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Abstract

We give an overview of the basic concepts of elliptic curves. We use the Tate normal form of
the equation of an elliptic curve to classify all elliptic curves over Q with a rational torsion point of
given order greater than 3 up to isomorphism. We give the definition of the division polynomials
and look at their uses in the context of elliptic curves. We give a proof of the non-existence of an
elliptic curve over Q with a rational torsion point of order 11.
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Preface

The study of elliptic curves constitutes a major area of current research within the field of mathematics,
especially in number theory. It combines concepts from algebra, number theory and geometry. Elliptic
curves have many applications in mathematics. For example, elliptic curves were used to prove Fermat’s
Last Theorem, and elliptic curves over finite fields can be used in the field of cryptography.

In Section 1, we define elliptic curves and the group law on them. We also look at some important
results regarding the group structures of elliptic curves. In particular, we cover Mazur’s theorem about
the torsion subgroup of elliptic curves over the rational numbers.
In Section 2, we cover isomorphisms between elliptic curves in the Weierstrass normal form. We also
define some invariants associated to elliptic curves.
In Section 3, we find conditions on the coefficients of the equation of an elliptic curve for which the elliptic
curve has a point of order 2 or 3. We also look at some families of curves with points of order 2 or 3.
In Section 4, we define the Tate normal form of an elliptic curve, and show how we can use them to
classify elliptic curves over Q with a point of a particular order greater than 3 up to isomorphism. In
Section 5, we find these families of elliptic curves.
In Section 6, we define the sequence of polynomials called the division polynomials and cover some of
their uses in the context of elliptic curves. We also explain how they can be used to write an algorithm
to find elliptic curves with trivial torsion subgroup.
Finally, in Section 7, we give a proof of the fact that there are no elliptic curves over Q with a rational
torsion point of order 11. In this section, we use some concepts from algebraic number theory.
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1 Elliptic curves

In this section, we explain the basic ideas of elliptic curves.

Definition 1.1 (Elliptic Curves). An elliptic curve E = E(K) over a field K is a non-singular plane
algebraic curve. In other words, it is the set of all points (x, y) ∈ K2 that satisfy the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1.1)

for some a1, a2, a3, a4, a6 ∈ K, together with the ‘point at infinity’ O which lies on every vertical line.
An explanation of this point can be found in Section 1.1. An equation of the form (1.1) is said to be in
the Weierstrass normal form. We also denote the right-hand side of (1.1) by f(x).

The curve given by (1.1) has to be non-singular. We discuss what this means in Section 1.3.
In Figure 1, some examples of elliptic curves over R are shown.

(a) y2 + 4xy = x3 − 3x2 + 6 (b) y2 = x3 − 7x+ 3

Figure 1: Examples of elliptic curves over R.

1.1 The projective plane

This section is based on [Was08] and [Hus04].
To understand the meaning of the ‘point at infinity’ O, we need to know some basic projective ge-

ometry. Let K be a field. The projective plane P2
K over K is a projective space given by equivalence

classes of triples (x, y, z), where x, y and z are in K and at least one of x, y and z is non-zero. We
say that two triples (x1, y1, z1) and (x2, y2, z2) are equivalent if there exists a non-zero λ ∈ K such
that (x1, y1, z1) = (λx2, λy2, λz2). We denote this equivalence by (x1, y1, z1) ∼ (x2, y2, z2). The equiva-
lence classes are denoted by (x : y : z), and they are called points in the projective plane.

Lemma 1.2 (Projective lines). The following statements are true.

• Let (a : b : c) and (α : β : γ) be two distinct points in P2
K . Then there is a unique line through

these two points, given by

det

x y z
a b c
α β γ

 = 0.

• Two lines ux+ vy+wz = 0 and u′x+ v′y+w′z = 0 in P2
K coincide if and only if their coefficients

satisfy (u : v : w) = (u′ : v′ : w′).

• Two distinct lines in P2
K intersect in exactly one point.

We omit the proof of this lemma.
On the projective plane, we can make a distinction between “finite points” and “points at infinity”.

If z ̸= 0, we can always write (x : y : z) = (xz : y
z : 1). Such points are called “finite points”.

If z = 0 however, we can think of dividing by z as giving ∞ in the x- or y-coordinate. Therefore, we call
points of the form (x : y : 0) the “points at infinity”.
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In the context of projective geometry, we call the plane K2 the affine plane. We can include the affine
plane K2 in the projective plane P2

K using the map

(x, y) 7→ (x : y : 1).

In other words, the affine plane can be identified with the set of finite points of the projective plane.

1.2 Homogeneous polynomials

This section is based on [Was08].
A polynomial F (x, y, z) over a field K is called homogeneous of degree n if every monomial term

of F is of the form a · xiyjzk, where a ∈ K and i + j + k = n. In this case F has the prop-
erty that F (λx, λy, λz) = λnF (x, y, z) for all λ ∈ K. Therefore, if (x1, y1, z1) ∼ (x2, y2, z2), we
have F (x1, y1, z1) = 0 ⇐⇒ F (x2, y2, z2) = 0. This means that a zero of F in the projective plane P2

K

is independent of the choice of representative, and hence the set of zeros of F in P2
K is well-defined.

We can make any polynomial homogeneous by inserting the appropriate powers of z. Doing this may
allow us to find more solutions to equations by including the points at infinity in their solution domain.

Example 1.3. We can find an intersection point of two distinct vertical lines. Consider the vertical
lines x = a and x = b, where a, b ∈ K and a ̸= b. These lines do not intersect in the affine plane. We
can make both lines homogeneous of order 1 by inserting a factor z on the right hand side. We obtain
equations x = az and x = bz, respectively. We can find solutions at infinity by setting z = 0. In this
case, we find that there is only one intersection, for x = 0 and z = 0. We need that y ̸= 0, so we get
that the only solution is (0 : 1 : 0).

Let E be an elliptic curve over K given by the polynomial equation

y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0. (1.2)

By substituting the appropriate powers of z into (1.2), we can turn this polynomial into a homogeneous
polynomial of degree 3:

y2z + a1xyz + a3yz
2 − x3 − a2x

2z − a4xz
2 − a6z

3 = 0. (1.3)

The points (x, y) on the curve in the affine plane correspond to the finite points (x : y : 1) on the curve
in the projective plane. To find points on this curve that lie at infinity, we set z = 0 in (1.3) and we
obtain:

−x3 = 0.

The only solution to this equation is x = 0. We can conclude that the only point at infinity that lies on
the curve is (0 : 1 : 0). As we found in Example 1.3, this is the unique point that lies on all vertical lines.
This is the point that we call O.

For most purposes of this text, it provides no advantage to work with projective coordinates. For
this reason, we use affine coordinates to denote points on E and treat the point at infinity O as a special
point, unless specified otherwise.

1.3 The group law

This section is based on [Hus04].
Consider an elliptic curve E over a field K given by an equation in Weierstrass normal form (1.1).

The plane curve given by (1.1) has to be non-singular. In this section, we explain what it means for a
curve to be non-singular. We also show that, since the plane curve given by (1.1) is non-singular, we can
define an algebraic structure on E called the chord-tangent law. We can then use the chord-tangent law
to define a group law on E(K).

Consider a cubic curve C over a field K given by the homogeneous equation

F (x, y, z) = y2z + a1xyz + a3yz
2 − x3 − a2x

2z − a4xz
2 − a6z

3 = 0. (1.4)

Definition 1.4 (Non-singular curve). A plane algebraic curve given by (1.4) is non-singular if there is
no point on the curve where all partial derivatives of F (x, y, z) vanish simultaneously.
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Whether a cubic curve is non-singular depends on the coefficients of the equation that defines it. We
can make this condition on the coefficients more explicit.

For ease of notation, we define the following coefficients associated to the curve given by (1.4):

b2 = a21 + 4a2,

b4 = a1a3 + 2a4,

b6 = a23 + 4a6,

b8 = a21a6 − a1a3a4 + 4a2a6 + a2a
2
3 − a24.

(1.5)

These coefficients are related by

4b8 = b2b6 − b24.

Using this notation, we can define a quantity associated to the cubic curve called the discriminant.

Definition 1.5 (Discriminant). Let C be the cubic curve over a field K given by (1.4). With notation
as above, the discriminant ∆ of C is defined as

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6. (1.6)

We can use the discriminant to determine whether a cubic curve is non-singular.

Theorem 1.6. A plane algebraic curve given by (1.4) is non-singular if and only if its discriminant ∆
as given by (1.6) is non-zero.

A curve of the form (1.1) is an elliptic curve precisely when it is non-singular.

Proposition 1.7. Let K be a field. Let L be a line and let C be a cubic curve in P2
K . Suppose L intersects

C in two K-rational points, counting multiplicities. Then, there is a third K-rational intersection point.

Proof. Let the line L be given by ax + by + cz = 0 and let the cubic C be given by F (x, y, z) = 0,
where F (x, y, z) is a homogeneous polynomial. We can use the equation for L to eliminate one variable
in the third-order equation of the cubic.

For intersections off the line z = 0, we can find a polynomial equation in the x-coordinate or in
the y-coordinate of the intersection points. Thus, the intersection points are rational if and only if the
roots of the cubic equation are rational.

Henceforth, it is sufficient to prove the following algebraic statement: if a cubic polynomial with
rational coefficients has two rational roots, then the third root is rational. This is a well-known result
from algebra.

Another way to phrase Proposition 1.7 in the context of elliptic curves is: if P and Q are points on
an elliptic curve E, then the line through P and Q intersects E in a third point R. This is the idea
behind the following geometric construction, called the chord-tangent law.

Definition 1.8 (Chord-tangent law). Let E be an elliptic curve over a field K given by (1.1).
Let P1 = (x1, y1) and P2 = (x2, y2) be two points on E. If P1 ̸= P2, let L be the line through P1 and P2.
If P1 = P2, let L be the tangent line to E at P1. By Proposition 1.7, the line L intersects E in a third
point, counting multiplicities, which we denote by R(P1, P2). If L is vertical, the third point is the point
at infinity O, which is on every vertical line.

The chord-tangent law is not a group law on E(K). However, we can use it to define a more
sophisticated construction on E(K) which is. The following proposition is also used in this construction.

Proposition 1.9 (Inverse). Suppose (x, y) is a point in E(K). Then (x,−y − a1x− a3) is also a point
in E(K). We call this point the inverse of (x, y) and denote it by −(x, y).

Proof. Since (x, y) has coordinates in K, clearly (x,−y−a1x−a3) also has coordinates in K. Therefore,
it is sufficient to show that (x,−y − a1x− a3) is in E(K).
We know that (x, y) satisfies the equation (1.1), since (x, y) is in E(K). We can verify that the
point (x,−y − a1x− a3) also satisfies (1.1) by a direct computation:

(−y − a1x− a3)
2 + a1x(−y − a1x− a3) + a3(−y − a1x− a3) = y2 + a1xy + a3y = f(x).

This concludes the proof.
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Remark 1.10 (Symmetry line). If the characteristic of the field K is different from 2, it follows from
Proposition 1.9 that E has vertical symmetry around the line given by

y = −a1x+ a3
2

. (1.7)

We call this the symmetry line of E.

Recall from Subsection 1.2 that O is the point (0 : 1 : 0), which is the unique point that lies on every
vertical line. Since (0 : −1 : 0) = (0 : 1 : 0), we can say that the “top” and “bottom” of every vertical
line is the same. Therefore, −O = O. In addition, the line through O and a finite point P = (x, y) on E
is always vertical, so the third point on this line is always −P . Since O is the only point at infinity on E,
we say that the third point through O and O is O itself.

With the chord-tangent law and the notion of inverse in mind, we can define the group law on E(K).

Definition 1.11 (Group law). The group law on E(K) is defined using the chord-tangent law. For any
points P1 and P2 in E(K), we define

P1 + P2 = −R(P1, P2).

The identity element is O. The inverse of a point P1 is −P1. The group law as defined above is
associative, but the proof of this is omitted. A proof can be found in [Hus04, Chapter 3.1, theorem 1.2].
Some illustrative examples of the construction of the group law are depicted in Figure 2.

(a) P , Q and R distinct (b) Q = R

(c) P = Q (d) Q = −P

Figure 2: Examples of the construction of the group law, where R := R(P,Q).
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Remark 1.12. Assume P , Q and R are distinct K-rational points on an elliptic curve E. By the
definition of the group law, the three points lie on a line if and only if

P +Q+R = O.

Notation 1.13 (Multiples). Assume P is a point in E(K). For any positive integer n, it is conventional
to denote the sum

P + P + · · ·+ P︸ ︷︷ ︸
n times

by nP . By associativity, the inverse of nP is equal to n times the inverse of P , i.e. −(nP ) = n(−P ).
Therefore, this point is denoted by −nP .

Remark 1.14 (Tangent lines). The tangent line to E at a point (x, y) can be found using formal
differentiation of equation (1.1). We consider y = y(x) and differentiate both sides with respect to x:

d
dx

(
y(x)2 + a1xy(x) + a3y(x)

)
= f ′(x)

2y(x)y′(x) + a1y(x) + a1xy
′(x) + a3y

′(x) = f ′(x)

(2y(x) + a1x+ a3)y
′(x) = f ′(x)− a1y(x).

If (x, y) is such that 2y + a1x + a3 = 0, then by Proposition 1.9 the point (x, y) is equal to its inverse,
i.e. −(x, y) = (x, y). This means that (x, y) + (x, y) = O, so −O = O is on the tangent line to E
at (x, y). Henceforth, the tangent line at (x, y) is vertical. If the characteristic of K is different from 2,
this happens if and only if (x, y) is on the symmetry line (1.7). Otherwise, we get that the slope of the
tangent line is

y′(x, y) =
f ′(x)− a1y

2y + a1x+ a3
. (1.8)

Let P and Q be points in E(K), and let L be the line through P and Q. If L is not vertical, it can
be represented by an equation y = λx + β. The x-coordinate of R(P,Q) can be found by substituting
the expression y = λx + β into (1.1) and solving the resulting cubic polynomial for x. Using the fact
that x1 and x2 are roots of this polynomial, we can find the root decomposition of this polynomial. This
also gives us the third root.

Remark 1.15 (Formulas for addition). Let E be the elliptic curve over a field K given by (1.1).
Let P1 = (x1, y1) and P2 = (x2, y2) be two points on E, and let L be the line through P1 and P2 as
defined in 1.8. Here, we give computations of the group law to find the coordinates of the point P1 +P2

explicitly.

1. If x1 ̸= x2: the line L is given by y = λx+ β, where λ = (y2 − y1)/(x2 − x1) and β = y1 − λx1.

2. If x1 = x2 but y1 ̸= y2: the line L is the vertical line given by x = x1.

3. If P1 = P2 and 2y1 + a1x1 + a3 = 0: the line L is the tangent line to E at P1, which is the vertical
line x = x1.

4. If P1 = P2 and 2y1 + a1x1 + a3 ̸= 0: the line L is the tangent line to E at P1, given by y = λx+ β,
where λ = y′(x1, y1) and β = y1 − λx1.

In cases 2 and 3, the line L is vertical and hence we have R(P1, P2) = O.
In cases 1 and 4, we use the chord-tangent law to find the third point R(P1, P2). This point has
coordinates (x3, y3), where

x3 = λ2 + λa1 − a2 − x1 − x2,

y3 = λx3 + β.
(1.9)

Finally, we have P1 + P2 = −R(P1, P2), so

P1 + P2 = (x3,−y3 − a1x3 − a3). (1.10)
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1.4 The group structure

In this section, we give some important results regarding the structure of the group on elliptic curve.

Definition 1.16 (Torsion points and order). Assume P is a K-rational point on an elliptic curve E. If
there exists a positive integer n such that nP = O, we say that P is a torsion point of E(K). The group
of all torsion points of E(K) is called the torsion subgroup of E(K) and is denoted by Tor (E(K)). If P
is a torsion point, the smallest positive integer m such that mP = O is called the order of P .

It has been shown that the torsion subgroup of an elliptic curve over the field Q of rational numbers
can only have one of few possible structures. The following result was shown by Mazur [Maz77].

Theorem 1.17 (Mazur). Let E be an elliptic curve over Q. Then, Tor (E(Q)) is isomorphic to either

Z/mZ for m = 1, 2, . . . , 10, 12

or

Z/mZ ⊕ Z/2Z for m = 2, 4, 6, 8.

In particular, this means that the order of a Q-rational torsion point on E must be in {1, 2, . . . , 10, 12}.
The following theorem by Mordell is an important result about the torsion group of an elliptic curve

over Q [Mor22].

Theorem 1.18 (Mordell). Let E be an elliptic curve over Q. Then the group E(Q) is a finitely generated
abelian group.

We omit the proof, as it is beyond the scope of this paper.
The possible structures of finitely generated abelian groups are all known.

Theorem 1.19 (Fundamental theorem of finitely generated abelian groups). Let G be a finitely generated
abelian group. Then G is isomorphic to

Tor(G)× Zr

for some unique finite non-negative integer r. The number r is called the rank of G.

