
Efficiency of doxastic logic bot for

serial transitive euclidean models

Bachelor’s Project Thesis

P.B.C. Barho, S3788040, p.b.c.barho@student.rug.nl,

Supervisor: prof. dr. L.C. Verbrugge

Abstract: Doxastic logic is a modal logic concerned with the beliefs of agents. The doxastic
logic KD45 is based on serial transitive euclidean models. This study is concerned with the
performance of a bot, that was designed to post newly generated tautologies of KD45 on Twitter.
The performance of the bot, depending on the complexity of the formulas, was evaluated with
regard to its run time and RAM usage. Whilst the average run time per formula of the tableau
solver was rather consistent, the RAM usage differed significantly with increasing numbers of
connectives and modal depth. The limitations, such as a time-out to avoid infinite branches,
were discussed to determine possible improvements in the implementation. These improvements
include, e.g., a pattern checker, a dynamic number of agents, as well as an adapted approach to
the data analysis.

1 Introduction

Everyone has knowledge or beliefs about some
facts. What do I believe in? What do I already know
to be true? When considering artificial agents, one
has to formalize the notions of knowledge and belief
in some way, for example, to treat them formally
in philosophical debates. What does it mean if an
agent believes something? And how can we formal-
ize the knowledge or belief of different agents?

By using the notions of necessity and possibil-
ity of modal logic, one can express the notions of
knowledge and belief of several agents using epis-
temic logic [1]. It can be used to formalize philo-
sophical dilemmas and has a wide range of appli-
cations in multi-agent systems.

This research is concerned with doxastic logic,
a modal logic that studies the belief of agents.
A Twitter bot will be designed that posts newly
generated tautologies of the doxastic logic KD45n
(where n stands for the number of agents). By ana-
lyzing the solving mechanism of the bot, its perfor-
mance depending on the complexity of the formulas
can be evaluated.

1.1 Epistemic logic

Epistemic logic is a modal logic that is concerned
with the notions of knowledge and the belief of
agents. It is based on the work of the Finnish

philosopher Hintikka, who was the first person to
reason about knowledge and belief using modal
logic in 1962 [2]. While the knowledge of an agent is
always true, belief need not be true. Belief is based
on the incomplete knowledge base of an agent. The
logic concerning belief is called doxastic logic.

The notions of necessity and possibility of modal
logic can be used in an epistemic manner to form
the modal operators of belief (Ba) and possibility
(Ma) [1]:

• The belief operator Ba stands for the belief of
agent a. The sentence B1ϕ stands for “Agent
1 believes that ϕ”.

• The possibility operator Ma describes that
agent a deems something to be possible. The
sentence ¬B1¬ϕ can be expressed by M1ϕ
which means “Agent 1 deems ϕ possible”.

To formalize the semantics of doxastic logic,
Kripke models are used. A model (M) consists out
of

• a non-empty set of states (S ),

• a truth assignment (π) for the propositional
atoms in those states,

• the accessibility relations (Ra) between the
states (of agent a).

1



A Kripke world (w) consists of a model M and
a state in S. If an accessibility relation exists for
agent a from state i to state j in world (M, i), it
means that agent a considers world (M, j) possible.
Those worlds, such as j, are epistemic alternatives
[1].

The logic KD45n is the most common logic used
for belief (where n stands for the number of agents).
It contains the following constraints on the acces-
sibility relations (for a ≤ n) [3]:

• Ra is transitive if ∀i, j, k ∈ S: (i, j) ∈ Ra and
(j, k) ∈ Ra ⇒ (i, k) ∈ Ra.

• Ra is euclidean if ∀i, j, k ∈ S: (i, j) ∈ Ra and
(i, k) ∈ Ra ⇒ (j, k) ∈ Ra.

• Ra is serial if ∀i ∈ S ∃ j ∈ S (i, j) ∈ Ra.

1.1.1 Axioms

The rules and axioms for the system KD45n are the
following [1]:

• R1:
ϕ ϕ→ ψ

ψ
(Modus ponens)

• R2:
ϕ

Baψ
(Necessitation)

• A1: All instances of propositional tautologies.

• A2: (Baϕ ∧Ba(ϕ→ ψ)) → Baψ

• D: ¬Ba(⊥)

• A4: Baϕ→ BaBaϕ

• A5: ¬Baϕ→ Ba¬Baϕ

The rules R1 and R2 denote that if their premises
are proven to be true, their conclusion is proven to
be true as well. Axiom A1 also applies to propo-
sitional tautologies involving epistemic formulas,
such as Bap → Bap. Axioms A2 denotes that the
belief of an agent a is closed under logical con-
sequence. Axiom D describes that an agent does
not believe in contradictions, indicating that the
knowledge base is not inconsistent. Moreover, ax-
iom A4 means that an agent believes that he be-
lieves something (known as positive introspection).
Lastly, axiom A5 denotes that an agent believes
that he does not believe something (known as neg-
ative introspection) [1].

