

is given by [29]

R(t) = lim
k→∞

∫ k

t
βη−βtβ−1e

−
(

t
η

)β

dt = e
−
(

t
η

)β

. (3.9)

In the optimisation model, the assets are subjected to a minimum reliability constraint. The

reliability of an asset over a given time horizon can be computed by taking the product of the
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reliability in the intermediate time steps [29]. Using (3.9), the reliability of an asset over time

is given by

Ri(X
′
i,j) =

T∏
j=1

e
−
(

X′
i,j
η

)β

for i = 1, . . . , N ; and j = 1, . . . , T. (3.10)

3.1.2 Mathematical Optimisation Model

With the formulations introduced in the previous section, it is possible to set up a mathe-

matical optimisation problem that finds an optimal preventive maintenance schedule for multi-

component systems. The objective is to minimise the preventive and corrective maintenance

costs, while imposing a lower bound on the asset reliability.

Problem formulation

minimize

T∑
j=1

(
Fi,j +Mi ·mi,j

)
(3.11a)

subject to

Xi,1 = 0 for i = 1, . . . , N, (3.11b)

Xi,j = (1−mi,j−1)X
′
i,j−1 +mi,j−1αX

′
i,j−1 for i = 1, . . . , N ; and j = 1, . . . , T, (3.11c)

X ′
i,j = Xi,j +

T

J
for i = 1, . . . , N ; and j = 1, . . . , T, (3.11d)

T∏
j=1

e
−
(

X′
i,j
η

)β

≥ Rmin, (3.11e)

mi,j = 0, ormi,j = 1 for i = 1, . . . , N ; and j = 1, . . . , T, (3.11f)

Xi,j , X;i,j ≥ 0 for i = 1, . . . , N ; and j = 1, . . . , T. (3.11g)

The objective function is a cost function that sums the cost of unexpected failures of the assets

and the cost of preventive maintenance over the time horizon. The first constraint sets the

initial age of the assets to zero. The second and third constraints compute the effective age of

the assets recursively. The fourth constraint is the model’s main constraint and ensures that an

asset’s reliability is greater than or equal to the minimum required reliability. Constraints five

and six restrict the decision variables to be binary and positive.

Solving the optimisation problem

The optimisation problem is a nonlinear mixed-integer programming model due to the binary

decision variables mi,j and the nonlinear term in the objective function and reliability constraint.

The solution space for a system of N components and T intervals grows exponentially as 2TN .

Enumerating all possibilities is no viable option for solving the problem, as it becomes com-

putationally intractable quickly as T increases. Therefore, more efficient techniques for solving

such problems are required. Solvers for mixed integer programs do not explicitly examine every

possible solution but instead examine a subset of possible solutions and use optimisation theory
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to prove that the optimal solution is found [31]. While providing an extensive review of the

literature on solving mixed-integer programs is beyond the scope of this research, it is essential

to emphasise that these types of problems are inherently difficult to solve. The fact that this

problem is nonlinear and mixed-integer further reduces the number of solvers that can handle

this type of problem.

3.2 Monte Carlo Simulation

Various reliability analysis methods exist for energy systems [32], such as analytical models,

Markov models or Monte Carlo modelling. From these methods, MCS is a powerful tool for

modelling the reliability of engineering systems in order to quantify the uncertainty and risk

associated to the performance and reliability of the assets [33].

Assessing the system reliability through analytical models is often too restrictive, as it relies

on simplified assumptions, and interdependencies are easily overlooked. An alternative approach

could be based on Markov models, which takes into account a wide range of dependencies

[32]. Compared to analytical methods and Markov processes, MCS can handle more reliability

evaluation conditions, making it more suitable for large-scale systems [34].

The principle of this method is the generation of certain random events in the model to create

a realistic lifetime scenario of the system. Reliability analysis aims to evaluate the probability

of failure in an engineering system. Using MCS, the uncertainty about the probability of failure

can be formally quantified through Bayesian statistics [35]. Furthermore, MCS can be used to

perform a sensitivity analysis on the input parameters to measure how uncertainty in the model

parameters affects the system’s reliability [36].

The stochastic failure behaviour of the assets in WarmteStad’s heat plant is modelled using

a Weibull distribution. The random failure times of the assets are computed by sampling from

its probability density function, using the inverse transform method. This gives one outcome for

the failure behaviour of the assets and does not provide comprehensive insight into the reliability

of the entire heat plant. Therefore, MCS is performed by iterating this process numerous times,

generating a wide range of possible outcomes. From this information, it is possible to assess the

reliability metrics of the heat plant through statistical inference.

3.2.1 Inverse transform method

A random variate is the outcome of a random variable following a given distribution. Random

number generators essentially provide random variates following a uniform distribution in the

interval between [0, 1]. The technique used for generating random variates that follow a Weibull

distribution is the inverse transform method [37]. Its procedure is given in (3.12) to (3.15).

Consider the Weibull distribution from (3.1). Its cumulative probability function is given by

F (x) = 1− e
−(x

η
)β
. (3.12)

By the inverse transform method, it follows that

U = F (x) = 1− e
−(x

η
)β
, (3.13)
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such that

X = F−1(U) = η(− ln(1− U))
1
β . (3.14)

Since (1−U) distributes uniformly in the same way as U in the interval between [0, 1], it follows

that

X = η(− ln(U))
1
β , (3.15)

where U is a uniformly distributed random variable, and X follows a Weibull distribution.

3.2.2 Convergence

The MCS has converged when the measured index attains stable values. In this work, the

measured index is the number of unexpected failures of the assets. The stabilisation of the value

of an index is measured by the standard error [38] and is given by

ξ =
σ√
Nmc

, (3.16)

where σ is the standard deviation of the index and Nmc is the number of MCS’s.

Convergence has occurred when the standard error drops below a predetermined value ϵ.

Thus, the stopping criterion for the MCS is met when

ξ ≤ ϵ. (3.17)

3.3 Input Data

3.3.1 Digital twin model data

The input data for the reliability and maintenance modelling comes from a simulation run of the

digital twin. In this simulation run, a scenario was taken with four combined heat and power

(CHP) units, five heat pumps and three gas heaters. The output data of this simulation run is

stored in comma-separated value (CSV) files. Two data files are relevant to this research. The

first relevant CSV file contains information on the energy flows between the assets, residual heat

from the data centre to the heat pumps and the heat demand. The second relevant CSV file

contains the energy balance of the assets, the gas connection to the CHP unit and gas heater.

All data points are the average hourly production values of the assets.

3.3.2 Asset production data

The CHP unit produces at its maximum capacity 700 kW net electrical power. The thermal

energy production that can be recovered and used productively is 942 kW. The gas heater has a

maximum capacity of 6,000 kW of thermal energy at 80°C. It then consumes 711 Sm3 of natural

gas1 at an efficiency of 96%. There are two types of heat pumps used in the heat plant. One

type is used for the residual heat provided by QTS, and the other type is used for Bytesnet. At

maximum capacity, the heat pump of QTS requires 461 kW electrical power and has a coefficient

1Where Sm3 is a standard cubic meter of natural gas, at a standard pressure of 101.325 kPa and 288.15 K.

https://www.iso.org/standard/65049.html
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of performance of 3.42. The heat pump used for the residual heat from Bytesnet requires 459

kW electrical power at maximum capacity and has a coefficient of performance of 3.73. The

performances of the assets are sourced from their datasheet, which is available at KWR.

3.3.3 WarmteStad Maintenance Information

Maintenance information of the physical heat assets is required to parameterise the Weibull

distribution that is used for the maintenance and reliability modelling. After consultation with

WarmteStad, they shared information on the maintenance prescription of the assets provided

by their respective original equipment manufacturer (OEM). The maintenance prescription and

associated costs are captured in a service level agreement (SLA) with the OEM of the CHP unit,

heat pump and gas heater.

