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Abstract 
Positron emission tomography (PET) with radiolabelled monoclonal antibodies, known 

as immunoPET, is a promising method for non-invasive tumour detection.  The 

evaluation of newly developed immunoPET tracers, like 89ZED88082A, is necessary to 

assess radiation doses and ensure safety. Currently, organ segmentation is carried out 

manually, which is not only time-consuming but also subject to variability. The current 

study aims to compare AI-based segmentations to manually adjusted AI-based 

segmentations, aiming to reduce analysis time and variability in dosimetry assessments. 

Organ volumes and estimated effective doses were obtained using the inhouse developed 

Biodistribution tool, Residence Time Calculator and OLINDA/EXM. The impact of 

segmented organ volumes on estimated effective doses was evaluated, showing a mean 

absolute percentage error of 2.51% for organ volumes and 0.80% for estimated 

effective doses, indicating slight variations between the two methods. The analysis 

indicated that smaller organs exhibited relatively higher errors, which was supported 

by the average Jaccard indexes calculated per organ. Notably, although the Wilcoxon 

signed rank test revealed significant differences in brain volumes, these differences were 

inconsistent with the mean absolute percentage error and the average Jaccard index of 

the brain. These findings highlight the challenges and potential of AI-based 

segmentation methods in clinical settings, where accurate organ segmentation is crucial 

for dose estimation and radiation protection. While the findings support the reliability 

and efficiency of the AI-tool, ongoing research and improvements are essential to 

optimize its performance and expand its practical applications in clinical settings. 
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Introduction  

ImmunoPET 

Positron emission tomography (PET) with radiolabelled monoclonal antibodies, also called 

“immunoPET”, is a promising method for non-invasive tumour detection. This technique 

combines the high sensitivity of PET with the high antigen specificity of monoclonal antibodies 

(mAbs) (Zhang et al., 2011). CD8+ T-cells, which are part of the adaptive immune system, 

serve as highly potent effectors in the immune response against cancer and form the foundation 

of cancer immunotherapy (Raskov et al., 2020). The understanding of the biodistribution 

patterns and variability of CD8+ T-cell levels among different tumour types is limited (Kist de 

Ruijter et al., 2022). To tackle this problem, Kist de Ruijter et al., (2022) developed a new PET 

tracer, containing the 89Zr isotope linked to CD8+-specific one-armed antibody 89ZED88082A.  

PET imaging often involves radioisotopes with short half-lives, such as 18F with a half-life of 

only 110 minutes. These isotopes offer the advantage of minimal radiation exposure. However, 

they are not the most suitable choice for long-circulating probes like mAbs (Yoon et al., 2020). 

ImmunoPET imaging requires specific PET isotopes that exhibit excellent in vivo stability 

when combined with a mAb. Additionally, the decay half-life of the PET isotope needs to align 

with the pharmacokinetics of the mAb (Zhang et al., 2011). Using 89Zr for immunoPET 

imaging has a few advantages over using other positron emitters (Yoon et al., 2020). Firstly, 

the decay half-life of  89Zr is 3.3 days, i.e., 78.41 h, which aligns with the duration required to 

attain optimal tumour-to-background ratios for intact mAbs. Secondly, 89Zr has a relatively 

short positron range by emitting low-energy β+ rays (Eβ+,ave = 396 KeV), enabling high-

resolution PET imaging (Yoon et al., 2020; Zhang et al., 2011). Additionally, when using 89Zr 

as a metallo-radionuclide, it remains stably bound to the mAb using deferoxamine B (DFO) as 

a chelator (Yoon et al., 2020). Due to the relatively long decay half-life of 89Zr, it has the 

disadvantage of high radiation exposure. To keep radiation exposure within acceptable limits, 

the European guidelines allow a maximum of 37 MBq of 89Zr administration. 

The use of antibodies labelled with 89Zr enables non-invasive whole-body visualisation through 

PET imaging, as highlighted by Kist de Ruijter et al., 2022. Using this approach, it becomes 

possible to assess whether the antibody, bound to the specific receptor, effectively targets the 

desired tissues, ideally the tumour. The degree of PET tracer uptake is influenced by the 

expression of the receptor within the tumour, which can be measured using the standardised 

uptake value (SUV); the higher the SUV, the higher the contrast intensity, and the higher the 

degree of PET tracer uptake. While tissue collection for pathology testing remains the preferred 

method in oncology, non-invasive evaluation, including post-therapy scans, can be employed 

over time (Van De Donk et al., 2022). By monitoring changes in the SUV over time, response 

to therapy can be assessed, e.g., a decrease in SUV can suggest a potential reduction in tumour 

aggressiveness or size unless further differentiation has occurred.   

