
Automatic segmentation of carotid arteries using
Independent Component Analysis for quantitative

brain PET

L.A.W. (Laura) Vasbinder
S4487648

Nuclear Medicine & Molecular Imaging Department,
University Medical Centre Groningen

Period: 17/04/2023 - 01/07/2023

A thesis submitted for the bachelor degree of Biomedical Engineering
Bachelor’s project BME, WBBE901-15

1st Examiner: Prof. Dr. Ir. C. (Charalampos) Tsoumpas, Nuclear Physicist &
Biomedical Engineer at Nuclear Medicine and Molecular Imaging Department,

University Medical Centre Groningen

2nd Examiner: Dr. A.T.M. (Antoon) Willemsen, Nuclear Medicine and Molecular
Imaging Department, University Medical Centre Groningen

1



“Continuous improvement is better than delayed perfection”
Mark Twain

2



Preface

In front of you is the undergraduate thesis "Automatic segmentation of carotid
arteries using Independent Component Analysis for quantitative brain PET". This
thesis is the final work of my undergraduate studies in Biomedical Engineering
(BME) at the University of Groningen. The past two months I have been working
with great pleasure and passion on my thesis research which I was allowed to perform
at the Department of Nuclear Medicine and Molecular Imaging at the University
Medical Center Groningen.
In my younger years, I spent quite a lot of time in hospitals, so the interest in the
medical world, and specifically in medical imaging, was piqued at an early age. Partly
for this reason, I decided during my bachelor’s degree to pursue the specialization
of medical imaging. After taking several courses in this specialization, the imaging
modality positron emission tomography, or better known as PET, sparked my interest
and curiosity even more. Therefore, I was even more pleased to be able to conduct
my bachelors research with such an interesting and fascinating topic. It was very
interesting to go even deeper into the technology underlying this imaging modality
and explore the possibilities of making this modality even more widely applicable
with even better patient well-being.
The completion of this research would not have been possible without a number of
people who have helped and supported me during this project. First and foremost, I
would like to express my gratitude to my (daily) supervisor. I had the opportunity
to conduct this research under the daily supervision of Laura Providência, for which
I am very grateful. Many thanks for that. I would also like to thank my main
supervisor and first examiner Charalampos Tsoumpas, and my second examiner
Antoon Willemsen, for reviewing my work and guiding me during the project. My
sincere thanks also go to Dr. J. van Sluis and colleagues for providing the data for
this study. While conducting this study, I also had help from the Carimas Research
team, who selflessly allowed me to use their software. This helped me tremendously
during my research and for that I am very grateful. Finally, I would like to express
my appreciation to my family and friends, who supported me during the process and
who helped me review this thesis.
I like to close with the quote from Mark Twain visible on the previous page: “Con-
tinuous improvement is better than delayed perfection”. This quote was essential for
me while doing my research and writing my thesis. In my opinion, this quote nicely
represents the essence of doing research; it is better to continuously improve, than to
(want to) do it right the first time.

I hope you enjoy reading this thesis.

Laura Vasbinder

Groningen, July 1, 2023

3



Abstract
The accurate estimation of a plasma input function is crucial for the quantitative
analysis of dynamic PET data. The gold standard to obtain the plasma input function
is by arterial blood sampling. The procedure of arterial blood sampling is complex
and invasive, and therefore it is of clinical interest to develop a noninvasive alternative
to arterial blood sampling. In this study, we investigated the feasibility of obtaining
accurate image-derived input functions (IDIF) through automatic segmentation of
the carotids using independent component analysis (ICA) and subsequent application
of partial volume correction (PVC), as an alternative input function for quantitative
brain FDG PET.
Methods: Dynamic FDG PET data of 9 oncology patients was used. The carotids
were automatically segmented using the FastICA algorithm, and the resulting time
activity curves (TAC) were corrected for the partial volume effect (PVE). The
corrected TACs were then used as input functions for kinetic modeling using a
two-tissue compartment irreversible tracer model and Patlak analysis. The obtained
model parameters were compared to reference values that were obtained by kinetic
modeling with a reference IDIF extracted from the ascending aorta.
Results: The shape and temporal characteristics of the PVE-corrected carotids TACs
resembled those of the reference, indicating reliable estimation. The results obtained
by kinetic modeling showed a good agreement between the estimated values for the
net influx rate estimated by the PVE-corrected carotids TAC and the reference TAC.
The PVE correction effectively minimized the PVE, resulting in improved accuracy
of the estimated model parameters.
Conclusion: The obtained results suggest that an IDIF obtained from automatic
segmentation of the carotids by ICA and corrected for the PVE can accurately be used
as an alternative input function for Patlak analysis. The variation in the estimates
of the model parameters K1, k2, and k3 obtained by compartment modeling suggests
that the PVE-corrected carotids IDIF cannot be used as an accurate alternative
input function for compartment modeling.
Keywords: Carotids time activity curve, compartment modeling, image-derived input
function, independent component analysis, partial volume correction, Patlak analysis,
quantitative PET.
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Glossary
CAA = time activity curve extracted from the ascending aorta
CIC = time activity curve extracted from the carotids
CIC-PVC = partial volume corrected time activity curve of the carotids
CTissue = time activity curve of the tissue surrounding the carotids
CTrue = true time activity curve in the blood pool (carotids)
FDG = 18F-fluorodeoxyglucose
IC = independent component
ICA = independent component analysis
IDIF = image-derived input function
LC = Lumped Constant
MPE = mean percentage error
MRGlu = cerebral metabolic rate of glucose
PET = positron emission tomography
PG = concentration of glucose in the plasma
PKIN = PMOD Kinetic Modeling
PVC = partial volume correction
PVE = partial volume effect
RC = recovery coefficient
SP = spill-in coefficient
SUV = standardized uptake value
TAC = time activity curve
VOI = volume of interest
2TC3K_VB = two-tissue compartment irreversible tracer model fitting for blood
volume
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Introduction
Quantitative brain positron emission tomography (PET) studies can be performed to measure
several physiological processes, such as volume of distribution, glucose consumption, and cerebral
blood flow [Tai and Piccini, 2004]. A radioactive tracer that is often used for quantitative brain
PET studies is 18F-fluorodeoxyglucose (FDG), a glucose analog labeled with fluorine-18 [Bell and
Deng, 2019]. Semi-quantitative methods, such as the calculation of the standardized uptake value
(SUV) for a specific tissue, can provide information about the uptake of FDG into the tissue [Thie,
2004]. The SUV is a measure of the total tracer uptake in the tissue and is proportional to the tissue
radioactivity concentration measured in a specific region of interest of a static PET image. However,
this total uptake of radioactive tracer is due to three processes: the non-specific accumulation of
the radioactive tracer in the tissue by, for example, passive diffusion, the specific interaction of the
radioactive tracer with the process of interest (the rate of glucose metabolism in the case of FDG
brain PET studies), and the presence of radioactive tracer in the blood vessels that vascularized
the tissue [Weber, 2010]. When the aim of the study is to assess the glucose metabolic rate, a
fully quantitative analysis must be used to extract the specific FDG uptake from the total uptake
measured in the tissue of interest.

