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Abstract: While the advantages of Theory of Mind reasoning have been extensively researched,
evolution of Theory of Mind in a network requires additional attention. Differences in network
structure may affect the Theory of Mind dynamics and this study aims to determine whether this
results significant differences in Theory of Mind evolution patterns. The setup includes experi-
mental and control conditions, which differ by the initialization type: the experimental network
is initialized using Preferential Attachment and the control network uses Random initialization.
Members of each network play Rock-Paper-Scissors-Spock-Lizard for multiple rounds in each
run. After the final round, counts of each order of Theory of Mind strategies are collected as
the results of the run. The results show a significant difference in evolution patterns of Theory
of Mind across networks. They also suggest that presence or absence of nodes with a relatively
higher amount of connections also affects the network dynamics and that they may increase or
lower the chance of lower order of Theory of Mind outcompeting a higher order Theory of Mind
strategy.

1 Introduction

Theory of Mind is a well-known psychological
concept defined by the ability to attribute men-
tal states, knowledge, beliefs and emotions to an-
other person and themselves and reason about
these mental states (Premack & Woodruff, 1978).
Humans have Theory of Mind and it is one of
the fundamental factors required for successful
interpersonal interaction. Consider the following
example of Theory of Mind use in an everyday
situation: Alex is organizing a surprise party for
Martha. While knowing about the party herself,
Alice can also infer that Martha does not know
about the party and Alice will act accordingly to
not spoil the surprise. In this social context, The-
ory of Mind allows the person to recursively es-
timate and attribute a mental state and be aware
of it. The previous example can be expanded to
showcase a deeper recursion level: Alice invited
Peter to come to the party with her and told him
that it is a surprise party for Martha. Based on
the situation, Peter knows that Alice knows that

Martha does not not about the party. The recur-
sive nature means that Theory of Mind has the-
oretically infinite amount of orders, where pos-
sessing a k + 1 level allows to iterate over 0, 1...k
range of levels which produces awareness about
kth order of Theory of Mind. First and second or-
der reasoning have been shown in humans using
multiple tests, including Sally-Anne test (Baron-
Cohen et al., 1985) and matrix game (Hedden &
Zhang, 2002). However, other tests, e.g. director
game (Keysar et al., 2003), have shown that even
in adults, higher order of Theory of Mind reason-
ing may occasionally not occur automatically.

While humans can reason using the higher or-
ders of Theory of Mind, other species do not have
such capacity, which suggests that higher orders
of Theory of Mind may convey a competitive ad-
vantage (Byrne & Whiten, 1988). Extensive re-
search has been conducted into Theory of Mind
in the past 40 years. This includes research con-
ducted by de Weerd et al. (2013), which inves-
tigated the advantage that higher order Theory
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of Mind reasoning have over lower orders in a
competitive setting. The setting included multiple
single-shot and extensive form games, including
Rock-Paper-Scissors, Rock-Paper-Scissors-Spock-
Lizard, and Limited Bidding. This study show-
cases that higher orders of Theory of Mind have
direct advantage over lower orders when agents
play against each other and concludes that this
may explain the evolution of higher order Theory
of Mind. However, the study focuses on interac-
tions between only two opponents during a single
test run. What was not investigated and may have
a significant impact on the evolutionary success of
different orders of Theory of Mind is the situation,
where each participant has to play against multi-
ple opponents in a network of connections.

To give an example, some of the contexts where
agents frequently use Theory of Mind on a net-
work level during competition are chess and pro-
fessional e-sports. Members of a network fre-
quently play with each other, however there are
many ways in which it is decided who plays
with whom. A network may be isolated into sub-
populations (representing smaller local scenes) or
agents can play against every other opponent in
random order (in case of a league). This means that
there are numerous ways in which the same num-
ber of players can be playing between each other
in a realistic scenario. This, in turn, can be repre-
sented by different types of network connections.
Some types of network initialization include Ran-
dom, Preferential Attachment (Barabási & Albert,
1999), Small-World Initialization (Watts & Stro-
gatz, 1998) and Hierarchical Initialization (Ravasz
& Barabási, 2003). When competitors play against
each other for a significant amount of time, they
might adapt and change their strategies, based on
what they observe from their opponents. This pa-
per will try to investigate the effects that differ-
ent networks of opponents may have on agents’
strategies by focusing on differences between evo-
lution of strategy distributions in two types of net-
works, which differ by initialization method and
distribution of connections between the nodes.