WarmteStad stated that the costs of maintenance from the SLA are confidential. Therefore,

the costs are omitted from the document. Furthermore, a shortened version of the maintenance

prescription is provided to avoid sharing any sensitive contractual information. The impact of

this decision on the results of the research is negligible.

Combined heat and power units

The maintenance actions performed on the CHP unit have a time between maintenance of 1,500

hours or a multiple thereof. These are the more frequent maintenance actions where small

maintenance such as oil change, lubrication, valve adjustment, or cleansing of components is

performed.

For a longer operating period of the CHP unit, performing only the regular maintenance

actions is not sufficient due to grime deposition and wear on the components. Therefore, more

thorough maintenance is required where components are overhauled c.q. replaced. Overhaul of

the equipment ensures a high reliability and a longer lifespan of the assets. During maintenance,

the downtime can take around four to seven days depending on the maintenance activities.

Heat pumps

The heat pumps mainly require maintenance to the ammonia detection system and to the

piston compressors. The ammonia detection system is maintained twice per year and the piston

compressors roughly every 3,000 hours. A heat pump contains two piston compressors which

are overhauled after a few regular maintenance cycles to extend their lifetime. The maintenance

actions take two to four days depending on the number of maintenance actions performed.

Gas heater

The gas heater is a relatively simple asset with respect to the CHP units and heat pumps, as

it does not contain many moving parts. For this reason, the gas heater has low maintenance

requirements and is maintained once per year. The maintenance actions take one day.

2The COP is provided by the manufacturer with ∆T is 51°C. True COP varies under operating condition.
3The COP is provided by the manufacturer with ∆T is 53 °C. True COP varies under operating condition.
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Operationalisation

This chapter provides the parameterisation of the model input parameters and describes the

operationalisation of the maintenance optimisation model and unit commitment algorithm. This

includes formulas and algorithms that define the developed models.

4.1 Basic Assumptions

This section provides an overview of the assumptions made throughout the research for the

maintenance and reliability modelling. A description of how these assumptions are derived is

provided the sections below.

1. The shape parameter of the Weibull distribution that describes the lifetime of all three

assets is β = 2.5. The scale parameter is η = [40, 30, 100] weeks for the CHP unit, heat

pump and gas heater, respectively.

2. The improvement factor α = 0.

3. The downtime attributed to the maintenance actions is fixed for all assets.

4. All CHP units have the same lifetime distribution.

5. All heat pumps have the same lifetime distribution.

6. All gas heaters have the same lifetime distribution.

7. The time between maintenance for the heat pumps is limited to one interval.

8. Production loss of the heat pumps and CHP units is compensated by the gas heaters.

4.2 Parameterisation of the Model Input Parameters

The maintenance and reliability model has several input parameters that must be predetermined

for the simulation. This section is used to assign values to those parameters based on the

data presented in Section 3.3, parameters found in the literature and information provided by

WarmteStad’s maintenance engineer.

4.2.1 Parameterisation of the Weibull distribution

In the previous chapter, it is assumed that the arrival rate of unexpected failures of the assets

follows aWeibull distribution for its characteristic property, which is the ability to model different

phases of the lifetime of a component for a given shape parameter. Failure data of the assets in

the physical heat plant is required to parameterise the Weibull distribution that is used for the

modelling in this research. Consultation with WarmteStad contributed to useful information on

the prescribed maintenance for the assets. However, unfortunately, WarmteStad was not able
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to provide extensive information on the failure rates of the assets, as the heat plant is operating

in its initial phase. As a result, especially the heat pumps (HP) are not yet operating under

optimal conditions and experience more downtime than expected. The maintenance engineer

said that the combined heat and power (CHP) units had been operating stable in the past half

year and experienced no failures. The two heat pumps currently in operation experienced six

failures in total. When these failures occur, the safety protection system lets the heat pump

run out slowly. Then, the ammonia refrigerant must evaporate for one day, and the heat pump

can be put into operation again if no additional maintenance is required. The gas heaters (GH)

were operating at a reduced capacity and have not experienced any failures.

Based on this information provided by WarmteStad, it was not possible to fit a Weibull

distribution to the failure data. The amount of failure data was inadequate and most of the

information was provided on the prescribed maintenance by the manufacturer. A literature

search for the failure distribution of similar assets results in the parameters that are provided

in Table 4.1.

In these papers, the failure rate is given using an exponential distribution, which is a special

case of the Weibull distribution, where β = 1 [29]. The values found in the literature are on the

low side with respect to the prescribed maintenance intervals provided by WarmteStad and the

information provided by the maintenance engineer on the reliability of the assets. Therefore,

based on a combination of the literature, the maintenance data and the information provided

by the maintenance engineer, the Weibull parameters are estimated to be β = 2.5 for the shape

parameter of all three assets, and η = [40, 30, 100] weeks for the scale parameter of the CHP,

HP and GH respectively.

Table 4.1: Failure rate parameters of assets similar to the assets in WarmteStad’s heat plant found in the

literature.

Asset Failure rate Reference

Gas heater 5.00E-3 1
hour [14]

CHP 1.65E-3 1
hour [14]

CHP 5.16E-4 1
hour [14]

Heat pump 0.5 1
year [39]

Heat pump 0.0013 1
hour [40]

Gas engine 0.008037 1
day [41]

Auxiliary boiler 0.000903 1
day [41]

4.2.2 Parameterisation for the maintenance optimisation model

The maintenance optimisation is performed for a time span of one year, which is equal to the

simulation time of the digital twin. Hence, the planning horizon is 52 weeks. Due to the

complexity of the optimisation problem, it is not possible to optimise the maintenance schedule

on an hourly or even daily basis. It would simply take too long to find a solution. Therefore,

the number of intervals is set to 52, resulting in a resolution of the maintenance optimisation

algorithm of one week.

From the prescribed maintenance information of the assets provided by WarmteStad, it is
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observed that regular maintenance includes the replacement of components, which implies an

improvement of the state of that component to as good as new. However, the replacement of

some components does not restore the entire asset to “as-good-as-new”. This is observed by the

fact that overhaul of the assets is performed after tens of thousands of hours for the CHP unit.

These long intervals imply that overhaul is only performed after a few years of operation.

This renders it difficult to assess the value of the improvement factor that brings the state of

the asset to somewhere in between “as-bad-as-old” and “as-good-as-new”. The fact that the

assets must be overhauled after some years of operation means that the assets are durable, and

maintenance improves the asset significantly. Therefore, the improvement factor is set to zero,

which means the asset state is restored to as good as new after maintenance. The same holds

for the heat pump and gas heater; thus, the improvement factor for those assets is set to zero

as well. To avoid confusion, an improvement factor of zero reduces the age of the asset to zero;

hence, the asset is improved to “as-good-as-new”.

Based on the maintenance information provided by WarmteStad, the maintenance intervals

are set to 1,500 hours for the CHP units, 3,000 for the heat pumps and 5,000 hours for the

gas heaters. The maintenance costs provided by WarmteStad are confidential; hence, it was

not permitted to use that information for this research. Therefore, fictitious values are taken

for the maintenance costs, though still in a realistic ratio with respect to the true maintenance

costs. The maintenance costs are set to 15,000 EUR for the CHP units, 10,000 EUR for the

heat pumps, and 2,000 EUR for the gas heater.

The maintenance costs are captured in a service-level agreement. As a result, a fixed price

is paid for the maintenance actions applied to the assets. Therefore, the cost of unexpected

failures is equal to the cost of maintenance, which is confirmed by the maintenance engineer.

