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Abstract

The GoF (Gang-of-Four) design patterns have had a significant impact on software quality and have become a
fundamental part of software design. They provide developers with proven solutions to common programming
problems by promoting code reusability, abstraction, and maintainability. However, accumulations of artifacts
that deviate from the intended structure and principles of design patterns lead to a phenomenon called pattern
grime. Technical debt is another leading cause of decreased code quality and has emerged as a result of time
constraints, shortcuts, or suboptimal solutions which require refactoring efforts. This research study explores
the relationship between design pattern grime and technical debt in Java projects. By analyzing four metrics
related to class and modular grime, we investigate the accumulation of grime and its association with technical
debt. Two approaches are utilized to measure technical debt: employing static code analysis tools and consider-
ing self-admitted technical debt instances extracted from code comments. Moreover, to analyze the relationship
between grime and technical debt, we employed two statistical methods: t-test and chi-square. The findings
reveal that class grime is associated with a decrease in the accumulation of technical debt. Conversely, tech-
nical debt is linked to an increase in the number of alien attributes, while the number of alien public methods
remains unchanged. Moreover, the presence of technical debt is linked to a decrease in afferent coupling and an
increase in efferent coupling. Through this comprehensive investigation, we contribute valuable insights into
the intricate interplay between design pattern grime and technical debt, shedding light on their implications
for software systems. These findings provide researchers and practitioners with a solid foundation for further
exploration and considerations in the context of system complexity, maintainability, and modularity.
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1 Introduction And Motivation

In recent years, the field of software engineering has seen significant advancements in terms of the development
and maintenance of large-scale software projects. However, as these projects grow in complexity, the presence
of various challenges becomes apparent. One such challenge is technical debt (TD), which refers to the accu-
mulated cost of shortcuts, compromises, and suboptimal design decisions taken during software development
[1]. While technical debt can be treated as an investment to allow rapid delivery in time-critical situations [2],
it should be carefully managed to ensure that it does not become a liability. Specifically, the accumulation of
TD in a system can lead to a significant decrease in system quality and performance, higher maintenance costs,
eventual system decay, and even lead to customer dissatisfaction [3].

Technical debt can manifest itself in different ways: from written code with poor documentation and design
flaws to the accumulation of self-admitted instances of TD. Thus, one way to investigate technical debt is to
identify instances of self-admitted technical debt (SATD). The self-admitted aspect emerges from developers
intentionally choosing a solution to a problem that is known to be suboptimal. Moreover, it can manifest itself
in various forms, including code comments that indicate areas for improvement or common issues, tags or
annotations within the codebase highlighting potential flaws or unfinished refactoring, and even documented
discussions or issues in project management platforms like GitHub1 or Jira2. These forms of SATD serve as
explicit reminders of the compromises made during development and indicate areas that require future improve-
ment to reduce the costs of software maintainability.

Another challenge that arises with the growth in system complexity regards design patterns [4]. In object-
oriented programming, the GoF design patterns play a crucial role in ensuring structured and efficient design
[5]. Specifically, it offers proven solutions to recurring design problems and enables developers to create mod-
ular, flexible, and extensible software systems. These patterns are grouped into three categories: creational,
structural, and behavioral patterns. Creational patterns focus on object creation mechanisms, structural patterns
deal with composition and relationship between objects, and behavioral patterns define the interactions between
objects. Consequently, the use of design patterns benefits software developers by enhancing the maintainability,
reusability, and overall quality of the software [5]. However, there are circumstances where the layout of some
design patterns does not adhere to the standard structure, and the implementation of patterns can sometimes re-
sult in a phenomenon known as “pattern grime” which can arise from an accumulation of a buildup of artifacts
unrelated to the pattern instance [6]. For instance, grime can be introduced to a Command pattern [7] instance
by introducing public methods that are not part of the command interface. This, in turn, leads to a deterioration
in the quality and maintainability of software systems [6]. While the concept has been discussed in the software
engineering community, empirical studies exploring the relationship between pattern grime and technical debt
are limited.

This thesis aims to investigate the potential relationship between pattern grime and technical debt in the context
of Java projects. Uncovering the relationship between pattern grime and technical debt can have practical im-
plications for software development teams. It can help identify specific design patterns that are more prone to
grime or are associated with higher levels of technical debt than others. Also, the study aims to cover how tech-
nical debt is linked to variations in different grime levels. This, in turn, will allow for better decision-making
during the design and implementation phases of software projects. By addressing pattern grime proactively,
developers can potentially mitigate the accumulation of technical debt and improve the long-term sustainability
and design of their software systems.

To achieve these goals, this thesis will undertake a comprehensive study of two Java projects. By examining
Java codebases, we aim to collect instances of pattern deviations and technical debt and investigate their re-
lationship at different levels such as class, grime instance, and pattern level which are detailed in Section 3.

1https://github.com 2https://www.atlassian.com/software/jira
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Finally, by adopting a systematic approach and employing appropriate metrics and extraction tools, we aim to
provide valuable insights into the relationship between these two phenomena.

1.1 Research Question

The absence of literature directly addressing the relationship between pattern grime and technical debt, as
discussed earlier and outlined in Section 2, motivated us to undertake this study. Thus, the primary objective of
this research is to investigate and examine the potential correlation between pattern grime and technical debt.
As a result, we aim to answer the following main research question:

Is design pattern grime related to technical debt?

Consequently, the main question can be split into the following sub-questions:

RQ1 What is the relationship between the presence of grime and (self-admitted) technical debt?

RSQ1 Is the presence of grime associated with (self-admitted) technical debt and vice versa?
RSQ2 Which grime metrics demonstrate a more pronounced association with the presence of (self-admitted)

technical debt?

RQ2 What design patterns indicate a higher association between grime and (self-admitted) technical debt?

1.2 Research Outcomes

Through our investigation, we have shed light on the correlation between technical debt and design pattern
grime by carefully examining the questions outlined earlier. Our study employed an extensive analysis ap-
proach that encompassed multiple levels, including class, instance, and pattern.

In terms of deliverables, we provide the generated datasets (i.e., containing grime and TD instances) along with
scripts utilized in this research, ensuring the reproducibility of our methodology for future research. These
scripts cover various essential steps, such as dataset generation, TD collection (i.e., through static code analy-
sis) as well as conducting T-Test and Chi-Squared analyses at the class, instance, and pattern levels.

This research endeavor will contribute with valuable insights into the relationship between technical debt and
design pattern grime, equipping researchers and practitioners with a foundation for further exploration and
understanding in this domain.

1.3 Distribution of Work

In order to accomplish the desired outcomes, our research combines a collaborative effort involving a team of
two people. As such, each student was responsible for the delivery of individual tasks that were established
at the beginning of the project. Apart from that, some parts of the project were accomplished with an equal
contribution from both sides. Lastly, the distribution of work can be seen below:

• Analysis of data: equally divided according to our responsibilities.

• Design pattern and pattern grime extraction: Ana Terna.

• Technical Debt extraction through static code analysis: Ana Terna.

• Self-admitted Technical Debt extraction through comment analysis: Karol Machnik.

The distribution of sections for the thesis paper follows as such:

• Ana Terna: Chapter 1, Sections 2.1, 2.2, 2.3, 2.5, 3.1, 3.2, 3.3, 3.5 - T-test, 4.1, 4.2, 5.1, 5.3, 6, 7

• Karol Machnik: Chapter 1 - ”Introducing SATD”, Section 2.4, 3.4, 3.5 - Chi-Squared, 4.3, 5.2, 5.3 -
SATD paragraph, Chapter 6 - SATD paragraph. 7 - SATD Paragraph
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1.4 Thesis Outline

This thesis is organized as follows: In Chapter 2, we provide a comprehensive review of the relevant literature
and existing studies on pattern grime, technical debt, self-admitted technical debt, and existing tools that aim
in extracting their instances in software projects. This literature review will establish a solid foundation for our
research and help identify gaps that this thesis aims to address.

Chapter 3 outlines the study design and execution, detailing the methodology, data collection process, and tools
employed in our investigation. We explain the criteria used for selecting the Java projects and provide an ex-
planation of the extraction tools, validation process, and analysis techniques applied.

Chapter 4 presents the results of our study, including the assessment of the amount of pattern grime accumu-
lated, the assessment of technical debt and self-admitted technical debt, and any observed correlations between
the two. We analyze and interpret the findings based on the statistical evidence collected.

In Chapter 5, we focus on the discussion of the obtained results and their implications by providing an in-depth
analysis and interpretation of the findings, highlighting key observations and possible reasons behind our re-
sults.

Chapter 6, the research addresses potential threats or limitations that could have influenced the validity or gen-
eralizability of the results. Particularly, it aims to identify and discuss any factors or threats that may have
impacted the research process or the outcomes of the study.

Finally, Chapter 7 concludes the thesis by summarizing the key findings, discussing their implications, and
suggesting areas for future research. We reflect on the significance of the study, and its limitations.
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2 Background Literature

This chapter provides background information about the main concepts of our research. In Section 2.1 we
discuss the evolutionary aspect of design patterns and pattern grime and explain its implications on software
projects. Moreover, in Section 2.2, we present the existing algorithms that detect occurrences of pattern grime
and provide a comparison of these tools. In Sections 2.3 and 2.4 we delve into the existing research studies that
describe technical debt. Specifically, we list the existing tools employed in identifying occurrences of TD using
static code analysis and examining source code comments and discuss the consequences it has on code quality
and maintainability. Lastly, in Section 2.5 we go over the main findings concerning the correlation between
pattern grime and technical debt.

2.1 Design Pattern Grime

Design patterns are established and widely adopted solutions to recurring programming problems. They pro-
vide reusable templates and best practices for designing software systems [5]. As discussed in Chapter 1,
software systems can accumulate instances of artifacts (e.g., methods or classes) that are not included in the
design pattern rationale. This phenomenon has been defined by Izurieta and Bieman [6] as pattern grime, which
is the “degradation of a design pattern instance due to the accumulation of artifacts unrelated to the instance”.
Design pattern grime can manifest in various forms, such as misplaced or misused design pattern elements
(e.g., public methods, attributes), excessive code complexity (e.g. afferent or efferent coupling), redundant
or duplicated code, and non-standard implementations. More specifically, Izurieta and Bieman [8] identified
concrete forms of grime manifestations. Class grime refers to class-related elements such as the number of
attributes or public methods. Modular grime refers to dependencies between different classes participating in
the pattern instance and outsider classes. In turn, this concerns the concept of afferent coupling which regards
the incoming dependencies (i.e., how many external entities rely on the functionality provided by the pattern
instance) and efferent coupling measures the external dependencies of a class within a pattern instance (i.e.,
number of classes or components used by a given pattern-participant class). Lastly, organizational grime con-
cerns the distribution of classes in a design pattern in various packages. For example, Figure 1 showcases a
concrete illustration of modular grime. More specifically, within the context of the Adapter pattern, the pres-
ence of modular grime becomes evident as the Client directly relies on the ConcreteAdapter, rather than being
unaware of the adapter’s presence. The respective design introduces an unnecessary dependency because this
deviation is not compliant with the intended pattern structure.

Grime is associated with numerous flaws and shortcomings within the codebase. For instance, Izurieta and
Bieman [9] concluded that grime is associated with extra efforts in testing, maintaining, and extending design
patterns. Furthermore, in a later study, Feitosa et al. [10] performed an industrial case study in which they
uncovered the factors that influence the accumulation of pattern grime. The study showed that there are strong
correlations between a class and modular grime (e.g., dependencies between classes) with a decrease in correct-
ness, performance, and security. Additionally, they found that levels of pattern grime are related to the project
size, the type of design pattern that is used, and the individual developer that is responsible for the codebase.
For example, in larger projects, the probability of encountering grime is more likely to be higher. Consequently,
they found that grime tends to show higher correlations with pattern classes that have a larger number of rule
violations such as alien attributes, classes, and unnecessary efferent coupling. Lastly, the levels of pattern grime
tend to be lower when the Singleton pattern is concerned and higher when Factory Method is employed. Higher
accumulations of grime are also linked to decreased levels of quality attributes such as performance, security,
and correctness which is detailed in the following research by Feitosa et al. [4]. Specifically, this study de-
termined that class grime, characterized by the number of alien public methods, alien attributes, and pattern
efferent coupling, displayed the strongest correlations to all the quality attributes analyzed. Moreover, highly
complex design patterns (e.g., State, Strategy, and Factory Method) tend to accumulate higher levels of grime
and violations primarily due to their complex maintainability.