To determine the most effective protein dose of 89ZED88082A, Kist de Ruijter et al. (2022) 

conducted a dose-finding study. Patients participating in the study received a tracer injection 

comprising 37 MBq (1.2-1.5 mg) of 89ZED88082A, along with additional unlabelled 

CED88004S, until a protein dose of either 4 mg or 10 mg was achieved (Kist de Ruijter et al., 

2022). During the initial hour after injection, the spleen exhibited significant uptake in the case 

of the 4 mg dose of 89ZED88082A, likely due to its high perfusion. However, to achieve 



 
6 

 

saturation in the spleen and enable uptake in other organs, a higher dose of the unlabelled 

CED88004S antibody was required. Consequently, the study concluded that a protein dose of 

10 mg, comprising a combination of 89ZED88082A and unlabelled DFO-conjugated one-

armed antibody CED88004S, yielded optimal outcomes by reducing and stabilising uptake in 

the spleen. This finding was attributed to the higher concentration of unlabelled CED88004S 

present in the 10 mg dose (Kist de Ruijter et al., 2022). The administration of a protein dose of 

10 mg successfully visualised tumour lesions and lymphoid tissues, with the highest uptake 

observed on days 2 and 4 (Kist de Ruijter et al., 2022).  

Biodistribution Assessment and Radiation Dose Estimates 

Ensuring safety and efficacy in the development of new PET tracers requires an accurate 

assessment of their biodistribution and reliable estimates of radiation doses (van Sluis et al., 

2023). While the average dose for the entire organ with uniform organ uptake is suitable for 

diagnostic purposes, a more comprehensive dosimetric approach is routinely employed for new 

drug applications and clinical evaluations involving therapeutic radiopharmaceuticals (Stabin 

et al., 2012). This approach allows for a more precise evaluation of the distribution of radiation 

doses and their implications for treatment or evaluation. This analysis involves the use of 

PET/CT imaging, where the computed tomography (CT) component serves two important 

purposes. Firstly, it enables accurate anatomical localisation of regions identified on the PET 

tracer uptake images. Secondly, it is utilised for attenuation correction of the PET emission 

data, which is a crucial step for achieving quantitative PET imaging (Griffeth, 2017). By 

acquiring several PET/CT scans at different time points after injection of the PET tracer, the 

absorbed dose, i.e., deposited radiation energy, in various organs and tissues can be determined 

(Kaushik et al., 2015).  

Currently, the accurate assessment of biodistribution and dose estimates for newly developed 

PET tracers requires manual segmentation. Manual segmentation is performed on PET/CT 

images to delineate organs accurately. Tissue time activity curves are generated to assess the 

amount of radioactivity that is present in the organs of interest at each time point after 

administration of the radiotracer. The area under the curve for each organ of interest represents 

the total amount of radioactivity that has accumulated in the organ over time. Next, the total 

number of disintegrations over a longer period, i.e., spontaneous decay and emission of 

radiation by the radioisotope is estimated (Hindorf et al., 2010). The tissue time activity curves 

are therefore extrapolated to infinity (van Sluis et al., 2023). By extrapolating the tissue time 

activity to infinity, it is assumed that all of the radioisotope in the body has decayed and is no 

longer emitting radiation. This allows researchers and medical professionals to estimate the 

total number of disintegrations, that will occur over the entire period that the radioisotope is 

present in the body. The result of this calculation is the cumulated activity or residence time, 

which represents the total number of radioactive disintegrations that would occur in a tissue or 

organ per unit of administered activity. The mean absorbed dose of the organs of interest can 

be calculated next, using Organ Level INternal Dose Assessment/ Exponential Modelling 

(OLINDA/EXM) software, which converts the cumulated activity into dose using dose 

conversion factors (Stabin, 2023; van Sluis et al., 2023). The effective dose is calculated 

considering tissue weight factors as described by the International Commission on 

Radiological Protection (ICRP) Publication 103 (Clarke et al., 2007). 
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Challenges with Manual Segmentation for Whole-Body Dosimetry 

Manual segmentation performed for radiation dosimetry analysis has several drawbacks. 

Firstly, it is an extremely time-consuming process. Secondly, manual segmentations have high 

rates of inter- and intra-observer variability (Covert et al., 2022). A faster, (semi-) automated 

whole-organ segmentation method for dosimetry purposes would therefore be beneficial and 

has been emphasised and explored before (Makris et al., 2016; Makris et al., 2014; Schmidt et 

al., 2016). In a previous pilot study by van Sluis et al. (2023) an online readily available fully 

automated artificial intelligence (AI)-based whole-organ segmentation tool was tested as a pre-

processing step for calculating organ and whole-body absorbed doses, aiming to reduce 

analysis time with approximately 4 hours per scan. The effect of differences in manual 

segmentations and AI-based segmentations on the calculated whole-body effective dose 

estimates was evaluated and showed promising results (van Sluis et al., 2023). Hereafter, 

Boellaard et al. (2022) developed their own AI method consisting of three 2D U-net-shaped 

convolutional neural networks (CNNs), and one CNN for each slice orientation (axial, coronal, 

sagittal). The CNNs were trained using low-dose CT images from 30 fluorodeoxyglucose 

(FDG) PET/CT studies as input images with manually delineated organs (brain, lungs, liver, 

spleen, kidneys, bladder). Results from each trained CNN were combined using a majority vote 

approach to obtain the final organ segmentation (Boellaard et al., 2022).  

