
The Effect of Change in Temperature and Rainfall upon
the Spread of Malaria

Bachelor Project Applied Mathematics

University of Groningen

Student: Siddhanta Mishra

First Supervisor: Prof. Dr. J.G. Peypouquet

Second Supervisor: Prof. Dr. M.K. Camlibel

July 6, 2023

1



S. Mishra S4035798

abstract

This thesis attempts to understand the relation between the changes in the temperature and
rainfall, and the spread of malaria. This will be carried out by first introducing a multi-layered
SIR model, with a layer looking at a constant human population, while the second would look
at the fluctuating mosquito population. This fluctuation would be defined using the factors of
temperature and rainfall. Finally, a programme would be constructed to simulate the model
based on temperature and rainfall. Using this programme and the data in regard to both of
the previously stated factors, simulations of the countries Libya, the Central African Republic,
and South Africa for the years 2001, 2011, 2021 will be carried out. After a comparison between
the predicted number of cases and actual number of cases, we will look to methods to improve
the model by the inclusion of human efforts that alter various factors concerning the mosquito
population and its interaction with the human population.
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1 introduction

Climate change has in recent years resulted in unforeseen changes to the environment, including
but not limited to the spread of diseases to change. Which for example is effected by temperature
and rainfall. This thesis will focus on how the changes in these two factors affect the spread of
diseases, more specifically the spread of malaria. We will also look to understand the extent of
human efforts to reduce the spread of malaria.

Malaria is a disease caused by a protozoan parasite of the genus Plasmodium. There are
five parasite species within this genus which infect humans, of which Plasmodium falciparum
and Plasmodium vivax have the highest number of infection cases[6]. These parasites have a two
part life cycle, the first occurs within the body of a female mosquito which acts as the vector of
spread, before being transmitted to a human. Due to the requirements in regard to the growth of
the parasite and its vector, it is most prevalent in the Sub-Saharan region[8].

Malaria is one of the most researched and modelled infectious diseases, beginning with the Ross
model in the 1890s. In these various models, each attempts to understand the spread of malaria
based upon different aspects, such as age, socio-economic status, immunity, or the weather. This
is done by simplifying complex biological processes into mathematical approximates of them,
something that we will be encountering throughout the thesis[5].

In this thesis, we will be using the Parham-Michael model, to gain an understanding of the effects
of the change in rainfall and temperature upon the spread of malaria. Parham-Michael model is
a set of 6 ODEs that track the growth of the human population through an SIR model and of
the mosquito population through the SEI model, while also establishing the relation between
the two. Then we will be extending the model to include human efforts in the reduction of the
number of infection cases based on the actual number of cases. Which will showcase that the num-
ber of cases simulated with human intervention is closer to the real number of new infection cases.

The outline of the thesis is as follows. In Section 2, we will be covering the preliminaries
in the SEIR models. In Section 3, we shall see how biological processes are translated into the
Parham-Michael mathematical model, which will be followed by its application to three different
countries in three years at intervals of a decade in Section 4. Based on real data, we will alter
the model to consider human intervention in Section 5, before applying them to the same cases.
Finally, in Section 6, we will conclude the thesis while looking to areas to improve the model.
Thereon, we have the Appendix with the equations and programmes used throughout the thesis
and the Acknowledgements.

2 preliminaries

2.1 SEIR Models

There have been many model types that have been used to mathematically describe the growth
and spread of various infectious diseases. Among them is the family of SEIR models, that look
upon the spread and recovery of an infectious disease in a population through the movement
of the aforementioned population in-between the individual compartments. These individ-
ual categories are categorized as Susceptible (S), Exposed (E), Infected (I), Recovered (R). The
susceptible population is the segment of the population that may be infected by the disease.
Exposed category refers to a subgroup that has been infected but is not yet capable of infect-
ing others, which is often included for diseases that have an incubation period within the subject.

However, this does not imply that every single model, uses every single category, for example, in
some cases there is a possibility that once the population recovers from the infection, they once
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SI Model S I SIR Model S I R

SIS Model S I SIRS Model S I R

SEIRS Model S E I R SEIS Model S E I

Figure 1: The various possible S-E-I-R based models

more become susceptible either immediately or after a certain duration of time, giving rise to
SEIS and SEIRS models. We can see, in Figure 1, that the states of Susceptible and Infected are
present in any model of such a type.

The Basic Reproduction number (R0) is defined as the he average number of secondary cases
arising from an average primary case in an entirely susceptible population. When R0 = 1 is
maintained, then the infection will continue to exist within a population without any additional
infection from an external source. Below that, we can see the possibility of an infection-free
population, while above it, the infection is likely to spread [4].
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3 model construction

3.1 Model Background

Malaria is a disease that is transmitted in the majority of cases through female Anopheles
mosquitoes. Yet not all the various Anopheles species are effective transmitters of the disease. A.
gambiae is a variety of mosquitoes, native to Africa, that are often the subject of mathematical
modelling. To properly model such a vector, the model gains a secondary level, when it is applied
to the mosquito population. In the mosquito population, as they never recover from the infection,
what we see is either SI or SEI models. Then, these models interact when infected humans infect
susceptible mosquitoes, which then infect susceptible humans.

How often these bites happen is dependent on the gonotrophic cycle. The gonotrophic cy-
cle is divided into three parts, the first would be the bite and consumption of blood. The second
part is the digestion of blood and the maturation of the eggs, which in stage three are deposited
in an appropriate water body [1]. We can then model the entire cycle of which stage two is
temperature dependent, the inverse of this can be used to calculate the temperature-dependent
biting rate (a(T)) as follows:

a(T) =
T − T1

D1
, (1)

Where D1 and T1 are constants that were collected from based upon experimental data from the
European A. maculipennis[1].

Constant Value [7] Unit

T1 19.9 ◦C
D1 36.5 ◦CDays

Table 1: Bite Rate Constants

The first of such models, which attempted to explore the spread of malaria through mathe-
matical modelling, would be the Ross Model, developed by Ronald Ross in the early 20th century.
It is a coupled SIS (for humans) and SI (for mosquitos) model. While being very simple in
comparison to many of the malaria models that are available, this model was an invaluable first
step towards the modelling of the spread of malaria.

SH IH

IM SM

r

µ

Figure 2: Visualization of the Ross Model

Solid lines represent transition of populations, and Dashed lines represent influence

One of the factors that were not considered in the Ross model was the latency period of
the malaria virus in the mosquito. The following model, the Macdonald model, was constructed
to address this factor, this was done so by including the Exposed category for the mosquitos in
the model. Hence, it looks at the development and change of three different categories [5].
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Figure 3: Visualization of the Mcdonald Model

We know that the exposed phase of the mosquito is dependent on the sporogonic cycle of
the virus in question. The sporogonic cycle is the duration it takes the virus to infect, then
reproduce within the mosquito, before finally resulting in the mosquito producing infectious
saliva [1]. We can use the following equation to model this cycle.

τm(T) =
DD

T − Tmin
, (2)

Again, DD and Tmin are constants that have been based upon experimental data and differ for
different varieties of viruses that cause malaria [7].

Constant Value [7] Unit

DD (P. falciparum) 111
◦C

DD (P. vivax) 105
◦C

Tmin (P. falciparum) 16
◦CDays

Tmin (P. vivax) 14.5 ◦CDays

Table 2: Sporogonic Cycle Constants

While the above two models on their own would be able to give us the changes in the proportion
of the different categories in the system, it does not tell us directly on what aspects to focus on
to reduce the spread of malaria. We can look at the basic reproduction numbers for a clearer
picture. With this in mind, when we go back to the above two models, we are presented with the
following R0:

R0 =
ma2b1b2

rµ
, (3)

Here b1 is the proportion of bites from an infectious mosquito to a susceptible human that
produce infection in the human, while b2 is the proportion of bites from a susceptible mosquito
to an infected human that cause infection. The r is the average recovery rate of humans. Here µ
is the per capita rate of mosquito mortality, which is defined as a constant in this instance but is
dependent on temperature for the final model.

Constant Value [7] Unit

b1 0.09 Dimensionless
b2 0.04 Dimensionless
r 1

120 Days−1

Table 3: General Constants

Here, (3) is the R0 for the Ross Model. We can see, from the equation, that a decrease in
the number of mosquito bites would be better able to lower the basic reproduction number, when
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compared to the increase in recovery rate of humans, in these models. You will note that a is not
dependent on the temperature in this model, since it was not considered so in the Ross model,
similarly for the mortality rate of mosquitoes.

R0 =
ma2b1b2

rµ
e−µτm , (4)

Now we have introduced (4) as the R0 for the McDonald Model. The only difference between
this equation and the previous, is the introduction of the exponential. This exponential implies
that the McDonald model gives greater importance to increasing the mortality rate of mosquitoes
in comparison to the reduction of the number of bites, even though that too would be reduced
when increasing the mortality rate.[5]

To begin discussing the mortality rate of mosquitos, we need to first understand the life cycle of
mosquitoes, as they have different dangers at various stages of life. After first being laid in an
appropriate water body, the eggs of the Anopheles mosquitoes go through four stages of larvae,
before turning to pupae, beyond which they become adult mosquitoes. The four larvae stages are
together are dependent on the temperature, we can ascertain the duration of the larvae period
(τL(T)) as follows:

τL(T) =
1

αT + β
, (5)

Where α and β are based upon a study of the development of A. gambiae [1].