Table 4.2 presents the results from a literature search for the operation and maintenance

(O&M) costs for the assets in WarmteStad’s heat plant. The table contains the non-fuel O&M

costs of the assets and expected cost per asset per year based on the O&M costs. This information

is used as a reference value to compare to the maintenance costs from the experiments, as a

method of model validation.

Table 4.2: Expected O&M costs of for WarmteStad’s assets based on values found in the literature. The

average thermal capacity of the heat pumps is estimated to be 1,500 kW, at a COP of 3.3.

CHP HP GH

Capital expenditures (CAPEX) n/a 400 EUR/kWth n/a
Non-fuel O&M costs 0.008-0.024 5 3.5
Unit EUR/kWhe % CAPEX/year EUR/kWth/year
Source [42] [43], [44] [45]
Expected costs per asset per year 20,462-61,385 30,000 21,000

4.2.3 Parameterisation for the unit commitment algorithm

Downtime of the assets attributed to maintenance is considered in the unit commitment al-

gorithm. Downtime is usually modelled using a log-normal distribution [33],[46]. However,

WarmteStad has no sufficient data on the duration of downtime of the assets. Therefore, the

downtime is considered constant with a value of 100 hours for the CHP unit, 75 hours for the
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heat pumps and 25 hours for the gas heaters. These values are based on the information in

Section 3.3 and were provided by WarmteStad’s maintenance engineer.

A common standard error of ϵ = 0.05 is used as a stopping criterion to guarantee small

variance in the results of the Monte Carlo simulation (MCS) [47]. Convergence of the MCS

must be assessed in hindsight, as the standard deviation of the number of failures is assessed

based on the results of the simulation. Therefore, the initial number of MCS’s is set to 10,000.

This means that one year of simulation time is iterated 10,000 times. This many iterations are

necessary to increase the variation in the number of unexpected failures and the time at which

they occur.

4.3 Maintenance Optimisation Algorithm

The optimisation problem in Subsection 3.1.2 must be solved to find the optimal maintenance

schedule. In this research, the optimisation problem was solved using Matlab and the toolbox

for optimisation YALMIP[48]. An additional solver was used, which is more efficient than the

built-in branch and bound algorithm. Furthermore, this solver can handle nonlinear nonconvex

optimisation problems by using a piecewise affine (i.e. piecewise linear) approximation of the

function. This third-party-solver is Gurobi1 and was provided under an academic licence.

The reliability constraint in (3.10) is nonlinear and nonconvex, which cannot be handled

by Gurobi directly. Therefore, the nonlinear function must be approximated using a piecewise

linear function. First, the constraint is rewritten as

Ri(X
′
i,j) =

T∏
j=1

e
−
(

X′
i,j
η

)β

⇐⇒ ln(Ri(Xi,j)) =
T∑

j=1

−
(X ′

i,j

η

)β
. (4.1)

This modification is necessary for the solver as Gurobi cannot handle the product of a function

as a constraint. The left-hand side in (4.1) is mathematically equal to the right-hand side of the

equation, though, with the product becoming a summation, Gurobi can now handle this type of

constraint.

Then, a piecewise linear approximation of the nonlinear function is defined as a special

ordered set of type 2 (SOS2) [49]. The right-hand side of (4.1) is computed on a sufficiently

fine grid, and the data points are used to define a SOS2 constraint. Gurobi can handle SOS2

constraints and interpolates linearly between the data points in the set. The same procedure is

taken to make a piecewise linear approximation of the nonlinear part of the objective function

in (3.8).

4.4 Asset Utilisation

For the maintenance and reliability model, it is required to have information on how many

assets are in use at a given time. This information is not directly available from the digital twin

simulation data. However, based on the simulation data, it is possible to determine the number

of assets that were used in the simulation.
1https://www.gurobi.com/
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In order to compute the number of CHP units required, the total electrical energy produced

in one hour is computed first. The electric energy production is not part of the output data

of the digital twin, thus must be computed using the energy flows and balances. The electrical

energy generated by the CHP unit is computed as

ECHP,e = Egcc,g + Ehp to chp,th − (−EEB,CHP,th)− Echp to gh,th, (4.2)

where ECHP,e is the electrical energy generated by the CHP unit, and EEB,CHP,th is the imbalance

of the energy balance over the CHP assets. The fact that it is negative can be interpreted as

energy that is lost to the surroundings, for example, by the emission of hot flue gasses. Egcg,g

denotes the energy equivalent of the natural gas provided by the gas connection to the CHP

units. Ehp to chp,th and Echp to gh,th denote the thermal energy flow from the heat pumps to the

CHP units and the thermal energy flow from the CHP units to the gas heaters, respectively. All

energy terms are expressed in kWh.

In the digital twin, the heat pumps and the CHP units are coupled electrically. Thus, the

CHP units produce as much electricity as is required for the heat pumps. Therefore, now that

the electricity generation of the CHP units is available by (4.2), it is possible to compute the

number of heat pumps and CHP units active at all time steps in the digital twin simulation

data.

Combined heat and power units

The CHP units generate at maximum capacity 700 kW of electricity see Subsection 3.3.2. The

CHP units have the highest efficiency at maximum capacity; therefore, the hourly number of

active CHP units in the digital twin simulation data is computed by

NCHP,required =

⌈
ECHP,e

700

⌉
, (4.3)

where ⌈x⌉ denotes the ceiling function, that maps the variable x to the nearest integer greater

than, or equal to x.

Heat pumps

There are two types of heat pumps that have nearly the same electricity consumption, 459

kW and 461 kW see Subsection 3.3.2. Therefore, the heat pumps are averaged to use 460 kW

of electrical power each. The number of heat pumps active at each hour in the digital twin

simulation data is computed by

NHP,required =

⌈
ECHP,e

460

⌉
. (4.4)
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Gas heaters

The hourly number of active gas heaters is based on the gas consumption of the gas heaters in

the digital twin simulation data. Its computation is given by

NGH,required =

⌈
Egcg,g

711 · 8.792

⌉
, (4.5)

where the value 711 is the natural gas consumption of one gas heater at maximum capacity

in Sm3, and the value 8.792 is the lower heating value of one Sm3 natural gas in kWh, see

Subsection 3.3.2.

4.5 Unit Commitment Algorithm

Based on the digital twin simulation data, the total number of assets required to fulfil the heat

demand was determined for each hour of simulated time. For the reliability modelling of the

heat plant, it is necessary to determine the individual utilisation of the assets, i.e. which assets

are in operation, which assets are on standby, which assets are unavailable due to a breakdown

or scheduled maintenance, and what is the operating time of the assets. This type of information

cannot be derived from the digital twin simulation data. Therefore, it is necessary to develop a

unit commitment algorithm for the twelve assets based on the digital twin simulation data. The

unit commitment algorithm is an algorithm that commits the number of required CHP units,

heat pumps and gas heaters based on the digital twin simulation data. The algorithm is based

on a for loop that cycles through every hour of simulation time. This loop contains different

components such as activation and deactivation of the assets, execution of maintenance for the

assets, modelling unexpected failures of the assets and compensating for lost production when

a heat pump or CHP unit fails, and no other unit is available.

4.5.1 Activation and deactivation of assets

The activation and deactivation of assets is classified in three categories: CHP units, heat

pumps and gas heaters. The process of activating and deactivating assets is explained for assets

in general and can easily be applied to any category of assets. The pseudo-code of the algorithm

for activating heat pumps is given by

Line 1: The algorithm reads the number of required heat pumps in time step j. Line 2: If

the number of required heat pumps exceeds the number of active heat pumps in time step j− 1,

a heat pump must be activated. There is no algorithm or logic behind determining the best

heat pump to commit; therefore, the first available heat pump will be activated in numerical

order. This is actually also the sequence in which the assets in the physical heat plant are

activated, according to its control system description. Line 4: this loop ensures that the assets

are activated in numerical order. Line 5 ensures that only assets are activated when necessary.