Fully quantitative analysis of the dynamic PET data of the brain is done by applying a pharmacoki-
netic model to the brain time activity curves (TAC). Local cerebral glucose metabolism in parts
of the brain can be quantified by the use of a two-tissue compartment irreversible tracer model
[Rahmim et al., 2018]. Since the distribution and metabolism of a radioactive tracer is a dynamic
process, the plasma tracer radioactivity concentration must be measured and used as an input
function to establish and solve compartment models [Heurling et al., 2017]. The input function
represents the continuous radioactivity concentration in the plasma over time [Watabe et al., 2006]
and is traditionally obtained via arterial blood sampling [Meikle et al., 2021]. Since arterial blood
sampling is an invasive and complex procedure that comes with risks to both patients and personnel,
there would be much to gain from an alternative method that minimizes or eliminates the need for
arterial blood sampling.

In previous years, many non- or less invasive alternatives to obtain the input function have been
explored [Mejia et al., 1994; van der Weijden et al., 2023; Zanotti-Fregonara, Chen, et al., 2011].
A popular alternative is the use of an image-derived input function (IDIF) in which the plasma
time activity curve is obtained by the placement of a volume of interest (VOI) over a blood pool
that is within the field-of-view of the PET scanner [Zanotti-Fregonara, Maroy, et al., 2009]. This
approach avoids the need for blood sampling to obtain the input function. However, since there
are still quite some challenges to be solved for IDIF, it is still virtually not used in the clinic to
reduce the invasiveness of brain PET studies [Zanotti-Fregonara, Chen, et al., 2011]. One challenge
often encountered in PET imaging, and also in the IDIF approach, is the partial volume effect
(PVE), which becomes relevant when the object size is less than two to three times the PET spatial
resolution (3-6 mm). When the IDIF is extracted from large blood pools such as the left ventricle
or the aortic segments, PVE can usually be neglected, given the large size of these structures.
However, when using a PET scanner with a standard field-of-view (15-25 cm) for dynamic brain
PET imaging, these large structures are not in the field-of-view of the PET scanner, and therefore
the (internal) carotids are commonly used to extract the IDIF. The internal carotid is a small
artery, typically with a diameter of 4.66 ± 0.78 mm for women and 5.11 ± 0.87 mm for men [Krejza
et al., 2006], in the neck that supplies blood to the anterior part of the brain. The internal carotid
is a branch of the common carotid artery, which splits into the internal and external carotid at
the level of the fourth cervical vertebra [Charlick and Das, 2022]. Because of the small size of the
internal carotids compared to the typical spatial resolution of a PET scanner [Wang, 2018], they
will suffer from PVEs, which can lead to biased model parameters. In 1998, Chen et al. proposed a
method to correct for the PVE encountered in small anatomical structures.

The aim of this study is to obtain accurate image-derived input functions through automatic
segmentation of the carotids by independent component analysis (ICA) and applying the partial
volume correction (PVC) method proposed by Chen et al. (1998). The time activity curves that were
corrected for the PVE were then used for tracer kinetic modeling using a two-tissue compartment
irreversible tracer model and Patlak Analysis, and were compared to reference values obtained from
kinetic modeling with an IDIF extracted from the ascending aorta.
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Theoretical background
Independent Component Analysis
Independent Component Analysis (ICA) is a statistical tool that uses computational analysis to
identify and separate the original signals coming from individual sources in a signal that is a linear
combination of these sources [Dieckmann, 2023]. One key assumption for the use of ICA is that the
individual sources are statistically independent [Hyvärinen and Oja, 2000]. The measured, mixed
signal can then be defined as

xi = ai,1 ∗ s1 + ai,2 ∗ s2 + ... + ai,n ∗ sn =
∑

n

ai,n ∗ sn (1)

Where xi is the ith measured mixed signal, sn is the nth independent source signal, and ai,n is the
corresponding unknown mixing coefficient. The above function can be represented using matrix
notation as follows

x = As (2)

Where x is the space that contains all i measured mixed signals, the n independent source signals, or
independent components (ICs), are represented by the random vector s, and matrix A contains the
corresponding mixing coefficients [Tharwat, 2020]. The ultimate goal of ICA is to solve Equation 2
for the vector s by finding the matrix A or the matrix W, which is the inverse of matrix A, for
which the sources have the maximum possible independence. A way to maximize the independence
of sources is by maximizing their non-Gaussianity. The second fundamental theorem of probability,
also called the Central Limit Theorem, states that, under certain conditions, the distribution of
a sum of independent variables will follow a Gaussian distribution [Grinstead and Snell, 2022].
And, in general, a signal which is a mixture of independent random variables has a more Gaussian
distribution than any of the individual variables. Maximizing the non-Gaussianity will therefore
result in the recovery of the independent variables hidden in the mixed signal [Cardoso, 2003].

One way to measure non-Gaussianity is by measuring the negative entropy, often called negentropy.
The negentropy is zero in the case where all the variables are Gaussian and maximal in the case
where all variables are maximal independent [Kumar and Jayanthi, 2019]. For this study, the
FastICA algorithm was used. This algorithm maximizes the negentropy for the independent source
signals by the use of fixed-point iterations [Hyvarinen, 1999] and thereby extracts the independent
components.