The Objective of the Current Study 

The current study aims to compare whole-organ segmentations on low-dose CT obtained using 

the AI-based method described by Boellaard et al. (2022) to manually adjusted 

(improved/finetuned) whole-organ segmentations. The study investigates the impact of 

variations in segmented organ volumes on the estimated effective doses by comparing AI-

based segmentations with manually adjusted AI-based segmentations. Comparisons between 

the two segmentation methods are made to evaluate the performance of the AI-based network 

developed by Boellaard et al. (2022).  
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Methodology 
Data Collection 

PET/CT images obtained by Kist de Ruijter et al. (2022) were used for this study. A total of 9 

patients, including 4 females and 5 males, were involved in this study. They received an 

intravenous administration of 37 MBq 89ZED88082A. PET scans were acquired with low-dose 

CT for correcting attenuation and localising anatomy. The PET/CT cameras used were the 

Biograph mCT 40-slice, Biograph mCT 64-slice (Rausch et al., 2015) or Biograph Vision 128-

slice (Van Sluis et al., 2019), all from Siemens, with software versions 

VG70B/VG70C/VG60C/CG70C/VG76A/VG80A. The PET scan acquisition method varied 

depending on the camera model: a total body mode (from skull to feet) with up to 15 bed 

positions for Biograph mCTs, or a total of four passes for Vision (Kist de Ruijter et al., 2022). 

PET/CT scans were performed at 1 hour, 2 days, 4 days, and 7 days after the PET tracer 

injection. All patients provided written informed consent for the imaging procedure. The 

studies conducted by Kist de Ruijter et al. (2022) obtained approval from both the Medical 

Ethical Committee of the University Medical Center Groningen and the Central Committee on 

Research Involving Human Subjects (Kist de Ruijter et al., 2022). 

Image Pre-Processing  

The PET reconstruction process followed harmonisation procedures that were in line with the 

EARL1 PET/CT accreditation and European Association of Nuclear Medicine guidelines 

(Makris, Boellaard, et al., 2014). Visual evaluation of the PET images was conducted using 

Syngo.via software, version VB_40.02. The Accurate tool, specifically versions .08072019, 

.22042020, and .14082020, was utilised for the analysis of the PET images (Boellaard, 2018).  

For the Biograph mCT system, EARL1 reconstruction settings were 3D TOF OP-OSEM with 

3 iterations 21 subsets, resolution modelling and a Gaussian filter of 6.5 mm, for a resulting 

image matrix of 256x256 with a voxel size of 3.2 x 3.2 x 2 mm. In the case of Vision 

reconstruction, EARL1 was performed using OP-OSEM 3D-iterative algorithm with 4 

iterations 5 subsets, applying TOF, into an image matrix size of 220 x 220, resulting in a voxel 

size of 3.3 x 3.3 x 1.6 mm. A 7 mm Gaussian filter was used (Van Sluis et al., 2019).  

Manually Adjusted AI-Based Segmentation and AI-Based Segmentation 

The PET/CT data described above served as input for the AI-based segmentation method 

developed by Boellaard et al. (2022). Manual adjustments to the segmented VOIs were made 

using the inhouse developed Biodistribution tool (MVOIWBDOSIMETRY_v19122021). The 

organs of interest, including the brain, lungs, kidneys, spleen, liver, and bladder, were analysed 

in this study. Specifically, the right and left lung and kidney were segmented separately. 

Segmentations of the fat tissue, muscle tissue (quadriceps) and red bone marrow tissue were 

manually added in order to obtain whole-body dosimetry. Manual adjustments to VOIs were 

performed by the author PV with 8 weeks of experience in image segmentation. These manual 

adjustments were assessed, if necessary, by the second examiner JS. 

Before saving the organ activities of the VOIs after injection, the generic volumes were 

converted to OLINDA format. This conversion step is essential in order to use OLINDA/EXM 

at the following step. As a result of this conversion, the right and left lung volumes, as well as 

the right and left kidney volumes, are combined and treated as the body’s overall lungs and 

kidneys. The organ activities of the VOIs after injection (day 0, 2, 4 and 7) were then saved 
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and used as input files for the inhouse developed Residence Time Calculator 

(ResidenceTimeCalculatorV02072020). This was repeated for all 9 patients. The following 

parameters were defined in Residence Time Calculator:  

- Isotope: 89Zr 

- Organ: Spleen 

- Data type: Activity Conc 

- Volume: Reference 

- Decay correction: OFF 

- Interpolation: Ll (t0=t1) 

- Extrapolation: Radioactivity Decay 

- Gender: M/F 

- Scan duration: 45 min 

- Scale factor organ masses: 1.00 

The residence times were then calculated and saved as CSV files. Next, the information 

obtained by the Residence Time Calculator was used as input for OLINDA/EXM to perform 

dosimetry calculations (Stabin, 2023). First, the 89Zr isotope was selected in Nuclide Input 

Form in OLINDA/EXM. Second, the gender was selected (Adult Male/Adult Female) in the 

Model Input Form. Then, the residence times of the organs of interest obtained from Residence 

Time Calculator were transferred to the Kinetic Input Form. The effective dose per organ and 

the whole-body effective dose (mSv/MBq) were calculated, considering the tissue weight 

factors as outlined in the ICRP publication 103 (Clarke et al., 2007). 