We omit the proof, as it is beyond the scope of this paper.
By Theorems 1.18 and 1.19, we can always write

E(Q) ∼= Tor(E(Q))× Zr

for some unique finite non-negative integer r, depending on E.
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2 Isomorphisms

This section is based on [Hus04].
We can define isomorphisms between elliptic curves and some quantities associated to them.

2.1 Isomorphisms between elliptic curves

We can define maps between elliptic curves with equations in the Weierstrass normal form by means of
a change of variables.

Definition 2.1 (Admissible change of variables). An admissible change of variables in the equation of
an elliptic curve is one of the form

x = u2x+ r and y = u3y + su2x+ t, (2.1)

where u, r, s, t ∈ K and u ̸= 0.

An admissible change of variables as in (2.1) yields a new form of the equation in variables x and y:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.2)

where the coefficients are given by

ua1 = a1 + 2s,

u2a2 = a2 − sa1 + 3r − s2,

u3a3 = a3 + ra1 + 2t,

u4a4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st,

u6a6 = a6 + ra4 + r2a2 + r3 − ta3 − rta1 − t2.

(2.3)

This equation represents the same curve in different coordinates. We can define a new curve E by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

This curve E is isomorphic to E. Among other things, this means that the group E(K) is isomorphic to
E(K). The isomorphism ϕ : E → E is such that the functions x, y on E composed with ϕ are related
to the functions x, y on E by

xϕ = u2x+ r and yϕ = u3y + su2x+ t. (2.4)

It can be shown that inverting an admissible change of variables and composing two admissible changes
of variables also yields an admissible change of variables.

Theorem 2.2. Any isomorphism between two elliptic curves with equations in the Weierstrass normal
form is given by an admissible change of variables.

The proof of this theorem is omitted.

2.2 Associated quantities

To help classify elliptic curves up to isomorphism, we associate some quantities to the equation in the
Weierstrass normal form (1.1) of an elliptic curve E over a field K. Recall the bi-coefficients (1.5) and
discriminant (1.6) associated to such a curve.

Remark 2.3. If two elliptic curves E and E are isomorphic with isomorphism ϕ : E → E given by (2.4),
then the coefficients bi associated with E and bi associated with E are related as follows:

u2b2 = b2 + 12r,

u4b4 = b4 + rb2 + 6r2,

u6b6 = b6 + 2rb4 + r2b2 + 4r3,

u8b8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4.

Consequently, the discriminants ∆ of E and ∆ of E are related by

u12∆ = ∆.
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Remark 2.4. If the characteristic of the field K is different from 2, then we can use the admissible
change of variables

x = x and y = y − a1x+ a3
2

to change the Weierstrass normal form into

y2 = x3 +
b2
4
x2 +

b4
2
x+

b6
4
. (2.5)

Next, we define the coefficients

c4 = b22 − 24b4,

c6 = −b32 + 36b2b4 − 216b6.

With notation as above, if the characteristic ofK is different from 2 and 3, we can rewrite the discriminant
as

∆ =
c34 − c26
123

.

Definition 2.5 (j-invariant). For an elliptic curve E, we define the j-invariant of E as

j(E) = j =
c34
∆
.

In fields of characteristic different from 2 and 3, we can also write

j = 123
c34

c34 − c26
.

Remark 2.6. Under a change of variables as in 2.3, the ci-coefficients associated with E and the ci-
coefficients associated with E are related by

u4c4 = c4,

u6c6 = c6.

Consequently, we have j(E) = j(E). Indeed, the j-invariant is an invariant of an elliptic curve E up to
isomorphism.

Remark 2.7. If the characteristic of the field K is different from 2 and 3, then we can use the admissible
change of variables

x = x̂− b2
12

and y = ŷ

to change the form (2.5) into

ŷ = x̂3 − c4
48
x̂− c6

864
.

An equation of the form

y2 = x3 +Ax+B (2.6)

has discriminant
∆ = −16

(
4A3 + 27B2

)
. (2.7)
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3 Curves with points of order 2 or 3

This section is based on [Hus04].
First, we want to classify elliptic curves which have points of order 2 or 3. In this section, let E be

an elliptic curve given by (1.1).

3.1 Curves with points of order 2

A point P = (x, y) on E has order 2 if and only if P = −P and P ̸= O, i.e. if and only if the coordinates
of P satisfy

2y + a1x+ a3 = 0.

Using similar arguments as in Remark 2.4, we can find the x-coordinates of these points by solving the
equation

4x3 + b2x
2 + 2b4x+ b6 = 0.

This equation can have zero, one or three distinct solutions in K. Hence, the number of points of order
2 on an elliptic curve can be 0, 1 or 3.
If the characteristic of K is different from 2 and 3, we can use an admissible change of variables to put
the equation of the curve into the form

y2 = x3 +Ax+B,

as explained in Remarks 2.4 and 2.7. Then, the symmetry line as in (1.7) is given by y = 0, so we can
find the possible x-coordinates of points of order 2 by solving

x3 +Ax+B = 0.

Figure 3: Examples of elliptic curves with points of order 2

3.2 The Legendre family

As an example of elliptic curves with points of order 2, we briefly discuss the Legendre family of elliptic
curves.

Definition 3.1 (The Legendre family). Let K be a field of characteristic not equal to 2. The Legendre
family is the family of elliptic curves Eλ over K of the form

y2 = x(x− 1)(x− λ), (3.1)

where λ ∈ K.

A straightforward computation shows that the discriminant of an elliptic curve Eλ of this family is

∆λ = 16λ2(λ− 1)2.
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Figure 4: The curve E4

For λ ∈ K \ {0, 1}, the curve (3.1) is non-singular. Any elliptic curve Eλ has exactly 3 points of order 2,
namely (0, 0), (1, 0), and (λ, 0).

We can expand the equation (3.1) of Eλ to obtain

y2 = x3 − (λ+ 1)x2 + λx.

If the characteristic of K is also different from 3, we can use the admissible change of variables

x = 1
9x+ 1

3 (λ+ 1) and y = 1
27y

in order to obtain the isomorphic curve Eλ in Weierstrass normal form:

y2 = x3 − 27(λ2 − λ+ 1)x− 27(2λ3 − 3λ2 − 3λ+ 2).

The points of order 2 are mapped to the following points under this change of variables:

(0, 0) 7→ (−3λ− 3, 0);

(1, 0) 7→ (6− 3λ, 0);

(λ, 0) 7→ (6λ− 3, 0).

3.3 Curves with points of order 3

A point P on E has order 3 if and only if 2P = −P and P ̸= O. Using the chord-tangent law, this means
that the third point on the tangent line to E at P must be P itself; the tangent line is not vertical and
only intersects the curve at P . We aim to show that points of order 3 are exactly the inflection points
of E.

In order to study inflection points, we need to define the second derivative of y with respect to x.
An inflection point is a point where this second derivative is zero. Before, we found using formal
differentiation that

(2y + a1x+ a3)y
′ = f ′(x)− a1y,

where we consider y = y(x) as a function of x. Using formal differentiation again, we find

(2y′ + a1)y
′ + (2y + a1x+ a3)y

′′ = f ′′(x)− a1y
′.

For points that are not on the symmetry line, we can rewrite this equation to obtain an expression for y′′:

y′′(x, y) =
f ′′(x)− 2y′(y′ + a1)

2y + a1x+ a3
. (3.2)
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Proposition 3.2. A finite point P = (x1, y1) on E is of order 3 if and only if y′′(x1, y1) = 0.

Proof. We aim to show that both of these statements are equivalent with

3x1 = λ2 + λa1 − a2,

where λ = y′(x1, y1) is the slope of the tangent line to E at P .
Suppose P = (x1, y1) on E is a point of order 3. In particular, this means that the tangent line to P at
E is not vertical, so λ = y′(x1, y1) is well-defined. Using formulas (1.9) and (1.10), we find that

2P = (x3,−y3 − a1x3 − a3),

where

x3 = λ2 + λa1 − a2 − 2x1,

y3 = λx3 + β.

Since P is of order 3, we have that 2P = −P = (x1,−y1−a1x1−a3). By equating the coordinates of 2P
and −P , we get the system {

λ2 + λa1 − a2 − 2x1 = x1,

−λx3 − β − a1x3 − a3 = −y1 − a1x1 − a3.
(3.3)

The point (x1, y1) is of order 3 if and only if its coordinates satisfy (3.3). Further rewriting the system,
we get {

3x1 = λ2 + λa1 − a2,

y1 = λx3 + β.

(3.4a)

(3.4b)

Since the tangent line to E at P is given by y = λx + β and P is on this line, we know that
y1 = λx1 + β. Therefore, we know that x1 = x3 if and only if y1 = λx3 + β, hence equations (3.4a)
and (3.4b) are equivalent. We get that the point (x1, y1) is of order 3 if and only if

3x1 = λ2 + λa1 − a2,

which is what we wanted to show.
Now, suppose that P = (x1, y1) is a point on E such that y′′(x1, y1) is well-defined and y′′(x1, y1) = 0.

Let us denote λ = y′(x1, y1). If we plug (x, y) = (x1, y − 1) into (3.2), we get

y′′(x1, y1) =
f ′′(x1)− 2λ(λ+ a1)

2y1 + a1x1 + a3
.

We can compute f ′′(x) = 6x+ 2a2. We get that y′′(x1, y1) = 0 if and only if

6x1 + 2a2 − 2λ(λ+ a1) = 0.

Rewriting this equation, we get that y′′(x1, y1) = 0 if and only if

3x1 = λ2 + λa1 − a2,

which is what we wanted to show.
Finally, we can conclude that a point (x1, y1) on E is of order 3 if and only if y′′(x1, y1) = 0.

Solving y′′(x, y) = 0 is equivalent to solving

f ′′(x)− 2y′(x, y)(y′(x, y) + a1) = 0.

If we expand this expression and substitute

y2 = x3 + a2x
2 + a4x+ a6 − a1xy − a3y,

this equation reduces to the fourth degree polynomial equation

3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8 = 0, (3.5)
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where b2, b4, b6 and b8 are defined as in (1.5). Since this polynomial in x is of degree 4, there can be at
most 4 distinct solutions. If P is a point of order 3, then −P is a distinct point of order 3. Therefore,
there can be at most 8 distinct points of order 3 on an elliptic curve.
If the characteristic of K is not equal to 2 or 3, we can use an admissible change of variables to put the
equation of the curve in the form

y2 = x3 +Ax+B,

as in Remarks 2.4 and 2.7. In this case, equation (3.5) reads as

3x4 + 6Ax2 + 12Bx−A2 = 0.

Figure 5: Examples of elliptic curves with points of order 3

We can show that the number of points of order 3 on an elliptic curve can only be 0, 2 or 8.

Proposition 3.3. Let E be an elliptic curve over a field K. Suppose P1 and P2 are two points on E
of order 3 with distinct x-coordinates. Then, the set {P1, P2} is a basis of the set of all points on E of
order dividing 3, and there are 8 distinct points of order 3.

Proof. It is shown above that there can be at most 8 different points of order 3 on E.
Suppose Q is a point of order 3. In particular, Q is not of order 2, so Q ̸= −Q. We have Q ̸= O,
so −Q ̸= O. We also have 2(−Q) = −(2Q) = −(−Q) = Q ̸= O. Since 3(−Q) = −(3Q) = −O = O, it
follows that −Q is a distinct point of order 3.
Therefore, it follows that there can be at most 4 pairs of points of order 3 with the same x-coordinates.
We already have 2 such pairs: {±P1} and {±P2}. We know that these are distinct since we assumed P1

and P2 have distinct x-coordinates. Now, we need to show that {±(P1 +P2)} and {±(P1 −P2)} are two
distinct pairs of points of order 3.
We have

P1 + P2 = O ⇐⇒ P2 = −P1,

P1 + P2 = P1 ⇐⇒ P2 = O,

P1 + P2 = −P1 ⇐⇒ P1 = P2,

P1 + P2 = P2 ⇐⇒ P1 = 0,

P1 + P2 = −P2 ⇐⇒ P1 = P2.

By assumption, we have P1, P2 ̸= O and P1 ̸∈ {±P2}, so P1 + P2 ̸∈ {O,±P1,±P2}. It follows
that −(P1 + P2) is also not in this set. Since 3(P1+P2) = 3P1+3P2 = O+O = O, the set {±(P1+P2)}
is a new pair of points of order 3.
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Similarly, we have

P1 − P2 = O ⇐⇒ P1 = P2,

P1 − P2 = P1 ⇐⇒ P2 = O,

P1 − P2 = −P1 ⇐⇒ P2 = −P1,

P1 − P2 = P2 ⇐⇒ P1 = −P2,

P1 − P2 = −P2 ⇐⇒ P1 = 0,

P1 − P2 = P1 + P2 ⇐⇒ P2 = O,

P1 − P2 = −(P1 + P2) ⇐⇒ P1 = O.

By assumption, we have P1, P2 ̸= O and P1 ̸∈ {±P2}, so P1 − P2 ̸∈ {O,±P1,±P2}. It follows
that −(P1 − P2) is also not in this set. Since 3(P1−P2) = 3P1−3P2 = O−O = O, the set {±(P1−P2)}
is a new pair of points of order 3.
Now, we have 8 distinct points of order 3. Thus, the set spanned by {P1, P2} is equal to the set of all
points on E of order dividing 3. This concludes the proof.

3.4 The Hessian family

As an example of elliptic curves with points of order 3, we briefly discuss the Hessian family of elliptic
curves and an adaptation of this family.

Definition 3.4 (The Hessian family). Let K be a field of characteristic different from 3. The Hessian
family is the family of elliptic curves Eα over K of the form

y2 + αxy + y = x3, (3.6)

where α ∈ K.

Figure 6: The curve E3.3 over R

A straightforward computation shows that the discriminant of Eα is given by

∆α = α3 − 27.

Hence, we see that the curve (3.6) is non-singular whenever α ̸∈ 3µ3, where µ3 is the set of roots of x3−1
in K.
This family is constructed in such a way that the point (0, 0) is a torsion point of order 3 on every elliptic
curve of the family. This can easily be verified by plugging (x, y) = (0, 0) into (3.6), (1.8) and (3.2) and
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using Proposition 3.2.
More generally, we can look at elliptic curves E(a1, a3) given by an equation of the form

y2 + a1xy + a3y = x3. (3.7)

Every such curve has the point (0, 0) on it. A straightforward computation of the discriminant yields

∆(a1, a3) = a33(a
3
1 − 27a3).

We find that the curve (3.7) is non-singular if and only if a3 ̸= 0 and a1 ̸∈ 3 3
√
a3µ3. It can again be

easily verified that on elliptic curves of this form, the point (0, 0) is of order 3.
If a line y = λx+β has a double intersection point with an elliptic curve E, then this line is the tangent
line to E at this point. Moreover, if this line has a triple intersection point, it is the tangent line at
this point and does not intersect the curve in any other point. By the group law, this point must be of
order 3, because we get 2P = −P .
We want to find conditions on a1 and a3 such that the line y = x + u has a triple intersection in a
point (v, v + u) for v ̸= 0 on E(a1, a3). To solve this, we have to solve the equation

x3 − (x+ u)2 − (a1x+ a3)(x+ u) = (x− v)3.

By comparing the coefficients of the powers of x, we get the system of equations
3v = a1 + 1

−3v2 = 2u+ a1u+ a3

v3 = u2 + a3u.

(3.8a)

(3.8b)

(3.8c)

By multiplying equation (3.8b) by u and subtracting this from equation (3.8c), we obtain

v3 + 3uv2 = −(a1 + 1)u2.

Substituting a1 + 1 = 3v and rewriting, we get

v3 + 3uv2 + 3vu2 = 0

or equivalently

(v + u)3 = u3.

We want to find solutions for v ̸= 0, so we also need to assume u ̸= 0. Thus, we find(
v + u

u

)3

= 1.

Since v ̸= 0, we get (v + u)/u ̸= 1, so we must have (v + u)/u ∈ µ3 \ {1}. If the field K is such
that µ3 = {1}, then this construction is not possible. For the remainder of this section, we assume
that K contains three distinct third roots of unity, so µ3 \ {1} is not empty. Then we can also assume
that (v + u)/(u) = ρ ∈ µ3, where ρ is a third root of unity different from 1. An important property of ρ
is that

ρ2 + ρ+ 1 = 0.

Now, we have v + u = ρu, so

v = (ρ− 1)u

and

u = (ρ− 1)−1v.

We have that

(ρ− 1)(ρ2 − 1) = 3,
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so

(ρ− 1)−1 = 1
3 (ρ

2 − 1).

By rewriting ρ2 + ρ+ 1 = 0, we find ρ2 − 1 = −ρ− 2, so we can also write

(ρ− 1)−1 = − 1
3 (ρ+ 2).

Hence,

u = − 1
3 (ρ+ 2)v

and

u+ v =
(
1− 1

3 (ρ+ 2)
)
v = 1

3 (1− ρ)v.

We can substitute the above expression of u in terms of v into system (3.8) to find expressions for a1
and a3 in terms of v:


3v = a1 + 1

−3v2 = − 1
3 (a1 + 2)(ρ+ 2)v + a3

v3 = 1
9 (ρ+ 2)2v2 − 1

3a3(ρ+ 2)v.

(3.9a)

(3.9b)

(3.9c)

Equation (3.9a) gives

a1(v) = 3v − 1.