Partial volume correction
The partial volume effect (PVE) causes the radioactivity concentration of small, highly active
targets to be underestimated while overestimating their apparent volume due to spill-out from the
target area into the background. On the other hand, larger structures or regions with lower tracer
uptake may appear smaller or have higher measured tracer concentrations due to spill-in from the
background into the target tissue [Bettinardi et al., 2014]. The effect of spill-in and spill-out taken
together is referred to as the spill-over of radioactivity. In order to obtain an accurate carotids TAC,
the curve should be corrected for the PVE. A method to correct the obtained TAC for spill-out and
spill-in was proposed by Chen et al. (1998). In this method, it is assumed that the radioactivity
measured in the carotids is actually a linear combination of the true radioactivity in the blood pool
and the radioactivity present in the tissue surrounding the carotids. Consequently, the measured
radioactivity in the carotids can be represented as:

CIC = CTrue ∗ RC + CTissue ∗ SP (3)

where CIC is the obtained carotids TAC, CTrue is the true tracer concentration in the blood pool,
CTissue is the tracer concentration in the tissue surrounding the carotids, RC is the recovery
coefficient and SP is the spill-over coefficient representing the spill-over of activity between the
surrounding tissue and the carotids. One can then estimate the values for RC and SP by applying
Equation 3 for the time-points for which the CIC , CTrue, and CTissue are known and subsequently
applying the non-negative linear least squares method.
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Materials and methods
Data acquisition
For this study, dynamic FDG PET data of 9 oncology patients (5 male, 4 female; age range: 68–81
years, mean age: 73.1 ± 3.9) with suspected lung malignancy referred for clinical diagnosis, who
participated in a previous study [van Sluis et al., 2022] was used. Listmode PET data were acquired
on a Siemens Biograph Vision Quadra for 65 minutes after intravenous bolus injection of 3 MBq/kg
(±10%) [18F]FDG (activity range: 204-303 MBq, mean activity: 246.0 ± 33.6 MBq). Patients were
asked to fast at least 6 hours prior to the PET scan. The data was binned over 42 frames (four
frames of 10 s, sixteen of 5 s, six of 30 s, five of 60 s, and eleven frames of 300 s), and the images
were reconstructed using a 3D OSEM PSF-TOF algorithm (4 iterations, 5 subsets). All data was
corrected for attenuation, random coincidences, scattered radiation, dead-time, and decay. The
reconstructed images consisted of 645 planes of 440x440 voxels, with a voxel size of 1.65 × 1.65 ×
1.65 mm3. No filter was applied to the images.

Inter-frame motion correction was performed on the slices comprising the head and neck using a
cubic spline interpolation. The correction was applied when translational motion in any of the
directions (x, y, or z) was higher than 3 mm.

For most parts of this study, only the portion of the obtained dynamic FDG PET data that contains
the head and neck region ( planes 500 to 645) was used. This portion of the total data will be
referred to as “dynamic brain FDG PET data”. The portion of the obtained dynamic FDG PET
data that contains the chest region (planes 350 to 500) was used for the Partial Volume Correction
and validation, and will be referred to as “dynamic chest FDG PET data”.

Determination of the carotid volume of interest
To ensure that only the carotid structures will be segmented, the original dynamic brain FDG PET
data was cropped before applying ICA to select only the volume in which the carotid structures
were clearly visible. To define this volume, the first five image frames of the dynamic brain FDG
PET data (first 50 seconds) were summed to easily identify the carotids. A cubical VOI of size
110x180x65 voxels was then defined that encloses both the left and right carotid arteries and the
data was cropped to this VOI.

FastICA for dynamic brain FDG PET data
Dynamic brain FDG PET data are four-dimensional datasets that contain information about the
measured radioactivity (kBq/cc) in each voxel of the image. The measured radioactivity signal as a
function of the location in the image can be treated as a mixed signal x(q), where q represents the
voxel number. The elements of x(q), xi(q), represent the measured signal in voxel q at time-point i.
The time-point i is the time-point at which the signal is measured. As described before, for this
study 42 frames were acquired with different frame times. Therefore, the time-point i ranged from
1 to 42. The independent components were represented by s(q), which represents the voxels in
the independent components. This matrix containing the source information provides information
about the spatial location of the independent components and thus the spatial distribution of the
tissues of interest, corresponding to the independent components. The independent source matrix
of size n x q was then split into n matrices of size 1 x q representing the information for the n
individual independent components. These matrices were reshaped to the x, y, and z dimensions of
the original dynamic brain FDG PET data and visualized as independent component images.

For this study, it was assumed that the dynamic brain FDG PET data is composed of two individual
sources, or independent components, namely blood and other tissue. Therefore, the ICA algorithm
was used to separate the original PET image into a blood- and tissue-independent component
image. The blood-independent component image represents the blood pool in the dynamic brain
FDG PET data which, in this case, are the carotid arteries.
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Pre-processing
Before applying the FastICA algorithm to the dynamic brain FDG PET data, pre-processing of the
data was done. As previously mentioned, the dynamic brain FDG PET data was represented as
the matrix x. The data pre-processing phase consisted of two parts, centering and whitening of x
[Tharwat, 2020]. In the first step, it is necessary to transform x into a variable with a zero mean.
This centering of x was done by subtracting its mean. The second part, whitening of x, was done
to un-correlate its components and make their variances equal to one.

Obtaining the carotids time activity curve
To obtain the TAC of the carotid arteries, a vessel mask was created from the blood-independent
component image. By definition of the theorem underlying the ICA algorithm, the distribution
of the data in the independent component images is assumed to be super-Gaussian [Hyvarinen,
1999; Hyvärinen and Oja, 2000]. Therefore, the method of Gaussian fitting proposed by Su et al.
(2005) was used to determine the threshold for obtaining the vessel mask. First, a histogram was
plotted of the number of voxels in the image having a specific gray value. This histogram was then
transformed using the Gaussian fitting method, by subtracting the mean of the histogram values
from these histogram values and dividing it by its standard deviation, as shown in Equation 4. After
transformation, the desired threshold value was determined from the transformed histogram and
was used to create the vessel mask. For this study, the threshold was set to 9 times the standard
deviation. Finally, the carotids TAC (CIC) was obtained by applying the generated vessel mask to
the dynamic brain FDG PET data and averaging the TACs of the voxels inside the mask.