After completing these steps for the manually adjusted VOIs, the same steps were repeated for 

the non-adjusted VOIs. It should be noted that the CNNs utilised in the study did not directly 

segment fat, muscle, and red bone marrow tissue. As a result, the output file generated by the 

Biodistribution tool, which provides organ activities, contained 0 values for these specific 

tissues. However, for a more comprehensive whole-body dosimetry calculation, information 

pertaining to the tissue activity of fat, muscle, and red bone marrow was added through manual 

segmentation. To ensure consistency in volumetric measurements of these tissues between the 

two segmentation methods, the values obtained from the manually adjusted segmentations 

were transferred to the AI-based segmentations. With this approach, no differences in volume 

were observed for the aforementioned tissues, thereby focusing solely on identifying 

differences in the effective dose within the VOIs, i.e., brain, lungs, liver, spleen, kidneys and 

bladder.  

Data Analysis 

In order to assess the effectiveness of the AI-based network developed by Boellaard et al. 

(2022), several comparisons were made between the two segmentation methods. Firstly, the 

Biodistribution tool provided organ activity measurements per scan, which included volumes 

(in mL) of the organs of interest. These volumes served as the basis for comparing the manually 

adjusted AI-based segmentations with the AI-based segmentations. To accomplish this, the 

mean absolute percentage errors per organ and within patients were calculated using eq. (1).  
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𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 % 𝑒𝑟𝑟𝑜𝑟 =  
| 𝑉1 − 𝑉2 |

𝑉1
 ×  100 

            (1) 

Where V1 = volume (in mL) obtained by the manually adjusted AI-based segmentation, V2 = 

volume (in mL) obtained by the AI-based segmentation.  

Next, the radiation dose estimates in terms of the estimated whole-body effective dose 

(mSv/MBq), calculated using OLINDA/EXM, were compared to assess the differences in 

estimated effective dose between the two segmentation methods. This was done by calculating 

the mean percentage error as described in eq. (2).  

𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 % 𝑒𝑟𝑟𝑜𝑟 =  
| 𝐸𝐷1 − 𝐸𝐷2|

𝐸𝐷1
 ×  100 

            (2) 

Where ED1 = estimated whole-body effective dose obtained by the manually adjusted AI-based 

segmentation, ED2= estimated whole-body effective dose obtained by the AI-based 

segmentation. 

Additionally, the segmentations per organ, obtained by the Biodistribution tool in NIfTI format, 

were employed to evaluate the degree of spatial overlap between the segmentations generated 

by the two methods. The Jaccard index was used for this and is defined in eq. (3) (Shi et al., 

2014). 

𝐽(𝐴, 𝐵) =
 |𝐴 ∩  𝐵|  

|𝐴 ∪  𝐵|
=  

|𝐴 ∩  𝐵|

|𝐴| +  |𝐵| − |𝐴 ∩  𝐵|
 

(3)  

The Jaccard index is a measure of similarity between two sets. |A ∩ B| represents the 

intersection of set A and B. The intersection is the set of elements that are common to both 

sets. |A ∪ B| represents the union of set A and set B (Jaccard Similarity – LearnDataSci, n.d.). 

The union is the set of all elements present in either Set A or Set B, or both. It quantifies the 

overlap between the elements of two sets and provides a value between 0 and 1, where 0 

represents no similarity and 1 represents complete similarity. The segmentations (NIfTI files) 

of the organs of interest obtained from one segmentation method can be denoted as Set A, while 

the segmentations (NIfTI files) acquired from the other segmentation method can be 

represented as Set B. 

For statistical analysis, both the Wilcoxon signed-rank test and the Intraclass correlation 

coefficient (ICC) test were utilised. The Wilcoxon signed-rank test, a non-parametric statistical 

test, was used to determine if there was a statistically significant difference between the 

manually adjusted AI-based segmented volumes and the AI-based segmented volumes. Given 

the small sample size in the current study, it is recommended by standard statistical guidelines 

to employ nonparametric methods for analysing the collected data (Dwivedi et al., 2017). It 

assessed the ranks of the differences between the paired data. The null hypothesis assumes that 

the median difference between the paired observations is zero. The alternative hypothesis states 
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that the median difference is non-zero. A p-value less than 0.05 was considered statistically 

significant. The ICC is a statistical measure used to assess the agreement or consistency 

between multiple methods used for measuring a variable. It is a commonly employed measure 

of reliability in analyses of test-retest, intrarater and interrater reliability (Bobak et al., 2018). 

The two-way mixed effects model was applied, and the absolute agreement type was chosen to 

measure the extent of perfect consistency. This test was performed for the mean volumes of 

the brain, lungs, kidneys, liver, spleen, and bladder per patient. Meaning that the volumes over 

4 scan days were averaged for each organ. The resulting value ranges between 0 and 1, with 

values closer to 1 representing stronger reliability (Koo & Li, 2016). The formula for 

calculating ICC is defined in eq. (4) (Bobak et al., 2018). 

𝐼𝐶𝐶 =
𝜎𝑏

2

𝜎𝑏
2 +  𝜎𝑤

2  
 

            (4) 

Where 𝜎𝑏
2 = the variance between encounters, 𝜎𝑏

2 = the variance of the raters within encounters 

(Bobak et al., 2018). 
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Results 
All 9 patients included in this study received an intravenous injection of 37 MBq 
89ZED88082A. The mAb protein dose for the patients was 10 mg as described by Kist de 

Ruijter et al. (2022). The scan duration was equal to 45 minutes. Approximately 40 minutes 

per scan were required to manually adjust the AI-based segmentations.  