Constant Value [7] Unit

α 0.00554 (◦CDays)−1

β -0.06737 (Days)−1

Table 4: Larvae Development Constants

After discussing the lifecycle of a mosquito, it is important to note that both the egg stage
and pupae state are short enough that mortality due to temperature during this period is in-
significant. Hence, we have two stages where we must know the mortality rate of the collective
larvae stage and the adult stage. For the model that we will use, we define the probability of
daily survival of Larvae (pL), and the per capita death rate of adult mosquitoes. They are defined
as follows:

pL(T) = e−(αT+β) (6)

µ(T) =
1

AT2 + BT + C
(7)

Here once more, A, B, and C, are constants that are dependent on experimental data [7].

Constant Value [7] Unit

A -0.03 (◦C2 Days)−1

B 1.31 (◦CDays)−1

C -4.4 (Days)−1

Table 5: Mosquito Mortality Constants

More recently, one model, which considered the effect temperature could have on the mosquito
population and hence the spread of malaria, was constructed in 2004 [3]. This was the Hoshen
and Morse model, which integrated the sporogonic cycle and the gonotrophic cycle into the
model. They did this by introducing a Larval stage, which accounted for all three stages of the
development in immature mosquito progeny. The introduction of new eggs was constructed to
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be based upon the rainfall in the last 10 days. The larval stage would determine the number of
adult mosquitoes in the SEI model of the population, which would then affect the SEIS model for
the human population [1].

Something that is not considered in the model above is the possibility of rainfall flooding
the progeny away, regardless of the stage they are in. The model, we will use, considers the daily
probability of mortality for all three stages, with a similar equation, which is as follows:

pi(R) = (
4pMi

R2
L

)R(RL − R), i = {E, L, P} (8)

pMi: Peak daily probability of survival

RL: Rainfall Threshold beyond which no immature mosquitoes survive[7]

Constant Value [7] Unit

pME 0.9 Dimensionless
pML 0.25 Dimensionless
pMP 0.75 Dimensionless
RL 50 mm

Table 6: Daily Progeny Survival Constants

After having introduced the various building blocks of the model, both historically and mathe-
matically, we can introduce the model itself, the Parham-Micheal Model.

3.2 Model

Before, we can go into the mathematical equations of the model, it is important to understand
the simpler fundamentals of the model. Firstly, in the human population, the exposed phase has
been integrated into the equation for the change in the infected population, hence it disappears
as a stage in the model. Then, instead of a loop where once the infected recover, they are once
more susceptible, the model assumes that the population gains permanent immunity from the
illness, hence there is no transition from recovered to susceptible.

SH IH RH

IM EM SM λ(R, T)

r

µ(T)

τm(T)

Figure 4: Visualization of the Parham-Micheal Model

Next we have to look at the mosquito population, which unlike the human population does not
remain static. Here, in this model, unlike the Hoshen and Morse model, there is no additional
larval stage, instead an adult mosquito population is directly introduced into the model depend-
ing on the rainfall and temperature. Beyond that, it is a rather standard model of the mosquito
population. We can see a visualization of the model in Figure 4.

To begin constructing the model, we can first look at how the influx of adult mosquitoes
is calculated. The Parham-Micheal model does so by using a total number of eggs, then calculat-
ing the total probability of daily survival before using the total time spent in the immature phase.
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Having defined the various temperature and rainfall-dependent factors, we get the following
relationship:

λ(R, T) =
BE pE(R)pL(R)pL(T)pP(R)

τE + τL(T) + τP
, (9)

Here we know that the duration of the egg stage (τE), and the duration of the (τP) are both stated
to be 1 day long, while BE is defined as the number of eggs layed [7].

We can start looking at the equations of the model that describe the changes in the popu-
lation of the two parties. We will first start with the human population, as it is simpler. The
change in population for the susceptible humans is only negative, as there is no influx via
births, or through a loss of immunity in the recovered population. Next we will consider the
infected human population. We have an influx from the susceptible population. Both of these
are dependent on the population of infected mosquitoes. The other factor is the recovery of the
infected humans, which is also the only factor that affects the recovered population. Hence, we
get the following model:

dSH
dt

= −a(T)b1 IM
SH
N

, (10)

dIH
dt

= a(T)b1 IM
SH
N

− rIH , (11)

dRH
dt

= rIH , (12)

Here N is the total human population that we are considering [1].

Now we can move onto the fluctuating mosquito population. We have already established
the influx of adult mosquitoes, which determines the positive change in the susceptible popula-
tion. Then a certain number of the population enter the exposed phase after being exposed to
the virus. The mosquitoes then travel from the exposed phase to the infectious population based
on the sporogonic cycle, and the chances of survival through the exposed phase. In all three of
these phases, there exists a certain probability of mosquito mortality, which we established in the
previous section.

dSM
dt

= λ(R, T)− a(T)b2SM
IH
N

− µ(T)SM, (13)

dEM
dt

= a(T)b2SM
IH
N

− a(T)b2(t − τM(T))lM(t)SM
IH(t − τM(T))

N
− µ(T)EM, (14)

dIM
dt

= a(T)b2(t − τM(T))lM(t)SM
IH(t − τM(T))

N
− µ(T)IM, (15)

Where lM(T) = e−µ(T)τM(T), is the probability of an adult female mosquito surviving the
sporogonic cycle [1].

Having established the model, we also must look to the basic reproduction number. It will be
able to provide us with a better look as to what the potential of an epidemic, the virus has under
different rainfall and temperatures.

R0 =
M(R, T)a(T)2b1b2

Nrµ(T)
lM(T), (16)

Now this equation should look very familiar, if we look at (4), we will notice that R0 is the
same. Only here, we showcase certain aspects to be dependent on the rainfall and temperature.
Here M(R, T) represents the total population of the mosquito, which we are given has a Poisson
distribution given with a mean of λ(R,T)

µ(T) regardless of the initial population[7].
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4 model simulation

4.1 Programme Construction

For the simulation, we will be creating a program that solves ODEs that we have stated above
numerically. We will be using MATLAB for this. To begin constructing the programme, much
like we did for the actual model, we will have to start with the foundational equations. These
foundational equations are things such as bite rate, sporogonic cycle, duration of the larval period,
death rate of adult mosquitoes, along with the daily probability of survival for the various stages
of mosquito progeny. All these factors have been shown to be dependent on the temperature and
rainfall. One thing to note, is that due to the equations for the biting rate and the sporogonic
cycle, we need to create a safety net should the temperature go below the specified T1 and Tmin.
We set up a similar for the daily probability of survival dependent on rainfall.

Now we need to determine the number of the mosquitos that survive to adulthood depending
on the number of eggs laid, the survival rate at different rainfall and temperatures, and the
duration of the larval period. We also need to determine the rainfall and temperature, which we
base upon the time of year and location we would consider. For this purpose we will be using
Libya, The Central African Republic, and South Africa, in the years 2001, 2011, and 2021. We
are using these specific years and countries to broadly cover development across Africa over the
years. Finally, we also consider the likelihood of a mosquito’s survival over the period of the
sporogonic cycle.

Finally, we can set up the ODEs, which we will set up in one programme. We do this be-
cause this allows us to only define the constants once, taking less time computationally. Using
this, we can set up the Runge-Kutta method RK4 for the duration of the year. This method is
useful as it lowers the global error when compared to the Euler’s method or Heun’s Method. We
will also be calculating the R0 as we go, so that we don’t need additional if-loops due to the fact
that some variables are dependent on temperature and rainfall, which in turn are dependent on
time.

For the numerical method, we will be using a higher-order Runge-Kutta Method, as stated
earlier. In this case, we will use the RK-4 which works with four estimates. These four estimates
are then used to calculate the next step using the following equation.

yn+1 = yn +
1
6
(K1 + 2K2 + 2K3 + K4) (17)

Where Ki, represent an estimate. These estimates are calculated based on, (xn, yn) as well as, the
previous estimates. The exact equations can be found below.

K1 = h f (xn, yn), (18)

K2 = h f (xn +
h
2

, yn +
K1

2
), (19)

K3 = h f (xn +
h
2

, yn +
K2

2
), (20)

K4 = h f (xn+1, yn + K3), (21)

Where h is the step size, and f represents the function of the ODE.

We will be using the RK4 method, over the Euler method because, firstly, it allows us to
have a larger step count, which is very important as we will be running the model over a period
of 365 days. Secondly, it gives us a lower error for our values, as it uses 4 estimates, unlike the
Euler method which uses only one.
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4.2 Model Data & Constants

Now having seen the programmes, we can move onto the data. The data was gathered from
Climate Change Knowledge Portal. We can observe certain patterns in the temperature and
rainfall. The three countries each have vastly different climate profiles.

