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abstract
Monodromy is a concept which arises in various areas of mathematics, including
integrable systems and isolated critical points of holomorphic functions. It is con-
cerned with the behavior of functions or geometric objects as they are moved around
in space, specifically a singularity for our purposes. We will be looking more in the
direction of Liouville theorem for integral systems and Picard-Lefschetz formula
for holomorphic functions. Monodromy comes into play for Liouville theorem as
it is an obstruction to the "global" version of this theorem. The Picard-Lefschetz
formula can be used to explicitly describe monodromy around an isolated critical
point of a holomorphic function. In the end we describe how these two notions of
monodromy are related.
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1 introduction
Monodromy is a concept that arises in various areas of mathematics, including
algebraic geometry, complex analysis, and topology. At its core, monodromy is
concerned with the behavior of functions or geometric objects as they are moved
around in space. Specifically, it studies the transformations that occur when a path
is taken around a singularity or other geometric feature of an object. Monodromy
has deep connections to many other areas of mathematics, including group theory,
differential equations, and algebraic topology, and has important applications in
physics, engineering, and computer science. In this way, monodromy plays a crit-
ical role in understanding the structure and behavior of complex systems across a
wide range of fields.

We will be looking more the direction of integral systems and holomorphic func-
tions. Specifically, the Liouville theorem and Picard-Lefschetz theory.

Integrable systems are a class of mathematical models that arise in many areas of
physics and mathematics. These systems are characterized by the existence of a
large number of conserved quantities, which allow for their solutions to be written
down explicitly in terms of elementary functions. The study of integrable systems
is closely related to monodromy, as the latter plays a critical role in understanding
the behavior of solutions of these systems. Specifically, the monodromy properties
of an integrable system are related to the symmetries of its solutions, which in turn
are related to the algebraic and geometric properties of the system itself.

Picard–Lefschetz theory is a powerful tool in algebraic topology that is intimately
related to the study of monodromy. Specifically, it concerns the behavior of certain
types of singularities under deformation, and provides a way to compute topologi-
cal invariants of algebraic varieties using the monodromy action. Picard–Lefschetz
theory provides a way to overcome the difficulties of non-isolated critical values
and non-smooth level sets by studying the topology of a complex algebraic variety
V near the critical values of a holomorphic function f on V using the monodromy
action. Specifically, it shows that the topology of the level sets of f changes in a
predictable way as we move around the critical values of f in the complex plane.
This change is related to the monodromy action of the vanishing cycles associated
with the critical points of f.
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2 integrable systems
In this section we will be working toward proving the Liouville Theorem. We will
start with some definitions we will need to understand what the theorem is about.
All definitions and theorems from this section can be found in [1].

Definition 1. Symplectic manifold
A symplectic manifold is a manifold which is endowed with a symplectic struc-

ture. This symplectic structure is a 2-form ω with the following 2 properties:

1. dω = 0, meaning that ω is closed

2. ω is non-degenerate.

Furthermore, a symplectic manifold M has the following properties:

1. M is even-dimensional

2. M is orientable

Being even-dimensional follows from ω being non-degenerate. We can define the
orientation by the symplectic volume form which is of maximal rank and vanishes
nowhere. Being of positive orientation corresponds to a positive volume form.

Definition 2. Skew-symmetric gradient
Let M be a symplectic manifold and let H be a smooth function on M. Then the

Skew-symmetric gradient, or sgrad H is defined by:

ω(v, sgrad H) = v(H)

With v being an arbitrary tangent vector on M

Next we will define the Poisson brackets and some of their properties. These will
be relevant for the proof of the Liouville Theorem.

Definition 3. Poisson brackets
Let f,g be smooth functions on a symplectic manifold M. We define {f,g} :=

ω(sgrad f, sgrad g) = (sgrad f)(g)

Now for some properties of the Poisson bracket

Proposition 1. Properties of the Poisson bracket
The following are some properties of the Poisson bracket, not all of them will be

used.

1) Bilinearity: {af + bg, h} = a{f, h}+b{g,h}, {h,af + bg} = a{h, f}+b{h,g}

2) Skew-symmetric: {f,g} = -{g,f}

3) Jacobi’s identity: {g, {f, h}} + {h, {g, f}}+ {f, {h, g}}

4) The Leibniz rule: {fg, h} = f{g, h} + g{f, h}

5) Homeomorphism between the Lie algebra and smooth vector fields:
sgrad {f,g} = [sgrad f, sgrad g]

6) Function f is a first integral of Hamiltonian vector field v = sgrad H ⇐⇒
{f,H} = 0

We will not give a full proof of all of the properties, but we will give some direc-
tions to how they are proven. A full proof can be found in [1].
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Proof. The bilinearity, skew-symmetry and first integral property of the Poisson
bracket are evident from the definition of the Poison bracket.

