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ABSTRACT

Shape memory alloys (SMA) play a crucial role in industrial applications, such as in hybrid systems where
SMAs are used due to their ability to act simultaneously as sensors and actuators. Martensitic transformation (MT)
is the microstructural process that is necessary to obtain SMAs, however, in the literature it is not understood
why some alloys are SMA, while others are not despite showing MT. For example, Ni-Ti and Ge-Te show
similar martensitic transformations from cubic to R-phase. Despite this fact, Ni-Ti is a SMA, while Ge-Te is not.
Therefore, the aim of this research is to explain the differences between these two alloys by thoroughly analysing
the microstructure, which will contribute to the further understanding of SMAs. Using crystallographic theories,
it is shown that both alloys form compound twinning systems {100}⟨110⟩ and {110}⟨100⟩. Yet, a significant
distinction is found in the prediction of the twinning shear in spite of the small discrepancy between the lattice
angles. Due to this difference in shear, the crystal structures of both alloys have been further investigated. The
results show that the crystal structures of both alloys, despite being similar, have contrasting atomic arrangements
inside the crystal cell. This finding, which is often overlooked in the literature, suggests that the macroscopic
property of SMAs are heavily dependent on mechanisms that develop from the atomic scale.
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I. INTRODUCTION

Upon applying an external stimulus (stress or tem-
perature), Shape-memory alloys (SMA) can sustain
large deformations, which are recovered after removing
the external stimulus, due to internal microstructural
changes that restore the original shape of the material
[1]. SMAs, particularly Ni-Ti, have been crucial in
engineering and industrial applications because of their
ability to act as sensors and actuators [2], [3]. With
the development of ’smart’ systems, the increased use
of actuators and sensors has become necessary, and
the industry constantly needs better-performing sensors
and actuators. Therefore, a thorough understanding of
the Shape-Memory Effect (SME) has become crucial
to designing better-performing SMAs.

Depending on the atomic composition and the an-
nealing process, the rhombohedral (R) symmetry is a
typical martensitic crystal structure in Ni-Ti at room
temperature that arises upon a martensitic transfor-
mation (MT) from the cubic austenite [4]. The high
symmetric structure of the austenite allows the nu-
cleation of martensite variants of R crystals that can
arrange into twinning systems [5]. Experiments showed
that transformation twins are common in the SMAs
martensitic microstructure [6]. However, these typical
microstructures also arise in the Ge-Te system [7],
which undergoes the same MT but is not an SMA.

Classical theories, such as the Energy Minimization
Theory (EMT) [8], and the Phenomenological Theory
of Martensite Crystallography (PTMC) [9], can predict
the twinned microstructures of metallic compounds that
undergo MTs (e.g., see [6], [10]). However, to the au-
thor’s knowledge, despite having a similar microstruc-
ture, research has yet to be conducted to understand
the difference between Ni-Ti and Ge-Te. Hence, this
research aims to understand the difference between Ni-
Ti and Ge-Te by thoroughly analysing their twinning
systems.

II. PROBLEM CONTEXT

To understand the context and scope of the prob-
lem, a why-what model is used to delineate the main
problem into its higher- and lower-order problems. As
seen in Figure 1, the main problem is stated as follows:

”The cause of the SME is poorly/not understood”. This
problem stems from the fact that there is a necessity

for good-performing actuators and sensors. The main
problem is of concern for a larger research program.
However, the research proposed by this paper focuses
only on a small part of the main problem. It follows
from the main problem that no known analysis of the
similarities and differences of the twinning systems in
Ni-Ti and Ge-Te exists. This is seen in the lower part
of the why-what model. By focusing on this lower-
order problem, the boundary of this research is set
on explaining the SME solely on the analysis of the
twinning systems in Ni-Ti and Ge-Te.

Fig. 1: Why-what analysis model - Analysis of the central
issue by defining broader and narrower problems

III. LITERATURE REVIEW

A. Industrial applications

SMAs play a crucial role in industrial applications.
They are widely used for the following applications:
aerospace, automotive, automation and control, appli-
ance, energy, chemical processing, heating and venti-
lation, safety and security, and electronics industries
[2]. In the automotive industry, the number of actuators
and sensors have become increasingly important. such
as stop-start systems, hybrid drivetrains and automated
cruisecontrol. Similarly, SMAs are used in aerospace
for shape morphing parts (such as wings) to improve
the aerodynamic performance. SMAs are also essential
for the human healthcare. Applications such as stents
and human tissue, bone or tendon implants make use
of SMAs (Ni-Ti). This is due to the fact that SMAs
have pysical properties which can replicate human body
parts. For an extensive review of industrial applications,
see e.g. Jani, Leary, Subic, et al. [2]
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Fig. 2: Example of an application of SMAs in aerospace industry. The figure shows the material structure of the
SMA at the macro- and microscale levels. Level 1 shows a jet engine cover, level 2 shows the SMA strips inside the
material, level 3 shows micrographs of the MT from austenite to martensite, level 4 shows a schematic overview of
the austenite and twinned martensite interface and level 5 shows a simplified representation of twinning in martensite
[2], [3], [11], [12].

B. Material structure

As mentioned in section I, the SME occurs in the
martensite phase of the SMA. To show the material
structure of SMA, Figure 2 shows an example of an
application in aerospace industry. If we zoom in, we
can see the microstructure of the SMA. It is observed
that the material shows an ordered structure. However,
this is only true for the grains. It is also shown by Song,
Chen, Dabade, et al. [11] that the microstructure of
SMAs cannot be replicated, as this changes drastically
upon repeating the MT from austenite to martensite.
Despite this fact, we can still find a similar structure
if we look at a smaller scale. Here, it is observed that
the martensite forms a general ordered structure with
a coherent interface with the austenite. This ordered
structure is a twinning system.

C. Twinning systems

A twin is a planar crystal defect [13] whereby one
side of the lattice can be obtained from the other

by either a simple shear deformation or a rotation
of the other lattice side [6]. Twinning occurs upon
MTs in several metallic compounds [6], [9], [13].
Therefore, understanding the MT from cubic symmetric
to rhombohedral lattices is necessary to understand
twinning systems in Ni-Ti and Ge-Te. During MT, the
austenite transforms into martensite that nucleates in
the form of several variants. These so-called martensite
variants have the same crystal structure but different
space orientations [3], and they typically arrange into
twinning systems, as illustrated in the level 5 sketch in
Figure 2. During this process, the crystal does not tear
apart/fracture, and experiments usually show continuity
in the deformation at the twin interfaces [6]. When a
twin arises upon MT, it is called a transformation twin.
Mathematically, we can ensure such a continuity of
the deformation (no fracture due to MT) at the twin
interface with the twinning equation,

3



QUI −UJ = a⊗n, (1)

where a is the shear vector, n is the twin plane, Q is
a rotation tensor, and UI and UJ are the Bain strain of
the variants I and J, respectively. By solving Equation 1
(i.e. the twinning equation), it is possible to predict the
twinning systems of an alloy that undergoes an MT,
given its lattice parameters. Ball and James [8] showed
how to obtain the general solutions of Equation 1,
however, if a 180◦ rotation symmetry relates the twin
variants I and J, then Mallard’s law applies, and we
can compute the vectors a and n as described by
Bhattacharya and et al. [6]. Lastly, it is common to
express the vectors a and n with respect the martensite
lattice as

s = |a||U−1
J n|, η1 =

a
|a|

, K1 =
U−1

J n
|U−1

J n|
, (2)

where s is the twinning shear, η1 is the shear
direction and K1 is the twin plane.

According to Bhattacharya and et al. [6] and Bilby
and Crocker [14], twins can be classified into three
different types being a Type 1, Type 2 or Compound
twin. A Type 1 twin is where the twinning plane is
a plane of symmetry in the austenite and thus having
rational components. The Type 2 twin occurs when the
shearing direction is a direction of symmetry in the
austenite and hence rational. At last, compound twins
are when a twin has both rational components for the
twinning plane and shear direction.

D. Material properties

Lattice parameters are important for determining
the twinning systems of metallic compounds because
they are the only input needed to solve Equation 1.
Experiments showed that lattice parameters may vary
depending on temperature and the atomic concentration
[15]. However, recently it has been shown that in Ni-Ti
these dependencies are negligible [16]. Therefore this
work will consider the average values of the lattice pa-
rameters. In the case of MT from the cubic austenite to
the R martensitic phase, the matrices shown in Figure 3
represent the Bain strains of the transformation. It is
important to note that Zhang and Sehitoglu [5], James
and Hane [17] and Hane and Shield [12] assume the
lengths of the cubic and rhombohedral lattices to be
similar. Consequently, no explicit lattice lengths can
be found for rhombohedral phases in literature such
as seen in the paper by Vermeulen, Kumar, Brink, et

al. [7]. Therefore, it is assumed that the rhombohedral
lattice has the same lengths as the cubic lattice. The
lattice lengths for Ni-Ti R-phase are a0 = 3.015Å [16]
and a0 = 5.97Å for Ge-Te [7]

Fig. 3: Transformation matrices for the different number
of martensite variants [6]

The α and δ parameters, introduced in the Bain
Strains in Figure 3, are defined by the following re-
lations,

α =

√
1+2cos(γ)+2

√
1− cos(γ)

3
, (3)

δ =

√
1+2cos(γ)−

√
1− cos(γ)

3
, (4)

where γ is the angle of the rhombohedral lattice.
This angle is γ ≈ 88.20◦ for Ge-Te [7] and γ ≈ 89.5◦

for Ni-Ti R phase [18].