Year 2001 2011 2021

Jan 13.18 13.28 13.27

Feb 14.23 15.06 15.06

Mar 20.63 18.08 18.42

Apr 23.85 23.47 23.91

May 27.62 26.7 28.09

Jun 29.23 29.84 30.47

Jul 30.69 30.44 30.94

Aug 30.81 30.11 31.11

Sep 29.84 28.37 28.4
Oct 24.56 23.6 23.76

Nov 19.2 17.55 19.31

Dec 13.73 13.43 13.43

Table 7: Temperature Data (◦C) for Libya [2]

Year 2001 2011 2021

Jan 3.97 5.62 3.73

Feb 6.98 5.95 2.35

Mar 1.19 4.17 2.18

Apr 1.53 2.68 0.62

May 1.03 1.26 0.61

Jun 0.23 0.79 0.33

Jul 0.31 0.33 0.33

Aug 1.04 1.1 1.04

Sep 0.44 1.53 0.91

Oct 1.07 3.96 3.27

Nov 7.49 4.29 3.55

Dec 11.14 7.04 11.57

Table 8: Precipitation Data (mm) for Libya [2]

Libya tends towards more fluctuating temperatures throughout the year, approaching 30 (◦C)
during the summer months, and going below 15 (◦C) in the winter months. This, in addition
to the lack of rainfall throughout the year, leads to the assumption that the introduction of new
mosquitoes will likely be low. The gonotrophic cycle and sporogonic cycle will also both be
lengthened during the winter months.

Year 2001 2011 2021

Jan 23.89 23.92 25.72

Feb 26.23 27.13 26.81

Mar 27.26 27.7 27.87

Apr 27.57 27.62 27.32

May 26.76 26.61 26.73

Jun 25.02 25.58 25.66

Jul 24.44 24.88 24.42

Aug 23.98 24.28 24.28

Sep 24.32 24.59 24.62

Oct 24.68 24.56 25.25

Nov 24.67 24.51 25.65

Dec 24.52 24.18 25.12

Table 9: Temperature Data (◦C) for the Central
African Republic [2]

Year 2001 2011 2021

Jan 6.06 7.01 13.67

Feb 14.44 15.6 17.67

Mar 47.46 58.56 69.42

Apr 100.12 95.77 81.21

May 122.39 145.35 148.65

Jun 148.78 169.86 165.22

Jul 189.1 202.94 213.93

Aug 214.52 244.79 265.04

Sep 226.02 224.75 250.65

Oct 224.39 166.57 171.65

Nov 49.21 36.22 54.64

Dec 8.08 6.75 7.79

Table 10: Precipitation Data (mm) for the Central
African Republic [2]

The Central African Republic, unlike Libya, maintain a stable temperature between the 23 to
28, this implies that there is no major change in temperature dependent factors, such as the
per capita death rate, and duration of the larval period. Hence, the change in the influx of
adult mosquitoes in mainly dependent on the rainfall, which we see increase considerably in the
months between June and October.

In South Africa, both the temperature and rainfall fluctuate. Both of them reach favourable levels
for mosquito and virus development. The optimal period of time occurs at the two ends of the
year, January to March and October to December. We enter this data into the RK4 to get the

12
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Year 2001 2011 2021

Jan 23.21 23.12 23.33

Feb 22.87 23.35 23.01

Mar 21.96 22.67 21.64

Apr 17.79 17.78 19.64

May 14.67 14.74 15.2
Jun 12.25 11.21 13.37

Jul 10.79 10.7 10.76

Aug 13.21 13.26 13.17

Sep 15.31 16.93 17.14

Oct 19.7 18.86 18.32

Nov 20.45 20.27 20.14

Dec 21.88 22.13 21.46

Table 11: Temperature Data (◦C) for South Africa
[2]

Year 2001 2011 2021

Jan 39.04 98.46 114.23

Feb 58.05 70.53 70.21

Mar 55.63 69.2 44.9
Apr 51.78 57.2 22.41

May 22.69 43.2 10.3
Jun 8.4 31.61 11.44

Jul 19.56 16.5 8.26

Aug 20.43 17.37 18.64

Sep 43.05 8.17 11.82

Oct 46.71 30.25 35.36

Nov 98.84 49.59 57.45

Dec 82.89 59.89 121.59

Table 12: Precipitation Data (mm) for South
Africa [2]

values for those years.

We will be taking a static human population of 1000, 900 of whom would be susceptible,
while 100 would be already infected. We will have an initial population of 2000 for each of the
mosquito categories. Finally, we will be using the P. falciparum as the malaria strain. While we
know that the population can only exist in integer values, to better understand the changes, we
will leave them unrounded.

4.3 Model Results

4.3.1 Libya

Figure 5: Number of cases in a population of
1000 in Libya by the Parham-Micheal Model

Figure 6: R0 of Libya by the Parham-Micheal
Model

Due to the dry nature of Libya, mosquitoes quickly die out, with negligible introduction of
adult mosquito. This results in the spread of malaria being very low, near zero. This can be
seen in Figure 5, where there’s not even a loss of one human to the infection. This is further
emphasized when we look at the R0 in Figure 6 and see how small the scale is. While we do not
have any direct data from the country itself, we do have data from its two neighbours, Algeria
and Egypt, to show that the number of cases in a 1000 are zero [8]. Hence, we can assume that this
holds true for Libya. This would be primarily due to the extremely dry condition of the country
that remains consistent, throughout the year. As a result, even when the temperatures rise to
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more mosquito-friendly levels, there simply is not enough moisture to support an abundant
enough population of mosquitoes for there to be an impact.

4.3.2 The Central African Republic

Figure 7: Number of cases in a population of
1000 in The Central African Republic by the
Parham-Micheal Model

Figure 8: R0 of The Central African Republic by
the Parham-Micheal Model

The Central African Republic showcases the highest cases of infected individuals, it also gives
us a higher R0 when compared to the other two graphs. This is primarily due to the consistently
hospitable temperature, as a result, the influx of adult mosquitoes is primarily dependent on the
rainfall experienced by the country. The latter months, result in a high influx of adult mosquitoes,
which can be seen in the increase of R0 around these months in Figure 8. In the three years, we
do not see a drastic change in the temperature that would explain differences between number
of cases. Hence, we should look at the differences in rainfall, which shows an increase in later
years. However, this change does not correspond with the data that we have, where we see a
reduction of new cases and not an increase [8].

4.3.3 South Africa

Figure 9: Number of cases in a population of
1000 in South Africa by the Parham-Micheal
Model

Figure 10: R0 of South Africa by the Parham-
Micheal Model

When we run the model for South Africa, we see an interesting pattern, where the number of
infections that occur, only do so in the initial period. This is because the temperature starts to
fall below the hospitable level after this period, both for mosquitoes and the malaria virus. In
addition, one interesting fact that must be noted is that the model showcases over 140 cases of
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infection in all three years. However, the data that we have showcases that there were at most 6

cases in a 1000 people out of the three years. This implies that even before this period, much care
was taken to eliminate the disease in the region, a trend that seems to have continued in the two
decades, with the number of cases falling to below 1 out of 1000 people in 2021 [8].
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5 altered model

5.1 Model

As we saw after running the simulations, the model, while telling us what are the effects of
the rainfall and temperature on the spread of malaria, it does not paint a complete or accurate
picture. Hence, we will attempt to construct a secondary model that will account for the various
methods used to minimize the spread of the disease. We will be taking inspiration from both the
Hoshen and Morse model, as well as the Parham-Michael Model. Firstly, we will introduce an
exposed phase for the human population, for which we use a 14-day period as introduced in the
Hoshen and Morse model [3]. In this model, we will not consider the immunity or resistance,
that the human population may have developed, as that would increase the complexity of the
model beyond the bounds of the paper.

dSH
dt

= −a(T)b1 IM
SH
N

, (22)

dEH
dt

= a(T)b1 IM
SH
N

− 1
14

EH , (23)

dIH
dt

=
1

14
EH − rIH , (24)

dRH
dt

= rIH , (25)

One thing to note, is that in this case the introduction of an exposed phase does not have an effect
on the R0, this is because we do not consider the possibility of death in the human population,
hence the likelihood of someone surviving the exposed phase is 1.

To start with, we must construct a relation between the number of current mosquitoes and
the number of eggs deposited. For this, we will look towards the Hoshen and Morse model,
which does have such a relation. Briefly discussed earlier, this relationship is dependent on the
rainfall over the period of the last 10 days (Rd), we can then state the number of eggs layed by
mosquitoes(BE) as follows.

BE(Rd) = γRda(T)M, (26)

Where γ is defined as 1 egg/mm, we use the biting rate as it is the inverse of the gonotrophic
cycle[1]. M represents the current mosquito population

There are three major avenues through which the spread of malaria can be effectively con-
trolled when it concerns mosquitoes, which are reducing the influx of adult mosquitoes, reducing
the rate of mosquito bites, and finally increasing mosquito mortality. We will start with the
first, where we need to control the influx of adult mosquitoes. Recent years have showcased
a multitude of preventive measures, such as the reduction of available water bodies for the
mosquitoes to oviposition and making the remaining water bodies as inhospitable as possible.

λ(R, T) =
BE(Rd)pE(R)pL(R)pL(T)pP(R)

τE + τL(T) + τP
λ′, (27)

Where λ′ is the percentage of the population that survive any measures taken to reduce the
number of immature mosquitoes.

Secondly, We need to establish a reduced bite rate, that accounts for the increase in usage
of items such as insect nets, and insect repellents. The usage of such measures has become
increasingly common in areas with heavy mosquito presence [8].

a(T) =
T − T1

D1
γ, (28)
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Where γ represents the percentage of individuals using such means to avoid insect bites.

Finally, we will include an induced mortality that is dependent on the country and year. This
variable allows us to account for measures including but not limited to insecticides.

µ(T) =
1

AT2 + BT + C
+ µ′ (29)

The µ′ is the induced mortality rate, that we need to quantify at a later period.