Lines 6-8 check if the asset is available, commit the asset and reduce the number of assets to

be activated with one. If the number of required assets is less than the number of active assets,
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Algorithm 1 Pseudo-code for activation the assets

1: read number of required assets

2: if number of active assets < number of required assets then

3: activate = number of required assets - number of active assets

4: for i = 1:total number of assets do

5: if activate > 0 then

6: if asset i is available then

7: activate asset i

8: activate += -1

9: end if

10: end if

11: end for

12: end if

an asset must be deactivated. This is done in reversed numerical order, meaning that the last

active asset in the sequence is deactivated first.

4.5.2 Compensating production loss

Consider the case where all heat pumps are in operation. When one of the heat pumps fails, the

production loss cannot be compensated by another heat pump. Therefore, this production loss

must be compensated by another asset. The CHP unit and heat pump are coupled electrically;

however, if one or the other fails, the assets can be connected to the electricity grid. Therefore, in

theory, a CHP unit can compensate the thermal energy production loss of a heat pump and vice

versa. However, in the model, it is assumed that only the gas heater is allowed to compensate for

this production loss. This assumption is made since the supply side of low-temperature residual

heat of the heat pump cannot be increased on demand. And for the CHP unit, its prime purpose

is to generate electricity for the heat pumps, not for the electricity grid.

Now consider the case where all gas heaters are active and running at full capacity. If

production is lost due to an unexpected failure, another gas heater cannot be activated. As a

result, the heat plant fails to match the heat production demand which is called substandard

heat production. It is good to note that this does not necessarily imply that no heat is delivered

to the customer, as there is still energy stored in the thermal buffer.

The algorithm for compensating heat production loss is given in Algorithm 2. The first step

is to calculate the amount of production loss (line 1), then compute the residual capacity of the

gas heaters if those are activated (line 2). If this residual capacity is sufficient to compensate

for the production loss of a heat pump or CHP unit, the production capacity of the active

gas heaters is increased. If the residual capacity is not sufficient to compensate for the loss of

production (line 3), another gas heater is activated (line 4). If no other gas heater is available

(line 5), the amount of production loss is stored as substandard heat production (line 6).
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Algorithm 2 Pseudo-code for compensating production loss

1: do compute production loss

2: do compute residual capacity gas heater

3: if residual capacity gas heater < production loss then

4: do activate additional gas heater

5: if gas heater is unavailable then

6: store heat production loss

7: end if

8: end if

4.5.3 Performing Maintenance

The maintenance schedule is optimised using the maintenance optimisation algorithm. This

algorithm generates an optimal maintenance schedule for the given input parameters over a given

time horizon. Based on this schedule, the optimal effective age for maintenance is determined

and used in the unit commitment algorithm. Here, maintenance of the assets is performed at the

optimal effective age. If there is an asset already in maintenance, the maintenance is postponed.

Otherwise, the asset is taken out of operation into maintenance. A downtime for the respective

asset is attributed to the maintenance action, and the asset cannot be committed during this

time. When the downtime has passed, the asset is set on standby and can be committed when

it is required.

Algorithm 3 Pseudo-code for performing maintenance

1: if maintenance is due then

2: if any asset is already under maintenance then

3: do not perform maintenance

4: else

5: do perform maintenance

6: do assign downtime to maintenance action

7: do update commitment matrix

8: end if

9: end if

4.5.4 Postponing Maintenance

There are two situations where performing maintenance can negatively impact the ability of

the heat plant to fulfil the heat demand. The first situation is when an asset is already under

maintenance, it is sensible to wait until completion of the maintenance, as maintaining multiple

assets at the same time can greatly impact the ability of the heat plant to fulfil the heat demand.

The second situation is when there is a period of high heat demand upcoming. In this

situation, it is better to postpone the maintenance of the assets until the period of high heat

demand has passed. It is expected that the benefits of postponing maintenance by a few days
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outweigh the negative effects. The negative effects are an increased risk of failure of the asset

during this period while performing maintenance certainly results in unavailability of the asset.

When one of both situations occurs, the unit commitment algorithm waits to perform main-

tenance until the conditions for maintenance are satisfied. That is either when no asset is in

maintenance or when a period of lower heat demand is expected. The following subsection

explains how a period of lower heat demand is detected based on past heat demand data.

4.5.5 Detecting period of lower heat demand

Detection of a period of lower heat demand is performed using a rule-based algorithm. This

algorithm is used to impose a maintenance constraint on the assets that restricts performing

maintenance during a period of high heat demand. A moving average of the heat demand is

computed for the past three days for smoothing the heat demand. The pseudo-code for the

rule-based algorithm is given in Algorithm 4.

Consider the case where maintenance of an asset is due; then, when the 72-hour-average heat

demand (72AHD) is below 10 MW, maintenance is always allowed. If this is not the case, and

the heat demand is above 20 MW, maintenance is never allowed. If the 72AHD is between 10

MW and 20 MW, it is checked if the heat demand trend of the past 72 hours is decreasing. If

these two conditions are met, maintenance on the asset is allowed.

Algorithm 4 Pseudo-code for detecting a period of lower heat demand

1: 72AHDi =
1
72

∑i
j=i−72 hd(tj) ▷ compute the 72-hour-average heat demand

2: if maintenance is due then

3: if 72AHDi <= 10 MW then

4: do perform maintenance

5: else if 72AHDi <= 20MW and trend [72AHDi−72 . . . 72AHDi] is decreasing then

6: do perform maintenance

7: else if 72AHDi > 20 MW then

8: do not perform maintenance

9: end if

10: end if

4.5.6 Unexpected failure of assets

At this point, the algorithm can commit assets and schedule maintenance when it is due; however,

at any given time, there is a probability that an asset will fail randomly. To capture the effect

of these random failures in the model, stochastic failure behaviour is added to the assets. The

propensity of an asset failure occurring is based on the probability density function of the lifetime

of that asset. Therefore, it is possible to model random failures by sampling from this probability

density function.

The inverse transform method is used to draw a sample from the Weibull distribution, see

Subsection 3.2.1 for further details. For the initial model run, it is assumed that the effective
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age of the assets is zero. Therefore, a uniformly distributed sample is drawn in the interval

between [0, 1]. This probability corresponds to a specific lifetime at which the asset is expected

to fail and is computed using (3.1). If the effective age at which the asset is expected to fail is

below the age at which maintenance is applied according to the optimal maintenance schedule,

the asset fails unexpectedly. If this age is above the optimal maintenance age, no unexpected

failure occurs, and the asset is maintained when maintenance is due.

When maintenance has been applied to an asset, a new sample is drawn from its lifetime

probability density function to simulate its new expected failure point. However, the effective

age of the asset can be nonzero now, depending on the improvement factor. Therefore, the lower

bound of the uniform distribution is shifted to the probability that corresponds to the effective

age of the asset.
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Results and Analysis

This chapter starts with a description of the scenario’s for the simulation experiments conducted

in this research. Then, the results of the experiments are provided including an analysis. The

interpretation of the results is provided in the discussion.

5.1 Scenario’s for Experiments

This section describes the three scenarios for the simulation experiments performed in this

research. First a base scenario using WarmteStad’s maintenance schedule is performed as a

model benchmark, then a simulation is performed using the maintenance optimisation algorithm,

and lastly, a simulation is run where a constraint is imposed that restricts maintenance during

high heat demand.

Naturally, there are endless variations to the experiments that can be conducted using the

maintenance and reliability model developed during this research. However, the objective of the

experiments is to show the model’s key features for a realistic scenario of WarmteStad’s heat

plant.