Jacobi’s identity follows from the Cartan formula:

sω(ξ,η, ζ) = ξω(η, ζ) −ω([ξ,η], ζ) + (cyclic permutation)

where ω is an arbitrary 2-form, and ξ,η, ζ are vector fields. In the case that ω is a
symplectic structure and ξ = sgrad f , η = sgrad g and ζ = sgrad h. This can be
written into the Jacobi’s identity.

The Leibniz rule follows from the similar rule for the skew-symmetric gradient:

sgrad fg = fsgrad g+ gsgrad f

For property 5, we can differentiate a function h along the vector field sgrad {f,g}
to obtain:

sgrad {f,g}(h) = {{f,g},h}

= {f, {g,h}}− {g, {f,h}}

= sgrad f(sgrad g(h)) − sgrad g(sgrad f(h))

= [sgrad f, sgrad g](h)

This covered all properties.

The next two definitions are about manifolds and their (Liouville) integrability.

Definition 4. Smooth submanifolds
For (M2n,ω) a symplectic manifold, N ⊂ M is called a symplectic submanifold

if the restriction of ω onto N is non-degenerate. N ⊂M is called Lagrangian if dim
N = n and the restriction of ω onto N vanishes identically.

Definition 5. Liouville integrable
Let M2n be a smooth symplectic manifold, let H be a smooth function and let

v = sgrad H be a Hamiltonian system. A Hamiltonian system is called Liouville
integrable if smooth functions f1, . . . , fn exist such that the following 4 statements
hold:

1) f1, . . . , fn are integrals of v

2) f1, . . . , fn are linearly independent on M almost anywhere

3) For any i, j ∈ 1, 2, . . . n, we have {fi, fj} = 0

4) The vector fields sgrad fi are complete

The last definition definition we need, before tackling the main theorem is about
Liouville foliation.

Definition 6. Liouville foliation
The Liouville foliation corresponding to integrable system v = sgrad H is a de-

composition of the manifold M2n into connected components of common level
surfaces of the integrals f1, . . . , fn. These integrals f1, . . . , fn are preserved by the
flow v, therefore every leaf is an invariant surface.

Liouville foliation consists of two types of leaves, regular leaves and singular
leaves. The latter fills a set of zero measure. Now that we have all the pieces, we
can start presenting the main theorem of this section. This Theorem describes the
Liouville foliation near regular leaves.
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Theorem 1. J. Liouville
Let v = sgrad H be a Liouville integrable Hamiltonian system on M2n, and let Tξ be a

regular level surface of the integrals f1, . . . , fn. Then

1) Tξ is a smooth Lagrangian submanifold that is invariant with respect to the flow
v = sgrad H and sgrad f1, . . . , sgrad fn;

2) if Tξ is connected and compact, then Tξ is diffeomorphic to the n−dimensional torus
Tn (this torus is called the Liouville torus);

3) the Liouville foliation is trivial in some neighborhood of the Liouville torus, that is, a
neighborhood U of the torus Tξ is the direct product of the torus Tn and the disc Dn;

4) in the neighborhoodU = Tn×Dn there exists a coordinate system s1, . . . , sn,φ1, . . . ,φn
(which is called the action-angle variables), where s1, . . . , sn are coordinates on the
disc Dn and φ1, . . . ,φn are standard angle coordinates on the torus, such that

a) ω =
∑
dφi ∧ dsi,

b) the action variables si are functions of the integrals f1, . . . , fn,

c) in the action-angle variables s1, . . . , sn,φ1, . . . ,φn, the Hamiltonian flow v

is straightened on each of the Liouville tori in the neighborhood U, that is,
ṡi = 0, φ̇i = qi(s1, . . . , sn) for i = 1, 2, . . . ,n (this means that the flow v

determines the conditionally periodic motion that generates a rational or irra-
tional rectilinear winding on each of the tori).

Proof. 1). As we are in a Liouville integrable Hamiltonian system, the integrals
f1, . . . , fn are functionally independent. Therefore [fi, fj] = fifj − fjfi = fifj −

fifj = 0. Hence they commute. Therefore they are first integrals for v = sgrad H
and for each of the flows sgrad fi. As they are first integrals, their common level
surface Tξ is invariant under these flows. As the flows are linearly independent,
the vector fields sgrad f1, . . . , sgrad fn form a basis in every tangent plane of Tξ.
As ω(sgrad fi, sgrad fj) = {fi, fj} = 0, we have that Tξ is indeed a Lagrangian
submanifold.