1.1 The Study

Difference in the network structures may produce
different patterns of evolution for the populations
of the same size. In particular, the presence or

absence of highly-connected nodes represent two
different real world populations. Continuing ex-
ample from the previous section, a presence of a
few highly-connected nodes among a majority of
nodes with few connections symbolizes a popula-
tion where there are many relatively-isolated lo-
cal tournaments and only a few players can travel
freely between them. Identical number of node
connections represents one big hub competitive
scene, where players randomly find someone to
play with. Difference in dynamics between these
two conditions would be interesting to observe, as
it can be extrapolated to the real sports and how
they are played.

In this study, two networks of agents will play
Rock-Paper-Scissors-Spock-Lizard and the evolu-
tion of Theory of Mind strategies distributions will
be observed and compared. Rock-Paper-Scissors-
Spock-Lizard was successfully used previously in
de Weerd et al. (2013). It is a relatively simple zero-
sum game, patterns of which can be accurately for-
malized in an algorithm that uses Theory of Mind
to make decisions about moves. Moreover, while
being simple, it is more complicated compared to
the standard Rock-Paper-Scissors, which justifies
use of Theory of Mind in this less trivial context.

The size of the networks in the experimental and
the control conditions is 104 nodes, with each node
representing an agent. In each network, there is
exactly 208 connections between nodes, meaning
that during each time step 208 unique games are
played.

Preferential attachment was chosen for exper-
imental condition, since it naturally produces
nodes with significantly higher amount of con-
nections than the rest. It also uses an intuitive
probability-based algorithm to create new connec-
tions, which increases replicability and validity,
due to its consistency. Random initialization with
a guarantee of the same number of connections
for each node is used as a control condition, as it
creates a homogeneous population that is a good
counterpart to a population with sub-clusters in
experimental condition.

The research question is the following: does
a presence of a few nodes with higher amount
of connections than the rest affect the evolution
of Theory of Minds-based strategy distribution
in a population that plays Rock-Paper-Scissors-
Spock-Lizard? This study will observe the popula-
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tions, in which agents play with each other games
of Rock-Paper-Scissors-Spock-Lizard for a prede-
fined number of time steps. The agents will use
Theory of Mind based strategies to try to pre-
dict opponents’ moves and may switch to another
strategy if they see that the other strategy yields
better performance. There are two conditions that
separated by the type of network initialization
and presence of highly-connected nodes: the ex-
perimental condition is initialized using preferen-
tial attachment and has highly-connected nodes,
while the control condition uses random initializa-
tion and all of the nodes have the same amount of
connections.

The experimental hypothesis states that there
is a significant difference in the distributions of
strategies between the experimental and control
conditions. The null hypothesis states that the dis-
tributions of strategies are similar and there is no
statistical difference between them.

2 Methods

2.1 Environment

In order to test the influence that presence of
highly-connected nodes has on the distribution of
Theory of Mind-based strategies in the popula-
tion, an experimental environment was created us-
ing Python code language. The environment con-
ducts an agent-based simulation, where agents are
playing Rock-Paper-Scissors-Spock-Lizard (Kass,
1995) between each other based on generated net-
works of connections. Rock-Paper-Scissors-Spock-
Lizard is an expanded version of Rock-Paper-
Scissors, with two additional moves: Lizard and
Spock. Each of the five moves wins against two
moves, loses against two other moves and draws
against itself. The table and graph showcase the
standard in which the moves interact with each
other.