1.2 Tableaux

Semantic tableaux are a method of evaluating the
validity of formulas in logic. The general idea is
that the logical formula gets detangled step-by-step
based on specific tableau rules [4]. The tableau rules
depend on the corresponding logic and the truth ta-
bles of its connectives. In the case of KD45n, they
will be described in Section 1.2.1. If an inference has
premises, the tableau starts with the main branch
containing the premises and its negated conclusion
and the state 0. In the case of this research, it only
focuses on singular formulas: The tableau starts
with a negation of the formula for which we want
to test validity and state 0. If the application of
tableau rules results in a contradiction on a branch
in the state, the branch closes. If all the branches of
a tableau close, the tableau closes and the formula
is valid. This is because the negation of the starting
formula is not satisfiable. If all tableau rules which
apply to a branch have been applied, the branch
is complete. If a tableau contains a complete and
open branch (so it did not close), the formula is
not a tautology [4].

1.2.1 Tableau rules

A tableau rule is always applied to the main con-
nective of a formula. If several tableau rules can
be applied, the order of application is not impor-
tant but can minimize the time of evaluation, as
explained in Section 2.3. The tableau rules used in
this research are based on the truth tables of each
connective as well as the axioms of KD45n [4, 1].

The tableau rules for the propositional logic op-
erators negation (¬), conjunction (∧), disjunction
(∨), implication (→) and biconditional (↔) are the
following, where i ∈ N:

¬¬A, i

A, i

(A ∧ B), i

A, i

B, i

(A ∨ B), i

A, i B, i

(A → B), i

¬A, i B, i

¬(A ∨ B), i

¬A, i

¬B, i

¬(A ∧ B), i

¬A, i ¬B, i

2



¬(A → B), i

A, i

¬B, i

(A ↔ B), i

A, i

B, i

¬A, i

¬B, i

¬(A ↔ B), i

A, i

¬B, i

¬A, i

B, i

The doxastic logic operators belief (Ba) and pos-
sibility (Ma) are the following:

BaA, i
iraj

A, j

¬BaA, i

Ma¬A, i

MaA, i

irak
A, k

¬MaA, i

Ba¬A, i

The rule for the belief operator (Ba) should be
applied to all states j, such that the relation iraj
appears on the branch. The rule for the possibility
operator (Ma) should introduce a new state k on
the branch.

1.2.2 Relational constraints

Additionally to the tableau rules for operators, the
tableau rules for the relational constraints have to
be considered.

For the serial constraint, it applies to all states i
on the tableau, that there exists another state j:

•

iraj

Here, j should be a new state. For the transitive
and euclidean constraints, respectively, the tableau
rules are as follows:

iraj
jrak

irak

iraj
irak

jrak

1.3 Twitter bots

Twitter is an online social network and microblog-
ging service that was launched in 2006, based on
the idea of Jack Dorsey [5]. Users of the platform
can publish posts (so-called tweets) which can con-
sist of a maximum of 280 characters [6].

Because of its popularity and a growing num-
ber of users, it has transformed into an information

publishing venue which can be used by anyone for
purposes such as advertisements, customer service,
campaigning, et cetera [7].

Automated programs, called bots, can use an
open application interface (API) provided by Twit-
ter, to use the platform for automated posts of any
kind. The Twitter API limits the number of tweets
a bot can post in a specific time frame to avoid
spamming, but with the limit of 300 tweets per
three hours (for the standard API [8]) it still al-
lows for great freedom for Twitter bots.

There exist several logic bots on Twitter that
post tautologies of different logics. An example of
an existing bot is @mathslogicbot, which posts tau-
tologies of propositional logic [9].

1.4 Research question

The goal of this research is to design a doxastic
logic bot that generates formulas and posts tautolo-
gies in KD45n on Twitter. The research question is
therefore:

How does a doxastic logic bot, based on se-
rial transitive euclidean models KD45n, per-
form when solving theorems with increasing
complexity?

The efficiency of the logic bot will be evaluated
based on the used time for the execution as well as
its memory usage.

2 Methodology

The code for this project contains three main com-
ponents: The formula generator, the tableau solver,
and the Twitter publisher. The formula genera-
tor generates formulas in the doxastic modal logic
KD45n, the tableau solver determines whether the
formulas are tautologies by the use of tableaux,
and the Twitter publisher posts the tautologies on
Twitter.

Each of the components will be described in
more detail in the following subsections. As each of
the components should be able to run in parallel,
the multi-threaded programming language Java

was chosen. Java supports concurrency, moreover,
it is understandable and structured through the
use of classes. This allows the code to be easily
extendable and reused for further research. The
source code of this project is available under

3



https://github.com/pbc-barho/doxlogicbot

[10].

2.1 Formulas

Formulas are stored in a binary tree structure
where its main connective is the root and the chil-
dren are either complex formulas or propositional
atoms. If the main connective is unary (e.g., ¬, Ba,
or Ma), only the left child is used. With the rest of
the connectives, both children are used. Each for-
mula also has a priority (see Table 2.1), which is
based on the amount of additional computation it
adds when its main connective is being solved. If
the main connective is a negation, the priority de-
pends on the main connective of its child (if it is not
a propositional atom). As an example, connectives
that lead to splitting the branch have the lowest pri-
ority, whilst formulas that only lead to additional
formulas on the branch have a higher priority. The
priority determines in which order the formulas get
solved by the tableau solver.

Priority Connectives
1 ¬¬
2 ¬∨, ∧, ¬ →
3 ¬Ma, Ba

4 ¬Ba, Ma

5 ¬∧, ¬ ↔, ↔, →, ∨

Table 2.1: The priorities of formulas based on
their main connective, sorted from highest pri-
ority (1) to lowest priority (5).