After substituting this into equation (3.9b), we can rewrite equations (3.9b) and (3.9c) to find that they
are equivalent. They can both be rewritten to obtain

a3(v) = (ρ− 1)v2 + 1
3 (ρ+ 2)v.

Thus, for any v ∈ K for which ∆v := ∆(a1(v), a3(v)) ̸= 0, we get that the elliptic curve Ev given by

y2 + a1(v)xy + a3(v)y = x3

has distinct points of order 3

P1 := (0, 0) and P2 := (v, 13 (1− ρ)v).

By Proposition 3.3, since we have two points of order 3 with distinct x-coordinates, we can find all
points of order 3: {P1, P2} is a basis for the set of points of order dividing 3. The full set is

{O, ±P1, ±P2, ±(P1 + P2), ±(P1 − P2)}.
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4 Tate normal form

This section is based on [Hus04].
We can use an admissible change of variables to put the equation for an elliptic curve in a different

form. In this section, we take a look at the Tate normal form and its applications.

Definition 4.1 (Tate normal form). The Tate normal form of an elliptic curve E over a field K is

E = E(b, c) : y2 + (1− c)xy − by = x3 − bx2, (4.1)

where b, c ∈ K.

Figure 7: The curve E(2, 4)

Using the expression (1.6) for the discriminant, we can compute the discriminant in terms of b and c:

∆(b, c) = (1− c)4b3 − (1− c)3b3 − 8(1− c)2b4 + 36(1− c)b4 − 27b4 + 16b5. (4.2)

In particular, we see that we need b ̸= 0.
An elliptic curve E in Tate normal form always contains the point (0, 0), and the tangent line at (0, 0)

is horizontal. This means that the point (0, 0) is not of order 2.
As is shown in Section 3.3, a point P on E is a point of order 3 only if its x-coordinate is a root

of polynomial (3.5). Hence, the point (0, 0) is of order 3 only if 0 is a root of this polynomial. This is
equivalent to the condition b8 = 0, where b8 is defined as in (1.5). For a curve E = E(b, c) in Tate normal
form, we have b8 = −b3. Since we assume b ̸= 0, we have b8 ̸= 0 and hence (0, 0) can not have order 3.

It is relatively easy to compute multiples of P on a curve in Tate normal form. Over the base field Q,
we can use this to find necessary and sufficient conditions on the parameters b and c for which P has a
particular order. This is done in section 5. In combination with the following result, this allows us to
classify all elliptic curves over Q with a point of finite order greater than 3. The proof is adapted from
[Hus04, Chapter 4.4].

Theorem 4.2. Every elliptic curve over a field K with a point of order n > 3 is isomorphic to a curve
in Tate normal form for which the point (0, 0) has order n.

Proof. Suppose we have an elliptic curve E over a field K given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Suppose (x1, y1) is a K-rational point on E which has order greater than 3. First, we want to use an
admissible change of variables x = u2x+ r and y = u3y+su2x+ t so that we get an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 (4.3)
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and the point (x1, y1) gets mapped to the point (0, 0). Without loss of generality, we can choose u = 1.
We have to find values of r, t and s for which we get an equation of the form (4.3) and (x1, y1) gets
mapped to (0, 0).

The point (x1, y1) gets mapped to the point (x1 − r, y1 − s(x1 − r) − t). Clearly, we need r = x1
and t = y1 to set this point equal to (0, 0).

We can verify that this choice of r and t guarantees that a6 = 0. By plugging in r = x1 and t = y1
into (2.3), we find that

a6 = a6 + a4x1 + a2x
2
1 + x31 − a3y1 − a1x1y1 − y21 .

Since (x1, y1) is on E, we know that

y21 + a1x1y1 + a3y1 = x31 + a2x
2
1 + a4x1 + a6,

so indeed a6 = 0.
By plugging r = x1, t = y1 into (2.3), we find

a4 = a4 − sa3 + 2a2x2 − a1(y1 + sx1) + 3x21 − 2sy1.

In order to find s, we set a4 equal to 0 and solve for s:

a4 − sa3 + 2a2x2 − a1(y1 + sx1) + 3x21 − 2sy1 = 0.

We rearrange the terms to get all factors of s on one side:

s(2y1 + a1x1 + a3) = 3x21 + 2a2x1 + a4 − a1y1.

We assumed (x1, y1) has order greater than 3, so 2y1 + a1x1 + a3 ̸= 0. Therefore, we get

s =
3x21 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
,

which is equal to the slope of the tangent line to E at (x1, y1), as is shown in Remark 1.14.
For these choices of r, t and s, we get the isomorphic curve given by the equation

y2 + a1xy + a3y = x3 + a2x
2,

where

a1 = a1 + 2s,

a2 = −s2 − a1s+ 3x1 + a2,

a3 = 2y1 + a1x1 + a3.

By our arguments above, a3 ̸= 0. Since s is the slope of the tangent line to E at (x1, y1), we know by
Proposition 3.2 that a2 = 0 if and only if (x1, y1) has order 3. Since we assumed that (x1, y1) has order
greater than 3, we have a2 ̸= 0.

Now, to put this equation into Tate normal form, we need to make the coefficients of y and x2 equal.
To do this, we use the admissible change of variables x = (a3/a2)

2x̃, y = (a3/a2)
3ỹ. Using (2.3), we get

coefficients

ã1 =
a1a2
a3

,

ã2 =
a32
a23
,

ã3 =
a32
a23
.

Finally, we define

b = −ã2 = −ã3,
c = 1− ã1,

so we get the form

y2 + (1− c)xy − by = x3 − bx2.

This concludes the proof.
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5 Curves with points of order n

This section is based on [Hus04, Chapter 4.4], except where specified otherwise. We provide the details
of the computations.

Using the Tate normal form of an elliptic curve, we can find families consisting of all elliptic curves
over Q in Tate normal form for which the point P = (0, 0) has a given order n ∈ {4, 5, . . . , 10, 12}. By
Theorem 4.2, these families contain all curves with a point of given order n ∈ {4, 5, . . . , 10, 12} up to
isomorphism.

Similar computations for more general cases have been done by other authors. For instance, in [Sut11],
these computations are performed for elliptic curves over finite fields for order n ≤ 50. In [Rei86], these
computations are performed for elliptic curves over quadratic extensions of Q.

There are two ways to define the families of elliptic curves with a point of given order n. The first
method is to find necessary and sufficient conditions on the parameters b and c for which the curve given
by (4.1) is in a particular family. This method is useful for checking whether a given curve with an
equation in Tate normal form is in one of the families.

The second method is to reparametrize the curve in a single variable. This is done by defining b
and c in terms of a new independent parameter α. This method is useful for constructing curves in a
particular family. The required computations for this method are similar to those of the first method.

For the first method, we need b and c to satisfy a polynomial equation fn(b, c) = 0 and ∆(b, c) ̸= 0,
where ∆(b, c) is defined as in (4.2). The polynomial fn(b, c) depends on n, and we aim to compute the
explicit form of this polynomial for n ∈ {4, 5, . . . , 10, 12}. We also aim to show that we can express both
b and c in terms of a single parameter. We use this for the second method.

5.1 Multiples of P

We can compute multiples of P on E(b, c) in terms of b and c using the group law:

P = (0, 0), 2P = (b, bc), 3P = (c, b− c),

−P = (0, b), −2P = (b, 0), −3P = (c, c2).

If c ̸= 0, we can denote d := b
c and we can compute

4P =
(
d(d− 1), d2(c− d+ 1)

)
,

−4P =
(
d(d− 1), d(d− 1)2

)
.

If we also have c ̸= b, we can denote e := c
d−1 and we can compute

5P =
(
de(e− 1), de2(d− e)

)
,

−5P =
(
de(e− 1), d2e(e− 1)2

)
.

If additionally c2 ̸= b− c, then e ̸= 1 and we can denote g := e(d−e)
e−1 . For ease of notation, additionally

denote ℓ := g2 + (1− c)g + b− de(e− 1). Then, we get

6P = (ℓ,−(g + 1− c) · ℓ+ b),

−6P = (ℓ, g · ℓ).

We can use these expressions to find fn(b, c) explicitly for our desired values of n.

5.2 Order 4

Since P can not be of order 2, we know that P is of order 4 if and only if 4P = O, or equivalently,
2P = −2P . Using Section 5.1, this condition reduces to

bc = 0.

Since we require b ̸= 0, we must have c = 0. Hence, we find

f4(b, c) = c. (5.1)
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We can parametrize b and c in terms of a single new variable α. In this case, we can simply put

b4(α) = α,

c4(α) = 0.

Plugging in b = b4(α) and c = c4(α) into (4.2) yields

∆4(α) = α4(1 + 16α).

Hence, curves of this family are non-singular for α ̸= 0,− 1
16 .

The family of elliptic curves with a point of order 4 is precisely given by

E4(α) : y
2 + xy − αy = x3 − αx2,

where α ̸= 0,− 1
16 .

5.3 Order 5

Going forward, we understand that P can only be of order n if P is not of order m for m < n. Therefore,
we assume that b and c do not satisfy the conditions for which P has lower order, i.e. we assume that b
and c are such that fm(b, c) ̸= 0 for m < n.
In particular, we assume that b ̸= 0 and c ̸= 0, so d = b

c is well-defined and non-zero.
The point P is of order 5 if and only if 5P = O, or equivalently, 3P = −2P . Using Section 5.1, this
condition reduces to the system of equations{

c = b,

b− c = 0.

These equations are equivalent. We find

f5(b, c) = b− c. (5.2)

We can parametrize b and c in terms of a single new variable α. In this case, we can simply put

b5(α) = α,

c5(α) = α.

Plugging in b = b5(α) and c = c5(α) into (4.2) yields

∆5(α) = α5(α2 − 11α− 1).

It can be easily verified that α2 − 11α− 1 has no rational zeros, so curves of this family are non-singular
for all α ̸= 0.

The family of elliptic curves with a point of order 5 is precisely given by

E5(α) : y
2 + (1− α)xy − αy = x3 − αx2,

where α ̸= 0.

5.4 Order 6

Going forward, we assume P is not of order 4 or 5, so c ̸= 0 and b ̸= c. This means that e = c
d−1 is

well-defined and non-zero.
Since the point P can not have order 2 or 3, it has order 6 if and only if 6P = 0, which holds if and only
if 3P = −3P . Using Section 5.1, this condition reduces to the equation

b− c = c2.

Hence, we find
f6(b, c) = c2 + c− b. (5.3)
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We can parametrize b and c in terms of a single new variable α. In this case, we can put

b6(α) = α2 + α,

c6(α) = α.

Plugging in b = b6(α) and c = c6(α) into 4.2 yields

∆6(α) = α6(α+ 1)3(9α+ 1).

Thus, curves of this family are non-singular for α ̸= 0,−1,− 1
9 .

The family of elliptic curves with a point of order 6 is precisely given by

E6(α) : y
2 + (1− α)xy − (α2 + α)y = x3 − (α2 + α)x2,

where α ̸= 0,−1,− 1
9 .

5.5 Order 7

The point P has order 7 if and only if 7P = 0, or equivalently, 4P = −3P . Using Section 5.1, this
condition reduces to the system of equations{

c = d(d− 1),

c2 = d2(c− d+ 1).

Notice that the first equation implies the second: if c = d(d− 1), then

d2(c− d+ 1) = d2(d(d− 1)− d+ 1)

= d2(d2 − 2d+ 1)

= d2(d− 1)2

= c2.

Hence, the first equation is sufficient. We can rewrite this equation to obtain a polynomial in terms of b
and c:

c = d(d− 1) ⇐⇒ c = b
c

(
b
c − 1

)
⇐⇒ c3 = b(b− c)

⇐⇒ c3 + bc− b2 = 0.

Thus, we find
f7(b, c) = c3 + bc− b2. (5.4)

We can parametrize b and c in terms of a single new variable α. In this case, we can redefine d to be
an independent parameter and set α = d. Using (...) and the fact that b = cd, we find:

b7(α) = α2(α− 1),

c7(α) = α(α− 1).

Plugging in b = b7(α) and c = c7(α) into 4.2 yields:

∆7(α) = α7(α− 1)7(α3 − 8α2 + 5α+ 1).

The cubic α3−8α2+5α+1 has no rational zeros. Thus, curves of this family are non-singular for α ̸= 0, 1,
or equivalently b ̸= 0 and c ̸= 0, b.

The family of elliptic curves with a point of order 7 is precisely given by

E7(α) : y
2 + (1− α(α− 1))xy − α2(α− 1)y = x3 − α2(α− 1)x2,

where α ̸= 0, 1.
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5.6 Order 8

We assume that the parameters b and c are such that the point P is not of order 4. Since P can not have
order 2, the point P has order 8 if and only if 8P = O, or equivalently, 4P = −4P . Using Section 5.1,
this condition reduces to the equation

d2(c− d+ 1) = d(d− 1)2.

Since we assume b ̸= 0, we get d ̸= 0 and we can divide both sides by d to obtain

d(c− d+ 1) = (d− 1)2.

We rewrite the equation:

d(c− d+ 1) = (d− 1)2 ⇐⇒ cd− d2 + d = d2 − 2d+ 1

⇐⇒ cd = 2d2 − 3d+ 1

⇐⇒ b = (d− 1)(2d− 1) (5.5)

⇐⇒ bc2 = (b− c)(2b− c)

⇐⇒ bc2 = 2b2 − 3bc+ c2

⇐⇒ 2b2 + (1− b)c2 − 3bc = 0.

Hence, we find
f8(b, c) = 2b2 + (1− b)c2 − 3bc. (5.6)

We can parametrize b and c in terms of a single new variable α. In this case, we can redefine d to be
an independent parameter and set α = d. Using equation (5.5) and the fact that c = b

d , we can define:

b8(α) = (α− 1)(2α− 1),

c8(α) =
(α− 1)(2α− 1)

α
.

Plugging in b = b8(α) and c = c8(α) into 4.2 yields:

∆8(α) = α−4(1− 2α)4(α− 1)8(8(α− 1)α+ 1).

Note that 8(α − 1)α + 1 does not have rational zeros. Therefore, curves of this family are non-singular
for α ̸= 0, 1, 12 , or equivalently b ̸= 0, c ̸= 0, c ̸= 2b, c ̸= b.

The family of elliptic curves with a point of order 8 is precisely given by

E8(α) : y
2 + (1− c8(α))xy − b8(α)y = x3 − b8(α)x

2,

where α ̸= 0, 1, 12 .

5.7 Order 9

Since P can not have order 3, the point P has order 9 if and only if 9P = 0, or equivalently, 5P = −4P .
Using Section 5.1, this condition reduces to the system of equations{

de(e− 1) = d(d− 1),

de2(d− e) = d(d− 1)2.

Since d ̸= 0 by assumption, this is equivalent to{
e(e− 1) = d− 1,

e2(d− e) = (d− 1)2.

Notice that the first equation implies the second: if e(e− 1) = d− 1, then

e2(d− e) = e2(−(e− 1)− 1 + d)

= −e2(e− 1) + e2(d− 1)

= −e(d− 1) + e2(d− 1)

= e(e− 1)(d− 1)

= (d− 1)2.
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Hence, the first equation is sufficient. We can rewrite this equation to obtain a polynomial in terms of b
and c:

e(e− 1) = d− 1 ⇐⇒ d = e2 − e+ 1

⇐⇒ d(d− 1)2 = c2 − c(d− 1) + (d− 1)2

⇐⇒ b(b− c)2 = c5 − c3(b− c) + c(b− c)2

⇐⇒ c5 − c3(b− c)− (b− c)3 = 0.

Thus, we find
f9(b, c) = c5 − c3(b− c)− (b− c)3. (5.7)

We can express c in terms of d and e as

c = (d− 1)e

= de− e

= (e2 − e+ 1)e− e

= e3 − e2.

Using b = cd, we get

b = (e3 − e2)(e2 − e+ 1).

We can parametrize b and c in terms of a single new variable α. In this case, we can redefine e to be
an independent parameter and set α = e:

b9(α) = (α3 − α2)(α2 − α+ 1),

c9(α) = α3 − α2.

Plugging in b = b9(α) and c = c9(α) into 4.2 yields:

∆9(α) = α9(α− 1)9(α2 − α+ 1)3(α3 − 6α2 + 3α+ 1).

The cubic α3−6α2+3α+1 has no rational zeros. Thus, curves of this family are non-singular for α ̸= 0, 1,
or equivalently b ̸= 0, c2 + c, c ̸= 0, b.

The family of elliptic curves with a point of order 9 is precisely given by

E9(α) : y
2 + (1− c9(α))xy − b9(α)y = x3 − b9(α)x

2,

where α ̸= 0, 1.

5.8 Order 10

We assume that the parameters b and c are such that P does not have order 5. Since P can not have
order 2, the point P has order 10 if and only if 10P = O, or equivalently, 5P = −5P . Using Section 5.1,
this condition reduces to the equation

de2(d− e) = d2e(e− 1)2.

Since we assume that d and e are well-defined and non-zero, we can divide both sides by de to get

e(d− e) = d(e− 1)2.