In the agent simulation, agents play for a de-
fined number of time steps (T = 50), using Theory
of Mind-based strategies, which will be described
in section 2.2.2. There are three orders of Theory
of Mind that the agents may use: zero order, first
order and second order.

During the initialization of the environment, the
first step is to create a set of agents. All agents are

Figure 2.1: Payoff table for all move interac-
tions in Rock-Paper-Scissors-Spock-Lizard. En-
tries show payoffs for the row player. Retrieved
from de Weerd et al. (2013)

Figure 2.2: A visual representation of Rock-
Paper-Scissors-Spock-Lizard rules. Each arrow
represents a defeat relation, so that the action
at the origin of the arrow defeats the action at
the destination. Retrieved from de Weerd et al.
(2013)
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initialized with a random Theory of Mind level-
based strategy. The strategies are adapted from de
Weerd et al. (2013). Afterwards, based of the set
of agents (the set size N = 104), two separate net-
works of connections between the agents are cre-
ated, which determine which agents will play with
each other for the rest of the test run. The two net-
works represent an experimental condition and a
control condition. They are initialized based on the
same agent distribution to ensure that the data sets
obtained from both conditions are paired, which
control for the effects of random initialization of
beliefs and strategies and isolates the influence of
the network connections on the final distributions
of strategies.

2.1.1 Control network

The network for control condition is initialized to
guarantee that each node has the same amount of
unique bilateral connections. A choice was made
to set the number of connections for each node
to 4. All of the bilateral connections are added at
random, which means that occasionally the net-
work is initialized incorrectly, with some of the
nodes having fewer connections, while all of the
other nodes either already have 4 connections or
are connected to the ones with insufficient amount
of links. For that reason, after the initialization a
check is conducted to guarantee that each nodes
has 4 connections and if that is not the case, then
the network is initialized again, until it passed
the check. Next, due to the random generation of
the network connections, there is a small chance
for the network to have isolated subsets, that are
not connected with the rest of the network. For
that reason a second check is conducted, to verify
whether every node in the network can be reached
from every other node. Dijkstra’s algorithm (Dijk-
stra, 1959) was used to calculate distances between
all of the nodes and if any of the values was equal
to infinity (meaning that it is impossible to reach
one node from another), the network was gener-
ated again. This procedure for network initializa-
tion results in a network with no clustering, a con-
stant number of connections per node and total
number of connections in a network, and a rela-
tively high average distance between nodes.

2.1.2 Experimental network

The network for experimental conditions is initial-
ized using a modified preferential attachment al-
gorithm (Barabási & Albert, 1999). This algorithm
starts by initializing a graph, adding two nodes
to it and creating a connection between them. Af-
terwards, the remaining nodes are added to the
graph using preferential attachment to determine
with which node it will be connected via a single
edge. The preferential attachment formula calcu-
lates for each existing node in graph, the proba-
bility that the new connection will have the node
at one of the ends of the edge. For each node, the
formula for the probability is P = C/N , where
C is the number of connection that the nodes al-
ready has and N is the total number of connec-
tions in the network. Next, in order to make sure
that each agent has more than one other agent to
play each round with, the algorithm iterates over
all nodes and adds a random second connection if
the node did not have it before. The connection is
decided at random rather than based on preferen-
tial attachment, which is done to make the popu-
lation slightly more interconnected and lower av-
erage distance between nodes. Finally, preferen-
tial attachment is used to select both endpoints of
a new connection and create additional edges be-
tween nodes until the total number of edges in the
network is equal to exactly double of the amount
of nodes. This ensures that the total amount of
connections in a network is constant between the
experimental and control conditions. This proce-
dure for network initialization results in the struc-
ture, where majority of nodes have two-three con-
nections, while there are a few nodes that have a
significantly higher amount of links. Average dis-
tance between nodes is less than in control condi-
tion. Moreover, it is possible to create an intuitive
and easily-observable split of nodes into highly
and low-connected in the experimental condition.
For this thesis the four most connected nodes are
counted as highly-connected and the remaining
100 are referred to as low-connected. Table 2.1
shows an example of distribution of connections
per nodes in a single experimental run.