Figures 1 and 2 provide an illustrative example of the manual adjustment process applied to 

the AI-generated VOIs developed by Boellaard et al. (2022). The liver of patient 4 is showcased 

in these figures, demonstrating the whole-organ segmentation achieved using the 

Biodistribution tool. In Figure 1, the CT (left column) and PET (right column) images of patient 

4 are depicted. The AI-generated segmented VOI created by Boellaard et al. (2022),  

represented in red, corresponds to the liver. Figure 2 depicts the same patient, including the CT 

(left column) and PET (right column) images. The AI-generated segmented VOI in Figure 2, 

highlighted in red to represent the liver, has undergone manual adjustments. An important 

observation made from these liver segmentations is that the AI-tool (Figure 1) has mistakenly 

included an extra volume above the liver. Since the intended VOI is meant to specifically only 

include the liver, the additional lung volume is subsequently removed, as can be observed in 

Figure 2. 

 

Obtained Organ Volumes 

In Figure 3, scatter plots visually present a comparison of organ volumes obtained from all 

patients using the two different segmentation methods. As can be observed, the data points lie 

along the line of identity, indicating a close correspondence between the organ volumes 

determined by the two segmentation methods. 

 

Figure 1 Low-dose CT and PET example patient 4 

images in coronal view. The AI-based volume 

segmentation represented in red, corresponds to the liver.  

Figure 2 Low-dose CT and PET example patient 4 images 

in coronal view. The manually adjusted AI-based volume 

segmentation represented in red, corresponds to the liver. 
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Table 1 presents the mean absolute percentage error of the volumes for each organ, aiming to 

provide a more detailed examination of the variations in volumes per organ. The average 

volumes per organ across all nine patients exhibited variations within a mean absolute 

percentage error of 2.45%, ranging from 0.04% to 5.71%. The total lung volume exhibited the 

smallest difference, while the total kidney volume showed the greatest difference. 

Table 1 The mean absolute percentage error of organ volumes, averaged across all patients for each organ. 

VOI Mean Absolute Percentage Error (%) 

Brain 0.10 

Lungs 0.04 

Kidneys 5.71 

Liver 0.84 

Spleen 3.81 

Bladder 4.18 

 

In Table 2, the mean absolute percentage error between organ volumes per patient is presented 

for both segmentation methods. The calculation involved determining the mean absolute 

percentage error for each organ within each patient and then computing the average of these 

values for each patient. The overall average difference in organ volume across all patients was 

found to be 2.51%, ranging from 0.19% to 5.20%. Patient 8 exhibited the smallest percentage 

difference, whereas patient 2 displayed the largest difference in organ volumes. 
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Figure 3 Scatter plot of segmented whole organ volumes obtained using manually adjusted AI-based 

segmentation (x-axis) and AI-based segmentation (y-axis). Both axes are on a logarithmic scale. 
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Table 2 Mean absolute percentage error of organ volumes per patient. 

Patient Error (%) 

1 4.16 

2 5.20 

3 4.41 

4 3.81 

5 1.47 

6 2.15 

7 0.62 

8 0.19 

9 0.58 

 

Table 3 presents the p-values obtained from the Wilcoxon signed rank test. These p-values 

evaluate the volumetric differences between the two segmentation methods for each organ. 

Statistically significant differences were observed in the segmented volumes of the brain 

(P=0.011) when comparing the manually adjusted AI-based segmentation and AI-based 

segmentation. Since the p-value is below the significance level of p=0.05, the null hypothesis 

is rejected. The bladder showed the highest p-value (P=0.859), suggesting that there was a 

minimal statistically significant difference between the segmented volumes obtained from the 

two segmentation methods. The null hypothesis is retained for p-values above 0.05.  

Table 3 The p-values resulting from the Wilcoxon signed rank test, which assesses the volumetric differences 

per organ (significance level of 0.05). 

VOI  p-value Null Hypothesis 

Brain 0.011 rejected 

Lungs 0.139 retained 

Kidneys 0.401 retained 

Liver 0.484 retained 

Spleen 0.484 retained 

Bladder 0.859 retained 

 

Since differences in volume alone do not provide information about the spatial overlap between 

the segmentations, the Jaccard indexes for each patient, scan and organ are calculated and 

illustrated in Appendix 1.  
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Obtained Effective Doses 

Figure 4 presents a scatter plot that showcases a comparison between the calculated effective 

dose (in mSv/MBq) per organ, obtained through both manual and AI-based segmentation 

methods. As depicted in Figure 4, the data points align with the line of identity, indicating a 

close correspondence between the effective doses determined by the two segmentation 

methods. 

 

Figure 4 Scatter plot of calculated effective dose per organ obtained using manually adjusted AI-based 

segmentation (x-axis) and AI-based segmentation (y-axis). Axes are on a logarithmic scale. 