2) As the flows sgrad f1, . . . , sgrad fn pairwise commute and are complete, we can
define an action φ from Rn to our manifold M2n. This action φ will be generated
by shifts along the flows sgrad f1, . . . , sgrad fn. This can be written explicitly as:

φ(t1, . . . , tn) = g
t1
1 g

t2
2 . . . g

tn
n

Where gti is the diffeomorphism shifting all the points of M2n along the integral
trajectories of the field sgrad fi. Before continuing this proof, we will need to intro-
duce some lemmas.

Lemma 1. If the submanifold Tξ is connected, then it is an orbit of the Rn-action .

Proof. We will consider the image of the group Rn in M under the following
mapping:

Ax : (t1, . . . , tn) 7→ φ(t1, . . . , tn)(x)

Here, x is a point in Tξ. As the fields sgrad fi are independent, this mapping is a
local diffeomorphism onto the image. Therefore, the image of Rn is open in Tξ. For
a contradiction, assume that the submanifold Tξ is not a single orbit of the group
Rn, then it is an union of at least two orbits. We know that both of them have to
be open, therefore Tξ becomes disconnected. but this contradicts our assumption
of the submanifold Tξ being connected. Hence, our lemma is proven.

Now for the next lemma.
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Lemma 2. An orbit O(x) of maximal dimension of the action of the group Rn is
the quotient space of Rn with respect to some lattice Zk. If O(x) is compact, then
k = n, and O(x) is diffeomorphic to the n−dimensional torus.

Proof. Every orbit O(x) of a smooth action of Rn is a quotient space of Rn with re-
spect to the stationary subgroup Hx of the point x. As Ax is a local diffeomorphism,
the subgroup Hx is discrete. A discrete subgroup has no accumulation points and
inside a bounded set, there are only a finite number of elements in this subgroup.

Now we will proof by induction that Hx is a lattice Zk. Starting with n = 1, We
can take a non-zero element e1 of Hx on the line R1 such that e1 is nearest to the
origin. Then every element had to be a multiple of e1. Suppose there is an element
e which is not a multiple of e1, then, for some k, we have:

ke1 < e < (k+ 1)e1

But this would mean that e− ke1 is closer to the origin then e1, which is a contra-
diction. Hence Hx is the lattice generated by e1.

Now Suppose n = 2, for e1 we choose a non-zero element such that it is closest
to the origin and consider the straight line l(e1) generated by it. For our previous
proof, we know that all element of Hx which are on the line l(e1) are multiples of
e1. It is possible for all elements to lie on l(e1), in which case the proof is complete.
Otherwise there has to exist elements which are not on l(e1). Then, let e2 be the
element nearest to l(e1), which is non-zero and not on l(e1). Next we want to prove
that all elements of Hx are a linear combination of e1, e2 with integer coefficients.
For this we assume the contrary. This means that there exists element h ∈ Hx which
is not a linear combination of e1, e2 with integer coefficients. Using e1, e2 we can
generate parallelograms on the plane and h has to be in one of these parallelograms.
Moreover, h can not be on a vertex of a parallelogram. It should be clear that we
can move h by an integer combination of e1, e2 to find an element closer to l(e1)
than e2. This gives a contradiction. Hence Hx is indeed a lattice generated by e1, e2.

We can continue this reasoning by induction to come to the conclusion that there
exists a basis e1, e2, . . . , ek in the subgroup Hx such that each element is a unique
linear combination of the basis vectors with integer coefficients. One can also say
that Hx is a lattice generated by e1, e2, . . . , ek.

If K < n, we have that the quotient space Rn/Zk is a cylinder. This cylinder is
also a direct product Tk × Rn−k, where Tk is a k-dimensional torus. In particular,
the orbit is compact for n = k only. Therefore, O(x) is diffeomorphic to the torus
Tn.

This proofs the second item.

3) This follows from the implicit function theorem. Suppose f :M 7→ N is a smooth
mapping of smooth manifolds and y ∈ N is a regular value of f. In other words, for
each point of the preimage f−1(y), the rank of df is equal to the dimension of N.
In particular, dim M ⩾ dim N. If we additionally assume that f−1(y) is compact,
then there exists a neighborhood D of a point y in N such that its preimage f−1(D)

is diffeomorphic to the direct product D× f−1(y). Furthermore, this structure is
compatible with the mapping f in the sense that f : D× f−1 7→ D is the natural
projection. From this it follows that each set f−1(z), with z ∈ D, is diffeomorphic to
f−1(y).