After both networks are initialized, it is nec-
essary to isolate the highly-connected nodes. For
each initialization of an experimental condition
network, the indexes of the highly-connected
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Table 2.1: Counts of nodes with each number of
connections in an example experimental network
of 104 nodes

Number of connections Node counts
2 37
3 24
4 15
5 10
6 6
7 4
8 2
9 2
10 1
15 1
18 1
25 1

nodes are obtained. In order to determine whether
they will have an influence on the strategy distri-
bution in the network of agents, highly-connected
nodes are manually given the same Theory of
Mind order strategy. It should be noted, that in
case of fourth and fifth highest connected nodes
having the same amount of connections, only
one of them is chosen to be considered highly-
connected, while the other will be counted as low-
connected. In order to control for the influence
of the strategy level, all of the highly-connected
nodes start with zero order Theory of Mind strat-
egy in one third of all runs, in another third they
start with first order Theory of Mind strategy and
in the rest of the runs they start with second or-
der Theory of Mind strategy. Furthermore, in the
control network the nodes with the same indexes
as the highly-connected nodes in the experimen-
tal condition network are given the same strat-
egy as their experimental condition counterparts.
That concludes initialization of the networks, after
which the test runs may begin.

2.2 Simulation run

2.2.1 Theory of Mind orders and game
strategies

During every game each agent makes a move
based on the strategy that it currently uses and sets
of multiple Theory of Mind level beliefs. The sets
of beliefs are initialized for each opponent sepa-
rately using random values at the moment when
a connection with the opponent is created during
network initialization. For each opponent an agent

has 3 sets of beliefs: zero order beliefs, first order
beliefs and second order beliefs. Each set of be-
liefs has 5 values, which represent the agent’s esti-
mated probability for each of the moves that their
opponent may use (rock, paper, scissors, Spock,
lizard).

During the decision process for the move, strate-
gies use the belief values to determine the final
perceived probability of each move. The strate-
gies are based on the ones used in de Weerd et al.
(2013). Each higher level Theory of Mind strategy
integrates the beliefs of the same order with the
beliefs of lower orders.

All of the 3 sets of beliefs are updated at the
round’s end using the opponent’s and agent’s own
moves during the round at a learning rate of 0.8
(de Weerd et al., 2013). The learning rate of 0.8
means that after each time step the previous be-
liefs will have 20% of the total weight, while the
beliefs based on the new observations will in total
have 80% of the total weight. Learning rate of 0.8
is a high learning rate, meaning that the rate of de-
cay of older beliefs is also high. All of the beliefs
add up to 1 and the algorithm for the update of
each set of beliefs is different.

For zero order strategy, the zero order beliefs be-
come the final probabilities assigned to the oppo-
nent’s moves and the agent chooses between one
of the two moves that win against the opponent’s
last move, using the values for the other moves
to decide between the two options. For example,
if the agent believes that the opponent will use
Rock, the agent can use Paper or Spock (see Figure
2.1). However, each of these two moves can also
be countered by two moves, namely Scissors and
Lizard for Paper or Paper and Lizard for Spock.
Since Lizard counters both of the moves, the im-
portant values are the beliefs for Paper and Scis-
sors. The agent will choose Paper if they believe
that the opponent is less likely to play Scissors.

Zero order beliefs use zero order theory of mind
to represent the probability of each of the oppo-
nent’s options. These beliefs are updated when-
ever the agent observes the opponent making a
move. At a learning rate of 0.8, it results in the
agent believing that during the upcoming round,
the opponent will use the same move as they did
in the previous round. This means that the agent
will choose to counter that move using one of the
two moves that beat the opponent’s move. Math-
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ematically, during the update all of the zero order
beliefs values are multiplied by 0.2, after which 0.8
is added to the belief for the move used in the last
round. For example, in case where the opponent
used Rock in the last turn, during the beliefs up-
date the probability of all moves will be multiplied
by 0.2, after which 0.8 is added to the probability
of Rock.