Z = X − µ

σ
(4)

Partial Volume Correction
The previously obtained CIC can be represented as the linear combination in Equation 3. To
obtain the TAC of the surrounding tissue (CTissue), the previously created vessel mask was dilated
using both a 3×3×3 and 5×5×5 structuring element. The mask of the tissue surrounding the
carotid arteries was then acquired by subtracting the smaller mask (3×3×3 dilation) from the larger
mask (5×5×5 dilation). The radioactivity of the surrounding tissue was obtained by applying the
resultant mask to the dynamic brain FDG PET data and averaging the TACs of the voxels inside
the mask.

CTrue was substituted by CAA and represents the true radioactivity in the blood pool obtained by
extracting an IDIF from the ascending aorta. The TAC was generated by placing a spherical VOI
with a radius of 7.5 mm in the middle of the ascending aorta structure in the dynamic chest FDG
PET data and averaging the TACs of the voxels inside the VOI. To determine the right location of
the VOI, the ascending aorta structure was first identified by visually inspecting an early image
frame where the contrast between the blood pool and the surrounding tissues was high. For the
PVC, the measurements of the last three time frames of the ascending aorta TAC were used.

Equation 3, representing the linear mixture of measured radioactivity in the carotids, was applied
to the three time-points for which CIC, CTissue, and CAA were all known, i.e. the last three frames
(50 - 65 min). The non-negative linear least squares method was then used to estimate the values of
the recovery and spill-over coefficients; the coefficients were bound to have a value between zero and
one. After estimating the coefficients, the PVE-corrected carotids TAC, CIC-PVC, was calculated
as:

CIC−P V C = CIC − SP ∗ CT issue

RC
(5)
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Two-tissue compartment modeling
Quantitative analysis of the dynamic brain FDG PET data was done by performing compartment
modeling and Patlak analysis. The tracer kinetics of FDG can be represented using a two-tissue
compartment model [Huang et al., 1980; Vallabhajosula, 2023] as shown in Figure 1.

Figure 1: Schematic representation of the two-tissue compartment model for modeling the kinetics
of FDG. The model represents the three possible tracer states, FDG in plasma, FDG in brain tissue,
and phosphorylated FDG in tissue. The parameters K1 to k4 represent the rate constants between the
compartments.

The model consists of three compartments, a compartment representing the FDG concentration in
plasma, a compartment representing the FDG concentration in the brain tissue, and a compartment
representing the concentration of phosphorylated FDG, FDG-6-P, in the brain tissue. These three
compartments are represented by CPlasma, CUnmetabolized, and CMetabolized, respectively. The model
parameters K1, k2, k3, and k4 represent the influx of FDG from the plasma to the tissue, the efflux
of FDG from the tissue to the plasma, the rate of FDG phosphorylation, and the rate of FDG
dephosphorylation, respectively. Although dephosphorylation of FDG is possible to some extent,
this process in brain tissue is very slow [Kilicoglu et al., 2023] and has shown to have no significant
effect in the time span of the PET data acquisition [Schmidt et al., 1992]. Therefore, the rate
constant k4 was set to zero and a two-tissue compartment irreversible tracer model fitting for blood
volume ( 2TC3K_VB) was used to estimate the model parameters K1, k2, and k3.

The model parameters were estimated using the PMOD Kinetic Modeling (PKIN) tool
[https://doc.pmod.com/PDF/PKIN.pdf]. A plasma input curve and a tissue TAC representing the
concentration of FDG in the whole brain were provided to the software to initiate the fitting. The
whole-brain TAC was obtained by applying a mask of the whole brain to the dynamic brain FDG
PET data and averaging the TACs for all voxels in the brain mask. Before fitting the model, blood
delay correction was applied to correct for the time delay between the blood and tissue TACs.

The analyses for all patients were performed threefold, using the same tissue TAC but different
plasma input functions. First, the analyses were performed using CIC as a plasma input function.
Then, using CIC-PVC. Lastly, the analyses were performed with CAA as the input function, which
is used as a reference for this study. The rate constants were then used to compute the net influx
rate of FDG by

Ki = K1 ∗ k3

k2 + k3
(6)

The parameter Ki is a measure of the concentration of FDG that is trapped in the irreversible
phosphorylated state and can be used to calculate the cerebral metabolic rate of glucose (MRGlu)
by [Huang et al., 1980]

MRGlu = PG
LC ∗ Ki (7)

where PG is the concentration of glucose in the plasma and LC is the Lumped Constant.
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Patlak analysis
Another method that was used to obtain the regional, whole-brain net influx rate of FDG was the
graphical Patlak analysis. The Patlak analysis is a graphical analysis technique that can be used
for tracers that undergo irreversible trapping in tissue. For the Patlak analysis, the measured tissue
TAC is mathematically transformed and plotted as a function of normalized time [Jodal, 2004],
known as the Patlak plot, which results in a straight line when the reversible compartment is in
equilibrium with plasma. For this study, the time of equilibrium was set to t* = 30 min. The slope
of the Patlak plot is equal to the net influx rate Ki and the intercept is equal to the sum of the
distribution volume of the reversible compartment and the fractional blood volume.

After regional quantitative analysis, voxel-by-voxel analysis was done by creating parametric images
of the net influx rate Ki with both the PVE-corrected IDIF and the ascending aorta IDIF as input
functions. The Patlak analysis method was used to create the parametric images. To generate
the parametric net influx rate images, the same whole-brain mask was used as for the regional,
whole-brain analysis. Whereas an average of all TACs for the different voxels inside the mask was
taken for the regional analysis, all voxel TACs were used individually to generate the parametric
images.

Data analysis
For this study, the model parameters obtained by using CAA as the input function were used as
the reference. The first step of the data analysis was visual analysis to qualitatively determine if
there was variation between the three input functions and their corresponding estimated model
parameters. After the visual analysis, the area under the curve (AUC) for all CIC, CIC-PVC, and
CAA was determined.

To quantitatively assess whether performing the partial volume correction improved the estimation
of the model parameters, the mean percent error (MPE) of the obtained parameters was determined
for the comparison of CIC vs CAA and for the comparison of CIC-PVC vs CAA. The MPE is defined
as

MPE = 100%
n

∗
∑

n

estimate − actual

actual
(8)

The Wilcoxon signed-rank test with a significance level of 0.05 was performed to test the hypothesis
of zero mean difference between the model parameters estimated using either CIC or CIC-PVC as
input function, and the parameters estimated by taking CAA as input function.