We rewrite the equation:

e(d− e) = d(e− 1)2 ⇐⇒ de− e2 = de2 − 2de+ d

⇐⇒ (d+ 1)e2 − 3de+ d = 0. (5.8)

We can rewrite (5.8) in terms of b and c:

(d+ 1)e2 − 3de+ d = 0 ⇐⇒ (d+ 1)c2 − 3cd(d− 1) + d(d− 1)2 = 0

⇐⇒
(
b
c + 1

)
c2 − 3c bc

(
b
c − 1

)
+ b

c

(
b
c − 1

)2
= 0

⇐⇒ bc+ c2 − 3 b2

c + 3b+ b3

c3 − 2 b2

c2 + b
c = 0

⇐⇒ bc4 + c5 − 3b2c2 + 3bc3 + b3 − 2b2c+ bc2 = 0.
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Hence, we find
f10(b, c) = c5 + bc4 + 3bc3 + b(1− 3b)c2 − 2b2c+ b3. (5.9)

We can also rewrite (5.8) to obtain an expression for d in terms of e:

(d+ 1)e2 − 3de+ d = 0 ⇐⇒ (e2 − 3e+ 1)d+ e2 = 0

⇐⇒ d = − e2

e2 − 3e+ 1
.

Note that e2 − 3e + 1 has no rational zeros, so this is a well-defined fraction. This allows us to find
expressions for b and c in terms of e:

c = (d− 1)e

= de− e

= − e3

e2 − 3e+ 1
− e

= −2e3 − 3e2 + e

e2 − 3e+ 1
,

and

b = cd (5.10)

=
e3(2e2 − 3e+ 1)

(e2 − 3e+ 1)2
. (5.11)

We can parametrize b and c in terms of a single new variable α. In this case, we can redefine e to be
an independent parameter and set α = e:

c10(α) = −2α3 − 3α2 + α

α2 − 3α+ 1
,

b10(α) =
α3(2α2 − 3α+ 1)

(α2 − 3α+ 1)2
.

Plugging in b = b10(α) and c = c10(α) into 4.2 yields:

∆10(α) =

(
4α2 − 2α− 1

)
(2α− 1)

5
(α− 1)

10
α10

(α2 − 3α+ 1)
10

This equation is derived using SageMath [The23]. The quadratic terms 4α2 − 2α − 1 and α2 − 3α + 1
have no rational roots, so these terms can not be zero. Thus, curves of this family are non-singular
for α ̸= 0, 1, 12 . We can obtain conditions for b and c by substituting back e = α.

• Rewriting e ̸= 0 yields c ̸= 0.

• Rewriting e ̸= 1 yields c2 + c− b ̸= 0.

• Rewriting e ̸= 1
2 yields 2c2 + c− b ̸= 0.

• For e to be well-defined, we need d ̸= 1, so b ̸= c

Thus, curves of this family are non-singular for b ̸= 0, c, c2 + c, 2c2 + c, and c ̸= 0.
The family of elliptic curves with a point of order 10 is precisely given by

E10(α) : y
2 + (1− c10(α))xy − b10(α)y = x3 − b10(α)x

2,

where α ̸= 0, 1, 12 .
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5.9 Order 12

This section is based on results from [GAT00]. We provide the details of the computations.
We assume that the parameters b and c are such that P does not have order 4 or 6. Since P can not

have order 2 or 3, the point P has order 12 if and only if 12P = O, or equivalently, 6P = −6P . Using
Section 5.1, this condition reduces to the equation

g · ℓ = −(g + 1− c) · ℓ+ b

or equivalently

(2g + 1− c) · ℓ = b.

Using SageMath [The23], we find that this is equivalent to(
c6 + (b+ 1)c4 − 5bc3 + (10b2 − b3)c2 − 9b3c+ 3b4

)
· c

(c2 − b+ c)3
= 0.

By assumption, we have c ̸= 0 and c2 + c− b ̸= 0, so we can reduce this to

c6 + (b+ 1)c4 − 5bc3 + (10b2 − b3)c2 − 9b3c+ 3b4 = 0. (5.12)

Therefore, we get

f12(b, c) = c6 + (b+ 1) c4 + 3b4 − 9b3c− 5bc3 −
(
b3 − 10b2

)
c2. (5.13)

Using SageMath [The23], we can also write (5.12) in terms of d and e:(
e2 + 3d2 + 1− d2e− de− 3d

)
· (d− 1)6 · e4 = 0.

By assumption, d ̸= 1 and e ̸= 0, so we find the equivalent equation

e2 + 3d2 + 1− d2e− de− 3d = 0. (5.14)

Since we assume that P is not of order 6, we have c2 ̸= b − c and hence e ̸= 1. Therefore, we can
define f := e−d

e−1 .
By substituting d = (1− e)f + e into (5.14), we can use SageMath [The23] to rewrite the equation into(

e(f − 1)2 − 3f2 + 3f − 1
)
(e− 1)2 = 0.

Note that e ̸= 1 and f ̸= 1 by assumption. Therefore, we can rewrite this equation to find

e =
3f2 − 3f + 1

(f − 1)2
.

We can find d in terms of f in a similar way. First, we write e in terms of d and f .

f =
e− d

e− 1
⇐⇒ (e− 1)f = e− d

⇐⇒ e(f − 1) = f − d

⇐⇒ e =
f − d

f − 1
.

Now, we substitute this into (5.14) and use SageMath [The23] to find the equivalent equation

(
d(f − 1) + 2f2 − 2f + 1

)
· (d− 1)2

(f − 1)2
= 0.

Since d ̸= 1 and f ̸= 1 by assumption, we find

d =
−2f2 + 2f − 1

f − 1
.
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Now, we can write b and c in terms of f :

c = de− e =
(3f2 − 3f + 1)(f − 2f2)

(f − 1)3
,

b = cd = c · −2f2 + 2f − 1

f − 1
.

We can parametrize b and c in terms of a single new variable α. In this case, we can redefine f to be
an independent parameter and set α = f :

b12(α) =
(−2α2 + 2α− 1)(3α2 − 3α+ 1)(α− 2α2)

(α− 1)4
,

c12(α) =
(3α2 − 3α+ 1)(α− 2α2)

(α− 1)3
.

Plugging in b = b12(α) and c = c12(α) into 4.2 yields:

∆12(α) =

(
6α2 − 6α+ 1

) (
3α2 − 3α+ 1

)4 (
2α2 − 2α+ 1

)3
(2α− 1)

6
α12

(α− 1)
24 .

This equation is derived using SageMath [The23]. The quadratic terms 6α2 − 6α + 1, 3α2 − 3α + 1
and 2α2 − 2α + 1 have no rational roots, so these terms can not be zero. Thus, curves of this family
are non-singular for α ̸= 0, 1, 12 . By substituting back f = α, we can rewrite these conditions to find
conditions on b and c.

• Rewriting f ̸= 1 yields b ̸= c.

• Rewriting f ̸= 0 yields c3 + bc− b2 ̸= 0.

• Rewriting f ̸= 1
2 yields c3 − c2 + 3bc− 2b2 ̸= 0.

• For f to be well-defined, we need e ̸= 1, so b ̸= c2 + c.

The family of elliptic curves with a point of order 12 is precisely given by

E12(α) : y
2 + (1− c12(α))xy − b12(α)y = x3 − b12(α)x

2,

where α ̸= 0, 1, 12 .

5.10 Table

The table below summarizes the results from this section.

Order n bn(α) cn(α) Conditions on α
4 α 0 α ̸= 0,− 1

16
5 α α α ̸= 0
6 α(α+ 1) α α ̸= 0,−1,− 1

9
7 α2(α− 1) α(α− 1) α ̸= 0, 1
8 (α− 1)(2α− 1) b8(α)/α α ̸= 0, 1, 12
9 c9(α)(α

2 − α+ 1) α2(α− 1) α ̸= 0, 1

10 c10(α)
(
− α2

α2−3α+1

)
− 2α3−3α2+α

α2−3α+1 α ̸= 0, 1, 12

12 c12(α)
(
− 2α2−2α+1

α−1

)
(3α2−3α+1)(α−2α2)

(α−1)3 α ̸= 0, 1, 12
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6 Division polynomials

This section is based on [Was08, Chapter 3.2].
In section 3, we found polynomials whose rational roots are the x-coordinates of potential points of

order 2 or 3. In this section, we generalize this concept to points of any order. In this section, we consider
an elliptic curve E over Q given by equation (2.6).

First, we define the division polynomials corresponding to E.

Definition 6.1 (Division polynomials). The division polynomials are a sequence of recursively defined
polynomials in Z[x, y,A,B]. The n-th division polynomial is denoted by ψn. The sequence is defined as
follows:

ψ0 = 0;

ψ1 = 1;

ψ2 = 2y;

ψ3 = 3x4 + 6Ax2 + 12Bx−A2;

ψ4 = 4y
(
x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3

)
;

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2;

ψ2m = (2y)−1ψm

(
ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1

)
for m ≥ 3.

(6.1)

In practice, we take A and B to be the coefficients of the equation (2.6) and we substitute the
expression y2 = x3 +Ax+B to eliminate even powers of y when possible.

Lemma 6.2. Let m ≥ 0 be a non-negative integer. If we fix A and B and substitute y2 = x3 +Ax+B,
then we get

ψ2m+1 ∈ Q[x],

ψ2m ∈ 2yQ[x].

Additionally, for any non-negative integer n ≥ 0, we get

ψ2
n ∈ Q[x].

The proof is omitted.

Notation 6.3. For notational convenience, we define the following polynomials for any integer n ≥ 2:

ϕn = xψ2
n − ψn+1ψn−1, (6.2)

ωn = (4y)−1
(
ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1

)
. (6.3)

6.1 Torsion points

The division polynomials can be used to compute the multiples of rational points P on E.

Theorem 6.4 (Multiples on E). Let P = (x, y) be a rational point on E. Then for any integer n ≥ 2
such that ψn(x, y) ̸= 0, we have

nP =

(
ϕn(x)

ψ2
n(x)

,
ωn(x, y)

ψ3
n(x, y)

)
. (6.4)

The proof of this theorem is beyond the scope of this text and is omitted.
Since the point nP is in E(Q), the coordinates of nP given by (6.4) must satisfy (2.6):(

ωn(x, y)

ψ3
n(x, y)

)2

=

(
ϕn(x)

ψ2
n(x)

)3

+A

(
ϕn(x)

ψ2
n(x)

)
+B. (6.5)

If we multiply both sides of equation (6.5) by ψ6
n(x), we find

ω2
n(x, y) = ϕ3n(x) +Aϕn(x)ψ

4
n(x) +Bψ6

n(x). (6.6)
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If ψn(x, y) and ωn(x, y) are both 0, then equation (6.6) implies that ϕn(x) must also be 0. However, it
is shown in [Cas49, lemma 2] that ψn(x, y) and ϕn(x) can not have common zeros. Henceforth, ψn(x, y)
and ωn(x, y) can not have common zeros.

One could ask the question, what happens if ψn(x, y) = 0? Clearly, the multiple nP must be defined,
but the equations in (6.4) do not seem to be well-defined in this case. In order to understand what
happens in this scenario, we need to consider these equations in projective coordinates. An explanation
of this can be found in Sections 1.1 and 1.2.

If ψn(x, y) ̸= 0, we can write the point nP in projective coordinates as

nP =

(
ϕn(x)

ψ2
n(x)

:
ωn(x, y)

ψ3
n(x, y)

: 1

)
.

We can multiply every coordinate by ψ3
n(x, y) to find

nP =
(
ϕn(x)ψn(x, y) : ωn(x, y) : ψ

3
n(x, y)

)
. (6.7)

Notice that the representative
(
ϕn(x)ψn(x, y), ωn(x, y), ψ

3
n(x, y)

)
is well-defined even if ψn(x, y) = 0. In

fact, if ψn(x, y) = 0, we find that

nP = (0 : ωn(x, y) : 0) .

As argued before, ωn(x, y) and ψn(x, y) do not have common zeros, which means that this is a well-defined
point. Thus, we obtain

nP = (0 : 1 : 0).

In other words, if ψn(x, y) = 0, then nP is the point at infinity O. This leads us to the following result.

Corollary 6.5 (Roots of division polynomials). Let P = (x, y) be a rational point on E. Let n ≥ 2 be
an integer.

1. If ψn(x, y) = 0, then nP = O and hence P has order dividing n.

2. Conversely, if P has order dividing n, then (x, y) is a zero of ψn and hence x is a root of ψ2
n.

Proof. The proof of the first statement is given above.
Assume that P has order dividing n. Then nP = O = (0 : 1 : 0) in projective coordinates. We know
that nP is also given by (6.7). By comparing the coordinates, we find that ψn(x, y) must be zero.
Hence, (x, y) is a zero of ψn. By Lemma 6.2, we can substitute the expression y2 = x3 +Ax+B into ψ2

n

if applicable to get ψ2
n ∈ Q[x]. It follows that ψ2

n(x) must also be zero. This concludes the proof.

Remark 6.6 (Finding torsion points). Using Corollary 6.5, we can find all torsion points on E.
First, we find all rational roots of ψ2

n(x). Then, we find the corresponding y-values by plugging these
values of x into (2.6) and solving for y. If we get a rational y-value, we have found a point on E with
order dividing n.
In order to check for a given point P = (x, y) whether it has order precisely n, we can compute mP
using (6.4) for all m ≥ 2 dividing n, where we understand mP to be O if ψm(x, y) = 0. The smallest
value of m for which mP = O is the order of P .
In order to find all points of order exactly n, we can also find all zeros of ψm for m dividing n. The Q-
rational zeros of ψn that do not occur as a zero of any of the ψm correspond to points of order n.

6.2 Trivial torsion group

Using the method described in Remark 6.6, we can find some elliptic curves over Q that have trivial
torsion group. We wrote a program in SageMath [The23] to do this. The program works as follows. It
loops over elliptic curves given an equation of the form (2.6), where the parameters A and B are integers
within specified ranges.

By Mazur’s theorem 1.17, every non-trivial torsion point on E has an order in {2, 3, . . . , 10, 12}. If P
is a torsion point on E whose order n is composite, then for any prime p dividing n, the torsion point n

pP
has order p. Thus, if the torsion group of E is non-trivial, it contains a torsion point whose order is a
prime number in {2, 3, . . . , 10, 12}, i.e. one of the primes {2, 3, 5, 7}. Therefore, in order to check whether
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a curve has trivial torsion group, it is sufficient to show that there are no points with order 2, 3, 5 or 7
on this curve.

For each combination of values of A and B, the program checks whether the discriminant of the
corresponding curve is non-zero. If the discriminant is non-zero, it finds the rational roots of division
polynomials ψ3, ψ5 and ψ7 and the polynomial x3 + Ax + B, which corresponds to ψ2 as we show in
section 3.1.

If the program finds a rational root r of one of the aforementioned polynomials, it finds the rational
roots of the equation y2 = r3 + Ar + B in y. If there are none, the program continues. If there is a
rational solution, this means there is a non-trivial torsion point on E. In this case, the program begins
the procedure again for the next values of A and B.

If the program finds that there are no non-trivial torsion points, it returns the values of A and B
and begins the procedure again for the next values of A and B. If all combinations of values of A and B
have been analyzed, it ends.

Remark 6.7. The algorithm described above is not necessarily the most efficient. Since we assume the
parameters A and B to be integers, it is possible to find all possible values of the y-coordinate of torsion
points using a result called the Nagell-Lutz Theorem 7.7. The above procedure, however, is easier to
modify to include non-integer rational values for A and B.

We ran the algorithm for all values of A and B in {−20,−19, . . . , 20}. For 1676 of the 1681 combi-
nations, the discriminant is non-zero. Of these 1676 elliptic curves, 1494 have trivial torsion group. For
example, the elliptic curves with the following equations have trivial torsion group:

y2 = x3 − 19x+ 13;

y2 = x3 − 11x− 11;

y2 = x3 + 5x+ 7;

y2 = x3 + 8x+ 5.

Interestingly, a relatively large number of elliptic curves has trivial torsion group. This is, in fact, not a
coincidence.

Denote the elliptic curve over Q with equation y2 = x3 + Ax + B by E(A,B). For M ∈ Z, M > 0,
define the following sets:

C(M) :={(A,B) ∈ Z | 4A3 + 27B2 ̸= 0, |A|, |B| ≤M},
T (M) :={(A,B) ∈ C(M) | Tor

(
E(A,B)

)
̸= {O}}.

Then we have the following result from [GJT10].

Theorem 6.8. With the notation as above:

lim
M→∞

|T (M)|
|C(M)|

= 0.

In other words, an elliptic curve E(A,B) with |A|, |B| ≤M arbitrarily chosen is more likely to have a
trivial torsion group for larger values of M .



Laurens Wiersema Page 32

7 Non-existence of torsion points of order 11

By Mazur’s theorem 1.17, we know that an elliptic curve E over Q can only have rational torsion points
with order in {1, 2, . . . , 10, 12}. In particular, such a curve can not have a rational torsion point of
order 11. This fact was already known before Mazur’s theorem. The aim of this section is to show a
proof of this fact. This section is adapted from the proof by I. Kiming [Kim03]. We provide additional
details.