The first order strategy integrates first and zero
order beliefs to calculate the final probabilities,
with first order beliefs having 80% of the final
weight, while zero order beliefs have 20%. It then
checks which two moves the opponent is most
likely to use and chooses a move that counters
both of them. In case of small chance, where the
two most likely moves can’t be beaten with a same
move, the agent will operate like a zero order
agent and counter the move with the highest like-
lihood.

First order beliefs represent the beliefs that an
agent holds about probabilities of the opponent’s
moves, based on the assumption by the agent that
their opponent will act using a zero order strategy.
First order beliefs are updated based on the agent’s
own last move and are based on the idea that the
opponent uses a zero order strategy and will try to
counteract the move that the agent has chosen dur-
ing the last round. For that reason, during update
of first order beliefs, probability of the two moves
that beat the agent’s own last move is increased.
At the learning rate of 0.8, it means that the during
the update all of the beliefs values are multiplied
by 0.2, after which 0.4 is added to the beliefs for
both of the moves that counter agent’s own last
move. This calculation departs from de Weerd et
al. (2013). For example, if the agent played Rock
during the last game, it will assume that its op-
ponent will try to counter it during this time step.
After multiplying all beliefs by 0.2, since it believes
in a higher chance of either Paper or Spock and 0.4
is added to chances of both of these moves.

Second order strategy integrates second order
beliefs with the first and zero order beliefs by inte-
grating second order strategy with first order strat-
egy. 80% of the final probabilities are taken from
the second order beliefs, while remaining 20% are
taken from the first order strategy beliefs (mean-
ing that first order beliefs have 16% weight and
zero order beliefs have 4%). Then, same as in zero
order strategy, second order strategy chooses be-

tween one of the two moves that beat the oppo-
nent’s most likely move, using the values for the
other moves to decide between the two options.

Second order beliefs assume that the opponent
acts using first order strategy, which means that
the opponent will act based on its last move. Dur-
ing the update of second order beliefs, opponent’s
last move is observed and the probability of the
move, that beats the two moves that beat the op-
ponent’s last move is increased. The mathematical
update is similar to the zero order beliefs update.

2.2.2 Environment update

During the test run, the simulation runs for a pre-
determined amount of time steps (T = 50), af-
ter which the execution is complete. During each
time step every agent plays a game of Rock-Paper-
Scissors-Spock-Lizard with every other agent that
it has a connection with and records the results.

At the end of each round the agents are awarded
with points based on the results of the played
games. For a win, the agent gets 1 point, for a
draw - 0.5, in case of a loss no points are given,
which makes Rock Paper Scissors Lizard Spock a
constant-sum game At the end of each time step
a performance rate is calculated for each of the
agents by dividing the number of obtained points
by the number of agent’s opponents (which is the
same as the potential maximum amount of points
the agent can get in one round). Each agent has ac-
cess to its own performance rate and rates of the
opponents with which it plays. After each round,
every agent changes its strategy to match the one
of the opponent with the highest performance rate
if it is higher than its own.

During the first round of the run, all of the
moves are chosen at random and the strategies
do not change, while the beliefs are still updated.
Starting from the second round, all moves are de-
termined by the strategies and sets of beliefs and
at the end of the round agents may change their
strategy based on the points obtained in the round.
After the predetermined number of time steps has
passed, the simulation run is over and the set con-
taining the strategy types of all of the agents is col-
lected as the result of the run in order to conduct
statistical test later.
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3 Results

3.1 Data set

The simulation was run for 300 runs in control and
experimental conditions. In total, 600 runs were
conducted. Each run lasted for the 50 time steps
and each of the 3 strategies was used in initializa-
tion of highly-connected nodes in 100 runs each.
The total number of runs is 600. (see Table 3.1)

Table 3.1: Number of runs utilizing each level of
Theory of Mind for initialization of highly con-
nected nodes

Zero Order ToM First Order ToM Second Order ToM
Experimental 100 100 100

Control 100 100 100

Since each population had 104 agents, the re-
sults that were collected are two data sets with
31.200 data points, with each point having a values
of either ”0”, ”1” or ”2” and signifying the strat-
egy that an agent in a simulation had after the final
time step of the simulation run.