Whole-body effective doses are shown in Table 4, aiming to provide a more detailed 

examination of the variations in whole-body effective doses per patient. Calculated whole-body 

effective doses differed minimally for patients 1-9 with a mean absolute percentage error of 

0.80% (range 0.00%-1.62%).  Patient 2 showed the largest mean absolute percentage error 

(1.62%). Patient 4 showed the smallest mean absolute percentage error (0.00%). 
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Table 4 Calculated whole-body effective doses (mSv/MBq) considering the tissue weight factors as outlined in 

the ICRP. 

Patient  

Effective dose 

(mSv/MBq):  

AI-based 

Effective dose 

(mSv/MBq): Manually 

adjusted AI-based  Error (%) 

1 3.97E-01 3.95E-01 0.45 

2 6.18E-01 6.28E-01 1.62 

3 4.55E-01 4.59E-01 0.88 

4 4.14E-01 4.14E-01 0.00 

5 6.60E-01 6.53E-01 1.06 

6 4.56E-01 4.52E-01 0.88 

7 5.19E-01 5.24E-01 0.96 

8 4.15E-01 4.17E-01 0.48 

9 4.70E-01 4.66E-01 0.85 

 

ICC test 

Table 5 presents the results of the ICC test, aiming to provide insight into the reliability between 

the two segmentation methods for the observed organ volume. The highest coefficient is found 

for the brain (1.00) and the lowest coefficient is found for the liver and bladder (0.93). 

 
   Table 5 ICC scores for the VOIs between the two segmentation methods.  

VOI ICC Average 

Brain 1,00 

Lungs 0,99 

Kidneys 0,99 

Liver 0,93 

Spleen 0,98 

Bladder 0,93 
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Discussion 
The aim of the current study is to compare whole-organ segmentations on low-dose CT scans 

using an AI-based method described by Boellaard et al. (2022) to manually adjusted 

(improved/finetuned) AI-based whole-organ segmentations. The primary focus of this 

investigation is to assess the impact of variations in segmented organ volumes on the estimated 

effective doses by comparing the AI-based segmentations with the manually adjusted AI-based 

segmentations.  

In recent years, AI-based methods have shown great potential in automating and improving 

medical image analysis, including organ segmentation. The study by van Sluis et al. (2023) 

showed promising results in obtaining whole-organ segmentation by a readily available AI-

based segmentation tool. The method developed by Boellaard et al. (2022) enables automated 

segmentation of organs on low-dose CT. It is important to note that, similar to manual 

segmentation, AI-based segmentations may exhibit variability influenced by factors such as 

the quality and quantity of the manual segmentation training data employed during network 

training. Nonetheless, it is crucial to thoroughly evaluate and validate the performance of such 

AI-based networks by comparing them to manual adjustments, which are typically executed 

by experts with extensive anatomical knowledge. By comparing the AI-based segmentations 

with manually adjusted AI-based segmentations, this study aims to provide insights into the 

performance and reliability of the AI-based network developed by Boellaard et al. (2022).  

Figures 1 and 2 display the liver segmentation of patient 4 using both segmentation methods. 

This particular example provides insight into the possibility of the AI-tool incorrectly 

segmenting certain parts of the organ. The ensuing discussion points will shed light on the 

overall performance of the AI-tool across all nine patients. 

Upon analysing the organ volumes and estimated effective doses acquired from the two 

segmentation methods in Figures 3 and 4, it becomes evident that all data points align closely 

with the line of identity. This suggests minimal differences between the segmentation methods 

regarding the volume and estimated effective dose. However, upon reviewing the mean 

absolute percentage errors presented in Tables 1,2, and 4, it becomes evident that there are 

differences in both the organ volume and estimated effective dose between the two 

segmentation methods. 

Firstly, the average volumes per organ across all nine patients exhibited variations within a 

mean absolute percentage error of 2.45%, ranging from 0.04% (for the lungs) to 5.71% (for the 

kidneys). The reason behind the kidneys having a relatively high percentage error and the lungs 

having a low percentage error can be attributed to the findings of Trägårdh et al. (2020), which 

revealed that smaller organs present greater difficulties in terms of automated segmentation. 

Specifically, differentiating voxels at the edges of the organ and distinguishing neighbouring 

organs becomes particularly difficult. This difficulty is amplified in cases where organs have 

low contrast compared to the surrounding tissue, as observed in the dataset utilised in this study, 

specifically in relation to the kidneys. Consequently, it was anticipated that organs with larger 

and more distinctive characteristics, such as the lungs, would exhibit a lower mean absolute 

percentage error and thereby a higher Jaccard index, i.e., more overlap. Analysing the Jaccard 

indexes for the organs in Appendix I reveals that the lungs displayed a high average Jaccard 

index (0.99), while the kidneys showed the lowest average Jaccard index (0.86). These findings 
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appear to align with the conclusions drawn by Trägårdh et al. (2020) and hold relevance in the 

context of the present study. 

 

Nonetheless, upon reviewing the p-values resulting from the Wilcoxon signed rank test in 

Table 3, a significant difference in brain volume was found (P=0.011), representing the lowest 

p-value observed. On the other hand, the bladder displayed the highest p-value (P=0.859). 