For both the regional and voxel-wise analysis, the net influx rates obtained with both CIC and
CIC-PVC as input were compared to the net influx rates estimated using CAA by creating a regression
plot and performing regression analysis. When the values obtained with the two input functions are
in perfect agreement, the slope of the regression line and the coefficient of determination would be
exactly one, and the intercept would be zero. Obtained measures close to these values thus imply a
good agreement between the two methods. The Wilcoxon signed-rank test was used to test the
unit slope and zero intercept, with a significance level of 0.05.

In addition, a Bland-Altman plot was generated for each patient to see whether there was systemic
and/or proportional bias in the estimated voxel-wise net influx rates by CIC-PVC and CAA. To
investigate systemic bias, the mean difference lines in the Bland-Altman plots for all patients were
examined. If this line was significantly different from zero, it indicates the presence of systemic bias.
The Wilcoxon signed-rank test was performed to determine whether the observed mean differences
were significantly different from zero. To examine proportional bias, the linearity of the differences
was assessed for each plot. This was done by plotting a regression line on the Bland-Altman plot;
if the regression line has a significant slope, this indicates a proportional bias. The Wilcoxon
signed-rank test was again consulted to assess whether there was a significant slope.

12



Results
Regional analysis
Figure 2A shows the contours of the carotids vessel mask obtained by ICA and Gaussian fitting
(red) and the tissue mask obtained by the dilation method (blue) for one of the patients. The masks
are superimposed over an early frame of one brain level where the carotid structure was easily seen.
Figure 2B shows the TACs for CIC and CTissue, obtained by applying the masks from Figure 2A
to the dynamic brain FDG PET data. The original and PVE-corrected IDIFs extracted from the
carotids were compared to the IDIF extracted from the ascending aorta. Figure 3 shows the TACs
CIC, CIC-PVC, and CAA, for two different patients. CIC and CIC-PVC are the carotids TAC before
and after partial volume correction, respectively, and CAA is the TAC extracted from the ascending
aorta. It can be seen that for the patient in Figure 3A, the peak of CIC-PVC is higher than the peak
of CAA. For the patient in Figure 3B, the opposite is true. For both patients, the tails of CIC-PVC
and CAA coincided well. The mean CIC, CIC-PVC, and CAA for the nine patients are shown in
Figure 4. From Figure 4 it can be seen that, on average, the peak of CIC is significantly lower than
the peaks of CIC-PVC and CAA. The peak of the mean CIC was 46% lower than that of CAA and
the peak of the mean CIC-PVC was found to be 11% lower than the peak of CAA. Furthermore, it
can be seen that all three curves reach their peak at the same time-point and have similar temporal
characteristics. In the latter parts of the graph, the curve of CIC underestimates CAA by 17% in
the last frame and the lines of CIC-PVC and CAA lie on top of each other and are almost equal
(difference of 0.40% in the last frame). Furthermore, the AUC for the mean CIC, CIC-PVC, and
CAA in Figure 4 were 450, 627, and 651 min x kBq x cc-1, respectively.

Figure 2: (A) Example of the contours of the obtained carotids vessel mask (red) and tissue mask (blue)
for one of the patients. The carotids vessel mask was obtained by independent component analysis and
Gaussian fitting. The tissue mask was obtained by dilation and subtraction of the carotids vessel mask.
(B) Time activity curves obtained by applying the masks of (A) to the dynamic brain FDG PET data.

Figure 3: For two patients, the original and partial volume corrected carotids time activity curves (CIC
and CIC-PVC, respectively) and the reference time activity curve extracted from the ascending aorta (CAA).
The partial volume corrected TAC CIC-PVC for the patient in (A) has a higher peak than the TAC CAA
has. Opposite to what can be seen in (A), for the patient in (B) the peak of CIC-PVC is lower than the
peak of CAA. For both patients, the tails of CIC-PVC and CAA coincided well.
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Figure 4: Comparison of the mean original and PVE-corrected carotids time activity curves (Mean CIC
and Mean CIC-PVC, respectively), and the mean time activity curve extracted from the ascending aorta
(Mean CAA). The time activity curves are acquired by taking the mean of the time activity curves of all
nine patients. On average, the peak of CIC is significantly lower than the peaks of CIC-PVC and CAA. All
three curves show similar temporal characteristics.

To assess if the results of the analyses using the carotids IDIFs are accurate and could potentially
be used as an alternative to kinetic modeling with arterial blood sampled input curves, the observed
values for the model parameters estimated with both CIC and CIC-PVC were compared to the
observed values estimated using CAA as the input function. The first step of the comparison was
the visual analysis of the results using bar charts, as can be seen in Figures 5A-5E. These charts
show the estimated values for the model parameters with the three different input functions, for
all nine patients. The mean and standard deviation of the values obtained for the parameters K1,
k2, k3, Ki for irreversible two-tissue compartment modeling, and Ki for Patlak analysis, with CIC,
CIC-PVC, and CAA as subsequent input functions are shown in Table 1.

Figure 5: Comparison of the model parameters obtained with the CIC and CIC-PVC to the results obtained
with CAA. Comparison of the values obtained with all three input functions for (A) the net influx rate
obtained with irreversible two-tissue compartment modeling, (B) the net influx rate obtained with Patlak
analysis (C) K1, (D) k2, and (E) k3.
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Table 1: Comparison of the mean model parameters estimated by the use of the two-tissue compartment
irreversible model (2TC3K_VB) and Patlak analysis and CIC, CIC-PVC, and CAA as subsequent input
functions. The model parameters estimated by CIC and CIC-PVC are compared to the model parameters
estimated by CAA using the Wilcoxon signed-rank test and the mean percentage errors (MPE). The
p-values for the Wilcoxon signed-rank tests are shown in columns 4 and 8.

