

faculty of science
and engineering

 mathematics and applied
mathematics

A Fourier-Series
representation of periodic
solutions in the Lid-
Driven Cavity

Bachelor’s Project Applied Mathematics

July 2023

Student: M.K. De Boni Yamashiro

First supervisor: Dr. ir. Fred Wubs

Second assessor: Dr. Nikolay Martynchuk

Contents

1 Introduction 4

2 Discretization 7
2.1 Space Discretization . 7

3 Time Discretization 10

4 Solution Algorithms 15
4.1 Computing the initial guess 15

5 Conclusions 16

A Simplifying main equation 18

B Computation of coefficients 18

C Initial guess 26

2

Abstract

The Lid-Driven Cavity is a popular benchmark for fluid simula-
tion programs and computers. It has been observed that, after a
critical Reynolds Number, the solutions showcase periodic behavior.
In this paper we attempt to take advantage of this periodicity to find
a Fourier-Series representation of the solutions, which could lead to
better computational efficiency. We take a Galerkin approach to the
time discretization and propose some solution algorithms.

3

1 Introduction

The Lid-Driven Cavity (LDC) is a problem in incompressible viscous fluid
dynamics ([1]). It consists of a fluid within a rectangular container (the
cavity), of which one of the walls moves at a constant velocity in one direction
(the lid). This movement causes shear stress, which drives the flow within
the cavity ([1]).

This problem is well known in the field of numerical mathematics and fluid
simulations. It is frequently used as a benchmark to compare the accuracy
and efficiency of different methods and equipment to simulate fluid flow,
as well as providing a simple system to understand viscous flows driven by
shear stress in small containers ([3]). Examples of such methods include an
extended system method and standard time integration ([5]).

Figure 1: Example of a simulated LDC. The lid is the wall on top. moving
towards the right.

There are multiple variations of this problem. For example, the number of
dimensions that are accounted for: In a 2-dimensional case, the cavity is a
rectangular plane section and the walls are lines, while in a 3-dimensional
case, the cavity is a rectangular prism and the walls are rectangular planes.
This thesis focuses on a 2-dimensional cavity.

4

Motivation

The Reynolds Number is an important dimensionless constant that helps
identify certain characteristics of a fluid flow ([2]). In the LDC, it is deter-
mined by the aspect ratio of the container, the velocity of the lid and the vis-
cosity of the fluid. Performing a bifurcation analysis on the Reynolds Number
reveals a Hopf bifurcation at around a critical Recrit ≈ 8200 ([5]). Before
this Reynolds Number there is only a steady, stable state. For Reynolds
Numbers greater than the critical value, however, periodic solutions appear;
plus another steady, though unstable, solution ([5]).

Past this critical Reynolds Number, the total kinetic energy of the LDC over
time can be computed ([5]), leading to a 1-dimensional quantity that makes
periodicity simple to verify, as in Figure (2). Note the periodic behavior in
one of the solutions, and the steady behavior of the other one.

Figure 2: Total kinetic energy over time.

This periodic behavior raises the question of whether it is possible to repre-
sent these solutions with a Fourier Series and how this representation would
look like. Particularly, we’re interested in the possibility of using the periodic
nature of the Fourier Series to represent the solutions with only a few terms
of the Series; which could reduce the time, processing power and storage
required to simulate the solutions.

Given this, we propose some tentative goals for research on Fourier-Series
representations of periodic solutions in the Lid-Driven Cavity :

1. Derive a time-discretization using a Fourier Series.

5

2. Implement this discretization.

3. Compute Fourier coefficients and compare it to other methods.

Due to time constraints, this thesis will only focus on goal 1.

6

2 Discretization

We recall that we are working with viscous flow. Therefore, the flow must
satisfy the (2-dimensional, incompressible) Navier-Stokes equations ([5]):

dv
dt

= −∂vv
∂x

+ ∂wv
∂y

− ∂p
∂x

+ ∆v
Re

dw
dt

= −∂vw
∂x

+ ∂ww
∂y

− ∂p
∂y

+ ∆w
Re

0 = ∂v
∂x

+ ∂w
∂y

. (1)

Here, v, w represent the velocity of flow with respect to the x, y coordinates,
respectively; ∆ is the Laplace operator and Re is the Reynolds Number.

The Navier-Stokes equations are a well known set of Partial Differential Equa-
tions (PDEs) that give complications when attempting to find analytic so-
lutions outside of very specific cases, which further motivates us to employ
numerical methods for their resolution. The equations will be discretized in
multiple steps; first a simple discretization in the space coordinates, and later
the discretization in time using a Fourier Series.

2.1 Space Discretization

As the main focus of this article is the discretization of the time variable, the
choice for a space discretization is not very relevant. In preliminary imple-
mentations of the methods presented in this paper, a Finite Volume Method
was employed, through the program TransiFlow–BIMAU ([4]), though other
discretization methods are not expected to have a significant impact on the
output.

The discretization in time will assume that we have a space discretization
with nx and ny steps in the x- and y-axes respectively. Thus, the total size
of the discretization will be n = nxny.

