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Abstract

This thesis presents research on Celtic knots using a framework of knotted trivalent graphs (KTGs)
with the aim of finding a construction method of Celtic knots and finding a knot invariant of KTGs.
We give some basic knot theory and theory on KTGs necessary for understanding the thesis. Ad-
ditionally, we discuss the colouring of knots and KTGs and prove theorems which give a relation
between knot colouring and knot invariance, as well as between KTG colouring and KTG invariance.
We use the theory to colour several Celtic knots and analyse the construction of Celtic designs as
KTGs.
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1 Introduction

Despite what the name might suggest, Celtic knots are not unique to Celtic culture [5]. The Celts were
inspired by knot-work of the Romans, Greeks and Vikings. The Celtic knots were drawn to decorate the
borders of manuscripts, but they have also been used as decoration for churches [6]. The illustrations in
manuscripts often feature zoomorphic motives, which are knot-work designs featuring animals.

While these Celtic designs can be found in multiple places, the techniques used to make them is
unknown to us. In the twentieth century an artist named George Bain developed a method which
allowed us to recreate the Celtic knots that have been found [3]. This method is explored later in this
thesis.

The mathematics of knots was not explored until the nineteenth century and since the Celts did
not leave behind any sources documenting the construction of Celtic knots, we cannot know how much
mathematical theory was used for making these knots. We can however use the knot theory developed
in the last three centuries to analyse Celtic knots and to discover the mathematics hidden in these
centuries-old creations.

With Celtic knots or Celtic designs we mean any Celtic artwork consisting of intertwined bands, many
of which are knots. However, not all Celtic designs are knots. Figure 1 shows a ‘knot’ from the book of
Kells. In the bottom left three arcs are connected at some point, which implies that this is not a knot.
Hence another framework must be used to analyse knots such as this one. An object that allows us to
do this is a knotted trivalent graph (KTG), which can contain forks: three arcs connected at a point.

Figure 1: A Celtic ‘knot’ from the book of Kells.

The grid method made by Bain is used to construct alternating knots, but KTGs allow us to find
many other designs. We hence want to research how the grid method can be adjusted for KTGs.

Besides constructing knots we can also study if two knots are equivalent to each other: knot invariance.
We would like to analyse how concepts from knot invariance can be adjusted to find if two KTGs are
equivalent to each other.

In this thesis we hence want to answer the following question:

How can we build Celtic knots using KTGs and prove invariance of KTGs?

In order to answer this question we start by giving a brief history on Celtic knots and the research
done by George Bain. This is followed by a chapter on basic knot theory and the theory of KTGs. Next
knot colouring is explained and we prove how knot colouring is related to knot invariance. This theory is
then adjusted so it can be used for colouring KTGs. We then use KTG colouring to colour several Celtic
knots and find KTG invariants. The final chapter shows how to construct Celtic KTGs using a method
based on the grid method by George Bain.
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2 Historical background

The Book of Kells, the Lindisfarne Gospels and the Lichfield Gospels are all famous examples of gospels
made during the early medieval period. These books are of great art historical importance because of
their illuminated pages, which showcase the art style commonly used by the Celtic peoples living in
Britain and Ireland at the time. This art style is referred to as “Insular art”, coming from “insula”, the
Latin word for island. The complex designs of the illuminated pages feature initials and borders filled
with intricate knotwork.

The knots used in these designs are alternating knots, based on weaving techniques used for the
creation of for example baskets. Although these knots are referred to as “Celtic knots”, they do not
have a Celtic origin. Rather, they are based on an interlacing pattern made by the Romans, which
was then adapted and altered by Germanic artists [12]. The interlacing pattern we see in Celtic art is
hence not exclusive to Celtic culture, as it can be found in art ranging from Roman art to Islamic art
[9]. The designs also have features of animals, which are sometimes used in knots. They are so-called
“zoömorphic”, see for example the right image of figure 2.