2.2 Formula generator

The formula generator is responsible for generating
formulas in KD45n of varying complexities, which
can then be solved by the tableau solver (as de-
scribed in Section 2.3). The general implementation
was inspired by Thalia Najjar’s Bachelor thesis of
2021 [11].

The formula generator aims to start generating
the least complex formulas and then progressively
increasing the complexity by combining all existing
formulas with the connectives. The pseudocode of
the formula generator is given in Appendix A.1.
In Table 2.2, all connectives, propositional atoms,

and agents are listed which are used for the formula
generation.

Connectives ¬, ∧, ∨, →, ↔, Ba, Ma

Propositional atoms p, q, r
Agents 1, 2, 3

Table 2.2: The connectives, propositional atoms,
and agents used by the formula generator to
generate formulas of varying complexities.

First, atomic formulas are generated, which
are stored in a ser-file. Then, the generator
goes through all the connectives and combines
the atomic formulas with each connective in
all possible combinations using each connective’s
generateFormulas method. The newly generated
formulas get stored again, and the generator re-
peats the process by going through the connectives
again. This process goes on until no new formulas
with a length of below 280 characters get added.
This character limit is based on the character limit
for Twitter posts.

The length of a formula (len) is based on its
printed length including whitespace and brackets.
Table 2.3 defines the length of a formula based on
its connectives. With each binary connective the
length gets increased by five, as it also adds white
space, as well as brackets, to the printed formula.
Because there are no outer brackets necessary when
the main connective of a formula is a binary con-
nective, they do not get printed and the length gets
deducted by two.

len(p) = 1
len(¬A) = len(A) + 1
len(A ⊗ B) = len(A) + len(B) + 5
len(BaA) = len(A) + 2
len(MaA) = len(A) + 2

Table 2.3: The length of a formula (len) based on
its connectives, where ⊗ stands for any binary
connective and p refers to a propositional atom.

The modal depth of a formula (md) is used to
describe the nesting of the modal operators of a
formula. It is defined based on the deepest nested
modal operators in a formula, according to Table
2.4 [12].

As the logic bot should not post the same formula
twice, duplicated formulas have to be avoided. For

4

https://github.com/pbc-barho/doxlogicbot


md(p) = 0
md(¬A) = md(A)
md(A ⊗ B) = max(md(A), md(B))
md(BaA) = md(A) + 1
md(MaA) = md(A) + 1

Table 2.4: The modal depth of a formula (md)
based on its connectives, where ⊗ stands for any
binary connective and p refers to a propositional
atom [12].

this, two extra steps were implemented. Firstly, be-
fore the generated formulas get stored, the genera-
tor checks whether the same formula already exists
in the ser-file. Secondly, formulas with symmet-
ric connectives, such as ∧, ∨, and ↔, are logically
equivalent if their right and left formulas are ex-
changed. Therefore, the formula generation is lim-
ited such that formulas with these symmetric con-
nectives that are logically equivalent (e.g., p ∧ q
and q ∧ p) are not both generated.

2.3 Tableau solver

Once the formula generator has generated the first
formulas, the tableau solver chooses a random for-
mula of the file and begins evaluating it. Since the
generated formulas are reused to create formulas
of higher complexities, a copy of the formula file is
used, which the tableau solver accesses. This way, a
formula can be removed from the file once it is eval-
uated, without influencing the formula generator in
any way.

The tableau solver negates the chosen formula
and forms a tableau with it using a Tableau class.
It then solves the tableau depth-first by evaluating
each branch after the other. The solving mechanism
of a branch is described in Section 2.3.1.

The state of a formula is stored as an integer
in the tableauFormula-class. The initial formula
starts in state 0, and each added state on the
tableau increases the integer by one. Agents of a
formula are not stored as natural numbers (as ex-
plained in Section 1), but as instances of an agent-
class. This way, the agent-specific relations between
states can be stored in the corresponding agent-
class itself. Each instance of an agent has a name,
that corresponds to a natural number (the formula
generator is limited to the three agents, 1, 2, and
3, as described in Section 2.2).

If a branch is open and complete, the solver stops
as the formula is not a tautology and the solver
chooses a new formula to solve. If the branch is
closed, it begins to solve the next branch. The
branches are stored in a branches list, such that
the solver can easily remove one and begin solv-
ing the next one. Once the branches list is empty,
the solver stops, and the formula gets saved in a
tautologies file, since an empty list means that all
the branches are closed and therefore the tableau
is closed.

This tautologies file can be accessed by the
Twitter publisher which is described in Section 2.4.

2.3.1 Branch solver

Before the branch gets solved, a timer is started.
This timer stops the solving of the branch after ten
seconds to avoid infinite branches. Once a poten-
tially infinite branch is found, the tableau solver
stops as the formula is probably not a tautology.
This might lead to a wrong conclusion if the solving
of the branch gets stopped even though the branch
is not infinite, but it avoids the solver to get stuck
in a loop.

The solving of a branch runs in a loop until the
branch is either stopped by the timer, closed, or
open and complete. The pseudocode of the branch
solver can be found in Appendix A.2. Each loop
starts by pulling the formula with the highest pri-
ority of the leftOverFormulas priority queue. This
queue sorts the formulas based on their priority
as described in Section 2.1. Therefore, always one
of the formulas with the highest priority gets de-
queued first.