It is expected that the space discretization yields a state vector of the fol-
lowing form:

u = (v1, w1, p1, v2, w2, p2, · · · , vn, wn, pn)
T,

where vi, wi, pi are the velocity of flow in the x, y axes and pressure respec-
tively, computed at the ith point of the discretization. Since we work with 3
variables, we have u ∈ R3n. The points of the discretization are assumed to
be ordered left to right, then top to bottom. For example, for nx = ny = 3,
the top-middle point is i = 2 and the left-middle point is i = 4.

7

After this discretization, equation (1) now looks as follows, for 1 ≤ i ≤ n:
dvi
dt

= −∂vivi
∂xi

+ ∂wivi
∂yi

− ∂pi
∂xi

+ ∆vi
Re

dwi

dt
= −∂viwi

∂xi
+ ∂wiwi

∂yi
− ∂pi

∂yi
+ ∆wi

Re

0 = ∂vi
∂xi

+ ∂wi

∂yi

.

Note that the vi, wi, pi are defined as above, xi, yi are the points of the dis-
cretization grid and, most remarkably, ∂

∂xi
, ∂
∂yi

are discrete derivatives, ac-
cording to the chosen discretization method.

Now, in order to simplify the look of the equations we shall define the fol-
lowing operators:

• M – Acting as a mass matrix, it is defined in a way that creates an
appropriate left hand side, as it is multiplied by the state vector u:

Mi =

1 0 0
0 1 0
0 0 0

M =

M1 0 · · ·
0 M2
...

. . .

 for 1 ≤ i ≤ n.

• a(·, ·) – A bilinear function that accounts for the bilinear derivatives
when computed with the state vector as both arguments (u, u):

(a(u, v))i:i+2 =

 −∂uivi
∂xi

+ ∂ui+1vi
∂yi

−∂uivi+1

∂xi
+ ∂ui+1vi+1

∂yi

0

 for i%3 = 1.

Regarding the notation on the left hand side, vi:i+j refers to all entries
of the vector v between, and including, entries number i and i+ j. We
use % as the modulo operator.

• L – A linear map that takes care of the remaining terms of the right

8

hand side, when computed at the state vector u:

Li =

 ∆
Re

0 − ∂
∂xi

0 ∆
Re

− ∂
∂yi

∂
∂xi

∂
∂yi

0

L =

L1 0 · · ·
0 L2
...

. . .

 for 1 ≤ i ≤ n.

After this, the equations can be written in the following, simpler form:

M
du

dt
= a(u, u) + Lu =: F (u).

Then, we can introduce an existing CCC, unstable steady state ū, so one
that satisfies F (ū) = 0 in order to further simplify the equations:

M
du

dt
= T (Ju+ a(u, u)), (2)

where, as we recall, T is the period of the solutions, u ∈ Rn, F : Rn → Rn,
J = J (ū ∈ Rn×n is the Jacobian of F with respect to space, computed at
the steady state, and a(·, ·) is a bilinear map (Rn)2 → Rn. The calculations
performed to reach this result can be found in the Appendix.

9

3 Time Discretization

After a space discretization is given, we may proceed to the Fourier Series
discretization of the equations. To begin, we define the sine-cosine space:

Definition 1 (Discretized, m-dimensional sine-cosine space) Let φi(t)
be basis functions defined as follows:

φi(t) =

{
sin(2π

(
i
2

)
t) i even

cos(2π
(
i−1
2

)
t) i odd

.

Then, the m-dimensional sine-cosine space is defined as the function space
“spanned1” by the first m of such functions:

V =

{
v | v(t) =

m∑
i=1

qiφi(t), q1, · · · , qm ∈ R3n

}
.

For most intents and purposes, m should be only an odd number, to have
exactly a sine and a cosine for each used frequency, plus the initial constant
function.

We want to solve equation (2). Thus, we take the residual:

r(u) :=M
du

dt
− T (J (ū)u+ a(u, u)) ,

and then perform a Galerkin projection on V . For this, we will need another
definition:

Definition 2 (Discretized inner product) Let f, g ∈ V. Then, the dis-
cretized inner product is defined as follows:

⟨f(t), g(t)⟩t =
∫ 1

0

f(t)g(t)dt

Note that we integrate over the period, rather than the whole domain. Fur-
thermore, similar as in the “span” used above, this is not a proper inner
product, as it yields a vector in R3n, rather than a scalar.

The product between the (vector valued) functions is element-wise, resulting
in an identically shaped vector, which allows for abuses of notation. Oc-
casionally, we use scalar valued functions instead, and the inner product is
computed in a similar way, but with scalar multiplication in place of the
mentioned element-wise multiplication.

1Here, we use “span” as an abuse of terminology, as the “coefficients” in the sum are
vectors, rather than scalars.

10

Taking a quick glance at this definition, makes it clear that it is no more
than the standard function inner product, but in multiple dimensions. This
results in the following lemma:

Lemma 1 The discretized inner product ⟨·, ·⟩t is bilinear.