Now we can establish the ODEs for the change in the population of mosquitoes. Here, much
will be kept the same, besides the transition between the exposed population to the infected
population. Here, we take the approach adopted by the Hoshen and Morse model.

dSM
dt

= λ(R, T)− a(T)b2SM
IH
N

− µ(T)SM, (30)

dEM
dt

= a(T)b2SM
IH
N

− 1
τM(T)

EM − µ(T)EM, (31)

dIM
dt

=
1

τM(T)
EM − µ(T)IM, (32)

5.2 Programme

Due to the fact that we are building upon the previous model, we do not need to change many
aspects of the code. The three primary codes for the influx, biting rate, and per capita will be
changed to introduce the new element based on the year and country, which can be seen in the
Appendix. Furthermore, we only need to change the inputs in the programme for the survival
probability of a mosquito in through the sporogonic cycle.

The next set of changes occur in the ODE programme, where we add in the Exposed hu-
man phase, and change the equations for the Exposed and Infected mosquito populations to the
ones used in this model. Finally, in the RK4, we must look at include the additional variable.

Before We begin modelling, we must also be aware of the real life data, that we have been
provided with. The following table shows the number of cases per thousand people [8]. A

Year Country Libya The Central African Republic South Africa

2001 < 0.01 433.94 5.82

2011 <0.01 385.81 1.90

2021 <0.01 335.99 0.75

Table 13: Incidence of Malaria per 1000 people

thing to be noted is that, the value for the number of cases in Libya is estimated based upon the
incidence rate of malaria is the neighbouring countries. Secondly, this programme will assume
that at the start of the year the ratio of mosquitoes capable of carrying the malaria virus to
humans will be 6 to 1, wherein the mosquitoes are equally divided into three populations. This
does not reflect the actuality of the environment, hence the variables may also need to account
for this deviation.

The initial attempt was done by fine-tuning the variables, until we received an appropriate
number of infection cases. After this first attempt gave us a good estimate as to what the weight
should look like, we can rearrange the R0 to get:

ln
(

NR0rµ(T)2

b1b2a(T)2λ(R, T)

)
+ µ(T)T = ln

(
λ′γ2

(µ(T) + µ′)2

)
− µ′T (33)
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Here µ, λ, and a represent the original equations for these variables. Using how the R0 changes
through the months, as well as what the previous attempt showed us what the accumulative R0,
we can now use multivariate regression.

5.3 Model Results

5.3.1 Libya

Figure 11: Number of cases in a population of
1000 in Libya by Altered Model

Figure 12: R0 of Libya by Altered Model

Year & Variable λ′ γ µ′

2001 0.0267 0.0267 0.8691

2011 0.0312 0.0312 0.8663

2021 0.0321 0.0321 0.8679

Table 14: Variables for Libya in the Altered Model

First, we should look at the Figure 11, here we see that the number of cases is 0, unlike in
Figure 5. Secondly, we can have a look at Figure 16, here we see that the summer months still
have an amplifying effect on the R0, even if the resultant R0 is significantly smaller than the one
shown in Figure 6. Finally, when we look at Table 14, we can see a significant reduction in birth
and biting rates, while there is a high induced death rate. These changes maybe due to the high
starting mosquito population.

5.3.2 The Central African Republic

Year & Variable λ′ γ µ′

2001 0.0703 4.6314 0.1524

2011 0.0773 4.5921 0.1794

2021 0.8856 1.1950 0.023

Table 15: Constants for the Central African Republic in the Altered Model

When we look at Figure 13, we notice that unlike the previous figure for the Central African
Republic, it plateaus before the first month is over in 2001 and 2011, with the cases in 2021 only
extending this period slightly. This would presumably be due to the increase in the weights on
the birth rate, and the decrease in the induced death that we see in Table 15. Yet, despite this
plateau in the number of cases, we see two bumps in the R0 around day 100 and 300, of which
only the second one was seen in Figure 8. The height of these bumps relate back to the difference
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Figure 13: Number of cases in a population of
1000 in The Central African Republic by Altered
Model

Figure 14: R0 of Libya by Altered Model

in the biting rate. Here we can see that the biting rate go over 1, which implies that the initial
mosquito population may be too small in comparison to the actual number of mosquitos.

5.3.3 South Africa

Figure 15: Number of cases in a population of
1000 in South Africa by Altered Model

Figure 16: R0 of South Africa by Altered Model

Figure 17: Comparison of the number of cases
in 2001

Year & Variable λ′ γ µ′

2001 0.0147 0.4038 0.8523

2011 0.1424 0.1424 0.8476

2021 0.5378 0.0668 0.8556

Table 16: Constants for South Africa in the Al-
tered Model

The number of cases, in South Africa, is the one that see the most drastic changes. To properly
illustrate this, we have included the Figure 17. In Table 16, we can see that the values for weights
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of the Adult mosquito Influx, do not have as great of an impact on the period during which the
number of cases rise, when compared to the ones in the Central African Republic, this may be
due to the lower number of final infection cases. This along with the similar induced death rate
implies that the main impact on the final number of cases happens to be the biting rate. The
behaviour of the R0 that is seen in the Figure 16, matches very well with what was seen in the
Figure 10.
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6 conclusion & further ideas

In this thesis, we have looked at the construction of SEIR models, and the specifics of Malaria-
based SEIR models. We have seen how biological processes, such as the gonotrophic cycle and
sporogonic cycle, have been converted into mathematical equations that allow us to utilize them
to give further accuracy to such mathematical models. Beyond this, we looked at the basic
reproduction number and how that can give us insight beyond what the number of cases show
us. We have also looked at the Paraham-Micheal model [7], with a focus on how it includes
rainfall and temperature into the model. It told us that without human intervention, those factors
would result in an upward trend in the number of infection cases. Finally, we began to alter the
model, to relate the eggs deposited and mosquito population, the exposed phase for the human
population, and finally the human influence on the mosquito population, and its interaction
with the human population. This model, showed us that heavy human intervention would be
required, especially in South Africa, for us to see the data.

If we were to revisit the model, the following points would help to expand it and make it
a better approximation of the real life situation. First, we could introduce, human birth and death
rate, which would have a significant impact on the model as it would change the R0 of the model.
Secondly, we could introduce the human immunity factor. This could be done in several ways,
one of which would be to factor in the degree of immunity that vaccines provide to susceptible
individuals. Another method would be to consider for how long individuals have immunity
before they are once more susceptible, unlike in this model.
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7 appendix

7.1 Equations

Name Equation

Bite Rate a(T) = T−T1
D1

Sporogonic Cycle τm(T) = DD
T−Tmin

Duration of the Larval Period τL(T) = 1
αT+β

Daily Larvae survival prob. pL(T) = e−(αT+β)

Per capita Mosq. Death rate µ(T) = 1
AT2+BT+C

Daily Egg survival prob. pE(R) = ( 4pME
R2

L
)R(RL − R)

Daily Larvae survival prob. pL(R) = ( 4pML
R2

L
)R(RL − R)

Daily Pupae survival prob. pP(R) = ( 4pMP
R2

L
)R(RL − R)

Influx of Adult Mosq. λ(R, T) = BE pE(R)pL(R)pL(T)pP(R)
τE+τL(T)+τP

Sporogonic Cycle survival prob. lM(T) = e−µ(T)τM(T)

Parham-Micheal Model

dSH
dt = −a(T)b1 IM

SH
N

dIH
dt = a(T)b1 IM

SH
N − rIH

dRH
dt = rIH

dSM
dt = λ(R, T)− a(T)b2SM

IH
N − µ(T)SM

dEM
dt = a(T)b2SM

IH
N

−a(T)b2(t − τM(T))lM(t)SM
IH(t−τM(T))

N − µ(T)EM
dIM
dt = a(T)b2(t − τM(T))lM(t)SM

IH(t−τM(T))
N − µ(T)IM

Eggs deposited based on Rainfall BE(Rd) = γRda(T)M
Altered Adult Mosquito Influx λ(R, T) = BE(Rd)pE(R)pL(R)pL(T)pP(R)

τE+τL(T)+τP
λ′

Altered Bite Rate a(T) = T−T1
D1

γ

Altered Death Rate µ(T) = 1
AT2+BT+C + µ′

Altered Model

dSH
dt = −a(T)b1 IM

SH
N

dEH
dt = a(T)b1 IM

SH
N − 1

14 EH
dIH
dt = 1

14 EH − rIH
dRH

dt = rIH
dSM

dt = λ(R, T)− a(T)b2SM
IH
N − µ(T)SM

dEM
dt = a(T)b2SM

IH
N − 1

τM(T)EM − µ(T)EM
dIM
dt = 1

τM(T)EM − µ(T)IM

Table 17: Equations

7.2 Programmes

1 func t ion a = b i t e r a t e ( T )
2 %Input
3 %T = Temperature
4

5 %Output
6 %a = b i t i n g r a t e
7

8 %Constants
9 T 1 = 1 9 . 9 ;

10 D 1 = 3 6 . 5 ;

22



S. Mishra S4035798

11

12 i f T>=T 1

13 a = ( T−T 1 ) /D 1 ;
14 e l s e
15 a =0 ;
16 end

Listing 1: Bite Rate

1 func t ion tau m= s p o r c y c l e ( T )
2 %Input
3 %T = Temperature
4

5 %Output
6 %tau m = Duration of the Sporogonic c y c l e
7

8 %Constants P . falc iparum
9 T min = 1 6 ;