The chosen formula (called currentFormula)
gets evaluated using its tableau rule by calling
its method applyRule. Afterward, the method
isClosed checks whether the tableau is closed
by comparing whether a formula and its negation
exist in the same state on the branch. This is
done by using the negatedFormulasOnBranch and
the formulasOnBranch lists, that contain all the
negated and non-negated formulas on the branch
(including their states), respectively. The lists also
contain the complex formulas on the branch, such
that also any complex formula and its negation lead
to the closing of the branch.

The application of a tableau rule might
lead to additional formulas to be added to

5



the leftOverFormulas, formulasOnBranch, or
negatedFormulasOnBranch lists. If a tableau rule
leads to a splitting of the branch, a copy of the cur-
rent branch is added to the branches list of the
tableau, and each part of the resulting new formu-
las is added to the current branch and the copied
branch, respectively.

The agent-specific accessibility relations get
checked by using an agents list and adding new
accessibility relations to them based on the con-
straints of KD45n (seriality, transitivity, and eu-
clideanicity).

If a tableau rule of a formula can be applied
several times, such as the rule for the belief oper-
ator, the formula gets stored in an infFormulas

list. In every iteration of the solver-loop, the
branch solver checks whether any of the formulas
in the infFormulas list can be applied (e.g., when
there were new relations added to the branch).
If that is the case, they get applied using the
applyNewRelations method.

After these steps, the loop starts again by choos-
ing a new formula from the leftOverFormulas pri-
ority queue.

2.4 Twitter publisher

The Twitter publisher is responsible for posting the
tautologies on Twitter, as the name suggests. It
uses the Javalibrary Twitter4J, which can access
the Twitter application programming interface and
is able to automatically post a tautology every two
hours on the Twitter account named “doxlogicbot”
[13].

To do so, it accesses the tautologies file con-
taining the tautologies which were added by the
tableau solver. It chooses the first tautology of the
file, removes it, and posts it using the getString

method. Because the tableau solver solves the gen-
erated formulas in a random order, the tautologies
which will be posted will be in a random order as
well. After posting, the Twitter publisher sleeps for
three hours using the sleep method of the Thread

library.
The Twitter publisher runs in parallel with the

formula generator and the tableau solver and posts
the tautologies independently of them with the use
of threads. The code runs indefinitely on a server
to ensure that it will eventually post all the tau-
tologies of up to 280 characters.

2.5 Data acquisition

To answer the research question (see Section 1.4),
the performance of the logic bot is evaluated for
solving theorems of increasing complexity. This is
done in two ways: By timing the execution of the
tableau solver and by determining the memory us-
age of the solver. Both measurements will be an-
alyzed per complexity of formulas, which is mea-
sured by the modal depth and the number of con-
nectives.

The measurements are conducted on a system
with a 2,3 GHz Quad-Core Intel Core i7 processor
with 16 GB DDR4 memory operating at 3733 MHz.
These specifications have to be taken into account
when analyzing the obtained data.

As mentioned before, the tableau solver’s run
time as well as its RAM usage are analyzed per
complexity of the formulas. Therefore, one has to
take the percentage of tautologies of the total num-
ber of formulas per complexity into account. This
percentage will be measured by counting the num-
ber of generated formulas, as well as the number of
tautologies per complexity.

As the number of generated formulas per com-
plexity grows exponentially, the measurements for
all the formulas of higher complexities would take
several days, which is not realizable on a personal
computer. Therefore, a specific number of formu-
las, that are randomly generated, is analyzed. The
specific number of analyzed formulas can be seen
in Tables 2.5 and 2.6.

Nr. of connectives Nr. of formulas
1 48
2 286
3 286
4 286
5 286
6 286

Table 2.5: The number of tested formulas per
complexity categorized by the formulas number
of connectives.

3 Results

The performance of the tableau solver was evalu-
ated as mentioned previously in Section 2. The raw

6



Modal depth Nr. of formulas
0 184
1 489
2 439
3 241
4 98
5 27
6 3

Table 2.6: The number of tested formulas per
complexity categorized by the formulas modal
depth.

data and the code used to evaluate the performance
can be found on the GitHub repository containing
the source code [10].

The average values and standard deviations for
the run time of the tableau solver per formula com-
plexity as well as the RAM usage can be found in
Appendix B. Tables B.1 and B.2 contain the data
per number of connectives for tautologies and non-
tautologies, respectively. Tables B.3 and B.4 con-
tain the data per modal depth for tautologies and
non-tautologies, respectively.

As the RAM usage should be analyzed per for-
mula complexity, the RAM usage for solving propo-
sitional atoms is used as a baseline. This baseline
indicates the minimum RAM usage that is required
for the tableau solver, without having to apply any
tableau rules. Therefore, the difference between the
RAM usage for solving propositional atoms and the
RAM usage for solving formulas of higher complex-
ities is given in the tables as well.

The tableau solver was stopped after a maximum
run time of ten seconds, as mentioned in Section
2.3.1. Therefore, any data points that exceeded a
run time of ten seconds were excluded from the
averages, as they are outliers. The data points per
complexity were plotted in Figures 3.1 and 3.3 to
visualize any outliers.

The outliers that are visible in Figures 3.1 and
3.3 were removed using the interquartile range of
the data set. How many of the tested formulas per
formula complexity were outliers is shown in Ta-
bles B.5 and B.6. The code that was used to deter-
mine the outliers can be found on GitHub [10]. As
the modal depth of 3 only contains 14 data points,
the data points that were considered outliers during
the analysis of the interquartile range of the num-

ber of connectives were removed additionally. The
data sets with removed data points can be seen in
Figures 3.2 and 3.4.