Thus, we try to find a v ∈ V such that ⟨v̂, r(v)⟩t = 0 for all v̂ ∈ V CCC. We
rewrite the vectors as an expansion of the basis functions:

v =
m∑
i=1

qiφi := QΦ, v̂ =
m∑
i=1

q̂iφi := Q̂Φ,

where Q = (q1, q1, · · · , qm)T is a 2-dimensional vector, similarly for Q̂, and
Φ = (φ1, φ2, · · · , φm)

T. As they must be in the same dimension as v, v̂,
we must have q, q̂ ∈ R3n. Working the equation out, taking advantage of
bilinearity, yields:

0 =
〈
Q̂Φ, r(QΦ)

〉
t
=

〈
m∑
i=1

q̂iφi, r(QΦ)

〉
t

=
m∑
i=1

q̂i ⟨φi, r(QΦ)⟩t

⇒ ⟨φi, r(QΦ)⟩t = 0 for all 1 ≤ i ≤ m.

Moving from the second line to the third, we use the fact that the equation
must be satisfied for arbitrary q̂ ∈ R3n. We continue, solving for 1 ≤ i ≤ m:

0 = ⟨φi, r(QΦ)⟩f =

〈
φi,M

d(QΦ)

dt
− T (J (ū)(QΦ)− a((QΦ), (QΦ)))

〉
t

=

〈
φi,M

d(ΦQ)

dt

〉
f

tT ⟨φi,J (ū)(ΦQ)⟩t − T ⟨φi, a((ΦQ), (ΦQ))⟩t

=

〈
φi,M

d(
∑m

j=1 φjqj)

dt

〉
t

− T

〈
φi,J (ū)

m∑
j=1

φjqj

〉
t

−

− T

〈
φi, a

(
m∑
j=1

φjqj,
m∑
k=1

φkqk

)〉
t

=M

m∑
j=1

qj ⟨φi, ∂tφj⟩t − TJ (ū)
m∑
j=1

qj ⟨φi, φj⟩t−

− T

m∑
j=1

m∑
k=1

a (qj, qk) ⟨φi, φjφk⟩t

11

=:M
m∑
j=1

qjαi,j − TJ (ū)
m∑
j=1

qjβi,j − T

m∑
j=1

m∑
k=1

a(qj, qk)γi,j,k (3)

In equation (3), all inner products are constant in time and space, and re-
named as α, β, γ.

Inner products with basis functions

Now we work out the inner products α, β, γ defined above. Here, only the
final results are displayed. Calculations can be found in the Appendix.

• αi,j: The value of αi,j is zero for most values of i, j. They are only
nonzero whenever |i − j| = 1. The table below shows the results for
|i− j| ≤ 1:

i\j even odd
even 0 -1
odd 1 0

Thus, αi,j can be expressed as a sort of “shifted Kronecker delta”, with
different signs for odd and even i, j:

αi,j = (i%2)δi,i−1
i− 1

2
− ((i+ 1)%2)δi,i+1

i

2

• βi,j: These values are mostly zero as well, except when i = j precisely.
The computed results are, for |i− j| ≤ 1:

i\j even odd
even 1

2
0

odd 0 1
2

This can also be expressed as:

βi,j =
δi,j
2

with the Kronecker delta.

• γi,j,k: Similarly, most of these are zero as well. The exceptions are:

γ1,1,1 = 1.

Otherwise:

12

– k = 1 + i− j, k = 1− i+ j:{
1
2

if i = j or i = 1 or j = 1
1
4

otherwise
.

– k = 1 + i+ j: {
−1

4
if i, j even

0 otherwise
.

– k = −1 + i+ j: {
1
2

if i = 1 or j = 1
1
4

otherwise
.

Given the large amount of Kronecker deltas, we can infer that most of these
constants are actually zero. As such, it may be useful to rewrite equation (3)
using a Kronecker matrix product ⊗.

Definition 3 (Kronecker Product) The Kronecker product is a matrix
operation that consists of multiplying every entry of the left side operand by
the entire right side operand:

a11 a12 · · · a1n

a21
...

...
an1 · · · ann

⊗B =

a11B a12B · · · a1nB

a21B
...

...
an1B · · · annB

 .

We will use the vectorization of the 2-diensional state vector Q. This simply
means “piling up” all vectors on top of each other, as a tall vector, rather than
having them sorted column wise. A,B, J are defined as (A)ij = αi,j, (B)ij =
βi,j, J = J (ū) respectively.

M
m∑
j=1

qjαi,j − TJ
m∑
j=1

qjβi,j − T
m∑
j=1

m∑
k=1

a(qj, qk)γi,j,k = 0

⇒
(
(A⊗M)Q− T (B ⊗ J)Q

)
i
− T

m∑
j=1

m∑
k=1

a(qj, qk)γi,j,k = 0

⇒

((
1

T
(A⊗M)− (B ⊗ J)

)
Q

)
i

=
m∑
j=1

m∑
k=1

a(qj, qk)γi,j,k.