3.2 Total strategy counts per condi-
tions

The total count of the strategies per condition in
the data sets is: in experimental condition there
were 24676 accounts of second order strategy, 6072
accounts of first order strategy and 452 account of
zero order strategy. In the control condition there
were 30186 accounts of second order strategy, 702
accounts of first order strategy and 312 account of
zero order strategy.
Upon inspection of the data sets, it can be ob-
served that in both conditions a majority of agents
use second order Theory of Mind, showcasing the
advantage that second order strategy has in this
environment. It can further be noted that in ma-
jority of runs all of the agents converge to a single
strategy, which is in most cases either first or sec-
ond order.
While the dominance of the second order strategy
is consistent across the conditions, the prevalence
of the other two strategies is not. The experimen-
tal condition has a noticeably higher proportion
of first order strategy compared to control, while
control condition has a higher occurrence of zero

order strategy.
To verify whether the observed differences are
statistically significant, a chi-squared test was
conducted. The choice was based on the notion
that both the independent variable (type of the
network) and dependent variable (final strate-
gies of the agents) are categorical variables. The
test showed the relation between the variables is
highly significant, X2 (2, 62.400) = 4836.0421, p <
0.00001. This result suggests that the type of net-
work significantly impacts the evolution of the
Theory of Mind strategies in the population.

3.3 Strategy counts based on the
Theory of Mind order used in
initialization

The tables below shows the counts for each strat-
egy level, based on the type of strategy, that the
highly-connected nodes were initialized with.

Table 3.2: Number of agents with each strategy
level after the 50 time steps, based on the strat-
egy level given to the highly connected nodes at
initialization in experimental condition

Initial Theory of Mind level of highly-connected nodes
Zero First Second

C
o
u
n
ts Zero 0 348 104

First 2614 1099 2359
Second 7786 8953 7937

Table 3.3: Number of agents with each strategy
level after the final time step, based on the strat-
egy level given to the highly-connected nodes at
initialization in control condition

Initial Theory of Mind level of ”highly-connected” nodes
Zero First Second

C
o
u
n
ts Zero 104 192 0

First 207 208 303
Second 10089 10000 10097

From the tables it can be observed that across all
types of initialization strategies and both control
and experimental conditions, the counts for Zero
order strategy are minor.
While it was observed from the final counts that
there is more cases of first order strategy in the ex-
perimental condition, it can now be specified, that
the cases are also quite evenly distributed across
the runs with different initialization strategies.
However, it does appear that in cases when highly
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connected nodes initially started with first-order
strategy, it was more likely by the final time step
that the population will converge to second order
strategy, compared to runs with a different type of
initialization strategy.
In order to test the significance of this difference
a proportion test was conducted between the
counts for first order strategies in two conditions:
first condition is initialization with first order
strategy and experimental run, second condition
is initialization with second order strategy and
experimental run. The proportion test yields the
following values: z-value is -23.4661, p < 0.00001.

The results of the proportion test suggest that
first order strategy has different prevalence rate
across initializations of strategies for runs in exper-
imental condition.

3.4 Visualization of a typical simula-
tion run

The figures 3.1 and 3.2 show the evolution of
prevalence of different strategy levels in a popu-
lation across all of the time steps. Figure 3.1 shows
the dynamics of the environment that converge on
the second order strategy, while figure 3.2 shows
the less common case of the population converg-
ing on the first order strategy. Interestingly, this
scenario mostly happens when the highly con-
nected nodes were initialized with zero or second
order Theory of Mind strategies.