Figure 2: Left: Incipit page of the Gospel of Matthew in the Lindisfarne Gospels. Right: Detail of an
illuminated page in the Book of Kells. Images taken from [1] and [11].

The knowledge on the construction of Celtic knots was ultimately lost and hence we cannot determine
how exactly the Celtic artists made these complicated designs. However, in 1951 George Bain published
a book in which he explained a possible method of constructing Celtic knots, which he calls “the grid
method”. This method has since then been used to replicate many of the designs that have been found
in Celtic art [8].

An example of how a Celtic knot can be constructed using Bain’s method can be found in figure 3.
After taking a grid, we create a secondary grid (the red and blue dots respectively). We can then create
a plait indicated by the red lines in (d) and add external weaving. Since Celtic knots are alternating,
we must indicate where the knot has overlap (Figure 3(f)). Finally the band is drawn and the grid is
removed, leaving us with a knot [8].

4



Figure 3: Bain’s grid method. Image taken from [8].

The aforementioned method can be further complicated by adding more strands or by indicating
breaklines in the initial grid which are not allowed to be crossed by the strands. This allows for the
creation of more complicated Celtic knots, see figure 4.

Figure 4: The grid method using breaklines. Image taken from [8].

Throughout time multiple researches have been done into identifying different types of Celtic knots.
Romilly Allen identified eight of the most commonly used Celtic knots, which are shown in figure 5. The
knots shown in the figure are a part of a larger decoration in which several knots, either of the same or
a different type, are tied together. This can for example be done to fill a rectangular space such as a
frieze, but it can be used to fill spaces of other shapes. A famous example would be the knotwork used
in a Celtic cross.

Figure 5: Eight most common Celtic knots designs. Images taken from [7].
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3 Theory

This chapter presents some basic concepts of knot theory. Moreover, an introduction to the theory of
knotted trivalent graphs is given.

3.1 Knots

Definition 3.1. Given two topological spaces X,Y , an injective and continuous map f : X → Y with
f : X → f(X) a homeomorphism, then f is an embedding. Note that f(X) has the subspace topology.

Definition 3.2. A knot is a closed, non-self-intersecting curve smoothly embedded in S3.

Note that S3 ∼= R3 ∪ {∞} is compact. Knots can be visualised by considering them as objects in
R3 with an additional point at ∞. With “smoothly embedded” we mean that the knot k is a smooth
embedding (C∞) k : S1 → S3. This is required to exclude wild knots, which consist of an infinite amount
of knots tied one after the other [2]. An example of a wild knot is depicted in figure 6.

Figure 6: Example of a wild knot. Image taken from [2].

In order to draw a knot we can project it onto S2. In the drawing of a knot we indicate a crossing by
leaving some space around the overcrossing. Figure 6 for example shows such a projection.

The simplest knot is the unknot, depicted in figure 7a. This is a closed loop without any ‘knots’ in it.
A part of the knot going from one undercrossing to the next is called an arc. The trefoil knot (figure

7b) has 3 arcs.

(a) Unknot. (b) Trefoil knot.

Definition 3.3. A link is a finite number of circles smoothly embedded in S3.

Figure 8: Hopf link.

It is important to establish rules regarding invariance of knots and KTGs, because we want to deter-
mine which Celtic knots are equivalent to each other.
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Definition 3.4. A diffeomorphism is a smooth homeomorphism.

Definition 3.5. A diffeomorphism φ is isotopic to the identity if there exists a homotopy
H : R3 × [0, 1] → R3 such that ht : R3 → R3 is a homeomorphism for all t ∈ [0, 1], h0 = idR3 and h1 = φ.

Definition 3.6. Two knots k1 and k2 are equivalent if there exists a diffeomorphism φ such that φ(k1) =
k2 and φ is isotopic to the identity map.

By requiring φ to be isotopic we ensure that two mirror images of a knot are not necessarily equivalent.
One method to determine if knots are equivalent is to use Reidemeister moves. The Reidemeister

moves of type I, II and III do not change the knot, but only its projection.