The number of data points per complexity and
whether it is a tautology can be seen in Table B.7
in Appendix B.

Furthermore, the average observed run time in-
cluding its standard deviation was plotted per for-
mula complexity, which can be seen in Figures 3.5
and 3.6, for the number of connectives and modal
depth, respectively. Similarly, the average RAM us-
age was plotted per formula complexity, which can
be seen in Figures 3.7 and 3.8, for the number of
connectives and modal depth, respectively.

It can be observed that the average run time
per number of connectives stays rather consistent
for each formula complexity when taking the stan-
dard deviation into account. The average run time
and its standard deviation increase for the formulas
with six connectives as compared to lower complex-
ities. The RAM usage per number of connectives
first increases and then decreases slightly from the
complexities of two to four connectives. The stan-
dard deviation of the RAM usage per number of
connectives stays approximately the same.

Furthermore, the standard deviations of the
run time of formulas that are not tautologies are
slightly bigger than those of the formulas that are
tautologies. Lastly, the number of outliers (as can
be seen in Table B.5) increases drastically with an
increasing number of connectives. Therefore, the
averages of the run time, as well as the RAM us-
age, are taken from fewer formulas (with increasing
complexity).

When considering the average run time per
modal depth, it is visible that the run time stays
around 7 ms. The standard deviation of the run
time for non-tautologies is greater than the stan-
dard deviation for tautologies. The standard de-
viation of the run time for a modal depth of 3 is
drastically smaller than for the other modal depths.
The standard deviations per modal depth are larger
than the standard deviations per number of connec-
tives, indicating great variation between the data
points (as can be seen in Figure 3.6). The data
with a modal depth of 5 or 6 was not plotted, as
the complete data sets timed out (see Table B.6).

The average RAM usage per modal depth stays
consistent at around 450 kB. Its standard deviation
decreases per modal depth until a modal depth of 3.

7



Figure 3.1: Scatter plot of the run time per for-
mula complexity (measured by the number of
connectives).

Figure 3.2: Scatter plot of the run time per for-
mula complexity (measured by the number of
connectives) with removed outliers.

Figure 3.3: Scatter plot of the run time per
formula complexity (measured by the modal
depth).

Figure 3.4: Scatter plot of the run time per
formula complexity (measured by the modal
depth) with removed outliers.

8



Figure 3.5: Average run time in ms per num-
ber of connectives with its standard deviation,
plotted for tautologies and non-tautologies.

Figure 3.6: Average run time in ms per modal
depth with its standard deviation, plotted for
tautologies and non-tautologies.

Figure 3.7: Average RAM usage in kB per num-
ber of connectives with its standard deviation,
plotted for tautologies and non-tautologies.

Figure 3.8: Average RAM usage in kB per modal
depth with its standard deviation, plotted for
tautologies and non-tautologies.

9



Then it increases slightly again for a modal depth
of 4 (as can be seen in Figure 3.8). Similarly to the
run time, the standard deviation of the RAM usage
per modal depth is slightly smaller for tautologies
than for non-tautologies.

Generally, the number of data points per com-
plexity for tautologies is significantly less than that
for non-tautologies, as can be seen in Table B.7.

3.1 Twitter Bot

The Twitter bot can be observed on the Twitter
account named “doxlogicbot” [7]. An example of a
tweet can be seen in Figure C.1 in Appendix C. The
GitHub repository that contains the source code
also contains the csv-files that contain the raw data
of the randomly generated formulas [10].

4 Discussion

This project aimed to design a doxastic logic bot
based on serial transitive euclidean models KD45n
and to analyze how it performs when checking
the validity of constructed formulas with increas-
ing complexity. The complexity of the formulas was
determined in two different ways: as the number of
connectives and as the modal depth. The efficiency
of the bot was evaluated based on its run time, as
well as its memory usage.

4.1 Run time analysis

When the formulas were analyzed per number of
connectives, the average run time was consistent up
to four connectives and increased for more connec-
tives (see Figure 3.5). The standard deviation for
tautologies was slightly smaller than the standard
deviation for non-tautologies and they increased
from four connectives upwards. This could be ex-
plained by the increasing number of rule applica-
tions that are necessary to solve the tableaux of
formulas with higher complexities. However, con-
sidering the consistent average run time, the solver
seems to be able to solve formulas with different
numbers of connectives rather consistently.

When looking at the analysis of the formulas per
modal depth, it is visible that the run time is vary-
ing a lot more in comparison to the number of con-
nectives (see Figure 3.6). This might be based on

the smaller data sets for modal depths of three to
four. When looking at Table B.7, it is visible that
there are only very few formulas for those greater
modal depths, so the run time of one formula affects
the average run time for that complexity tremen-
dously. This would also explain the decreasing stan-
dard deviations for the greater modal depths.

Generally, the standard deviations are greater
per modal depth than per number of connectives.
This could be related to the application of the se-
riality, transitivity and euclideanicity restrictions.
If many restrictions have to be applied or many
agents are included in the formula, the solver needs
a lot more time, which is in contrast with a formula
that closes early.