CIC CAA
p-
value MPE CIC-PVC CAA

p-
value MPE

2TC3K_VB

K1 [ml/cm3/min] 0.14
±0.02

0.083
±0.009 0.03 73

±19%
0.09
±0.03

0.083
±0.009 0.2 9.3

±27%

k2 [1/min] 0.13
±0.03

0.13
±0.03 0.5 -2.9

±9.9%
0.11
±0.03

0.13
±0.03 0.03 -14

±11%

k3 [1/min] 0.030
±0.004

0.045
±0.007 0.03 -34

±5.2%
0.038
±0.009

0.045
±0.007 0.06 -17

±18%

Ki [ml/cm3/min] 0.027
±0.006

0.021
±0.005 0.03 31

±12%
0.021
±0.006

0.021
±0.005 0.5 1.5

±7.3%

Patlak analysis

Ki [ml/cm3/min] 0.023
±0.006

0.019
±0.004 0.03 23

±12%
0.019
±0.005

0.019
±0.004 0.5 0.24

±4.3%

To quantitatively compare the results obtained with the CIC and CIC-PVC to the reference values, the
mean percent error (MPE) of the model parameters for both CIC vs CAA and CIC-PVC vs CAA was
calculated (fifth and ninth column of Table 1, respectively). Furthermore, the Wilcoxon signed-rank
test was performed to test the hypothesis of zero mean difference between the model parameters
obtained by CIC and CAA, and the hypothesis of zero mean difference between the parameters
obtained by CIC-PVC and CAA (columns four and eight of Table 1). For the results obtained by
compartment modeling, the MPEs of the model parameters K1, k2, k3, and Ki estimated by the
CIC vs CAA were found to be 73 ± 19%, -2.9 ± 9.9%, -34 ± 5.2%, and 31 ± 12%, respectively. The
MPEs for the parameters estimated by CIC-PVC compared to CAA were 9.3 ± 27%, -14 ± 11%,
-17 ± 18%, and 1.5 ± 7.3%, respectively. For the regional net influx rates obtained with Patlak
analysis, the MPE for CIC vs CAA and CIC-PVC vs CAA were found to be 23 ± 12% and 0.24 ±
4.3%, respectively. The hypothesis of zero mean difference between the model parameters estimated
by CIC and CAA was rejected for the model parameters K1, k2, Ki obtained from compartment
modeling, and Ki obtained with Patlak analysis (p = 0.03 for all four parameters). The hypothesis
of zero mean difference between the value obtained for the model parameter k2 by CIC and CAA
could not be rejected (p = 0.5). For the model parameters K1, k3, Ki obtained with compartment
modeling, and Ki obtained with Patlak analysis estimated by CIC-PVC and CAA, the hypothesis of
zero mean difference could not be rejected by the Wilcoxon signed-rank test (p = 0.2, p = 0.06, p =
0.5, and p = 0.5, respectively). On the other hand, the hypothesis of zero mean difference between
the values for the model parameter k2 estimated by CIC-PVC and CAA was rejected (p = 0.03).

To further analyze the results obtained for the regional net influx rates with all three input functions,
regression analysis was performed. The results of the regression analysis are shown in Table 2 and
Figure 6. On the y-axes of Figures 6A - 6D, the net influx rates estimated by either CIC or CIC-PVC
are plotted. The x-axes in these figures represent the corresponding net influx rates estimated by
CAA. Regression analysis of the results obtained with CIC and CAA for compartment modeling
and Patlak analysis gave rise to slopes of 1.1 and 1.2, and intercepts of 3.6 x 10-3 and 1.3 x 10-3,
respectively. The regression analysis for the values obtained by compartment modeling and Patlak
analysis with the input functions CIC-PVC and CAA gave rise to regression slopes and intercepts of
1.1, 1.0, -1.2 x 10-3, and -6.3 x 10-5, respectively.
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Figure 6: Regression analysis of the regional net influx rates estimated by (A) irreversible two-tissue
compartment modeling with CIC and CAA, (B) Patlak analysis with CIC and CAA, (C) irreversible
two-tissue compartment modeling with CIC-PVC and CAA, and (D) Patlak analysis with CIC-PVC and CAA.
The y-axes of the figures represent the net influx rates estimated by either CIC ((A) and (B)) or CIC-PVC
((C) and (D)). The x-axes in these figures represent the corresponding net influx rates estimated by CAA.

Table 2: Summary of the results obtained from regression analyses (shown in Figure 6) of CIC vs CAA
and CIC-PVC vs CAA for the regional net influx rates obtained with irreversible two-tissue compartment
modeling (2TC3K_VB) and Patlak analysis. The table shows the results for the regression slope and
intercept, and coefficient of determination for all four regression analyses.

2TC3K_VB Patlak analysis

CIC vs CAA CIC-PVC vs CAA CIC vs CAA CIC-PVC vs CAA

Slope 1.1 1.1 1.2 1.0

Intercept 3.6 x 10-3 -1.2 x 10-3 1.3 x 10-3 -6.3 x 10-5

R2 0.90 0.94 0.87 0.98
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Voxel-wise analysis
Subsequently, Ki parametric images were created using the Patlak method. Two sets of Ki parametric
images were generated for each patient: one set where CIC-PVC was used as the input function
and the other where CAA was used as the input function. The net influx rate parametric images
were used for comparison and were first visually analyzed. Regression analysis was then used to
quantitatively compare the voxel-wise net influx rates obtained when using CIC-PVC and CAA as
input functions. Table 3 shows the mean net influx rate for CIC-PVC and CAA, which were obtained
by averaging all voxels in the parametric images, and the results of the regression analysis. The
mean regression slope, intercept, and coefficient of determination for the nine patients were 1.03
± 0.07, (-6.0 ± 7.0) x 10-4, and 1.000 ± 0.003, respectively. Moreover, the mean net influx rate
estimated by using CIC-PVC as the input function was 0.017 ± 0.004 ml/cm3/min, whereas the
mean net influx rate estimated by using CAA as the input function had a value of 0.018 ± 0.004
ml/cm3/min. An example of the voxel-wise regression analysis for one patient is shown in Figure 7.
As explained earlier, the regression line would have a slope of one and an intercept of zero when
the two methods are in perfect agreement. To test whether this is the case for the net influx rates
observed for all nine patients, a Wilcoxon signed-rank test was performed. The test showed that
the hypothesis for the unit slope and zero intercept could not be rejected (p = 0.3 for the slope and
p = 0.07 for the intercept). A Bland-Altman plot for the voxel-wise net influx rates for the same
patient as in Figure 7 is shown in Figure 8. On the x-axis of Figure 8, the average result, i.e. the
average of the net influx rate estimated by CIC-PVC and CAA, is displayed. The y-axis of Figure
8 represents the difference between the net influx rate estimated by the two input functions, i.e.
the net influx rate estimated by CIC-PVC minus the net influx rate estimated by CAA. The three
dashed lines represent, from top to bottom, the upper confidence interval, the mean difference, and
the lower confidence interval, respectively. To examine the systemic and proportional bias, the
mean differences and regression slopes were assessed. The Wilcoxon signed-rank test showed that
there was neither a significant mean difference nor a significant regression slope (p = 0.95 for the
mean difference and p = 0.2 for the slope).