5.1.1 Experiment 1: Base Scenario

In this experiment, a base scenario is simulated using the prescribed maintenance intervals for

the assets provided by their manufacturers. This is a base scenario, as WarmteStad is currently

using this information for its maintenance planning. Therefore, no maintenance optimisation

is performed in this experiment, and the results are used as a benchmark for the model. The

maintenance interval for the combined heat and power (CHP) units is 1,500 hours, the heat pump

3,000 hours, and the gas heater 5,000 hours, based on the information provided by WarmteStad.

Furthermore, the constraint that maintenance is not permitted during a period of high heat

demand is inactive. This experiment is referred to as the base scenario experiment.

5.1.2 Experiment 2: Maintenance Optimisation

This experiment is conducted to assess the performance of the maintenance optimisation algo-

rithm. As in the base scenario, the constraint that maintenance is not permitted during a period

of high heat demand is inactive. This experiment is referred to as the maintenance optimisation

experiment.

The input parameters used for this experiment are given in Table 5.1. This table provides

an overview of the parameters defined in Section 4.2. The lower bound for the reliability of the
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assets is set to 80% for the CHP, 80% for the HP and 80% for the GH. These values are chosen

arbitrarily for demonstration purposes and can take any value between 0% and 100%.

Table 5.1: Model input parameters used for the maintenance optimisation experiment. The parameters

between brackets correspond to the CHP, HP and GH respectively.

Input parameters

η = [40, 30, 100] weeks β = 2.5
F = [15000, 10000, 2000] EUR α = 0
M = [15000, 10000, 2000] EUR T = 52 weeks
R = [80, 80, 80] % MCS = 10000 iterations

5.1.3 Experiment 3: Maintenance Constraint

This experiment explores the scenario where maintenance optimisation is performed and in ad-

dition a maintenance constraint is imposed that restricts maintenance during periods of high

heat demand. The maintenance constraint is imposed by a rule-based algorithm defined in Sub-

section 4.5.5. The model input parameters are equal to the parameters used in the maintenance

optimisation experiment and are presented in Table 5.1. The experiment is performed to assess

the effect of this constraint on the substandard heat supply, and is referred to as the maintenance

constraint experiment.

5.2 Base Scenario vs Maintenance Optimisation

The first step of analysing the simulation result is to assess if the Monte Carlo simulation

(MCS) has converged. The stopping criterion for the MCS is based on the standard error, which

is computed using (3.16). The standard errors of experiments 1 and 2 are provided in Table 5.2.

This table shows that the MCS has converged for all three assets in both experiments.

Table 5.2: This table presents the values of the standard error ξ for experiments 1 and 2 and states if the

MCS has converged.

Base scenario Maintenance optimisation

Asset CHP HP GH CHP HP GH

ξ 0.0040 0.0136 0.0022 0.0040 0.0053 0.0017
ξ ≤ ϵ true true true true true true

Histograms of the number of failures of the assets are presented in Figure 5.1. It is observed

that the failure rate of the CHP units in the maintenance optimisation experiment has increased

slightly with respect to the base scenario. This implies that the number of maintenance actions

on the CHP units is slightly lower than in the base scenario. The failure rate of the heat pumps

has decreased significantly in the maintenance optimisation experiment with respect to the base

scenario. This is due to a significant increase in maintenance actions applied to the heat pumps.

The gas heaters are highly reliable overall due to the low failures in both experiments. Though,

the gas heater failed slightly less often in the base scenario.
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(a)

(b)

Figure 5.1: Histograms of the number of unexpected CHP, HP and GH failures during MCS. The his-

tograms of the base scenario are presented in Figure 5.1a, and the histograms of the maintenance opti-

misation experiment are presented in Figure 5.1b.

An important KPI to assess the reliability of the entire heat plant is the number of substan-

dard heat production hours. This occurs when the heat plant cannot fulfil the required heat

production demand. Histograms of the number of substandard heat production hours during

both experiments are given in Figure 5.2. This figure shows that in the base scenario, more

substandard heat production hours occur than in the maintenance optimisation experiment.

Furthermore, the duration of the substandard heat production is shorter. Further analysis of

the lost heat production is necessary to determine if substandard heat production resulted in a

heat supply failure in any of the simulations.

The maximum heat production loss in one consecutive period is computed to quantify a

potential heat supply failure. The histograms of the maximum heat production loss during

MCS are presented in Figure 5.3. These histograms show that heat production loss occurs

significantly more often in the base scenario than in the maintenance optimisation experiment.

A significant proportion of the heat production loss is 0-20 MWh in the base scenario, while in

the maintenance optimisation experiment, there is only a small peak in 0-5 MWh of production

loss.

To assess if the heat production loss resulted in a heat supply failure, the heat production

loss is subtracted from the energy content of the thermal buffer at the beginning of a heat

production loss period. If the heat production loss is greater than the energy content of the

thermal buffer, the production loss results in substandard heat supply, where the heat demand of

the DHN cannot be fulfilled. This is true in 83.1% and 29.9% of the cases in the base scenario

and the maintenance optimisation experiment, respectively. The histograms of substandard heat

supply are presented in Figure 5.4. The histograms show that in the maintenance optimisation
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(a) (b)

Figure 5.2: Histograms of the number of substandard heat production hours. The histogram of the

base scenario is presented in Figure 5.2a, the histogram of the maintenance optimisation experiment is

presented in Figure 5.2b.

(a) (b)

Figure 5.3: Histograms of the maximum heat production loss in one consecutive period in MWh. The

histogram of the base scenario is presented in Figure 5.3a, and the histogram of the maintenance optimi-

sation experiment is presented in Figure 5.3b.

experiment, significantly fewer heat supply failures occur than in the base scenario. In total,

there is a reduction of 85.9% in the occurrences of heat supply failure.

Furthermore, the quantity of substandard heat supply during a heat supply failure is higher

in the base scenario than in the maintenance optimisation experiment. In 15.4% and 84.4% of

the cases in the base scenario than in the maintenance optimisation experiment, respectively, a

heat supply failure was due to unexpected failures of assets. In the remainder of the cases, the

heat supply failure was due to scheduled maintenance.

Lastly, the preventive and corrective maintenance costs are presented in Figure 5.5. From

these bar plots, it is observed that the costs for maintenance and unexpected failures of the CHP
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(a) (b)

Figure 5.4: Histograms of the substandard heat supply in MWh. The histogram of the base scenario is

presented in Figure 5.4a, and the histogram of the maintenance optimisation experiment is presented in

Figure 5.4b.

units are nearly equal, as the number of maintenance actions for the CHP units was nearly equal

in both experiments. The maintenance costs for the heat pumps have significantly increased in

the maintenance optimisation experiment with respect to the base scenario. As a result, the

cost of unexpected failures has decreased significantly. Overall, the combined costs for preventive

and corrective maintenance are significantly higher in the maintenance optimisation experiment

than the base scenario. The maintenance costs for the gas heater is slightly, though negligible

higher in the maintenance optimisation experiment than in the base scenario.

(a) (b)

Figure 5.5: Stacked bar plots of the average costs of maintenance and unexpected failures of assets. The

costs are the average costs per individual asset over 10,000 MCS runs. The bar plot of the base scenario

is presented in Figure 5.5a, and the bar plot of the maintenance optimisation experiment is presented in

Figure 5.5b.
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5.3 Maintenance Optimisation vs Maintenance Constraint

In the maintenance constraint experiment, maintenance is not permitted during a period of high

heat demand. The effect of this constraint on the periods where maintenance is permitted is

plotted in Figure 5.6. This graph shows the three-day moving average of the heat demand of

one year of simulation time. The moving average is used for smoothing the heat demand. No

forecast of the heat demand is made, implying that only information on past heat demand is

available during the simulation.

Figure 5.6: Three-day moving average of the heat demand of one year simulation time. The blue line

indicates periods of high heat demand where maintenance is not permitted. The red line indicates the

periods where maintenance is permitted.

