
Exploring Proximal and Level Bundle Methods

for Regularized Support Vector Machines

Bachelor’s Project General Mathematics, July 2023

Student : Radovan Rusnák, S4508440
First Supervisor : Prof. dr. J.G. Peypouquet
Second Supervisor : dr. ir. H.J. van Waarde

Abstract: In this paper, we study the Proximal and Level Bundle Methods and their effectiveness
in handling the convex non-smooth optimization problem associated with Regularized Support
Vector Machine. Many of the traditional optimization algorithms fail to handle non-smooth
objective functions, resulting in unstable behaviour and slow convergence. Furthermore,
in practical computational problems, dealing with large datasets requires efficient memory
management during computations. Bundle Methods tackle these challenges through a distinctive
compression mechanism that enables working with a bounded amount of information at each
iteration and guaranteed stability. The versatility of Bundle Methods makes them highly
applicable to a wide range of optimization problems, and they are currently one of the most
promising and popular optimization techniques in many practical applications.

Keywords: Non-smooth optimization, Proximal Bundle Method, Level Bundle Method,
Support Vector Machine, proximal operator, projection operator, bundle aggregation, KKT
conditions.

1

Contents

1 Introduction 3

2 Theoretical framework 3
2.1 Optimization theory preliminaries . 3
2.2 Linear and quadratic programming problems . 7

3 Bundle algorithms for Non-Smooth Optimization (NSO) 7
3.1 General Bundle Method (GBM) . 8
3.2 Proximal Bundle Method (PBM) . 9
3.3 Level Bundle Method (LBM) . 11

4 Convergence analysis 13
4.1 PBM . 13
4.2 LBM . 17

5 Numerical experiments: Regularized Support Vector Machine 20

6 Conclusion 22
6.1 Results of the numerical experiments . 23

References 34

2

1 Introduction

In both mathematics and the real world, the pursuit of finding the most optimal solution to a given
problem is a fundamental and recurring objective. In particular, the problem of minimizing or maximizing
a function over some set of constraints has a rich and extensive history in the field of mathematics.

“Nothing takes place in the world whose meaning is not that of some maximum or minimum.”
(Leonhard Euler)

Traditional optimization methods often struggle when faced with non-smooth objective functions that
are prevalent in many real-world applications. This is where Bundle Methods shine, offering a superior
approach to tackling challenging, large-scale optimization problems [19]. This paper aims to offer an
overview of two prominent classes of Bundle Methods: the Proximal Bundle Method and the Level
Bundle Method [21]. We also aim to investigate the application of these methods in solving the problem
of Regularized Support Vector Machine.

In Section 2 we provide an introduction to the mathematical tools used throughout this paper.
We delve into concepts such as convexity, various types of continuity, the generalized notion of gradients
for convex functions, optimality condition for non-smooth optimization problems, and the widely regarded
Lagrange Multiplier Theorem and Karush-Kuhn-Tucker (KKT) conditions. We also provide brief
comments introducing linear and quadratic programming problems.

Section 3 is dedicated to the description of Bundle Methods, starting with the Cutting-Planes
Method and the General Bundle Method. As we progress, we delve into its more specific variants, namely
the Proximal and Level Bundle Methods. Furthermore, we introduce an essential aggregation mechanism
that enables us to control the amount of information required for constructing the polyhedral model of
the objective function in the optimization problem.

In Section 4 we provide an in-depth convergence analysis of the Proximal and Level Bundle
Method. This analysis explores the convergence properties of these methods, examining the conditions
under which they converge to optimal solutions.

Next, in Section 5, we demonstrate the practical application of Bundle Methods in conjunction
with the famous supervised learning model known as the Regularized Support Vector Machine. This
machine learning model finds extensive usage in practical applications for solving classification problems,
including tasks such as image classification and text categorization [5].

This paper concludes by providing a summary of the subjects that have been explored through-
out the entire paper. Additionally, we provide insights into the results obtained from the numerical
experiments conducted in Section 5.

2 Theoretical framework

2.1 Optimization theory preliminaries

In this section, we intend to introduce the main mathematical preliminaries needed to describe bundle
methods rigorously and to perform the convergence analysis in Section 4. The following definitions,
propositions, theorems, and proofs can be found with more detailed explanations in [2], [28] (general
optimization theory), [26], [3], [24] (convex analysis), [22] (proximal algorithms), [19] (overview of the
Bundle Methods).

Consider the following (convex) optimization problem{
min f(x)

subject to x ∈ X,
(2.1)

where f : dom(f) ⊂ Rn → R and a closed set X ⊂ dom(f) ⊂ Rn. The objective function f is assumed to
be convex, i.e.,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (2.2)

3

for every x,y ∈ Rn and for all λ ∈ [0, 1].

Similarly, we say that the set X ⊂ Rn is convex when

λx+ (1− λ)y ∈ X, (2.3)

for all λ ∈ [0, 1] and for all pairs (x,y) ∈ X. In other words, if we pick any two points from the set X, we
can draw a line segment between them, which is fully contained in X. Alternatively, we can view convex
functions as functions bounded from below by a linear function.

Next, we present a very important concept in convex analysis called Lipschitz continuity. Lips-
chitz continuity implies continuity but also puts a bound on the rate of change of the function f .∗ It is,
therefore, a stronger condition than continuity in its classical sense.

Definition 2.1 We say that a function f : dom(f) ⊂ Rn → R is Lipschitz continuous at x ∈ dom(f) if
there exists a constant L such that

|f(x)− f(y)| ≤ L∥x− y∥, (2.4)

for all x,y ∈ dom(f). In particular, f is said to be locally Lipschitz continuous on X if (2.4) holds for all
x,y ∈ X ⊂ dom(f).

Definition 2.2 Assume we have a function f : dom(f) ⊂ Rn → R, we say that

• x∗ ∈ dom(f) is a local minimizer of f if there exists a neighbourhood U of x∗ such that f(x) ≥ f(x∗)
for every x ∈ dom(f) ∩ U ,

• x∗ ∈ dom(f) is a global minimizer of f if f(x) ≥ f(x∗) for all x ∈ dom(f),

• x∗ is the unique minimizer if it is the only global minimizer.

Definition 2.3 Continuously differentiable, convex function f is said to be strongly convex with modulus
of convexity µ > 0 if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− µ

2
λ(1− λ)∥x− y∥2, (2.5)

for all λ ∈ [0, 1].

Using Taylor expansion, we can show that the above definition of a strongly convex function is equivalent
to the following definition [28].

Definition 2.4 Continuously differentiable, convex function f is said to be strongly convex with modulus
of convexity µ > 0 if

f(y) ≥ f(x) +∇f(x)⊺ (y − x) +
µ

2
∥y − x∥2. (2.6)

This means, that a strongly convex function can be bounded from below by a quadratic function. Notice
that if there is x∗ such that ∇f(x∗)⊺ = 0, then x = x∗ is the unique global minimizer of f .

Next, we present a crucial tool in convex optimization - the subgradient. As it is not uncom-
mon in practice to deal with convex non-smooth objective functions, it might be desirable to somehow
extend the notion of differentiability for convex functions.

Definition 2.5 Consider the convex function f : dom(f) ⊂ Rn → R. We say that ξ ∈ Rn is a subgradient
of f at x ∈ dom(f) if

f(z) ≥ f(x) + ⟨ξ, z− x⟩, (2.7)

for all z ∈ dom(f). We denote the set of all subgradients of f at x as ∂f(x). Such a set is said to be the
subdifferential of f at x.

Notice that if f is differentiable at x, we have ∂f(x) = {∇f(x)}. This suggests that subgradients can be
seen as generalized gradients for convex functions.

∗See for example [28].

4

Example 2.1 Consider a nonempty, closed convex set X. Then the indicator function of X is defined as

1X(x) =

{
0 x ∈ X

+∞ x ̸∈ X.
(2.8)

Notice that for all z ∈ Rn, the subdifferential of 1X at x, i.e.,

∂1X(x) = {ξ | 1X(z) ≥ 1X(x) + ⟨ξ, z− x⟩}

is equal to ∅ when x ̸∈ X.

On the other hand, if x ∈ X, then we have

∂1X(x) = {ξ | 1X(z) ≥ ⟨ξ, z− x⟩},

which is again equal to ∅, if z ̸∈ X. Consequently, if z ∈ X, then

∂1X(x) = {ξ | 0 ≥ ⟨ξ, z− x⟩}.

We call the subdifferential of 1X(·) a normal cone to the set X, and we denote it by NX(·). Geometrically,
this is the set of all normal vectors to a closed convex set at a given point [24].

Theorem 2.1 (Optimality condition) The point x∗ is the minimizer of the convex function
f : dom(f) ⊂ Rn → R if and only if 0 ∈ ∂f(x∗).

Proof: By substituting ξ = 0 into (2.7) with x = x∗ we have

f(z) ≥ f(x∗),

for all z ∈ dom(f), which shows that x∗ is the global minimizer of f as it is stated in Definition 2.2.
Similarly, if the inequality above holds, then ξ = 0 satisfies Definition 2.5. Hence, 0 ∈ ∂f(x∗). □

Definition 2.6 A convex function f : dom(f) ⊂ Rn → R is said to be lower semi-continuous at x if for
all sequences {yk} such that yk −→ x we have

lim inf
k→∞

f(yk) ≥ f(x). (2.9)

We are now able to define one of the key tools in optimization theory. Many optimization algorithms rely
on the proximal operator as it allows us to handle the non-smoothness of functions.

Definition 2.7 Let f : Rn → R ∪ {+∞} be a lower semi-continuous function. Moreover, assume it is
closed and proper convex, i.e., its epigraph

epif = {(x, t) ∈ Rn × R | f(x) ≥ t} (2.10)

is a nonempty closed convex set. Then the proximal operator proxf : Rn → R is defined as

proxf (v) = argmin
x

(
f(x) +

1

2
∥x− v∥2

)
. (2.11)

Similarly, the proximal operator of f with parameter λ > 0 is defined as

proxλf (v) = argmin
x

(
f(x) +

1

2
λ∥x− v∥2

)
. (2.12)

Definition 2.8 A function f : Rn → R is said to be polyhedral if its epigraph (2.10) is a polyhedron, that
is, a finite intersection of closed subspaces.

Example 2.2 An important example of polyhedral functions, that we shall encounter later, are functions
that can be expressed as a maximum of a finite number of affine functions. These are also called piecewise
linear functions, written as

f(x) = max
1≤i≤k

(a⊺i x+ bi) , (2.13)

5

where ai ∈ Rn, bi ∈ R, i = 1, . . . , k. The epigraph of such functions can be written as

epif = {(x, t) ∈ Rn × R | f(x) ≥ max
1≤i≤k

(a⊺i x+ bi)},

and consequently,
epif = {(x, t) ∈ Rn × R | f(x) ≥ a⊺i x+ bi, i = 1, . . . , k}

which shows that it is the polyhedron.

Let us now go back to our initial problem (2.1), without the constraint x ∈ X. We have the following,
fundamental result about the proximal operator.

Theorem 2.2 The point x∗ minimizes f if and only if

x∗ = proxf (x
∗), (2.14)

that is, the point x∗ is a fixed point of proxf .

Proof: Assume that f has at least one subgradient at every point of its domain (even though the result
is true in general, see [22]). If x∗ minimizes f , then f(x) ≥ f(x∗) implies that

f(x) +
1

2
∥x− x∗∥2 ≥ f(x∗) +

1

2
∥x∗ − x∗∥2,

for all x. In other words, x∗ minimizes f(x) + 1
2∥x− x∗∥2 which is precisely the definition of the proximal

operator, i.e. x∗ = proxf (x
∗).