Theorem 7.1. (Billing-Mahler, cf. [BM40]) An elliptic curve E over Q does not have a rational torsion
point of order 11.

Proof. This prove uses several intermediate results. Consider the following facts:

• Fact 1: If there exists an elliptic curve over Q with a rational torsion point of order 11, then the
cubic curve C over Q given by

u2v − u2w + uw2 − v2w = 0 (7.1)

has more than 5 rational points.

• Fact 2: Let C be the cubic curve over Q given by (7.1) and let E be the elliptic curve over Q given
by the homogeneous equation

y2z = x3 − 4x2z + 16z3. (7.2)

Then, there exists a bijection between C(Q) and E(Q).

• Fact 3: The elliptic curve E over Q given by (7.2) has exactly 5 rational points.

The proofs of these facts can be found in subsections 7.1, 7.2 and 7.3, respectively.
Facts 2 and 3 together imply that the cubic curve C over Q given by (7.1) has exactly 5 rational points.
By fact 1, this means that there can not exist an elliptic curve over Q with a point of order 11. This
concludes the proof.

The proofs of Facts 1 and 2 use mostly algebraic and geometrical arguments. The proof of Fact 3
uses results from algebraic number theory. The relevant background information on algebraic number
theory is discussed in Appendix A.

7.1 Cubic curve C

In this section, we prove the following proposition.

Proposition 7.2 (Fact 1). If there exists an elliptic curve over Q with a rational torsion point of
order 11, then the cubic curve C over Q given by (7.1) has more than 5 rational points.

Proof. Assume E is an elliptic curve over Q with the rational point P̃ of order 11. In this proof, we
consider all points to be in the projective plane P2

Q. For any integer i ∈ Z, denote P̃i := i · P̃ . Since P̃ is
of order 11, we have

P̃i = P̃j ⇐⇒ i ≡ j mod 11.

Henceforth, three points P̃i, P̃j and P̃k are on a line in P2
Q if and only if the indices i, j, and k add up

to a multiple of 11. In other words,

P̃i + P̃j + P̃k = O ⇐⇒ i+ j + k ≡ 0 mod 11. (7.3)

Denote P̃ = (a : b : c) and P̃2 = (α : β : γ). We have P̃0 = O = (0 : 1 : 0). By (7.3), these three points
are not on a line. Therefore, the points (0, 1, 0), (a, b, c) and (α, β, γ) in Q3 are linearly independent. We
can define an invertible linear map ϕ from Q3 into itself by

ϕ : Q3 → Q3

(0, 1, 0) 7→ (0, 1, 0) =: P ′
0,

(a, b, c) 7→ (1, 0, 0) =: P ′
1,

(α, β, γ) 7→ (0, 0, 1) =: P ′
2.
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Denote P ′
i := ϕ(P̃i). We can consider the map ϕ as a bijective map from P2

Q into itself. As such it maps
lines to lines, so Lemma 7.3 implies that P ′

i , P
′
j and P ′

k are on a line if and only if i+ j+ k ≡ 0 mod 11.
In particular, the point P ′

3 is not on the line through P ′
0 and P ′

1. This line is given by z = 0 by
Lemma 1.2. Therefore, if we denote P ′

3 = (u, v, w), we know that w ̸= 0. Similarly, P ′
3 is not on the line

through P ′
0 and P ′

2 given by x = 0 or the line through P ′
1 and P ′

2 given by y = 0, so u ̸= 0 and v ̸= 0 as
well.

Since all of the coordinates of P ′
3 are non-zero, we can use a change of variables to normalize the

point P ′
3 to (1, 1, 1). To be precise, we consider the invertible linear map ψ of Q3 into itself, given by

ψ : Q3 → Q3

(x, y, z) 7→ (u−1x, v−1y, w−1z).

We can consider this map ψ to be a bijection from P2
Q into itself. As such, it maps lines to lines, and it

fixes the projective points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1).

Denote Pi := ψ(P ′
i ) = ψ(ϕ(P̃i)) for i ∈ Z. Then we have

P0 = (0 : 1 : 0), (7.4)

P1 = (1 : 0 : 0), (7.5)

P2 = (0 : 0 : 1), (7.6)

P3 = (1 : 1 : 1). (7.7)

Similar to before, we have

Pi = Pj ⇐⇒ i ≡ j mod 11 (7.8)

and Pi, Pj and Pk are on a line if and only if i+ j + k ≡ 0 mod 11.
Using these facts and Lemma 1.2, we can prove the following lemma:

Lemma 7.3. In the above setting we have

P−3 = (1 : 0 : 1). (7.9)

Additionally, if we denote
P4 = (x1 : x2 : x3), (7.10)

where xi ∈ Q, then the coordinates of P4 satisfy the equation

x21x2 − x21x3 + x1x
2
3 − x22x3 = 0. (7.11)

Proof. If i ̸≡ j mod 11, there exists a unique line through Pi and Pj , which we denote by Li,j . Lemma 1.2
tells us how to find the equation for Li,j given the coordinates of Pi and Pj . Furthermore, if k, i, j,m, n
are integers satisfying k + i + j ≡ k + m + n ≡ 0 mod 11, then we can conclude that Pk is on the
intersection between Pi,j and Pm,n.

First, we find some restrictions on the values of x1, x2 and x3. By (7.8), we know that P4 is distinct
from P0, P1, P2 and P3. In particular, this means that at most one of x1, x2 and x3 can be equal to 0.

In order to find the coordinates of P−3, we construct lines through points of which we know the
coordinates already, and find the coordinates of their intersections. First, using equalities (7.4), (7.5),
(7.6) and (7.7), we compute the equations of the following lines:

L0,1 : z = 0; (7.12)

L0,2 : x = 0; (7.13)

L0,3 : x− z = 0; (7.14)

L1,2 : y = 0; (7.15)

L1,4 : x3y − x2z = 0; (7.16)

L2,3 : x− y = 0. (7.17)

Note: if x2 = 0, then x3 ̸= 0, which implies that L1,4 = L1,2. This implies that P1, P2 and P4 are on a
line, but 1 + 2 + 4 ̸≡ 0 mod 11, so this is a contradiction. Hence, x2 ̸= 0. Similarly, x3 ̸= 0 since P0, P1

and P4 are not on a line.
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We know that P0, P1 and P3 are not on a line, since 0 + 1 + 3 ̸≡ 0 mod 11. Hence, L0,3 and L1,2

are distinct lines. Since −3 + 0 + 3 ≡ −3 + 1 + 2 ≡ 0 mod 11, the point P−3 is the unique point of
intersection between L0,3 and L1,2. Combining (7.14) and (7.15), we find:

P−3 = (1 : 0 : 1),

which is what we wanted to show.
Next, in order to establish equation (7.11), we aim to find an expression the coordinates of P5 in

terms of x1, x2 and x3. Since 2+4+5 ≡ 0 mod 11, the points P2, P4 and P5 are on a line. The relation
between the coordinates of these points then gives us the desired equation.

First, we need to find expressions for the coordinates of the points P−1, P−2 and P−5 in terms of x1, x2
and x3. Combining (7.9) and (7.10), we can find the equation of the line L−3,4:

L−3,4 : −x2x+ (x1 − x3)y + x2z = 0. (7.18)

We know that x2 ̸= 0 and x3 ̸= 0. If x1 = x3, then L−3,4 = L0,3, which implies that P0, P3 and P4 are
on a line. However, since 0 + 3 + 4 ̸≡ 0 mod 11, this is a contradiction. Hence, x1 ̸= x3.

The point P−1 is the unique point of intersection between L0,1 and L−3,4. By combining (7.12)
and (7.18), we find:

P−1 = (x1 − x3 : x2 : 0). (7.19)

Since x1 − x3 ̸= 0 and x2 ̸= 0, this is a well-defined point which is distinct from any of the previously
defined points. By combining (7.19) and (7.7), we can find the equation of the line L−1,3:

L−1,3 : x2x− (x1 − x3)y + (x1 − x2 − x3)z = 0. (7.20)

Note: if x1 − x3 = x2, then L−1,3 = L2,3. This implies that P−1, P2 and P3 are on a line. However, we
can compute −1 + 2 + 3 ̸≡ 0 mod 11, so this is a contradiction. Hence, x1 − x3 ̸= x2.

The point P−2 is the unique point of intersection between L0,2 and L−1,3. By combining (7.13)
and (7.20), we find:

P−2 = (0 : x1 − x2 − x3 : x1 − x3). (7.21)

Since x1 − x3 ̸= 0, x1 − x3 ̸= x2 and x2 ̸= 0, this is a well-defined point which is distinct from any of the
previously defined points. By combining (7.21) and (7.9), we can find the equation of the line L−2,−3:

L−2,−3 : (x1 − x2 − x3)x+ (x1 − x3)y − (x1 − x2 − x3)z = 0. (7.22)

The point P−5 is the unique point of intersection between L1,4 and L2,3. By combining (7.16) and (7.17),
we find:

P−5 = (x2 : x2 : x3). (7.23)

Note: since −5 ̸≡ 3 mod 11, we have that P−5 ̸= P3, so x2 ̸= x3.
By combining (7.4) and (7.23), we can find the equation of the line L0,−5:

L0,−5 : x3x− x2z = 0. (7.24)

The point P5 is the unique point of intersection between L0,−5 and L−2,−3. By combining (7.24)
and (7.22), we find:

P5 = ((x1 − x3)x2 : −x1x2 + x1x3 + x22 − x23 : (x1 − x3)x3). (7.25)

Note: since x1 − x3 ̸= 0 and x2 ̸= 0, this is a well-defined point.
Since 2 + 4 + 5 ≡ 0 mod 11, the points P2, P4 and P5 lie on a line. Therefore, we find:

det

 0 0 1
x1 x2 x3

(x1 − x3)x2 −x1x2 + x1x3 + x22 − x23 (x1 − x3)x3

 = 0.

This is equivalent to
x21 − x21x3 + x1x

2
3 − x22x3 = 0,

which is what we wanted to show. This concludes the proof.

Let C be the cubic curve over Q given by (7.1). A straightforward computation verifies that all
of P0, P1, P2, P3 and P−3 are rational points on C. By Lemma 7.3, P4 is also a rational point on C.
By (7.8), all of these points are mutually distinct. Henceforth, there are more than 5 distinct rational
points on C. This concludes the proof.
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7.2 Curves C and E

Consider the cubic curve C given by (7.1) and the elliptic curve E given by the homogeneous equation
(7.2). Define the sets A and B as

A := {(u : v : w) ∈ C(Q) | uv ̸= 0},
B := {(x : y : z) ∈ E(Q) | x(y + 4z) ̸= 0}.

(7.26)

The proof of the following proposition is a special case of an algorithm developed by T. Nagell [Nag28].

Proposition 7.4. Let C, E, A and B be as above.
The map f defined by

f(u : v : w) = (4uv : 8v2 − 4uw : uw)

maps points in A to points in B.
The map g defined by

g(x : y : z) = (2x2 : x(y + 4z) : 4z(y + 4z))

maps points in B to points in A.
Moreover, if we consider f : A→ B and g : B → A, then

g ◦ f = idA,

f ◦ g = idB .

Henceforth, there is a bijection between A and B.

Proof. First, we show that f maps points in A to points in B. Let (u : v : w) be a point in A.
Then uv ̸= 0. Since A ⊂ C(Q), we know that u, v and w satisfy (7.1). Therefore, we also have w ̸= 0,
since otherwise (7.1) would imply u2v = 0 and hence uv = 0, which is a contradiction. We can hence
put

V :=
v

u
, W :=

w

u
, t :=

V

W
.

Using (7.1), we find that

t2W 3 −W 2 + (1− t)W = V 2W −W 2 +W − V

= u−3
(
v2w − w2u+ wu2 − vu2

)
= 0.

Since w ̸= 0, we have W ̸= 0, so we can obtain the equality

t2W 2 −W + (1− t) = 0. (7.27)

Put

R := 1− 4t2(1− t).

Using the quadratic formula on (7.27), we find

W ∈

{
1±

√
R

2t2

}
.

We can rewrite this to obtain

2t2W − 1 ∈
{
±
√
R
}
. (7.28)

Put

x := 4t, y := 4(2t2W − 1).
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By (7.28), we know

(2t2W − 1)2 ∈
{(

±
√
R
)2}

= {R},

so

y2 = 42R.

Therefore, we see that x and y satisfy

y2 = 42R

= (4t)3 − 4 · (4t)2 + 16

= x3 − 4x2 + 16.

Hence, the point (x : y : 1) = (4uv : 8v2 − 4uw : uw) = f(u : v : w) is in E(Q). To show that this point
is in B, it is sufficient to show that x ̸= 0 and y + 4 ̸= 0.
By assumption, we have V ̸= 0 and W ̸= 0, so t ̸= 0. Since x = 4t, it follows that x ̸= 0. It also follows
that 2t2W − 1 ̸= −1, so y = 4(2t2W − 1) ̸= −4, so y + 4 ̸= 0. This shows that f maps points in A to
points in B.

Secondly, we show that g maps points in B to points in A. Let (x : y : z) be a point in B. Put

u := 2x2, v := x(y + 4z), w := 4z(y + 4z).

By assumption, x(y+4z) ̸= 0, so the point (u : v : w) is on the projective plane. We also have x ̸= 0, so
both u ̸= 0 and v ̸= 0, so uv ̸= 0. Thus, if (u : v : w) is in C(Q), then it is A. The fact that (u : v : w) is
in C(Q) follows from a straightforward computation:

u2v − u2w + uw2 − v2w = 4x5(y + 4z)− 16x4z(y + 4z) + 32x2z2(y + 4z)2 − 4x2z(y + 4z)3

= 4x2(y + 4z) ·
(
x3 − 4x2z + 8z2(y + 4z)− z(y + 4z)2

)
= 4x2(y + 4z) ·

(
x3 − 4x2z + 16z3 − y2z

)
.

Since (x : y : z) is in E(Q), we know from (7.2) that x3 − 4x2z + 16z3 − y2z = 0, so in fact

u2v − u2w + uw2 − v2w = 0.

This shows that g maps points in B to points in A.
Finally, we consider f : A→ B and g : B → A and show that g ◦ f = idA and f ◦ g = idB .

Let (u : v : w) be an arbitrary point in A. In particular, this means that uv2 ̸= 0. We have

(g ◦ f)(u : v : w) = g(4uv : 8v2 − 4uw : uw)

= (32u2v2 : 4uv(8v2 − 4uw + 4uw) : 4uw(8v2 − 4uw + 4uw))

= (32uv2 · u : 32uv2 · v : 32uv2 · w)
= (u : v : w).

Since (u : v : w) was chosen arbitrarily, this works for all elements of A. Hence, g ◦ f = idA.
Let (x : y : z) be an arbitrary point in B. In particular, this means that x2(y + 4z) ̸= 0. We have

(f ◦ g)(x : y : z) = f(2x2 : x(y + 4z) : 4z(y + 4z))

= (8x3(y + 4z) : 8x2(y + 4z)2 − 32x2z(y + 4z) : 8x2z(y + 4z))

= (8x2(y + 4z) · x : 8x2(y + 4z) · (y + 4z − 4z) : 8x2(y + 4z) · z)
= (x : y : z).

Since (x : y : z) was chosen arbitrarily, this works for all elements of B. Hence, f ◦ g = idB .
This concludes the proof.

Using this result, we can prove the following proposition.

Proposition 7.5 (Fact 2). Let C be the cubic curve over Q given by (7.1) and let E be the elliptic curve
over Q given by (7.2). Then, there exists a bijection between C(Q) and E(Q).
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Proof. Define the sets A and B as in (7.26). By Proposition 7.4, there exists a bijection between A and
B. Therefore, it is sufficient to show that there exists a bijection between C(Q) \ A and E(Q) \ B. In
fact, we can show that C(Q)\A and E(Q)\B are both finite sets with exactly 4 elements, which implies
the existence of a bijection between them.

First, we find all points in C(Q) which are not in A. Assume (u : v : w) ∈ C(Q) \A. Then uv = 0.

• If u = 0, then v and w must satisfy

v2w = 0,

so v = 0 or w = 0. Since u, v and w can not all be 0, we find that the points in C(Q) satisfying u = 0
are (0 : 0 : 1) and (0 : 1 : 0).

• if v = 0, then u and w must satisfy

uw(w − u) = 0,

so u = 0, w = 0, or w = u ̸= 0. Since u, v and w can not all be 0, we find that the points in C(Q)
satisfying v = 0 are (0 : 0 : 1), (1 : 0 : 0) and (1 : 0 : 1).

Thus, C(Q) \A = {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 0 : 1)} is a set containing exactly 4 elements.
Secondly, we find all points in E(Q) which are not in B. Assume (x : y : z) ∈ E(Q) \B.

Then x(y + 4z) = 0.

• If x = 0, then y and z must satisfy

y2z = 16z3.

Since x, y and z can not all be 0, we find either z = 0, y = 4z or y = −4z. Hence, the points
in E(Q) satisfying x = 0 are (0 : 1 : 0), (0 : 4 : 1) and (0 : −4 : 1).

• If y = −4z, then x and z must satisfy

x3 − 4x2z = 0.