IV. CONCEPTUAL RESEARCH DESIGN

A. Problem statement

Based on the literature review (section III) and the
problem context (section II), the following problem
statement has been formulated:

”Ni-Ti and Ge-Te have the same microstructure,
although they differ as only Ni-Ti shows the SME. How-
ever, it is currently not well understood why Ni-Ti and
Ge-Te show this difference due to poor knowledge of the
cause of the SME. This prevents future developments of
SMAs.”

B. Research objective

Using theory on setting SMART goals from Bjerke
and Renger [19] and Verschuren, Doorewaard, and
Mellion [20], the following research objective is for-
mulated:

”The objective of this research is to thoroughly
analyse the similarities and differences of the twinning
systems in Ni-Ti and Ge-Te using analytical methods
described in section III and computational methods.
The analysis will be used to explain what causes the
SME”
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C. Research framework

Based on the problem context (section II), literature
review (section III), and the research objective (subsec-
tion IV-B), a framework has been constructed. From
the framework, it is clear what information needs to
be gathered to select relevant assessment criteria for
validating the deliverable.

Fig. 4: Research framework - Schematic representation
of the steps needed to achieve the objective

D. Research questions

To carry out research that can provide the necessary
knowledge on the cause of the SME described in
subsection IV-B and outlined in the research framework
(Figure 4), a set of research questions has been
formulated:

”What is the cause of the SME in metallic com-
pounds based on analysing the twinning systems in
Ni-Ti and Ge-Te?”

The central research question has been divided into
three sub-questions that aim to answer the central
question and provide a steering function for the
research design in further sections.

1) What twinning systems can be found in Ni-Ti R-
phase?

2) How to computationally verify twinning systems in
rhombohedral crystal structures?

3) What twinning systems can be found in martensite
Ge-Te?

V. TECHNICAL RESEARCH DESIGN

The following section discusses the methods and
validation necessary to obtain knowledge to answer the
research questions stated in subsection IV-D.

A. Research materials

To start the proposed research, it is necessary to
consider the research methods that provide an answer
to each of the sub-questions (subsection IV-D). Using
both the recommendations of the supervisors and the
methods discussed in the papers by Zhang and Sehi-
toglu [5] and Vermeulen, Kumar, Brink, et al. [7] and
the book by Bhattacharya and et al. [6], the methods
discussed below are considered.

The first sub-question will be answered using an-
alytical methods explained in subsection III-C. The
twinning equation explained in this section will be
used together with the lattice parameters defined in
subsection III-D, used for the Bain matrices. These will
be combined with Mallard’s law to find the twinning
systems of the Ni-Ti R-phase.

Due to prior experience with this programming
language and the supervisor’s recommendation, the
computational code will be designed using Matlab.
The procedure for finding the twinning systems in
Ni-Ti R-phase will be translated into a computational
script/function.

The last sub-question will be answered using the
developed code. Using the lattice parameters of Ge-Te,
the code will give the corresponding twinning systems.
This is then compared with the twinning systems in Ni-
Ti, where the differences and similarities are analysed.

B. Validation of found twinning systems

After defining the methods to answer the research
question, the result must be validated. The results for
the first sub-question will be validated using the paper
by Zhang and Sehitoglu [5] together with other papers
on the twinning systems of Ni-Ti. The Matlab code is
validated by comparing its result with the results of
sub-question 1. Last, the twinning equations obtained
for Ge-Te are verified using the paper by Vermeulen,
Kumar, Brink, et al. [7] along with other papers on the
twinning systems of Ge-Te.

C. Research procedure

The following section will describe the key steps
necessary for the analysis of the twinning systems in
Ni-Ti and Ge-Te. Crystallographic theories introduced
in section III will be further described in terms of its
applications. Below, an overview of the procedure is
given after which an explanation of each step will be
given.

1) Find all 24 rotation matrices of the austenite point
group
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2) Use each π-rotation in the austenite point group
to generate new Bain matrices

3) Use the rotation axis, around which the π-rotation
is defined, to solve the twinning equation

4) Verify the stability of the found twin using the
habit plane equation

1) Point group group rotations: As explained in
section I, twinning occurs upon the MT from cubic
austenite. This transformation is represented in the form
of the Bain strain matrices (Figure 3). These matrices
transform austenite in four different variants that are
related through the point group rotations [5], [6], [12].
As shown in Equation 5, the point group rotation is
represented by R and the Bain strain matrix by U. A
point group is a set of rotations/reflections that do not
alter the crystal structure. The point group of a cubic
crystal consists of a group of 24 rotations [6].

UI = RT UJR (5)

The first step is to find all 24 rotation matrices of
the austenite point group. This is necessary since these
rotations determine how variants form pairs in order to
form a twin. The rotation matrices describe not only to
what degree the lattice is rotated but also with respect
to what axis. This axis (ê) is essential for finding the
twinning systems since there is a dependency for both
the twin plane (n) and twin direction (a).

2) Martensite variant pairs: The next step is to
identify how martensite variants will form pairs to
establish a twin. This is done by using Equation 5
which describes how the variants are related through
rotations. We know the interface of the formed pair
by applying this equation with respect to one of the
variants and using all 24 π-rotations. This result will
be used for the next step solving the twinning equation.

3) Solving the twinning equation: The third step is
to solve the twinning equation. We are able to solve
the twinning equation using Mallard’s law under the
condition the variants form a pair through a 180◦

rotation about some axis ê [6]. Once the 180◦ rotations
are verified in the previous step, Mallard’s law states
two solutions to the twinning equation (1) being the
following:

a1 = 2

(
U−1

J · ê
|U−1

J · ê|
−UJ · ê

)
and n1 = ê (6)

a2 = ρUJ · ê and n2 =
2
ρ

(
I− UT

J ·UJ

|UJ · ê|2

)
· ê (7)

where ρ ̸= 0 is such that |n| = 1 [5], [6], [16],
[12]. The found twin/shear direction a and the twin
plane n are with respect to the austenite basis. The
vectors a and n can be transformed to the martensite
basis using Equation 2 which is the customary way to
express the solutions. According to the classification in
subsection III-C, the solution to Equation 6 is called
a Type 1 twin and the Type 2 twin is described by
Equation 7.

4) Verify Austenite-Martensite coherency: The last
step is to verify the Austenite-Martensite interface
coherency, since the deformations must be continu-
ous. To verify the compatibility, we will make use
of the habit plane equation found in [6], [16], [12].
This equation predicts the interface, or habit plane, of
the austenite-martensite interface. A coherent interface
must be formed to ensure continuous deformation. It
has been proven by Ball and James [8] that the habit
plane equation has solutions if and only if the following
two conditions are met:

ω = a ·UJ · (U2
J − I)−1 ·n ≤−2 (8)

ψ = tr(U2
J)−det(U2

J)−2+
|a|2

2ω
≥ 0 (9)

If both Equation 8 and Equation 9 are satisfied,
the coherency of the austenite-martensite interface is
verified.

VI. TWINNING SYSTEMS IN NI-TI AND GE-TE

A. Martensite variant pairs

The point group of the cubic austenite and the variant
pairs are shown in Table I. The first column shows all
rotations using the index notation. The rotations are
ordered based on their respective angles. These rotation
matrices are used in Equation 5 together with the
variants shown in Figure 3 to find the correct twin pair.
These pairs are represented in the remaining columns
of the table below. For example, row 2 shows that
the first variant (U1) transforms into the third variant
(U3) using Equation 5. This means that these variants
form a pair through the rotation and axis R[ê1,90◦].
Consequently, the remaining variants form pairs with
their respective rotations and axes. It is shown that
all 12 pairs are formed through 180◦ rotations. This
has also been shown by Zhang and Sehitoglu [5] and
Hane and Shield [12]. Therefore, we have verified that
Mallard’s law can be used to find all possible twins.
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TABLE I: Symmetry transformations between the vari-
ants. The first column lists all the cubic Laue group
rotations. The remaining columns show the relation
between the variants based on the Laue group rotation.