Conversely, if proxf (v) has a minimizer y, then according to the optimality condition (2.1)
(see also [24]),

0 ∈ ∂f(y) + (y − v).

By taking y = v = x∗ we have 0 ∈ ∂f(x∗), thus x∗ minimizes f . □

The proofs of the following theorems can be found in [1].

Consider the constrained optimization problem,

min
x∈X

f(x), (2.15)

where f, h1, . . . , hM : RN → R are continuously differentiable functions and the set X is defined as

X = {x ∈ RN | hm(x) = 0, m = 1, . . . ,M}. (2.16)

The constrained minimizer x̂ is called regular if {∇h1(x̂), . . . ,∇hm(x̂)} is a linearly independent set. We
introduce the following important result called Lagrange Multiplier Theorem.

Theorem 2.3 Assume that x̂ is a regular minimizer of (2.15). There exists a unique λ̂ ∈ RM , called
Lagrange multiplier vector, such that

0 ∈ ∂f(x̂) +
∑

1≤m≤M

λ̂m∂hm(x̂). (2.17)

We can generalize Lagrange multipliers if we also allow inequality constraints for the minimization problem
(2.15). Thus, now we define the set X as

X = {x ∈ RN | hm(x) = 0, gl(x) ≤ 0, ∀m, l}, (2.18)

where g1, . . . , gL : RN → R.

Denote
A(x̂) = {l | gl(x̂) = 0}, (2.19)

then we have the following theorem.

6

Theorem 2.4 (KKT conditions) Assume that x̂ is a regular minimizer of (2.15) with the set X defined

as in (2.18). Then there exists a unique Lagrange multiplier λ̂ ∈ RM and a multiplier µ̂ ∈ RL
+, called a

KKT multiplier, such that

0 ∈ ∂f(x̂) +
∑

1≤m≤M

λ̂m∂hm(x̂) +
∑

1≤l≤L

µ̂l∂gl(x̂), (2.20)

and µ̂l = 0 if l ̸∈ A(x̂). In addition, we have for all m ∈ {1, . . . ,M} and l ∈ {1, . . . , L}, the following:

hm(x̂) = 0, gl(x̂) ≤ 0, µ̂l ≥ 0, µ̂lgl(x̂) = 0. (2.21)

That is, primal feasibility, dual feasibility and complementarity.

2.2 Linear and quadratic programming problems

The reader can find more elaborately material on the following concepts in [18].

A LP, or linear program, is an optimization problem such that the objective function and the constraints
are both made up of linear equations and/or inequalities. This means that the objective function is a linear
combination of the variables being optimized, and the constraints are represented by linear equalities and
inequalities involving those variables. Any LP problem can be written in the standard form as{

minimize c⊺x

such that Ax = b and x ≥ 0,
(2.22)

where x ∈ Rn, c ∈ Rn, b ∈ Rm and A is a m× n matrix.

One popular way to solve LP problems is to use the simplex algorithm [6].

Similarly, a QP or quadratic programming problem is an optimization problem where the objec-
tive function is quadratic in the unknowns and the constraints consist of linear equalities and inequalities.
Written in its standard form, {

minimize 1
2x

⊺Px+ q⊺x

such that l ≤ Ax ≤ u,
(2.23)

where x ∈ Rn, q ∈ Rn, P is a symmetric, positive definite n× n matrix, l,u ∈ Rm and the m× n matrix
A holds the coefficients for the inequality constraints.

There are many popular methods for solving QP problems. For instance, the conjugate gradient descent
[12] or operator-splitting [27] can be used.

3 Bundle algorithms for Non-Smooth Optimization (NSO)

Throughout this section, the General Bundle Method (GBM), the Proximal Bundle Method (PBM),
and two variants of the Level Bundle Method (LBM) are described. For a general overview of Bundle
Methods we refer to [19], for an overview of Proximal and Level Bundle Methods we refer to [21] and for
a mathematically rigorous resource on Bundle Methods we refer to [2].

Remark 1 For simplicity, we will write x as x from now on. By ∥ · ∥ we mean the standard Euclidean
2-norm ∥ · ∥2. We will emphasize that if it is not clear from the context.

Let us now formulate our main problem more precisely. We have the following non-smooth optimization
(NSO) problem {

min f(x)

such that x ∈ X.
(3.1)

We call the nonempty closed convex set X ⊂ Rn the feasible set. The objective function f is allowed
to be non-differentiable, however, we require it to be (locally) Lipschitz continuous on the feasible set
X. Suppose that at any x ∈ Rn we can evaluate the functional value f(x) and at least one subgradient
ξ ∈ ∂f(x)†.

†This is in optimization known as the black-box method. See [2].

7

3.1 General Bundle Method (GBM)

One of the main issues is that, in general, we might now know the whole subdifferential ∂f of our objective
function f . We wish to approximate the subdifferential ∂f using a bundle consisting of some information
from previous iterations. The computed subgradients are used to approximate f with piecewise-affine
functions. This approximation is used to determine the descent direction. If the descent is not sufficient,
we add more information to the bundle.

In particular, we want to construct a sequence of stability centres {xk}∞k=1 converging to the
global minimizer of f . In addition to the points xk, we also have the support sequence or the candidate
points yj ∈ Rn and subgradients ξj ∈ ∂f(yj), j ∈ Jk ⊂ {1, . . . , k}. At each iteration k and the iteration
point xk, we define the bundle as the set

Bk = {(yj , f(yj), ξj) | j ∈ Jk}. (3.2)

So Bk carries the information based on the indices from the index set Jk ⊂ {1, . . . , k}. We wish to control
the size of the index set Jk and hence control the storage in the bundle Bk. This is one of the most crucial
properties of Bundle Methods.

Bundle methods are an improved version of the Cutting-Planes Method (see [11]). The main
idea is to build a polyhedral model of f , i.e., approximate f from below with piecewise-affine functions

f̂k(x) = max
j∈Jk

{f(yj) + ⟨ξj , x− yj⟩}, (3.3)

for all x ∈ Rn. As f is assumed to be convex and ξj ∈ ∂f(yj), we indeed have from (2.5) that for every
x ∈ Rn,

f̂k(x) = max
j∈Jk

{f(yj) + ⟨ξj , x− yj⟩} ≤ f(x), (3.4)

which shows that the polyhedral model bounds f from below.

Denote the linearization error by

αk
j := f(xk)− f(yj)− ⟨ξj , xk − yj⟩ ≥ 0, (3.5)

for every j ∈ Jk. Hence, we can also write the polyhedral model as

f̂k(x) = max
j∈Jk

{f(xk) + ⟨ξj , x− xk⟩ − αk
j } ≤ f(x). (3.6)

We define the next iterate as
yk+1 := xk + dk, (3.7)

where the descent direction dk is the solution of

argmin
d∈X

{f̂k(xk + d) +
1

2
d⊺Mkd}, (3.8)

Mk is a symmetric n×n matrix with det(Mk) ̸= 0 for every k. The role of the matrix Mk is to accumulate
the information about the curvature of f around xk. The term 1

2d
⊺Mkd acts as a stabilizer, i.e., it makes

the approximation local enough by preventing big oscillations and it also guarantees the existence of the
solution dk [19].

Remark 2 In order to simplify the notation in the algorithmic schemes, we often try to express the
updating rule for the next iterate with as few letters as possible, often omitting the direction dk as we
shall see in later parts. Likewise, the matrix Mk is often taken to be just the identity matrix I and we
often equip the stabilizing subproblem (3.8) with the Euclidean 2-norm ∥ · ∥.

We define the predicted descent as
vk = f̂k(yk+1)− f(xk) (3.9)

and pick a line search parameter κ ∈ (0, 1
2). We stop the algorithm when

vk ≥ −ϵ, (3.10)

8

for some ϵ > 0 which presents the desired tolerance set at the initialization of the algorithm.

The next iterations are computed as follows: we perform a serious step,

xk+1 := yk+1 (3.11)

if

f(yk+1)− f(xk) ≤ κvk, (3.12)

that means if the found descent is adequate enough. Otherwise we make a null step,

xk+1 := xk. (3.13)

This does not mean that by performing the null step we make no progress, however. In both cases, we
improve the cutting plane model of f by adding {(yk+1, f(yk+1), ξk+1)} to the bundle B.

Notice that one natural way how to update the index set Jk is to set Jk+1 = Jk ∪ {k + 1} at
each iteration. This strategy, however, is very inefficient in terms of memory storage and computational
speed because the size of the index set Jk is unbounded in this case. Therefore, we typically employ more
refined updating schemes for Jk (and thus also for the bundle Bk), called aggregation mechanisms, one of
which we will introduce in the next section.

Lastly, notice that in order to find the descent direction dk for solving the stabilizing subprob-
lem (3.8), we need to solve the following (smooth and convex) QP problem,{

min v + 1
2d

⊺Mkd

such that ⟨ξj , d⟩ − αk
j ≤ τ , ∀j ∈ Jk,

(3.14)

where αk
j is the linearization error and τ = maxj∈Jk

{f(xk) + ⟨ξj , x− xk⟩ − αk
j }. This is the cost we have

to pay in order to achieve the stability of our algorithm.

Algorithm GBM
Step 0: Pick x1, y1 ∈ Rn, ϵ > 0, J1 = {1}, k = 1, M1 ∈ Rn×n with det(M1) ̸= 0. Set vk = −∞.
Step 1: Stop when vk ≥ −ϵ.
Step 2: Find ξk ∈ ∂f(yk).
Step 3: Solve (3.14) and set yk+1 = xk + dk.

Step 4: Pick κ ∈ (0, 1
2). Set vk = f̂k(yk+1)− f(xk).

Step 5: If f(yk+1) − f(xk) ≤ κvk, make a serious step xk+1 = yk+1. Otherwise, make a null step
xk+1 = xk.

Step 6: Upgrade Mk = M̃k. Bundle aggregation: Jk = Ĵk and pick Jk+1 ⊃ Jk ∪ {k + 1}.
Step 7: Increment k to k + 1 and go to Step 1.

3.2 Proximal Bundle Method (PBM)

In this section we present the Proximal Bundle Method (PBM) as described by Kiwiel in [13] and later
improved by Kiwiel et al. in [15] and [9].

Consider the problem (3.1). We may treat this problem as the unconstrained problem f∗ := min fX using
the indicator function (2.1), i.e.,

fX := f(x) + 1X . (3.15)

To keep the notation simple, we may write f := fX . We again assume that it is possible to evaluate f(x),
ξ ∈ ∂f(x) at any x ∈ X. Suppose that f has a global minimum.

PBM produces a sequence {xk}∞k=1 ⊂ X and points yj ∈ X at each iteration. Define also
ξj ∈ ∂f(yj), j ∈ Jk ⊂ {1, . . . , k}. PBM works with the linearizations of f ,

fk(·) := f(yk) + ⟨ξk, · − yk⟩ ≤ f(·) (3.16)

9

similarly as in (3.4).

We also consider the polyhedral model of f at the iteration k

f̂k(x) := max
j∈Jk

fj , (3.17)

for j ∈ Jk ⊂ {1, . . . , k}.