13

To get something nicer looking, we assemble another big vector from the
right hand side, defined as:

Di(Q) =
m∑
j=1

m∑
k=1

a(qj, qk)γi,j,k.

Note that each Di is not 1-dimensional, but rather 3n-dimensional, the same
as the qis. The equations now become:(

1

T
(A⊗M)− (B ⊗ J)

)
Q = D(Q) (4)

14

4 Solution Algorithms

Since our discretization stems from a system of nonlinear PDEs, equation
(1), it should be no suprise that the final equation is nonlinear as well. As
such, a very convenient method to solve the equation is one of the many
variants of Newton’s method.

From ([5]), we take the suggestion to employ a Newton-Picard iteration;
using the fact that, in equation (4), the left hand side depends linearly on Q
while the right hand side is bilinear in that aspect. We will provide an initial
guess Q(0) which then will be iterated as follows:(

1

T
(A⊗M)− (B ⊗ J)

)
Q(l+1) = D(Q(l)). (5)

As a final note, it is remarkable that the left hand side matrix,
(
1
T
(A⊗M)− (B ⊗ J)

)
,

is very sparse, due to the vast amount of zero cases of αi,j, βi,j. In fact, looking
at their definitions, it turns out that it is a block-diagonal matrix composed
of blocks of size 2n× 2n:

(
1

T
(A⊗M)− (B ⊗ J)

)
2i:2(i+1)−1

= −1

2

(
J −iM
iM J

)
.

Thus, it would suffice to solve the 2n× 2n linear system m/2 times, instead
of a mn ×mn system once. The resulting complexity is thus 2mn2, rather
than the usual m2n2.

4.1 Computing the initial guess

Approximate solutions near the critical Reynolds Number can be computed
with the aid of the known steady state and the eigenvectors associated with
it ([5]). Thus, we can try to use such vectors as an starting basis for the
Newton Iterations. Computation of the initial guess can be found in the
Appendix.

15

5 Conclusions

Bringing together the results from all sections, we can say the following:

• Solution algorithms for periodic solutions near Recrit in Fourier Series
form can be derived.

• Approximate guesses can be based on eigenvectors near Recrit.

However, there are multiple loose ends that can be tied up through future
work. We suggest some of the following:

• Implement the method in a computer program and run the algorithm.

• Observe the outcome and compare with existing methods. How many
nonzero terms does the Series have?

• Perform a convergence analysis on possible solution algorithms for the
proposed method.

• Extend the equations with a phase condition and the period.

• Derive the relation between the magnitude of the eigenvectors for the
initial guess and the distance Re−Recrit.

• Research the stability of the periodic solutions.

16

References

References

[1] Guido Dhondt. 2014. url: https://web.mit.edu/calculix_v2.7/
CalculiX/ccx_2.7/doc/ccx/node14.html.

[2] Gregory Falkovich. Fluid Mechanics. Cambridge University Press, 2018.
isbn: 978-1-107-12956-6.

[3] Hendrik C. Kuhlmann and Francesco Romanò. “The Lid-Driven Cav-
ity”. In: Computational Modelling of Bifurcations and Instabilities in
Fluid Dynamics. Ed. by Alexander Gelfgat. Cham: Springer Interna-
tional Publishing, 2019, pp. 233–309. isbn: 978-3-319-91494-7. doi: 10.
1007/978-3-319-91494-7_8. url: https://doi.org/10.1007/978-
3-319-91494-7_8.

[4] FredWubs. TransiFlow. url: https://github.com/BIMAU/transiflow.
[5] Fred Wubs and Henk Dijkstra. Bifurcation Analysis for Fluid Flows.

2023.

17

https://web.mit.edu/calculix_v2.7/CalculiX/ccx_2.7/doc/ccx/node14.html
https://web.mit.edu/calculix_v2.7/CalculiX/ccx_2.7/doc/ccx/node14.html
https://doi.org/10.1007/978-3-319-91494-7_8
https://doi.org/10.1007/978-3-319-91494-7_8
https://doi.org/10.1007/978-3-319-91494-7_8
https://doi.org/10.1007/978-3-319-91494-7_8
https://github.com/BIMAU/transiflow

A Simplifying main equation

We want to simplify the equation:

M
dv

dt
= a(v, v) + Lv,

so we begin by rewriting v(t) = ū+ u(t) and substitute into the equation:

M
d(ū+ u)

dt
= a(ū+ u(t), ū+ u(t)) + L(ū+ u(t))

⇒ M
dū

dt
+M

du

dt
= a(ū, ū) + a(ū, u) + a(u, ū) + a(u, u) + Lū+ Lu

⇒ 0 +M
du

dt
= 0 + a(ū, u) + a(u, ū) + a(u, u) + Lu

Now we use J (ū)u = a(ū, u) + a(u, ū) + Lu to get:

M
du

dt
= J (ū)u+ a(u, u).

Finally, we rescale time with tnew = t
T
, where T = 2π

λ
is the period of the

orbit, computed with λ, the eigenvalue of the steady state problem given a
Reynolds Number ([5]). Thus, we end up with:

M
du

dt
= p (J (ū)u+ a(u, u)) .