Chapter 2 BACKGROUND LITERATURE 9

Figure 1: Example of modular grime (afferent coupling) in the Adapter pattern.

2.2 Design pattern detection

The novelty of this research grants us a large degree of freedom over the methods and approaches employed in
design pattern detection (DPD). This can include employing tools that extract instances of design pattern devia-
tions or analyzing benchmark datasets of design patterns to detect grime. Benchmark datasets themselves do not
detect design patterns automatically. They serve as standardized sets of code examples that contain instances of
design patterns, providing a basis for evaluating and comparing different pattern detection techniques or tools
[11]. Intensive research has undergone into creating a standardized benchmark for DPD analysis. Fontana et
al. [12] introduced a benchmark called DPB that compares different pattern mining methods. Moreover, the
research came up with a repository containing different design pattern instances based on user validation which
constitutes a promising step toward a standard DPD technique. However, DPB imposes some constraints in the
evaluation and comparison of different algorithms from DPD and is limited in design pattern versatility. An-
other research presented a benchmark based on the automatic generation of testbeds using graph theory which
analyzes class diagrams in Java source codes for DPD [13]. Nonetheless, the generated testbeds are not able to
encompass some complex Java features and may produce false positives (i.e. unexpected pattern occurrence).
As a result, the lack of a standardized benchmark for pattern evaluation, due to limitations of the datasets such
as size, precision, and diversity of pattern instances [14], requires a different approach to gathering the neces-
sary data.

Several tools for DPD have been introduced, however, most of them provide a conceptual description of the
algorithm while others impose limitations on the output format that is generated [15, 16]. Tsantalis et al. [17]
proposed a tool that automates the pattern detection process and is based on a similarity-scoring algorithm
(SSA) that calculates the similarity scores between the vertices (i.e., inter-vertex) of the selected pattern and
system graph (i.e., holds relationships between classes). The advantages of this approach are the ability to
detect pattern instances that do not precisely follow the pattern structure, the open-source nature of the tool,
and the intuitive interface as well as the output format. The main limitation of this algorithm is that of focusing
on inter-vertex instead of inter-graph (i.e., relationship between multiple graphs) similarity. This limitation was
leveraged by J.Dong et al. [18] by creating a new DPD approach focusing on the template matching method for
computing the similarity score between the sub-graphs of two graphs. This tool provides a user interface that
displays the similarities between different pattern-participating classes and can be used in combination with
SSA for future research.
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2.3 Technical Debt

Technical debt is a financial metaphor in software engineering introduced by Cunningham (1992) [1] and refers
to sub-optimal implementation or design decisions that can lead to short-term benefits. The definition of techni-
cal debt has since then been broadened. For instance, in a seminar on TD management in software engineering,
Bill Curtis [2] broke down this metaphor with regard to the research and development community. Specifically,
he concluded that researchers attribute this definition to sub-optimal design decisions that impact the mainte-
nance of the software, whereas, in industry, developers treat TD as a collection of software flaws that impose a
serious concern on software systems. Specifically, the industry puts emphasis on the refactoring cost rather than
on a potential decrease in software maintainability, and TD is a serious concern when it is considered damaging
enough that any refactoring investments pay off.

Technical debt has since then gained a reputation as a major concern for software engineers. For instance, a
2010 CAST report [19] introduced a starting benchmark on the structural quality of IT business applications.
The data in this report was gathered from 288 software systems of 75 organizations from different industries
and was used for technical debt estimation based on structural analysis of quality flaws. The report concluded
that on average, there is a 2.82$ cost of TD per line of code which, for an average-sized system of 374,000 lines
of code in their sample, the total TD is estimated to 1,055,000$. Apart from that, TD can lead to degraded
performance, low maintainability, delivery delay of the software, and extra costs and efforts during future main-
tenance which lead to team demotivation and stakeholders dissatisfaction [3].

Furthermore, a significant body of research has focused on developing techniques and tools for identifying,
measuring, and managing technical debt, which gave rise to the concept of technical debt management (TDM).
Primarily, the main focus has been on prioritizing TD reduction using cost analysis [20]. This study shows that
technical debt is paid off as a lucrative investment in software systems and the main trade-off that developers
seek is between the cost (i.e., time spent on refactoring) and the quality gained from the refactoring. Recently,
Lendarduzzi et al. [21] presented a state of the art of TD prioritization and concluded that there is currently a
lack of a validated set of tools for TD prioritization. However, the research found that Architectural Debt and
Code Debt [22] are the most prioritized types of debt. As a result, some instances of TD have a higher risk of
negatively affecting the quality of the system, thus the need for prioritization is paramount. For future research,
valuable information can be disclosed when examining the relationship between highly prioritized TD items
and pattern grime. For example, analyzing this relationship can guide developers in their refactoring strategies:
treating TD and grime reduction as a whole unit if they are highly correlated.

Researchers have investigated various aspects of technical debt, including its management and relationship
to software quality. In the aforementioned study [22], technical debt management incorporates eight phases
out of which TD repayment, identification, and measurement received the most extensive research attention.
Moreover, the most common approaches for technical debt identification, that have been researched, are code
analysis, dependency analysis, check list (i.e., compare with a list of TD scenarios), and solution comparison
(i.e., actual solution vs optimal solution). A popular approach to measure TD is through static code analysis
(i.e., analyzing the source code of a program without executing it) tools which imply the automatic detection
of TD in software artifacts. In a study conducted by Avgeriou et al. [23], a number of static code analysis tools
were analyzed based on features such as security, robustness, efficiency, and their popularity among the soft-
ware engineering community. The research concluded that both SonarQube 3 and CAST 4 are in great demand
among developers and offer secure and efficient TD detection. SonarQube, a widely used static code analysis
tool, incorporates various rules and metrics to identify instances of technical debt in codebases. For instance,
SonarQube can be employed together with tools like GitHub API 5 in order to deliver a stand-alone application
that provides a list of technical debt items and code metrics for a large number of public GitHub 6 repositories

3https://www.sonarsource.com
4https://doc.castsoftware.com/

5https://docs.github.com/
6https://github.com/

https://www.sonarsource.com
https://doc.castsoftware.com/
https://docs.github.com/
https://github.com/
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[24].

Other approaches for collecting technical debt items are accomplished through various means, including the
analysis of source code comments, issues, and pull requests which gives rise to the concept of self-admitted
technical debt. SATD occurs when developers consciously acknowledge the presence of suboptimal code sec-
tions, design choices, or other areas that require improvement within the software project. Incorporating SATD
analysis in conjunction with static code analysis techniques provides a comprehensive view of the codebase’s
overall quality and maintainability which, in turn, provides a nuanced understanding of how grime and technical
debt are correlated.

2.4 Self-Admitted Technical Debt

Research on SATD in source code was pioneered by Shihab and Potdar in 2014 [25]. They analyzed four
large codebases and used srcML [26] to extract code comments from the source code. They manually read
through 101,762 comments and found 62 patterns that they believed to be an indicator of technical debt. It
was found that 2.4%−31% of files contained self-admitted technical debt and only between 26.3%−63.5% of
SATD instances were removed from projects after they were introduced. Furthermore, this research concluded
that developers with more experience have a higher chance of committing code with instances of SATD and
that deadline pressure and code complexity have a low correlation with an increase in the amount of SATD
instances. Maldonado and Shihab expanded on this research in 2015 [27]. They analyzed more than 30K
comments and found that SATD can be classified into five types: design debt, defect debt, documentation debt,
requirement debt, and test debt. The most common of these being design debt which made up 42%− 84% of
comments. All of these comments were extracted using JDeodorant [28] and manually analyzed and classified.
A further study by Bavota and Russo [29] reinforces the findings of the previous two studies by conducting a
differentiated replication on a database of over 600K commits. They used srcML to extract the code comments
and used regular expressions with the heuristics defined by Shihab and Potdar [25] to classify the extracted
comments. Another study by Zampetti et al. [30] analyzed how SATD is addressed in five Java open-source
projects. They looked at 1) whether SATD was being “accidentally” removed by investigating the evolution
of SATD instances in source code, 2) how much of SATD is acknowledged in commit messages, and 3) what
changes occur in the source code when developers remove SATD. Their findings conclude that 1) By checking
whether SATD comments were removed following the removal of i) the whole class or ii) the entire method
they found that approximately between 20%− 50% of SATD comments were accidentally removed. 2) Only
around 8% of SATD removal is acknowledged in commit messages, and 3) SATD is often addressed by specific
changes to method calls or conditionals.

Up until 2018, the state of the art for extracting instances of SATD was mostly done manually. This changed
when Xia et al. [31] proposed an automated approach. They created a framework that preprocesses the text de-
scriptions of comments and extracts features to represent each comment. They used these features to train clas-
sifiers and then used these classifiers to predict whether the comment is an instance of SATD. They found that
their approach had an average F1-score of 0.737, which improved upon Potdar and Shihab [25] by 499.19%.
When compared with a natural language processing-based baseline [32] they also improved the F1-score by
27.95%.

Mário A. de Freitas Farias et al. [33] developed an improved contextualized vocabulary for identifying SATD.
They analyzed the patterns of a previously defined contextualized vocabulary and registered their level of im-
portance in identifying SATD items. Then, they performed a qualitative analysis to investigate the relationship
between each pattern and type of debt. Finally, they performed a feasibility study using a new vocabulary that
they have improved based on the results of previous empirical studies. They found that more than half of the
new patterns were considered either decisive or very decisive to detect technical debt items. The patterns were
also able to identify different types of SATD as described by Maldonado et al. [27].
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More recently, Li et al. [34] have looked into identifying SATD in sources other than source code. This re-
search analyzed 23.6M code comments, 1.3M commit messages, 3.7M issue trackers, and 1.7M pull request
sections in 103 open-source projects. They used a Convolutional Neural Network (CNN) [35] approach and
achieved an average F1-score of 0.611. Their findings conclude that: 1) instances of SATD are evenly spread
among all sources, 2) issues and pull requests are the two most similar sources regarding the shared number of
SATD keywords, followed by commits and code comments, and 3) there are four kinds of relations between
SATD items in different sections. The current state of the art for mining SATD from source code is outlined by
Sabbah et al. [36] and is using different pre-trained language models such as Word2Vec, bidirectional encoder
representations from transformers (BERT), and FastText for feature extraction [37, 38, 39]. These features are
then used to train classifiers such as random forest, support vector machines, or CNN [40, 41, 42]. This allows
for the analysis of large datasets which would not have been possible to do manually.

For the purposes of this project, we chose to use a tool 7 developed by Li et al. [43] to extract and classify code
comments. This paper analyzed instances of SATD in an industrial project within 3 sources: code comments,
issues, and commit messages. They also interviewed 12 software developers to understand their perception of
what SATD really is, how it is managed, and how this management can be potentially improved. Among other
things, their research found that: 1) 79.1% of the identified SATD is code/design debt followed by documenta-
tion debt and requirement debt at 9.5% and 7.7% respectively, which leaves test debt at 3.7%, and 2) 8 out of
10 interviewees agreed that SATD identified from code comments is indeed TD from their perspective.