It can be observed that when the population
converges to the second order strategy, the first
order strategy is eliminated first, followed by a
decrease in the count of the zero order strategy.
Meanwhile, when first order strategy prevails,
zero order strategy is eliminated first, while first
order strategy eventually outcompetes the second
order strategy. The evolution pattern was similar
across the runs in experimental and control con-
ditions, aside from the environment converging
sooner to a single strategy in the control condition.

Figure 3.1: Evolution of distribution of strate-
gies in the population that converged on the
second order Theory of Mind strategy

Figure 3.2: Evolution of distribution of strate-
gies in the population that converged on the first
order Theory of Mind strategy

8



4 Discussion

Firstly, it can be stated that the results and con-
ducted statistical tests provide an answer to the
research question: the presence of a few highly-
connected nodes does affect the evolution of The-
ory of Mind of Theory of Minds-based strat-
egy distribution in a population that plays Rock-
Paper-Scissors-Spock-Lizard. The statistical signif-
icance of the difference between the results from
the experimental and the control conditions leads
to a rejection of the null hypothesis. The rest of the
discussion will address potential confounds, alter-
native interpretation of results and provide sug-
gestions for future research of Theory of Mind.

4.1 Results interpretation

While the design of the environment was intended
to control for as many extraneous variables as pos-
sible, the final results are still open for interpreta-
tion and different arguments can be made about
which independent variables were most impact-
ful.

The difference between the final counts for dif-
ferent levels of Theory of Mind strategies of con-
trol and experimental conditions was statistically
significant. While an extensive size of the results
data sets could be responsible for a higher sta-
tistical power and the low p-value may signify
the great influence that the independent variable
(influence of highly-connected nodes) has on the
distribution of strategies, other arguments can be
made. The observed difference between the con-
ditions may be caused by the influence of multiple
effects produced by a different network structures.

It can be observed that by using a different net-
work initialization method, the direct result in the
experimental condition is not only the appearance
of highly-connected nodes, but also the emergence
of clusters. In this case, clusters are a consequence
of great inequality between the number of connec-
tions that highly-connected nodes have compared
to the low-connected ones. The highly-connected
nodes become centers of these clusters and their
emergence affects the dynamics of the network.
One of the effects of clustering on the network
is that in experimental condition the average dis-
tance between the nodes is noticeably lower than
in the control condition. In experimental condi-

tion the average distance varied between 1.5 and 3
nodes, while in control condition the range of av-
erages was from 3.5 and 3.8 nodes.

The different method of network initialization
in the experimental condition has extraneous ef-
fects, like the aforementioned difference in aver-
age distance between nodes. This means that it is
impossible to separate the effect and influence of
highly-connected nodes and their strategies from
the additional differences in the networks by look-
ing at the final counts between the experimental
and control conditions alone. However, the signif-
icant statistical results are sufficient to suggest that
these multiple effects do not contradict each other
with the same power, which would result in no
difference with the control condition as the multi-
ple effects cancel each other. In turn, the effects of
clustering and addition of highly-connected nodes
are either complementary to each other or one of
the effects is significantly stronger than others.

In order to isolate the effects that highly-
connected nodes have on the population, the data
for both conditions was split into groups, based on
which strategy was given to the highly-connected
nodes during the run initialization. Proportion test
conducted between these groups in the experi-
mental condition showed a significant difference
between the final strategy counts. This additional
test within the experimental condition controls
for the clustering and average distance between
nodes. Based on that a conclusion can be derived
that highly-connected nodes have an impact on
the network and strategy distributions as a sole
isolated independent variable, which supports the
experimental hypothesis.