The algorithm starts with picking x1 = y1 ∈ X. At each iteration, we compute the next candi-
date point yk+1 by solving for the proximal operator with the proximity parameter uk > 0,

yk+1 = proxukf̂k
(xk) = argmin

x

(
f̂k(x) +

1

2
uk∥x− xk∥2 + 1X

)
. (3.18)

Next, the predicted descent is defined as

vk := f̂k(yk+1)− f(xk). (3.19)

The algorithm terminates if vk ≥ −ϵ for some given tolerance ϵ > 0.

The serious step xk+1 := yk+1 is made when

f(yk+1)− f(xk) ≤ κvk, (3.20)

where κ ∈ (0, 1) is a fixed search parameter. Otherwise, we make the null step xk+1 := xk.

After solving (3.18), we update the proximity parameter uk. At each k ≥ 1, we pick

uk ∈ [umin, umax], for fixed 0 < umin ≤ umax < +∞. (3.21)

If the null step is made, we update with uk+1 ≥ uk.

We use the following aggregation technique to update the index set Jk+1. The optimality condi-
tion for (3.18) is

0 ∈ ∂f̂k(yk+1) + uk∥yk+1 − xk∥+ ∂1X(yk+1). (3.22)

Thus, there exists

pkf ∈ ∂f̂k(yk+1), (3.23)

such that

pkX := −uk (yk+1 − xk)− pkf ∈ NX(yk+1) := ∂1X(yk+1). (3.24)

By (3.23, 3.16, 3.17) there exist Lagrange (KKT) multipliers λk
j , j ∈ Jk such that

pkf =
∑
j∈Jk

λk
j ξj , with

∑
j∈Jk

λk
j = 1 and λk

j [f̂k(yk+1)− fj(yk+1)] = 0, j ∈ Jk. (3.25)

Consider the active set of indices

Ĵk := {j ∈ Jk | λk
j > 0}. (3.26)

We pick Js
k such that Ĵk ⊂ Js

k ⊂ Jk and update the index set with Jk+1 = Js
k ∪ {k + 1}. In other words,

we drop the linearizations fj for which λk
j = 0. Indeed, it follows from the KKT conditions that such

multipliers have no effect on pkf in (3.25) and thus they do not affect yk+1. Therefore, this mechanism
helps us to compress the size of Jk without affecting the convergence of the algorithm [9].

We can set Mξ ≥ n + 2 to be the maximum allowed size of the index set Jk and incorporate
it in the algorithm as a termination condition (sentinel value). There exist advanced versions of
PBM where the index set Jk can be compressed down to just 2 elements ([9], [25]). However, we
work with the simplified version of PBM and Mξ is taken to be a larger number during the implementation.

10

Lastly, notice that solving for the proximal operator means solving a QP problem. Namely,
yk+1 and τk := f̂k(yk+1) are the solutions of{

min 1
2uk∥x− xk∥2 + τ , over all (x, τ) ∈ X × R

such that fj(xk) + ⟨ξj , x− xk⟩ ≤ τ, ∀j ∈ Jk.
(3.27)

Algorithm PBM
Step 0: Pick x1 = y1 ∈ X, ϵ > 0, J1 = {1}, k = 1, Mξ ≥ n + 2, κ ∈ (0, 1), u1 > 0, umax ≥ umin > 0.
Set vk = −∞.
Step 1: Stop when vk ≥ −ϵ.
Step 2: Find ξk ∈ ∂f(yk).
Step 3: Solve (3.27) and find the multipliers λk

j (3.25).

Step 4: Set vk = f̂k(yk+1)− f(xk).
Step 5: If f(yk+1) − f(xk) ≤ mvk, make a serious step xk+1 = yk+1. Otherwise, make a null step
xk+1 = xk.
Step 6: Bundle aggregation: take the set of active indices Ĵk and pick Js

k such that Ĵk ⊂ Js
k ⊂ Jk and

|Js
k | ≤ Mξ − 1 and set Jk+1 = Js

k ∪ {k + 1}.
Step 7: Upgrade uk+1 ∈ [umin, umax].
Step 8: Increment k to k + 1 and go to Step 1.

3.3 Level Bundle Method (LBM)

In this section, we describe the Level Bundle Method (LBM). More specifically, we present two types
of LBM - the Proximal and Non-proximal variant‡. The original LBM was introduced by Lemaréchal,
Nemirovskii, and Nesterov in [17] and we refer to it as the Non-Proximal LBM. This method was later
improved by many mathematicians, in particular, the core of this section is built on the work by Oliveira
and Sagastizábal in [7], which generalizes the original LBM by introducing the Proximal LBM.

The initial problem is similar as in the previous sections. We seek to minimize a Lipschitz con-
tinuous convex function f over a non-empty, compact convex set X ⊂ Rn. Notice that we require the
feasible set X to be bounded in addition to the closedness. Suppose that we can evaluate f(x) and at
least one subgradient ξ ∈ ∂f(x) at any x ∈ X.

LBM resembles PBM, but there are a few differences. Instead of solving for the proximal oper-
ator, we are solving a projection problem§ which is also a QP problem. Let us remind that in PBM we
compute the next iterate (serious step) as

xk+1 = argmin{f̂k(x) +
1

2
uk∥x− xk∥2 | x ∈ X}. (3.28)

The QP problem in LBM is slightly different,

xk+1 = argmin{1
2
∥x− x̂k∥2 | f̂k(x) ≤ f lev

k , x ∈ X}. (3.29)

LBM generates the sequence {xk}∞k=1 ⊂ X converging to the global minimizer of f , if it exists. Unlike the
PBM, the LBM does not require any support sequence {yj}∞j=1.

We again use the linearizations
f(xk) + ⟨ξk, · − xk⟩ ≤ f(·) (3.30)

and the polyhedral model of f

f̂k(·) := max
j∈Jk

{f(xj) + ⟨ξj , · − xj⟩}, where Jk ⊂ {1, . . . , k}. (3.31)

By solving the LP problem
f low
k := min

x∈X
f̂k(x), (3.32)

‡The word “proximal” is used here due to the historical context and conceptual similarities with the proximal operator
and the PBM.

§Proximal operator is actually a generalized projection, see [22] for more details.

11

we obtain a lower bound for the optimal value f∗ := infx∈X f . In other words, f low
k is the lowest level

value and the rest of the polyhedral model lies above it.

Similarly, we denote
fup
k := f(xk) (3.33)

to be the upper bound for the optimal value f∗. Indeed, as xk ∈ X and f∗ := infx∈X f , we have
f(xk) ≥ f∗. Thus, fup

k can be seen as the upper level value.

We define the optimality gap ∆k := fup
k − f low

k . Next, we define

f lev
k := fup

k − (1− κ)∆k = f low
k + κ∆k, (3.34)

with a level parameter κ ∈ (0, 1). Finally, we define the level set as

Xk := {x ∈ X | f̂k(x) ≤ f lev
k }. (3.35)

One of the advantages of the Proximal LBM is that it suffices to solve the LP problem (3.32) only once,
at the initialization of the algorithm. On the other hand, when using the Non-Proximal LBM, we need to
solve (3.32) at each iteration, which adds extra complexity to the algorithm.

We start by picking the center parameter Θ ∈ {0, 1}, where Θ = 0 denotes the Non-Proximal
LBM and Θ = 1 denotes the Proximal LBM. Given the tolerance ϵ > 0, we stop the algorithm when
∆k ≤ ϵ.

Another difference between the Proximal and Non-Proximal variants of LBM is in the meaning
of the projection points x̂k. The points x̂k can be seen as stability centers (Proximal LBM) or just the
last iterates (Non-Proximal LBM).

The notion of serious and null steps is also slightly different for this class of Bundle Methods.
Starting from x̂0 = x1, if the optimality gap ∆k is “thin” enough,

∆k ≤ (1− κ)∆k(l), where k(l) ∈ Z, (3.36)

we select x̂k ∈ {xj | j ∈ Jk} (“serious step”). Otherwise (“null step”), we set

x̂k = Θx̂k−1 + (1−Θ)xk. (3.37)

In both variants, the next iterate is computed by solving the projection problem,

xk+1 := argmin
x∈Xk

1

2
∥x− x̂k∥2, (3.38)

where Xk is the level set as defined in (3.35). In other words, xk+1 is obtained by projecting x̂k onto the
level set Xk. It might happen that the problem (3.38) is infeasible because Xk might be empty. In that
case, before solving for xk+1, we pick a new f̃ low

k such that f̃ low
k ∈ (f low

k , f lev
k] and we start the algorithm

again with a new optimality gap ∆̃.

For both the Non-Proximal and Proximal variants of LBM, we update the upper bound fup
k+1 as

fup
k+1 := min{fup

k , f(xk+1)}. (3.39)

As it was noted before, the updating rule for the lower level bound differs based on the value of the center
parameter Θ. If Θ = 1, i.e., the Proximal LBM, we solve (3.32) only once, namely for k = 1 and then set

f low
k+1 := f low

k , for k > 1. (3.40)

On the other hand, if Θ = 0, that is, the Non-Proximal LBM, we need to solve (3.32) at each iteration k.

Lastly, we discuss the aggregation mechanism. When Θ = 1, we can use the same approach as
we used for PBM. Namely, we drop the inactive indices j from the index set Jk. When Θ = 0, we set
Jk+1 = Jk ∪ {k + 1} after each iteration. While some aggregation strategies can be applied here as well

12

([7], [15]), to demonstrate the consequences of the absence of storage mechanism on the CPU speed during
implementation, we decided to allow |Jk| to be unbounded¶.

For the sake of completeness, we present the complete formulation of the QP problem for LBM,{
min 1

2∥x− x̂k∥2, over all x ∈ X

such that fj(xk) + ⟨ξj , x− xk⟩ − f lev
k ≤ 0, ∀j ∈ Jk.

(3.41)

.
Algorithm LBM
Step 0: Pick x̂0 = x1 ∈ X, ϵ > 0, k = 1, l = 0, k(l) = 1, J1 = {1}, k = 1, κ ∈ (0, 1), Θ ∈ {0, 1}. Find
ξ1 ∈ ∂f(x1). Solve (3.32) for f low

1 . Set fup
1 = f(x1).

Step 1: Stop when ∆k = fup
k − f low

k ≤ ϵ.
Step 2: If ∆k ≤ (1− κ)∆k(l), make a serious step x̂k ∈ {xj | j ∈ Jk}. Set l = l + 1, k(l) = k. Else, make
a null step x̂k = Θx̂k−1 + (1−Θ)xk.
Step 3: Compute Xk. If Xk = ∅, adjust f low

k = f̃ low
k and go back to Step 2.‖

Step 4: Solve (3.41). Compute ξk+1 ∈ ∂f(xk+1). Find the multipliers λk
j .

Step 5: Set fup
k+1 = min{fup

k , f(xk+1)}. If Θ = 1, set f low
k+1 = fk

low. If Θ = 0, solve (3.32) for fLP and set

f low
k+1 = max{fLP , f

k
low}.

Step 6: Bundle aggregation. If Θ = 1, take the set of active indices Ĵk and pick Js
k such that

Ĵk ⊂ Js
k ⊂ Jk and |Js

k | ≤ Mξ − 1 and set Jk+1 = Js
k ∪ {k + 1}. If Θ = 0, set Jk+1 = Jk ∪ {k + 1}.

Step 7: Increment k to k + 1 and go to Step 1.

4 Convergence analysis

This section provides a comprehensive convergence analysis of the PBM and the Proximal LBM. Section
4.1 offers complete proof of convergence of the PBM. Similarly, the full proof of convergence of the
Proximal LBM can be found in Section 4.2.