(I) Adding or removing a twist in the knot (figure 9a).

(II) Adding or removing two crossings (figure 9b).

(III) Sliding a strand of the knot from one side to another side of the crossing (figure 9c)

(a) Type I (b) Type II (c) Type III

Figure 9: Reidemeister moves

Figure 9 shows two cases for every Reidemeister move. Note that each of these cases follows from the
other.

Theorem 3.1. Two knot projections are equivalent if and only if they are related by a finite sequence
of Reidemeister moves [10].

3.2 Knotted trivalent graphs

Definition 3.7. A fat graph is a finite 1-dimensional simplicial complex together with an embedding
into a two-dimensional manifold with boundary.

We can picture a fat graph as a ‘thickened’ graph. The vertices of the graph are disks and the edges
are bands.

Definition 3.8. A knotted trivalent graph (KTG) is a trivalent fat graph smoothly embedded as a
surface in S3 and considered up to isotopy.

Note that a circle, a single edge without vertices, is a KTG.
An example of a KTG and its simplified representation is shown in figure 10. We see that the bands

are drawn as lines. Half twists are indicated by drawing a short line crossing the band lines in the
direction of the twist.

Figure 10: A KTG diagram and its simplified representation. Image taken from [13].
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Isotopic KTGs can be related through a series of moves, similarly to what was done for knots using
Reidemeister moves. These moves are called trivalent isotopic moves and are depicted in figure 11.

• Fork slide: we can slide a band from one side of the crossing of a fork to the other side of this
crossing (figure 11a).

• Twist slide: a half twist in a band can be slid from one side of a crossing to the other side (figure
11b).

• Trivalent twist: if we have a half twist in a band which later splits into a fork, then the two bands
of this splitting can overlap and the half twists are moved upward (figure 11c).

• Addition of twists 1: if a band has two half twists in opposite directions, we can remove them.
Similary, we can add two half twists without changing the KTG (figure 11d).

• Addition of twists 2: a band with two half twists in the same direction is isotopic to that band
having a loop (figure 11e).

(a) Fork slide (b) Twist slide

(c) Trivalent twist

(d) Addition of twists 1
(e) Addition of
twists 2

Figure 11: Trivalent isotopy moves. Image taken from [13].

Definition 3.9. Two KTGs G1, G2 are equivalent if there exists a diffeomorphism φ such that φ(G1) =
G2 and φ is an isotopy.

Theorem 3.2. Two KTGs are equivalent if they are related by a finite sequence of trivalent isotopy
moves.

KTGs can be altered using a set of moves:

• Adding a left hand or right hand half twist (figure 12a).

• Unzipping a band (figure 12b).

• Adding a triangle in a forked band (figure 12c).

(a) KTG moves H+ and H−. (b) KTG move U.
(c) KTG move A.

Figure 12: KTG moves. Image taken from [13].
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Lemma 3.1. Suppose there exists a finite sequence of KTG moves that transform the theta graph into
some KTG with H+, H−, U,A used ℓ−, ℓ+,m, n times respectively. Then we can first perform the move
A n-times, then H+, H− n+, n− times and finally U m times.

Proof. Let us take an arbitrary KTG G such that there exists a sequence of KTG moves which transform
the theta graph into G.

• If U is applied to an edge which was created by a move A, then A is applied before U .If U is used
on a different edge then the moves U and A do not influence each other and hence A can be applied
before U .

• If we unzip an edge with a half twist, then H+ or H− must have been applied to the edge before
the unzip. If we give a half twist to an edge which is never unzipped, then the moves H+, H−, U
do not influence each other, thus H+, H− can be used before U .

• Finally, if an edge created by A is given a half twist, then A must be applied before H+ or H−.
Alternatively, if we give a half twist to an edge not created by A, then these moves do not affect
each other and we can thus apply A before H+, H−.

Hence we can first apply A n times, then H+, H− ℓ+, ℓ− times and finally all U m times.