4.2 Improvements and further re-
search suggestions

Based on the interpretation of results it was possi-
ble to isolate the effect of highly connected nodes
and determine that they have an effect on the net-
work evolution in separation from the other ef-
fects. However, the next step would be determin-
ing the extent of effect that clustering and aver-
age distance between nodes may or may not have
on the network dynamics. A possible setup for
that could include two conditions, where all nodes
have the same amount of connections, however
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in the control condition all of the connections are
fully random, while in the experimental condition
the population is split into subdivisions (clusters)
and each node has exactly one connection with a
node outside of the cluster, while the remaining
connections have to be made with other members
of the same subdivision.

Based on the results of the proposed study, it
would also be useful to determine whether the ef-
fects of clustering complement or conflict with the
effects of highly-connected nodes. There are many
possibilities of how exactly these effects together
affect the dynamics of the network and that de-
serves to be further looked into.

Another suggestion is related to the nature of
Rock Paper Scissors Spock Lizard as a game and
how Theory of Mind can be used in it. In this
study, the population had strategies based only on
the lowest three orders of Theory of Mind. While
the three orders were sufficient at showing the
dynamics that may occur in the population and
provided both expected and unexpected results,
it might be beneficial to include higher orders of
Theory of Mind as well. When compared to the
original Rock Paper Scissors, Rock Paper Scissors
Lizard Spock may benefit more from higher orders
of Theory of Mind due to a higher variety of in-
teractions. In Rock Paper Scissors there are only
three moves, which work in a circular manner. In
a situation where an agent and its opponent both
used Scissors in the last round, a zero order strat-
egy chooses Rock as the optimal move, first or-
der strategy would choose Paper and second or-
der strategy would choose Scissors. Third order
Theory of Mind strategy would once again use
Rock to counter the second order strategy, which
means that it is functionally identical to zero order
strategy in terms of the most optimal move. This
shows that the first three orders of Theory of Mind
cover all possible move interactions and strategies
based on orders of Theory of Mind higher than
the second order would provide an identical opti-
mal move to the one provided by one of the lower
order strategies. However, this exhaustion of op-
tions using only the first three orders of Theory
of Mind is not the case for Rock Paper Scissors
Spock Lizard, which means that addition of higher
order strategies until the exhaustion of options is
met may significantly impact the dynamics of the
population. The practical usefulness of that inves-

tigation may be limited, due to the fact that higher
orders of Theory of Mind would require higher
use of mental resources, making them less energy
efficient. However, some important theoretical in-
sight on interactions of different order of Theory of
Mind might be obtained from such investigation.

Lastly, there was a surprising observation made
while analyzing the evolution of network strat-
egy distributions per time step. While the network
dynamics followed an expected pattern in cases
when the network converged on the second order
strategy, that was not the case when the network
converged on the first order strategy. By definition
of the strategies, first order of Theory of Mind is
effective against zero order Theory of Mind, while
first order is in turn countered by the second order.
Unexpectedly, in the test runs, when the network
converged on the first order Theory of Mind, the
strategy that was eliminated first was zero order
and afterwards first order slowly directly outcom-
peted second order. In majority of test runs, the
expected pattern took place and second order out-
competed the lower orders, nevertheless the pro-
portion of runs where first order theory of mind
was triumphant is not dismissible and the condi-
tions for such outcome should be determined in
further research. One of the potential reasons for
first order Theory of Mind to be able to compete
with second order Theory of Mind is the integra-
tion of beliefs and a learning rate of less than 1,
which means that the move decision is not deter-
ministic. Considering the currently available infor-
mation it is possible for this outcome to be a result
of unpredictable belief dynamics, but it is also pos-
sible that some other specific conditions have to be
met for the network to converge on the first order
strategy and that may be a topic of further research
in the future.

5 Conclusion

The obtained results provided support for the ex-
perimental hypothesis, which stated that addition
of highly-connected nodes to the network would
influence evolution of strategy distribution in the
population. However, this was not the sole ob-
servation extracted from the data and future re-
search should be conducted to answer the newly
posed questions. Specifically, concerning the ef-
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fects of clustering on network evolution and the
conditions under which first order Theory of Mind
outcompetes the second order Theory of Mind.
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