4) Now we will start the construction of the action-angle variables. We consider a
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neighborhood of the Liouville torus U(Tξ) = Tξ ×Dn. Then we choose a point x
on each tori T depending smoothly on the torus. Consider T as Rn \Hx and fix a
basis e1, . . . en in the lattice Hx. Note that this is similar to what we did in second
statement. This basis will depend smoothly on x. The coordinates of the basis vec-
tor ei = (t1, . . . , tn) are the solutions of the equation φ(t1, . . . , tn)x = x, where x is
regarded as a parameter. The solutions of this equation depend on x smoothly as a
result of the implicit function theorem. We can use this theorem as its assumptions
holds that ∂

∂tj
φ(t)x = sgrad fj(φ(t)x) and the vector fields sgrad fj are linearly

independent.

Now we will define the angle coordinates (ψ1, . . . ,ψn) on the torus Tξ int he fol-
lowing way. If y = φ(a)x, with a = a1e1 + . . .+ anen ∈ Rn, then ψ1(y) = 2πa1
mod 2π, . . . ,ψn(y) = 2πan mod 2π. We have that these coordinates satisfy the
property that the vector fields ∂/∂ψ1, . . . ,∂/∂ψn and sgrad f1, . . . , sgrad fn are con-
nected with a linear change of with constant coefficients. These constant coefficients
are: ∂/∂ψi =

∑
ciksgrad fk.

Now we will write ω in the coordinates (f1, . . . , fn,ψ1, . . . ,ψn).

ω =
∑
i,j

c̃ijdfi ∧ dψj +
∑
i,j

bijdfi ∧ dfj

As the Liouville tori are Lagrangian, the terms of the form aijdψi∧dψj vanish. We
claim that the coefficients c̃ij coincide with the coefficients cij and do not depend
on ψ1, . . . ,ψn. We have that:

c̃ij = ω

(
∂

∂fi
,
∂

∂ψj

)
= ω

(
∂

∂fi
,
∑

ckjsgrad fk

)
=

∑
ckjω

(
∂

∂fi
, sgrad fk

)
=

∑
ckj

∂fk
∂fj

= cij

= cij(f1, . . . , fn)

Next we will show that the functions bij do not depend on (ψ1, . . . ,ψn). As ω is
closed, we have:

∂bij

∂ψk
=
∂ckj

∂fi
−
∂cki
∂fj

Function bij is 2π-periodic as it is a function on a torus, but its derivative, ∂bij∂ψk
, is

not dependent on ψk. Therefore bij does not depend on ψk.

These statements imply the following important corollary. We can write the form
ω in the following way:

ω =
(∑

cijdfj

)
∧ dψi +

∑
bijdfi ∧ dfj

=
∑

ωi ∧ dψi +β,

Where ωi =
∑
cijdfj and β =

∑
bijdfi ∧ dfj are forms on the disc Dn. Therefore

as ω is closed, ωi and β are closed. The next lemma will be about the exactness of
ω.



integrable systems 9

Lemma 3. In the neighborhood U(Tξ) , the form ω is exact, which means that there
exists a 1-form α such that dα = ω.

Proof. This Lemma is a special case of the following more general statement. Let
Y be a submanifold of X and let there exists a mapping f : X 7→ Y ⊂ X which is
homotopic to the identity mapping id : X 7→ X. Then a closed form χ is exact on
X if and only if its restriction χY onto Y is exact. In our case we have that X is a
neighborhood of the Liouville torus and Y is the Liouville torus itself. Furthermore,
we have the stronger condition that ωTξ = 0 as Tξ is Lagrangian. Hence, ω is
exact.

Next we will consider the functions s1 = s1(f1, . . . , fn), . . . , sn = sn(f1, . . . , fn)
and show that they are independent. From the formula ω =

∑
dsi ∧ dψi + β, we

get that the matrix of the symplectic structure Ω is of the following form

Ω =

(
0 cij

−cij bij

)
Here, cij =

∂si
∂fi

. The determinant of Ω is therefore (detC)2 and detC ̸= 0. Here, C
is the Jacobi matrix of the transformation s1 = s1(f1, . . . , fn), . . . , sn = sn(f1, . . . , fn).
We can now consider the new system of independent coordinates (s1, . . . , sn,φ1, . . . ,φn).

Now, we are going to represent χ in the form χ = gidsi and let φi = ψi −

gi(s1, . . . , sn). This has the effect of changing the initial points of reference for
the angle coordinates on the Liouville tori. The level lines and even basis vector
fields are not changed by this.