2.5 Correlation

While technical debt and design pattern grime are distinct concepts, they share common features and poten-
tial inter-dependencies. Both can arise from factors such as time pressure, altered requirements and structure
of a system, or insufficient developer experience as discussed above. There is currently a lack of substantial
research that shows exactly how TD and grime are correlated. One of the few research papers that discusses
the relationship between TD and grime is given by Izurieta et al. [44]. The paper investigates the impact of
design pattern decay on system quality and concluded that temporary grime results in higher technical debt
scores than persistent grime. However, it presents a couple of limitations: the approach of TD extraction could
be improved by looking at other ways of measuring TD (e.g., code comments), the research does not go further
into exploring what types of design patterns lead to higher TD items, and lastly, results are inconclusive toward
persistent grime. Later on, in his dissertation, Griffith [45] discussed some aspects of the topic, however, the
emphasis of the research is largely placed on examining the effects of pattern grime on software quality rather
than finding the relationship between technical debt and grime. One of the few researchers that presented a
framework in development for conducting an empirical study on grime and its effect on other design defects
such as TD was also conducted by Griffith [46]. One of the research hypotheses that the author presented is
that “Grime has a negative effect on the technical debt of a software system as a whole.” and on “...pattern
realization.”. Consequently, the author proposed a road map for conducting this empirical study, which mainly
resembles the approach employed in this research.

To conclude, there is limited research that explores the correlation between design pattern grime and techni-
cal debt. As a result, this study aims to fill this gap by examining the extent to which design pattern grime
contributes to technical debt accumulation. By analyzing existing tools and methodologies for detecting and
measuring design pattern grime and technical debt instances, this research seeks to provide insights into their
relationship and potential impact on software quality.

7https://github.com/yikun-li/satd-in-industry

https://github.com/yikun-li/satd-in-industry
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3 Study design and execution

The following chapter presents the methodology and procedures used to detect design patterns, pattern grime,
and (self-admitted) technical debt, in two Java projects. The chapter’s subsections include the detection and
analysis of design patterns in Section 3.1, identification of pattern grime in Section 3.2, the use of static code
analysis for assessing technical debt in Section 3.3, analysis of comments indicating self-admitted technical
debt in Section 3.4, and statistical analysis in Section 3.5. These subsections provide a concise overview of the
specific techniques and tools employed to explore and understand these aspects of software development.

For the scope of this research, we decided to focus on two Java projects. First, we analyzed a large and non-
trivial system, QuestDB (v7.2)8, primarily the core module of this Java project because it contains the main
functionalities of this application. We chose this system because of its large codebase and popularity which
consolidates it as a real-world, complex software system, mainly because larger projects tend to have more
intricate codebases and a higher potential for grime and technical debt [4]. Moreover, we also considered
JHotDraw (v9.0)9 which is a smaller system and is selected as a benchmark system for pattern detectors that
has been employed in a couple of relevant studies [10, 4] where it was used for analyzing and evaluating the
design pattern and grime detection tools.

3.1 Design pattern detection

To collect pattern instances, we employed two open-source tools. The first tool, SSA (Similarity Score Anal-
ysis - v4.13)10, which was briefly introduced in Section 2.2, identifies 12 GoF patterns: Adapter/Command,
Composite, Decorator, Factory Method, Observer, Prototype, Singleton, State/Strategy, Template Method, and
Visitor. The reason for using this tool stems from its ability to accurately detect a substantial number of de-
sign patterns, as reported by Tsantalis et al. [17] and the fact that it was previously used in aforementioned
research papers for DPD [10, 4]. However, a key limitation of this tool is its inability to identify all classes
that participate in the pattern instance (e.g., ConcreteCreator of the Factory Method pattern). Consequently,
to address the aforementioned limitation of SSA, we used SSA+ (v1.0)11 which was adopted as an additional
tool to detect extended pattern-participant (PP) classes: Concrete Creator, Product for Factory Method pattern,
Concrete Prototype for Prototype pattern, Leaf for Composite pattern, Concrete Decorator, Concrete Compo-
nent for Decorator pattern, Concrete Observer for Observer pattern, Concrete State/Strategy for State/Strategy
pattern, Concrete Class for Template Method pattern, Subject for Proxy pattern. The validation of SSA+ was
also conducted in a previously mentioned study [10] and the outcomes of the research served as a motivation
for us to incorporate this tool in our research.

3.2 Pattern grime detection

Based on the output of DPD tools, the next step was to detect the grime metrics across all pattern instances. For
that, the tool that was utilized in grime detection is spoon-pttgrime (v0.1.0)12, developed by Feitosa et al. [4]
which calculates a number of grime metrics for each pattern instance:

• mg-ca - pattern instance afferent coupling (Modular grime).

• mg-ce - pattern instance efferent coupling (Modular grime).

• cg-na - number of attributes that are not part of the original pattern definition (Class grime).

• cg-npm - number of public methods that are not part of the original pattern definition (Class grime).

8https://github.com/questdb/questdb
9https://github.com/wumpz/jhotdraw/tree/9.0

10https://users.encs.concordia.ca/˜nikolaos/
pattern_detection.html

11https://github.com/search-rug/ssap
12https://github.com/search-rug/spoon-pttgrime

https://github.com/questdb/questdb
https://github.com/wumpz/jhotdraw/tree/9.0
https://users.encs.concordia.ca/~nikolaos/pattern_detection.html
https://users.encs.concordia.ca/~nikolaos/pattern_detection.html
https://github.com/search-rug/ssap
https://github.com/search-rug/spoon-pttgrime
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<pattern name="Factory Method">
<instance mg-ca="3" mg-ce="7">
<role name="Creator" element="io.questdb.std.IOURingFacade" cg-na="0" cg-npm="6"/>
<role name="FactoryMethod()" element="io.questdb.std.IOURingFacade::newInstance(int):
io.questdb.std.IOURing"/>
<role name="ConcreteCreator" element="io.questdb.std.IOURingFacadeImpl" cg-na="2" cg-npm="8"/>
<role name="Product" element="io.questdb.std.IOURing" cg-na="0" cg-npm="8"/>

</instance>
...

</pattern>

Listing 1: Snippet of the XML file with grime metrics per pattern instance

The reason for employing these grime metrics is based on their ability to evaluate various aspects of each grime
type. Specifically, analyzing the modular grime aspect provides insights into the dependencies and relationships
between classes which provides a clear picture of the overall system quality and pinpoints highly concentrated
grime areas. Additionally, class grime detection through metrics such as alien attributes and public methods
allows for a more granular analysis at the class level which increases the accuracy of grime which then directly
can be correlated to instances of technical debt.

Additionally, we used Python13 to parse the XML output file of the spoon-pttgrime tool, for any subsequent pre-
processing operations performed on the dataset. Moreover, Python scripts were utilized for statistical analysis.
The reason for choosing this programming language is the wide range of libraries specifically designed for
working with XML data (e.g., lxml), for data manipulation and visualization (e.g., pandas, matplotlib), and for
conducting statistical analysis (e.g., NumPy, scikit-learn, SciPy). Thus, the first step was to process the XML
file by scanning through each instance of the pattern and extracting each PP class and its associated class grime
metrics. For example, in Listing 1, the class IOURingFacade.java is a PP class with zero alien attributes and
six alien public methods and serves as the Creator class for the Factory Method pattern. Moreover, the Creator
class declares the factory method, newInstance(), that returns a new Product class, IOURing.java, however,
the implementation of this method is overwritten by ConcreteCreator class IOURingFacadeImpl.java. As
for the Python script that extracts the metrics at the class level, it processes the element tag of each role in
the XML and extracts each package of the PP classes along with its class grime metrics given by cg-*. The
next step is to consider the entire pattern instances rather than classes. As a result, we created another script
that assigns each instance a unique ID and extracts the mg-* metrics, the number of PP classes, the design
pattern it adheres to, and the sum of cg-* metrics based on the respective PP classes. Overall, a visualization
of the design pattern and grime extraction process is depicted in Figure 2. Additionally, the primary benefit of
employing these open-source tools lies in their efficacy, specifically in gathering essential data facilitated by
a conventional input/output file format across these tools. Furthermore, the accuracy of the results has been
successfully verified across a couple of aforementioned studies, further strengthening the reliability of these
tools.

13https://www.python.org

https://www.python.org
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Figure 2: Visualization of the design pattern and grime detection process.

3.3 Static code analysis on technical debt

In this section, we describe the process of extracting technical debt instances in Java projects using SonarQube.
SonarQube is an open-source static code analysis tool that supports various programming languages and has
been widely used in the industry and in the software engineering community [47]. It provides a comprehen-
sive set of features to analyze and assess code quality and incorporates a range of predefined coding rules and
metrics to identify potential issues, bugs, vulnerabilities, and technical debt. Specifically, each rule introduces
a new TD item and the severity level of the respective code smell. For the scope of this research, we are in-
terested in minor, major, and critical severity levels [48] of each rule. In order to collect each TD item in a
Java class, we discard bugs and vulnerabilities but rather focus on SonarQube build-in code smells metric that
is introduced as a result of violated rules in each class.

For this research, we created a bash script, publicly available on GitHub 14, to collect TD instances. It takes
as input a list of GitHub repositories, automates the cloning of these repositories (i.e., creating a copy of the
project on a local machine), compiles the source code, and uses the Maven15 package build command to trans-
late the project into a binary format. Next, the script generates a sonar-project.properties file which contains
the configurations of the project and the necessary credentials for connecting to an active SonarQube server. In
order to run the SonarQube analysis, the script generates the configuration settings for SonarScanner 16 which
is a command-line tool that is used to initiate and perform code analysis on the respective project.

14https://github.com/anaterna/BscThesis
15https://maven.apache.org/

16https://docs.sonarqube.org/9.8/
analyzing-source-code/scanners/sonarscanner/

https://github.com/anaterna/BscThesis
https://maven.apache.org/
https://docs.sonarqube.org/9.8/analyzing-source-code/scanners/sonarscanner/
https://docs.sonarqube.org/9.8/analyzing-source-code/scanners/sonarscanner/
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Figure 3: Visualization of the technical debt detection process.

SonarQube offers a comprehensive web API 17 that provides endpoints for retrieving information about code
components, metrics, and issues detected during analysis, including technical debt. By leveraging the Sonar-
Qube API, we successfully retrieved the necessary data pertaining to each class within the software project.
Moreover, the script performs all the necessary requests to the web API in order to retrieve the following infor-
mation based on each project-key (i.e., identifies an analyzed project) that was assigned to each project during
analysis:

• for each class: classpath, rule ID, description of the rule, severity level

• for each class, the number of critical, major, minor issues which summed up, give the total amount of
TD

Thus, a concise explanation of the static code analysis process is depicted in Figure 3 which presents an
overview of the workflow utilized for extracting technical debt instances from SonarQube based on the afore-
mentioned execution steps.

3.4 Comment analysis on self-admitted technical debt

To extract and classify source code comments from Java projects we used the reproduction package developed
by Li et al. [43]. The tool uses a Multitask Text Convolutional Neural Network (MT-Text-CNN) approach.
It is essentially a Text Convolutional Neural Network (Text-CNN)[49] approach but the output layer has been
modified to be task-specific. Text-CNNs are a novel approach that has been used in previous SATD detection
works [50, 51]. See the paper by Li et al. [34] for more information.

The classifier is able to extract source code comments from Java classes and classify them into four categories:
code|design debt, requirement debt, documentation debt, and test debt. Examples of what the tool qualified as
each classification are:

code|design debt - “todo: introduce fairness factor”

requirement debt - “not yet implemented, taking the non-correlated sub-query out as a join”

17https://docs.sonarqube.org/latest/ extension-guide/web-api/

https://docs.sonarqube.org/latest/extension-guide/web-api/
https://docs.sonarqube.org/latest/extension-guide/web-api/
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documentation debt - “An unfinished sample drawing editor with limited support for the href=link”

test debt - “todo: test key write failure”

This tool was run for every file ending in the .java extension in a selected directory and every comment with
their respective classification was saved into a CSV file. Then, another script was used to calculate the amount
of each instance of SATD and the total count per file. This file was later merged with the pattern grime and
SonarQube results for analysis.