Rotation U1 U2 U3 U4

I = ê1 ⊗ ê1 + ê2 ⊗ ê2 + ê3 ⊗ ê3 1 2 3 4
R[ê1,90◦] = ê1 ⊗ ê1 − ê2 ⊗ ê3 + ê3 ⊗ ê2 3 4 2 1
R[ê2,90◦] = ê1 ⊗ ê3 + ê2 ⊗ ê2 + ê3 ⊗ ê1 2 4 1 3

R[ê3,90◦] =−ê1 ⊗ ê2 + ê2 ⊗ ê1 + ê3 ⊗ ê3 4 1 2 3
R[ê1 + ê2 + ê3,120◦] =

ê1 ⊗ ê3 + ê2 ⊗ ê1 + ê3 ⊗ ê2
1 3 4 2

R[ê1 + ê2 − ê3,120◦] =
ê1 ⊗ ê2 − ê2 ⊗ ê3 − ê3 ⊗ ê1

4 1 3 2

R[ê1 − ê2 + ê3,120◦] =
−ê1 ⊗ ê2 − ê2 ⊗ ê3 + ê3 ⊗ ê1

2 3 1 4

R[− ê1 + ê2 + ê3,120◦] =
−ê1 ⊗ ê2 + ê2 ⊗ ê3 − ê3 ⊗ ê1

3 2 4 1

R[ê1,180◦] = ê1 ⊗ ê1 − ê2 ⊗ ê2 − ê3 ⊗ ê3 2 1 4 3
R[ê2,180◦] =−ê1 ⊗ ê1 + ê2 ⊗ ê2 − ê3 ⊗ ê3 4 3 2 1
R[ê3,180◦] =−ê1 ⊗ ê1 − ê2 ⊗ ê2 + ê3 ⊗ ê3 3 4 1 2

R[ê1 + ê2,180◦] =
ê1 ⊗ ê2 + ê2 ⊗ ê1 − ê3 ⊗ ê3

3 2 1 4

R[ê1 − ê2,180◦] =
−ê1 ⊗ ê2 − ê2 ⊗ ê1 − ê3 ⊗ ê3

1 4 3 2

R[ê2 + ê3,180◦] =
−ê1 ⊗ ê1 + ê2 ⊗ ê3 + ê3 ⊗ ê2

2 1 3 4

R[ê2 − ê3,180◦] =
−ê1 ⊗ ê1 − ê2 ⊗ ê3 − ê3 ⊗ ê2

1 2 4 3

R[ê1 + ê3,180◦] =
ê1 ⊗ ê3 − ê2 ⊗ ê2 + ê3 ⊗ ê1

4 2 3 1

R[ê1 − ê3,180◦] =
−ê1 ⊗ ê3 − ê2 ⊗ ê2 − ê3 ⊗ ê1

1 3 2 4

R[ê1 + ê2 + ê3,240◦] =
ê1 ⊗ ê2 + ê2 ⊗ ê3 + ê3 ⊗ ê1

1 4 2 3

R[ê1 + ê2 − ê3,240◦] =
−ê1 ⊗ ê3 + ê2 ⊗ ê1 − ê3 ⊗ ê2

2 4 3 1

R[ê1 − ê2 + ê3,240◦] =
ê1 ⊗ ê3 − ê2 ⊗ ê1 − ê3 ⊗ ê2

3 1 2 4

R[− ê1 + ê2 + ê3,240◦] =
−ê1 ⊗ ê3 − ê2 ⊗ ê1 + ê3 ⊗ ê2

4 2 1 3

R[ê1,270◦] = ê1 ⊗ ê1 + ê2 ⊗ ê3 − ê3 ⊗ ê2 4 3 1 2
R[ê2,270◦] =−ê1 ⊗ ê3 + ê2 ⊗ ê2 + ê3 ⊗ ê1 3 1 4 2
R[ê3,270◦] = ê1 ⊗ ê2 − ê2 ⊗ ê1 + ê3 ⊗ ê3 2 3 4 1

B. Twinning in martensite

In the MT from cubic (austenite) to rhombohedral
(martensite) the lattice lengths between both phases
are similar as stated in subsection III-D. Therefore, the
Bain matrices only have a dependency on the lattice
angle (γ) as shown in Equation 3 and 4. Accordingly,
Equation 6 and 7 will be a function of only one lattice
parameter, the lattice angle γ . This allows us to express
the twin plane and the shear direction as a function of
γ . Accordingly, we can obtain a general solution for
the twinning systems for MT from cubic (austenite) to
rhombohedral (martensite) systems.

a1 =
2δ (2α +δ )

2δ 2 +(α +δ )2

 2δ

α +δ

α +δ

 and n1 =

1
0
0

 (10)

a2 = 2
√

2
δ 2 +2αδ

α2 +2δ 2

α

δ

δ

 and n2 =

0
1
1

 (11)

Equation 10 and 11 show the solution for the shear
direction and twin plane for the variant pair U1 and U2.
Here α and δ are similarly defined as in Equation 3
and 4. Notice that only the shear directions have a
dependency on the lattice angle. Repeating the process
for the remaining 11 variant pairs, we obtain the general
twinning systems for MT from cubic (austenite) to
rhombohedral (martensite). The general twinning sys-
tems have been summarized in Table II where τ and ρ

are defined as 2δ (2α+δ )
2δ 2+(α+δ )2 and 2

√
2 δ 2+2αδ

α2+2δ 2 , respectively.
These generalized solutions have also been found by
Hane and Shield [12], [21] and James and Hane [17]
verifying the summarized results in Table II.

TABLE II: General solution for the twinning systems in
materials transforming from cubic to rhombohedral with
respect to the cubic basis.

Pair n1 a1 n2 a2

U1 to U2 (1,0,0) τ[2δ ,α +δ ,α +δ ] (0,1,1) ρ[α,δ ,δ ]
U2 to U1 (1,0,0) τ[−2δ ,α +δ ,α +δ ] (0,1,1) ρ[−α,δ ,δ ]
U1 to U3 (0,0,1) τ[α +δ ,α +δ ,2δ ] (1,1,0) ρ[δ ,δ ,α]
U3 to U1 (0,0,1) τ[α +δ ,α +δ ,−2δ ] (1,1,0) ρ[δ ,δ ,−α]
U1 to U4 (0,1,0) τ[α +δ ,2δ ,α +δ ] (1,0,1) ρ[δ ,α,δ ]
U4 to U1 (0,1,0) τ[α +δ ,−2δ ,α +δ ] (1,0,1) ρ[δ ,−α,δ ]
U2 to U3 (0,1,0) τ[−(α +δ ),2δ ,α +δ ] (1,0,-1) ρ[−δ ,α,δ ]
U3 to U2 (0,1,0) τ[α +δ ,2δ ,−(α +δ )] (1,0,-1) ρ[δ ,α,−δ ]
U2 to U4 (0,0,1) τ[−(α +δ ),α +δ ,2δ ] (1,-1,0) ρ[−δ ,δ ,α]
U4 to U2 (0,0,1) τ[α +δ ,−(α +δ ),2δ ] (1,-1,0) ρ[δ ,−δ ,α]
U3 to U4 (1,0,0) τ[2δ ,α +δ ,−(α +δ )] (0,1,-1) ρ[α,δ ,−δ ]
U4 to U3 (1,0,0) τ[2δ ,−(α +δ ),α +δ ] (0,1,-1) ρ[α,−δ ,δ ]

The next step is to transform the generalized results
to the rhombohedral basis. This is done numerically
due to the complexity of the problem. The first step
is to find the rotation matrix Q seen in the twinning
equation (1). We have to invert the Q rotation to obtain
the twinning equation with respect to the martensite
basis. The rotation matrix Q is defined by the polar
decomposition theorem,

F = Q ·B (12)

Where F is the deformation gradient describing the
direct transformation of the austenite to the martensite
phase, and B the bain strain matrix. Since both F and
B are known, the rotation matrix Q can be determined
by rewriting Equation 12 in terms of Q.
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TABLE III: Computationally determined twinning systems and lattice shear in Ni-Ti R-phase and Ge-Te with respect
to the martensite basis. The left and right values for shear represent Ni-Ti and Ge-Te, respectively.

Twinning pair η1 κ1 η2 κ2 Shear
”1-2” (0,1,1) [1,0,0] (1,0,0) [0,1,1] [0.024577][0.087564]
”2-1” (0,1,1) [1,0,0] (1,0,0) [0,1,1] [0.024577][0.087564]
”1-3” (1,1,0) [0,0,1] (0,0,1) [1,1,0] [0.024577][0.087564]
”3-1” (1,1,0) [0,0,1] (0,0,1) [1,1,0] [0.024577][0.087564]
”1-4” (1,0,1) [0,1,0] (0,1,0) [1,0,1] [0.024577][0.087564]
”4-1” (1,0,1) [0,1,0] (0,1,0) [1,0,1] [0.024577][0.087564]
”2-3” (1,0,-1) [0,1,0] (0,1,0) [1,0,-1] [0.024577][0.087564]
”3-2” (1,0,-1) [0,1,0] (0,1,0) [1,0,-1] [0.024577][0.087564]
”2-4” (1,-1,0) [0,0,1] (0,0,1) [1,-1,0] [0.024577][0.087564]
”4-2” (1,-1,0) [0,0,1] (0,0,1) [1,-1,0] [0.024577][0.087564]
”3-4” (0,1,-1) [1,0,0] (1,0,0) [0,1,-1] [0.024577][0.087564]
”4-3” (0,1,-1) [1,0,0] (1,0,0) [0,1,-1] [0.024577][0.087564]

Subsequently, Equation 2 is used to compute the
twins with respect to the martensite basis. These results
are shown in Table III. Despite having different lattice
parameters, both Ni-Ti R-phase and Ge-Te showed sim-
ilar results for the twinning equation with respect to the
martensite basis. In Table III, it is seen that both alloys
form a rational twinning plane and direction. Therefore,
the only possible solutions to the twinning equation
are he compound twins {100}⟨110⟩ and {110}⟨100⟩.
This has been compared with existing literature which
confirmed our results [5], [7], [17], [12], [22], [23].