Lastly, we will show that the system of action-angle variables we constructed,
(s1, . . . , sn,φ1, . . . ,φn), are canonical.∑

dsi ∧ dφi =
∑

dsi ∧ d(ψi − gi(s1, . . . , sn))

=
∑

dsi ∧ dψi +
∑

dgi(s1, . . . , sn)∧ dsi

=
∑

dsi ∧ dψi + dχ

=
∑

dsi ∧ dψi +β

= ω

Now we have constructed the action-angle coordinates. The final thing to proof is
that the flow v = sgrad H straightens on Liouville tori in coordinates (s1, . . . , sn,φ1, . . . ,φn).
As sgrad si = ∂

∂φi
, we have that ∂H

∂φi
= sgrad si(H) = {si(f1, . . . , fn),H} = 0. In

other words, H is a function of only s1, . . . , sn. Therefore we have:

v = sgrad H =
∑
i

∂H

∂si
sgrad si =

∑
i

∂H

∂si

∂

∂φi

Furthermore, the coefficients ∂H∂si depend only on the action variables (s1, . . . , sn).
In other words, they are constant on Liouville tori. This completes the proof of the
Liouville theorem.

Note that this theorem generally only works locally. When there is a singularity
in play, this theorem start to fall apart. This is because monodromy come into play
then. Monodromy is an obstruction to a global version of this theorem. We will
cover more on what this means exactly later on.
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3 holomorphic functions
In this section we will take a look at focus-focus singularities and mainly use the
lectures notes by J.P. Chassé [2]. Definitions and theorems in this section come from
these notes, unless specified otherwise.

To start, we need to define the integrable system with two degrees of freedom that
we will be working with.

Definition 7. Let (M,ω) be a 4-dimensional symplectic manifold, equipped with
the Poisson bracket {·, ·} that we defined in the previous chapter (definition 3 and
proposition 1). Let it also satisfy that any smooth function H on M gives rise to a
Hamiltonian vector field denoted by XH.

Lemma 4. (Complex Morse lemma) Let f :M 7→ C be a holomorphic function, and
z ∈ M be a nondegenerate critical point of f. Then, there exist local holomorphic
coordinates z1, . . . , zn centered at z such that

f(z1, . . . , zn) = f(0) +
n∑
i=1

z2i

We will not provide the proof here, however the full proof can be found in [3]. A
consequence of this Lemma is that there are no local invariant of critical points of
complex Morse functions.

Now we will take a look at the monodromy of a non-degenerate critical point. Let
M be a complex manifold of dimension n = 2, and f : M 7→ C be a holomorphic
function with a non-degenerate critical point z ∈ M. We can assume, without loss
of generality, that f(z) = 0. Take ϵ > 0 such that the complex Morse theorem holds
for |z1|2+ |z2|

2 ⩽ 4ϵ2. At the price of a multiplication of f and the zi’s with ϵ±1, we
can assume that ϵ = 1. We will fix these local coordinates for the rest of the section
and we will denote by Br, r < 2, the closed 2n-ball in these coordinates. As we took
n = 2, this becomes the closed 4-ball. Furthermore, we restrict f to this ball for this
section, f = f |B2 .

As there are no critical points of f on the boundary of B2, f |B2 is a submersion
onto D2, which is the disk of radius r in C, with a compact domain. This fulfills the
conditions of Ehresmann’s theorem, which then concludes that it is a fiber bundle
over D2. Ehresmann’s theorem will not be covered here, but more information
about this theorem can be found at [4]. Furthermore, as D2 is contractible, the
bundle is trivial. By the same argument, f gives a potentially nontrivial fiber bundle
B2 \ f

−1(0) 7→ D2 \ {0}.

Let Fλ = f−1(λ) be the fiber in B2 over λ ∈ D2. If λ is a regular value of f (λ ̸= 0),
then Fλ is a compact complex manifold of dimension n − 1 and its boundary is
∂Fλ = Fλ ∩ ∂B2. Now we will consider the loop γ : [0, 1] 7→ D2 \ {0} based at 1. As
the bundle f |S2 : S2 7→ D2 is trivial, we can take diffeomorphisms gt = g(−, t) :

∂F1 7→ ∂Fγ(t) such that g1 = 1F1 . Because of the relative homotopy lifting property
of fibrations, we know there now exists a map Γ : F1× [0, 1] 7→ B2 \ F0, which makes
the following diagram commute:

(F1 × {0})∪ (∂F1 × [0, 1]) B2 \ F0

F1 × [0, 1] D2 \ {0}

ι∪g

f
Γ
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Here, the bottom arrow does nothing with the F1 variable, but is equal to γ in the
[0, 1] one. Specifically, we have that Γt := Γ(0, t) sends F1 to Fγ(t). Also, up to
homotopy, Γ only depends on the homotopy class of γ as a loop in D2 \ {0}.

Definition 8. The transformation hγ := Γ1 : F1 7→ F1 is called the monodromy of
γ, whilst the induced morphism (hγ)⋆ on homology (with integer coefficients) is
called the monodromy operator.