3.5 Statistical analysis

This section aims to give an overview of the various statistical methods used to investigate the relationship
between grime and TD (as detected by both source code analysis and NLP). Hence, we introduce two statistical
techniques, including t-test, and chi-square analysis. By utilizing these methods, we aim to assess the influence
that grime has on (SA)TD and how (SA)TD dictates the concentration of grime in two Java projects. The
analysis seeks to uncover potential correlations, trends, and differences between the two phenomena, providing
valuable insights into the nature of their relationship. Lastly, this section aims to describe the necessary founda-
tion and steps to be able to utilize these tools. Moreover, each statistical method is applied to answer a specific
research question or strengthen any subsequent results.

T-test

To answer the first two questions of this research that focus on assessing the influence of grime on TD growth
and how the presence of TD impacts grime accumulation, we perform an independent two-sample t-test analysis
on different combinations of the dataset. T-test is one of the most commonly adapted statistical tests [52] and
is utilized to determine if there is a significant difference between the mean of the two groups and thus allows
us to gain insights into the relationship between the two phenomena. Specifically, it can indicate whether there
is a significant difference in TD accumulations based on the presence or absence of grime and vice versa. As a
result, the analysis was conducted as follows:

Q1 : Is the presence of grime associated with (self-admitted) technical debt?

(a) Split the dataset into classes that contain TD and no (class/modular) grime and classes that contain
both TD and (class/modular) grime.

(b) Perform a t-test analysis on the two groups of TD

Q2 : Is the presence of (self-admitted) technical debt associated with grime?

(a) Split the dataset into classes that contain (class/modular) grime and no TD and classes that contain
both TD and (class/modular) grime.

(b) Perform a t-test analysis on the two groups of (class/modular) grime

To analyze the results of the t-test, we evaluate the p-value which indicates the probability of observing a dif-
ference in the means that resulted by chance and analyze the value of the t-statistic to determine the direction
(i.e., the orientation of the mean) and magnitude (i.e., the extent of the change) of the difference between the
means. Specifically, if the p-value is below the significance level (i.e., α = 0.05 standard), it indicates that
the difference between the groups is statistically significant which allows us to reject the null hypothesis of no
significant difference, hence, we conclude that the presence of grime influences the amount of TD with regards
to RSQ1. Moreover, if the observed t-statistic is positive, then the first group (only TD) registered a higher
mean, while a negative t-statistic suggests that the second group (TD and grime) has a higher mean that the first
group. Finally, we will examine the absolute value of the t-statistic to determine the actual difference between
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the means of the two groups that are compared.

Chi-squared test

The Chi-Squared goodness of fit test [53] is used to determine whether there is an association between two
categorical data. It is used to check whether the differences in the observed and expected frequencies are
statistically significant or simply up to chance. In our case, the chi-squared goodness of fit test can tell us
whether the presence of pattern grime is related to technical debt in the analyzed source code. In order to
achieve this, we perform the following steps:

1. Create the categorical data: < hasGrime, has(SA)TD >, where hasGrime contains four groups of categor-
ical data representing each grime metric and has(SA)TD contains two groups representing TD analyzed
through static code analysis and SATD detected through comment analysis. The categorical data is in
binary format (i.e., 1 - presence, 0 - absence).

2. Perform the Chi-Squared goodness of fit test on the datasets.

To analyze the results of the Chi-Squared test we must look at the p-value, and the test statistic. The p-value
measures the level of statistical significance and indicates whether there is evidence to reject the null hypothesis
and the test statistic is a numerical measure of the differences between the observed and predicted values. We
determine the significance of the results by comparing the p-value with the significance level (i.e., α = 0.05)
and assess the results in the following manner:

HO : p-value > 0.05 - there was no significant association between grime and (SA)TD.

HA : p-value < 0.05 - the presence of grime displays a strong association with (SA)TD accumulations.
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4 Results

In this section, we present the findings of the statistical analysis conducted to investigate the relationship be-
tween (SA)TD and grime. To examine this relationship, we employed two widely used statistical methods: the
t-test and the chi-square test. The t-test was employed to evaluate mean differences between TD and grime
groups, focusing on the class, instance, and pattern level. On the other hand, the chi-square test was utilized to
assess the association between TD and grime in terms of categorical data. Therefore, by investigating various
dataset scenarios, we aimed to gain a comprehensive understanding of how the presence of grime affects TD
accumulation and vice versa across two Java projects.

4.1 Data analysis

Based on the data collection phase, we analyzed over 2600 classes and 1600 instances containing TD and grime
in JHotDraw and QuestDB. In Table 1, we list all the design patterns per project along with the total number
of grime metrics and TD accumulation at the pattern instance level because metrics such as modular grime that
concern the number of incoming and outgoing dependencies can be detected only at each instance of the pattern.
Thus, we notice that the State pattern incurred the highest amount of grime in both projects based on the number
of instances (i.e., 961 in total), grime metrics (e.g., mg-ca = 325327, mg-ce = 27573, cg-na = 11178, cg-npm
= 38700) for both class and modular grime, TD analyzed with SonarQube (i.e., 691 in total) and SATD (i.e.,
116 in both projects). Moreover, a high increase in grime and TD can be observed in design patterns such as
(Object)Adapter, Proxy (i.e., in QuestDB), Bridge, and Decorator. Contrarily, design patterns such as Strategy,
Proxy2, and Observer are the least utilized patterns based on the number of recorded instances. Nevertheless,
patterns like Factory Method, Prototype, and Composite registered a low number of instances, however, lead to
an increased amount of modular (e.g., mg-ca: 3332, mg-ce: 1671 - Factory Method in total), class grime (e.g.,
cg-na: 708, mg-ce: 2733 - Factory Method in total), TD (e.g., 63 from SonarQube and 24 SATD items) which,
for the Factory Method pattern. this could be as a result of a high number of ConcreteCreator classes (i.e., 586
pattern classes in total), which in turn can lead to increased coupling with the Product classes.

QuestDB Pattern Info

Pattern mg-ca mg-ce cg-na cg-npm TD Minor Major Critical Instances Classes SATD

Factory Method 2595 1527 618 2115 46 1 17 28 17 572 12
Singleton 649 526 189 473 16 0 1 14 120 118 14
(Object)Adapter 96753 15093 8869 16238 220 26 94 97 469 395 39
Decorator 5015 4890 3693 8542 38 4 1 33 43 655 21
State 317989 24715 10333 36057 258 35 105 117 880 689 65
Strategy 2 6 10 7 0 0 0 0 1 1 0
Bridge 8352 777 466 1292 57 15 26 15 37 45 4
Template Method 268 965 715 592 15 0 5 9 35 124 10
Proxy 13799 1200 1226 1781 41 5 16 19 31 39 3
Proxy2 7 11 0 17 2 2 0 0 1 3 0

JHotDraw Pattern Info

Factory Method 537 144 90 618 17 12 1 1 4 14 12
Prototype 1032 856 233 1122 66 18 25 16 13 32 17
Singleton 65 149 45 94 55 11 34 10 13 12 3
(Object)Adapter 1564 1127 308 1017 168 42 59 59 25 37 28
Composite 888 664 223 1082 23 8 6 5 5 19 7
Decorator 401 204 71 315 6 0 0 4 3 18 9
Observer 10 32 22 53 12 2 4 5 2 4 1
State 7338 2858 845 2643 433 72 209 144 81 91 51
Bridge 2255 880 309 1072 113 30 43 35 22 25 8
Template Method 178 589 136 355 112 31 48 25 15 27 5

Table 1: Summary of design patterns associated with grime and TD
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In Table 2, we present a general statistical overview of grime and TD variables for each project that was
analyzed in order to characterize our working dataset. We notice that the class grime metric, cg-na, shows
significant variability between the projects. The maximum value for QuestDB is 3525, indicating a relatively
higher presence of alien attributes compared to JHotDraw with a maximum value of 180. Similarly, the met-
ric cg-npm also exhibits a difference between the projects. Namely, QuestDB has a higher maximum value
of 20961, suggesting a larger number of alien public methods compared to JHotDraw with a maximum value
of 1351. These results can indicate a sign of bad practices based on the fact that JHotDraw is considered a
benchmark project that was designed for educational purposes whereas QuestDB is a byproduct of industry
needs. Another reason can be the complexity of the software with QuestDB registering a substantially higher
project size, number of grime instances, and TD accumulations than JHotDraw. In terms of mg-ca and mg-
ce, QuestDB registered higher values than JHotDraw, indicating an increased level of incoming and outgoing
dependencies. The TotalBrokenRules metric, representing the amount of technical debt, detected with Sonar-
Qube, has a higher accumulation in QuestDB (i.e., 379), implying a potentially larger amount of technical debt
compared to JHotDraw (i.e., 105). Moreover, the metrics MinorRules, MajorRules, CriticalRules and InfoRules
provide insights into the distribution of different types of TD and generally exhibit higher maximum values in
QuestDB compared to JHotDraw, suggesting a potentially higher occurrence of rule violations. Furthermore,
an interesting observation can be made regarding the violation of rules in both QuestDB and JHotDraw. Specif-
ically, Table 2 reveals that QuestDB has a higher incidence of critical rule violations, indicating potential issues
that significantly impact the system’s maintenance. Conversely, JHotDraw exhibits a greater number of minor
rule violations, suggesting a tendency towards less severe issues that may have a lower overall impact on the
system. Furthermore, the mean score of SATD is relatively low, suggesting that the majority of examined com-
ments do not explicitly mention the presence of technical debt as acknowledged by developers. However, it is
important to note that specific areas within the codebase exhibit higher SATD scores, such as 50 in QuestDB
and 20 in JHotDraw. These elevated scores signify the existence of significant technical debt in those particular
areas. To conclude, based on the aforementioned observations, it can be inferred that QuestDB demon-
strates higher levels of both grime and (SA)TD in comparison to JHotDraw, which serves as a benchmark
project.

4.2 Grime-technical debt correlation

In this section, we present the results of two statistical methods described in Section 3.5 and utilized in the
scope of two Java projects. Through a comprehensive analysis of the mean and correlation, we can address our
research questions and gain a deeper understanding of the interplay between design pattern grime and technical
debt. Thus, the results are organized into subsections that focus on different aspects of the analysis.

4.2.1 Analysis of the mean

The first subsection of the study explores the analysis of the mean. This involves using t-test to examine
whether there are significant differences in means and distributions between various groups of grime metrics
and technical debt. That being said, t-test was applied to three different datasets (i.e., we considered classes
that have only TD or grime and both):

• grime and TD accumulations at the class level in both/QuestDB/JHotDraw projects combined

• grime and TD accumulations at the pattern instance level in both/QuestDB/JHotDraw projects

• grime and TD accumulations at the pattern level in both projects

Class level
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Variable Project Minimum Maximum Mean Std. Deviation

cg-na QuestDB 0.00 3525.00 20.23 114.03
JHotDraw 0.00 180.00 14.17 27.14

cg-npm QuestDB 0.00 20961.00 52.00 628.50
JHotDraw 0.00 1351.00 51.99 140.49

mg-ca QuestDB 0.00 839.00 273.60 324.50
JHotDraw 1.00 230.00 78.39 75.59

mg-ce QuestDB 0.00 884.00 30.53 48.57
JHotDraw 3.00 168.00 41.22 35.93

TotalBrokenRules QuestDB 1.00 379.00 15.29 37.80
JHotDraw 1.00 105.00 7.51 11.06

MinorRules QuestDB 0.00 45.00 1.24 4.56
JHotDraw 0.00 104.00 2.47 7.41

MajorRules QuestDB 0.00 59.00 2.00 5.75
JHotDraw 0.00 52.00 2.69 4.70

CriticalRules QuestDB 0.00 377.00 11.87 34.13
JHotDraw 0.00 23.00 2.20 3.28

InfoRules QuestDB 0.00 36.00 0.13 1.67
JHotDraw 0.00 4.00 0.02 0.27

SATD QuestDB 0.00 50.00 0.12 1.13
JHotDraw 0.00 20.00 0.43 1.25

Table 2: Descriptive statistics per project.