10 DD = 1 1 1 ;
11

12 %Constants P . vivax
13 %T min = 1 4 . 5 ;
14 %DD = 1 0 5 ;
15

16 i f T>=T min
17 tau m = DD/(T−T min ) ;
18 e l s e
19 tau m = 10000 ;
20 end

Listing 2: Sporogonic Cycle

1 func t ion t a u l = l a r d u r ( T )
2 %Input
3 %T = Temperature
4

5 %Output
6 %t a u l = Duration of the Larvae Stage
7

8 %Constants
9 alpha = 0 . 0 0 5 5 4 ;

10 beta = −0 .06737 ;
11

12 t a u l = 1 / ( ( alpha *T ) +beta ) ;

Listing 3: Duration of the Larval Period dependent on the Temperature

1 func t ion p l = p r o b d s l a r ( T )
2 %Input
3 %T = Temperature
4

5 %Output
6 %p l = Daily Surviva l p r o b a b i l i t y of the Larvae Stage based on Temp
7

8 %Constants
9 alpha = 0 . 0 0 5 5 4 ;

10 beta = −0 .06737 ;
11

12 p l = exp ( − ( ( alpha *T ) +beta ) ) ;

Listing 4: Probabibility of daily survival of a Larvae depending on the Temperature

1 func t ion mu = d e a t h r a t e ( T )
2 %Input
3 %T = Temperature
4
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5 %Output
6 %mu = Per c a p i t a death r a t e f o r adult mosquitoes
7

8 %Constants
9 A = −0 .03 ;

10 B = 1 . 3 1 ;
11 C = − 4 . 4 ;
12

13 mu = 1 / ( (A* ( T ˆ 2 ) ) +(B*T ) +C) ;

Listing 5: Death Rate per capita

1 func t ion p E = prob ds ra in egg (R)
2 %Input
3 %R = R a i n f a l l
4

5 %Output
6 %p E = Daily Surviva l p r o b a b i l i t y of the Egg Stage based on Rain
7

8 %Constants
9 p M = 0 . 9 ;

10 R L = 5 0 ;
11

12 i f (R<=50)
13 p E = ( ( 4 * p M) /( R L ˆ 2 ) ) *R * ( R L−R) ;
14 e l s e
15 p E = 0 ;
16 end

Listing 6: Probabibility of daily survival of an egg depending on the Rainfall

1 func t ion p L = p r o b d s r a i n l a r v a e (R)
2 %Input
3 %R = R a i n f a l l
4

5 %Output
6 %p L = Daily Surviva l p r o b a b i l i t y of the Larvae Stage based on Rain
7

8 %Constants
9 p M = 0 . 2 5 ;

10 R L = 5 0 ;
11

12 i f (R<=50)
13 p L = ( ( 4 * p M) /( R L ˆ 2 ) ) *R * ( R L−R) ;
14 e l s e
15 p L = 0 ;
16 end

Listing 7: Probabibility of daily survival of a Larvae depending on the Rainfall

1 func t ion p P = prob ds rain pupae (R)
2 %Input
3 %R = R a i n f a l l
4

5 %Output
6 %p P = Daily Surviva l p r o b a b i l i t y of the Larvae Stage based on Rain
7

8 %Constants
9 p M = 0 . 7 5 ;

10 R L = 5 0 ;
11

12 i f (R<=50)
13 p P = ( ( 4 * p M) /( R L ˆ 2 ) ) *R * ( R L−R) ;
14 e l s e
15 p P = 0 ;
16 end
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Listing 8: Probabibility of daily survival of a Pupae depending on the Rainfall

1 func t ion lambda = Mosq Influx (R , T , B )
2 %Input
3 %T = Temperature
4 %R = R a i n f a l l
5 %B = Number of mosquito eggs deposited
6

7 %Output
8 %lambda = I n f l u x of Adult Mosquito
9

10 %Constants
11 tau e = 1 ; %Duration of Egg stage
12 tau p = 1 ; %Duration of Pupae s tage
13

14 %Building Blocks
15 t a u l = l a r d u r ( T ) ; %Duration of the Larvae Stage
16 p l = p r o b d s l a r ( T ) ; %Daily Surviva l p r o b a b i l i t y of the Larvae Stage based on Temp
17 p E = prob ds ra in egg (R) ; %Daily Surviva l p r o b a b i l i t y of the Egg Stage based on Rain
18 p L = p r o b d s r a i n l a r v a e (R) ; %Daily Surviva l p r o b a b i l i t y of the Larvae Stage based on

Rain
19 p P = prob ds rain pupae (R) ; %Daily Surviva l p r o b a b i l i t y of the Pupae Stage based on

Rain
20

21 lambda = ( B* p l * p E * p L * p P ) /( t a u l +tau p+tau e ) ;

Listing 9: The Influx rate of adult mosquitoes

1 func t ion A = Rain Temp ( t , C, Y)
2 %Input
3 %t = Time
4 %C = Country
5 % 0 = Libya
6 % 1 = Centra l Afr ican Republic
7 % 2 = South Afr i ca
8 %Y = Year
9 % 0 = 2001

10 % 1 = 2011

11 % 2 = 2021

12

13 %Output
14 %R = Average R a i n f a l l
15 %T = Average Temperature
16

17 switch C
18 case 0

19 switch Y
20 case 0

21 load ( ’ Lib 2001 . mat ’ ) ;
22 case 1

23 load ( ’ Lib 2011 . mat ’ ) ;
24 case 2

25 load ( ’ Lib 2021 . mat ’ ) ;
26 end
27 case 1

28 switch Y
29 case 0

30 load ( ’ CAR 2001 . mat ’ ) ;
31 case 1

32 load ( ’ CAR 2011 . mat ’ ) ;
33 case 2

34 load ( ’ CAR 2021 . mat ’ ) ;
35 end
36 case 2

37 switch Y
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38 case 0

39 load ( ’ SA 2001 . mat ’ ) ;
40 case 1

41 load ( ’ SA 2011 . mat ’ ) ;
42 case 2

43 load ( ’ SA 2021 . mat ’ ) ;
44 end
45 end
46

47

48 i f t<=31

49 R = Rain ( 1 ) /31 ;
50 T = Temp( 1 ) ;
51 e l s e i f t<=59

52 R = Rain ( 2 ) /28 ;
53 T = Temp( 2 ) ;
54 e l s e i f t<=90

55 R = Rain ( 3 ) /31 ;
56 T = Temp( 3 ) ;
57 e l s e i f t <=120

58 R = Rain ( 4 ) /30 ;
59 T = Temp( 4 ) ;
60 e l s e i f t <=151

61 R = Rain ( 5 ) /31 ;
62 T = Temp( 5 ) ;
63 e l s e i f t <=181

64 R = Rain ( 6 ) /30 ;
65 T = Temp( 6 ) ;
66 e l s e i f t <=212

67 R = Rain ( 7 ) /31 ;
68 T = Temp( 7 ) ;
69 e l s e i f t <=243

70 R = Rain ( 8 ) /31 ;
71 T = Temp( 8 ) ;
72 e l s e i f t <=273

73 R = Rain ( 9 ) /30 ;
74 T = Temp( 9 ) ;
75 e l s e i f t <=304

76 R = Rain ( 1 0 ) /31 ;
77 T = Temp( 1 0 ) ;
78 e l s e i f t <=334

79 R = Rain ( 1 1 ) /30 ;
80 T = Temp( 1 1 ) ;
81 e l s e
82 R = Rain ( 1 2 ) /31 ;
83 T = Temp( 1 2 ) ;
84 end
85 A = [R ; T ] ;

Listing 10: Calculate the Temperature and Rainfall depending on the Month, Year, and Country

1 func t ion l M = Sur Spor Cyc ( T )
2 %Input
3 %T = Temperature
4

5 %Output
6 %l M Likel ihood of mosquito s u r v i v a l through the Spororgonic c y c l e
7

8 mu = d e a t h r a t e ( T ) ; %Per c a p i t a death r a t e f o r adult mosquitoes
9 tau m= s p o r c y c l e ( T ) ; %Duration of the Sporogonic c y c l e

10

11 l M = exp( −mu* tau m ) ;

Listing 11: Probability of a mosquito surviving through the Sporogonic Cycle

1 func t ion ddt = ODE( t , S H , I H ,N, S M , E M , I M , C, Y)
2 %Input
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3 %t = Time
4 %S H = S u s c e p t i b l e Human Population
5 %I H = I n f e c t e d Human Population
6 %N = Tota l Human Population
7 %S M = S u s c e p t i b l e Mosquito Population
8 %E M = Exposed Mosquito Population
9 %I M = I n f e c t e d Mosqutio Population

10 %C = Country
11 % 0 = Libya
12 % 1 = Centra l Afr ican Republic
13 % 2 = South Afr i ca
14 %Y = Year
15 % 0 = 2001