Since x, y and z can not all be 0, we find either x = 0 or x = 4z. Hence, the points in E(Q)
satisfying y + 4z = 0 are (0 : −4 : 1) and (4 : −4 : 1).

Thus, E(Q) \B = {(0 : 1 : 0), (0 : 4 : 1), (0 : −4 : 1), (4,−4, 1)} is a set containing exactly 4 elements.
By our previous arguments, this concludes the proof.

7.3 Elliptic curve E

Consider the elliptic curve E given by (7.2). In this section, we consider the Weierstrass normal form of
this equation, which is given by

y2 = x3 − 4x2 + 16. (7.29)

The aim of this section is to prove the following proposition.

Proposition 7.6 (Fact 3). Let E be the curve given by (7.29). Then |E(Q)| = 5.

To prove this proposition, we show that E(Q) has exactly 5 torsion points using the Nagell-Lutz
theorem, and we show that E(Q) has no free part using arguments from algebraic number theory.

7.3.1 The torsion group of E

The following result is used in this section [Was08, theorem 8.7].

Theorem 7.7 (Nagell-Lutz Theorem). Let E′ be a non-singular elliptic curve over Q which has an
equation in Weierstrass normal form given by

y2 = x3 + ax2 + bx+ c

with a, b, c ∈ Z. We can write the discriminant D of the polynomial on the right-hand side as

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2. (7.30)

Suppose P = (x, y) is a Q-rational point on E′ of finite order. The coordinates of P must satisfy both of
the following properties:
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• the coordinates x and y are both integers;

• either y = 0 or y2 divides D.

The proof of this theorem is beyond the scope of this paper and is omitted.
The following result is used in this section.

Theorem 7.8 (Rational root theorem). Let f(x) = anx
n + an−1x

n−1 + · · · + a0 be a polynomial with
integer coefficients and a0, an ̸= 0. Suppose f has a rational root p

q , where p, q ∈ Z and gcd(p, q) = 1.
Then q divides an and p divides a0.

We can use the Nagell-Lutz theorem 7.7 and the rational root theorem 7.8 to find all torsion points
of E(Q).

Lemma 7.9 (Torsion points of E(Q)). Let E be the elliptic curve given by (7.29).
Then Tor(E(Q)) = {O, (0, 4), (0,−4), (4, 4), (4,−4)} and the point (0, 4) is a generator for this group.

Proof. The equation for E is of the form y2 = x3 + ax2 + bx + c with a, b, c ∈ Z, so we can use the
Nagell-Lutz theorem.
Substituting a = −4, b = 0 and c = 16 into (7.30), we find

D = −4 · (−4)3 · 16− 27 · 162

= 162 · (16− 27)

= −11 · 162.

Suppose (x, y) ∈ Tor(E(Q)). By the Nagell-Lutz theorem, we know that x and y must be integers and
either y = 0 or y2 divides D = −11 · 162. Note that y2 divides D if and only if y divides 16. Hence, we
have y2 ∈ {0, 1, 4, 16, 64, 256}. The x-coordinate must satisfy

x3 − 4x2 + 16− y2 = 0.

Using Theorem 7.8, we can find the rational roots of this polynomial for the aforementioned values of y2.
Fix a value of y2. If the polynomial x3 − 4x2 + 16 − y2 has a rational root x = p/q, where p and
q are coprime integers, then p must divide 16 − y2 and q must divide 1. Without loss of generality,
we can assume q = 1. We need to check for all possible values of p whether it gives a root. We use
SageMath [The23] to do these computations and omit them here.

We find that the polynomial only has rational roots for y2 = 16. In this case, the roots are x = 0
and x = 4. Henceforth, the torsion points of E(Q) are exactly O, (0, 4), (0,−4), (4, 4) and (4,−4).

We can use the chord-tangent law to show that (0, 4) generates the torsion group. The tangent line

to E at (0, 4) is given by y = λx+ β, where β = 4 and λ = f ′(0)
8 = 3·02−8·0

8 = 0. Then by (1.9), we have

x3 = 4,

y3 = 4.

Hence, by (1.10), we have

2 · (0, 4) = (4,−4).

Next, we can compute 3 · (0, 4) = 2 · (0, 4) + (0, 4) = (4,−4) + (0, 4). The line through (4,−4) and (0, 4)
is given by y = −2x+ 4. Then by (1.9), we have

x3 = 4 + 4− 4 = 4,

y3 = −2 · 4 + 4 = −4.

Thus, by (1.10), we have

3 · (0, 4) = (4, 4) = −(2 · (0, 4)).

Then

4 · (0, 4) = 3 · (0, 4) + (0, 4)

= −2 · (0, 4) + (0, 4)

= −(0, 4) = (0,−4),
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and hence

5 · (0, 4) = 4 · (0, 4) + (0, 4)

= −(0, 4) + (0, 4)

= O.

So indeed, (0, 4) generates the torsion group.

Recall from section 1 that we can write

E(Q) ∼= Tor(E(Q))× Zr

for some unique finite non-negative integer r. By Lemma 7.9

Tor(E(Q)) ∼= Z/5Z.

In order to show that E(Q) has exactly 5 points, it is therefore sufficient to show that r = 0. Finding the
rank of an elliptic curve, however, is not an easy task. We use algebraic number theory to find the rank
of E(Q). In order to do this, we consider the fields obtained by appending roots of f(x) = x3 − 4x2 +16
to Q. Therefore, we need to know more about the roots of f .

7.3.2 Roots of f

The aim of this section is to find whether the roots θ1, θ2, θ3 of the polynomial f(x) = x3 − 4x2 +16 are
rational, real and irrational, or complex. To this purpose, we use the following theorem.

Theorem 7.10. Let f be a polynomial over C given by

f(x) = x3 + ax2 + bx+ c,

where a, b, c ∈ R. Let the discriminant D of f be given by (7.30). We have the following.

• If D > 0, then f has 3 distinct real roots.

• If D < 0, then f has 1 real root and 2 non-real complex conjugate roots.

• If D = 0 and a2 = 3b, then f has 1 real root with multiplicity 3.

• If D = 0 and a2 ̸= 3b, then f has 2 distinct real roots, of which 1 with multiplicity 2.

Additionally, D is related to the roots r1, r2, r3 of f by

D = (r1 − r2)
2(r1 − r3)

2(r2 − r3)
2.

In this case, we have

D = −11 · 162,

as we computed in the proof of 7.9. Hence, by Theorem 7.10, f has 1 real root θ1 =: θ and 2 non-real
complex conjugate roots θ2 and θ3.

We need to know whether the real root θ is rational. To this purpose, we use the rational root
theorem 7.8 to find whether f has a rational root. By the rational root theorem, if f has a rational
root p

q with p, q ∈ Z and gcd(p, q) = 1, then q divides 1 and p divides 16. Thus, if f has a rational

root, it must be in {±1,±2,±4,±8,±16}. We can substitute these values for x to find whether f has a
rational root. We compute

f(1) = 13, f(−1) = 11,

f(2) = 8, f(−2) = −8,

f(4) = 16, f(−4) = −112,

f(8) = 272, f(−8) = −752,

f(16) = 3088, f(−16) = −5104.

We conclude that f has no rational roots. Hence, θ is real and irrational.
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By factoring f , we can find expressions for θ2 and θ3 in terms of θ1. A computation verifies that

x3 − 4x2 + 16 = (x− θ1)(x
2 + (θ1 − 4)x+ θ1(θ1 − 4)).

We see that θ2 and θ3 are the roots of x2 + (θ1 − 4)x+ θ1(θ1 − 4). Using the quadratic formula, we can
put

θ2 :=
4− θ1 +

√
−3θ21 + 8θ1 + 16

2
, θ3 :=

4− θ1 −
√
−3θ21 + 8θ1 + 16

2
.

7.3.3 The rank of E

In this section, we use definitions and results from Appendix A freely.
Define the polynomial f by

f(x) = x3 − 4x2 + 16.

In section 7.3.2 we find that f has 1 irrational real root, which we denote by θ, and 2 non-real complex
conjugate roots, which we denote by θ2 and θ3. Since f has degree 3 and does not have any roots in Q,
we know that it is irreducible over Q. Therefore, f is the minimal polynomial of θ over Q.

Consider the number field

K := Q(θ).

Since we can substitute θ3 = 4θ2 − 16, any element of K can be written uniquely in the form

p0 + p1θ + p2θ
2

for some rational numbers p0, p1, p2. Using SageMath [The23], we find that {1, θ/2, θ2/4} is an integral
basis of K.

We know that K has 1 real embedding and 2 complex embeddings. The only roots of 1 in K are −1
and 1, since θ is real. By Theorem A.28, the group of units U of OK is equal to the direct product
W × V , where W = {1,−1} and V is a free abelian group of rank 1 + 1− 1 = 1, i.e. V =

{
ηk | k ∈ Z

}
for some fundamental unit η of OK . Using SageMath [The23], we find that we can choose η := 1− θ

2 .
Consider the map

µ : E(Q) → K×/
(
K×)2

defined by

µ(O) = 1 mod
(
K×)2 ,

µ(x, y) = (x− θ) mod
(
K×)2 .

The following result is adapted from [Cas91].

Lemma 7.11. The map µ is a group homomorphism.

Proof. It is sufficient to show that µ(P1 + P2) = µ(P1)µ(P2) for any P1, P2 ∈ E(Q). We consider three
distinct cases.

• Assume P2 = O. Then

µ(P1 +O) = µ(P1)

= µ(P1) ·
(
1 mod

(
K×)2)

= µ(P1)µ(O).

• Assume P1 = (x1, y1) ̸= O and P2 = −P1. Then P1 and P2 have the same x-coordinate, so

µ(P1 + (−P1)) = µ(O)

= 1 mod
(
K×)2

= (x1 − θ)2 mod
(
K×)2

= µ(P1)µ(−P1).
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• Assume P1 = (x1, y1) ̸= O, P2 = (x2, y2) ̸= O and P2 ̸= P1. Let P3 = (x3, y3) := −(P1 + P2),
so P1, P2 and P3 lie on a line y = λx+ β for some λ, β ∈ Q. Then we must have that

f(x)− (λx+ β)2 = (x− x1)(x− x2)(x− x3).

If we replace x by θ, we find

(x1 − θ)(x2 − θ)(x3 − θ) = (λθ + β)2.

Since θ is not rational, we know that x1, x2 and x3 are not equal to θ, so in particular x1 − θ
and x2 − θ have an inverse in K×. Hence, we find

x3 − θ = (x1 − θ)−1(x2 − θ)−1(λθ + β)2.

Since −P3 has the same x-coordinate as P3, we have that

µ(P1 + P2) = µ(−P3)

= (x3 − θ) mod
(
K×)2

= (x1 − θ)−1(x2 − θ)−1(λθ + β)2 mod
(
K×)2

= (x1 − θ)−1(x2 − θ)−1 mod
(
K×)2

= (x1 − θ)−1(x2 − θ)−1 · (x1 − θ)2(x2 − θ)2 mod
(
K×)2

= (x1 − θ)(x2 − θ) mod
(
K×)2

= µ(P1)µ(P2).

Hence, µ(P1 + P2) = µ(P1)µ(P2) for all P1, P2 ∈ E(Q). This concludes the proof.

The following result is from [Cas91].

Lemma 7.12. The kernel of µ is 2E(Q).

Proof. The fact that 2E(Q) ⊂ ker(µ) follows from Lemma 7.11: let P2 ∈ 2E(Q) be arbitrary. Then,
there exists a point P1 ∈ E(Q) such that P2 = P1 + P1. Then, by Lemma 7.11:

µ(P2) = µ(P1 + P1)

= µ(P1)
2

= 1 mod
(
K×)2 .

Hence, P2 ∈ ker(µ). Since P2 was chosen arbitrarily, this holds for all elements of 2E(Q). This proves
that 2E(Q) ⊂ ker(µ).

In the following, we show that ker(µ) ⊂ 2E(Q). Together with the fact that 2E(Q) ⊂ ker(µ), this
implies that ker(µ) = 2E(Q).
By definition of µ, we have O ∈ ker(µ). We have O = 2O, so O ∈ 2E(Q). Let P1 = (x1, y1) ∈ ker(µ)\{O}
be arbitrary. Then µ(x1, y1) = (x1 − θ) mod (K×)

2
= 1 mod (K×)

2
, so we can write

x1 − θ =
(
p2θ

2 + p1θ + p0
)2

for some p0, p1, p2 ∈ Q, not all zero.
Assume for contradiction that p2 = 0. In this case, we can rewrite the above equation to obtain

p21θ
2 + (2p0p1 + 1)θ + (p20 − x1) = 0.

Since p0, p1, x1 ∈ Q, this implies that θ is the root of a polynomial over Q of degree 2. However, this
contradicts the fact that f(x) = x3 − 4x2 +16 is the minimal polynomial of θ over Q, as f has degree 3.
Hence, by contradiction, we find that p2 ̸= 0.

We claim that it is possible to find rational numbers s0, s1, r0, r1, where r0 and r1 are not both equal
to 0, such that

(s1θ + s0)(p2θ
2 + p1θ + p0) = r1θ + r0.
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Substituting θ3 = 4θ2 − 16, we get

(s1θ + s0)(p2θ
2 + p1θ + p0) = s1p2θ

3 + (s0p2 + s1p1)θ
2 + (s1p0 + s0p1)θ + s0p0

= (s0p2 + s1p1 + 4s1p2)θ
2 + (s1p0 + s0p1)θ + s0p0 − 16s1p2.

Since p2 ̸= 0, we can choose s1 = −1, s0 = p1

p2
+ 4, r1 =

p2
1

p2
+ 4p1 − p0, r0 = p0p1

p2
+ 4p0 + 16p2. Note

that r1 and r0 can not both be equal to 0, since K is a domain and neither of s1θ+s0 and p2θ
2+p1θ+p0

is equal to 0. For these values, we get

(s0 − θ)2(p2θ
2 + p1θ + p0)

2 = (r1θ + r0)
2

and hence

(s0 − θ)2(x1 − θ) = (r1θ + r0)
2

so

(θ − x1)(s0 − θ)2 + (r1θ + r0)
2 = 0.

This means that θ is a root of the polynomial

(x− x1)(s0 − x)2 + (r1x+ r0)
2.

This is a monic polynomial of degree 3 over Q. Therefore, this polynomial must be equal to the minimal
polynomial f of θ over Q:

f(x) = (x− x1)(s0 − x)2 + (r1x+ r0)
2.

We can rewrite this to

f(x)− (r1x+ r0)
2 = (x− x1)(s0 − x)2,

which means that the line y = r1x+r0 intersects E twice in the point (s0, t), where t = r1s0+r0 ∈ Q, and
once in either (x1, y1) = P1 or (x1,−y1) = −P1. This means that either P1 = 2(s0, t) or P1 = 2(−(s0, t)),
and (s0, t) and −(s0, t) are both in E(Q), so P1 ∈ 2E(Q). Since P1 was chosen arbitrarily, we find
that ker(µ) ⊂ 2E(Q).

By our previous arguments, this concludes the proof.

We know that E(Q) ∼= Z/5Z× Zr for some non-negative integer r. By the homomorphism theorem,
we also have

Im(µ) ∼= E(Q)/ ker(µ)

= E(Q)/2E(Q)
∼= (Z/5Z× Zr)/(2Z/5Z× 2Zr)
∼= (Z/5Z× Zr)/(Z/5Z× 2Zr)
∼= Zr/2Zr

∼= (Z/2Z)r.

Henceforth, showing that r = 0 is equivalent to showing that the image of µ is trivial.
In what follows, we make use of the following lemma.

Lemma 7.13. Let (x, y) ∈ E(Q) be arbitrary. We can write

x =
r

t2
, y =

s

t3

for some integers r, s, t ∈ Z such that gcd(r, t) = gcd(s, t) = 1.

Proof. By assumption, x, y ∈ Q, so we can write

x =
a

b
, y =

c

d
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for some a, b, c, d ∈ Z with gcd(a, b) = gcd(c, d) = 1. Without loss of generality, adjusting a and c if
necessary, we may assume that b and d are positive. We can write

x3 + k2x
2 + k1x+ k0 =

a3

b3
+ k2

a2

b2
+ k1

a

b
+ k0

=
a3 + k2a

2b+ k1ab
2 + k0b

3

b3

and

y2 =
c2

d2
.

Since (x, y) is in E(Q), we have

c2

d2
=
a3 + k2a

2b+ k1ab
2 + k0b

3

b3

and hence

b3c2 = d2(a3 + k2a
2b+ k1ab

2 + k0b
3).

First, we know that d2 divides b3c2. Since gcd(c2, d2) = gcd(c, d)2 = 1, this implies that d2 divides b3.
Secondly, we know that b3 divides d2(a3 + k2a

2b+ k1ab
2 + k0b

3). Assume for contradiction that

gcd(b3, a3 + k2a
2b+ k1ab

2 + k0b
3) = δ > 1.

Write the prime decomposition of b

b =

m∏
i=1

pαi
i

for distinct primes pi and integer exponents αi ≥ 1. In this notation, we can write

b3 =

m∏
i=1

p3αi
i .