Based on Table 3, in the combined JHotDraw and QuestDB datasets, we observe a significant difference in TD
accumulation between the TD group and the TD-grime group. Specifically, TD that is present in grime in-
stances exhibits a lower mean accumulation compared to the group where only TD was found, indicating
that the presence of grime might contribute to a decrease in TD. Moreover, in the QuestDB project, we
found a pronounced difference in TD accumulation between the TD group and the TD-grime group. The grime
group exhibited a substantially lower mean TD accumulation compared to the TD group. This indicates that
the presence of class grime may significantly affect TD accumulations in QuestDB, as evidenced by the
substantial differences in mean TD values (i.e., from a mean of 17.21 to 2.88). Additionally, the low p-value
(i.e., p-value < 0.001) and large t-statistic (i.e., 7.16) indicate a strong statistical significance, suggesting that
the observed difference in means is unlikely to occur by chance alone. Moreover, the t-test results also reveal
notable differences in the standard deviation of TD values between the TD group and the TD with grime group
in QuestDB (i.e., 40.26 vs. 4.24). This implies that the presence of grime may not only lead to lower mean
TD values but also contributes to a decrease in the variability of TD accumulations. The smaller standard
deviation suggests a more consistent and controlled TD environment when grime is present in QuestDB.

In contrast, the t-test results for the JHotDraw dataset reveal that the impact of grime on TD accumula-
tions is not statistically significant (i.e., 7.79 vs. 6.79, p-value = 0.41). Both groups exhibited a relatively
similar mean of TD accumulations, implying that the presence of grime may not have a substantial impact on
TD accumulation in this specific project. Moreover, the size of the JHotDraw project (i.e., 413 classes analyzed)
which is considerably smaller than in QuestDB (i.e., 1724 classes analyzed), justifies the t-test results of signif-
icant difference in the means of TD obtained in the combined datasets which are depicted in Figure 4a. Hence,
the QuestDB dataset holds greater significance in shaping the overall outcomes due to the heterogeneous nature
(i.e., non-uniformity in terms of projects) of the combined dataset, which predominantly represents QuestDB.
The discrepancy between these projects can also be inferred from the box plots in Figure 4b and 4c which
provide a visualization of the TD spread in QuestDB and JHotDraw.
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Dataset Group Mean Std. Deviation p-value t-statistic Dataset size

JhotDraw and QuestDB TD 13.74 33.09
TD and grime 5.16 7.73 < 0.01 6.11 2137

QuestDB TD 17.21 40.26
TD and grime 2.88 4.24 < 0.01 7.16 1724

JhotDraw TD 7.79 11.70
TD and grime 6.79 9.15 0.41 0.83 413

Table 3: Impact of class grime on TD accumulation: summary of t-test results at class level

(a) TD in QuestDB and JHotDraw (b) TD in QuestDB (c) TD in JHotDraw

Figure 4: Distribution of TD in TD-only vs TD-grime dataset at class level

In Table 4, we present the results of the t-test analysis that showcase the mean variation of class grime in
the presence and absence of TD. For JHotDraw, no fluctuations in the mean of both class grime metrics are
observed. In the case of QuestDB alone, t-test results show a significant difference in the mean number of
alien attributes (i.e., cg-na) with the presence of TD. The low p-value and the negative t-statistic indicate that
the presence of TD is associated with a higher mean accumulation of cg-na. However, there is no substantial
difference observed in the mean value of the number of alien public methods (i.e., cg-npm). Consequently,
we can infer that the presence of TD is associated with an increase in the number of alien attributes in
both the combined dataset and QuestDB. Furthermore, the visual representation of the distribution of grime
metrics based on the combined datasets in Figure 5a indicate a high variability of cg-na and higher median in
the presence of TD while in Figure 5b have an almost identical median of cg-npm distribution. Moreover, we
included additional representations on the distribution of class grime per individual project in Figure 11.

(a) cg-na in QuestDB and JHotDraw (b) cg-npm in QuestDB and JHotDraw

Figure 5: Distribution of class grime in grime-only vs TD-grime dataset at class level
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Dataset Group Mean Std. Deviation p-value t-statistic Dataset size

JhotDraw and QuestDB cg-na 17.98 43.58
cg-na and TD 75.87 310.68 0.02 -2.29 2137
cg-npm 52.20 638.85
cg-npm and TD 72.52 242.17 0.45 -0.76

QuestDB cg-na 18.03 43.45
cg-na and TD 153.32 460.59 0.02 -2.39 1724
cg-npm 51.41 654.48
cg-npm and TD 104.72 318.10 0.23 -1.21

JhotDraw cg-na 17.03 22.74
cg-na and TD 16.43 31.87 0.90 0.12 413
cg-npm 67.50 112.20
cg-npm and TD 49.10 164.90 0.40 0.80

Table 4: Impact of TD on class grime accumulation: summary of t-test results at class level

Instance level

Table 5 presents the results of the t-test at the instance level, where each grime instance registers two values
that describe modular grime: grime afferent coupling (i.e., mg-ca) and grime efferent coupling (i.e., mg-ce)
introduced in Chapter 3. The results of the mean variation of these two modular grime metrics are based on
datasets that contain only modular grime and datasets where modular grime is accompanied by TD. Thus, the
aim is to determine if the presence of TD is associated with a change in the mean of modular grime. In the
combined dataset (i.e., 1810 instances) we can notice that there is a decrease in the mean of mg-ca (i.e., from
304.54 to 129.78) in the presence of TD as the p-value is less than 0.01 and the t-statistic of 14.00 indicate a
statistically significant difference between the means of the two groups. As instances of grime in QuestDB are
considerably higher in number than in JHotDraw (i.e., 1628 vs 182), a similar decrease can be observed in the
mean amount of grime afferent coupling in the presence of TD in QuestDB. These findings suggest that the
presence of TD might have a significant impact on the decrease in the number of incoming dependencies
(i.e., afferent coupling) in QuestDB.

Dataset Group Mean Std. Deviation p-value t-statistic Dataset size

JhotDraw and QuestDB mg-ca 304.54 340.62
mg-ca and TD 129.78 184.47 < 0.01 14.00 1810
mg-ce 22.44 19.66
mg-ce and TD 55.85 78.66 < 0.01 -9.50

QuestDB mg-ca 306.73 341.22
mg-ca and TD 154.42 215.13 < 0.01 10.14 1628
mg-ce 22.32 19.50
mg-ce and TD 63.00 92.08 < 0.01 -8.12

JhotDraw mg-ca 50.18 60.60
mg-ca and TD 80.21 76.21 0.14 -1.57 182
mg-ce 36.00 31.66
mg-ce and TD 41.56 36.24 0.59 -0.56

Table 5: Impact of TD on modular grime: summary of t-test results at instance level

Similarly, for the mg-ce variable, the t-test results revealed a significant difference with the presence of TD
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in the combined dataset (i.e., p-value < 0.01). The mean value of mg-ce is lower compared to the TD-grime
group (55.85 in JhotDraw and QuestDB combined dataset, 63.00 in QuestDB alone). The negative t-statistic
values, respectively, indicate a substantial increase in the means. Hence, these results suggest that the presence
of TD in modular grime efferent coupling is associated with an increase in the mean and variation (i.e.,
high standard deviation of 19.50 vs 92.08) in QuestDB. In contrast, in the JhotDraw dataset, the t-test results
did not show statistically significant differences between the TD and both of the modular grime metrics groups
(i.e., p-value > 0.05) which can be justified by the small project size and diversity in comparison to QuestDB.

Pattern instance level

To answer RQ2, we perform a t-test analysis for each subset of design patterns at the instance level because
each instance represents a violation of a given design pattern structure and captures both modular and class
grime, thus providing a representative dataset of various grime patterns. Consequently, each instance in the
dataset contains modular grime, at least one of the class grime metrics, and zero or more TD, hence, the t-test
results presented in Table 6 shed light on the impact of TD on modular grime and Table 7 provides insights into
the impact of TD on class grime at the level of design patterns.

Firstly, when considering the mg-ce variable, it can be noticed that the (Object)Adapter and State patterns ex-
hibited significant differences between the TD and grime groups (i.e., p-value < 0.05 and t-statistic < 0.00).
These findings suggest that the presence of TD in (Object)Adapter and State pattern instances is associated
with a higher occurrence of efferent coupling, highlighting the importance of addressing TD in these patterns
to potentially mitigate the accumulation of grime. Moreover, mg-ca registered a decrease in the mean with
respect to the presence of TD (i.e., p-value< 0.01 and t-statistic > 0.00) in both patterns which explains the
overall outcome of Table 5.

Secondly, the Bridge pattern also demonstrated significant differences in the mg-ce variable, however, there is
no significant difference in the accumulation of mg-ca (i.e., p-value > 0.05). In contrast, the other patterns
examined, including Factory Method, Singleton, Decorator, Template Method, and Proxy, did not exhibit sig-
nificant differences in either mg-ce or mg-ca variables. These patterns showed t-test statistics and p-values that
did not reach statistical significance, indicating that the presence of TD is not associated with the accumulation
of grime in these particular patterns. One interesting thing to note regards the Singleton pattern which is the
third most used design pattern in the dataset, however, there are no significant differences in the grime vari-
ations as observed in the Bridge pattern which is lower in representation. Thus, the main reason behind this
effect concerns the complexity of the pattern itself.

Design Pattern t-statistic (mg-ce) p-value (mg-ce) t-statistic (mg-ca) p-value (mg-ca) Dataset size

Factory Method -1.262 0.246 -0.134 0.895 21
Singleton -1.751 0.102 -1.425 0.176 130
(Object)Adapter -8.852 < 0.01 3.435 < 0.01 494
Decorator -0.371 0.714 -0.986 0.332 46
State -9.010 < 0.01 16.989 < 0.01 960
Bridge -2.878 0.007 1.322 0.193 59
Template Method -2.759 0.011 -0.607 0.548 47
Proxy -2.522 0.038 -0.624 0.545 31

Table 6: T-test results: the influence of TD on modular grime at pattern level

Among the design patterns analyzed, the (Object)Adapter pattern stands out with significant differences in both
cg-na and cg-npm variables (i.e., t-statistic> 0 and p-value < 0.05). These results indicate a substantially high
association between TD and the accumulation of class grime in (Object)Adapter pattern instances. The State
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pattern also demonstrated a significant relationship with TD in terms of class grime. These findings suggest
a strong association of TD with an increase in the accumulation of class grime. On the other hand, patterns
such as Factory Method, Singleton, Decorator, Bridge, Template Method, and Proxy did not show statistically
significant differences in either cg-na or cg-npm variables which can be a result of significantly lower instances
of these patterns or the simplicity of the structure (e.g., Singleton pattern). It is worth noting that the Decorator
pattern exhibited a significant decrease in the number of alien attributes, as indicated by the positive t-statistic
and p-value of 0.001. However, there was no significant change in the cg-npm metric.