For further insights into the Non-Proximal LBM, we refer to [17]. Additionally, [2] serves as a
valuable resource for a more in-depth analysis of the General Bundle Method (GBM) and its various
variants.

4.1 PBM

This section is mainly based on [8, 13, 14]. These references have provided valuable insights, the-
oretical foundations, and methodologies that form the basis of our analysis and investigation in this section.

Recall the optimality condition for (3.18),

0 ∈ ∂f̂k(yk+1) + uk∥yk+1 − xk∥+ ∂1X(yk+1). (4.1)

We can pick subgradients pkf ∈ ∂f̂(yk+1), and pkX ∈ ∂1X(yk+1) to set the aggregate linearizations

f̄k(·) = f̂k(yk+1) + ⟨pkf , · − yk+1⟩, 1̄k
X(·) = ⟨pkX , · − yk+1⟩. (4.2)

Denoting the descent direction by dk = yk+1 − xk, we may write

pkf + pkX + uk∥dk∥ = 0. (4.3)

Let us denote

pk := pkf + pkX = −ukdk, ᾱk
agg := f(xk)− f̄k(xk) ≥ 0, ᾱk

X := −1̄k
X(xk) = ⟨pkX , dk⟩ ≥ 0. (4.4)

The last two inequalities come from the fact that the linearization of a convex function bounds the function
from below.

Lemma 1 Denote ᾱk
p = ᾱk

agg − ᾱk
X . Then we have

−vk = uk∥dk∥2 + ᾱk
p =

1

uk
∥pk∥2 + ᾱk

p . (4.5)

¶In fact, in the original paper [17] the authors do not present any aggregation mechanism.
‖By setting f low

k = f̃ low
k we get a new f̃ lev

k and in particular a new optimality gap ∆̃.

13

Proof: Using (4.3, 4.4, 3.19) and the linearity of the inner product ⟨·, ·⟩, we have

−vk = −f̂k(yk+1) + f(xk) = −f̂k(yk+1) + f(xk) + ⟨pkf + pkX + ukdk, dk⟩

= −f̂k(yk+1) + f(xk) + uk∥dk∥2 + ⟨pkf + pkX , dk⟩

= −f̂k(yk+1) + f(xk) + uk∥dk∥2 − ⟨pkf , xk − yk+1⟩+ ⟨pkX , dk⟩
= uk∥dk∥2 + f(xk)− f̄k(xk) + ⟨pkX , dk⟩
= uk∥dk∥2 + ᾱk

p

=
1

uk
∥pk∥2 + ᾱk

p .

Which concludes the proof. □

We have
f(x) ≥ f(xk) + ⟨pk, x− xk⟩ − ᾱk

p , (4.6)

if we consider (3.6) with the aggregate linearization. Lemma 1 implies that

vk ≤ −ᾱk
p , and ∥pk∥ ≤ ∥ − ukvk∥

1
2 , (4.7)

so

f(x) ≥ f(xk)− ⟨(ukvk)
1
2 , x− xk⟩+ vk ≥ f(xk)− ∥ukvk∥

1
2 ∥x− xk∥+ vk, (4.8)

what follows from applying Cauchy-Schwarz inequality.

We may now start with proving that the sequence {xk} generated by PBM converges to some global
minimizer of f , i.e.,

xk −→ x̄ ∈ Ω = argmin
X

f, (4.9)

assuming the set of global minimizers Ω is nonempty. Hence, take ϵ = 0. Notice that (4.8) holds for
all x ∈ X, therefore we have that xk ∈ Ω after termination, because in that case (4.8) reduces to
f(x) ≥ f(xk). Therefore, in order to prove (4.9), it is sufficient to assume that the PBM algorithm does
not terminate.

Denote f∞ := limk→∞ f(xk) and suppose that for some x̃ ∈ X and for all k ∈ N we have

f(xk) ≥ f(x̃). (4.10)

Since f is assumed to be Lipschitz continuous on the closed set X, and {xk} ⊂ X, the assumption above
means that x̃ is a limit point of the sequence {xk}. In what follows, it will be useful to introduce some
new notation when talking about serious/null steps, thus we present a few remarks.

Remark 3 If we make a serious step at iteration k, set tkL = 1 and similarly, tkL = 0 if we make a null
step. Notice that then we may simply write

xk+1 = tkLyk+1 + (1− tkL)xk. (4.11)

Remark 4 Let l ∈ N ∪ {0} be the counter of serious steps and let k(l) be a function k(·) : N ∪ {0} → N
such that when a serious step is made, we increment l to l + 1 and set

k(l + 1) = k + 1, (4.12)

where k is the iteration counter. We initialize as l = 0, k(0) = 1, k = 1. So k(l) will denote the iteration
number of the lth serious step.

Lemma 2 If f∞ > −∞, then
∞∑
k=1

tkL(−κvk) ≤
∞∑
k=1

tkL|vk| ≤ +∞. (4.13)

Moreover, if K = {k | tkL = 1} is infinite then vk
K→ 0.

14

Proof: We have vk = f̂k(yk+1)− f(xk) ≤ 0. As κ ∈ (0, 1), we have

0 ≤ −κvk ≤ −vk ≤ f(xk)− f(xk+1).

Summing over k = 1, 2, . . . , we have

∞∑
k=1

tkL(−κvk) ≤
∞∑
k=1

tkL|vk| ≤
∞∑
k=1

(f(xk)− f(xk+1)) ≤ +∞,

as the last sum is telescopic and f∞ > −∞. Consequently, we must have vk
K→ 0 if infinite number of

serious steps were made. □

Lemma 3 If (4.10) holds, then xk −→ x̄, for some x̄ ∈ X.

Proof: Set x = x̃. Then (4.10) and (4.6) implies that ⟨pk, x̃− xk⟩ ≤ ᾱk
p . Next, we have

xk+1 − xk = tkLdk = − 1

uk
pkt

k
L (4.14)

since dk = − 1
uk

pk and tkL is either 0 or 1. Then,

∥x̃− xk∥2 = ∥x̃− xk + xk − xk+1∥2 = ∥x̃− xk∥2 + 2⟨x̃− xk, xk − xk+1⟩+ ∥xk − xk+1∥2

≤ ∥x̃− xk∥2 + 2tkLᾱ
k
p

1

uk
+ tkL

(
∥pk∥
uk

)2

.
(4.15)

By the Lemmas above and by taking uk ≥ umin,

∥x̃− xn∥2 ≤ ∥x̃− xk∥2 +
∞∑
i=k

2tiL
|vi|
umin

< +∞, if n > k, (4.16)

which shows that {xk} ⊂ X is bounded. As X is closed, there exists some x̄ ∈ X such that xk −→ x̄. Take
x̄ = x̃, then by taking ϵ > 0 there exists some index k for which,

∥x̄− xk∥2 ≤ ϵ

2
, and

∞∑
i=k

|vi|
umin

≤ ϵ

2
.

Hence, ∥x̄− xk∥2 ≤ ϵ whenever n > k. We conclude that xk −→ x̄. □

Lemma 4 Let

wk :=
uk∥dk∥2

2
+ ᾱk

p =
1

2uk
∥pk∥2 + ᾱk

p . (4.17)

Then vk ≤ −wk ≤ vk
2 . Moreover, if xk+1 = xk and uk+1 ≥ uk, then

0 ≤ wk+1 ≤ wk − uk∥dk+1 − dk∥2

2
. (4.18)

Proof: The first claim follows from Lemma 1. To prove the second claim, consider Ĵk as described in
(3.26) and let

f Ĵ
k (x) = max

j∈Ĵk

fj (4.19)

with fj defined as in (3.16). Denote

Ψk
1 = f̂k +

uk∥ · −xk∥2

2
+ 1X(·), and Ψk

2 = f Ĵ
k +

uk∥ · −xk∥2

2
+ 1X(·).

Suppose that yk+1 is the solution of the proximal proximal operator proxukf̂k
(xk). Denote

ρk = minΨk
1 = f̂k(yk+1) +

uk∥yk+1 − xk∥2

2
. (4.20)

15

Notice that we also have
yk+1 = prox

ukf Ĵ
k
(xk) = argminΨk

2 ,

thus, f Ĵ
k (yk+1) = f̂k(yk+1) and consequently, ρk = minΨk

2 .

Each fj in (4.19) is strongly convex, thus also f Ĵ
k (x) is strongly convex. The indicator function

over the convex set X is a convex function and the term uk∥yk+1−xk∥2

2 is strongly convex. Therefore, Ψk
2

is also strongly convex with modulus of convexity uk > 0∗∗. This implies that

Ψk
2 ≥ ρk +

uk∥yk+1 − xk∥2

2
. (4.21)

If xk+1 = xk, then f̂k+1 ≥ f Ĵ
k (as Jk+1 ⊇ Ĵk) and uk+1 ≥ uk (as xk+1 = xk means “null step”). Hence,

Ψk+1
1 ≥ Ψk

2 , and ρk+1 ≥ ρk +
uk∥yk+2 − yk+1∥2

2
. (4.22)

Notice that yk+2 − yk+1 = dk+1 − dk and

f(xk)− ρk = f(xk)− f̂k(yk+1)−
uk∥dk∥2

2
= −vk − uk∥dk∥2

2
=

uk∥dk∥2

2
+ ᾱk

p = wk (4.23)

by Lemma 1, (4.20) and the definition of wk. Hence,

−wk = vk +
uk∥dk∥2

2
(4.24)

this shows that

0 ≤ wk+1 ≤ wk − uk∥dk+1 − dk∥2

2
. (4.25)

□

Lemma 5 If uk+1 ≥ uk, then wk+1 ≤ − 3vk
2 .

Proof: If a null step is made, i.e., xk+1 = xk, then wk+1 ≤ wk ≤ −vk by Lemma 4. If a serious step is
made, i.e., xk+1 = yk+1, then

f̂k(yk+1) + ⟨pk, · − yk+1⟩ = f̄k(·) + 1̄k
X ≤ f̂k(·) + 1X(·) (4.26)

and we also have
f̂k+1(·) ≥ f Ĵ

k (·). (4.27)

The two expressions above together with (4.20) can be used to obtain

ρk+1 ≥ min
x

f̂k(yk+1) + ⟨pk, x− xk+1⟩+
uk∥x− xk+1∥2

2
= f̂k(yk+1)−

∥pk∥2

2uk+1
. (4.28)

Therefore, by (4.23) we have

wk+1 = f(xk+1)− ρk+1 ≤ f(xk+1)− f̂k(yk+1) +
∥pk∥2

2uk+1
. (4.29)

We have f(xk+1) ≤ f(xk) since we assume that xk+1 = yk+1. The defiition of the descent direction

vk = f̂k(yk+1)− f(xk) together with

∥pk∥2

2uk+1
≤ ∥pk∥2

2uk
≤ −vk

2
, (4.30)

which comes from the assumption uk+1 ≥ uk and Lemma 1, yield the desired result

wk+1 ≤ −vk − vk
2

= −3vk
2

. (4.31)

□

Lemma 6 If f∞ > −∞, then vk, wk and ∥dk∥ all tend to 0 as k −→ ∞.
∗∗Reader can find more detailed proof in [23].