B Computation of coefficients

This will require computing multiple cases for even or odd i, j, k, as well as
handling the divisions by 0 that may arise. Henceforth, we will use % as the
modulo operator, and δi,j as the Kronecker delta. Most calculations were
performed with the aid of Wolfram Mathematica CCC.

• αi,j:

– i even:

18

∗ j even:

αi,j = ⟨sin(πit)∂t sin(πjt)⟩f

= j

∫ 1

0

sin(πit) cos(πjt)dt

= 0

∗ j odd:

αi,j = ⟨sin(πit)∂t cos(π(j − 1)t)⟩f

= −(j − 1)

∫ 1

0

sin(πit) sin(π(j − 1)t)dt

=

[
sin(π(i− j + 1)t)

2π(i− j + 1)
− sin(π(i+ j − 1)t)

2π(i+ j − 1)

]t=1

t=0

= 0

Note that i + j − 1 = 0 is not possible as i, j ≥ 1. Thus, we
only need to consider the exception j = i+ 1:

αi,i+1 = −i
∫ 1

0

sin(πit) sin(πit)dt

= −i
[
t

2
− sin(2πit)

4πi

]t=1

t=0

= − i

2

– i odd:

∗ j even:

αi,j = ⟨cos(π(i− 1)t)∂t sin(πjt)⟩f

= j

∫ 1

0

cos(π(i− 1)t) cos(πjt)dt

=

[
sin(π(j − i+ 1)t)

2π(j − i+ 1)
− sin(π(j + i− 1)t)

2π(j + i− 1)

]t=1

t=0

= 0

Note that j + i − 1 = 0 is not possible as i, j ≥ 1. Thus, we

19

only need to consider the exception j = i− 1:

αi,i−1 = (i− 1)

∫ 1

0

cos(π(i− 1)t) cos(π(i− 1)t)dt

= (i− 1)

[
t

2
− sin(2π(i− 1)t)

4π(i− 1)

]t=1

t=0

=
i− 1

2

Note again that j = i− 1 = 0 is not possible since j ≥ 1.

∗ j odd:

αi,j = ⟨cos(π(i− 1)t)∂t sin(π(j − 1)t)⟩f

= −(j − 1)

∫ 1

0

cos(π(i− 1)t) sin(π(j − 1)t)dt

= 0

• βi,j:

– i even:

∗ j even:

βi,j =

∫ 1

0

sin(πit) sin(πjt)dt

=
j cos(jπ) sin(iπ)− i cos(iπ) sin(jπ)

i2π − j2π

= 0

Except when dividing by zero, whenever i = j:

βi,i =

∫ 1

0

sin2(πit)dt

=
1

2

∗ j odd:

βi,j =

∫ 1

0

sin(πit) cos(π(j − 1)t)dt

=
i+ i cos(iπ) cos(jπ) + (j − 1) sin(iπ) sin(jπ)

(1 + i− j)(−1 + i+ j)π

= 0

Unless we divide by zero:

20

· j = i+ 1:

βi,i+1 =
sin2(iπ)

2iπ
= 0

· j = 1− i: Impossible, i, j ≥ 1.

– i odd:

∗ j even: By commutativity of multiplication, the same as the
one above.

∗ j odd:

βi,j =

∫ 1

0

cos(π(i− 1)t) cos(π(j − 1)t)dt

=
1

2π

(
sin((i− j)π)

i− j
+

sin((−2 + i+ j)π)

−2 + i+ j

)
= 0

Unless division by zero:

· i = j:

βi,i =

∫ 1

0

cos2(π(i− 1)t)dt

=
1

4

(
2 +

sin(2iπ)

(i− 1)π

)
=

1

2

Unless i = 1, then:

βi,i =

∫ 1

0

dt = 1.

· j = i− 2: Impossible, i, j ≥ 1.

• γi,j,k: Since following the previous pattern would result in 23 = 8 dis-
tinct cases, not accounting for handling divisions by zero, we will use
commutativity of multiplication to simplify the calculations:

γi,j,k =

∫ 1

0

φiφjφkdt =

∫ 1

0

φjφiφkdt = · · ·

21

...and so on for all permutations. Thus, all that matters is the number
of even/odd indices:

– 3 even, 0 odd:∫ 1

0

sin(πit) sin(πjt) sin(πkt)dt =

=
1

4π

(
1

i+ j − k
+

1

i− j + k
− 1

i− j − k
− 1

i+ j + k
+

cos((i− j − k)π)

i− j − k

− cos((i+ j − k)π)

i+ j − k
− cos((i− j + k)π)

i− j + k
+

cos((i+ j + k)π)

i+ j + k

)
= 0,

since all arguments of the cosines are even multiples of π, thus the
cosines all evaluate to 1. Division by 0 exceptions:

∗ k = i+ j:

γi,j,i+j =
i2 + ij + j2 − j(i+ j)− i(i+ j) + ij

8ij(i+ j)π

=
(i+ j)2 − j(i+ j)− i(i+ j)

8ij(i+ j)π

=
i+ j − j − i

8ij

= 0

In this case, another division by 0 is impossible as i, j ≥ 1.