Design Pattern t-statistic (cg-na) p-value (cg-na) t-statistic (cg-npm) p-value (cg-npm) Dataset size

Factory Method -0.901 0.382 -1.401 0.202 21
Singleton -1.714 0.109 -2.557 0.021 130
(Object)Adapter -7.391 < 0.01 -4.983 < 0.01 494
Decorator 3.580 0.001 0.272 0.788 46
State -6.776 < 0.01 -1.104 0.271 960
Bridge -0.031 0.975 -1.700 0.095 59
Template Method -0.772 0.448 -0.860 0.398 47
Proxy -1.517 0.154 0.639 0.528 31

Table 7: T-test results for class grime based on TD at pattern level

4.2.2 Correlation analysis

The chi-square test was performed to analyze the relationship between the presence of TD and grime in two
Java projects. As such, we created a couple of categorical datasets based on the presence or absence of TD,
modular, and class grime to identify any associations or dependencies between these TD-grime variables. The
chi-square test helps to determine whether the observed frequencies of the two examined variables differ sig-
nificantly from what would be expected if they were independent and if there is evidence to suggest that the
presence of TD is related to the presence of grime and vice versa. Hence, the purpose of conducting this statis-
tical analysis is to reinforce the above findings and provide stronger evidence in response to RQ1, RSQ1, and
RSQ2.

In Figure 6, the chi-square test provides a statistical measure to assess the relationship between TD and class
grime. Overall, there is a significant relationship between class grime and TD in both QuestDB and JHot-
Draw projects. The chi-square statistics for both cg-npm and cg-na metrics are considerably large, indicating
a strong association between class grime type and TD. This suggests that there is a statistically significant
association between the presence of TD and the accumulation of grime attributes and public methods in both
projects. When considering QuestDB individually, the chi-square statistics for class grime metrics are again
highly significant (p-value < 0.001). Similarly, in the case of JHotDraw, the chi-square values for cg-npm and
cg-na are statistically significant (i.e. p-value < 0.001). This implies that TD is significantly associated with
the accumulation of grime in terms of both attributes and public methods within the QuestDB and JHotDraw
project.

In Figure 7, when considering the combined dataset of QuestDB and JHotDraw, the chi-square test indicates
a marginally significant relationship between TD and mg-ce (i.e., p-value = 0.05). This suggests that the
presence of TD may have some association with the accumulation of efferent coupling in the context of
modular grime. However, for mg-ca, the chi-square test does not show a significant relationship with TD
(i.e., p-value > 0.05). Focusing on the QuestDB project individually, the chi-square test results show that
neither of the grime metrics has a significant relationship with TD. Similarly, in the case of JHotDraw, both
mg-ce and mg-ca variables exhibit no significant relationship with TD based on the chi-square test (i.e. p-
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value) = 1.0). This implies that the presence of TD does not have a notable association with the accumulation
of modular grime in terms of efferent and afferent coupling within the QuestDB and JHotDraw project.

Project grime type chi-square p-value

QuestDB
and JHotDraw

cg-npm 1351.01 < 0.01
cg-na 609.52 < 0.01

QuestDB
cg-npm 1211.20 < 0.01
cg-na 502.00 < 0.01

JHotDraw
cg-npm 97.59 < 0.01
cg-na 64.24 < 0.01

Figure 6: Chi-square results for class grime and
TD

Project grime type chi-square p-value

QuestDB
and JHotDraw

mg-ce 3.88 0.05
mg-ca 0.83 0.36

QuestDB
mg-ce 1.67 0.19
mg-ca 0.37 0.54

JHotDraw
mg-ce 0.0 1.0
mg-ca 0.0 1.0

Figure 7: Chi-square results for modular grime
and TD
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4.3 Grime-SATD correlation

To gain a greater understanding of SATD in the presence of pattern grime we chose to also analyze HBase18 in
addition to JHotDraw and QuestDB. This gave us over 8400 Java files at class level and around 2200 pattern
instances to analyze.

4.3.1 Analysis of the mean

Class Level

Dataset Group Mean Std. Deviation p-value t-statistic Dataset size

JhotDraw and QuestDB SATD 2.07 3.15
and HBase SATD and grime 2.19 2.67 0.47 -0.73 381

JhotDraw and QuestDB SATD 2.07 3.84
SATD and grime 1.72 1.86 0.26 1.12 100

HBase SATD 2.06 2.93
SATD and grime 2.36 2.90 0.14 -1.45 281

QuestDB SATD 2.36 5.10
SATD and grime 1.83 2.225 0.36 0.91 55

JhotDraw SATD 1.823 2.25
SATD and grime 1.58 1.28 0.38 0.87 45

Table 8: Impact of class grime on SATD accumulation: summary of t-test results at class level

Based on Table 8 none of the results showcase a significant p-value. The T-Test was run by splitting our data
into two partitions: 1) Data containing only SATD (i.e. no grime), and 2) data containing grime and SATD.
This indicates that the presence of grime does not seem to increase the amount of SATD at class level.

18https://github.com/apache/hbase
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Dataset Group Mean Std. Deviation p-value t-statistic Dataset size

JhotDraw and QuestDB cg-na 22.51 103.49
and HBase cg-na and SATD 32.92 142.52 0.21 -1.24 320

cg-npm 43.09 506.04
cg-npm and SATD 68.09 290.09 0.19 -1.31 357

JhotDraw and QuestDB cg-na 17.98 43.58
cg-na and SATD 34.59 92.29 0.40 -0.83 80
cg-npm 50.38 621.48
cg-npm and SATD 111.32 369.46 0.15 -1.44 92

HBase cg-na 17.99 50.57
cg-na and SATD 32.62 155.86 0.16 -1.40 240
cg-npm 29.87 140.04
cg-npm and SATD 53.08 256.03 0.16 -1.40 265

QuestDB cg-na 26.70 132.53
cg-na and SATD 42.76 120.25 0.40 -0.84 42
cg-npm 50.76 647.75
cg-npm and SATD 132.02 473.97 0.23 -1.18 52

JhotDraw cg-na 13.24 18.62
cg-na and SATD 25.55 44.74 0.11 -1.64 38
cg-npm 46.25 142.20
cg-npm and SATD 84.40 153.05 0.17 -1.37 40

Table 9: Impact of SATD on class grime accumulation: summary of t-test results at class level

From Table 9 all of the results do not show significance either. In this instance, the partitions were flipped like
such: 1) Only grime (i.e. no SATD) and, 2) grime and SATD. These results indicate that the presence of SATD
has no effect on the presence of grime at class level.
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(a) cg-na in HBase (b) cg-na in QuestDB (c) cg-na in JHotDraw

(d) cg-npm in HBase (e) cg-npm in QuestDB (f) cg-npm in JHotDraw

Figure 8: Distribution of grime metrics in grime only vs SATD-grime dataset at class level

Instance Level

Dataset Group Mean Std. Deviation p-value t-statistic Dataset size

JhotDraw and QuestDB mg-ca 274.49 339.18
and HBase mg-ca and SATD 125.86 163.85 < 0.001 13.71 577

mg-ce 27.80 28.53
mg-ce and SATD 52.10 87.75 < 0.001 -6.53

JhotDraw and QuestDB mg-ca 292.33 343.05
mg-ca and SATD 122.82 102.55 < 0.001 16.16 401
mg-ce 26.78 27.03
mg-ce and SATD 50.25 85.01 < 0.001 -5.44

HBase mg-ca 160.09 288.74
mg-ca and SATD 132.78 253.49 0.32 1.00 176
mg-ce 34.20 35.95
mg-ce and SATD 56.28 93.73 0.003 -2.97

QuestDB mg-ca 304.01 346.95
mg-ca and SATD 135.96 110.35 < 0.001 14.59 286
mg-ce 26.64 27.29
mg-ce and SATD 51.09 97.41 < 0.001 -4.19

JhotDraw mg-ca 58.19 80.41
mg-ca and SATD 90.16 70.31 0.007 -2.71 115
mg-ce 29.29 21.49
mg-ce and SATD 48.17 40.62 < 0.001 -4.09

Table 10: Impact of SATD on modular grime: summary of t-test results at instance level

Table 10 shows the T-Test results for SATD and pattern grime at instance level. While the results from class
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level revealed no significant p-values this appears to be much different at instance level. Every p-value seems
to point towards a significant difference in the means between modular grime and SATD apart from one. The
only value that is not significant is when looking at HBase and considering afferent coupling with SATD, apart
from that the rest all imply that SATD has a significant effect on the value of modular grime at instance level.

(a) mg-ca in HBase (b) mg-ca in QuestDB (c) mg-ca in JHotDraw

(d) mg-ce in HBase (e) mg-ce in QuestDB (f) mg-ce in JHotDraw

Figure 9: Distribution of grime metrics in grime only vs SATD-grime dataset at instance level

Pattern Level

Design Pattern t-statistic (cg-na) p-value (cg-na) t-statistic (cg-npm) p-value (cg-npm) Dataset size

Factory Method -0.98 0.83 -2.04 0.052 46
Singleton -0.96 0.34 -1.49 0.15 168
(Object)Adapter -1.13 0.26 -0.75 0.93 590
Decorator -4.45 < 0.001 -4.01 < 0.001 65
State -3.88 < 0.001 0.12 0.899 1106
Bridge -2.20 0.03 -0.98 0.33 78
Template Method -1.99 0.054 -3.34 < 0.001 95
Proxy 2.58 0.01 0.55 0.59 67

Table 11: T-test results for class grime based on SATD at pattern level

Conducting the T-Test analysis per pattern returned quite significant results. These tests were conducted at
instance level, meaning that we calculated a sum of cg-na and sum of cg-npm per pattern instance. From Ta-
ble 11 there are five patterns that indicate a significant result in relation to SATD. These include: 1) Decorator,
2) State, 3) Bridge, 4) Template Method, and 5) Proxy. The Decorator pattern was the only pattern that dis-
played significant results from both cg-na and cg-npm. The Bridge, Proxy and State patterns seem to show
a correlation between SATD and the number of alien attributes in the pattern instance. Finally, the Template
Method pattern’s p-value is significant when considering the number of alien methods.
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Design Pattern t-statistic (mg-ce) p-value (mg-ce) t-statistic (mg-ca) p-value (mg-ca) Dataset size

Factory Method -1.65 0.11 -2.38 0.02 46
Singleton -1.90 0.07 -0.83 0.41 168
(Object)Adapter -1.85 0.06 6.39 < 0.001 590
Decorator -3.06 0.003 -2.21 0.03 65
State -4.35 < 0.001 15.93 < 0.001 1106
Bridge -2.02 0.049 2.45 0.01 78
Template Method -2.38 0.02 -1.69 0.09 95
Proxy -0.53 0.60 7.39 < 0.001 67

Table 12: T-test results: the influence of SATD on modular grime at pattern level

When it comes to modular grime, we notice that all patterns analyzed, apart from the Singleton pattern display
significant results for the T-Test. From Table 12 the Decorator, State, and Bridge patterns return significant
p-values in relation to both efferent and afferent coupling. The Factory Method, Object Adapter, and Proxy
patterns are significant for afferent coupling, but not for efferent coupling. The Template Method pattern is the
only pattern that has its only significant p-value in efferent coupling.

4.3.2 Correlation analysis

Project grime type p-value

QuestDB
and Jhotdraw
and HBase

cg-npm or cg-na 0.06
cg-npm 0.04
cg-na 0.04

QuestDB
and JHotDraw

cg-npm or cg-na < 0.001
cg-npm < 0.001
cg-na 0.01

HBase
cg-npm or cg-na < 0.001

cg-npm < 0.001
cg-na < 0.001

QuestDB
cg-npm or cg-na 0.008

cg-npm 0.06
cg-na 0.06

JHotDraw
cg-npm or cg-na 0.273

cg-npm 0.463
cg-na 0.364

Table 13: Chi-square results for class grime and SATD

The Chi-Squared results at class level returned varying results. The test was run in three ways for each project.
It is important to know of the four categories that were used to run the tests. 1) HasSATD being all classes that
contain at least one instance of SATD 2) HasGrime being all classes that contain either at least once instance
of cg-npm or cg-na, 3) HasNA and, 4) HasNPM

1. By looking at HasSATD with HasGrime → Checking whether there is a correlation between SATD and
both types of grime

2. By looking at HasSATD with HasNA → Checking whether there is a correlation between SATD and
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alien attributes

3. By looking at HasSATD with HasNPM → Checking whether there is a correlation between SATD and
alien methods

Looking at it project by project:

JHotDraw - All p-values returned are not significant, meaning that there is no correlation between SATD and
grime. This result makes sense when you take into consideration that JHotDraw is viewed as a well-designed
benchmark and contains low levels of both technical debt and pattern grime.