From this figure, it is observed that during peaks of high heat demand, maintenance of the

assets is not permitted. This constraint is expected to improve the reliability of the heat plant

by reducing the number of maintenance actions during high heat demand; therefore, reducing

the impact of scheduled maintenance actions on the heat production. To assess the effect of the

maintenance constraint, analysis of the MCS proceeds.

Again, the first step is to assess if the MCS has converged. The standard error in the

maintenance constraint experiment is presented in Table 5.3. From this table, it is observed

that the MCS has converged for all three assets.

Table 5.3: This table presents the values of the standard error ξ of the maintenance constraint experiment,

and states if the MCS has converged.

Asset CHP HP GH

ξ 0.0041 0.0065 0.0017
ξ ≤ ϵ true true true

Histograms of the number of failures during MCS are presented in Figure 5.7. This figure

shows that slightly more failures have occurred for the CHP unit in the maintenance constraint

experiment than the maintenance optimisation experiment. It is expected that this happened

as maintenance is in some cases postponed in the maintenance constraint experiment due to the

maintenance constraint. This leads to an increased time between maintenance in some cases,

which increases the probability of failure of the assets.
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The same argument holds for the increased number of failures of the heat pumps. The

histogram shows that 1107 more failures occurred during MCS in the maintenance constraint

experiment, which is significantly more than the additional CHP unit failures, and is explained

by the higher failure rate of the heat pumps. If maintenance of a heat pump is postponed, the

increase in the probability of failure is greater than for the CHP or GH.

For the gas heaters, only two more failures occurred during 10,000 MCS runs. This is ex-

plained by the fact that the maintenance requirements of the gas heater are already relatively low

due to the longer maintenance intervals and relatively short operating time per year. Therefore,

the effect of postponing maintenance for the gas heater during periods of high heat demand is

negligible.

(a)

(b)

Figure 5.7: Histograms of the number of unexpected failures of the CHP, HP and GH during MCS. The

histograms of the maintenance optimisation experiment are presented in Figure 5.7a, the histograms of

the maintenance constraint experiment are presented in Figure 5.7b.

Histograms of the number of substandard heat production hours are presented in Figure 5.8.

These histograms show that overall, the number of substandard heat production hours has

further decreased in the maintenance constraint experiment.

Histograms of the heat production loss during experiments 2 and 3 are presented in Figure 5.9.

This figure shows that in general, the quantity of substandard heat production measured in MWh

has decreased in the maintenance constraint experiment with respect to the maintenance opti-

misation experiment. However, it is remarkable to observe that a substandard heat production

of 80-90 MWh occurred four times more often in the maintenance constraint experiment than in

the maintenance optimisation experiment. This is the largest quantity of substandard heat pro-

duction, thus imposing a higher risk on WarmteStad to incur costs attributed to a heat supply

failure.

Another MCS is ran with 20,000 iterations, to investigate if the peak at 80-90 MWh is due

32



Chapter 5. Results and Analysis

(a) (b)

Figure 5.8: Histograms of the number of substandard heat production hours. The histogram of the

maintenance optimisation experiment is presented in Figure 5.8a, the histogram of the maintenance

constraint experiment is presented in Figure 5.8b.

to the maintenance constraint or due to “bad luck” with the random numbers generated in the

simulation. From the results it is observed that 8 events of 80-90 MWh of production loss occur;

hence, the peak in the original experiment is assumed to be attributed to “bad luck” in the

random number generation during the experiment.

(a) (b)

Figure 5.9: Histograms of the maximum heat production loss in one consecutive period in MWh. The

histogram of the maintenance optimisation experiment is presented in Figure 5.9a, and the histogram of

the maintenance constraint experiment is presented in Figure 5.9b.

In 31.1% of the cases in the maintenance constraint experiment, the heat production loss

resulted in a heat supply failure where the energy content of the thermal buffer was inadequate

to compensate for the production loss. This is a 1.2 percentage points (pp) increase with respect

to the maintenance optimisation experiment, though in total, production loss occurs less often

in the maintenance constraint experiment than in the maintenance optimisation experiment.
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Furthermore, in 91.2% of the cases in the maintenance constraint experiment, heat production

loss is a result of random failures of the assets rather than preventive maintenance actions. This

is a 6.8 pp increase in the number of heat supply failures caused by random failures in the

maintenance constraint experiment, which implies that the maintenance constraint reduced the

number of heat supply failures caused by preventive maintenance actions.

The histograms of the heat supply failures are presented in Figure 5.10. A further reduction

of 11.5% in the occurrence of substandard heat supply in the maintenance constraint experiment

with respect to the maintenance optimisation experiment. Though again, a substandard heat

supply of 70-90 MWh occurs four times in the maintenance constraint experiment and only

once in the maintenance optimisation experiment. In the experiment with double the MC

iterations, 70-80 MWh of substandard heat supply occurs 4 times as well, without higher values

of substandard heat supply occurring, which confirms that the peak in the original experiment

is likely due to “bad luck” in the random number generation.

(a) (b)

Figure 5.10: Histograms of substandard heat supply in MWh. The histogram of the maintenance op-

timisation experiment is presented in Figure 5.10a, and the histogram of the maintenance constraint

experiment is presented in Figure 5.10b.

Lastly, the costs of maintenance and unexpected failures during the maintenance constraint

experiment is compared to the costs in the maintenance optimisation experiment. The bar plots

are presented in Figure 5.11. It is observed that the cost of maintenance of the CHP units in

the maintenance constraint experiment has decreased slightly with respect to the maintenance

optimisation experiment. Postponing the maintenance during periods of high heat demand has

reduced the overall maintenance actions applied to the CHP units.

The same holds for the heat pumps. Due to the postponement of maintenance, fewer main-

tenance actions were applied to the heat pumps, reducing maintenance costs. It is difficult to

observe from the bar plot; however, the cost of unexpected failures has increased by 1,500 EUR

on average. Again, this is attributed to the fact that maintenance was postponed; thus, the heat

pump’s failure probability was slightly higher.

The cost of maintenance and unexpected failures for the gas heater is equal in both experi-
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ments. No difference of statistical significance is observed.

(a) (b)

Figure 5.11: Stacked bar plots of the average costs of maintenance and unexpected failures of assets. The

costs are the average costs per individual asset over 10,000 MCS runs. The bar plot of the maintenance

optimisation experiment is presented in Figure 5.11a, and the bar plot of the maintenance constraint

experiment is presented in Figure 5.11b.
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5.4 Boxplot of Substandard Heat Supply

A boxplot of the substandard heat supply during the Base Scenario, Maintenance Optimisation

and Maintenance Constraint experiment are presented in Figure 5.12. The statistics attributed

to the boxplots are presented in Table 5.4.

Figure 5.12: Boxplot of the substandard heat supply during the Base Scenario, Maintenance Optimisation

and Maintenance Constraint experiment.

Table 5.4: Statistics of the substandard heat supply data that define the boxplots in Figure 5.12.

Base Scenario Maintenance Optimisation Maintenance Constraint

Lower Adjacent 0.073 0.073 0.073
Upper Adjacent 33.735 53.768 55.007
Median 6.024 10.195 13.837
25th Percentile 3.725 3.967 6.841
75th Percentile 16.217 24.502 26.250
Maximum 92.863 79.918 81.837
Num Outliers 118 2 5
Num Point 1405 107 85
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From the boxplots it is observed that the dispersion of the substandard heat supply has

increased in the maintenance optimisation and maintenance constraint experiment with respect

to the base scenario. This increase in dispersion is attributed to the fact that the number of

occurrences of substandard heat supply is significantly lower than in the base scenario. Therefore,

while the dispersion is greater, the number of occurrences of heat supply is significantly lower.