When you take the monodromy operator of a loop γ : [0, 1] 7→ D2 \ {0}, it induces
a morphism H•(F1,∂F1) 7→ H•(F1) as follows. Let δ be a relative cycle of (F1,∂F1),
this means that δ ∈ C•(F1) and ∂δ ∈ C•−1(∂F1). Any element of H•(F1,∂F1) can
be represented by such a chain. By our construction we have that hγ |∂F1= 1∂F1 .
Therefore, hγδ − δ is actually a cycle of F1 and it thus defines a class varγ[δ] in
H•(F1). With a direct calculation one can show that varγ[δ] does not depend on the
relative cycle representing the homology class.

Definition 9. The ensuing group homomorphism

varγ : Hn−1(F1,∂F1) 7→ Hn−1(F1)

is called the variation operator of γ

This gives rise to the following relations:

(hγ)⋆ = 1 + (varγ)j and (h
(r)
γ )⋆ = 1 + j(varγ) (1)

Here, h(r)γ is similar to hγ, but it is seen as a relative map (F1,∂F1) 7→ (F1,∂F1), and
j : C•(F1) 7→ C•(F1,∂F1) is the canonical map. These operators are well-behaves
with respect to concatenation of loops:

(hγ1γ2)⋆ = (hγ2)⋆(hγ1)⋆, (h
(r)
γ1γ2)⋆ = (h

(r)
γ2 )⋆(h

(r)
γ1 )⋆

varγ1γ2 = varγ1 + varγ2 + varγ2 jvarγ1
(2)

The first two formulas follow from the fact that varγ1γ2 can be chosen to be the
concatenation of varγ1 and varγ1 , which is homotopically relative to ∂F1 to the
composition of the two. The last formula follows from the first two.

At the start of this section we set n = 2 for the dimension of our complex manifold,
this allows us to somewhat visualise what we have been talking about so far. When
n = 2 we can make the following change of variables x = z1 + iz2 and y = z1 − iz2
on what we got from the Complex Morse Lemma. This allows us to transform
z21 + z

2
2 = λ into xy = λ. In the real 2-ball in these coordinates, This fibre can take

on the shapes according to the following picture:

Figure 1: Real pictures of Fλ, Picture can also be found in [2]

One can think of an apposing pair of points in these pictures as being the inter-
section of a circle in C2 with R2. This makes the fibers corresponding to (a) and
(c) cylinders and makes the fibers corresponding to (b) a cone.
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To make this more rigorous, we can identify Fλ with the Riemann surface corre-
sponding to the holomorphic function w =

√
λ− z2 over D2. When λ ̸= 0, this

surface can be obtained by making a cut in two copies of D2 along the the line from
−
√
λ to

√
λ and gluing these disks together along the boundary of the cut we just

created. This is illustrated in the following picture where the line in the middle of
the sheets is the cut we created.

Figure 2: Image of ∆ and ∇ under Γt.[2]

We can consider the loop γ(t) = e2πit in D2 \ {0}. As [γ] generates π1(D2 \
{0}), it follows from (2) that we only need to look at this loop to understand the
monotonicity operator. We can take its lift Γt : F1 7→ Fγ(t) to be

Γt(z1, z2) = exp(πitχ(|z1|2 + |z2|
2))(z1, z2)

Here, χ : [0, inf) 7→ [0, 1] is a smooth map such that χ |[0,2]≡ 1 and χ |[3,inf]≡ 0.
Then we take representatives ∆ and ∇ of the generator of H1(F1) and H1(F1,∂F1)
respectively, such that their intersection number ∆ · ∇ = 1. This way we can see the
effect of Γt on them.

From figure 2, we see that ∆ stays unchanged while ∇ gets twisted in the opposite
direction of ∆. This can be written down more explicitly in homological terms:

(hγ)⋆(∆) = ∆ and (h
(r)
γ )⋆(∇) = ∇− j(∆)

therefore

varγ(∇) = −∆

Note that we have used the same symbol for the homology class and its represen-
tative here. The variation operator is trivial in other degrees, since H0(F1,∂F1) = 0
and H2(F1) = 0. One can think of this variation operator as "How does it change?".
Here we have that ∇ changes by −∆ to become ∇−∆ after having gone around the
singularity.

The (n− 1)-sphere or radius 1 embeds λ ∈ D2 \ {0} into the fiber Fλ as the following
set:

S(λ) :=

(z1, . . . , zn) ∈ B2 | zj =
√

|λ| exp(
i

2
arg(λ))xj, xj ∈ R,

n∑
j=1

x2j = 1


Furthermore, this embedding depends smoothly on λ ∈ D2 \ [−2, 0].