16 % 1 = 2011

17 % 2 = 2021

18

19 %Output
20 %ddt = Change in d i f f e r e n t populat ions
21

22 %Constant
23 b 1 = 0 . 0 9 ; %Proport ion of b i t e s to S u s c e p t i b l e Humans t h a t produce i n f e c t i o n
24 b 2 = 0 . 0 4 ; %Proport ion of b i t e s to S u s c e p t i b l e Mosquitoes t h a t produce i n f e c t i o n
25 r = 1/120 ; %Recovery Rate
26 R T = Rain Temp ( t , C, Y) ; % Average R a i n f a l l and Temperature
27 l M = Sur Spor Cyc ( R T ( 2 ) ) ; %Likel ihood of mosquito s u r v i v a l through the Spororgonic

c y c l e
28 a = b i t e r a t e ( R T ( 2 ) ) ; %B i t i n g Rate
29 B = 2 0 0 ; %Number of egg l a i d
30 lambda = Mosq Influx ( R T ( 1 ) , R T ( 2 ) ,B ) ; %I n f l u x of Adult Mosquito
31 mu = d e a t h r a t e ( R T ( 2 ) ) ; %Per c a p i t a death r a t e f o r adult mosquitoes
32 tau m = s p o r c y c l e ( R T ( 2 ) ) ; %Duration of the Sporogonic c y c l e
33

34 %Equation
35 dS H = −a * b 1 * I M * ( S H/N) ;
36 dI H = ( a * b 1 * I M * ( ( S H ) /N) ) −( r * I H ) ;
37 dR H = r * I H ;
38 dS M = lambda − ( a * b 2 *S M * ( I H/N) ) − mu*S M ;
39 dE M = ( a * b 2 *S M * ( I H/N) ) − ( a * b 2 *S M* l M * ( t −tau m ) * ( ( I H * ( t −tau m ) ) /N) ) − mu*E M ;
40 dI M = ( a * b 2 *S M* l M * ( t −tau m ) * ( ( I H * ( t −tau m ) ) /N) ) − mu* I M ;
41

42 ddt = [ dS H , dI H , dR H , dS M , dE M , dI M ] ;

Listing 12: Paraham-Micheal Model ODE

1 func t ion y = RK4 ( q ,N, C, Y)
2 %Input
3 %q = step s i z e
4 %N = Tota l Human Population
5 %C = Country
6 % 0 = Libya
7 % 1 = Centra l Afr ican Republic
8 % 2 = South Afr i ca
9 %Y = Year

10 % 0 = 2001

11 % 1 = 2011

12 % 2 = 2021

13

14 %Output
15 %y = All Populat ions a t d i f f e r e n t times
16

17 b 1 = 0 . 0 9 ; %Proport ion of b i t e s to S u s c e p t i b l e Humans t h a t produce i n f e c t i o n
18 b 2 = 0 . 0 4 ; %Proport ion of b i t e s to S u s c e p t i b l e Mosquitoes t h a t produce i n f e c t i o n
19 r = 1/120 ; %Recovery Rate
20 F = 365/q ;
21 x = zeros ( F , 6 ) ;
22 z = zeros ( F , 1 ) ;
23 R = zeros ( F , 1 ) ;
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24 x ( 1 , 1 ) = N/2 ;
25 x ( 1 , 2 ) = N/2 ;
26 x ( 1 , 4 ) = 2*N;
27 x ( 1 , 5 ) = 2*N;
28 x ( 1 , 6 ) = 2*N;
29 R T = Rain Temp ( z ( 1 ) ,C, Y) ; % Average R a i n f a l l and Temperature
30 l M = Sur Spor Cyc ( R T ( 2 ) ) ; %Likelyhood of mosquito s u r v i v a l through the Spororgonic

c y c l e
31 a = b i t e r a t e ( R T ( 2 ) ) ; %B i t i n g Rate
32 mu = d e a t h r a t e ( R T ( 2 ) ) ; %Per c a p i t a death r a t e f o r adult mosquitoes
33 M = 6*N;
34 R( 1 ) = (M* b 1 * b 2 * ( a ˆ 2 ) * l M ) /(N* r *mu) ;
35

36 f o r i = 1 : F
37 z ( i +1) = i * q ;
38 K1 = q *ODE( z ( i ) , x ( i , 1 ) , x ( i , 2 ) ,N, x ( i , 4 ) , x ( i , 5 ) , x ( i , 6 ) ,C, Y) ;
39 K2 = q *ODE( z ( i ) +(q/2) , x ( i , 1 ) +(K1 ( 1 ) /2) , x ( i , 2 ) +(K1 ( 2 ) /2) ,N, x ( i , 4 ) +(K1 ( 4 ) /2) ,

x ( i , 5 ) +(K1 ( 5 ) /2) , x ( i , 6 ) +(K1 ( 6 ) /2) ,C, Y) ;
40 K3 = q *ODE( z ( i ) +(q/2) , x ( i , 1 ) +(K2 ( 1 ) /2) , x ( i , 2 ) +(K2 ( 2 ) /2) ,N, x ( i , 4 ) +(K2 ( 4 ) /2) ,

x ( i , 5 ) +(K2 ( 5 ) /2) , x ( i , 6 ) +(K2 ( 6 ) /2) ,C, Y) ;
41 K4 = q *ODE( z ( i +1) , x ( i , 1 ) +K3 ( 1 ) , x ( i , 2 ) +K3 ( 2 ) ,N, x ( i , 4 ) +K3 ( 4 ) , x ( i , 5 ) +K3 ( 5 ) , x ( i

, 6 ) +K3 ( 5 ) ,C, Y) ;
42 K = x ( i , : ) + (1/6 ) * ( K1+2*K2+2*K3+K4 ) ;
43 f o r j =4 :6
44 i f K( j ) <0

45 K( j ) = 0 ;
46 end
47 end
48 x ( i + 1 , : ) = K;
49 R T = Rain Temp ( z ( i +1) ,C, Y) ; % Average R a i n f a l l and Temperature
50 l M = Sur Spor Cyc ( R T ( 2 ) ) ; %Likelyhood of mosquito s u r v i v a l through the

Spororgonic c y c l e
51 a = b i t e r a t e ( R T ( 2 ) ) ; %B i t i n g Rate
52 mu = d e a t h r a t e ( R T ( 2 ) ) ; %Per c a p i t a death r a t e f o r adult mosquitoes
53 M = K( 4 ) +K( 5 ) +K( 6 ) ;
54 R( i +1) = (M* b 1 * b 2 * ( a ˆ 2 ) * l M ) /(N* r *mu) ;
55 end
56 y=[z , x , R ] ;

Listing 13: Paraham-Micheal Model RK4

1 Pop 2001 = RK4 ( 1 / 2 4 , 1 0 0 0 , 1 , 0 ) ;
2 Pop 2011 = RK4 ( 1 / 2 4 , 1 0 0 0 , 1 , 1 ) ;
3 Pop 2021 = RK4 ( 1 / 2 4 , 1 0 0 0 , 1 , 2 ) ;
4 Pop 2001 ( : , 2 ) = 1000− Pop 2001 ( : , 2 ) ;
5 Pop 2011 ( : , 2 ) = 1000− Pop 2011 ( : , 2 ) ;
6 Pop 2021 ( : , 2 ) = 1000− Pop 2021 ( : , 2 ) ;
7 f i g u r e ( 1 )
8 p l o t ( Pop 2001 ( : , 1 ) , Pop 2001 ( : , 2 ) , ’ red ’ , Pop 2011 ( : , 1 ) , Pop 2011 ( : , 2 ) , ’ blue ’ , Pop 2021 ( : , 1 ) ,

Pop 2021 ( : , 2 ) , ’ green ’ )
9 t i t l e ( ’ I n f e c t i o n Cases ’ )

10 x l a b e l ( ’ Days ’ )
11 y l a b e l ( ’ Population ’ )
12 legend ({ ’ Year 2001 ’ , ’ Year 2011 ’ , ’ Year 2021 ’ } )
13 f i g u r e ( 2 )
14 p l o t ( Pop 2001 ( : , 1 ) , Pop 2001 ( : , 8 ) , ’ red ’ , Pop 2011 ( : , 1 ) , Pop 2011 ( : , 8 ) , ’ blue ’ , Pop 2021 ( : , 1 ) ,

Pop 2021 ( : , 8 ) , ’ green ’ )
15 t i t l e ( ’ R 0 vs Days ’ )
16 x l a b e l ( ’ Days ’ )
17 y l a b e l ( ’ R 0 ’ )
18 legend ({ ’ Year 2001 ’ , ’ Year 2011 ’ , ’ Year 2021 ’ } )

Listing 14: Paraham-Micheal Model Cases and R0 Plot

1 func t ion Z2= R 0 (C)
2 switch C
3 case 0

28



S. Mishra S4035798

4 load ( ’ LIB . mat ’ ) ;
5 case 1

6 load ( ’CAR. mat ’ ) ;
7 case 2

8 load ( ’SA . mat ’ ) ;
9 end

10

11

12 b1 = 0 . 0 9 ;
13 b2 = 0 . 0 4 ;
14 r = 1/120 ;
15 N = 1000 ;
16 M = 6000 ;
17 Z = zeros ( 2 6 4 , 3 ) ;
18 Try = zeros ( 1 2 , 1 ) ;
19 Z2 = zeros ( 2 6 4 , 1 ) ;
20 f o r i =1 :264

21 Z( i , 1 ) = i ;
22 a = b i t e r a t e (Temp( i ) ) ;
23 B = 6000*10* Rain ( i ) * a ;
24 lambda = Mosq Influx ( Rain ( i ) ,Temp( i ) ,B ) ;
25 mu = d e a t h r a t e (Temp( i ) ) ;
26 T = s p o r c y c l e (Temp( i ) ) ;
27 M = lambda/mu;
28 Z( i , 3 ) = M;
29 l M = Sur Spor Cyc (Temp( i ) ) ;
30 Up = M* a * b1 * b2 * l M ;
31 Down = N* r *mu;
32 Z( i , 2 ) = Up/Down;
33 end
34 Z1 = Z ( : , 2 ) ;
35 f o r j = 0 : 2 1