16

Proof: Assume that the number of serious steps l −→ ∞. By Lemma 4 and Lemma 5, we have

0 ≤ −vk
2

≤ wk ≤ −
3vk(l)−1

2
if k(l) ≤ k < k(l + 1). (4.32)

But when l −→ ∞, then Lemma 2 implies that vk(l)−1 −→ ∞. Hence, both vk −→ 0 and wk −→ 0.
Next, fix l and assume that for all k ≥ k(l) we have

xk = xk(l) = x̄. (4.33)

So we have uk+1 ≥ uk and wk+1 ≤ wk for all k ≥ k(l) by Lemma 4. As k −→ ∞, we also have

∥dk+1 − dk∥ −→ 0, (4.34)

and boundedness of vk and ∥dk∥ by Lemma 4. Moreover, since f is assumed to be Lipschitz continuous
on X, we have for all k ≥ k(l),

∥ξ⊺k∥ ≤ L (4.35)

by combining the inequalities (2.1) and (2.5) with ξk ∈ f(yk). Therefore, ∥ξk∥ is bounded as well.
Boundedness of vk allows us to set v̄ = lim supk→∞ vk. Since xk = xk(l) = x̄ for all k ≥ k(l), i.e., null
steps, we have

f(yk+1)− f(xk) > κvk (4.36)

by negating (3.20). Next,

0 = v̄ − v̄ = lim sup
k→∞

(vk+1 − vk + ∥ξk+1∥∥dk+1 − dk∥) ≥ vk+1 − vk + ∥ξk+1∥∥dk+1 − dk∥

≥ f̂k+1(yk+2)− f̂k(yk+1)− ⟨ξk+1, yk+2 − yk+1⟩

= f̂k+1(yk+1)− f̂k(yk+1)

= f(yk+1)− f̂k(yk+1)

= f(yk+1)− vk − f(xk)

> (κ− 1)vk = (1− κ)|vk|,

(4.37)

so vk −→ 0 and wk −→ 0. By Lemma 1, also ∥dk∥ −→ 0. □

Lemma 7 If (4.10) holds, then xk −→ x̄ ∈ Ω and also f(xk) ↓ f(x̄)††.

Proof: We have already shown in Lemma 3 that x̄ ∈ X, it is left to show that in fact, x̄ ∈ Ω. By Lemma 6
we have vk −→ 0. The sequence {uk} is bounded by the construction of the algorithm (umax ≥ uk for all k).
In view of Definition 2.2, by taking k −→ ∞ in (4.8), we obtain our result. □

Theorem 4.1 The sequence {xk} generated by PBM either converges to some x̄ ∈ Ω = argminX f , or
Ω = ∅ and ∥xk∥ −→ ∞. In both cases we have f(xk) ↓ f∗ := infX f .

Proof: If the condition (4.10) holds, i.e., Ω ̸= ∅, then by Lemma 7

f(xk) ↓ f(x̄) = f(x̃). (4.38)

Hence, x̃ ∈ Ω and f(x̃) = infX f . If (4.10) does not hold, then Ω = ∅. In view of previous Lemmas, we
conclude that PBM must terminate if f∗ > −∞ and the tolerance ϵ > 0. □

4.2 LBM

Denote by xrec
k ∈ {x1, . . . , xk} the point for which we upgrade the upper level bound f(xrec

k) = fup
k in

(3.39). We will prove that the sequence {xrec
k } generated by the proximal variant of LBM converges to

some point in Ω = argminX f , assuming Ω ̸= ∅.

While it is possible, with tedious technical modifications, to re-use the proof from Section 4.1 (see [4]), we
present proof from [15]. In addition to convergence, we also provide an efficiency estimate for the algorithm.

††The notation ↓ means convergence from above

17

Similarly, as in the previous section, k(l) will denote the iteration number of the lth serious
step. Moreover, throughout this section, we denote by L the Lipschitz constant associated with f and

PXk
(x̂k) := argmin

x∈Xk

1

2
∥x− x̂k∥2 (4.39)

will denote the projection of x on the level set Xk.

Lemma 8 If k > k(l), then

∥xk+1 − xk∥ ≥ (1− κ)∆k

L
. (4.40)

If k = k(l), then

∥xk+1 − x̂k∥ ≥ (1− κ)∆k

L
. (4.41)

Proof: By construction of the method, fup
k := f(xk) ≥ minj=1,...,k f(xj). As xk+1 ∈ Xk, then

fj(xk+1) = f(xj) + ⟨ξj , xk+1 − xj⟩ ≤ f̂k(xk+1) ≤ f lev
k . (4.42)

Thus, by the Lipschitz-continuity of f and (4.35),

L∥xk+1 − xj∥ ≥ ∥ξj∥∥xk+1 − xj∥ ≥ f(xk)− f lev
k = fup

k − (fup − (1− κ)∆k) = (1− κ)∆k. (4.43)

If k = k(l), pick j ∈ Jk such that xj = x̂k and if k > k(l), put j = k. □

Recall that our aggregation mechanism allows us to write

xk+1 = PXk
(x̂k) = PXĴ

k
, (4.44)

where
XĴ

k = {x ∈ X | f Ĵ
k (x) ≤ f lev

k }, (4.45)

and f Ĵ
k is defined similarly as in (4.19).

Lemma 9 If k > k(l), then

∥xk+1 − x̂k∥2 ≥ ∥xk − x̂k∥2 + ∥xk+1 − xk∥2, (4.46)

and x̂k = x̂k−1.

Proof: Notice that k > k(l) means x̂ = x̂k−1 by the construction of the algorithm. Moreover, we have

f lev
k(l) ≥ f lev

j ≥ f lev
k if k(l) < j ≤ k ≤ k(l + 1), (4.47)

because f low
k−1 = f low

k and ∆k−1 ≤ ∆k due to (3.39). We also have Ĵk−1 ⊂ Jk and f Ĵ
k−1(·) ≥ fk(·) so

XĴ
k ⊂ Xk. Notice that xk+1 ∈ XĴ

k , xk = PXk
(x̂k−1) = PXĴ

k
(x̂k−1). Notice that then xk+1, x̂k, xk all lie in

XĴ
k , so the result (4.46) follows simply from applying the triangle inequality. □

Lemma 10 If k(l) ≤ k < k(l + 1) and ∆k > 0, then

k − k(l) + 1 ≤
(
diam(X)L

(1− κ)∆k

)2

. (4.48)

Proof: We can apply Lemmas 8 and 9 with x̂j = x̂k(l), for j = k(l), . . . , k, and xk+1, x̂k ∈ X to obtain

diam(X)2 = (sup{∥x− y∥ | x, y ∈ X})2 ≥ ∥xk+1 − x̂k∥2 +
k∑

j=k(l)+1

∥xj+1 − xj∥2 ≥
k∑

j=k(l)

(
(1− κ∆j)

L

)2

≥
(
(1− κ∆k)

L

)2

(k − k(l) + 1)

(4.49)

18

as ∆j ≥ ∆k for all j = 1, . . . , k by construction. □

We can partition the iterations k into distinct groups as

Kl = {k(l), . . . , k(l + 1)− 1}. (4.50)

Recall, that if at the first iteration the problem (3.41) is infeasible, we choose a new f̃ low
k ∈ (f low

k , f lev
k].

So we get the relations

∆̃k ≥ ∆k, and fup
k ≥ fup

k+1 ≥ f∗ := inf
X

f ≥ f low
k+1 ≥ f̃ low

k ≥ f low
k . (4.51)

Lemma 11 If ∆̃kϵ ≥ ϵ > 0 for some kϵ, then

kϵ ≤
(diam(X)L)

2

ϵ2(1− κ)2(1− (1− κ)2)
. (4.52)

Proof: Let K(ϵ) = {1, . . . , kϵ} so that

K(ϵ) ⊂
m⋃
l=0

Kl, (4.53)

for appropriate m. The fact that ∆k+1 ≤ ∆̃k ≤ ∆k for all k and (3.36) imply that

∆̃k ≤ (1− κ)∆k(l), (4.54)

what means that k ≤ k(l) by the construction. Hence,

∆k ≥ ∆̃k ≥
∆̃k(l+1)

1− κ
if k ∈ Kl, l ≥ 0. (4.55)

We claim that

∆k ≥ ϵ

(1− κ)m−l
, (4.56)

for all k ∈ Kl ∩ K(ϵ), l = 0, . . . ,m. We can prove this by induction as follows.

We have k(l + 1) > kϵ so ∆̃kϵ
≥ ∆̃k(l+1). Let ϵ = ∆̃k(l+1) and pick kϵ ∈ K(ϵ) ∩ Kl. Then the

base case m = 1 follows from (4.55) (l = 0) and from the assumption in our lemma (l = 1).

Suppose now that, for l = 0, . . . ,m, it holds

∆k ≥ ∆̃kϵ
≥

∆̃k(l+1)

(1− κ)m−l
=

ϵ

(1− κ)m−l
. (4.57)

Then,

ϵ

(1− κ)(m+1)−l
=

ϵ

(1− κ)(1− κ)m−l
=

1

1− κ

(
ϵ

(1− κ)m−l

)
≤ 1

1− κ
∆̃kϵ

≤ (1− κ)

(
∆k

1− κ

)
= ∆k.

(4.58)

if k ∈ K(ϵ) ∩ Kl by (3.36). This proves our claim.
Next, let

q :=

(
diam(X)L

(1− κ)ϵ

)2

. (4.59)

Then by (4.56) and Lemma 10 we have,

|Kl ∩ K(ϵ)| ≤ k − k(l) + 1 ≤
(
diam(X)L

(1− κ)∆k

)2

≤ (1− κ)2(m−l)

ϵ2

(
diam(X)L

(1− κ)

)2

= q(1− κ)2(m−l). (4.60)

19

Using the summing formula for a geometric series,

kϵ =

m∑
l=0

|Kl ∩ K(ϵ)| ≤
m∑
l=0

q(1− κ)2(m−l) = q(1− κ)2m

(1−κ)2(m+1)−1
(1−κ)2(m+1)

(1−κ)2−1
(1−κ)2

= q
(1− κ)2(m+1) − 1

(1− κ)2 − 1

≤ q

1− (1− κ)2
,

(4.61)

which gives the result. □

Corollary 1 (Efficiency estimate) If

k >
(diam(X)L)

2

ϵ2(1− κ)2(1− (1− κ)2)
, (4.62)

then for any ϵ > 0,
fup
k − f∗ ≤ ∆k < ϵ. (4.63)

We can now present the main result of this section.

Theorem 4.2 If the Proximal LBM algorithm does not terminate, then as k −→ ∞ we have

fup
k −→ f∗, f low

k −→ f∗, f lev
k −→ f∗, ∆k −→ 0, ∆̃k −→ 0. (4.64)

Moreover, xrec
k −→ x̄, for some x̄ ∈ Ω = argminX f .

Proof: As we have seen, ∆k, ∆̃k are non-increasing so by Lemma 11 and the fact that ∆k+1 ≤ ∆̃k ≤ ∆k,
we have ∆k −→ 0, ∆̃k −→ 0. Next, we have

∆k ≥ max{|f low
k − f∗|, |fup

k − f∗|, |f lev
k − f∗|} (4.65)

so all f low
k , fup

k , f lev
k tend to 0 as k −→ ∞. Lastly, we have f(xrec

k) ↓ f∗, X is assumed to be compact and
f Lipschitz continuous, so indeed

xrec
k −→ x̄, for some x̄ ∈ Ω. (4.66)

□

5 Numerical experiments: Regularized Support Vector Machine

This section is dedicated to the numerical testing and empirical evaluation of the performance of PBM,
Proximal LBM, and Non-Proximal LBM - in the context of solving the Support Vector Machine (SVM)
problem. SVMs are commonly used for classification tasks in machine learning [5]. The aim is to find an
optimal decision boundary between classes by maximizing the margin or distance between the decision
boundary and the data points (xi, yi), where xi ∈ RN and yi ∈ {−1, 1}, for i = 1, . . . , n.