Theorem 3.3. Every KTG can be constructed by using the moves H+, H−, U,A on the theta graph
(figure 13) [13].

Figure 13: Theta graph.

As an example of the construction of a KTG we consider the KTG in figure 10. Figure 14 shows all
steps, starting at the theta graph and finishing with the desired KTG.

Figure 14: The construction of a KTG. Red indicates that the next move operates on this element. In
the next step such elements are blue.
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4 Colouring

As explained in section 3.1 two knots are equivalent if we can transform one into the other using Rei-
demeister moves. It can however be useful to apply other methods of determining whether two knots
are equivalent, because projections of knots can be complicated. Using Reidemeister moves to show the
equivalence of two knots can then lead to a rather messy process. As an example, consider the knot in
figure 15, which is a more complex projection of the unknot.

Figure 15: An alternative projection of the unknot.

There are several methods used to determine whether two knots are equivalent, such as using knot
polynomials and knot colouring. Sections 4.2, 4.3 and 4.4 focus on the latter. We first however discuss
the fundamental group of knots and KTGs.

4.1 Knot group and KTG group

Definition 4.1. Let X be a topological space and p ∈ X. The fundamental group π1(X, p) is the set of
all equivalence classes of continuous paths α : [0, 1] → X such that α(0) = α(1) = p.

In order to present a knot K we consider the fundamental group of the knot complement S3\K. If
we want to do this we must assign an orientation to the knot. This is the direction we would follow if we
were to stand on the knot. Adding an orientation to the knot gives rise to positive and negative crossings
as shown in figure 16.

Figure 16: Positive crossing (left) and negative crossing (right).

After giving the knot an orientation we can find the fundamental group π1

(
S3\K, p

)
. K is projected

onto a plane and as a point p we take a point in a plane above K. From the point p we have paths
running around the arcs of the knot. The direction of these paths is determined by the right hand rule.
We consider the paths close to the crossings of a knot in order to obtain a representation of the knot,
which is depicted in figure 17a. Figure 17b shows the upper view of this crossing, where the small arrows
indicate the paths around the arcs. For the positive crossing we have the relation cd = ba. Keeping in
mind that a and c are the same arc we get ad = ba and hence d = a−1ba. In case of a negative crossing
(figure 17c) we have d = aba−1.

Rather than memorising this relation, we can also use a simple trick. We consider the crossing in
figure 17b, keeping in mind that a and c are the same arc. Following along a path around d is equivalent
to first following the path around a in opposite direction to the orientation of the path and then following
the paths around b and a, as shown in figure 17d. This gives the relation d = a−1ba.
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(a) Paths running around the arcs
of a knot.

(b) Paths running around a
positive crossing.

(c) Paths running around a
negative crossing.

(d) The relation of paths run-
ning around the arcs.

Figure 17: Depiction of the fundamental group of the knot complement around a crossing. Leftmost
image taken from [4].

We always take a point p above the knot, hence we can leave it out of our notation for the fundamental
group of the knot complement. We can write π1

(
S3\K

)
instead of π1

(
S3\K, p

)
and refer to this as the

knot group.
As an example we consider the knot shown in figure 18.

Figure 18: Example of a knot with paths running around the arcs.

Using figure 17 we get the following equalities from the four crossings:

(1) ac = ba

(2) cb = ac

(3) ba = cb

By these equalities we can derive the relations between a, b, c and obtain an expression for the knot.
Equation (1) gives c = a−1ba and by substituting this into (2) we obtain the relation aba = bab. Hence
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for the knot of figure 18 we have π1

(
S3\K

)
= ⟨a, b | aba = bab⟩.

In a similar way we can present KTGs, where we need to account for forks in the graphs. This is
done by considering paths running around the bands of the KTG, close to the fork, see figure 19. The
paths start and end at a point p above the KTG and are elements of the fundamental group of the KTG
complement π1(G, p). The direction of the paths can be derived using the right hand rule.