A significant difference is observed when compar-
ing the shear of Ni-Ti and Ge-Te. Despite the small
difference in lattice angle of approximately 1.3◦, the
shear of Ge-Te is approximately 3.5 times higher. To
explain this significant difference, we must express the
shear with respect to the lattice angle. Using the shear
defined in Equation 2, the following shear lattice angle
relation is derived.

s =
2
√

2|cos(γ)|√
1+ cos(γ)−2cos2 (γ)

(13)

In Equation 13, it is observed that shear follows an
inverse square root relation with respect to the lattice
angle. This translates to a nonlinear relationship where
a decreasing lattice angle leads to an increase in shear.
This behaviour is visualised in Figure 5 where shear is
plotted against the lattice angle in the range of 87 and
93 degrees. Experiments have shown that the lattice
angle of the R-phase lies within this range [5], [7].
In Figure 5 it is seen that the slope of the curve is
high. This insinuates that the lattice shear is sensitive
for small changes in the lattice angle (γ).

Fig. 5: A range of lattice shear computed against the
lattice angle as shown in Equation 13

C. Austenite-Martensite coherency

The last step is to validate the coherency of the in-
terface between the twinning systems {100} and {110}
and the austenite. Upon quenching of the austenite
phase, coexistence of the twinned martensite and the
austenite will occur as shown in Figure 6. An impor-
tant property of the transition between austenite and
twinned martensite is coherency. Without coherency,
the material will fracture making the above results
invalid since these assume continuous deformation.
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Fig. 6: Schematic of the austenite and twinned martensite
upon quenching found in Figure 2 [12]

Again, we can express both Equation 8 and 9 in
terms of the lattice angle. This allows a generalization
for the MT from cubic to rhombohedral. Since we
showed that only the {100} and {110} twins will form,
two conditions can be obtained as shown below [12],

ω{100} =−sec2(
γ

2
),ψ{100} = cos2(γ)(1−2cos(γ))

(14)

ω{110} =−2, ψ{110} = ψ{100} = ψ (15)

Fig. 7: Plot of ω{100} and ψ against the lattice angle

The functions ω and ψ of Equation 14 and 15 are
found for the {100} and {110} twins, respectively. It
can be observed that the second condition ψ does not
depend on the twin plane since for both Equation 14
and 15 the same ψ was found. However, the first
condition does show a dependency on the twin plane.
As seen in Equation 15, the first condition is exactly -2,

thus satisfying Equation 8. Figure 7 shows ω{100} and
ψ against the lattice angle. It is seen that the habit plane
condition will only be met for ω{100} if γ ≥ 90◦ and for
ψ if γ ≥ 60◦. Since the lattice angle of both Ni-Ti and
Ge-Te are below 90◦, the habit plane conditions are not
satisfied for the twinning systems {100}. Instead, the
second condition is satisfied since the lattice angle of
both Ni-Ti and Ge-Te are greater than 60◦.

D. Main findings

Using the twinning equation and Mallards’ law, it
is shown that a generalised twinning system can be
derived for MT from cubic to rhombohedral. Upon
transforming the results obtained from Mallard’s law
to the martensite basis, it is found that both Ni-Ti
R-phase and Ge-Te form the same {100}⟨110⟩ and
{110}⟨100⟩ compound twins. However, a significant
difference is seen in the lattice shear. Using the habit
plane condition, it is shown that only the {110} can
be a lattice invariant shear for the transformation and
thus the only possible transformation twin. However,
experiments show that the {100} does exist in the
martensite microstructure [5], [7], as a deformation
twin.

From our results, there is no clear distinction be-
tween the twinning systems in Ni-Ti and Ge-Te, except
for the twinning shear magnitude. The latter might
induce plasticity and hence hinder the SME. Yet, EMT
is not sufficient to explain why Ni-Ti shows the SME
while Ge-Te does not. The reason resides in the fact that
the solutions of the crystallographic theories depend
only on the point group of a crystal and on the lattice
parameters, neglecting the atomic arrangements inside
the crystal cells. Consequently, a thorough analysis of
both alloys is needed to show any differences in the
crystal structures.

VII. CRYSTALLOGRAPHY OF NI-TI AND GE-TE

A. Crystallographic hierarchy

Crystal structures are classified according to space
groups. Space groups are a set of symmetry elements
and operations, which completely describe the spatial
arrangement of a 3D periodic pattern [24]. Therefore,
the space group of a crystal is a short-hand notation
that combines the information about the Bravais lattice
and point group of that crystal (Table IV). All crystal
structures can be described using 230 space groups.
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TABLE IV: The 32 point groups, 14 Bravais lattices, lattice parameters and their respective crystal system. The
bold point groups are the general expression for the crystal systems. P represents a primitive cell, I represents a
body centered cell, S represents a base centered cell, R represents a rhombohedral and F represents a face centered
cell. For the Trigonal system, only the lattice parameters of the rhombohedral lattice are given since the hexagonal
lattice parameters are already defined the row above.

Crystal system Point group Bravais lattice lattice parameters

Triclinic 1, 1̄ Triclinic (P)
a ̸= b ̸= c
α ̸= β ̸= γ

Monoclinic 2, m, 2/m Monoclinic (P)(I)
a ̸= b ̸= c

α ̸= 90◦,β ̸= γ

Orthorombic 222, mm2, mmm Orthorombic (P)(I)(S)(F)
a ̸= b ̸= c

α = β = γ = 90◦

Tetragonal 4, 4̄, 422, 4̄2m, 4/m, 4mm, 4/mmm Tetragonal (P)(I)
a = b ̸= c

α = β = γ = 90◦

Hexagonal 6, 6̄, 622, 6̄2m, 6/m, 6mm, 6/mmm Hexagonal (P)
a = b ̸= c

α = 120◦,β = γ = 90◦

Trigonal 3, 3̄, 3m, 32, 3̄m Hexagonal (P), Rhombohedral (R)
a = b = c

α = β = γ ≤ 120◦

Cubic 23, m3̄, 432, 4̄3m, m3̄m Cubic (P)(I)(F)
a = b = c

α = β = γ = 90◦

In crystallography, crystals are periodic arrangements
of atoms (i.e. lattice) and they can be represented by
a lattice point. A Bravais lattice is defined as a lattice
where the lattice points coincide after translating the
crystal by one lattice unit [25]. In nature, it has been
shown that only 14 Bravais lattices can be found, as
summarized in Table IV. Differently, a point group
is a set of symmetries which is invariant around a
center point. These symmetry operations are composed
of mirror planes, rotation axes and rotoinversion axes
[26], [27]. Point groups are classified based on the
number of symmetries. Based on this definition, only
32 possible point groups can be defined and appointed
to their crystal system as seen in Table IV. As seen in
this table, seven crystal systems are defined. However,
crystal systems are a different concept from Bravais
lattices. In fact, there are 7 crystal systems while there
exist 14 Bravais lattices [26]. So, a crystal system can
describe several Bravais lattices but the opposite does
not apply. Figure 8 shows a schematic overview of the
crystal classifications and how they are related to EMT

Knowing the space group of a crystal, the Wyckoff
positions can be specified. Wyckoff positions use the
symmetries of a crystal unit cell to specify the atomic
arrangement. For example, the space group R3m has
Bravais lattice R (rhombohedral) and space group 3m
(3-fold rotation symmetry and 1 mirror plane). The
Wyckoff positions for this space group are 3a, 9b
and 18c. The number indicates the multiplicity of
points within the unit cell and combined with the letter
specifies the positions. Wyckoff position 3a imply that
the atom positions are (0 0 z), (2/3 1/3 z+1/3) and (1/3

2/3 z+2/3) [24], [28], [29], [30], [31].

Fig. 8: Schematic overview of the crystallographic hier-
archy

B. Trigonal systems

In literature, both Ni-Ti R-phase and Ge-Te are
considered to have a rhombohedral lattice [5], [7], [17],
[12], [22] and [23]. Therefore, both materials can be
described with a trigonal crystal system. However, upon
studying the crystallography it was found that a trigonal
crystal system does not necessarily imply a material
to be rhombohedral. As reported by Nespolo, Aroyo,
and Souvignier [26], the trigonal crystal system can
be described by both a hexagonal and rhombohedral
Bravais lattices. Although having similar point groups,
they are related to different space groups, thus implying
a different arrangement of atoms within the trigonal
cell. The hexagonal Bravais lattice is represented by
the P in the space group notation while rhombehedral is
represented by the R. A significant difference is that the
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R Bravais lattice can be expressed by a non-primitive
(conventional) hexagonal cell (Figure 9). Yet, this is
not the case for the P Bravais lattice that can only be
expressed only by a hexagonal cell.