These findings indicate that there were significant differences in brain volumes and the least 

significant differences in bladder volumes. Surprisingly, upon analysing the average Jaccard 

indexes of the brain and bladder in Table 6 (obtained from Appendix I), the situation is 

reversed. A higher Jaccard index, i.e., a higher degree of overlap, was found for the brain than 

for the bladder, indicating that the degree of overlap for the brain volume was higher than for 

the bladder volume. Table 1 further supports this observation, as it reveals a mean absolute 

percentage difference of 0.10% for the brain and 4.18% for the bladder.  

Table 6 P-values and calculated Jaccard indexes of the brain and bladder, retrieved from Appendix I. 

 Brain Bladder 

P-value 0.011 0.859 

Average Jaccard Index 1.00 0.90 

 

The statistically significant difference in brain volume found by the Wilcoxon signed rank test 

may be caused by the fact that the Wilcoxon signed rank test takes positive and negative 

differences into account. As the AI-tool underestimates the volume of the brain 8 out of 9 times, 

the Wilcoxon signed rank test assigns this as statistically significantly different. Hence, the 

results of the Wilcoxon signed rank test do not provide reliable information regarding the 

absolute differences between the two segmentation methods. Therefore a statistically 

significantly different does not necessarily mean the most absolute volumetric difference. 

Another factor contributing to this statistically significant difference might be that the average 

volume of the bladder is smaller than the average volume of the brain. The bigger average 

volume of the brain results in a higher likelihood of spatial overlap. However, since the brain 

has a larger volume, there may be more significant differences between manually adjusted AI-

based and AI-based volumes. Additionally, due to the larger numbers involved, these 

differences can become statistically significant more quickly.  

Upon comparing Tables 2 and 4, it becomes clear that a lower mean absolute percentage error 

among the 9 patients was found for the estimated effective dose than for the organ volumes. 

The average mean absolute percentage error among the 9 patients' organ volumes (Table 2) 

was found to be 2.51%. Additionally, the average mean absolute percentage error among the 9 

patients' estimated effective dose was found to be 0.80% (Table 4). The findings reveal that 

there were more variations in organ volumes compared to the effective dose, despite the fact 

that organ volumes were required to calculate the effective dose. The difference between these 

mean absolute percentage errors is 1.71%. This error can be attributed to the fact that whole-

body dosimetry involves combining weighted dose values from various organs and structures. 

Subsequently, it has been observed, consistent with the findings of van Sluis et al. (2023), that 

a slight difference in organ volume has minimal influence on the effective dose.  
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Consequently, the calculation of the effective dose is less influenced by the variabilities 

stemming from the selection of segmentation methods. This clarifies why patient 8 in Table 2 

exhibits the lowest mean absolute percentage error for organ volumes (0.19%), while patient 4 

in Table 4 demonstrates the lowest mean absolute percentage error for estimated effective dose 

(0.00%). The findings of this study indicate that the estimation of the effective dose remains 

accurate (within 0.80%), regardless of little variations in manually adjusted or AI-based organ 

segmentation. The tracer used in this study, 89ZED88082A, contains a one-armed antibody. 

Due to the smaller size of this one-armed antibody, it exhibits a faster clearance rate through 

the kidneys. As a result, there is a possibility of a lower absorbed dose throughout the whole 

body compared to what is typically reported in the literature (Kist de Ruijter et al., 2022).  

The ICC outcomes shown in Table 5 indicate that the two segmentation methods exhibit good 

reliability for the analysed organs, with the brain demonstrating the highest level of agreement. 

All ICC values are above 0.90 and an ICC score above 0.90 indicates excellent reliability (Koo 

& Li, 2016). This signifies strong agreement and reliability between the two segmentation 

methods, indicating that the volumes per organ are highly consistent and reproducible.   

One limitation of the present study includes the low-dose CT dataset comprising various 

PET/CT cameras, namely the Biograph mCT 64-slice, Biograph mCT 40-slice, and Biograph 

Vision 128-slice. The dataset exhibited variations in image quality, specifically in terms of 

noise, as depicted in Figures 5 and 6. Noise in CT is influenced by tube current (mAs), slice 

thickness, patient size and reconstruction algorithm (Bell & Murphy, 2017) The difference in 

image quality in Figures 5 and 6 may be attributed to the utilisation of different PET/CT camera 

types, with different slice thickness. Another factor that may influence the amount of noise is 

patient size, as patient 5 (93.0 kg) in Figure 5 is larger than patient 9 (82.8 kg) in Figure 6 in 

terms of kilograms. The absorption of radiation is greater in larger patients, resulting in a 

decrease in the number of photons that reach the detector. Consequently, this leads to a 

reduction in the signal-to-noise ratio. (Bell & Murphy, 2017).   

 

Figure 5 Patient 5 

low-dose CT scan. 

 

Figure 6 Patient 9 

low-dose CT scan. 
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As a result, the depiction of organs in Figure 5 for patient 5 appears less distinct compared to 

the organs depicted in Figure 6 for patient 9. This limitation could hinder the AI tool's ability 

to accurately segment VOIs. Surprisingly, the Jaccard indexes presented in Table 7 for patient 

5 are relatively high. The limited visibility of organs in Figure 5, resulting from low contrast, 

constrained the extent of adjustments that could be made to enhance the segmentation made by  

CNNs. As a result, the Jaccard indexes for the organs of patient 5 are high. Given the 

uncertainty surrounding the accuracy of the segmentations, it is important to exercise caution 

and not automatically assume the reliability of the findings for patient 5. 