Similarly to the knot group we can leave out the point in π1(G, p) and refer to this group as the KTG
group.

In the fork of figure 19 we have the relation c = ba. This is because crossing the arc c is equivalent to
crossing arcs b and a consecutively.

Figure 19: Fork of a KTG with paths running around the edges.

As an example we consider the KTG G in figure 20. We have five arcs labelled a, b, c, d, e, f , two forks
1), (3) and one crossing (2). Using figures 17 and 19 we get the following equalities:

(1) f = ca

(2) b = c−1dc

(3) e = cg

(4) g = ba

(5) e = df

Thus the KTG group presentation is

π1

(
S3\G

)
= ⟨a, b, c, d, e, f | b = c−1dc, e = cg = df, f = ca⟩

Note that the relation g = ba is left out of this expression because it follows from the other relations.

(a)
(b)

Figure 20: Left: KTG G. Right: KTG G with labels for the arcs and crossings and arrows indicating
orientation and direction of paths.
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If two KTGs are equivalent then they have the same KTG group, implying that the KTG group can
be used to determine if two KTGs are invariant. This is not explicitly explored in this thesis, but the
next chapters on the colouring of knots and KTGs discuss the relation between the KTG group and KTG
colouring as knot invariants.

4.2 Knot colouring

Definition 4.2. For n ≥ 3, an n-colouring of a knot assigns to every arc of a knot a ‘colour’ 0, 1, . . . , n−1 ∈
Z/nZ such that the relation shown in figure 21 holds.

Figure 21: Relation of the colours of the strands for an n-colouring.

Figure 22 shows an n-colouring of the trefoil knot for n = 3. One can check that the relation of figure
21 holds for all crossings of the trefoil knot.

Figure 22: A tricolouring of the trefoil knot.

Theorem 4.1. The number of n-colourings of a link diagram D, coln(D), is preserved by Reidemeister
moves.

Consequently, if two knots have a different number of n-colourings then they are not equivalent.

Proof. Let n ∈ Z, n ≥ 3 be arbitrary. Next we pick distinct arbitrary colours a, b, c ∈ Z/nZ.
For the first Reidemeister move we have one crossing with the overstrand and the right understrand both
labeled a. As a result of definition 4.2 the left understrand has label 2a − a = a, which is exactly as
expected. Since both the knot with and without strand is coloured using only a, they have the same
number of colourings.
A type II Reidemeister move creates two crossings. Label the two loose strings with a and b. The
understrand on the left of the upper crossing has colour 2a− b. As a result the understrand on the right
of the lower crossing is labeled with 2a− (2a− b) = b. By assumption a ̸= b. a and b generate the new
colour 2a− b, which implies there is a one to one correspondence between these colours: one colouring of
the left image corresponds to one colouring of the right image and vice versa. As a result the images on
the left and right of figure 23b have the same amount of colourings.
Finally, a type III Reidemeister move has three crossings and we pick three colours a, b, c to colour the
strands, as depicted in figure 23c. We see that the same colours are used in the left and right image.
Thus there is a one to one correspondence in the colours used in these two images. Hence they have the
same amount of colours.
We conclude that all Reidemeister moves preserve the number of n-colourings of a link diagram.
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-

(a) n-colouring of type
I Reidemeister move.

(b) n-colouring of type II Reide-
meister move.

(c) n-colouring of type III Reidemeister move.

Figure 23: n-colourings of Reidemeister moves.

The arcs of a knot can also be labelled using elements of the dihedral group, D2n.

Definition 4.3. The dihedral group is the symmetry group of a regular polygon.

D2n = {r, s | rn = s2 = 1, sr = r−1s}

Specifically, we assign elements srα to the arcs. This is for example done for the trefoil knot in figure
24 for the case n = 3. One can see the similarities in the colouring of this figure and the n-colouring in
figure 22. We can prove that there is a relation between this method of knot colouring and the n-colouring
method explained above, namely that there exists a bijection between the amount of n-colourings of a
knot and the homomorphisms that map π1(K) to D2n.