∗ k = j − i:

γi,j,j−i =
1

8π

(
1

i
− 1

j
− 1

i− j
− cos(2iπ)

i
+

cos(2(i− j)π)

i− j
+

cos(2jπ)

j

)
=

1

8π
(0) = 0

Further exceptions impossible since i, j, k ≥ 0.

∗ k = i− j: Applying commutativity to above case:

γi,j,i−j = γj,i,i−j = 0.

∗ k = −i− j: Impossible since i, j, k ≥ 1.

22

– 2 even, 1 odd:∫ 1

0

sin(πit) sin(πjt) cos(π(k − 1)t)dt =

=
1

4π

(
sin((1 + i− j − k)π)

1 + i− j − k
+

sin((i+ j − k)π)

1 + i+ j − k

+
sin((−1 + i− j + k)π)

−1 + i− j + k
+

sin((i+ j + k)π)

1 + i+ j + k

)
= 0,

since they are all sines evaluated at integers. Exceptions:

∗ k = 1 + i− j:

γi,j,1+i−j =
1

8

(
2 +

− sin(2iπ)
i

+ sin(2(i−j)π
i−j

− sin(2jπ)
j

π

)
=

1

4

Exception: i = j:

γi,i,1 =

∫ 1

0

sin(πit) sin(πit)dt

=
1

2

∗ k = 1 + i+ j:

γi,j,1+i+j =
1

8

(
−2 +

sin(2iπ)
i

− sin(2(i+j)π
i+j

+ sin(2jπ)
j

π

)
= −1

4

No exceptions.

∗ k = 1− i+ j: By commutativity, same as k = 1 + i− j.

∗ k = −1− i− j: Impossible since k ≥ 1.

23

– 1 even, 2 odd:∫ 1

0

sin(πit) cos(π(j − 1)t) cos(π(k − 1)t)dt =

=
1

4π

(
1

2 + i− j − k
+

1

i+ j − k
+

1

i− j + k
+

1

−2 + i+ j + k
− cos((i+ j − k)π)

i+ j − k

− cos((2 + i− j − k)π)

2 + i− j − k
− cos((i− j + k)π)

i− j + k
− cos((−2 + i+ j + k)π)

−2 + i+ j + k

)
= 0

Except:

∗ k = 2 + i− j:

γi,j,2+i−j =
1

8π

(
1

i
+

1

1 + i− j
+

1

j − 1
− cos(2iπ)

i

− cos(2(1 + i− j)π)

1 + i− j
− cos(2jπ)

j − 1

)
= 0

Exception: j = 1 + i

γi,1+i,1 =

∫ 1

0

sin(πit) cos(πit)dt

= 0

∗ k = i+ j:

γi,j,i+j =
1

8π

(
1

i
+

1

1− j
+

1

−1 + i+ j
− cos(2iπ)

i

+
cos(2jπ)

j
+

cos(2(−1 + i+ j)π)

−1 + i+ j

)
= 0

Exception:j = 1

γi,1,i+1 =

∫ 1

0

sin(πit) cos(πit)dt

= 0.

24

∗ k = j − i:

γi,j,j−i =
1

8π

(
1

i
+

1

1 + i− j
+

1

j − 1
− cos(2iπ)

i

− cos(2(1 + i− j)π)

1 + i− j
− cos(2jπ)

j − 1

)
= 0

Exception: j = 1 + i

γi,1+i,1 =

∫ 1

0

sin(πit) cos(πit)dt

= 0

∗ k = 2− i− j: Impossible since i, j, k ≥ 0

– 0 even, 3 odd:∫ 1

0

cos(π(i− 1)t) cos(π(j − 1)t) cos(π(k − 1)t)dt =

=
1

4π

(
sin((1 + i− j − k)π)

1 + i− j − k
+

sin((−1 + i+ j − k)π)

−1 + i+ j − k

+
sin((−1 + i− j + k)π)

−1 + i− j + k
+

sin((−3 + i+ j + k)π)

−3 + i+ j + k

)
= 0

Exceptions:

∗ k = 1 + i− j:

γi,j,1+i−j =
1

8

(
sin(2iπ)

(i− 1)π
+

2 + sin(2(i− j)π)

(i− j)π
+

sin(2jπ))

(j − 1)π

)
=

1

4

Exceptions:

25

· j = 1:

γi,1,i =

∫ 1

0

cos(πit) cos(πit)dt

=
1

4

(
2 +

sin(2iπ)

(i− 1)π

)
=

1

2

Unless i = 1, then i = j = k = 1 which is shown later.

· i = 1:

γ1,j,2−j =

∫ 1

0

cos(πjt) cos(πjt+ 2πt)dt

Since the shift is a whole period, it’s the same as above.