Fig. 9: Schematic overview of the relation between
hexagonal and rhombohedral lattice.

C. Crystallography of Ge-Te

In the literature, Ge-Te with a trigonal system is
reported to have the space group R3m, implying the
P Bravais lattice and point group 3m [7], [32], [33].
According to the theory of subsection VII-A and VII-
B, we validate that both the point and space group
belong to the trigonal system. Furthermore, Ge-Te can
either be expressed by a non-primitive hexagonal or
rhombohedral cell.

To observe the crystal structure of Ge-Te and to
validate the second statement, this research makes use
of the OVITO software to visualize the crystal structure
[34]. The data on the crystallography is obtained from
the open databases Materials Project (MP) and Crys-
tallography open database (COD) [33], [35]. Important
to note that the crystallography data represents trigo-
nal crystal systems using a hexagonal description. To
show that Ge-Te is rhombohedral, we have to obtain
the rhombohedral Bravais lattice from the hexagonal
description as shown in Figure 9. Prior to visualizing
the crystallography of Ge-Te, the Wyckoff positions
reported by the open databases are compared to the
general Wyckoff positions belonging to the R3m space
group. Ge-Te is stated to have Wyckoff position 3a
for both Ge and Te with positions (2/3 1/3 0.325557)
and (1/3 2/3 0.195443), respectively [32], [33]. These
positions comply with the general positions (0 0 z),
(2/3 1/3 z+1/3) and (1/3 2/3 z+2/3). Therefore, these
data represents the correct crystallography of Ge-Te.

Figure 10 shows the trigonal system of Ge-Te.
Here, both DFT and experimentally obtained data
are used as reference. The rhombohedral lattice was
found from both DFT and experimental data. DFT

resulted in the lattice parameters to be a = 6.07717Å
and γ = 87.1492◦. However, the data obtained from
experiments resulted in the lattice parameters to be
a = 5.99996Å and γ = 88.561◦. This difference is due
to the temperature variation. Mainly, DFT is at 0 K
while experiments are usually at room temperature.
Despite the differences, we have shown that Ge-Te is
both rhombohedral and hexagonal because it belongs
to the space group R3m.

(a) (b)

(c) (d)

Fig. 10: Visualization of trigonal system of Ge-Te where
Ge and Te are represented with grey and orange, respec-
tively. From left to right: (a) and (b) showing the top
and perspective view of DFT obtained data, (c) and (d)
showing the top and perspective view of experimentally
obtained data.

D. Crystallography of Ni-Ti

In the literature, there is still debate on the space
group of Ni-Ti R-phase. It has been reported by Naji,
Khalil-Allafi, and Khalili [36] that the space group is
P3̄. However, Xu, Luo, Li, et al. [37] claims the space
group to be P3. Both papers support their claims with
experimental data. Upon further research, it is found
that Ni-Ti R-phase can be either P3 or P3̄. Otsuka
and Ren [4] and Khalil-Allafi, Schmahl, and Toebbens
[38] report that assigning space group P3 shows better
experimental results, although with subtle differences,
compared with P3̄. Yet, both papers state that the
space group should be considered P3̄ since it is more
reasonable than P3. This consideration is made since
the space group P3̄ has a centre of symmetry while the
space group P3 does not. Nevertheless, according to the
theory of subsection VII-A and VII-B Ni-Ti R-phase

11



has a trigonal system regardless of the space groups
discussed. However, it can only be represented by a
hexagonal lattice. Therefore, this report will consider
both space groups and compare which is (closest to) a
Rhombohedral lattice.

Again, the Wyckoff positions of both space groups
are compared to the general Wyckoff positions. The
Wyckoff positions for P3̄ according to MP are consis-
tent with the Wyckoff positions required for this space
group. The atomic arrangement of the cell according
to MP do not correspond to the Wyckoff positions for
P3. Additionally, the lattice parameters are stated to be
a= 5.39Å, b= c= 7.25Å, α = 119.96◦, β = 90.12◦ and
γ = 90.04◦. This does not represent a hexagonal lattice
while Ni-Ti R-phase should at least be hexagonal.
Therefore, we can ignore the data for P3 since it it not
representative for the crystallography of Ni-Ti R-phase.

(a) (b)

(c) (d)

Fig. 11: Visualization of trigonal system of Ni-Ti with
space group P3̄ where Ni and Ti are represented with
green and grey, respectively. From left to right: (a) and
(b) show the top and perspective view of DFT obtained
data, (c) and (d) show the top and perspective view of
experimentally obtained data.

Figure 11 shows the trigonal system of Ni-Ti with
the space group P3̄. Again, both DFT and experimental
data are used as a reference. Shown in Figure 11 (b) and
(d), we tried to obtain the rhombohedral Bravais lattice.
Based on these Figures it may seem that Ni-Ti is rhom-
bohedral. However, the lattice parameter of the rhom-
bohedral symmetry are not consistent with experiments
anymore. DFT resulted in the lattice parameters to be
a = b = 2.93009Å, c = 3.07355Å, α = β = 89.8098◦

and γ = 92.8677◦. Experimental data showed similar

results with a = b = 3.06981Å, c = 3.08302Å, α = β =
89.2502◦ and γ = 90.9985◦. This shows that Ni-Ti R-
phase is not rhombohedral. However, experimental data
is close to a rhombohedral, since the difference between
both lattice lengths and angles is smaller compared
to DFT. Yet, approximating Ni-Ti as a rhombohedral
Bravais lattice might result in inaccurate predictions of
the twinning systems, since small angle discrepancies
of the lattice angle can lead to significant differences
in lattice shear (subsection VI-B).

VIII. CONCLUSION

In this work, we have studied the the crystal structure
of Ni-Ti R-phase and Ge-Te. Guided by EMT [8], the
twinning systems that forms upon MT in both alloys
have been compared. We found that Ni-Ti and Ge-Te R-
phases form similar compound twinning systems during
MT from cubic austenite to rhombohedral martensite.
It is shown that, despite varying lattice parameters, all
materials undergoing the same MT form the twinning
systems {100}⟨110⟩ and {110}⟨100⟩. However, it was
found that the lattice shear depends strongly on the
lattice angle, mainly the lattice shear for Ge-Te was sig-
nificantly larger than Ni-Ti R-phase in spite of the small
difference in the lattice angle. A larger lattice shear
might induce plastic deformation and hence hinder
SME in GeTe, compared with NiTi. Since the atomic
arrangements inside the crystal cells are neglected by
EMT, the crystallography of both alloys is studied.
This showed that the crystal structure is significantly
different and that Ni-Ti is only approximately R-phase,
with possible implications on the twin structure, lattice
shear and twinning systems.

To conclude, crystallographic theories such as EMT
are not sufficient to explain the SME, despite showing
significant differences in the lattice shear magnitude.
Furthermore, it was shown that Ni-Ti is not rhombo-
heral despite contradicting claims in previous studies
[5], [6], [12], [17]. In fact, the SME is also related
to atomic-scale mechanisms. Therefore, atomic mech-
anisms cannot be neglected when studying the SME
and a different crystallography might induce a different
twinning system structure and mobility.

Atomistic models such as Molecular Dynamics con-
sider atomic mechanism. By modeling the interface
between twins, the motion of the twin can be observed
after applying an external load (shear or temperature).
This will help to further investigate the impact of the
different crystal structures of GeTe and NiTi on the
SME effect.
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APPENDIX

1
2 function [Twinning_systems_reference, Twinning_systems_current] =

R_phase_twinning_systems(gamma,a0)
3 % MATLAB script file for the analysis of the twinning systems in R-phase
4 % crystal structures. This script can describe crystallographic
5 % features of the martensitic transformation of R-phase crystals, such as
6 % twin variants.
7
8 % Here the martensitic transformation is between the B2 (bcc) austenite
9 % phase and the R-phase (Rhombohedral) martensite