Figure 24: A tricolouring of the trefoil knot with labels from the dihedral group.

Lemma 4.1. Let K be a knot and C a colouring of the knot. C assigns elements α ∈ Z/nZ to arcs of the
knot. The map h which assigns a reflection to every arc and is defined as h : π1(K) → D2n, [a] → srα,
α ∈ Z/nZ is a homomorphism.

Proof. Let [a], [b] ∈ π1(K) be arbitrary with h([a]) = srα, h([b]) = srβ .

h([b]−1[a][b])
(1)
= sr2α−β

= ssrβ−αsrα

= srαsrβsrα

= (srα)
−1

srβsrα

= h([b]−1)h([a])h([b])

Thus h is a homomorphism.
(1) Figure 25 shows why this equality holds.
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Figure 25: The ‘normal’ n-colouring of a crossing and the colouring using te dihedral group.

We should take care to assign an orientation to our knots as theory from fundamental groups (section
4.1) is used. However, the results of colouring a positive or a negative crossing is the same. One can also
check that h

(
[a][b][a]−1

)
= h

(
[a]−1[b][a]

)
.

If we consider the relations of the knot group and an n-colouring of the knot, we can see why assigning
elements srα ∈ D2n leads to an n-colouring. Namely, we see that the relations between the generators of
the fundamental group are preserved by the n-colouring.

The only thing left is to prove the relation between the n-colourings and the homomorphisms from
lemma 4.1.

Theorem 4.2. Let C be the set of n-colourings of a knot K and H be the set of group homomorphisms
h : π1(K) → D2n that map equivalence classes in π1(K) to reflections. There exists a bijection between
C and H.

Proof. Define φ : C → H by c 7→ h, where h is a homomorphism mapping [a] → srα. In order to prove
that this is injective, suppose we have φ(c) = φ (c̃), then h = h̃, thus h, h̃ both map [a] → srα. This
means h, h̃ give the same colouring of the knot, thus c = c̃.
Next take any arbitrary homomorphism h ∈ H. By its definition h maps [a] → srα, which means that h
assigns a reflection to every arc of the knot. We can assign the elements α in the exponents of srα to the
arcs. This then gives a colouring of the knot, because definition 4.2 is satisfied. Thus there exists c ∈ C
such that φ(c) = h, hence φ is surjective. We conclude that φ is bijective.

4.3 KTG colouring

The aforementioned method of colouring arcs with elements srα ∈ D2n cannot be applied to KTGs
because it breaks when we colour forks, which is illustrated in figure 28. Suppose we colour the two
outgoing arcs with srα and srβ , then using the KTG group we get that the incoming arc is coloured with
srαsrβ . However, srαsrβ = rβ−α is not a reflection. We would hence like to prove that we can colour
KTGs using both reflections and rotations.

Figure 26: n-colouring of a fork using definition 4.2.

The introduction of rotations creates different relations between colours of arcs at crossings. Figure
27a depicts the relation of arcs meeting at a crossing as determined by the KTG group, with figure 27b
showing how this relation is derived. An example of a colouring of a crossing can be found in figure 27c.
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(a)
(b)

(c)

Figure 27: Relation and a colouring of crossings in a KTG.

Another difference between knots and KTGs is the forks found in KTGs but not in knots. We can
use the KTG group to determine how we colour the arcs meeting at a fork. The relation of the paths
running around these arcs is shown in figure 28a and an example of a fork colouring is found in figure
28c.

A last notable difference between knots and KTGs is the presence of half twists in KTGs. However,
these do not affect the colouring of a KTG, as the arc is given the same colour on both sides of the half
twist.

(a)
(b)

(c)

Figure 28: Relations of the arcs and a colouring of a fork.

For KTGs too we find that there is relationship between the n-colourings of a KTG and the dihedral
group, where we again make use of homomorphisms between the fundamental group and the dihedral
group.