Table 3: Comparison of the voxel-wise net influx rates estimated by CIC-PVC and CAA by the use of
regression analysis. The obtained voxel-wise net influx rates using the two input functions were regressed
for each patient individually and the coefficient of determination, and slope and intercept of the regression
line were determined. The mean coefficient of determination, and mean slope and intercept of the regression
line are shown in the table.

Mean Ki (CIC-PVC) [ml/cm3/min] 0.017 ± 0.004

Mean Ki (CAA) [ml/cm3/min] 0.018 ± 0.004

Slope 1.03 ± 0.07

Intercept (-6.0 ± 7.0) x 10-4

R2 1.000 ± 0.003
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Figure 7: Regression analysis of the voxel-wise net influx rates obtained by using CIC-PVC and CAA as
subsequent input functions. The graph in this figure is an example of the analysis for one patient. The
horizontal axis represents the net influx rates estimated by taking CAA as the input function and the
vertical axis represents the net influx rates estimated by using CIC-PVC as the input function.

Figure 8: Bland-Altman plot of the voxel-wise net influx rate obtained by using CIC-PVC and CAA as
the input functions for the same patient as in Figure 7. The blue line is the regression line used to assess
proportional bias in the estimates. The x-axis of Figure 8 represents the average result, i.e. the average
of the net influx rates estimated by CIC-PVC and CAA. The y-axis of the figure represents the difference
between the net influx rate estimated by the two input functions, i.e. the net influx rate estimated by
CIC-PVC minus the net influx rate estimated by CAA. The three dashed lines represent, from top to bottom,
the upper confidence interval, the mean difference, and the lower confidence interval, respectively.
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Discussion
This study investigates the feasibility of using a carotids IDIF to estimate tracer kinetic rate
constants in a non-invasive way, as an alternative to the commonly used arterial input function.
The procedure used for this study is semi-automatic, to reduce the number of subjective steps
and erroneous results. Manual determination was necessary to define the VOI containing the
carotids and to select the appropriate blood-independent component image. The segmentation
of the carotids and generation of the vessel and tissue mask was done automatically. The TACs
obtained by applying the vessel and tissue mask to the dynamic brain FDG PET data were used for
automatic PVE correction of the carotids TAC, by the use of the non-negative linear least squares
method. The original and PVE-corrected TACs were then used for tracer kinetic modeling using
a two-tissue compartment irreversible tracer model and Patlak analysis, and were compared to
reference values obtained from kinetic modeling with an IDIF extracted from the ascending aorta.

An important assumption made for this this study is the assumption that the FDG concentration in
blood plasma is equal to the FDG concentration in whole blood and therefore we can use the TAC of
FDG in whole blood as the plasma input function. The validity of this assumption was established
over a 120-minute period by a study previously done [Gambhir et al., 1989]. Given that the scan
duration in the current study was only 65 minutes, we can confidently make this assumption. If the
procedure used in this study should be applied to a study where a different radioactive tracer is
used, it may be necessary to correct the obtained whole-blood carotids TAC for radio-metabolite
production and parent-to-whole-blood ratio. Although many studies have been conducted in recent
years to propose methods to correct for metabolite concentration and parent fraction in plasma
for different radioactive tracers [Harms et al., 2016; He et al., 2020; Sanabria-Bohórquez, 2003;
Zanderigo et al., 2018; Zanotti-Fregonara, Zoghbi, et al., 2011], these methods need to be validated
for all tracers and sometimes come with the drawback that this requires arterial blood samples.

The results in Figure 2 showed that the extraction of the blood-independent component image
from the dynamic brain FDG PET data and the subsequent generation of the vessel and tissue
masks was done successfully. The figure shows the contour of the carotids vessel mask in red and
the contour of the tissue mask in blue. The threshold for creating the vessel mask was determined
by the Gaussian fitting method and was set to 9 times the standard deviation. Using this method,
a vessel mask of the common carotid arteries and parts of the internal and external carotid arteries
was generated. The tissue mask was generated by dilating the previously created vessel mask using
both a 3×3×3 and 5×5×5 structuring element and subsequent subtraction of one from the other.
The use of structuring elements smaller than 3x3x3 resulted in a tissue mask that included parts of
the carotid structures. Using a structuring element larger than 5x5x5 did not result in a significant
difference in the obtained estimation.

In the results of this study, all three TACs, i.e. the original carotids TAC (CIC), the PVE-corrected
TAC of the carotids (CIC-PVC), and the TAC extracted from the ascending aorta (CAA), are shown
to have a similar shape. Although it has been proposed that the input function can be estimated
from the results of ICA directly [Naganawa et al., 2005], the results in Figure 4 show that there is,
on average, a large difference of 46% in peak height between CIC and CAA. To assess whether or
not the CIC could potentially be used as an alternative to the arterial input function, quantitative
analysis was performed. The analysis showed that there was a good agreement between CIC and
CAA in terms of the values estimated for the model parameter k2, but significant differences for
the model parameters K1, k3, Ki obtained by compartment modeling, and Ki obtained by Patlak
analysis. This implies that the TAC that is estimated directly by ICA is not an appropriate
alternative to use as an input function for quantitative brain FDG PET studies.

After partial volume correction, the obtained mean PVE-corrected TAC (CIC-PVC) became more
similar to CAA and the peak of CIC-PVC was only 11% lower than the one of CAA. The MPEs for
all parameters except k2 were significantly reduced. Moreover, performing a Wilcoxon signed-rank
test revealed that the hypothesis of zero mean difference could not be rejected for the parameters
K1, k3, Ki obtained by compartment modeling, and Ki obtained by Patlak analysis. Although
it was shown that there is a significant difference between the model parameter k2 estimated by
CIC-PVC and CAA, the mean value for k2 (0.11 ± 0.03 min-1) estimated by CIC-PVC is within the
range of k2 values that were previously published [Phelps et al., 1979; Sari et al., 2022]. Although
there is a good agreement in terms of the obtained net influx rates, the errors in the parameters
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K1, k2, and k3 indicate that when employing CIC-PVC, it is advisable to limit the outcome values
to Ki, making it possible to limit kinetic modeling to only Patlak analysis.