10
11 % The twinning equation is solved by using MALLARD's LAW
12
13 % Experimental lattice angle:
14 % S. Miyazaki and C. Wayman (1988) lattice angle experiment Ni-Ti R-phase:

gamma= approx. 89.5 degrees
15 % P. A. Vermeulen et al. (2016) Crystollographic structure experiment Ge-Te:

gamma approx. 82.4 degrees
16
17 % Ayoub Chahbari, May 2023
18
19 format short
20 %% Set the cartesian frame in amstrongs and lattice angle in degrees
21
22 i=[1 0 0]';
23 j=[0 1 0]';
24 k=[0 0 1]';
25 %% Define the symmetry operations
26 %%% Define the point group of the cubic crystal structure
27
28 R1=eye(3,3);
29 R2=rotx(90);R9=rotx(180);R22=rotx(270);
30 R3=roty(90);R10=roty(180);R23=roty(270);
31 R4=rotz(90);R11=rotz(180);R24=rotz(270);
32
33 axang=[1/sqrt(3) 1/sqrt(3) 1/sqrt(3) 2*pi/3];
34 R5=axang2rotm(axang);
35
36 axang=[1/sqrt(3) 1/sqrt(3) -1/sqrt(3) 2*pi/3];
37 R6=axang2rotm(axang);
38
39 axang=[1/sqrt(3) -1/sqrt(3) 1/sqrt(3) 2*pi/3];
40 R7=axang2rotm(axang);
41
42 axang=[-1/sqrt(3) 1/sqrt(3) 1/sqrt(3) 2*pi/3];
43 R8=axang2rotm(axang);
44
45 axang=[1/sqrt(2) 1/sqrt(2) 0 pi];
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46 R12=axang2rotm(axang);
47
48 axang=[1/sqrt(2) -1/sqrt(2) 0 pi];
49 R13=axang2rotm(axang);
50
51 axang=[0 1/sqrt(2) 1/sqrt(2) pi];
52 R14=axang2rotm(axang);
53
54 axang=[0 1/sqrt(2) -1/sqrt(2) pi];
55 R15=axang2rotm(axang);
56
57 axang=[1/sqrt(2) 0 1/sqrt(2) pi];
58 R16=axang2rotm(axang);
59
60 axang=[-1/sqrt(2) 0 1/sqrt(2) pi];
61 R17=axang2rotm(axang);
62
63 axang=[1/sqrt(3) 1/sqrt(3) 1/sqrt(3) 4*pi/3];
64 R18=axang2rotm(axang);
65
66 axang=[1/sqrt(3) 1/sqrt(3) -1/sqrt(3) 4*pi/3];
67 R19=axang2rotm(axang);
68
69 axang=[1/sqrt(3) -1/sqrt(3) 1/sqrt(3) 4*pi/3];
70 R20=axang2rotm(axang);
71
72 axang=[-1/sqrt(3) 1/sqrt(3) 1/sqrt(3) 4*pi/3];
73 R21=axang2rotm(axang);
74
75 %%% Store all 24 point groups
76 R={R1; R2; R3; R4; R5; R6; R7; R8; R9; R10; R11; R12; R13; R14; R15; R16;

R17; R18; R19; R20; R21; R22; R23; R24};
77
78 n=24 ;
79 for m = 1:n
80 R{m}=round(R{m},5);
81 end
82
83 cubrot=24;
84
85 %%% Define the point group of the Rhombohedral crystal structure
86 r1=R1; r2=R9; r3=rotz(120); r4=rotz(240);
87 r5=axang2rotm([1/2 sqrt(3)/2 0 pi]);
88 r6=axang2rotm([-1/2 sqrt(3)/2 0 pi]);
89
90 rhomrot=6;
91
92 %%% Define the number of variants
93 N=cubrot/rhomrot;
94 %% Martensitic transformation
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95 disp('Computing the Bain Strain...')
96
97 %%% Set the face-centered austenite lattice basis
98 fa1=a0*i;
99 fa2=a0*j;

100 fa3=a0*k;
101
102 FB2F=[fa1 fa2 fa3];
103
104 %%% Set the face-centered martensite lattice basis
105 fm1=a0*(sind(gamma/2)*i-sind(gamma/2)/sqrt(3)*j+sqrt((4*(cosd(gamma/2))ˆ2-1)

/3)*k);
106 fm2=a0*((2*sind(gamma/2))/sqrt(3)*j+sqrt((4*(cosd(gamma/2))ˆ2-1)/3)*k);
107 fm3=a0*(-sind(gamma/2)*i-sind(gamma/2)/sqrt(3)*j+sqrt((4*(cosd(gamma/2))

ˆ2-1)/3)*k);
108
109 FRF=[fm1 fm2 fm3];
110
111 %%% Compute the deformation gradient
112 F=FRF/FB2F;
113 DeltaV=det(F);
114
115 %%% Compute the Bain Strain
116 C=F'*F;
117 [V,D]=eig(C);
118
119 B=sqrt(D(1,1))*V(:,1)*V(:,1)'+sqrt(D(2,2))*V(:,2)*V(:,2)'+sqrt(D(3,3))*V