4.2 RAM usage analysis

The RAM usage first increased significantly from
one to two connectives and then decreased slightly
again (see Figure 3.7). This steep increase in RAM
usage can be linked to the use of formula applica-
tions. One connective only requires the application
of one rule, where the literals can directly be used
to arrive at a conclusion. For two connectives up-
wards, the intermediate formulas have to be solved,
which might explain the increase in RAM usage.

That the RAM usage decreases again slightly
from three connectives onwards could be due to the
number of formulas that were considered outliers.
In Table B.5 it is visible that the number of for-
mulas with two or three connectives that were an-
alyzed was significantly higher than with a higher
number of connectives. Therefore, it is likely that
the formulas that would have had a greater run
time (which would result in a higher average run
time) were timed out due to the time limit. Fur-
ther research would be necessary to exclude that
possibility.

The RAM usage analyzed per modal depth (see
Figure 3.8) is varying the most out of the mea-
surements. A modal depth of zero can include any
number of connectives (without modal operators),
so that explains the large standard deviation. A
modal depth of zero to one contains the low RAM
usage that is measured for one connective (see Fig-
ure 3.7), so this increases the standard deviation.
Furthermore, the very small standard deviation of
the RAM usage for formulas with a modal depth of
three to four can, again, be explained by the small

10



number of formulas with that complexity (see Table
B.7).

4.3 General analysis

The small number of data points for some complex-
ities can be explained by the number of generated
formulas and the outlier detection. The number of
generated formulas per number of connectives was
286, which resulted in an uneven distribution of
the numbers of formulas generated per modal depth
(see Table 2.5 and 2.6).

The time out that was implemented to avoid in-
finite branches mostly affected formulas of greater
complexities, especially greater modal depths.
Therefore, the number of tested formulas decreased
significantly (see Tables B.5 and B.6)). That formu-
las with greater modal depths timed out more often
might not necessarily mean that they always led to
infinite branches, but the checking and application
of restrictions can take a long time if many worlds
and agents are involved.

Additionally, the reduced number of formulas af-
fected the outlier detection using the interquartile
range. If there are fewer data points, the single mea-
surements affect the range more, which leads to the
exclusion of fewer formulas. This is what happened
for the data points of a modal depth of three (see
Figure 3.3). They were considered outliers when
they were analyzed per number of connectives (see
Figures 3.1 and 3.2), but not when they were an-
alyzed per modal depth. To allow for a coherent
analysis they were still excluded (as described in
Section 3), which led to Figure 3.4.

The analysis for the measurements of tautolo-
gies is based on fewer formulas than those that are
not tautologies (see Table B.7). This might lead
to an inaccurate impression of the performance
of the tableau solver when comparing tautologies
with non-tautologies. Therefore, the difference in
the standard deviations of the run time and RAM
usage between the tautologies and non-tautologies
could be misleading.

Lastly, the formula generator was bound to us-
ing maximally three propositional atoms and three
agents. Therefore, many formulas, especially those
of higher complexities, could not be generated and
analyzed. Similarly, the generation of symmetric
formulas that are logically equivalent was restricted
(as described in Section 2.2) but not completely

avoided (e.g., p ∧ (p ∧ q) and q ∧ (p ∧ p) are still
included).

Due to the exponential growth of generated for-
mulas, the execution of the formula generator re-
quires to load an increasing number of formu-
las with lower complexities to generate new ones.
Whilst the performance of the formula generator
was not evaluated as a part of this research, it did
result in issues regarding the memory limitations of
the local device and server that the code was run
on. A maximal heap memory use was defined to
avoid any execution errors, but this might affect the
run time of formulas with higher complexities (that
were not evaluated as part of this paper). Whilst
this does not form an issue for the bot, as the num-
ber of tautologies of lower complexities is enough
to let the bot run for years, it has to be taken into
account. Therefore, due to the length of the formu-
las that were evaluated as part of this research, the
implemented character limit for the Twitter posts
was not relevant.

4.4 Possible improvements

When taking all of these aspects into account, sev-
eral improvements of the project could be imple-
mented. Firstly, the data analysis could take into
account the number of formulas per complexity
that time out, and include a more even distribution
of formulas that are used for the analysis. This way,
the averages and standard distributions per com-
plexity would be more comparable to each other
as the different percentages of tautologies and the
number of formulas per complexity affected the er-
ror analysis of the data.

Secondly, a dynamic number of agents and
propositional atoms could be used, as the current
implementation of the formula generator excludes
any formulas with more than three agents or propo-
sitional atoms. If the number of agents and proposi-
tional atoms would increase according to the num-
ber of connectives, all possible formulas could be
generated. A similar approach was used for another
logic bot [14].

With increasing complexities (especially when
measured by the modal depth) an increasing num-
ber of formulas timed out due to the ten seconds
time limit. Whilst the time limit did avoid solv-
ing infinite branches, it also stopped the solving
of formulas that might have been solvable. Espe-

11



cially formulas with greater modal depths timed
out due to the extensive checking of applicable re-
strictions in the code. Therefore, avoiding a timer
and implementing another approach to avoid infi-
nite branches would be beneficial. One possibility
would be to use a pattern checker to detect any
repeating patterns whilst solving a branch. In the
case of an infinite branch, the repeating pattern of
applied rules could be detected and the solver could
be stopped.

Other improvements that are worth mentioning
are reusing the results of previously solved for-
mulas, using intermediate strategies regarding the
application of restrictions (replicating the solving
strategies of human logicians), and optimizing the
code through, e.g., using lists instead of serialized
files, or using a different data structure than a tree
to store the tableaux. These implementations could
improve both the memory usage, as well as the run
time of the bot, depending on their implementation
(which requires further research).