Table 1 shows that the net influx rate estimated with CIC as the input function for compartment
modeling is, on average, an overestimate of the value for the net influx rate estimated with
compartment modeling with CAA as the input function. This is consistent with the findings
from an earlier study by Naganawa et al. (2020) where they concluded that Ki was generally
underestimated when the AUC of the input function was overestimated, and vice versa. From
Figure 4 it was found that the AUC for the mean CIC, CIC-PVC, and CAA were 450, 627, and
651 min.* kBq*cc-1, respectively. This indicates that, on average, the AUC for CIC is greatly
underestimated, corresponding to an overestimate of the net influx rate. The AUC for CIC-PVC is
only slightly smaller than the AUC of CAA, which does not result in an overestimation of the net
influx rate.

Estimation of model parameters using Patlak analysis uses the proportion of the input function
for which the reversible compartment is in equilibrium with plasma, i.e. the frames of the last 35
minutes. As explained by Vriens et al. (2009), it can be deduced from the Patlak formula [Jodal,
2004] that an overestimation of the concentration of tracer in plasma leads to the underestimation
of the net influx rate, and vice versa. In the later time frames, CIC-PVC and CAA are almost equal
(0.40% difference in the last frame) and CIC is an underestimate of CAA (17% difference in the last
frame). The slight underestimation of CIC-PVC has shown to not affect the estimated net influx
rate. The underestimation of the CIC resulted in the overestimation of the net influx rate.

Since there are also patients for whom the PVE-corrected carotids TAC is an overestimate of the
reference, according to Chen et al. (1998) it can be ruled out that dead-time is the error causing
the underestimation. Studies previously conducted by Chen et al. (1998) and Zanotti-Fregonara,
Fadaili, et al. (2009) have shown that the used temporal PET sampling may explain the discrepancy
in the peak height of the IDIFs and that finer sampling is likely to improve the results. Furthermore,
the difference in the obtained TACs can be explained by the fact that the IDIFs are extracted from
different blood pools (i.e. the carotid arteries and the ascending aorta) with different dispersion
effects [Feng et al., 2019; Jochimsen et al., 2016], which results in differences in the bolus dynamics
[Oikonen, 2023]. For this study, the IDIFs were corrected for delay, but not for dispersion. For future
research, it might be of interest to repeat the current study and include dispersion correction to
assess how this affects the estimated model parameters. A possible method to correct for dispersion
was previously proposed by Islam et al. (2017).

The results obtained with regression analysis of the regional net influx rates (Figure 6 and Table 2)
support the previously reported observations of overestimation of the net influx rate by compartment
modeling with CIC compared to CAA. Additionally, regression analysis to compare the net influx
rates estimated by CIC and CAA using Patlak analysis showed a slope significantly larger than one
and an intercept larger than zero, indicating a positive systemic and proportional bias in the values
estimated with CIC and CAA. Regression analysis for the net influx rate estimated by CIC-PVC and
CAA by the use of Patlak analysis showed a regression slope close to one, an intercept close to zero,
and a high coefficient of determination, indicating a good agreement between the methods.

Voxel-wise quantitative analysis by the use of parametric net influx rate images generated with
CIC-PVC and CAA as the input functions revealed interesting results. The results obtained through
regression analysis of the voxel-wise net influx rate, i.e. the unit slope, zero intercept, and a
high coefficient of determination, confirmed the findings that had been made with regional Patlak
analysis. However, the whole-brain net influx rates obtained from the parametric images, i.e. the
mean of the net influx rates of all voxels in the parametric images (Table 3), are lower than the
regional, whole-brain net influx rates that were previously obtained by Patlak analysis (Table 1). A
possible explanation for the underestimation of the net influx rate in parametric images is the fact
that the voxel TACs that are used to generate the parametric images are very noisy [Kimura et al.,
1999]. The noisy nature of the TACs causes the inaccurate estimation of tracer concentration and
the subsequent underestimation of the net influx rate. Another explanation for the underestimation
might be the fact that the PVE, which is more pronounced in voxel-wise analysis than in regional
analysis, can cause under- and overestimation of the tracer concentration in tissue [Aston et al.,
2002]. Finally, whereas regional analysis takes an average parameter value across all voxels in
the VOI, voxel-wise analysis allows spatial heterogeneity in tissue to be assessed by looking at
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each voxel separately. Since different areas within a VOI may exhibit variations in the underlying
physiological processes, this can lead to different net influx rates, and hence different regional
influx rates. Figure 8 shows the Bland-Altman plot corresponding to the results shown in Figure
7. To assess whether there is a systematic or proportional bias in the voxel-wise net influx rates
estimated by the input functions CIC-PVC and CAA, it was examined whether the mean differences
and regression slopes observed for all patients were significantly different from zero. Although the
trend and non-zero mean difference in the Bland-Altman plot in Figure 8 imply that there is a
positive systemic and proportional bias in the estimation of the net influx rates for this patient,
the Wilcoxon signed-rank test showed that there was neither a significant mean difference nor a
significant slope for the voxel-wise net influx rates for the nine patients. This indicates that there is
a neither systematic nor proportional bias between the voxel-wise net influx rates estimated by
CIC-PVC and CAA.

Although the entire procedure used for this study is non-invasive, it is important to keep in mind
that this was made possible by using a PET scan with a large field-of-view that enabled the
acquisition of dynamic whole-body FDG PET data. The dynamic FDG PET data of the heart
region was used to extract an image-derived input function from the ascending aorta, which was
then used for partial-volume correction. In conventional PET scanners, the field-of-view is narrower
so this data of the heart region is not available. In case dynamic FDG PET data of this region is
not available, a plasma input function at a minimum of three time-points will have to be measured
by arterial blood sampling or another (non-invasive) alternative.

Conclusion
The results of this study suggest that an image-derived input function obtained from automatic
segmentation of the carotids by independent component analysis and corrected for the partial
volume effect can accurately be used as an alternative for the commonly used arterial blood sampled
input function for brain FDG PET Patlak analysis. Despite the accurate results for the net influx
rate estimated by the two-tissue compartment irreversible tracer model, the differences between
the model parameters K1, k2, and k3 estimated with the CIC-PVC and the CAA suggest that the
PVE-corrected carotids image-derived input function cannot be used as an accurate alternative
input function for compartment modeling.
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