(:,3)*V(:,3)';
120 %% Define entries Bain matrices
121 alpha=(sqrt(1+2*cosd(gamma))+2*sqrt(1-cosd(gamma)))/3;
122 delta=(sqrt(1+2*cosd(gamma))-sqrt(1-cosd(gamma)))/3;
123
124 %alpha=round(alpha1,5);
125 %delta=round(delta1,5);
126
127 %%% Construct Bain matrices
128 U1=[alpha delta delta; delta alpha delta; delta delta alpha];
129 U2=R9'*U1*R9;
130 U3=R11'*U1*R11;
131 U4=R10'*U1*R10;
132 Q={F/U1; F/U2; F/U3; F/U4};
133 %% Compute the twins formed by U1 and U2, R(i,180)
134
135 disp('Computing twins formed by martensite variants 1-2, R(i,180) ...')
136
137 %%% Determine Type 1 twin
138 a1=2*((inv(U1)'*i)/norm(inv(U1)'*i)ˆ2 -U1*i);
139 n1=i;
140 s1=[norm(a1)*norm(U1\n1) nan nan]';
141
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142 shear1=a1*1/a1(2);
143 plane1=n1';
144
145 %%% Transform back to current configuration
146 eta1=inv(FRF)*((Q{1}*a1)/norm(Q{1}*a1));
147 K1=((n1'*inv(F))/norm(n1'*inv(F))*FRF)';
148
149 T1=[s1 shear1 n1 eta1/eta1(2) K1/K1(1)];
150
151 %%% Determine whether conforms to habit plane conditions
152 mu1=plane1*U1*((U1*U1-eye(3,3))\eye(3,3))*a1;
153 eta1=trace(U1*U1)-det(U1*U1)-2+(norm(a1)ˆ2)/(2*mu1);
154
155 %%% Determine Type 2 twin
156 n2=2*(i-(U1'*U1*i)/norm(U1*i)ˆ2);
157 norm2=norm(n2);
158 n2=n2/norm2;
159 a2=norm2*U1*i;
160
161 shear2=a2*1/a2(1);
162 plane2=n2';
163
164 %%% Transform back to current configuration
165 eta2=inv(FRF)*((Q{1}*a2)/norm(Q{1}*a2));
166 K2=((n2'*inv(F))/norm(n2'*inv(F))*FRF)';
167
168 T2=[s1 shear2 2*n2/sqrt(2) eta2/eta2(1) K2/K2(2)];
169
170 %%% Determine whether conforms to habit plane conditions
171 mu2=plane2*U1*((U1*U1-eye(3,3))\eye(3,3))*a2;
172 eta2=trace(U1*U1)-det(U1*U1)-2+(norm(a2)ˆ2)/(2*mu2);
173 %% Compute the twins formed by U2 and U1, R(i,180)
174
175 disp('Computing twins formed by martensite variants 2-1, R(i,180) ...')
176
177 %%% Determine Type 1 twin
178 a1=2*((inv(U2)'*i)/norm(inv(U2)'*i)ˆ2 -U2*i);
179 n1=i;
180 s2=[norm(a1)*norm(U2\n1) nan nan]';
181
182 shear1=a1*1/a1(2);
183 plane1=n1';
184
185 %%% Transform back to current configuration
186 eta1=inv(FRF)*((Q{2}*a1)/norm(Q{2}*a1));
187 K1=((n1'*inv(F))/norm(n1'*inv(F))*FRF)';
188
189 T3=[s2 shear1 n1 eta1/eta1(2) K1/K1(1)];
190
191 %%% Determine Type 2 twin
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192 n2=2*(i-(U2'*U2*i)/norm(U2*i)ˆ2);
193 norm2=norm(n2);
194 n2=n2/norm2;
195 a2=norm2*U2*i;
196
197 shear2=a2*1/a2(1);
198 plane2=n2';
199
200 %%% Transform back to current configuration
201 eta2=inv(FRF)*((Q{2}*a2)/norm(Q{2}*a2));
202 K2=((n2'*inv(F))/norm(n2'*inv(F))*FRF)';
203
204 T4=[s2 shear2 2*n2/sqrt(2) eta2/eta2(1) K2/K2(2)];
205 %% Compute the twins formed by U1 and U3, R(k,180)
206
207 disp('Computing twins formed by martensite variants 1-3, R(k,180) ...')
208
209 %%% Determine Type 1 twin
210 a1=2*((inv(U1)'*k)/norm(inv(U1)'*k)ˆ2 -U1*k);
211 n1=k;
212 s3=[norm(a1)*norm(U1\n1) nan nan]';
213
214 shear1=a1*1/a1(2);
215 plane1=n1';
216
217 %%% Transform back to current configuration
218 eta1=inv(FRF)*((Q{1}*a1)/norm(Q{1}*a1));
219 K1=((n1'*inv(F))/norm(n1'*inv(F))*FRF)';
220
221 T5=[s3 shear1 n1 eta1/eta1(1) K1/K1(3)];
222
223 %%% Determine Type 2 twin
224 n2=2*(k-(U1'*U1*k)/norm(U1*k)ˆ2);
225 norm2=norm(n2);
226 n2=n2/norm2;
227 a2=norm2*U1*k;
228
229 shear2=a2*1/a2(3);
230 plane2=n2';
231
232 %%% Transform back to current configuration
233 eta2=inv(FRF)*((Q{1}*a2)/norm(Q{1}*a2));
234 K2=((n2'*inv(F))/norm(n2'*inv(F))*FRF)';
235
236 T6=[s3 shear2 2*n2/sqrt(2) eta2/eta2(3) K2/K2(1)];
237 %% Compute the twins formed by U3 and U1, R(k,180)
238
239 disp('Computing twins formed by martensite variants 3-1, R(k,180) ...')
240
241 %%% Determine Type 1 twin
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242 a1=2*((inv(U3)'*k)/norm(inv(U3)'*k)ˆ2 -U3*k);
243 n1=k;
244 s4=[norm(a1)*norm(U3\n1) nan nan]';
245
246 shear1=a1*1/a1(2);
247 plane1=n1';
248
249 %%% Transform back to current configuration
250 eta1=inv(FRF)*((Q{3}*a1)/norm(Q{3}*a1));
251 K1=((n1'*inv(F))/norm(n1'*inv(F))*FRF)';
252
253 T7=[s4 shear1 n1 eta1/eta1(1) K1/K1(3)];
254
255 %%% Determine Type 2 twin
256 n2=2*(k-(U3'*U3*k)/norm(U3*k)ˆ2);
257 norm2=norm(n2);
258 n2=n2/norm2;
259 a2=norm2*U3*k;
260
261 shear2=a2*1/a2(3);
262 plane2=n2';
263
264 %%% Transform back to current configuration
265 eta2=inv(FRF)*((Q{3}*a2)/norm(Q{3}*a2));
266 K2=((n2'*inv(F))/norm(n2'*inv(F))*FRF)';
267
268 T8=[s4 shear2 2*n2/sqrt(2) eta2/eta2(3) K2/K2(1)];
269 %% Compute the twins formed by U1 and U4, R(j,180)
270
271 disp('Computing twins formed by martensite variants 1-4, R(j,180) ...')
272
273 %%% Determine Type 1 twin
274 a1=2*((inv(U1)'*j)/norm(inv(U1)'*j)ˆ2 -U1*j);
275 n1=j;
276 s5=[norm(a1)*norm(U1\n1) nan nan]';
277
278 shear1=a1*1/a1(1);
279 plane1=n1';
280
281 %%% Transform back to current configuration
282 eta1=inv(FRF)*((Q{1}*a1)/norm(Q{1}*a1));
283 K1=((n1'*inv(F))/norm(n1'*inv(F))*FRF)';
284
285 T9=[s5 shear1 n1 eta1/eta1(1) K1/K1(2)];
286
287 %%% Determine Type 2 twin
288 n2=2*(j-(U1'*U1*j)/norm(U1*j)ˆ2);
289 norm2=norm(n2);
290 n2=n2/norm2;
291 a2=norm2*U1*j;
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292
293 shear2=a2*1/a2(2);
294 plane2=n2';
295
296 %%% Transform back to current configuration
297 eta2=inv(FRF)*((Q{1}*a2)/norm(Q{1}*a2));
298 K2=((n2'*inv(F))/norm(n2'*inv(F))*FRF)';
299
300 T10=[s5 shear2 2*n2/sqrt(2) eta2/eta2(2) K2/K2(1)];
301 %% Compute the twins formed by U4 and U1, R(j,180)
302
303 disp('Computing twins formed by martensite variants 4-1, R(j,180) ...')
304
305 %%% Determine Type 1 twin
306 a1=2*((inv(U4)'*j)/norm(inv(U4)'*j)ˆ2 -U4*j);
307 n1=j;
308 s6=[norm(a1)*norm(U4\n1) nan nan]';
309
310 shear1=a1*1/a1(1);
311 plane1=n1';
312
313 %%% Transform back to current configuration
314 eta1=inv(FRF)*((Q{4}*a1)/norm(Q{4}*a1));
315 K1=((n1'*inv(F))/norm(n1'*inv(F))*FRF)';
316
317 T11=[s6 shear1 n1 eta1/eta1(1) K1/K1(2)];
318
319 %%% Determine Type 2 twin
320 n2=2*(j-(U4'*U4*j)/norm(U4*j)ˆ2);
321 norm2=norm(n2);
322 n2=n2/norm2;
323 a2=norm2*U4*j;
324
325 shear2=a2*1/a2(2);
326 plane2=n2';
327
328 %%% Transform back to current configuration
329 eta2=inv(FRF)*((Q{4}*a2)/norm(Q{4}*a2));
330 K2=((n2'*inv(F))/norm(n2'*inv(F))*FRF)';
331
332 T12=[s6 shear2 2*n2/sqrt(2) eta2/eta2(2) K2/K2(1)];
333 %% Compute the twins formed by U2 and U3, R(j,180)
334
335 disp('Computing twins formed by martensite variants 2-3, R(j,180) ...')
336
337 %%% Determine Type 1 twin
338 a1=2*((inv(U2)'*j)/norm(inv(U2)'*j)ˆ2 -U2*j);
339 n1=j;
340 s7=[norm(a1)*norm(U2\n1) nan nan]';
341
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342 shear1=a1*1/a1(3);
343 plane1=n1';
344
345 %%% Transform back to current configuration
346 eta1=inv(FRF)*((Q{2}*a1)/norm(Q{2}*a1));
347 K1=((n1'*inv(F))/norm(n1'*inv(F))*FRF)';
348
349 T13=[s7 shear1 n1 eta1/eta1(1) K1/K1(2)];
350
351 %%% Determine Type 2 twin
352 n2=2*(j-(U2'*U2*j)/norm(U2*j)ˆ2);
353 norm2=norm(n2);
354 n2=n2/norm2;
355 a2=norm2*U2*j;
356
357 shear2=a2*1/a2(2);
358 plane2=n2';
359
360 %%% Transform back to current configuration
361 eta2=inv(FRF)*((Q{2}*a2)/norm(Q{2}*a2));
362 K2=((n2'*inv(F))/norm(n2'*inv(F))*FRF)';
363
364 T14=[s7 shear2 2*n2/sqrt(2) eta2/eta2(2) K2/K2(1)];
365 %% Compute the twins formed by U3 and U2, R(j,180)
366
367 disp('Computing twins formed by martensite variants 3-2, R(j,180) ...')
368
369 %%% Determine Type 1 twin
370 a1=2*((inv(U3)'*j)/norm(inv(U3)'*j)ˆ2 -U3*j);
371 n1=j;
372 s8=[norm(a1)*norm(U3\n1) nan nan]';
373
374 shear1=a1*1/a1(1);
375 plane1=n1';
376
377 %%% Transform back to current configuration
378 eta1=inv(FRF)*((Q{3}*a1)/norm(Q{3}*a1));
379 K1=((n1'*inv(F))/norm(n1'*inv(F))*FRF)';
380
381 T15=[s8 shear1 n1 eta1/eta1(1) K1/K1(2)];
382
383 %%% Determine Type 2 twin
384 n2=2*(j-(U3'*U3*j)/norm(U3*j)ˆ2);
385 norm2=norm(n2);
386 n2=n2/norm2;
387 a2=norm2*U3*j;
388
389 shear2=a2*1/a2(2);
390 plane2=n2';
391
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392 %%% Transform back to current configuration
393 eta2=inv(FRF)*((Q{3}*a2)/norm(Q{3}*a2));
394 K2=((n2'*inv(F))/norm(n2'*inv(F))*FRF)';
395
396 T16=[s8 shear2 2*n2/sqrt(2) eta2/eta2(2) K2/K2(1)];
397 %% Compute the twins formed by U2 and U4, R(k,180)
398
399 disp('Computing twins formed by martensite variants 2-4, R(k,180) ...')
400
401 %%% Determine Type 1 twin
402 a1=2*((inv(U2)'*k)/norm(inv(U2)'*k)ˆ2 -U2*k);
403 n1=k;
404 s9=[norm(a1)*norm(U2\n1) nan nan]';
405
406 shear1=a1*1/a1(2);
407 plane1=n1';
408
409 %%% Transform back to current configuration
410 eta1=inv(FRF)*((Q{2}*a1)/norm(Q{2}*a1));
411 K1=((n1'*inv(F))/norm(n1'*inv(F))*FRF)';
412
413 T17=[s9 shear1 n1 eta1/eta1(1) K1/K1(3)];
414
415 %%% Determine Type 2 twin
416 n2=2*(k-(U2'*U2*k)/norm(U2*k)ˆ2);
417 norm2=norm(n2);
418 n2=n2/norm2;
419 a2=norm2*U2*k;
420
421 shear2=a2*1/a2(3);
422 plane2=n2';
423
424 %%% Transform back to current configuration
425 eta2=inv(FRF)*((Q{2}*a2)/norm(Q{2}*a2));
426 K2=((n2'*inv(F))/norm(n2'*inv(F))*FRF)';
427
428 T18=[s9 shear2 2*n2/sqrt(2) eta2/eta2(3) K2/K2(1)];
429 %% Compute the twins formed by U4 and U2, R(k,180)
430
431 disp('Computing twins formed by martensite variants 4-2, R(k,180) ...')
432
433 %%% Determine Type 1 twin
434 a1=2*((inv(U4)'*k)/norm(inv(U4)'*k)ˆ2 -U4*k);
435 n1=k;
436 s10=[norm(a1)*norm(U4\n1) nan nan]';
437
438 shear1=a1*1/a1(1);
439 plane1=n1';
440
441 %%% Transform back to current configuration
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442 eta1=inv(FRF)*((Q{4}*a1)/norm(Q{4}*a1));
443 K1=((n1'*inv(F))/norm(n1'*inv(F))*FRF)';
444
445 T19=[s10 shear1 n1 eta1/eta1(1) K1/K1(3)];
446
447 %%% Determine Type 2 twin
448 n2=2*(k-(U4'*U4*k)/norm(U4*k)ˆ2);
449 norm2=norm(n2);
450 n2=n2/norm2;
451 a2=norm2*U4*k;
452
453 shear2=a2*1/a2(3);
454 plane2=n2';
455
456 %%% Transform back to current configuration
457 eta2=inv(FRF)*((Q{4}*a2)/norm(Q{4}*a2));
458 K2=((n2'*inv(F))/norm(n2'*inv(F))*FRF)';
459
460 T20=[s10 shear2 2*n2/sqrt(2) eta2/eta2(3) K2/K2(1)];
461 %% Compute the twins formed by U3 and U4, R(i,180)
462
463 disp('Computing twins formed by martensite variants 3-4, R(i,180) ...')
464
465 %%% Determine Type 1 twin
466 a1=2*((inv(U3)'*i)/norm(inv(U3)'*i)ˆ2 -U3*i);
467 n1=i;
468 s11=[norm(a1)*norm(U3\n1) nan nan]';
469
470 shear1=a1*1/a1(2);
471 plane1=n1';
472
473 %%% Transform back to current configuration
474 eta1=inv(FRF)*((Q{3}*a1)/norm(Q{3}*a1));
475 K1=((n1'*inv(F))/norm(n1'*inv(F))*FRF)';
476
477 T21=[s11 shear1 n1 eta1/eta1(2) K1/K1(1)];
478
479 %%% Determine Type 2 twin
480 n2=2*(i-(U3'*U3*i)/norm(U3*i)ˆ2);
481 norm2=norm(n2);
482 n2=n2/norm2;
483 a2=norm2*U3*i;
484
485 shear2=a2*1/a2(1);
486 plane2=n2';
487
488 %%% Transform back to current configuration
489 eta2=inv(FRF)*((Q{3}*a2)/norm(Q{3}*a2));
490 K2=((n2'*inv(F))/norm(n2'*inv(F))*FRF)';
491
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492 T22=[s11 shear2 2*n2/sqrt(2) eta2/eta2(1) K2/K2(2)];
493 %% Compute the twins formed by U4 and U3, R(i,180)
494
495 disp('Computing twins formed by martensite variants 4-3, R(i,180) ...')
496
497 %%% Determine Type 1 twin
498 a1=2*((inv(U4)'*i)/norm(inv(U4)'*i)ˆ2 -U4*i);
499 n1=i;
500 s12=[norm(a1)*norm(U4\n1) nan nan]';
501
502 shear1=a1*1/a1(3);
503 plane1=n1';
504
505 %%% Transform back to current configuration
506 eta1=inv(FRF)*((Q{4}*a1)/norm(Q{4}*a1));
507 K1=((n1'*inv(F))/norm(n1'*inv(F))*FRF)';
508
509 T23=[s12 shear1 n1 eta1/eta1(2) K1/K1(1)];
510
511 %%% Determine Type 2 twin
512 n2=2*(i-(U4'*U4*i)/norm(U4*i)ˆ2);
513 norm2=norm(n2);
514 n2=n2/norm2;
515 a2=norm2*U4*i;
516
517 shear2=a2*1/a2(1);
518 plane2=n2';
519
520 %%% Transform back to current configuration
521 eta2=inv(FRF)*((Q{4}*a2)/norm(Q{4}*a2));
522 K2=((n2'*inv(F))/norm(n2'*inv(F))*FRF)';
523
524 T24=[s12 shear2 2*n2/sqrt(2) eta2/eta2(1) K2/K2(2)];
525 %% Create table summarizing twinning systems
526 %%% Create table with respect to reference configuration
527 twinning_mode =