QuestDB - When looking at alien attributes and alien methods separately in isolation from one another the
returned p-values are not significant, however, when comparing SATD to both of them then we discover that
there seems to be a correlation between the pattern grime and SATD in QuestDB.

HBase - All p-values are < 0.001 implying that there is a correlation between the SATD instances and pattern
grime in all cases.

JHotDraw and QuestDB - When the combined files of QuestDB and JHotDraw were being tested all of the
results presented are significant.

All Three Projects - Testing all of the Java files that we were looking at returns somewhat surprising results.
When looking at the grime metrics in isolation they returned significant results meaning there is a correlation
between them and SATD. However, when both of them were considered at once then the p-value that was
gained was not significant, implying that there is no correlation. However, as this p-value is at 0.06 we can
say that there is a trend that is leaning towards significance and perhaps if given more data the results would
be different.
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5 Discussion and future work

This section delves into the findings of this research, which examines the relationship between design pattern
grime and technical debt. In this section, we present a comprehensive analysis of the observed relationship,
interpreting the results and exploring their implications for the field of software engineering.

5.1 Pattern grime and TD

To address the first research question (i.e., RQ1) and its associated sub-questions (i.e., RSQ1 and RSQ2), we
examine the outcomes presented in Section 4.2 of this study. Additionally, we delve into the findings pertaining
to various design patterns to address the second research question of this study (i.e., RQ2). Furthermore, it
should be emphasized that the following analysis focuses specifically on technical debt detected via static code
analysis when discussing the implications pertaining to the relationship between grime and TD.

TD and class grime

The results obtained from the t-test analysis, which examines the variation in TD accumulation in the pres-
ence of class grime, reveal that the presence of class grime is associated with a decrease in the amount
of TD accumulation. This observation could potentially indicate that a meticulous design approach, which
incorporates design patterns even if they contain grime, may contribute to the reduction of TD. This finding
aligns with the notion that a well-structured design can potentially mitigate the accumulation of technical debt.
Moreover, upon closer examination of the individual projects, it is evident that the impact of class grime on
TD differs between the QuestDB and JHotDraw projects. In the case of the QuestDB project, the decrease in
TD is more pronounced and statistically significant, indicating a stronger relationship between class grime and
TD reduction. On the other hand, in the JHotDraw project, there was no significant difference in the mean
TD accumulation between instances with and without class grime. Several factors may contribute to these di-
vergent results. Firstly, it is important to consider the specific characteristics of each project, its complexity,
and the overall development approach employed could influence the impact of class grime in reducing TD. For
instance, in the case of QuestDB, developers might reduce the amount of TD in classes where design patterns
and grime are introduced, as the classes become more complex, TD mitigation might be an effortless fix to
do, specifically, Design and Code Debt receive more attention during refactoring [54]. However, in JHotDraw,
the level of TD is maintained at a degree that does not drastically influence the quality of the project. This
assumption can be strengthened by the findings of Tan et al. [54], which indicate that the ”fewer developers
maintaining a file and the more changes made per file, the higher the chance of an issue being self-fixed” which
is the case of JHotDraw where only three developers have contributed to the repository over of a period of 23
years, while in QuestDB, 114 developers have contributed to the system over nine years. Therefore, the level
of awareness and adherence to best practices within the development teams may play a crucial role in manag-
ing technical debt and enforcing clean design principles. An additional factor contributing to higher levels of
TD in the absence of grime is the presence of test classes that incurred a significant amount of TD. Notably,
classes such as SampleByTest.java with 379 TD items and CastTest.java with 129 TD items were partic-
ularly affected. These classes are predominantly utilized for unit testing purposes and do not participate in any
instances of design patterns. Consequently, the absence of grime in these test classes and the lack of design
pattern integration may contribute to the higher TD levels observed in Table 3.

Contrary to the observed relationship between class grime and TD, the analysis of the association of TD with
the distribution of class grime yielded interesting results. Specifically, we discovered a significant increase
in class grime, particularly in the number of attributes that deviate from the expected pattern struc-
ture, in the presence of TD. One possible explanation for the observed increase in alien attributes could be
attributed to design flaws within the affected classes. Issues such as a lack of modularity, poor encapsulation,
or insufficient separation of concerns are common flaws when deviating from the intended pattern structure.
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Rule ID Definition Classification

S1192 String literals should not be duplicated Design Debt
S6213 Restricted Identifiers should not be used as Identifiers Design Debt
S117 Local variable and method parameter names should comply with a naming convention Code Debt
S3776 Cognitive Complexity of methods should not be too high Design Debt
S1611 Parentheses should be removed from a single lambda input parameter when its type is inferred Code Debt
S1117 Local variables should not shadow class fields Defect Debt
S115 Constant names should comply with a naming convention Code Debt
S1948 Fields in a serializable class should either be transient or serializable Defect Debt
S108 Nested blocks of code should not be left empty Code Debt
S106 Standard outputs should not be used directly to log anything Code Debt
S1121 Assignments should not be made from within sub-expressions Code Debt
S1124 Modifiers should be declared in the correct order Code Debt
S112 Generic exceptions should never be thrown Defect Debt
S1186 Methods should not be empty Defect Debt
S1135 Track uses of TODO tags Documentation Debt
S107 Methods should not have too many parameters Design Debt
S125 Sections of code should not be commented out Code Debt

Table 14: Top 16 broken SonarQube rules in QuestDB and JhotDraw

For instance, the io.questdb.cairo.TableWrite.java class in QuestDB, which recorded the highest num-
ber of alien attributes (i.e., 3525), exhibited critical rule violations, including cognitive complexity in methods
and code duplication, which contributed to the accumulation of technical debt. Additionally, in QuestDB, the
most prominent broken rules, depicted in Figure 10a, are related to handling duplicated string literals (S1192),
the inappropriate naming convention of attributes and methods (S6213, S117), and high cognitive complexity
(S3775) and while in JHotDraw, Figure 10b, rules concerning empty methods (S1186) and commented-out
code sections (S125), detailed in Table 14, are frequent. These observations align with those by Feitosa et al.
[4], which state that classes that participate in grime instances are linked with a decrease in quality attributes
such as correctness, performance, and security.

(a) Distribution of rules QuestDB (b) Distribution of rules in JHotDraw

Figure 10: Top 40% most frequent SonarQube rules that introduced TD items.
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Furthermore, the absence of a significant association between the presence of TD and the number of alien pub-
lic methods in both projects might indicate that, unlike the effect on alien attributes, TD might not have a direct
impact or association with alien public methods. TD is a low-level example that affects the quality of a system
and has a higher chance of introducing complex methods (e.g., cyclomatic complexity increases the size of a
method) rather than leading to an increase in the number of methods.

The chi-square analysis reveals a significant association between class grime and technical debt, which can be
attributed to the shared areas of concern between the two. In particular, our findings highlight that the most
frequently violated SonarQube rules pertain to attributes, naming conventions, and cognitive complexity. These
rules are directly related to the presence of class grime and introduce technical debt issues. The identification
of these common areas provides valuable insights for developers to proactively address class grime as a means
of mitigating technical debt. By adopting cleaner coding practices, such as adhering to design principles and
refactoring code to reduce grime, developers can effectively minimize the accumulation of technical debt in
their software projects. It is crucial to emphasize that correlation does not imply causation. The observed
association between TD and grime does not necessarily indicate a causal relationship where it leads to lower
TD values or TD impacts directly the accumulation of grime. Other factors, such as quality attributes or the
developer’s coding practices and experience may contribute to the observed relationship.

TD and modular grime

Additionally, we looked at how pattern deviations, measured with modular grime metrics, vary in the presence
or absence of TD. Thus, we noticed that afferent coupling has a lower concentration in the presence of TD.
Notably, TD may discourage classes from establishing dependencies on pattern instances that exhibit grime,
resulting in a lower afferent coupling. This could be attributed to developers prioritizing the mitigation of TD
even in pattern instances with grime. As a result, pattern instances without TD are perceived as more reliable
and more classes in the system may establish dependencies on these “improved” pattern instances. On the other
hand, the results show that TD is associated with higher efferent coupling. This finding suggests that when a
pattern instance contains technical debt, it tends to have a higher number of dependencies on other classes within
the system. A possible explanation for this observation, if we assume causation, is that the presence of grime in
a pattern instance may contribute to a more complex or convoluted design and introduce higher TD items. As
a result, the pattern instance may need to rely on a larger number of classes to fulfill its functionality, leading
to higher efferent coupling. Moreover, TD could also introduce additional dependencies or workarounds that
require interactions with other classes. For example, an instance of the Factory Method pattern contains a high
number of outgoing dependencies (i.e, 166 in total) and high accumulations of TD (i.e., 28 total broken rules),
however, the class that is responsible for such complexity is the io.questdb.cairo.TableWriter.java19.
Moreover, it is important to consider the role of a class in a system. For instance, the aforementioned class en-
capsulates the functionality related to managing the low-level details of writing data into the underlying storage
engine, specifically handling the storage and organization of data in the database tables. Thus, such complex
classes (i.e., with high efferent coupling), might justify the observed results.

Furthermore, the chi-square test revealed no significant correlation between efferent and afferent coupling and
TD. Despite the contradictory findings, it is evident that coupling is a complex concept influenced by multiple
factors. Therefore, we conclude that further research is needed to gain a comprehensive understanding of this
relationship.

Analysis at pattern level
When looking at the t-test results of each design pattern instance, our observations indicate that design patterns
with higher frequency values, (e.g., State, (object)Adapter, Decorator) significantly influence the overall sta-
tistical outcome. These design patterns, due to their larger representation in the dataset, carry more weight in

19https://javadoc.questdb.io/io.questdb/io/ questdb/cairo/tablewriter
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shaping the conclusions drawn from the analysis. Additionally, these design patterns, characterized by poly-
morphic calls, inherently introduce greater complexity into the codebase. The presence of polymorphism often
leads to increased code size and more coupled interactions between components, making it more challenging
to minimize grime and TD accumulations. This finding has been previously discussed by Feitosa et al. [4]
which further strengthens the understanding that certain design patterns, particularly those involving polymor-
phism, can be prone to grime and TD and can shape the overall outcome of the relationship between these two
concepts.

5.2 Pattern grime and SATD

In this study, we performed an analysis of self-admitted technical debt and pattern grime. Specifically, we were
interested in discovering whether there is a relationship between the two. We chose to analyze three projects,
namely HBase, QuestDB, and JHotDraw, which provided us with a diverse range of software repositories. The
initial analysis of SATD and pattern grime at the class level using the t-test demonstrated no significant rela-
tionship between the presence of grime and SATD. However, when conducted at the instance level we noticed
a shift in the results with a majority of the results indicating a significant relationship between the presence of
SATD and modular grime, the only exception being afferent coupling with SATD in HBase.

It could be argued that as the larger pattern instances grow and develop more dependencies, they become com-
plex. This would explain why developers are more likely to leave comments behind in the implementation as it
grows to more than just one class.

As for the chi-squared results, we observed variances in each project. As JHotDraw is known as a well-
developed benchmark project it displays low levels of both technical debt and pattern grime it displayed no
correlation between SATD and grime. However, when looking at HBase and QuestDB the results were signif-
icant indicating a correlation in those projects. Additionally, as the projects were combined there also appears
to be a trend leaning towards a correlation between pattern grime at class level and SATD.