By measuring and analyzing factors such as CPU speed and accuracy, we aim to gain insights
into the performance characteristics and capabilities of each method when applied to SVM. Through
this evaluation, we aim to provide valuable empirical evidence regarding the suitability and practical
applicability of bundle methods for solving SVM problems. For a more complex evaluation of the Bundle
Methods applied to SVM and other machine learning models, we refer to [16].

Problem formulation
Consider the NSO problem

min
w

Remp(w) + λΩ(w), (5.1)

with the empirical risk

Remp(w) :=
1

m

∑
1≤i≤m

l(xi, yi, w), (5.2)

and the Hinge loss function
l(x, y, w) = max{0, 1− y⟨x,w⟩}. (5.3)

20

In binary classification, the Hinge loss penalizes misclassifications. It assigns a higher loss when the
predicted value is on the wrong side of the decision boundary. The loss is zero when the predicted value
is correctly classified. Its distinctive ”hinge” shape renders the Hinge loss both non-differentiable and
convex in nature [5]. Therefore, the SVM problem is well-suited to demonstrate the application of Bundle
Methods in this context.

SVM typically employs the L2 regularizer

Ω2(w) =
1

2
∥w∥22, (5.4)

which is known as Tikhonov regularization. Tikhonov regularization encourages the model coefficients to
be small but non-zero, leading to a more evenly distributed impact across all features [20].

While it is less common, it is still possible to use a different norm for the regularization. We
also consider the L1 regularizer (SVML-1)

Ω1(w) =
1

2
∥w∥1 =

1

2

N∑
j=1

|wj |. (5.5)

This is known as LASSO regularization. LASSO regularization promotes sparsity by driving some
coefficients to zero, resulting in a sparse model that selects only the most relevant features.

Notice that we do not need to compute the whole subdifferential of Jk(w) := Remp(w) + λΩk(w),
k ∈ {1, 2}, but it suffices to get a one subgradient at each w ∈ dom(Jk) as follows,

∂wJk = Γ + λ∂wΩk, (5.6)

where

Γ =
1

m

∑
1≤i≤m

∂w max{0, 1− yi⟨xi, w⟩}, (5.7)

and

∂w max{0, 1− y⟨x,w⟩} =

{
−yx, if 1 ≥ y⟨x,w⟩
0, otherwise.

(5.8)

For the squared L2 norm, at any w, the subgradient is just 2w. In the case of L1 norm, q ∈ RN is a
subgradient of ∥w∥1 at w = (w1, . . . , wN)⊺ if

qj =

1, if wj > 0

−1, if wj < 0

r ∈ [−1, 1], if wj = 0,

(5.9)

for j ∈ {1, . . . , N}. It is often preferred to set r = 0 to promote the sparsity in the model [20].

We say that the step xk is critical if tkL = 1, that means, a serious step was made, and if a de-
scent step was made with respect to the “true” error. It is convenient to plot the critical steps against the
”true” error as both the Proximal and Non-Proximal LBM does not necessarily make the descent step at
each iteration.

To compute the ”true” solutions and therefore to make a comparison with our algorithms, we
use the built-in function minimize from the module scipy.optimize from the Python library SciPy. To
compute the stabilizing QP subproblems (3.27) and (3.41) as well as the LP problem (3.32), we use the
Python library cvxpy which is well-suited for convex optimization.

Parameters choice, assumptions, and data setup
We set κ = 0.5 for the PBM and κ = 0.75 for both the Proximal and Non-Proximal LBM. The tolerance
is taken to be ϵ = 10−6. We pick Mξ = 104 as the maximum allowed bundle size. This is indeed a big
number, at least bigger than what is normally used in practice. However, it suffices for the scope of this
testing. The constant λ in front of the regularization term Ω(·) is taken to be λ = 0.0001. We use random
to generate various data samples. The code is provided in Appendix B.

21

Remark 5 For the PBM, we may see the problem as the unconstrained one (X = RN) for simplicity.
For the Proximal and Non-Proximal LBM, we need to bound the feasible set X to satisfy the compactness.
By leveraging heuristics, we can infer that the solution to our problem is in close proximity to 0 ∈ RN .
This enables us to select a small radius r and define X as the closed ball X = BN

r (0). In our experiments,
we set r = 0.01.

Remark 6 We use the following simple updating technique for the proximity parameter uk. We fix
umin = u1 = 2 and umax = 10000. We pick uk+1 ∈ [umin, ⌈uk⌉] at random after the serious step and
uk+1 := min{umax, 2.5uk} after the null step. There exists far more refined updating techniques ([13],
[10]), but in order to achieve convergence, it is sufficient for the sequence {uk} to be bounded‡‡ and
non-decreasing after the null step is made. This can be seen from the convergence analysis we provide in
Section 4.1.

Remark 7 Due to the nature of the objective function J(·), and especially the hinge loss, both LBMs
methods seem to make very few serious steps. However, each time they do, the resulting descent is often
significant. We decided to make the following adjustment. In addition to (3.36), we force the serious step
if there were ForcedSerStep = 50 consecutive null steps made.

Remark 8 The bundle aggregation technique is implemented in practice as follows. We drop those
multipliers λj from the index set Jk, which are in the ball Bδ(0) for a small δ > 0. We take δ ∈ [10−30, 10−7]
depending on the dimension size N .

Remark 9 To avoid some unexpected behaviour that can result in prolonged run-time (for instance, if ϵ
is not small enough), a sentinel value is set at the iteration k = 1000 forcing the algorithms to terminate
if this value is reached.

Numerical experiments
We fix n = 1000, which denotes the number of data points (xi, yi). The testing was performed in two phases.

First, we vary the dimensions N ∈ {2, 5, 30, 60, 100, 200} and we test the performance of each of
the three Bundle Methods discussed. The resulting table with results Table 1 together with selected plots
can be found in Appendix A.

Next, we vary the dimensions N ∈ {103, 104}, but we only use the PBM and the Proximal
LBM for this test. The main aim is to test the performance in terms of CPU time. We perform 15 tests
with N = 103, 2 tests with N = 104 for the PBM and 4 tests with N = 104 for the Proximal LBM. The
resulting table with results together with selected plots can be found in Table 2 in Appendix A.

The stopping rules vk ≥ −ϵ and ∆k ≤ ϵ did not always project to the “true” accuracy, causing
unsatisfactory results even after the stopping rule was triggered. This was the issue, especially for the
Proximal LBM. Thus, we decided to add an extra, artificial stopping rule (with respect to the “true”
error) to both algorithms for the tests with N = 104. This significantly improved the speed of the
Proximal LBM. The effect on the PBM was less significant.

6 Conclusion

The primary objective of this paper is to study Bundle Algorithms for solving convex non-smooth
optimization problems. We start by exploring various concepts from the mathematical optimization
theory. The central focus of this paper revolves around providing a formal description and conducting a
convergence analysis of two distinct classes of Bundle Methods. Specifically, our attention is directed
toward the Proximal Bundle Method (PBM) and two variations of the Level Bundle Method (LBM): the
Proximal LBM and the Non-Proximal LBM.

In addition to the primary objective, this paper also aims to gain a comprehensive understand-
ing of the historical development surrounding the PBM and LBM. Therefore, a lot of effort is spent
on studying the proximal and projection operators, polyhedral models, Cutting-Planes Method,
optimality conditions for non-smooth optimization problems as well as techniques for managing

‡‡In fact, after some subtle changes to the algorithm are made, {uk} can even be unbounded, see [13].

22

optimization constraints through the Lagrange Multiplier Theorem and the KKT conditions. The
convergence analysis in Section 4 is conducted with a direct, explicit, and mathematically rigorous approach.

Lastly, we examine the suitability of PBM, Proximal LBM, and Non-Proximal LBM to the Reg-
ularized Support Vector Machine (SVM) problem. Our extensive analysis reveals that all three algorithms
show commendable accuracy and reliability. For the SVM problem, the performance of these methods is
significantly influenced by the CPU speed and the ability to handle information storage. These factors
play a crucial role in determining the overall suitability of the algorithms for the given application of
Bundle Methods.

6.1 Results of the numerical experiments

Despite its stability and reliability, the Non-Proximal LBM exhibits the slowest CPU time among the
three methods. Indeed, this should not be a big surprise since the Non-Proximal LBM needs to solve both
QP and LP problems at each iteration, without utilizing any aggregation technique for efficient storage.
Consequently, the computation of each iterate is considerably expensive, resulting in longer CPU times.
As a result, this method may not be particularly suitable for datasets with large dimensions. However, it
performs well with smaller datasets, as the computed solution closely approximates the exact solution.

In contrast, the Proximal LBM demonstrates enhanced efficiency in terms of memory storage
and CPU time. However, it does have a few drawbacks. It requires careful tuning and is highly sensitive
to the specific characteristics of the objective function, constraints, and data. When appropriately
configured, this method can be exceptionally efficient, particularly for datasets with large dimensions.
When compared to the PBM, the Proximal LBM exhibits superior results in both accuracy and CPU time
for datasets with large dimensions. Perhaps the biggest issue with this method is that the stopping rule
∆k ≤ ϵ might not be always triggered at the right time, causing either premature or delayed termination.
We suppose that this is because of the fact that the produced sequence {xk}k∈N is not necessarily
non-increasing. We show in Section 4.2 that only the critical points xrec

k are converging to the minimizer
x̄ ∈ Ω = argminX f . Hence, the algorithm can accumulate a lot of non-critical iterations until the
condition ∆k ≤ (1− κ)∆k(l) is satisfied. At the same time, the optimality gap ∆k can slowly continue
getting thinner, potentially triggering the stopping rule before the next critical iteration is computed.
This, however, can be avoided, or at least mitigated, through precise tuning of the algorithm. In general,
the Proximal LBM is capable of producing better results when provided with more comprehensive
information regarding the objective function, constraints, and underlying data.

Lastly, the PBM seems to be overall the most reliable method in terms of accuracy, CPU time,
and memory usage. Unlike the Proximal LBM, it requires minimal tuning while maintaining impressive
speed, particularly for smaller datasets. However, its performance can worsen when handling larger
datasets. This limitation can be mitigated by implementing a more refined updating scheme for the
proximity parameter uk and by having more comprehensive information about the nature of the specific
optimization problem.

23

Appendix A

Figure .1: Error plot with all three Bundle Methods used with N = 200. The dotted lines connect
the last critical iteration with the iteration for which the stopping rule was triggered.

Figure .2: Error plot showing the 15 experiments with N = 1000. Only the PBM and the Proximal
LBM were used. The green curves denote the Proximal LBM, and the red curves denote the PBM.