["1-2";"2-1";"1-3";"3-1";"1-4";"4-1";"2-3";"3-2";"2-4";"4-2";"3-4";"4-3"];

528 n1 = round([T1(:,3)'; T3(:,3)'; T5(:,3)'; T7(:,3)'; T9(:,3)'; T11(:,3)'; T13
(:,3)'; T15(:,3)'; T17(:,3)'; T19(:,3)'; T21(:,3)'; T23(:,3)'],10);

529 a1 = round([T1(:,2)'; T3(:,2)'; T5(:,2)'; T7(:,2)'; T9(:,2)'; T11(:,2)'; T13
(:,2)'; T15(:,2)'; T17(:,2)'; T19(:,2)'; T21(:,2)'; T23(:,2)'],10);

530 n2 = round([T2(:,3)'; T4(:,3)'; T6(:,3)'; T8(:,3)'; T10(:,3)'; T12(:,3)';
T14(:,3)'; T16(:,3)'; T18(:,3)'; T20(:,3)'; T22(:,3)'; T24(:,3)'],10);

531 a2 = round([T2(:,2)'; T4(:,2)'; T6(:,2)'; T8(:,2)'; T10(:,2)'; T12(:,2)';
T14(:,2)'; T16(:,2)'; T18(:,2)'; T20(:,2)'; T22(:,2)'; T24(:,2)'],10);

532 shear = round([s1(1); s2(1); s3(1); s4(1); s5(1); s6(1); s7(1); s8(1); s9
(1); s10(1); s11(1); s12(1)],10);

533
534 Twinning_systems_reference = table(twinning_mode,n1,a1,n2,a2,shear)

25



535
536 %%% Create table with respect to current configuration
537 twinning_mode =

["1-2";"2-1";"1-3";"3-1";"1-4";"4-1";"2-3";"3-2";"2-4";"4-2";"3-4";"4-3"];

538 eta1 = round([T1(:,4)'; T3(:,4)'; T5(:,4)'; T7(:,4)'; T9(:,4)'; T11(:,4)';
T13(:,4)'; T15(:,4)'; T17(:,4)'; T19(:,4)'; T21(:,4)'; T23(:,4)'],10);

539 K1 = round([T1(:,5)'; T3(:,5)'; T5(:,5)'; T7(:,5)'; T9(:,5)'; T11(:,5)'; T13
(:,5)'; T15(:,5)'; T17(:,5)'; T19(:,5)'; T21(:,5)'; T23(:,5)'],10);

540 eta2 = round([T2(:,4)'; T4(:,4)'; T6(:,4)'; T8(:,4)'; T10(:,4)'; T12(:,4)';
T14(:,4)'; T16(:,4)'; T18(:,4)'; T20(:,4)'; T22(:,4)'; T24(:,4)'],10);

541 K2 = round([T2(:,5)'; T4(:,5)'; T6(:,5)'; T8(:,5)'; T10(:,5)'; T12(:,5)';
T14(:,5)'; T16(:,5)'; T18(:,5)'; T20(:,5)'; T22(:,5)'; T24(:,5)'],10);

542 shear = round([s1(1); s2(1); s3(1); s4(1); s5(1); s6(1); s7(1); s8(1); s9
(1); s10(1); s11(1); s12(1)],10);

543
544 Twinning_systems_current = table(twinning_mode,eta1,K1,eta2,K2,shear)
545
546 %%% Display possibility of Twin based on habit plane equation
547 if mu1<=-2 && mu2<=-2 && eta1>=0 && eta2>=0
548 disp('Both planes meet both conditions, so Twinning systems are {1 0

0}<0 1 1> and {1 1 0}<0 0 1>')
549 elseif mu1>-2 && mu2<=-2
550 disp('Only {1 1 0} plane meets both conditions, so Twinning system is {1

1 0}<0 0 1>')
551 elseif mu1<=-2 && mu2>-2
552 disp('Only {1 0 0} plane meets both conditions, so Twinning system is {1

0 0}<0 1 1>')
553 elseif mu1<=-2 && mu2<=-2 && eta1<0
554 disp('Only {1 1 0} plane meets both conditions, so Twinning system is {1

1 0}<0 0 1>')
555 elseif mu1<=-2 && mu2<=-2 && eta2<0
556 disp('Only {1 0 0} plane meets both conditions, so Twinning system is {1

0 0}<0 1 1>')
557 end
558 end
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