4.5 Further research

One possibility for further research would be to
implement another solving strategy, such as a
breadth-first search instead of a depth-first search.
By using threads several branches could be evalu-
ated simultaneously. This way, the solver could stop
after finding one open and complete branch, which
might result in faster solving times per formula.

Furthermore, the notion of common beliefs or im-
plicit beliefs could be added to the system. Espe-
cially for greater numbers of agents it would be
interesting to see how this implementation would
affect the logic bot. The beliefs of several agents
could be combined and result in new beliefs, even if
no agent individually believes that fact [15]. An ex-
pansion of this logic bot with other epistemic logic
subsystems, e.g., S5, would be a further possibility
that could be explored.

Lastly, a comparison to the performance of other
logic bots would be an interesting addition to
the research. Especially comparing different solving
strategies and programming languages could pro-
vide an interesting insight into the dependence of
the performance of tableau solvers and logic bots
in general.

5 Conclusion

This project consisted of implementing a doxastic
logic bot based on serial transitive euclidean models
KD45n and analyzing its performance when check-
ing the validity of constructed formulas with in-
creasing complexity. The development of the dox-
astic logic bot was succesful, but its performance
partly depends on the complexity of the formu-
las, especially when considering the modal depths.
However, some complications influenced the per-
formance and analysis of the bot, such as the im-
plemented time limit to avoid infinite branches as
well as the limited number of formulas used for the
analysis. Several aspects could be improved upon
for further research such as using a pattern checker
to detect infinite branches, using different solving
strategies, and using a dynamic number of agents
and propositional atoms to generate formulas.

References

[1] J. Meyer and W. van der Hoek, Epistemic
Logic for AI and Computer Science, ser.
Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2004.
[Online]. Available: https://books.google.com.
pa/books?id=WgXyLRyEO8AC

[2] J. Hintikka, Knowledge and Belief: An In-
troduction to the Logic of the Two Notions.
Ithaca: Cornell University Press, 1962.

[3] J. Y. Halpern, “The relationship between
knowledge, belief, and certainty,” Annals of
Mathematics and Artificial Intelligence, vol. 4,
no. 3-4, p. 301–322, 1991.

[4] G. Priest, An Introduction to Non-Classical
Logic: From If to Is. Cambridge University
Press, 2008.

[5] J. Burgess and N. K. Baym, Twitter: A
Biography. New York University Press, 2020.
[Online]. Available: https://doi.org/10.18574/
nyu/9781479841806.001.0001

[6] A. Rosen, “Tweeting made easier,”
Nov 2017. [Online]. Available: https:
//blog.twitter.com/official/en us/topics/
product/2017/tweetingmadeeasier.html

12

https://books.google.com.pa/books?id=WgXyLRyEO8AC
https://books.google.com.pa/books?id=WgXyLRyEO8AC
https://doi.org/10.18574/nyu/9781479841806.001.0001
https://doi.org/10.18574/nyu/9781479841806.001.0001
https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html
https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html
https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html


[7] Z. Chu, S. Gianvecchio, H. Wang, and S. Ja-
jodia, “Detecting automation of twitter ac-
counts: Are you a human, bot, or cyborg?” De-
pendable and Secure Computing, IEEE Trans-
actions on, vol. 9, pp. 811–824, Nov 2012.

[8] Twitter, “Rate limits: Standard v1.1.”
[Online]. Available: https://developer.twitter.
com/en/docs/twitter-api/v1/rate-limits

[9] M. Scroggs, “Logic Bot,” Nov 2014. [Online].
Available: https://twitter.com/mathslogicbot

[10] P. Barho, “Github repository ’doxlogicbot’,”
2021. [Online]. Available: https://github.com/
pbc-barho/doxlogicbot

[11] T. Najjar, “Temporal logic bot with reflexivity
and transitivity as constraints,” BSc project,
University of Groningen, Jul 2021.

[12] L. A. Nguyen, “Constructing the least mod-
els for positive modal logic programs,” Funda-
menta Informaticae, vol. 42, no. 1, p. 29–60,
2000.

[13] P. Barho, “KD45 Doxastic Logic Bot,”
2022. [Online]. Available: https://twitter.
com/doxlogicbot

[14] G. A. Zumel, “Intuitionistic logic bot,” BSc
project, University of Groningen, Jul 2021.

[15] R. Verbrugge, “BOK Project, Unit 2,” Logics
for Artificial Intelligence, 2019.