24

Lasso L1 PBM

N CPU ktotal ϵacc B̄

2 0.66sec 16 5.13× 10−6 17.6

5 1.31sec 23 7.81× 10−6 26.5

30 22.84sec 93 8.34× 10−6 97.9

60 28.77sec 96 6.1× 10−5 121.9

100 1min 33sec 380 5.25× 10−5 161.9

200 5min 42sec 342 4.72× 10−4 514.5

Tikhonov L2 PBM

N CPU ktotal ϵacc B̄

2 0.61sec 15 8.83× 10−7 16.4

5 1.45sec 23 2.69× 10−7 26.5

30 21.44sec 88 1.97× 10−5 99.1

60 1min 15sec 152 9.98× 10−6 205.4

100 1min 21sec 341 4.87× 10−5 159.0

200 11min 44sec 558 8.37× 10−5 516.7

Lasso L1 Proximal LBM

N CPU ktotal ϵacc B̄

2 1.24sec 26 3.79× 10−8 11.8

5 1.98sec 41 7.30× 10−6 14.9

30 46.61sec 238 4.04× 10−5 76.4

60 1min 22sec 243 8.12× 10−5 139.5

100 10min 12sec 1000 8.90× 10−6 451.3

200 22min 1000 8.14× 10−5 596.2

Tikhonov L2 Proximal LBM

N CPU ktotal ϵacc B̄

2 0.95sec 20 9.82× 10−8 13.7

5 1.70sec 39 1.97× 10−6 14.2

30 42.52sec 237 1.01× 10−7 67.9

60 3min 9sec 430 9.39× 10−6 190.4

100 6min 20sec 1000 9.79× 10−6 276.5

200 27min 15sec 1000 6.10× 10−5 724.7

Lasso L1 Non-Proximal LBM

N CPU ktotal ϵacc B̄

2 1.50sec 16 1.01× 10−6 25.5

5 4.64sec 30 8.67× 10−6 46.5

30 53.73sec 108 4.01× 10−5 163.5

60 3min 58sec 191 2.57× 10−5 288.0

100 7min 57sec 347 7.83× 10−8 522.0

200 1h 10min 31sec 703 6.75× 10−6 1056.0

Tikhonov L2 Non-Proximal LBM

N CPU ktotal ϵacc B̄

2 2.25sec 20 1.01× 10−6 31.5

5 3.92sec 28 2.17× 10−6 43.5

30 52.83sec 110 6.37× 10−7 166.5

60 3min 46sec 185 8.87× 10−7 279.0

100 6min 35sec 316 9.07× 10−6 475.5

200 44min 24sec 668 4.91× 10−7 1003.5

Table .1: N | CPU time | Number of iterations | Error accuracy | Average bundle size at each
iteration

25

Tikhonov L2 regularization

Method N Average CPU

PBM 1000 5min 2sec

ProxLBM 1000 9min 42sec

Tikhonov L2 regularization

Method N CPU

PBM 10000 3h 59min 37sec

PBM 10000 2h 36min 33sec

ProxLBM 10000 17.78sec

ProxLBM 10000 10min 31sec

ProxLBM 10000 29.57sec

ProxLBM 10000 1h 22min 18sec

Table .2: Method used | N | CPU time

Figure .3: This oddly-looking plot shows both the critical and the non-critical iterations used with
N = 10000 for the PBM and the Proximal LBM. Notice that significant descent step in the Proximal
LBM made and the rather slow, but stable convergence of the PBM. Tikhonov L2 regularization
was used.

26

Appendix B

Defining the objective function and its subgradients

def omega(w, lamb): # Tikhonov L2

return (lamb / 2) * (LA.norm(w) ** 2)

def lassoregularizer(w, lamb): # LASSO L1

return (lamb / 2) * np.sum(np.abs(w))

def subgrl1(w): # subgradients of L1

subgrad = np.zeros_like(w)

for i, p in enumerate(w):

if p < 0:

subgrad[i] = -1

elif p > 0:

subgrad[i] = 1

else:

For p = 0, any value between -1 and 1 is a valid subgradient , but the value

0 is preferred

subgrad[i] = 0

return subgrad

def hinge_loss(w, x, y): # Hinge loss

return np.maximum(0, 1 - y * np.dot(x, w))

def R(w): # empirical risk term sum

term = 0

for x, y in data:

term = term + hinge_loss(w, x, y)

return (1 / len(data)) * term

def Jobj(w, lamb): # Tikhonov L2 SVM

return omega(w, lamb) + R(w)

def Jobjl1(w, lamb): # LASSO L1 SVM

return lassoregularizer(w, lamb) + R(w)

def subgr_hinge_loss(w, x, y): # subgradients of the hinge loss

if 1 >= y * np.dot(x, w):

return -y * x

else:

return 0

def gamma(w): # support term for the subgradients SVM

term = 0

for x, y in data:

term = term + subgr_hinge_loss(w, x, y)

return (1 / len(data)) * term

def subgr_J(w, lamb): # SVM subgradients Tikhonov L2

return lamb * w + gamma(w)

def subgrl1_J(w, lamb): # SVM subgradients LASSO L1

return (lamb / 2) * subgrl1(w) + gamma(w)

PBM

def PBM(w, yT, kappa , test , M, u_max , u, tol , func , subgr , trueres): # PBM

initialization

J = [1]

yLIST = [yT]

subgrLIST = [subgr(yT , test)]

v_descent = -1000000 # the predicted descent set to a large negative number at the

beginning

total_size = 3 # size of the bundle = |J|+| yLIST |+| subgrLIST| = 3*|J|

total_information = [3]

errors = [np.linalg.norm(trueres.fun - func(w, test))] # comparing with the "true"

solution

27

k = 1

l = 0

kl = 0

crit_iterations = [kl]

PBM’s stopping rule and artificial stopping rule (used in the second phase of the

testing)

while v_descent < -tol and errors [-1] > 0.00001:

old_l = l

solving the QP problem using cvxpy

x = cp.Variable(len(yT))

tau = cp.Variable (1)

prox = cp.Minimize ((0.5 * u) * (cp.norm(x - w) ** 2) + tau) # the proximal

operator

constraints = []

for j in J: # adding the constraints

constraints.append(func(yLIST[j - 1], test) + cp.sum(cp.multiply(subgrLIST[j

- 1], w - yLIST[j - 1])) +

cp.sum(cp.multiply(subgrLIST[j - 1], x - w)) <= tau)

problem = cp.Problem(prox , constraints)

try:

Solve the problem using the ’ECOS’ solver

problem.solve(solver=’ECOS’)

except cp.SolverError:

If ’ECOS’ fails , try using the ’SCS’ solver

try:

problem.solve(solver=’SCS’)

except cp.SolverError:

print("Both ’ECOS’ and ’SCS’ solvers failed to solve the problem.")

break

yT = x.value # solution y_{k+1}

tauSolved = tau.value # solution \hat{f}_{k}(y_{k+1})

KKTmultipliers = []

for constrain in constraints:

KKTmultipliers.append(constrain.dual_value)

v_descent = tauSolved - func(w, test) # predicted descent

if func(yT , test) - func(w, test) <= kappa * v_descent:

l += 1

w = yT # serious step

updating scheme for the proximity parameter

u_new = random.randint(2, math.ceil(u))

u = u_new

else:

w = w # null step

updating scheme for the proximity parameter

u = 2.5 * u

while u > u_max:

u = u_max

pass

k += 1

bundle (index set) aggregation

J_hat = [J[j] for j in range(len(J)) if np.abs(KKTmultipliers[j]) >

0.000000000000000000000001]

J = J_hat + [k]

if old_l < l and errors [-1] > np.linalg.norm(res.fun - func(w, test)):

kl = k

errors.append(np.linalg.norm(trueres.fun - func(w, test)))

crit_iterations.append(kl)

total_information.append (3 * len(J))

yLIST.append(yT)

xi_subgr = subgr(yT, test)

subgrLIST.append(xi_subgr)

total_size = total_size + 3 * len(J)

if len(J) <= M: # we can bound the size of the index set

pass

else:

bundle = total_size / k

if kl != k:

crit_iterations.append(k)

errors.append(np.linalg.norm(trueres.fun - func(w, test)))

return w, total_information , crit_iterations , errors , bundle , k

if k > 999:

sentinel set at k=1000

bundle = total_size / k

28

if kl != k:

crit_iterations.append(k)

errors.append(np.linalg.norm(res.fun - func(w, test)))

return w, total_information , crit_iterations , errors , bundle , k

bundle = total_size / k

if kl != k:

crit_iterations.append(k)

errors.append(np.linalg.norm(trueres.fun - func(w, test)))

return w, total_information , crit_iterations , errors , bundle , k

Non-proximal LBM

def nonproxLBM(w, kappa , tol , test , func , subgr , trueres): # NonProx LBM

global f_low

initialization

k = 1

J = [1]

wLIST = [w]

total_size = 3

l = 0

kl = 0

crit_iterations = [kl]

total_information = [3]

errors = [np.linalg.norm(trueres.fun - func(w, test))]

check = True # flag for checking whether serious or null step was made

xi_subgr = subgr(w, test)

subgrLIST = [xi_subgr]

support = -0.1 * np.ones(len(w)) # the feasible set for (non)prox LBM has to be

compact in general

solving the LP problem at the first iteration

x = cp.Variable(len(w))

y = cp.Variable (1)

objective = cp.Minimize(y)

constraints = [func(w, test) + cp.sum(cp.multiply(xi_subgr , x - w)) <= y, x >=

support , x <= -support]

LPproblem = cp.Problem(objective , constraints)

try:

Solve the problem using the ’ECOS’ solver

f_low = LPproblem.solve(solver=’ECOS’)

except cp.SolverError:

If ’ECOS’ fails , try using the ’SCS’ solver

try:

f_low = LPproblem.solve(solver=’SCS’)

except cp.SolverError:

print("Both ’ECOS’ and ’SCS’ solvers failed to solve the problem.")

f_up = func(w, test)

opt_gap = f_up - f_low

opt_gapSS = opt_gap

forcedSerStep = 0 # to avoid accumulation of null steps

while opt_gap > tol:

old_l = l

if (opt_gap <= ((1 - kappa) * opt_gapSS)) or (forcedSerStep > 50): # serious

step

l += 1

opt_gapSS = opt_gap

if len(J) > 1:

if check:

j = J[-1]

else:

j = random.choice(J[-2:])

else:

j = random.choice(J)

w_proj = wLIST[j - 1] # critical step

else: # null step

w_proj = w

forcedSerStep += 1

while True:

f_lev = f_low + kappa * opt_gap

z = cp.Variable(len(w))

QPproj = cp.Minimize (0.5 * (cp.norm(z - w_proj) ** 2))

constraints = []

for j in J:

29

constraints.append(func(wLIST[j - 1], test) + cp.sum(cp.multiply(

subgrLIST[j - 1], z - wLIST[j - 1]))

- f_lev <= 0)

constraints.append(cp.norm(z) <= cp.norm(support))

constraints.append(z <= cp.Constant (0.01))

constraints.append(z >= cp.Constant (-0.01))

controlling the stability by preventing big oscillations in the "true"

errors

problem = cp.Problem(QPproj , constraints)

try:

Solve the problem using the ’ECOS’ solver

problem.solve(solver=’ECOS’)

except cp.SolverError:

If ’ECOS’ fails , try using the ’SCS’ solver

try:

problem.solve(solver=’SCS’)

except cp.SolverError:

print("Both ’ECOS’ and ’SCS’ solvers failed to solve the problem.")