Since δ divides b3, there exist distinct i1, i2, . . . , iu ∈ {1, 2, . . . ,m} and v1, v2, . . . , vu ∈ Z which satisfy
the inequality 1 ≤ vj ≤ 3αij for all 1 ≤ j ≤ u such that

δ =

u∏
j=1

p
vj
ij
.

Define

ε :=

u∏
j=1

pij .

We see that ϵ divides both b and δ. We assumed that δ > 1, so ϵ > 1 as well. Since ε divides δ, it also
divides a3 + k2a

2b+ k1ab
2 + k0b

3. Since ε divides b, this implies that it divides a3. Since all exponents
in the prime decomposition of ε are 1, this implies that ε divides a. Henceforth, ε divides gcd(a, b).
However, since ε > 1, this contradicts with our assumption that gcd(a, b) = 1. Hence, by contradiction,
we get that gcd(b3, a3 + k2a

2b+ k1ab
2 + k0b

3) = 1.
Therefore, we find that b3 divides d2. Since d2 also divides b3, this means that

∣∣b3∣∣ = ∣∣d2∣∣. We
assumed that b and d are both positive, so in fact b3 = d2.

Write the prime decompositions of b and d as

b =

m∏
i=1

pαi
i ,

d =

n∏
j=1

q
βj

j ,
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where p1, p2, . . . , pm are mutually distinct primes, q1, q2, . . . , qn are mutually distinct primes, and the
exponents αi, βj ≥ 1 are integers for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. In this notation, we have

m∏
i=1

p3αi
i =

n∏
j=1

q
2βj

j .

Since the prime decomposition of a number is unique, this must mean that m = n and the sets of
primes {p1, p2, . . . , pm} and {q1, q2, . . . , qn} are equal. Without loss of generality, we may assume pi = qi
for all 1 ≤ i ≤ m. This means that 3αi = 2βi for all 1 ≤ i ≤ m. This means that all αi are even, so we
can write αi = 2γi for 1 ≤ i ≤ m. We can also write βi = 3γi for 1 ≤ i ≤ m. We see that

b =

(
m∏
i=1

pγi

i

)2

,

d =

(
m∏
i=1

pγi

i

)3

.

Define

t :=

m∏
i=1

pγi

i .

We have b = t2 and d = t3, so

x =
a

t2
, y =

c

t3
.

It is clear that gcd(a, t) = gcd(c, t) = 1, since gcd(a, t) divides gcd(a, t2) which is gcd(a, b) = 1
and gcd(c, t) divides gcd(c, t3) which is gcd(c, d) = 1. Hence, we can put r := a and s := c. This
concludes the proof.

Next, we wish to show by contradiction that the image of µ is trivial. Assume for contradiction that
there exists a point (x, y) ∈ E(Q) such that µ(x, y) = (x− θ) mod (K×)

2 ̸= 1 mod (K×)
2
, i.e. x− θ

is not a square in (K×)
2
. By Lemma 7.13, we can write

x =
r

t2
, y =

s

t3

for some integers r, s, t ∈ Z such that gcd(r, t) = gcd(s, t) = 1. Since Z ⊂ K, we can write

(x− θ) mod
(
K×)2 = t2(x− θ) mod

(
K×)2

= (r − t2θ) mod
(
K×)2 .

Let OK denote the ring of integers of K. Since r and t are integers, we know r − t2θ is an algebraic
integer, so r − t2θ ∈ OK . By corollary A.15, the ideal (r − t2θ)OK has a unique decomposition into
non-zero prime ideals of OK . Write

(r − t2θ)OK =

ℓ∏
j=1

(
p′j
)bj

,

where ℓ is some positive integer, the p′j are mutually distinct non-zero prime ideals of OK and the
exponents bj ∈ Z are positive.

We already computed that the discriminant of f is −11 · 162 = −28 · 11. Using SageMath [The23],
we can compute the discriminants of OK and OL:

disc(OK) = −44 = −22 · 11;
disc(OL) = −21296 = −24 · 113.

We see that f , OK and OL have the same prime divisors with different exponents. We can use this to
prove the following theorem.
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Theorem 7.14. Let K, L, OK and OL be as above. Let p be a non-zero prime ideal of OK . If p is
ramified in OL, then p divides either 2OK or 11OK .

Proof. Assume p is a non-zero prime ideal of OK that is ramified in OL. We know that K is a field
extension of Q, and OQ = Z. By Theorem A.18, p lies over a unique prime ideal of Z, which is of the
form pZ for some prime number p. By Theorem A.17, this means that p divides (pZ)OK = pOK . It is
sufficient to show that p is either 2 or 11.

Since p divides pOK , we also have that pOL divides (pOK)OL = pOL. By assumption, p is ramified
in OL, so pOL is not square-free, hence pOL is not square-free. This means that pZ is ramified in OL. By
Theorem A.20, this means that p divides disc(OL). As we showed above, the only primes dividing the
discriminant disc(OL) are 2 and 11, so p must be either 2 or 11. By the arguments above, this concludes
the proof.

The following theorem provides more information about the exponents bj in the prime ideal decom-
position of (r − t2θ)OK .

Theorem 7.15. Let everything be as described above. If a non-zero prime ideal p′j does not divide 2OK

or 11OK then the exponent bj is even.

Proof. Assume p′j is a non-zero prime ideal of OK that does not divide 2OK or 11OK . By Theorem 7.14,
the ideal p′j is not ramified in OL. Hence, p′jOL is a product of distinct non-zero prime ideals in OL.

Assume for contradiction that bj is odd. We aim to show that this implies that every non-zero prime
ideal of OL dividing p′jOL divides at least one of the ideals (θa−θb)OL, where a, b ∈ {1, 2, 3} are distinct.

By Lemma 7.13, we can write x = r
t2 and y = s

t3 for some integers r, s, t ∈ Z such that gcd(r, t) = 1
and gcd(s, t) = 1. Since (x, y) lies on E, and f(x) = (x− θ1)(x− θ2)(x− θ3), we have

s2 = (r − t2θ1)(r − t2θ2)(r − t2θ3).

Let q be a prime ideal of OL that divides p′jOL. By Theorem A.18, q only lies over the prime ideal p′j
in OK , so it does not divide p′kOL for k ̸= j. Since p′j is not ramified in OL, this means that the largest

power of q that divides (r − t2θ1)OL is q1.
Since p′j divides (r− t2θ1)OK , q divides (r− t2θ1)OL. Therefore, it also divides s2OL, which is equal

to (sOL)
2. Consider the unique non-zero prime ideal factorization of sOL in OL. The square of this

factorization is the unique non-zero prime ideal factorization of (sOL)
2. Therefore, every non-zero prime

ideal that divides (sOL)
2 must occur in this factorization as an even power. In particular, q occurs in

the factorization of (s2OL) as an even power.
Since q2 divides (sOL)

2, but q2 does not divide (r−t2θ1)OL, it must be true that q divides (r−t2θk)OL

for at least one k ∈ {2, 3}.
Since q divides (r − t2θ1)OL and (r − t2θk)OL, it divides h := (r − t2θ1, r − t2θk)OL. We have

−1 · (r − t2θ1) + 1 · (r − t2θk) = (θ1 − θk)t
2 ∈ h;

−θk · (r − t2θ1) + θ1 · (r − t2θk) = (θ1 − θk)r ∈ h.

Since gcd(r, t) = 1, we have gcd(r, t2) = 1. Therefore, we can use Bézout’s theorem to conclude that
there exist integers u, v such that u · r + v · t2 = 1. Henceforth,

u · (θ1 − θk)r + v · (θ1 − θk)t
2 = (θ1 − θk) ∈ h.

By Theorem A.12, h divides the ideal (θ1 − θk)OL. Since q divides h, it also divides (θ1 − θk)OL. Since
the ideal q was chosen arbitrarily, this means that every non-zero prime ideal of OL that divides p′jOL

divides at least one of the ideals (θ1 − θ2)OL and (θ1 − θ3)OL.
By Theorem 7.10, we can write

disc(f) = (θ1 − θ2)
2(θ1 − θ3)

2(θ2 − θ3)
2.

Since each prime ideal divisor of p′jOL divides at least one of the ideals (θ1 − θ2)OL and (θ1 − θ3)OL,

we have that p′jOL divides disc(f)OL. We found that disc(f) = −28 · 11. By Theorem A.18, there is a
unique prime number p such that p′jOK divides pOK . Therefore, also p′jOL | pOL.

By assumption, p is not equal to 2 or 11. Since p is a prime number, we know gcd(p,−28 ·11) = 1. By
Bézout’s theorem, there exist integers u and v such that u ·p+ v · (−28 ·11) = 1. Since u and v are in OL
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as well, we know that 1 ∈ pOL + (−28 · 11)OL and hence pOL + (−28 · 11)OL = OL. Since p′jOL divides

both pOL and (−28 · 11)OL, it also divides pOL + (−28 · 11)OL = OL. This means that p′jOL = OL.
By Theorem A.18, there is a non-zero prime ideal Q of OL which lies over p′jOK . By Theorem A.17,

this means that Q divides p′jOL = OL., so Q = OL.
Theorem A.17 also implies that p′jOK = Q ∩ OK = OL ∩ OK = OK . However, this contradicts the

assumption that p′j does not divide 2OK or 11OK , as OK divides both. Hence, by contradiction, bj can
not be odd, so it must be even. This concludes the proof.

As a consequence of Theorem 7.15, the only non-zero prime ideals of OK that that could divide
the ideal (r − t2θ)OK and have an odd exponent in its decomposition are the primes that divide 2OK

or 11OK . Therefore, we can write

(r − t2θ)OK =

(
k∏

i=1

pai
i

)
A2,

where k is some positive integer, the pi are mutually distinct non-zero prime ideals of OK dividing 2OK

or 11OK , exponents ai ∈ {0, 1} for all i, and A is an ideal of OK . We use the convention p0 = OK for
any ideal p of OK .

We need to know the prime ideal decomposition of 2OK and 11OK . Recall that {1, θ/2, θ2/4} is
an integral basis for K. This means that OK = Z[θ/2], so OK is monogenic. Therefore, we can use
Theorem A.16.

The minimal polynomial of θ/2 can be found by a direct computation. We have(
θ

3

)2

=
θ3

8

=
4θ2 − 16

8

= 2

(
θ

2

)2

− 2.

Thus, the minimal polynomial of θ/2 is

g(x) = x3 − 2x2 + 2.

We use Theorem A.16.
We reduce g(x) modulo 2. We immediately get

x3 − 2x2 + 2 ≡ x3 mod 2.

We find that

2OK = ((2, θ/2)OK)3.

Denote p := (2, θ/2)OK .
We reduce g(x) modulo 11. By computing g(x) mod 11 and g′(x) mod 11 for 0 ≤ x ≤ 10, we find

that

x3 − 2x2 + 2 ≡ (x− 5)2(x− 3) mod 11.

Hence

11OK = ((11, θ/2− 5)OK)2(11, θ/2− 3)OK .

Denote q := (11, θ/2− 5)OK and r := (11, θ/2− 3)OK .
So we have

(r − t2θ)OK = pa1qa2ra3A2

where a1, a2, a3 ∈ {0, 1}.
Using Theorems A.23 and A.24, we can compute the ideal norms of p, q and r.
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Recall that 2OK = p3. By Theorem A.23,

NK
Q (p)3 = NK

Q
(
p3
)

= NK
Q (2OK).

By Theorem A.24,

NK
Q (2OK) = |σ1(2)σ2(2)σ3(2)|.

Since 2 ∈ Q and each embedding of K fixes Q,

NK
Q (2) = |2 · 2 · 2| = 8.

Thus,

NK
Q (p)3 = 8.

Since the ideal norm of a non-zero ideal is a positive integer, we find

NK
Q (p) = 2.

Recall that 11OK = q2r. Similar to above, we have

NK
Q (q)2 NK

Q (r) = NK
Q (q2r)

= NK
Q (11OK)

= |σ1(11)σ2(11)σ3(11)|
= 113.

Since q and r are not equal to OK , their norms are strictly greater than 1. Henceforth, we find that

NK
Q (q) = 11,

NK
Q (r) = 11.

We can use Theorem A.24 to compute the norm of (r − t2θ)OK .

NK
Q
((
r − t2θ

)
OK

)
=
∣∣NK

Q (r − t2θ)
∣∣

=
∣∣σ1(r − t2θ)σ2(r − t2θ)σ3(r − t2θ)

∣∣
=
∣∣(r − t2θ1)(r − t2θ2)(r − t2θ3)

∣∣
=
∣∣t6(x− θ1)(x− θ2)(x− θ3)

∣∣
=
∣∣t6f(x)∣∣

=
∣∣t6y2∣∣

= s2.

We also have

NK
Q
((
r − t2θ

)
OK

)
= NK

Q
(
pa1qa2ra3A2

)
= NK

Q (p)a1 NK
Q (q)a2 NK

Q (r)a3 NK
Q (A)2

= 2a1 · 11a2+a3 ·NK
Q (A)2.

Comparing these values yields the equation

s2 = 2a1 · 11a2+a3 ·NK
Q (A)2.

From this equation, it follows that the term 2a1 · 11a2+a3 must be a square. Therefore, we need a1 = 0
and a2 = a3. We aim to show that a2 and a3 must in fact also be 0.

Lemma 7.16. Let everything be as above. The exponents a2 and a3 are both equal to 0.
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Proof. We have a2, a3 ∈ {0, 1} and a2 = a3. Thus, there are only two possibilities: either a2 = a3 = 1
or a2 = a3 = 0. Assume for contradiction that a2 = a3 = 1. This means that qr divides (r − t2θ)OK .
Since q2r = 11OK , we have

11OK

∣∣∣∣ q2r2 ∣∣∣∣ ((r − t2θ)OK)2 = (r2 − 2rt2θ + t4θ2)OK .

This means that r2 − 2rt2θ + t4θ2 ∈ 11OK , so

r2 − 2rt2θ + t4θ2 = 11p0 + 11p1
θ

2
+ 11p2

θ2

4

for some p0, p1, p2 ∈ Z. This implies

r2 = 11p0, 4t4 = 11p2.

Since 11 is a prime number, r and t are integers and 4 and 11 are coprime, this implies

11

∣∣∣∣ r, 11

∣∣∣∣ t.
However, this contradicts gcd(r, t) = 1. Therefore, by contradiction, a2 and a3 must both be 0. This
concludes the proof.

Therefore, we can write

(r − t2θ)OK = A2

for some ideal A of OK . We aim to show that A is a principal ideal. Then, we can write A = AOK ,
and hence (r − t2θ)OK = A2OK . We can then find a relation between r − t2θ and A2, which gives us
equations that r and t2 have to satisfy. From these equations, we can arrive at a contradiction.

Lemma 7.17. Let OK be as above. Then, OK is a PID.

Proof. We can compute Minkowski’s bound for K. The number of complex embeddings of K is equal to
the number of non-real of roots of f , which is 2. The discriminant of K is −44. The degree of K over Q
is 3. Plugging this into (A.1), we obtain

MK =
√

| − 44|
(
4

π

)1
3!

33

= 2
√
11 · 4

π
· 6

27

=

√
11

π
· 16
9

≈ 1.88.

Thus, by Theorem A.27, every ideal class of K contains an ideal of norm 1. Since the only ideal of OK

that has norm 1 is OK itself, there is only one ideal class. Hence, the class number of K is 1. By
Proposition A.26, this means that every ideal of OK is principal, so OK is a PID.

By Lemma 7.17, we can write

A = AOK

for some A ∈ OK . Therefore,

(r − t2θ)OK = A2OK ,

so

r − t2θ = u ·A2

for some unit u of OK . Note that u can not be a square in K, since r − t2θ is not a square in K by
assumption. Recall that every unit of OK is of the form ±ηk for η = 1 − θ

2 and some k ∈ Z. Without
loss of generality, possibly adjusting A if necessary, we may assume u ∈ {−1, η,−η}. By comparing the
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possible values of the norm of u ·A2 to the norm of r − t2θ, we aim to show that u must be equal to η.
This then gives us equations that r and t2 have to satisfy.

Recall that the norm of the element r − t2θ is equal to s2. We therefore have

s2 = NK
Q (r − t2θ) = NK

Q (u ·A2) = NK
Q (u) ·NK

Q (A)2.

By Theorem A.5, we have NK
Q (A)2 > 0, so we need NK

Q (u) > 0. We can compute the norms of −1, η
and −η. We find

NK
Q (−1) = (−1)3 = −1.

Recall that we defined θ2 and θ3 in terms of θ1 as

θ2 =
4− θ1 +

√
−3θ21 + 8θ1 + 16

2
, θ3 =

4− θ1 −
√

−3θ21 + 8θ1 + 16

2
.

One can compute

θ2 + θ3 = 4− θ1;

θ2θ3 = θ21 − 4θ1.

We compute

NK
Q (η) =

3∏
i=1

σi

(
1− θ

2

)
=

(
1− θ1

2

)(
1− θ2

2

)(
1− θ3

2

)
=

(
1− θ1

2

)(
1−

(
θ2 + θ3

2

)
+
θ2θ3
4

)
=

(
1− θ1

2

)(
1− 4− θ1

2
+
θ21 − 4θ1

4

)
=

(
1− θ1

2

)(
−1− θ1

2
+
θ21
4

)
= −1 +

θ21
2

− θ31
8

= −1 +
θ21
2

− 4θ21 − 16

8
= 1.