36 f o r i = 1 : 1 2

37 n = i + j * 1 2 ;
38 Try ( i , 1 ) = Z( n , 2 ) ;
39 end
40 Try ( : , 1 ) = Try ( : , 1 ) /max( Try ) ;
41 Try ( : , 1 ) = Try ( : , 1 ) * ( R0 ( j +1)/sum( Try ) ) ;
42 Z2 ( ( 1 + j * 1 2 ) : ( 1 2 + j * 1 2 ) , 1 ) = Try ( : , 1 ) ;
43 end

Listing 15: Expected R0 for real data

1 C= 1 ;
2 switch C
3 case 0

4 load ( ’ LIB . mat ’ ) ;
5 case 1

6 load ( ’CAR. mat ’ ) ;
7 case 2

8 load ( ’SA . mat ’ ) ;
9 end

10

11 b1 = 0 . 0 9 ;
12 b2 = 0 . 0 4 ;
13 r = 1/120 ;
14 N = 1000 ;
15 M = 6000 ;
16 Y = zeros ( 1 2 , 1 ) ;
17 X = zeros ( 1 2 , 2 ) ;
18 X ( : , 1 ) = 1 ;
19 Z = R 0 (C) ;
20 J = zeros ( 1 2 , 1 ) ;
21 f o r i = 1 : 1 2

22 f = i +1 *12 ; %1 1 * 1 2 ; %21*12

23 a = b i t e r a t e (Temp( i ) ) ;
24 B = 6000*10* Rain ( i ) * a ;
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25 lambda = Mosq Influx ( Rain ( i ) ,Temp( i ) ,B ) ;
26 mu = d e a t h r a t e (Temp( i ) ) ;
27 T = s p o r c y c l e (Temp( i ) ) ;
28 i f Z( f ) ==0

29 Z( f ) = 1 * 1 0 ˆ ( − 16 ) ;
30 end
31 M = lambda/mu;
32 J ( i , 1 ) = M;
33 Up = N* ( Z( f ) ) * r *muˆ 2 ;
34 Down = b1 * b2 * ( a ˆ 2 ) * lambda ;
35 Comp = Up/Down;
36 Y( i ) = log (Comp) +(mu*T ) ;
37 X( i , 2 ) = −T ;
38 end
39 L = mvregress (X , Y) ;
40 L ( 1 ) = ( (mu+L ( 2 ) ) ˆ 2 ) * exp ( L ( 1 ) ) ;
41 L

Listing 16: Parameter Estimations

1 func t ion lambda = Mosq Influx (R , T , B , alpha )
2 %Input
3 %T = Temperature
4 %R = R a i n f a l l
5 %B = Number of mosquito eggs deposited
6 %alpha = Weight
7

8 %Output
9 %lambda = I n f l u x of Adult Mosquito

10

11 %Constants
12 tau e = 1 ; %Duration of Egg stage
13 tau p = 1 ; %Duration of Pupae s tage
14

15

16 %Building Blocks
17 t a u l = l a r d u r ( T ) ; %Duration of the Larvae Stage
18 p l = p r o b d s l a r ( T ) ; %Daily Surviva l p r o b a b i l i t y of the Larvae Stage based on Temp
19 p E = prob ds ra in egg (R) ; %Daily Surviva l p r o b a b i l i t y of the Egg Stage based on Rain
20 p L = p r o b d s r a i n l a r v a e (R) ; %Daily Surviva l p r o b a b i l i t y of the Larvae Stage based on

Rain
21 p P = prob ds rain pupae (R) ; %Daily Surviva l p r o b a b i l i t y of the Pupae Stage based on

Rain
22

23 lambda = ( alpha *B* p l * p E * p L * p P ) /( t a u l +tau p+tau e ) ;

Listing 17: Altered Mosquito Influx

1 func t ion a = b i t e r a t e ( T , alpha )
2 %Input
3 %T = Temperature
4 %alpha = Weight
5 %C = Country
6 % 0 = Libya
7 % 1 = Centra l Afr ican Republic
8 % 2 = South Afr i ca
9 %Y = Year

10 % 0 = 2001

11 % 1 = 2011

12 % 2 = 2021

13

14 %Output
15 %a = b i t i n g r a t e
16

17 %Constants
18 T 1 = 1 9 . 9 ;
19 D 1 = 3 6 . 5 ;
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20

21 i f T>=T 1

22 a = ( ( T−T 1 ) /D 1 ) * alpha ;
23 e l s e
24 a =0 ;
25 end

Listing 18: Altered Bite Rate

1 func t ion mu = d e a t h r a t e ( T , alpha )
2 %Input
3 %T = Temperature
4 %alpha = Induced Death Rate
5

6 %Output
7 %mu = Per c a p i t a death r a t e f o r adult mosquitoes
8

9 %Constants
10 A = −0 .03 ;
11 B = 1 . 3 1 ;
12 C = − 4 . 4 ;
13 %a = b i t e r a t e ( T , Co , Y) ;
14

15 mu = 1 / ( (A* ( T ˆ 2 ) ) +(B*T ) +C) +alpha ;

Listing 19: Altered Death Rate

1 func t ion l M = Sur Spor Cyc ( T , alpha )
2 %Input
3 %T = Temperature
4 %alpha = Induced Death Rate
5

6 %Output
7 %l M Likelyhood of mosquito s u r v i v a l through the Spororgonic c y c l e
8

9 mu = d e a t h r a t e ( T , alpha ) ; %Per c a p i t a death r a t e f o r adult mosquitoes
10 tau m= s p o r c y c l e ( T ) ; %Duration of the Sporogonic c y c l e
11

12 l M = exp( −mu* tau m ) ;

Listing 20: Altered Probability of a mosquito surviving through the Sporogonic Cycle

1 func t ion ddt = ODE( t , S H , E H , I H ,N, S M , E M , I M , C, Y)
2 %Input
3 %t = Time
4 %S H = S u s c e p t i b l e Human Population
5 %E H = Exposed Human Population
6 %I H = I n f e c t e d Human Population
7 %N = Tota l Human Population
8 %S M = S u s c e p t i b l e Mosquito Population
9 %E M = Exposed Mosquito Population

10 %I M = I n f e c t e d Mosqutio Population
11 %C = Country
12 % 0 = Libya
13 % 1 = Centra l Afr ican Republic
14 % 2 = South Afr i ca
15 %Y = Year
16 % 0 = 2001

17 % 1 = 2011

18 % 2 = 2021

19

20 %Output
21 %ddt = Change in d i f f e r e n t populat ions
22

23 switch C
24 case 0
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25 switch Y
26 case 0

27 alpha = [ 0 . 0 2 6 7 ; 0 . 0 2 6 7 ; 1 − 0 . 1 3 0 9 ] ;
28 case 1

29 alpha = [ 0 . 0 3 1 2 ; 0 . 0 3 1 2 ; 1 − 0 . 1 3 3 7 ] ;
30 case 2

31 alpha = [ 0 . 0 3 2 1 ; 0 . 0 3 2 1 ; 1 − 0 . 1 3 2 1 ] ;
32 end
33 case 1

34 switch Y
35 case 0

36 alpha = [ 0 . 0 7 0 3 ; 4 . 6 3 1 4 ; 0 . 1 5 2 4 ] ;
37 case 1

38 alpha = [ 0 . 0 7 7 3 ; 4 . 5 9 2 1 ; 0 . 1 7 9 4 ] ;
39 case 2

40 alpha = [ 0 . 8 8 5 6 ; 1 . 1 9 5 0 ; 0 . 0 2 3 ] ;
41 end
42 case 2

43 switch Y
44 case 0

45 alpha = [ 0 . 0 1 4 7 ; 0 . 4 0 3 8 ; 1 − 0 . 1 4 7 7 ] ;
46 case 1

47 alpha = [ 0 . 1 4 2 4 ; 0 . 1 4 2 4 ; 1 − 0 . 1 5 2 4 ] ;
48 case 2

49 alpha = [ 0 . 5 3 7 8 ; 0 . 0 6 6 8 ; 1 − 0 . 1 4 4 4 ] ;
50 end
51 end
52

53 %Constant
54 b 1 = 0 . 0 9 ; %Proport ion of b i t e s to S u s c e p t i b l e Humans t h a t produce i n f e c t i o n
55 b 2 = 0 . 0 4 ; %Proport ion of b i t e s to S u s c e p t i b l e Mosquitoes t h a t produce i n f e c t i o n
56 r = 1/120 ; %Recovery Rate
57 R T = Rain Temp ( t , C, Y) ; % Average R a i n f a l l and Temperature
58 %l M = Sur Spor Cyc ( R T ( 2 ) ,C, Y) ; %Likelyhood of mosquito s u r v i v a l through the

Spororgonic c y c l e
59 a = b i t e r a t e ( R T ( 2 ) , alpha ( 2 ) ) ; %B i t i n g Rate
60 M = S M+E M+I M ;
61 B = eggs layed ( t , M, C, Y , alpha ( 2 ) ) +200 ; %Number of egg layed
62 lambda = Mosq Influx ( R T ( 1 ) , R T ( 2 ) ,B , alpha ( 1 ) ) ; %I n f l u x of Adult Mosquito
63 mu = d e a t h r a t e ( R T ( 2 ) , alpha ( 3 ) ) ; %Per c a p i t a death r a t e f o r adult mosquitoes
64 tau m = s p o r c y c l e ( R T ( 2 ) ) ; %Duration of the Sporogonic c y c l e
65 J = 1/14 ;
66