∗ k = −1 + i+ j:

γi,j,−1+i+j =
1

8

(
2 +

sin(2iπ)
i−1

+ sin(2jπ)
j−1

+ sin(2(i+j)π)
i+j−2

π

)
=

1

4

Unless:j = 1:

γi,1,i =
1

2

unless i = 1, then see last case.

∗ k = 1− i+ j: By commutativity, the same as two above.

∗ k = 3− i− j: Only valid when i = j = k = 1:

γ1,1,1 =

∫ 1

0

1× 1× 1dt = 1

C Initial guess

Given V cos(2πt) +W sin(2πt) from the eigenvalue problem, we perform a
Galerkin projection to the space {ū, V cos(2πt)−W sin(2πt)}:{∫ 1

0
⟨ū, r(ψū+ ω(V cos(2πt)−W sin(2πt)))⟩ dt = 0∫ 1

0
⟨V cos(2πt)−W sin(2πt)), r(ψū+ ω(V cos(2πt)−W sin(2πt)))⟩ dt = 0

26

Here, ⟨·, ·⟩ is the standard Euclidean inner product and ψ, ω are unknown
real scalars; the target of these equations. V,W are given, more precisely, by
2∗R, 2∗I respectively, twice the real and imaginary parts of the eigenvector.
For the first equation:

0 =

∫ 1

0

⟨ū, r(ψū+ ω(V cos(2πt) +W sin(2πt)))⟩ dt

=

∫ 1

0

⟨ū,M∂t(ψū+ ω(V cos(2πt) +W sin(2πt)))⟩ dt

− T

∫ 1

0

⟨ū, J(ψū+ ω(V cos(2πt)−W sin(2πt)))⟩ dt

− T

∫ 1

0

⟨ū, a((ψū+ ω(V cos(2πt) +W sin(2πt))), (ψū+ ω(V cos(2πt) +W sin(2πt))))⟩ dt

=: A− TB − TC

• A: ∫ 1

0

⟨ū,M∂t(ψū+ ω(V cos(2πt) +W sin(2πt)))⟩ dt

=

∫ 1

0

⟨ū,M(0 + 2πω(−V sin(2πt) +W cos(2πt)))⟩ dt

= ⟨ū,M2πω(−V)⟩
∫ 1

0

sin(2πt)dt− ⟨ū,M2πωW ⟩
∫ 1

0

cos(2πt)dt

= ⟨ū,M2πω(−V)⟩ 0− ⟨ū,M2πωW ⟩ 0
= 0

• B:∫ 1

0

⟨ū, J(ψū+ ω(V cos(2πt) +W sin(2πt)))⟩ dt

= ψ ⟨ū, Jū⟩
∫ 1

0

dt+ ω ⟨ū, V ⟩
∫ 1

0

cos(2πt)dt+ ω ⟨ū,W ⟩
∫ 1

0

sin(2πt)dt

= ψ ⟨ū, Jū⟩ 1 + ω ⟨ū, V ⟩ 0 + ω ⟨ū,W ⟩ 0
= ψ ⟨ū, Jū⟩

• C:

27

∫ 1

0

⟨ū, a(ψū+ ω(V cos(2πt) +W sin(2πt)), ψū+ ω(V cos(2πt) +W sin(2πt)))⟩ dt

= ψ2 ⟨ū, a(ū, ū)⟩
∫ 1

0

dt+ ψω ⟨ū, V ⟩
∫ 1

0

cos(2πt)dt+ ψω ⟨ū, a(ū,W)⟩
∫ 1

0

sin(2πt)dt

+ ωψ ⟨ū, a(V, ū)⟩
∫ 1

0

cos(2πt)dt+ ω2 ⟨ū, a(V, V)⟩
∫ 1

0

cos2(2πt)dt

+ ω2 ⟨ū, a(V,W)⟩
∫ 1

0

cos(2πt) sin(2πt)dt

+ ωψ ⟨ū, a(W, ū)⟩
∫ 1

0

sin(2πt)dt+ ω2 ⟨ū, a(W,V)⟩
∫ 1

0

sin(2πt) cos(2πt)dt

+ ω2 ⟨ū, a(W,W)⟩
∫ 1

0

sin2(2πt)dt

= ψ2 ⟨ū, a(ū, ū)⟩+ ω2

2
⟨ū, a(V, V) + a(W,W)⟩

Thus, the first equation is:

A−TB−TC = −Tψ ⟨ū, Jū⟩−Tψ2 ⟨ū, a(ū, ū)⟩−T ω
2

2
⟨ū, a(V, V) + a(W,W)⟩

Since this is set equal to 0 and so is A, the minus sings and the T s may
be discarded:

ψ ⟨ū, Jū⟩+ ψ2 ⟨ū, a(ū, ū)⟩+ ω2

2
⟨ū, a(V, V) + a(W,W)⟩

Finally, we rename the known values for ease of resolution:

ψB′ + ψ2C ′ + ω2C ′′

28

The second equation:

0 =

∫ 1

0

⟨V cos(2πt) +W sin(2πt), r(ψū+ ω(V cos(2πt) +W sin(2πt)))⟩ dt

=

∫ 1

0

⟨V cos(2πt) +W sin(2πt),M∂t(ψū+ ω(V cos(2πt) +W sin(2πt)))⟩ dt

− T

∫ 1

0

⟨V cos(2πt) +W sin(2πt), J(ψū+ ω(V cos(2πt)−W sin(2πt)))⟩ dt

− T

∫ 1

0

⟨V cos(2πt) +W sin(2πt),

, a((ψū+ ω(V cos(2πt) +W sin(2πt))), (ψū+ ω(V cos(2πt) +W sin(2πt))))⟩dt
=: A− TB− TC

• A:∫ 1

0

⟨V cos(2πt) +W sin(2πt),M∂t(ψū+ ω(V cos(2πt) +W sin(2πt)))⟩ dt

=

∫ 1

0

⟨V cos(2πt) +W sin(2πt),Mω(−V sin(2πt) +W cos(2πt)))⟩ dt

= ω

(
−⟨V,MV ⟩ 0 + ⟨V,MW ⟩

∫ 1

0

cos2(2πt)dt+ ⟨W,MV ⟩
∫ 1

0

sin2(2πt)dt+ ⟨W,MW ⟩ 0
)

=
ω

2
(⟨V,MW ⟩ − ⟨W,MV ⟩)

• B:

0 =

∫ 1

0

⟨V cos(2πt) +W sin(2πt), J(ψū+ ω(V cos(2πt)−W sin(2πt)))⟩ dt

= ψ ⟨V, Jū⟩ 0 + ψ ⟨W,Jū⟩ 0

+ ω ⟨V, JV ⟩
∫ 1

0

cos2(2πt)dt+ ω ⟨V, JW ⟩ 0

+ ω ⟨W,JV ⟩ 0 + ω ⟨W,JW ⟩
∫ 1

0

sin2(2πt)dt

=
ω

2
(⟨V, JV ⟩+ ⟨W,JW ⟩)

29

• C:∫ 1

0

⟨V cos(2πt) +W sin(2πt), a

(
(ψū+ ω(V cos(2πt) +W sin(2πt))),

(ψū+ ω(V cos(2πt) +W sin(2πt)))

)
⟩dt

= ψ2 ⟨V, a(ū, ū)⟩ 0 + ψω ⟨V, a(ū, V)⟩
∫ 1

0

cos2(2πt)dt+ ψω ⟨V, a(ū,W)⟩ 0

+ ωψ ⟨V, a(V, ū)⟩
∫ 1

0

cos2(2πt)dt+ ω2 ⟨V, a(V, V)⟩
∫ 1

0

cos3(2πt)dt

+ ω2 ⟨V, a(V,W)⟩
∫ 1

0

cos2(2πt) sin(2πt)dt

+ ωψ ⟨V, a(W, ū)⟩ 0 + ω2 ⟨V, a(W,V)⟩
∫ 1

0

sin(2πt) cos2(2πt)dt

+ ω2 ⟨V, a(W,W)⟩
∫ 1

0

cos(2πt) sin2(2πt)dt

+ ψ2 ⟨W,a(ū, ū)⟩ 0 + ψω ⟨W,a(ū, V)⟩
∫ 1

0

0dt+ ψω ⟨W,a(ū,W)⟩
∫ 1

0

sin2(2πt)dt

+ ωψ ⟨W,a(V, ū)⟩ 0 + ω2 ⟨W,a(V, V)⟩
∫ 1

0

sin(2πt) cos2(2πt)dt

+ ω2 ⟨W,a(V,W)⟩
∫ 1

0

sin2(2πt) cos(2πt)dt

+ ωψ ⟨W,a(W, ū)⟩
∫ 1

0

sin2(2πt)dt+ ω2 ⟨W,a(W,V)⟩
∫ 1

0

sin2(2πt) cos(2πt)dt

+ ω2 ⟨W,a(W,W)⟩
∫ 1

0

sin3(2πt)dt

=
ψω

2
(⟨V, a(ū, V) + a(V, ū)⟩+ ⟨W,a(ū,W) + a(W, ū)⟩)

Adding the parts together, then yields:

ωA′ − ωB′ − ψωC′

30

with

A′ =
1

2
(⟨V,MW ⟩ − ⟨W,MV ⟩)

B′ =
T

2
(⟨V, JV ⟩+ ⟨W,JW ⟩)

C′ =
T

2
(⟨V, a(ū, V) + a(V, ū)⟩+ ⟨W,a(ū,W) + a(W, ū)⟩)

Thus, the equations become:{
ψB′ + ψ2C ′ + ω2C ′′ = 0

ωA′ − ωB′ − ψωC′ = 0

It is worthy of note that there was a possibility to only use V cos(2πt) +
W sin(2πt) as the basis. However, the only possible result was zero, so it was
discarded.

31

	Introduction
	Discretization
	Space Discretization

	Time Discretization
	Solution Algorithms
	Computing the initial guess

	Conclusions
	Simplifying main equation
	Computation of coefficients
	Initial guess