It follows that

NK
Q (−η) = NK

Q (−1) ·NK
Q (η) = −1.

We require NK
Q (u) > 0, so the only option is u = η. Hence, we conclude that r − t2θ = η · A2 for

some A ∈ OK . By writing out this equality in terms of θ, we can obtain equations that r and t2 have
to satisfy. These equations imply that r and t must both be even, which contradicts our assumption
that gcd(r, t) = 1. This implies that there is no non-torsion rational point on E.

We have

r − t2θ = ηA2.

Thus,

η(r − t2θ) = η2A2 = (ηA)2.

Denote

ηA = p0 + p1
θ

2
+ p2

θ2

4
.
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We have

η(r − t2θ) =

(
p0 + p1

θ

2
+ p2

θ2

4

)2

. (7.31)

If we write out the left-hand side of equation (7.31), we get

η(r − t2θ) =

(
1− θ

2

)
(1− t2θ)

= r −
(
r + 2t2

) θ
2
+ 2t2

θ2

4
. (7.32)

If we write out the right-hand side of equation (7.31), we get(
p0 + p1

θ

2
+ p2

θ2

4

)2

= p20 + 2p0p1
θ

2
+
(
2p0p2 + p21

) θ2
4

+ p1p2
θ3

4
+ p22

θ4

16

= p20 + 2p0p1
θ

2
+
(
2p0p2 + p21

) θ2
4

+ p1p2
4θ2 − 16

4
+ p22

16θ2 − 16θ − 64

16

=
(
p20 − p1p2 − 4p22

)
+
(
2p0p1 − 2p22

) θ
2
+
(
2p0p2 + p21 + 4p1p2 + 4p22

) θ2
4
. (7.33)

Comparing the coefficients of equations (7.32) and (7.33), we obtain the system of equations
r = p20 − 4p1p2 − 4p22,

−r − 2t2 = 2p0p1 − 2p22,

2t2 = 2p0p2 + p21 + 4p1p2 + 4p22.

(7.34a)

(7.34b)

(7.34c)

Equation (7.34b) implies that r is even. Therefore equation (7.34a) implies that p0 is even. Also, equa-
tion (7.34c) implies that p1 must be even. Since p0 and p1 are even, the right-hand side of equation (7.34c)
is divisible by 4. Therefore, so must the left-hand side be. Since 2t2 is divisible by 4, we must have that t2

is even, so t is even. In conclusion, both r and t must be even. But this contradicts our assumption
that gcd(r, t) = 1.

Therefore, by contradiction, every point (x, y) on E(Q) must satisfy µ(x, y) = 1 mod (K×)
2
. By

our previous arguments, this proves that µ has trivial image, and hence the rank of E(Q) is 0. By
Lemma 7.9, this proves the following fact.

Proposition 7.18 (Fact 3). Let E be the elliptic curve over Q given by

y2 = x3 − 4x2 + 16.

The group E(Q) consists of exactly 5 distinct points.

This concludes the proof of Theorem 7.1.
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Conclusion

In this paper, we covered the basic concepts of elliptic curves. We showed the group law and some results
regarding the group structures of elliptic curves. One of these results was Mazur’s theorem, which is a
central result for this text.
We covered isomorphisms between elliptic curves that preserve the Weierstrass normal form of the
equation, and defined some invariant quantities.
We found conditions for the coefficients of the equation in the Weierstrass normal form of an elliptic
curve for which the curve has points of order 2 or 3. For fields of characteristic different from 2, we found
that points of order 2 lie on a line, which we call the symmetry line. We found that points of order 3 are
rational inflection points of the curve. We also looked at the Legendre family and the Hessian family of
elliptic curves, which contain curves with a point of order 2 or 3, respectively.
We defined the Tate normal form of an equation of an elliptic curve. We showed that any elliptic curve
over Q with a rational torsion point of order n greater than 3 is isomorphic to an elliptic curve with an
equation in Tate normal form, where (0, 0) has order n. We used this to classify all elliptic curves over Q
with such a torsion point up to isomorphism. We found conditions on the parameters of the equation in
Tate normal form for which the point (0, 0) on the associated elliptic curve has order n. We also found
families of elliptic curves where (0, 0) has order n defined by a single parameter.
We defined the division polynomials. We stated that they can be used to compute multiples of a point
on an elliptic curve and to find points on an elliptic curve with a particular order. We used these results
to write an algorithm to find elliptic curves over Q with trivial torsion group. We related this to a result
which states that such curves are ubiquitous.
Finally, we gave a proof of the fact that elliptic curves over Q can not have a rational torsion point of
order 11. For this proof, we covered the basic concepts of algebraic number theory.
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A Appendix: Algebraic number theory

This section is based on [Mar18]. The proofs of the results in this section are beyond the scope of this
text and are omitted.

A.1 Basic concepts

Definition A.1. The following are central concepts in algebraic number theory.

• A complex number α ∈ C is an algebraic integer if α is a root of some monic polynomial wit
coefficients in Z.

• The set of all algebraic integers in C is denoted by A.

• A number field is a subfield of C which has finite degree over Q.

Proposition A.2. The following are central results relating to the concepts above.

• The set A is a subring of C.

• The only algebraic integers in Q are the ordinary integers, i.e. Q ∩ A = Z.

• A number field K can always be represented as Q[α] for some algebraic number α. If α is a root of
an irreducible polynomial over Q of degree n, then the set {1, α, α2, . . . , αn−1} is a basis for Q[α]
as a vector space over Q.

• Let K = Q[α] be a number field of degree n over Q. Then there are exactly n distinct embeddings of
K into C. Each embedding σ : K → C is determined by the image of α under σ: each embedding
maps α to one of the conjugates of α, i.e. to one of the roots of the minimal polynomial of α over
Q.

Definition A.3 (Ring of integers). Let K be a number field. Then OK := K ∩ A is called the ring of
integers corresponding to K.

Definition A.4 (Norm of an element). Let K be a number field of degree n over Q. Let σ1, . . . , σn be
the embeddings of K into C. For any element α of K, we define the norm of α over Q to be

NK
Q (α) =

n∏
i=1

σi(α).

It is important to note that the norm is multiplicative since the embeddings are homomorphisms. In
other words, for any α, β ∈ K, we have

NK
Q (αβ) = NK

Q (α) ·NK
Q (β).

Theorem A.5. Let K be a number field. Let α be an element of K. Then NK
Q (α) ∈ Q.

Definition A.6 (Discriminant of an n-tuple). LetK be a number field of degree n over Q. Let σ1, . . . , σn
be the embeddings of K into C. Let α1, . . . , αn ∈ K be arbitrary. Let [σi(αj)] denote the n by n matrix
having σi(αj) in the i-th row, j-th column. We define the discriminant of the n-tuple (α1, . . . , αn) by

disc(α1, . . . , αn) = (det[σi(αj)])
2
.

Note that this definition is independent of the ordering of the σi and αj because of the square.

Proposition A.7. Let K be a number field of degree n over Q. The discriminant has the following
properties.

• For any α1, . . . , αn ∈ K, the discriminant disc(α1, . . . , αn) is a rational number.

• If α1, . . . , αn ∈ K ∩ A, i.e. all αi are algebraic integers, then disc(α1, . . . , αn) is an integer.

• Elements α1, . . . , αn ∈ K are linearly dependent over Q if and only if disc(α1, . . . , αn) = 0.
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Theorem A.8 (Integral basis). Let K be a number field of degree n over Q and let OK be the ring of
integers of K. Then OK is a free abelian group of rank n. Equivalently, there exist algebraic integers
β1, . . . , βn ∈ OK such that

OK = β1Z+ · · ·+ βnZ.

The set {β1, . . . , βn} is called an integral basis for OK . It is a basis for OK over Z and also a basis for
K over Q.

Theorem A.9 (Discriminant of a ring of integers and number field). Let K be a number field of degree
n over Q, OK the ring of integers of K, {β1, . . . , βn} and {γ1, . . . , γn} integral bases for OK . Then

disc(β1, . . . , βn) = disc(γ1, . . . , γn).

In other words, the discriminant of an integral basis of OK can be regarded as an invariant of OK . We
also call the discriminant of an integral basis of OK the discriminant of OK or the discriminant of K.
We denote this by disc(OK) or disc(K), respectively. By A.7, disc(K) ∈ Z \ {0}.

A.2 Dedekind domains

Definition A.10 (Dedekind domain). A Dedekind domain is an integral domain R such that:

1. every ideal of R is finitely generated;

2. every non-zero prime ideal of R is a maximal ideal;

3. R is integrally closed in its field of fractions

K =

{
α

β
| α, β ∈ R, β ̸= 0

}
.

In other words, if α/β ∈ K is a root of some monic polynomial over R, then in fact α/β ∈ R.

Theorem A.11. Every ring of integers is a Dedekind domain.

Theorem A.12. Let I be a non-zero ideal in a Dedekind domain R. Let α ∈ I be a non-zero element.
There exists an ideal J of R such that IJ = αR.

This result has some useful corollaries.

Corollary A.13. Let A,B,C be non-zero ideals in a Dedekind domain R

• If AB = AC, then B = C.

• The ideal A divides B if and only if A contains B.

Theorem A.14. Every non-zero ideal in a Dedekind domain is uniquely representable as a finite product
of non-zero prime ideals.

By A.11 and A.14, we get the following result.

Corollary A.15. Every non-zero ideal in a ring of integers is uniquely representable as a finite product
of non-zero prime ideals.

If R is a ring of integers of the form Z[α] for some algebraic integer α, then we can find the unique
factorization of ideals of the form pR with p ∈ Z a prime number using the following theorem.

Theorem A.16. Let R be a monogenic ring of integers, i.e. R = Z[α] for some algebraic integer α. Let
f be the minimal polynomial of α over Z. Let p be a prime number. The unique non-zero prime ideal
decomposition of the ideal pR can be found using the following method.

Reduce the polynomial f modulo p and factor the reduced polynomial as a product of irreducible
polynomials modulo p. Write

f(x) ≡ g1(x)
e1 · · · gm(x)em mod p,

where the gi are mutually distinct irreducible polynomials modulo p and the ei are positive integers.
The non-zero prime ideal decomposition of the ideal pR is

pR = pe11 · · · pemm ,

where the ei are the same as before and each pi is of the form

pi = (p, gi(α))R.
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A.3 Prime ideals

In this section, let K and L be number fields such that L is a field extension of K. Denote the rings
of integers of K and L by OK and OL, respectively. The term “prime” will be used to mean “non-zero
prime ideal”.

Theorem A.17. Let P be a prime of OK and let Q be a prime of OL. The following statements are
equivalent:

1. Q | POL;

2. Q ⊃ POL;

3. Q ⊃ P ;

4. Q ∩OK = P ;

5. Q ∩K = P .

When any of the above statements holds, we say that Q lies over P and P lies under Q.

There is a correspondence between the primes of OK and OL.

Theorem A.18. Every prime Q of OL lies over a unique prime P of OK . Every prime P of OK lies
under at least one prime Q of OL. The primes of OL lying over a given prime P of OK are the ones
which occur in the prime decomposition of POL. Hence, there are only finitely many primes of OL which
lie over P .

Definition A.19 (Ramification). Let P be a prime of OK . Let POL = Qe1
1 Q

e2
2 · · ·Qer

r be the prime
decomposition of POL in OL, where the Qi are mutually distinct. We say P is ramified in OL if any of
the ei is greater than 1.

If K = Q, there is a special relation between the discriminant of OL and the primes of OK that are
ramified in OL.

Theorem A.20. Let K = Q, so OK = Z. A prime ideal of OK , which is always of the form pZ for a
prime number p, is ramified in OL if and only if the prime number p divides disc(OL).

A.4 Ideal norm

Let K be a number field with ring of integers OK . Let I be a non-zero ideal of OK . We associate a
quantity to this ideal, called the ideal norm. It is related to the quotient ring OK/I.

Proposition A.21. Let K, OK and I be as above. The the quotient ring OK/I is finite.

Definition A.22 (Ideal norm). Let K be a number field with ring of integers OK . Let I be a non-zero
ideal of OK . The ideal norm NK

Q (I) is defined as

NK
Q (I) = |OK/I| .

By convention, the norm of the zero ideal is defined to be 0.

As with the norm of an element, the ideal norm is multiplicative.

Theorem A.23 (Ideal norm is multiplicative). Let K be a number field and let OK be its ring of integers.
Then for any ideals I and J in OK ,

NK
Q (IJ) = NK

Q (I)NK
Q (J).

Another useful property of the ideal norm, is that the norm of a principal ideal is related to the norm
of its generator.

Theorem A.24 (Ideal norm of a principal ideal). Let K be a number field and let OK be its ring of
integers. Let α ∈ OK . For the principal ideal αOK in OK , we have

NK
Q (αOK) = |NK

Q (α)|.
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A.5 Ideal classes

We can define an equivalence relation of ideals of a ring of integers.

Definition A.25 (Ideal classes). Let K be a number field. Let OK be the ring of integers of K. Two
non-zero ideals I and J of OK are said to be equivalent if and only if there exist α, β ∈ OK \{0} such that
αI = βJ . This defines an equivalence relation. The equivalence classes corresponding to this relation
are called ideal classes of K. The number of ideal classes is called the class number of K.

If the class number of a number field is 1, then its ring of integers is in fact a principal ideal domain
[IR90].

Proposition A.26. Let K be a number field with class number 1. Let OK be the ring of integers of K.
Every ideal of OK is principal.

Proof. Clearly, the zero ideal is 0 · OK , which is principal. Let I be an arbitrary non-zero ideal of OK .
Since the class number of K is 1, I is in the same equivalence class as the ideal OK . Hence, there exist
non-zero elements α and β in OK such that αI = βOK . This implies that β ∈ αI, so β/α ∈ I. We have

(αOK) ·
(
β

α
OK

)
= βOK ,

(αOK) · I = βOK .

By corollary A.13, this means that I = β/αOK , so I is principal. Since I was chosen arbitrarily, this
concludes the proof.

There exists a general formula to find the class number of a given number field, but this is beyond
the scope of this text. For the purposes of this text, the following result is sufficient [Mar18].

Theorem A.27 (Minkowski’s bound). Let K be a number field of degree n over Q. Let 2s be the number
of complex embeddings of K into C, i.e. the number of embeddings into C that do not map K into R.
Every ideal class of K contains an integral ideal with ideal norm not exceeding Minkowski’s bound

MK =
√
|disc(K)|

(
4

π

)s
n!

nn
. (A.1)

A.6 Fundamental units

The group of units of a ring of integers has a particular structure.

Theorem A.28 (The unit theorem). Let K be a number field of degree n over Q with exactly r real
embeddings and 2s complex embeddings. Let OK be the ring of integers of K. Let U be the group of units
in OK . Then U is the direct product W × V where W is a finite cyclic group consisting of the roots of 1
in K and V is a free abelian group of rank r + s− 1.

The group V as in Theorem A.28 is of the form

V =
{
uk1
1 u

k2
2 · · ·ukr+s−1

r+s−1 | ki ∈ Z
}

for some set of r+ s− 1 units u1, . . . , ur+s−1. Such a set is called a fundamental system of units in OK .
The exponents k1, . . . , kr+s−1 are uniquely determined for a given member of V .
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47:33–186, 1977.

[Mor22] L. J. Mordell. On the rational solutions of the indeterminate equations of the third and fourth
degrees. Proc. Camb. Phil. Soc, 21:179–192, 1922.

[Nag28] T. Nagell. Sur les propriétés arithmétiques des cubiques planes du premier genre. Acta Math.,
52:93 – 126, 1928.

[Rei86] M. A. Reichert. Explicit determination of nontrivial torsion structures of elliptic curves over
quadratic number fields. Mathematics of Computation, 46(174):637–658, 1986.

[Sut11] A. V. Sutherland. Constructing elliptic curves over finite fields with prescribed torsion. Mathe-
matics of Computation, 81(278):1131–1147, aug 2011.

[The23] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 7.4), 2023.
http://www.sagemath.org.

[Was08] L. C. Washington. Elliptic curves: number theory and cryptography. Chapman and Hall/CRC,
2nd edition, 2008.


	Preface
	Elliptic curves
	The projective plane
	Homogeneous polynomials
	The group law
	The group structure

	Isomorphisms
	Isomorphisms between elliptic curves
	Associated quantities

	Curves with points of order 2 or 3
	Curves with points of order 2
	The Legendre family
	Curves with points of order 3
	The Hessian family

	Tate normal form
	Curves with points of order n
	Multiples of P
	Order 4
	Order 5
	Order 6
	Order 7
	Order 8
	Order 9
	Order 10
	Order 12
	Table

	Division polynomials
	Torsion points
	Trivial torsion group

	Non-existence of torsion points of order 11
	Cubic curve C
	Curves C and E
	Elliptic curve E
	The torsion group of E
	Roots of f
	The rank of E


	Conclusion
	Appendix: Algebraic number theory
	Basic concepts
	Dedekind domains
	Prime ideals
	Ideal norm
	Ideal classes
	Fundamental units

	References