Definition 10. The homology class ∆ ∈ Hn−1(F1) represented by S(1) ⊆ F1 is called
the vanishing cycle

The following Lemma will show us that the chosen nomenclature is well-chosen:
∆ is precisely the homology class of Fλ that vanishes as λ→ 0.

Lemma 5. The embedding Sn−1 ↪→ Fλ extends to a diffeomorphism from a disk
subbundle of TSn−1 onto Fλ.
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Proof. We will only prove this for the case that λ = 1, as the general case follows
similarly. Writing zj = uj + ivj , for uj, vj ∈ R, we have

F1 =


n∑
j=1

z2j = 1,
n∑
j=1

|zj|
2 ⩽ 4


=


n∑
j=1

(u2j − v
2
j ) = 1,

n∑
j=1

ujvj = 0,
n∑
j=1

(u2j + v
2
j ) ⩽ 4


=


n∑
j=1

x2j = 1,
n∑
j=1

xjyj = 0,
n∑
j=1

y2j ⩽
3

2


where xk = uk/

√∑
j u
2
j and yk = vk. But the last set naturally identifies with the

radius
√
3
2 disk subbundle of TSn−1 ⊆ R2n. the inverse morphism

(x1, . . . , xn,y1, . . . ,yn) 7→

x1√1+∑
j

y2j + iy1, . . . , xn
√
1+

∑
j

y2j + iyn, . . .


is therefore the diffeomorphism we were initially looking for.

Corollary 1. We have:

Hk(F1) =

{
Z if k = 0,n− 1

0 otherwise
and Hk(F1,∂F1) =

{
Z if k = n− 1, 2(n− 1)

0 otherwise

The variation operator is zero on all degrees except n− 1 for any path in D2 \ {0}.

As we are mostly interested in the n− 1 case, we have that Hn−1(F1) = Z and
Hn−1(F1,∂F1) = Z for our purposes.

Proof. The calculation of the homology of F1 follows from the fact that a disk bundle
deformation retracts onto the image of the zero section. This is then naturally
identified with Sn−1. The one on the relative homology of (F1,∂F1) follows from
Poincare-Lefschetz duality. That part will not be covered here, but more information
on it can be found in [5].

The variation operator can be nontrivial in degree n − 1. In order to find its
relation, we will fix the generator ∇ of Hn−1(F1,∂F1) such that ∇ ·∆ = 1. Here, ·
denoted the intersection product. Furthermore, because of the relations specified in
(2), we only need to look at the case γ(t) = e2πit. Therefore, it will be omitted from
the equation.

Theorem 2.

var(∇) = (−1)
n(n+1)
2 ∆

We can use the fact that Hn−1(F1) = Z ·∆, Hn−1(F1,∂F1) = Z · ∇ and the rela-
tions defined in (1) to get the formulas for the monodromy and variation operators
described in the next corollary.

Corollary 2. (Picard-Lefschetz formulas)
For any a ∈ Hn−1(F1,∂F1) and b ∈ Hn−1(F1), we have

var(a) = (−1)
n(n+1)
2 (a ·∆)∆

h
(r)
⋆ (a) = a+ (−1)

n(n+1)
2 (a ·∆)j(∆)

h⋆(b) = b+ (−1)
n(n+1)
2 (b ·∆)∆
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4 back to integrable systems
Now that we have talked about Picard-Lefschetz, we will continue on integrable
systems and start connecting the dots on monodromy among these subjects.

Definition 11. Momentum Map
Let M2n be a symplectic manifold with an integrable Hamiltonian system v =

sgrad H , and f1, . . . , fn be its independent integrals in involution. Let us define the
smooth mapping

F :M2n 7→ Rn, where F(x) = (f1(x), . . . , fn(x))

This mapping is called the momentum mapping.

Let L be a singular leaf of a Liouville foliation and let y = F(L) be its image under
the momentum mapping. Consider a circle γϵ, with with small radius ϵ, centered
at the point y and its preimage Qγϵ = F−1(γϵ). This can be seen illustrated in
figure (3). The 3−manifold Qγϵ is a fiber bundle over the circle γϵ whose fibers are
Liouville tori T2. This fiber bundle is completely determined by the monodromy
group.

Definition 12. Monodromy Group
The Monodromy Group is the group of automorphisms of the fundamental group

of a fiber π1(T2) corresponding to closed loops on the base. As π1(T2) = Z
⊕

Z

and the base is the circle γϵ, the monodromy group is a cyclic subgroup in the
automorphism of Z

⊕
Z ⊂ SL(2,Z)

Note that monodromy for integrable systems can also be defined similarly to (8)

with the homotopic lifting property. This is using the same commutative diagram
except that we do not have a boundary in this case.