67 %Equation
68 dS H = −a * b 1 * I M * ( S H/N) ;
69 dE H = ( a * b 1 * I M * ( ( S H ) /N) ) −( J *E H ) ;
70 dI H = J *E H − r * I H ;
71 dR H = r * I H ;
72 dS M = lambda − ( a * b 2 *S M * ( I H/N) ) − mu*S M ;
73 dE M = ( a * b 2 *S M * ( I H/N) ) − (1/ tau m ) *E M − mu*E M ;
74 dI M = (1/ tau m ) *E M − mu* I M ;
75

76 ddt = [ dS H , dE H , dI H , dR H , dS M , dE M , dI M ] ;

Listing 21: Altered Model ODE

1 func t ion y = RK4 ( q , C, Y)
2 %Input
3 %q = step s i z e
4 %N = Tota l Human Population
5 %C = Country
6 % 0 = Libya
7 % 1 = Centra l Afr ican Republic
8 % 2 = South Afr i ca
9 %Y = Year

10 % 0 = 2001

11 % 1 = 2011

32



S. Mishra S4035798

12 % 2 = 2021

13

14 %Output
15 %y = All Populat ions a t d i f f e r e n t times
16 switch C
17 case 0

18 switch Y
19 case 0

20 alpha = [ 0 . 0 2 6 7 ; 0 . 0 2 6 7 ; 1 − 0 . 1 3 0 9 ] ;
21 case 1

22 alpha = [ 0 . 0 3 1 2 ; 0 . 0 3 1 2 ; 1 − 0 . 1 3 3 7 ] ;
23 case 2

24 alpha = [ 0 . 0 3 2 1 ; 0 . 0 3 2 1 ; 1 − 0 . 1 3 2 1 ] ;
25 end
26 case 1

27 switch Y
28 case 0

29 alpha = [ 0 . 0 7 0 3 ; 4 . 6 3 1 4 ; 0 . 1 5 2 4 ] ;
30 case 1

31 alpha = [ 0 . 0 7 7 3 ; 4 . 5 9 2 1 ; 0 . 1 7 9 4 ] ;
32 case 2

33 alpha = [ 0 . 8 8 5 6 ; 1 . 1 9 5 0 ; 0 . 0 2 3 ] ;
34 end
35 case 2

36 switch Y
37 case 0

38 alpha = [ 0 . 0 1 4 7 ; 0 . 4 0 3 8 ; 1 − 0 . 1 4 7 7 ] ;
39 case 1

40 alpha = [ 0 . 1 4 2 4 ; 0 . 1 4 2 4 ; 1 − 0 . 1 5 2 4 ] ;
41 case 2

42 alpha = [ 0 . 5 3 7 8 ; 0 . 0 6 6 8 ; 1 − 0 . 1 4 4 4 ] ;
43 end
44 end
45 b 1 = 0 . 0 9 ; %Proport ion of b i t e s to S u s c e p t i b l e Humans t h a t produce i n f e c t i o n
46 b 2 = 0 . 0 4 ; %Proport ion of b i t e s to S u s c e p t i b l e Mosquitoes t h a t produce i n f e c t i o n
47 r = 1/120 ; %Recovery Rate
48 F = 365/q ;
49 x = zeros ( F , 7 ) ;
50 z = zeros ( F , 1 ) ;
51 R = zeros ( F , 1 ) ;
52 N = 1000 ;
53 x ( 1 , 1 ) = N;
54 x ( 1 , 5 ) = 2*N;
55 x ( 1 , 6 ) = 2*N;
56 x ( 1 , 7 ) = 2*N;
57 R T = Rain Temp ( z ( 1 ) ,C, Y) ; % Average R a i n f a l l and Temperature
58 l M = Sur Spor Cyc ( R T ( 2 ) , alpha ( 3 ) ) ; %Likelyhood of mosquito s u r v i v a l through the

Spororgonic c y c l e
59 a = b i t e r a t e ( R T ( 2 ) , alpha ( 2 ) ) ; %B i t i n g Rate
60 mu = d e a t h r a t e ( R T ( 2 ) , alpha ( 3 ) ) ; %Per c a p i t a death r a t e f o r adult mosquitoes
61 R( 1 ) = ( 6 * b 1 * b 2 * ( a ˆ 2 ) * l M ) /( r *mu) ;
62

63 f o r i = 1 : F
64 z ( i +1) = i * q ;
65 K1 = q *ODE( z ( i ) , x ( i , 1 ) , x ( i , 2 ) , x ( i , 3 ) ,N, x ( i , 5 ) , x ( i , 6 ) , x ( i , 7 ) ,C, Y) ;
66 K2 = q *ODE( z ( i ) +(q/2) , x ( i , 1 ) +(K1 ( 1 ) /2) , x ( i , 2 ) +(K1 ( 2 ) /2) , x ( i , 3 ) +(K1 ( 3 ) /2) ,N,

x ( i , 5 ) +(K1 ( 5 ) /2) , x ( i , 6 ) +(K1 ( 6 ) /2) , x ( i , 7 ) +(K1 ( 1 ) /2) ,C, Y) ;
67 K3 = q *ODE( z ( i ) +(q/2) , x ( i , 1 ) +(K2 ( 1 ) /2) , x ( i , 2 ) +(K2 ( 2 ) /2) , x ( i , 3 ) +(K2 ( 3 ) /2) ,N,

x ( i , 5 ) +(K2 ( 5 ) /2) , x ( i , 6 ) +(K2 ( 6 ) /2) , x ( i , 7 ) +(K2 ( 7 ) /2) ,C, Y) ;
68 K4 = q *ODE( z ( i +1) , x ( i , 1 ) +(K3 ( 1 ) ) , x ( i , 2 ) +(K3 ( 2 ) ) , x ( i , 3 ) +(K3 ( 3 ) ) ,N, x ( i , 5 ) +(K3

( 5 ) ) , x ( i , 6 ) +(K3 ( 6 ) ) , x ( i , 7 ) +(K3 ( 7 ) ) ,C, Y) ;
69 K = x ( i , : ) + (1/6 ) * ( K1+2*K2+2*K3+K4 ) ;
70 f o r j =1 :6
71 i f K( j ) <0

72 K( j ) = 0 ;
73 end
74 end
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75 x ( i + 1 , : ) = K;
76 R T = Rain Temp ( z ( i +1) ,C, Y) ; % Average R a i n f a l l and Temperature
77 l M = Sur Spor Cyc ( R T ( 2 ) , alpha ( 3 ) ) ; %Likelyhood of mosquito s u r v i v a l through

the Spororgonic c y c l e
78 a = b i t e r a t e ( R T ( 2 ) , alpha ( 2 ) ) ; %B i t i n g Rate
79 mu = d e a t h r a t e ( R T ( 2 ) , alpha ( 3 ) ) ; %Per c a p i t a death r a t e f o r adult mosquitoes
80 M = K( 4 ) +K( 5 ) +K( 6 ) ;
81 R( i +1) = (M* b 1 * b 2 * ( a ˆ 2 ) * l M ) /(N* r *mu) ;
82 end
83 y=[z , x , R ] ;

Listing 22: Altered Model RK4

1 Pop 2001 = RK4 ( 1 / 2 4 , 1 , 0 ) ;
2 Pop 2011 = RK4 ( 1 / 2 4 , 1 , 1 ) ;
3 Pop 2021 = RK4 ( 1 / 2 4 , 1 , 2 ) ;
4 Pop 2001 ( : , 2 ) = 1000− Pop 2001 ( : , 2 ) ;
5 Pop 2011 ( : , 2 ) = 1000− Pop 2011 ( : , 2 ) ;
6 Pop 2021 ( : , 2 ) = 1000− Pop 2021 ( : , 2 ) ;
7 f i g u r e ( 1 )
8 p l o t ( Pop 2001 ( : , 1 ) , Pop 2001 ( : , 2 ) , ’ red ’ , Pop 2011 ( : , 1 ) , Pop 2011 ( : , 2 ) , ’ blue ’ , Pop 2021 ( : , 1 ) ,

Pop 2021 ( : , 2 ) , ’ green ’ )
9 t i t l e ( ’ I n f e c t i o n Cases ’ )

10 x l a b e l ( ’ Days ’ )
11 y l a b e l ( ’ Population ’ )
12 legend ({ ’ Year 2001 ’ , ’ Year 2011 ’ , ’ Year 2021 ’ } )
13 f i g u r e ( 2 )
14 p l o t ( Pop 2001 ( : , 1 ) , Pop 2001 ( : , 9 ) , ’ red ’ , Pop 2011 ( : , 1 ) , Pop 2011 ( : , 9 ) , ’ blue ’ , Pop 2021 ( : , 1 ) ,

Pop 2021 ( : , 9 ) , ’ green ’ )
15 t i t l e ( ’ R 0 vs Days ’ )
16 x l a b e l ( ’ Days ’ )
17 y l a b e l ( ’ R 0 ’ )
18 legend ({ ’ Year 2001 ’ , ’ Year 2011 ’ , ’ Year 2021 ’ } )
19 f i g u r e ( 5 )

Listing 23: Altered Model plot for Infection Cases and R0
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