Table 7 Jaccard Indexes (retrieved from Appendix I) of patient 5 & 9. Values <0.90 appear red. 

Patient 5 Patient 9 

0 2 4 7 0 2 4 7 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 

0.91 0.91 0.96 0.99 0.93 0.82 0.72 0.81 

0.99 0.99 1.00 0.97 1.00 1.00 1.00 1.00 

0.95 0.95 0.93 1.00 0.99 0.98 1.00 0.94 

1.00 1.00 0.98 1.00 0.82 0.95 1.00 0.74 

 

The current study has an additional limitation wherein the manual adjustments to the volumes 

of interest (VOIs) were conducted by a rater, PV, with only 8 weeks of experience in image 

segmentation and limited expertise in anatomy. Not all of the manual adjustments were 

evaluated by the second examiner, JS. As a result, the utilisation of low-dose CT for image 

segmentation introduces uncertainty concerning the accuracy of the manually segmented VOIs. 
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Conclusion 
The primary aim of the current study was to investigate the impact of variations in segmented 

organ volumes on estimated effective doses by comparing AI-based segmentations with 

manually adjusted AI-based segmentations. The findings demonstrate that the AI tool performs 

effectively, achieving an accuracy of 0.80% for the estimated effective dose compared to 

manually adjusted AI-based segmentation. This indicates the potential of the AI-based tool as 

a reliable tool in clinical settings. Additionally, the utilisation of the AI tool significantly 

reduces analysis time compared to manual segmentation, as supported by the findings of van 

Sluis et al. (2022). This time-saving advantage further highlights the value and practicality of 

the AI-based approach. 

However, it is important to acknowledge the limitations identified in the study. Further research 

and refinement are needed to address these limitations and enhance the applicability of the AI-

based tool. Future investigations should focus on addressing factors such as variations in image 

quality and the training data used for network development. Furthermore, occasional 

differences were observed in both the volume and location of organs derived from low-dose 

CT and PET images, particularly in the case of the spleen. These differences might have arisen 

due to the utilisation of the CT image obtained before the emission data collection (PET image) 

for attenuation correction. However, due to the scanning process of the PET scanner, there is 

typically a time interval of 20 or 30 minutes between the attenuation scan (CT scan) and the 

final emission scan (PET scan). During this timeframe, significant motion can occur, creating 

substantial opportunities for the occurrence of motion artefacts (Griffeth, 2017). One specific 

and crucial aspect to consider is the effect of respiratory motion. Since the patient continues to 

breathe during the PET scan, it is essential to conduct the CT scan in a way that closely aligns 

with the positioning of the diaphragm and nearby organs, like the spleen. This approach aims 

to optimize the registration of the two data sets for accurate alignment. To improve on this 

limitation, future research needs to investigate the potential impact of PET image-based 

segmentations on the estimation of effective dose, particularly for organs with high uptake such 

as the spleen.  

In summary, this study contributes to the understanding of the potential benefits and limitations 

of utilising AI-based methods for organ segmentation and dose estimation. While the findings 

support the reliability and efficiency of the AI-tool, ongoing research and improvements are 

essential to optimize its performance and expand its practical applications in clinical settings.  
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Appendix I 

 Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8 Patient 9 

Scan day 0 2 4 7 0 2 4 7 0 2 4 7 0 2 4 7 0 2 4 7 0 2 4 7 0 2 4 7 0 2 4 7 0 2 4 7 

Brain 0.99 1.00 0.99 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Lungs 1.00 0.99 0.99 0.99 0.95 0.99 0.99 0.99 0.99 0.99 0.98 0.99 1.00 0.98 0.98 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 

Kidneys 0.61 0.92 0.80 0.87 0.66 0.73 0.76 0.76 0.77 0.64 0.76 0.81 0.91 0.90 0.81 0.97 0.91 0.91 0.96 0.99 0.93 0.82 0.72 0.81 0.91 0.87 0.81 0.88 0.88 1.00 1.00 1.00 1.00 0.98 0.96 0.91 

Liver 0.95 1.00 0.98 0.99 0.96 0.95 0.95 0.96 0.99 0.97 0.94 0.96 0.95 0.92 0.97 0.98 0.99 0.99 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 

Spleen 0.77 1.00 0.92 0.99 0.79 0.91 0.96 0.79 1.00 0.99 0.97 0.97 0.95 0.90 0.87 0.97 0.95 0.95 0.93 1.00 0.99 0.98 1.00 0.94 1.00 0.99 0.98 0.99 0.99 0.99 1.00 1.00 0.90 1.00 1.00 0.97 

Bladder 0.79 0.88 0.84 0.85 0.90 0.80 0.89 0.79 0.95 0.76 0.57 0.65 0.81 1.00 0.75 0.99 1.00 1.00 0.98 1.00 0.82 0.95 1.00 0.74 1.00 0.99 1.00 0.98 0.98 0.97 0.96 0.96 0.95 0.75 1.00 1.00 



 
 

 