Towards answering our research questions:

RQ1 What is the relationship between the presence of grime and (self-admitted) technical debt?

RSQ1 Is the presence of grime associated with self-admitted technical debt and vice versa?

From our results outlined above, it is possible to draw the conclusion that pattern grime has an
association with self-admitted technical debt and vice versa. The T-Test and Chi-Squared results all
lean towards an association between the two concepts.

RSQ2 Which grime metrics demonstrate a more pronounced association with the presence of self-
admitted technical debt?

From the results of the t-test it appears that modular grime at instance level has a more pronounced
association with SATD than grime at class level. However, the results of the chi-squared test also
present values that are significant at class level and should not be ignored. Overall, it appears that
all aspects of grime have an equal association with self-admitted technical debt.

RQ2 What design patterns indicate a higher association between grime and self-admitted technical
debt?

From our results in the previous section it is clear that design patterns differ when it comes to their as-
sociation with grime and SATD. This is true for when we are considering both class grime and modular
grime at instance level. More patterns seemed to be affected by modular grime than class grime, which,
once again could be attributed to the growth in complexity of the pattern instances as the classes grow
in dependencies. Seven out of the eight design patterns we investigated returned significant values for at
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least one grime metric.

The Singleton pattern was the only one that did not indicate a higher association between grime and
SATD, it could be argued that the implementation of the Singleton pattern is widespread and common-
place these days, meaning that developers most likely do not struggle to implement the standard imple-
mentation and therefore do not introduce grime into the pattern instance. As the implementation is quite
simple and well-documented, developers also most likely do not introduce high levels of self-admitted
technical debt as implementing the pattern instance can be quite simple.

The Decorator pattern was the only pattern that displayed significant p-values for all grime metrics that
we measured, indicating that it may have a higher association between grime and SATD.

5.3 Future Work

The current study on the relationship between design pattern grime and technical debt opens up several areas
for future research. Firstly, expanding the analysis to include a larger number of projects, beyond those exam-
ined in this study, would provide a more comprehensive understanding of the association between grime and
technical debt. Moreover, our current findings cannot be generalized to projects written in other programming
languages. Thus, extending the analysis to projects written in different programming languages (e.g., Python,
JavaScript) would provide insights into the language-specific aspects of grime and its relationship with techni-
cal debt. Lastly, to gain a broader perspective, it would be beneficial to have a higher representation of other
design patterns, allowing for a more nuanced examination of how different patterns influence the study’s out-
comes.

Moreover, our study also offers insights into the associations between pattern grime and SATD at class and
instance levels. As we have seen from our own results these associations can vary from project to project.
Thus, it would be pivotal to examine this relationship in a larger variety of repositories to gain even greater
insights into how exactly pattern grime and SATD are related. On top of this, we only conducted our analysis
on SATD in source code, however, there is a large amount of data in commit messages, pull requests, and issue
trackers, that is being omitted in this study. We believe that conducting an analysis on SATD and pattern grime
from these sources could provide us with substantial information on how pattern grime and SATD interact in
a project’s life cycle. Lastly, we were only concerned with the binary relationship of SATD and non-SATD,
running an analysis on the different classifications of SATD in relation to pattern grime would allow us to de-
termine whether a certain type of SATD has a stronger or weaker association with pattern grime.

Furthermore, future research could consider conducting empirical studies that take into account factors such as
project size, developer experience, and quality attributes, to explore how these variables influence the associa-
tion between grime and technical debt. Additionally, longitudinal studies could track the evolution of grime and
its impact on technical debt over time (e.g., across different versions of the system), providing insights into the
long-term consequences and potential mitigation strategies. Lastly, conducting industry case studies that delve
deeper into specific projects or companies would allow for more detailed and practical factors such as team
dynamics, development practices, and experience level that might impact the relationship between grime and
technical debt. Overall, these future research directions can contribute to a more comprehensive understanding
of the dynamics between design pattern grime and technical debt.
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6 Threats to validity

This section evaluates potential threats that could impact the accuracy and reliability of the findings in this
study. Namely, we discuss construct validity which focuses on ensuring the accuracy of the measurement
techniques utilized to capture the intended theoretical constructs. Reliability pertains to the consistency of the
study’s setup and data analysis phase and ensures the reproducibility of the study. External validity concerns
the generalizability of the findings to other contexts or populations.

Concerning construct validity, we identified several threats that pertain to the methods in which we measured
both grime and TD in our study. The first threat to construct validity is the accuracy of TD measurement
achieved via static code analysis. Based on our knowledge, SonarQube is the only open-source tool that is
widely used in both the industry and software engineering communities for identifying and measuring TD.
Nevertheless, SonarQube might introduce false positives flagged in the codebase. Moreover, it may also miss
certain instances of technical debt, resulting in false negatives. This, in turn, can be addressed by manually an-
alyzing the codebase and verifying the relevancy of the flagged code smells. In this study, we did not focus on
manually validating the output of the SonarQube analysis, however, all the projects underwent analysis using
the default set of rules provided by SonarQube to minimize subjectivity.

Another threat to the construct validity is the tool used for the classification of SATD using natural language
processing. From the paper by Li et al. [34] the tool achieved an F1-score of 0.611. To determine the validity of
our results, we used stratified random sampling [55] on the comments extracted from pattern instances. From
119 pattern instances approximately 1500 comments were extracted and classified, and with a 50% population
proportion one of the researchers verified the output of 750 comment classifications. The other researcher was
given a 20% population proportion of the first researcher’s validation for a further 150 comment classifications.
This method ensures that we avoid bias as much as we can while validating the output of the tool. When con-
sidering the entire set of 750 comments from the initial sampling, there were 24 incorrect classifications. This
results in an accuracy of 96.80%. When the tool output classified a comment as SATD there were 9 correct
classifications and 6 false positives. Considering this, when the tool classified something as SATD it was accu-
rate 60% of the time.

Yet another possible concern that could impact the construct validity regards the design pattern and grime
detection tools which can be limited by false positives and negatives that can affect the accuracy of our find-
ings. However, it is worth noting that these tools have demonstrated satisfactory performance as evidenced by
previous research where they have been successfully validated [4]. Nevertheless, to mitigate this threat, we
performed stratified random sampling on the QuestDB dataset and verified the output of 120 classes (i.e., 20%
population proportion out of 344 classes that participate in unique grime instances). Furthermore, in order to
ensure the accuracy of the validation process, a subsample of the dataset (i.e., 57 classes in total) was reval-
idated to increase the accuracy of the results. The outcome of our validation shows that out of the total 120
classes analyzed, the tool correctly identified the presence of grime in 115 classes (i.e., 4 false positives and 1
false negative), resulting in a validation accuracy of 95.8%. Thus, we can conclude that the spoon-pttgrime tool
provides decent capabilities to accurately detect grime in software projects.

To address reliability threats and minimize potential biases in data collection, we manually checked the datasets
at different stages in our research to ensure data consistency. For instance, we checked a subset of the data
containing merged TD and grime accumulations per class to guarantee that the merging step was performed
accordingly. Moreover, we employed Python scripts to automate some processes such as data parsing (i.e.,
extracting grime metrics from XML to CSV) and project configuration in the case of SonarQube analysis.

Concerning external validity, the main threat is the limited scope of our study, as only two projects were ex-
plored. This restricted dataset may not fully represent the diversity of software projects, thus limiting the
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generalizability of our findings. Another aspect that impacts external validity is the focus on projects developed
in Java. While Java is a widely used programming language, it may not capture the characteristics and nuances
of projects developed in other languages. To address this limitation, additional analyses could be conducted on
projects developed in different languages to provide a more comprehensive understanding of the relationship
between grime and technical debt. Furthermore, we acknowledge that only a limited number of patterns were
investigated. This narrow focus does not allow us to capture the full spectrum of design pattern grime and its
relationship to technical debt. Including a wider range or at least a balanced representation of each design pat-
tern in the analysis could yield more comprehensive insights. Lastly, to enhance the observations and accuracy
of the study, future studies can analyze grime based on subtypes of grime [56]. This approach can provide a
more nuanced understanding of the relationship between specific subtypes of grime and technical debt.

6.1 Reproducibility

To ensure the reproducibility of our analysis, we have taken several steps to provide transparency and accessi-
bility to our research process and data. Firstly, we created a public GitHub repository 20 with instructions and
scripts to replicate some aspects of our data collection and manipulation. For instance, we have developed a
script, written and ran on a machine running Ubuntu 22.04 LTS, that automates the collection of TD based on
a predefined list of repositories. This script ensures consistency in the data collection process and eliminates
manual errors or biases. Additionally, we have created Python scripts for statistical analysis, which encom-
pass the necessary statistical methods employed in our study. These scripts provide a clear and standardized
methodology for conducting statistical tests, ensuring that the results can be replicated and validated by other
researchers. Furthermore, we made our dataset readily available, including both the TD data and the grime data
that was collected during this study. To facilitate the integration of the datasets, we have developed scripts that
merge the TD and grime datasets. This ensures that the combined dataset is accurately consolidated and can be
used for further analysis and interpretation.

20https://github.com/anaterna/BscThesis
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7 Conclusion

In this research paper, we have conducted an extensive investigation into the relationship between design pat-
tern grime and technical debt in Java projects. To accomplish this, we have considered four metrics related
to class and modular grime, which have been employed to identify accumulations of grime. Furthermore, we
have utilized two approaches to measure technical debt: static code analysis based on SonarQube rules and the
analysis of self-admitted technical debt instances extracted from code comments.

Our findings reveal that the presence of class grime, specifically alien attributes, is associated with a decrease in
the accumulation of technical debt. In contrast, the presence of technical debt leads to an increase in the num-
ber of alien attributes, while the number of alien public methods remains unaffected. We have also observed a
decrease in afferent coupling and an increase in efferent coupling in the presence of technical debt which sug-
gests that technical debt is linked to increased dependencies on external classes, while the dependencies on the
affected class may decrease. Further investigation and analysis are required to fully understand the implications
of coupling and its potential effects on software quality. Additionally, the analysis at the pattern level highlights
that frequent design patterns, such as State, (Object) Adapter, and Decorator, significantly influence the overall
outcome based on the aforementioned observations.

When it comes to self-admitted technical debt our analysis revealed that pattern grime appears to have the
largest influence on SATD at instance level, specifically reporting a higher association with modular grime.
This can be attributed to the growth in complexity as more dependencies are introduced into the pattern in-
stance. The Chi-Squared results tell us that there is also an association between pattern grime and SATD at
class level. However, this also varied between the projects so it would be interesting to see more research con-
ducted on a diverse group of projects to see how that affects the analysis. Seven out of the eight patterns that
were looked at displayed a relationship between pattern grime and SATD, the Singleton pattern being the only
one that did not seem to have this association.

To ensure the validity of our study, we have validated the output of the pattern grime and self-admitted technical
debt instances, yielding results indicating a satisfactory accuracy rate of over 90% for the utilized tools.
Building upon our findings, we propose several areas for future research. Firstly, expanding the scope of anal-
ysis to include a large number of projects also written in different programming languages would allow for
a more comprehensive understanding of the relationship between grime and technical debt. Additionally, ex-
ploring a more balanced dataset of design patterns and investigating different subtypes of grime would provide
accurate insights into how each design pattern contributes to the relationship between these two phenomena.
Furthermore, incorporating alternative methods of detecting self-admitted technical debt, such as leveraging
issue trackers, commit analysis, or pull requests, could enrich our understanding of the phenomenon. Lastly,
conducting longitudinal studies, industrial case studies, and empirical studies would contribute to a more com-
prehensive exploration of the topic.
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Appendix - Supplementary Material

A Additional visualizations

(a) cg-na in QuestDB (b) cg-na in JHotDraw

(c) cg-npm in QuestDB (d) cg-npm in JHotDraw

Figure 11: Distribution of class grime in grime-only vs TD-grime dataset
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