Furthermore, the number of outliers is in the base scenario significantly higher and of a higher

value than in the maintenance optimisation and maintenance constraint experiment. Ultimately,

the number of occurrences and amount of substandard heat supply is what imposes a financial

risk on Warmtestad. Therefore, this risk is lower in the last two experiments.

5.5 Asset Statistics

The statistics of the assets from all three experiments are presented in Table 5.5. This table

includes statistics of the individual assets during MCS, such as the average number of mainte-

nance actions, average downtime of the assets in hours, average operating time in hours and the

average availability and reliability. The reliability of the assets is defined as the proportion of

assets that have not failed during MCS.

This table shows that the CHP units have nearly the same statistics throughout the three

experiments, without any statistically significant difference. Idem ditto for the gas heaters.

The heat pumps did undergo significantly more maintenance in the maintenance optimisation

experiment than in the base scenario. This resulted in longer downtime and reduced availability.

In the maintenance constraint experiment, less maintenance was performed on the heat

pumps than in the maintenance optimisation experiment. This is explained by the maintenance

constraint that prohibited asset maintenance during periods of high head demand, increasing

the time between maintenance slightly. As a result, the average downtime is slightly less, and

the availability is slightly higher.

Table 5.5: Results of the three experiments conducted in this research. All values are mean values of

10,000 MCS runs. The average number of maintenance actions applied to each asset, average downtime

and operating time in hours and the average availability and reliability.

Experiment CHP1 CHP2 CHP3 CHP4 HP1 HP2 HP3 HP4 HP5 GH1 GH2 GH3

1

Maintenance 4.94 3.95 1.98 0 1.77 1.72 0.89 0.76 0 0.95 0 0
Downtime [h] 501.0 400.1 200.8 0.2 184.4 178.2 100.6 77.9 0.5 25.0 0.1 0.0
Operating time [h] 8123 6255 3740 756 8537 8310 5618 3861 695 5629 1788 789
Availability 0.9419 0.9399 0.9490 0.9997 0.9789 0.9790 0.9824 0.9802 0.9992 0.9956 0.9999 1.0000
Reliability 0.9338 0.9443 0.9710 0.9979 0.4774 0.5001 0.6169 0.7516 0.9929 0.9541 0.9960 0.9995

2

Maintenance 4.94 3.94 1.98 0 10.93 10.89 7.86 4.95 1.05 1.00 0 0
Downtime [h] 500.3 400.0 200.1 0.3 825.7 822.3 594.7 375.0 80.1 25.5 0.1 0.0
Operating time [h] 7975 6428 3684 781 7811 7600 5950 4066 1466 5678 1795 787
Availability 0.9410 0.9414 0.9484 0.9996 0.9044 0.9024 0.9091 0.9156 0.9482 0.9955 0.9999 1.0000
Reliability 0.9313 0.9396 0.9704 0.9972 0.9276 0.9320 0.9356 0.9555 0.9832 0.9765 0.9956 0.9997

3

Maintenance 4.93 3.71 1.96 0 9.50 8.99 6.07 2.60 0 0.99 0 0
Downtime [h] 500.3 377.0 199.7 0.2 719.7 682.1 462.3 203.0 2.0 25.4 0.1 0.0
Operating time [h] 8018 6442 3677 735 7918 7801 5918 4137 1182 5649 1797 787
Availability 0.9413 0.9447 0.9485 0.9997 0.9167 0.9196 0.9275 0.9532 0.9983 0.9955 0.9999 1.0000
Reliability 0.9297 0.9402 0.9633 0.9978 0.9066 0.9007 0.9129 0.8974 0.9736 0.9757 0.9964 0.9997
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Discussion

This chapter provides an interpretation of the results obtained from the experiments. The per-

formance of the maintenance and reliability model and the maintenance optimisation algorithm

developed during this research is assessed based on the implications of the results. Furthermore,

the maintenance and reliability model’s limitations are discussed, and suggestions for future

work are provided.

Maintenance optimisation

The lower reliability bound for the maintenance optimisation algorithm was set to 80% for one

year of operation. With this parameter, it is expected that the probability of the assets surviving

for one year is 80%. For the CHP units, in roughly 84 out of 100 simulations during MCS, no

failures have occurred for all five combined heat and power (CHP) units. This implies that the

reliability is higher than the predetermined 80%, even though it is expected that the reliability

constraint was dominant during the maintenance optimisation.

This can be explained by the fact that the 80% reliability is for one year of continuous

operation. Naturally, this amount of operating time is not achieved by any CHP unit as the

assets require maintenance, hence experiencing downtime a few times per year. However, more

importantly, most of the CHP units are not required to operate for all hours of the year, as

is observed from Table 5.5. Therefore, the CHP units show a higher reliability than initially

expected by the 80% lower bound asset reliability. The same argumentation holds for the heat

pumps and gas heaters.

In the maintenance optimisation experiment, the assets are more reliable as the number of

random failures is lower than in the base scenario. This is achieved by performing maintenance

more frequently. As a result, the availability of the assets reduces as the downtime increases.

This is affirmed by the results in Table 5.5. However, it is interesting to observe that the

reduced availability of the assets still resulted in a more reliable heat supply, as was observed in

Figure 5.4.

The most evident explanation for this observation is the fact that the increased reliability in

the maintenance optimisation experiment resulted in fewer random failures with respect to the

base scenario, as is observed in Figure 5.1. The reduced number of random failures resulted in a

more reliable heat production even though additional maintenance actions replaced the random

failures. Conversely, in the base scenario, more random failures occurred due to the less reliable

assets. In this case, the random failures were detrimental to the reliability of the heat supply,

as they presumably occurred during high heat demand.

The costs attributed to maintenance and unexpected failures are equal due to the SLA of

WarmteStad with a third party. As a result, the cost comparison in Figure 5.5 is somewhat
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trivial. In the maintenance optimisation experiment, the number of maintenance actions has

increased, and as a result, the number of random failures is less than in the base scenario. Hence,

the cost of maintenance has increased, and the cost of random failures has decreased. The cost

of additional maintenance grows faster than the reduction in the cost of unexpected failures.

Maintenance constraint

In the maintenance constraint experiment it was expected that by imposing a constraint that

restricted maintenance in periods of high demand, the reliability of the heat plant is improved.

The results showed that this constraint lowered the number of heat supply failures. Furthermore,

it was observed that in only 8.8% of the cases, a heat supply failure occurred due to preventive

maintenance, while the maintenance optimisation experiment, this occurred in 15.6% of the

cases. Therefore, an overall reduction in the number of heat supply failures caused by preventive

maintenance was perceived.

Although, that does not provide a comprehensive view of the side effects, as the constraint

resulted in postponed maintenance, which led to more random failures. For this reason, the

number of heat supply failures did not reduce significantly. Furthermore, a few more heat

supply failures at the higher end of the spectrum at 80-90 MWh of substandard heat supply

were observed, which imposes a higher risk on WarmteStad to incur costs attributed to a heat

supply failure. However, this peak was of equal size in a MCS run with double the number

of iterations; therefore, the peak may be attributed to “bad luck” in the MCS in the original

experiment.

Financial risk WarmteStad

Whether WarmteStad incurs a fine regarding heat supply failure is difficult to say. The quantity

of substandard heat supply is computed by the model; however, further research is required to

relate substandard heat supply to potential compensation that must be paid for a heat supply

failure, as the duration of heat supply failure is also a factor of importance. At maximum

capacity, the heat plant produces roughly 25 MW of thermal energy. Therefore, the worst

scenarios observed during Monte Carlo simulation (MCS), where 50+ MWh of heat production is

lost equates to two hours of maximum production of the heat plant. This occurred 59 times in the

base scenario, 3 times in the maintenance optimisation experiment and 6 times in maintenance

constraint experiment, out of 10,000 MCS runs. As a result, a heat supply failure is unlikely to

occur.