Figure 3: Loop around a critical point [1] Figure 4: Gluing of tori [1]

Qγϵ can be represented as the result of identification of the boundary tori T0
and T1 of the 3-cylinder T2 × [0, 1] by some diffeomorphism φ : T0 7→ T1. This is
illustrated in 4. This automorphim is uniquely defined to be an integer unimodular
matrix, which depends an the choice of basis on the torus. Its conjugacy class is

a well-defined complete invariant of the fiber bundle Qγϵ
T2−−→ γϵ. This matrix is

called the monodromy matrix.
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5 results and discussion
The next theorem will connect Picard-Lefschetz theory to integrable systems.

Theorem 3. The Picard-Lefschetz formula implies that the monodromy of an integrable
system on a symplectic 4-manifold M4 around a focus-focus singularity is given by the

matrix
(
1 1

0 1

)
.

Definition 13. A momentum mapping F = (f1, f2) : M 7→ R2 has a focus-focus
singularity x0 if there exists c1(f1, f2), c2(f1, f2) such that:{

c1 = q1p1 + q2p2

c2 = q1p2 − q2p1
And (c1, c2) : R2 7→ R2 is a local diffeomorphism.

We can without loss of generality assume that (c1, c2) is globally defined in a
neighborhood of a focus-focus fiber. When we take F = (c1, c2), and switch to
using complex coordinates we can transform (c1, c2) to (c1 + ic2). Then we can
apply a chance of coordinates twice to get the following:

zw,

{
z = q1 − iq2

w = p1 + ip2

u2 + v2,

{
z = (u− iv)

w = (u+ iv)

Notice that zw = u2 + v2 here as well. The coordinates in z,w are locally defined.
Now we want to go from the locally defined coordinates on the cylinder from Picard-
Lefschets Theory, to globally defined coordinates on the pinched torus from the
Liouville Theorem.

Figure 5: Cylinder from Picard-Lefschetz
[6]

Figure 6: Pinched torus from Liouville
Theorem [7]

Note that the pinched torus will not be pinched to a point for our purposes. This
would happen only when the loop goes through the singularity and the loop goes
around the singularity in our case.

From a cylinder one can make a torus by gluing the boundary together. Because
any circle bundle over D2 is trivial, we can do this without a problem. The absolute
cycle of the cylinder will be the same as the cycle of the torus which gets pinched
and the relative cycle will be the other absolute cycle of the torus.

When comparing the different notions of monodromy, (def 8) for Picard-Lefschetz
theory and (def 12), we also have major similarities which are pointed out under
definition (12).

There is in fact a more detailed description of what happens with the torus fibration
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around a focus-focus singularity. Specifically, one can show that one of the action
coordinates, see Section 2, is given by

s1 =
1

2π

∫
α = S(c) − Re(c ln c− c), (3)

where c = c1 + ic2 (and s2 = c2) and α is and 1-from which is exact. The function
S(c) classifies such torus fibration near the focus-focus point in the precise sense
of [8]. One can see the monodromy from the appearance of the ln in the above
equation. We are dealing with complex numbers and therefore ln is multi valued.
This implies the monodromy as after a rotation, you will not end up where you
started.

For holomorphic functions we have the following result: When looking at figure 5,
the red line (or the cycle ∆ from figure 2) stays the same while the blue line (or the
cycle ∇ from figure 2) gains a twist in the opposite direction of red line. This can
also be explained from the Picard-Lefschetz formulas (2) when using n = 2. The
last two equations then become:

h
(r)
⋆ (a) = a− j(∆)

h⋆(b) = b

The latter, which corresponds to the red line, stays constant and the former, which
corresponds to the blue line, is transformed in the opposite direction of the red line.

Figure 7: Here we have a torus with its two cycles coloured [9]

We obtain a similar result for the monodromy of an integrable system on a sym-
plectic 4-manifold M4. The Liouville tori undergo a similar transformation when
they go around a focus-focus singularity. We also have here that the red cycle will
stay the same while the blue cycle gains a twist in the opposite direction of the red
cycle. The appearance of the ln in (3) is the reason this happens.

We can think of this transformation, which happens on both cases, as the following
matrix transformation: [

∆ ∇
] [1 1

0 1

]
=

[
∆ ∇+∆

]
Here we have our monodromy matrix that acts on the cycles of the cylinder or
torus. This matrix illustrates what happens to the cycles after having gone around
the singularity. ∆ stays the same while ∇ transforms into ∇+ ∆. This completes
the proof of Theorem 3. □
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