13

https://developer.twitter.com/en/docs/twitter-api/v1/rate-limits
https://developer.twitter.com/en/docs/twitter-api/v1/rate-limits
https://twitter.com/mathslogicbot
https://github.com/pbc-barho/doxlogicbot
https://github.com/pbc-barho/doxlogicbot
https://twitter.com/doxlogicbot
https://twitter.com/doxlogicbot


A Pseudocode

Algorithm A.1: Formula generator main algorithm

initializeConnectives();
addAtoms();
running ← true;
count ← 0;
while running do

oldSize ← generatedFormulas.size();
addFormulas();
count ← count + 1 ;
if count is 1 then

tableauSolver .start();
end
if generatedFormulas.size() is oldSize then

break ; /* All new formulas are above 280 characters */

end

end

Algorithm A.2: Solving algorithm for branches

Result: Branch is closed
leftOverFormulas.add(negatedFormula);
agents ← negatedFormula.getAgents();
worlds ← negatedFormula.getStatus();
startTime ← System.currentTimeMillis();
while leftOverFormulas is not empty and elapsedTime < 10 seconds do

currentFormula ← leftOverFormulas.poll();
if currentFormula.getRoot() is not leaf then

currentFormula.getRoot().applyRule();
else

formulasOnBranch.add(currentFormula) ; /* The formula is atomic */

end
if isClosed() then

return true ; /* The branch is closed */

end
checkRelationsPerAgent();
foreach infFormula ∈ infFormulas do

infFormula.applyNewRelations()
end

end
return leftOverFormulas is not empty ; /* The branch is open & complete or infinite */

14



B Tables

Nr. of connectives Run time [ms] RAM usage [MB] RAM usage difference [kB]
1 5.7 ± 0.8 3.14 ± 0.00 76.5 ± 0.0
2 7.3 ± 1.2 3.61 ± 0.00 548.1 ± 0.2
3 6.9 ± 0.7 3.57 ± 0.07 508.0 ± 71.6
4 6.7 ± 1.1 3.48 ± 0.04 417.4 ± 35.0
5 7.3 ± 2.1 3.48 ± 0.04 417.3 ± 36.2
6 10.4 ± 5.5 3.54 ± 0.04 431.5 ± 43.2

Table B.1: The average run time and RAM usage per number of connectives of the tableau solver
using depth-first search for tautologies.

Nr. of connectives Run time [ms] RAM usage [MB] RAM usage difference [kB]
0 8.3 ± 7.3 3.06 ± 0.01 -
1 7.4 ± 2.2 3.15 ± 0.01 85.3 ± 10.6
2 6.9 ± 1.1 3.61 ± 0.05 543.5 ± 45.9
3 7.3 ± 1.7 3.57 ± 0.07 504.3 ± 72.4
4 7.2 ± 1.3 3.48 ± 0.04 412.4 ± 32.8
5 7.1 ± 2.5 3.48 ± 0.05 413.1 ± 50.6
6 8.5 ± 5.2 3.52 ± 0.02 460.8 ± 19.0

Table B.2: The average run time and RAM usage per number of connectives of the tableau solver
using depth-first search for non-tautologies.

Modal depth Run time [ms] RAM usage [MB] RAM usage difference [kB]
0 6.6 ± 0.6 3.50 ± 0.19 436.3 ± 193.9
1 7.3 ± 0.9 3.56 ± 0.07 492.6 ± 69.2
2 6.6 ± 0.9 3.49 ± 0.04 422.9 ± 35.1
3 7.8 ± 0.4 3.52 ± 0.01 461.3 ± 7.4

Table B.3: The average run time and RAM usage per modal depth of the tableau solver using
depth-first search for tautologies.

15



Modal depth Run time [ms] RAM usage [MB] RAM usage difference [kB]
0 6.6 ± 0.8 3.50 ± 0.17 441.5 ± 173.0
1 7.0 ± 0.8 3.53 ± 0.11 466.6 ± 106.1
2 7.1 ± 1.0 3.53 ± 0.06 463.0 ± 63.4
3 6.6 ± 1.5 3.45 ± 0.01 386.2 ± 1.3
4 7.2 ± 0.1 3.53 ± 0.01 463.0 ± 11.6

Table B.4: The average run time and RAM usage per modal depth of the tableau solver using
depth-first search for non-tautologies.

Nr. of connectives Nr. of formulas Outliers from the time limit Outliers based on IQR
1 48 0 2
2 286 68 10
3 286 132 21
4 286 160 21
5 286 197 9
6 286 212 10

Table B.5: The number of formulas per complexity (measured by the number of connectives), the
number of formulas that were removed as they reached the time limit, and the number of formulas
that were removed based on being outliers.

Modal depth Nr. of formulas Outliers from the time limit Outliers based on IQR
0 184 0 13
1 489 136 25
2 439 280 20
3 241 227 10*
4 98 96 0
5 27 27 0
6 3 3 0

Table B.6: The number of formulas per complexity (measured by the modal depth), the number
of formulas that were removed as they reached the time limit, and the number of formulas that
were removed based on being outliers. *These outliers were removed based on the IQR analysis
in Table B.5.

16



Complexity Nr. of formulas Nr. of tautologies
1 46 6

Nr. of 2 208 25
connectives 3 133 18

4 105 11
5 80 12
6 64 8
0 171 24

Modal depth 1 328 40
2 139 15
3 4 2
4 2 0

Table B.7: The number of formulas per complexity (measured by the modal depth), the number
of formulas that were removed as they reached the time limit, and the number of formulas that
were removed based on being outliers.

C Figures

Figure C.1: Screenshot of an example tweet from the Twitter bot [13].

17


	Introduction
	Epistemic logic
	Axioms

	Tableaux
	Tableau rules
	Relational constraints

	Twitter bots
	Research question

	Methodology
	Formulas
	Formula generator
	Tableau solver
	Branch solver

	Twitter publisher
	Data acquisition

	Results
	Twitter Bot

	Discussion
	Run time analysis
	RAM usage analysis
	General analysis
	Possible improvements
	Further research

	Conclusion
	Pseudocode
	Tables
	Figures