The low probability of a heat supply failure has two main reasons. First, multiple assets per

category create redundancy in the system. If one of the assets fails or undergoes maintenance,

two or more assets might be available to compensate for the production loss. Second, the gas

heaters have significantly more thermal production capacity than the HP and CHP and are the

most reliable asset and have the shortest maintenance time. As a result, the heat plant is overall,

highly reliable in terms of its ability to fulfil the heat demand.

Model assessment

The maintenance optimisation model worked according to its design requirements. However, not
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all features were demonstrated due to the input parameters attributed to WarmteStad’s case

study. For example, the costs of PM and CM were equal, resulting in the probability of failure

not being penalised with respect to the cost of PM in the optimisation of the cost function.

As a result, the constraint where lower bounds are imposed on the reliability of the assets was

leading. Though, sensitivity analysis of the input parameters can be part of future work.

Furthermore, the time frame for the maintenance optimisation was longer than the operating

time of nearly all assets, resulting in more reliable operation than was determined by the “min-

imum reliability” constraint imposing lower bounds on the reliability of the assets for a specific

time horizon.

The unit commitment algorithm functioned appropriately. Many interesting variables are

stored, allowing for in-depth analysis of the experimental results. Additional features are easily

added to research their effect on the reliability of heat supply of the heat plant.

The maintenance and reliability model allows for more indepth analysis of the O&M cost,

as the number of corrective and preventive maintenance actions is computed. When comparing

the costs of maintenance and unexpected failures in the base scenario to the fixed O&M costs

found in the literature, see Table 4.2, it is observed that the costs for the CHP with 43,106 EUR

falls in the middle of the interval 20,462-61,385 EUR. The costs of the heat pump with 31,048

EUR is slightly above the 30,000 EUR found in the literature. The costs of the gas heater are

with 703 EUR far below the 21,000 EUR found in the literature. Though, for the gas heater it is

known from the SLA that the maintenance costs for WarmteStad are are closer to the observed

703 EUR than the 21,000 found in the literature.

The costs for the CHP unit and gas heater in the maintenance optimisation and maintenance

constraint experiment are close to the costs in the base scenario. The costs for the heat pump in

the maintenance optimisation and maintenance constraint experiment is nearly double the costs

in the base scenario. Therefore, it is concluded that the maintenance costs for the CHP unit are

accurate based on the costs found in the literature. For the heat pump the costs are accurate for

the base scenario, though, for the other two experiments the costs are too high. The costs for

the gas heater are too low compared to the values found in the literature, though, it is expected

that the literature values are high with respect to the true costs for WarmteStad.

Limitations

A limitation of the maintenance optimisation model is that it is highly abstract. The failure rate

of the assets is based on a statistical distribution, and it is assumed that maintenance actions

can extend the component’s lifetime indefinitely while retaining the same failure distribution.

Furthermore, the solver used to solve the maintenance optimisation algorithm could only

handle a one year time frame in one-week intervals. It is unclear to what extent the reduced

resolution affected the results, though it is expected to be minimal.

A limitation of the unit commitment algorithm is that it is based on simulation data of the

digital twin; as a result, the production of the assets is decoupled from the production in the

digital twin. A major drawback of this approach is that the model cannot anticipate on scheduled

maintenance of an asset by increasing the thermal production shortly before maintenance. If

this anticipation is possible, the buffer can be filled before maintenance is performed; as a result,
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the amount of lost heat production is expected to be reduced further.

Implications for the digital twin

The models developed during this research allow the user to explore the reliability of WarmteS-

tad’s heat plant for different scenarios based on the digital twin simulation data. Though, as

mentioned as a limitation, the thermal production of the assets is decoupled from the thermal

production in the digital twin. For more accurate results, it is recommended to implement con-

straints on the availability of the assets in the digital twin. In that case, it becomes possible to

anticipate on maintenance by increasing the energy content of the thermal buffer beforehand,

which is a significant advantage to determining the probability of a heat supply failure. Fur-

thermore, the feature of random asset failures can be modelled using the Weibull distribution,

as is performed in this work.

The disadvantage of implementing constraints to the assets of the digital twin is that it is

significantly computationally more expensive than running the “post-processing” MCS main-

tenance and reliability model developed during this research. This allows for faster scenario

exploration with varying asset reliabilities.

Future Work

In the future:

• To increase the performance of the maintenance optimisation algorithm, a heuristic solver

such as genetic algorithm or simulated annealing could be used to solve for a longer time

horizon with shorter intervals, increasing the resolution of the optimisation problem. In

addition, downtime can be added to the maintenance optimisation algorithm to improve

its accuracy.

• The parameterisation of the model input parameters can be further improved upon for

the specific case of WarmteStad. For example, currently a fixed downtime is attributed to

the maintenance actions. This can be extended to handle varying downtime for different

maintenance actions.

• Research is required to study the effect of substandard heat supply on the power transfer

to the customers connected to the district heating network. Determine what quantity of

substandard heat supply leads to a heat supply failure.

• In addition, a quantitative risk-analysis must be performed to relate the risk of a potential

heat supply failure to a financial risk, where the cost of financial compensation of the

customers is related to a certain quantity of substandard heat supply.

• The assets are activated numerically per category, as a result, the assets that are acti-

vated last, only operate a fraction of the time with respect to the assets activated first.

Future work could investigate whether a different commitment sequence that balances the

operating time of the assets better, can improve the reliability of heat supply.

• The model can be further validated by performing sensitivity analysis on the model input

parameters. For example, on the constraint imposed on the lower bound of the assets

reliability, or by using different cost ratios for preventive and corrective maintenance.
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Conclusion

In this work, a maintenance and reliability model for the virtual heat assets in the digital

twin of WarmteStad’s heat plant was developed. Using a maintenance optimisation model, the

maintenance schedule of the assets was optimised by minimising the cost of maintenance and

unexpected failures of the assets. The most important condition for the optimisation model

was the lower bound imposed on the reliability of the assets over a given time horizon. A unit

commitment algorithm was developed to simulate the activation and deactivation of the assets.

In this algorithm, features such as random failures of the assets, compensating for production loss

and a maintenance constraint were implemented. Monte Carlo simulation was used to quantify

the reliability of the entire heat plant by iterating the unit commitment algorithm 10,000 times.

The performance of the maintenance optimisation model was tested by conducting an ex-

periment where an 80% reliability constraint was imposed on the lower bound of the reliability

of the assets over a one year time horizon. The results showed that a reduction of 85.9% in

the occurrences of substandard heat supply was achieved. This resulted from increased asset

reliability, that reduced the number of random failures during critical periods.

Furthermore, a scenario was tested where a constraint was imposed that restricted mainte-

nance of the assets during periods of high heat demand. This further reduced the number of

occurrences of true substandard heat supply by 11.5%, with respect to the experiment where the

maintenance optimisation was tested. However, besides a reduction in the occurrence of true

substandard heat supply, an increase in the high production loss was observed at 70-90 MWh,

although, this increase is presumably caused by “bad luck” in the Monte Carlo simulation.

In conclusion, the maintenance optimisation algorithm and unit commitment algorithm func-

tioned according to their design requirements. Though, future work is necessary to refine the

parameters for WarmteStad’s case study and relate the quantity of substandard heat supply to

the financial risk imposed on WarmteStad using a quantified risk-analysis.

The artefact of this research is the maintenance and reliability model that consists of the

maintenance optimisation algorithm and the unit commitment algorithm combined with Monte

Carlo simulation. The developed model allows for indepth reliability analysis of the virtual assets

in the digital twin of WarmteStad’s heat plant, based on the digital twin simulation data.
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