if problem.status == ’optimal ’ or problem.status == ’optimal_inaccurate ’:

break

elif problem.status == ’infeasible ’ or problem.status == ’

infeasible_inaccurate ’:

f_low = f_lev # f_lev is certainly bigger than f_low

opt_gap = f_up - f_low

print("infeasible solution , updating f_low")

else:

print("QP problem ", problem.status)

return w, total_information , k, errors

w = z.value

wLIST.append(w)

if old_l < l and errors [-1] > np.linalg.norm(res.fun - func(w, test)):

kl = k

errors.append(np.linalg.norm(trueres.fun - func(w, test)))

crit_iterations.append(kl)

xi_subgr = subgr(w, test)

subgrLIST.append(xi_subgr)

if f_up < func(w, test):

check = False

else:

check = True

f_up = np.minimum(f_up , func(w, test))

J = J + [k + 1] # no aggregation method is used for NonProx LBM

in the nonproxLBM we need to solve that LP problem at each iteration

x2 = cp.Variable(len(w))

y2 = cp.Variable (1)

LPobj = cp.Minimize(y2)

constraints = []

for j in J:

constraints.append(func(wLIST[j - 1], test) + cp.sum(cp.multiply(subgrLIST[j

- 1], x2 - wLIST[j - 1]))

<= y2)

constraints.append(x2 >= support)

constraints.append(x2 <= -support)

problemLP = cp.Problem(LPobj , constraints)

try:

Solve the problem using the ’ECOS’ solver

problemLP.solve(solver=’ECOS’)

except cp.SolverError:

If ’ECOS’ fails , try using the ’SCS’ solver

try:

problemLP.solve(solver=’SCS’)

except cp.SolverError:

print("Both ’ECOS’ and ’SCS’ solvers failed to solve the problem.")

upgrading f_low when necessary

f_new_low = y2.value

f_low = np.maximum(f_low , f_new_low)

opt_gap = f_up - f_low

k += 1

total_information.append (3 * len(J))

total_size = total_size + 3 * len(J)

if k > 999:

sentinel set at k=1000

30

bundle = total_size / k

if kl != k:

crit_iterations.append(k)

errors.append(np.linalg.norm(res.fun - func(w, test)))

return w, total_information , crit_iterations , errors , bundle , k

bundle = total_size / k

if kl != k:

crit_iterations.append(k)

errors.append(np.linalg.norm(trueres.fun - func(w, test)))

return w, total_information , crit_iterations , errors , bundle , k

Proximal LBM

def proxLBM(w, kappa , tol , M, test , func , subgr , trueres): # Prox LBM

global f_low

initialization

k = 1

J = [1]

l = 0

kl = 0

crit_iterations = [kl]

wLIST = [w]

w_proj = w

xi_subgr = subgr(w, test)

subgrLIST = [xi_subgr]

total_size = 3

total_information = [3]

errors = [np.linalg.norm(trueres.fun - func(w, test))]

support = -0.1 * np.ones(len(w)) # feasible set needs to be bounded (compact) in

general

solving the LP problem at the first iteration

x = cp.Variable(len(w))

y = cp.Variable (1)

objective = cp.Minimize(y)

constraints = [func(w, test) + cp.sum(cp.multiply(xi_subgr , x - w)) <= y, x >=

support , x <= -support]

LPproblem = cp.Problem(objective , constraints)

try:

Solve the problem using the ’ECOS’ solver

f_low = LPproblem.solve(solver=’ECOS’)

except cp.SolverError:

If ’ECOS’ fails , try using the ’SCS’ solver

try:

f_low = LPproblem.solve(solver=’SCS’)

except cp.SolverError:

print("Both ’ECOS’ and ’SCS’ solvers failed to solve the problem.")

f_up = func(w, test)

opt_gap = f_up - f_low

check = True

opt_gapSS = opt_gap

forcedSerStep = 0

LBM’s stopping rule and artificial stopping rule (used in the second phase of the

testing)

while opt_gap > tol and errors [-1] > 0.00001:

old_l = l

selecting the projection point

if (opt_gap <= ((1 - kappa) * opt_gapSS)) or forcedSerStep > 45: # serious step

forcedSerStep = 0

l += 1

opt_gapSS = opt_gap

if len(J) > 1:

if check:

j = J[-1] # correct

else:

j = random.choice(J[-2:])

else:

j = random.choice(J)

w_proj = wLIST[j - 1]

else: # null step

forcedSerStep += 1

pass

QP problem

31

while True:

f_lev = f_low + kappa * opt_gap

z = cp.Variable(len(w))

QPproj = cp.Minimize (0.5 * (cp.norm(z - w_proj) ** 2))

constraints = []

for j in J:

constraints.append(func(wLIST[j - 1], test) + cp.sum(cp.multiply(

subgrLIST[j - 1], z - wLIST[j - 1]))

- f_lev <= 0)

constraints.append(cp.norm(z) <= cp.norm(support))

constraints.append(z <= cp.Constant (0.01))

constraints.append(z >= cp.Constant (-0.01))

avoiding big oscillations

problem = cp.Problem(QPproj , constraints)

try:

Solve the problem using the ’ECOS’ solver

problem.solve(solver=’ECOS’)

except cp.SolverError:

If ’ECOS’ fails , try using the ’SCS’ solver

try:

problem.solve(solver=’SCS’)

except cp.SolverError:

print("Both ’ECOS’ and ’SCS’ solvers failed to solve the problem.")

if problem.status == ’optimal ’ or problem.status == ’optimal_inaccurate ’:

break

elif problem.status == ’infeasible ’ or problem.status == ’

infeasible_inaccurate ’:

f_low = f_lev # f_lev is certainly bigger than f_low

opt_gap = f_up - f_low

else:

return w, total_information , k, errors

KKTmultipliers = []

for constrain in constraints:

KKTmultipliers.append(constrain.dual_value)

w = z.value

if old_l < l and errors [-1] > np.linalg.norm(res.fun - func(w, test)):

kl = k

errors.append(np.linalg.norm(trueres.fun - func(w, test)))

crit_iterations.append(kl)

wLIST.append(w)

xi_subgr = subgr(w, test)

subgrLIST.append(xi_subgr)

if f_up < func(w, test):

check = False

else:

check = True

f_up = np.minimum(f_up , func(w, test))

opt_gap = f_up - f_low

k += 1

bundle (index set) aggregation

J_hat = [J[j] for j in range(len(J)) if np.abs(KKTmultipliers[j]) >

0.000000000001]

J = J_hat + [k]

total_size = total_size + 3 * len(J)

total_information.append (3 * len(J))

if len(J) <= M:

pass

else:

bundle = total_size / k

if kl != k:

crit_iterations.append(k)

errors.append(np.linalg.norm(res.fun - func(w, test)))

return w, total_information , crit_iterations , errors , bundle , k

if k > 999:

sentinel set at k=1000

bundle = total_size / k

if kl != k:

crit_iterations.append(k)

errors.append(np.linalg.norm(res.fun - func(w, test)))

return w, total_information , crit_iterations , errors , bundle , k

bundle = total_size / k

if kl != k:

32

crit_iterations.append(k)

errors.append(np.linalg.norm(trueres.fun - func(w, test)))

return w, total_information , crit_iterations , errors , bundle , k

33

References

[1] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334–334, 1997.

[2] Joseph-Frédéric Bonnans, Jean Charles Gilbert, Claude Lemaréchal, and Claudia A Sagastizábal.
Numerical optimization: theoretical and practical aspects. Springer Science & Business Media, 2006.

[3] Jonathan Borwein and Adrian Lewis. Convex Analysis. Springer, 2006.

[4] Ulf Brännlund, Krzysztof C Kiwiel, and Per Olof Lindberg. A descent proximal level bundle method
for convex nondifferentiable optimization. Operations Research Letters, 17(3):121–126, 1995.

[5] Jair Cervantes, Farid Garcia-Lamont, Lisbeth Rodŕıguez-Mazahua, and Asdrubal Lopez. A com-
prehensive survey on support vector machine classification: Applications, challenges and trends.
Neurocomputing, 408:189–215, 2020.

[6] George B Dantzig. Origins of the simplex method. In A history of scientific computing, pages 141–151.
1990.

[7] Welington de Oliveira and CLAUDIA Sagastizábal. Level bundle methods for oracles with on-demand
accuracy. Optimization Methods and Software, 29(6):1180–1209, 2014.

[8] Mateo Dı́az and Benjamin Grimmer. Optimal convergence rates for the proximal bundle method.
arXiv preprint arXiv:2105.07874, 2021.

[9] Stefan Feltenmark and Krzysztof C Kiwiel. Dual applications of proximal bundle methods, including
lagrangian relaxation of nonconvex problems. SIAM Journal on Optimization, 10(3):697–721, 2000.

[10] A. Fuduli and M. Gaudioso. Tuning strategy for the proximity parameter in convex minimization.
Journal of Optimization Theory and Applications, 130(1):95–112, 2006.

[11] Ralph Gomory. An algorithm for the mixed integer problem. Technical report, RAND CORP SANTA
MONICA CA, 1960.

[12] Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving linear systems.
Journal of research of the National Bureau of Standards, 49(6):409–436, 1952.

[13] Krzysztof C Kiwiel. Proximity control in bundle methods for convex nondifferentiable minimization.
Mathematical programming, 46(1-3):105–122, 1990.

[14] Krzysztof C Kiwiel. Approximations in proximal bundle methods and decomposition of convex
programs. Journal of Optimization Theory and applications, 84(3):529–548, 1995.

[15] Krzysztof C Kiwiel. Proximal level bundle methods for convex nondifferentiable optimization,
saddle-point problems and variational inequalities. Mathematical Programming, 69(1-3):89–109, 1995.

[16] Quoc Le, Alex Smola, and Svn Vishwanathan. Bundle methods for machine learning. Advances in
neural information processing systems, 20, 2007.

[17] Claude Lemaréchal, Arkadii Nemirovskii, and Yurii Nesterov. New variants of bundle methods.
Mathematical programming, 69:111–147, 1995.

[18] David G Luenberger, Yinyu Ye, et al. Linear and nonlinear programming, volume 2. Springer, 1984.

[19] Marko Mäkelä. Survey of bundle methods for nonsmooth optimization. Optimization methods and
software, 17(1):1–29, 2002.

[20] Jianyu Miao and Lingfeng Niu. A survey on feature selection. Procedia computer science, 91:919–926,
2016.

[21] Welington de Oliveira and Claudia Sagastizábal. Bundle methods in the xxist century: A bird’s-eye
view. Pesquisa Operacional, 34:647–670, 2014.

[22] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and trends® in Optimization, 1
(3):127–239, 2014.

34

[23] R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on
control and optimization, 14(5):877–898, 1976.

[24] R Tyrrell Rockafellar. Convex analysis, volume 11. Princeton university press, 1997.

[25] Claudia Sagastizábal. Composite proximal bundle method. Mathematical Programming, 140(1):
189–233, 2013.

[26] Mı́cheál Ó Searcóid. Metric spaces. Springer-Verlag Berlin Heidelberg, 2007.

[27] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. Osqp: An
operator splitting solver for quadratic programs. Mathematical Programming Computation, 12(4):
637–672, 2020.

[28] Stephen J Wright and Benjamin Recht. Optimization for data analysis. Cambridge University Press,
2022.

35

	Introduction
	Theoretical framework
	Optimization theory preliminaries
	Linear and quadratic programming problems

	Bundle algorithms for Non-Smooth Optimization (NSO)
	General Bundle Method (GBM)
	Proximal Bundle Method (PBM)
	Level Bundle Method (LBM)

	Convergence analysis
	PBM
	LBM

	Numerical experiments: Regularized Support Vector Machine
	Conclusion
	Results of the numerical experiments

	References