Lemma 4.2. Let G be a KTG and [a] ∈ π1

(
S3\G

)
. h : π1

(
S3\G

)
→ D2n is a homomorphism.

This can be proven by making case distinctions and using the same method as in the proof of lemma
4.1. The full proof can be found in the appendix.

Theorem 4.3. Let C be the set of n-colourings of a KTG G and H be the set of group homomorphisms
h : π1

(
S3\G

)
→ D2n. There exists a bijection between C and H.

The proof of this theorem is given in the appendix.

Having proven the relation between the amount of n-colourings of KTGs and the dihedral group we
give a proof to show that the amount of n-colourings of a KTG is invariant under the trivalent isotopy
moves.

Theorem 4.4. The number of n-colourings of a KTG, coln(KTG), is preserved by trivalent isotopy
moves.

As a result of this theorem two KTGs with a different number of n-colourings are not equivalent.

Proof. Half twists do not influence the colouring of a KTG. Hence all steps of the twist slide (figure 11b)
can be coloured in the exact same way, which implies that they have the same number of n-colourings.
The same holds for the addition of twists 1 (figure 11d).
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For the remaining three trivalent isotopy moves we consider different cases for different colourings of these
moves. The addition of twists 2 gives two different colourings, which are depicted in figure 29. Since the
image on the left and right use the same colour, they have the same number of n-colourings. The other
case for the addition of twists 2 replaces rα with srα and gets to the same conclusion.

(a) (b)

Figure 29: Colouring of the addition of twists 2.

The next move to be considered in the trivalent twist. We know that at a fork we have two reflections
and a rotation or three rotations, which gives four different cases. Two of them are shown in figure 30
The remaining two cases are left as an exercise to the reader. The right image in figure 30a has one
extra colour in comparison to the left image, but it is generated by the three colours from the left image.
We hence have a one to one correspondence of the colours. This holds for all possible colourings of the
trivalent twist, thus the amount of n-colourings is preserved by this move.

(a)
(b)

Figure 30: Two possible colourings of the trivalent twist.

Finally we consider the fork slide. There are four ways of colouring the fork and two ways of colouring
the understrand, leading to a total of eight colourings. Two cases can be found in figure 31. The other
cases are again left as an exercise to the reader. The part of the understrand between two bands of
the fork is given a colour which is generated by the colours of the other arcs. The remaining colours of
the right image correspond to those of the left image. As a result there is a one to one correspondence
between the colours in both pictures, leading to the preservation of the amount of n-colourings by the
fork slide.
Hence all trivalent isotopy moves preserve the amount of n-colourings.

(a) (b)

Figure 31: Two possible colourings of the fork slide.
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To finish this section we discuss the relation between KTG colouring and the KTG group. Section 4.1
mentioned that two equivalent KTGs have the same KTG group, thus the KTG group is a KTG invariant.
In this chapter on KTG colouring we based the colouring of KTGs on the relations between the arcs of
the KTG using the KTG group. Combining these two facts it becomes clear why KTG colouring is a
KTG invariant.

4.4 Colouring Celtic knots

Having proven that the number of n-colourings of a knot is preserved by trivalent isotopy moves, we would
like to apply this theorem to some Celtic designs, for example the one mentioned in the introduction.
This same design is shown in figure 32 together with a simplified representation.

Figure 32: A Celtic ‘knot’from the book of Kells and its simplified representation.

The simplified representation shows that there are several loose ends in the design, which makes this
a tangle. We make this into a KTG by drawing a circle around the design which hits the loose ends, see
figure 33.

Let us find the number of tricolourings for this Celtic KTG. In order to do so we start by assigning
a, b, c to some of the arcs, as indicated in the figure. Using this we can compute the colours assigned to
the other arcs of the KTG, as well as find relations for the forks created by the circle attached to the
loose ends.

Figure 33: The Celtic design as KTG.
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x1 = cbc−1

x2 = x1ax
−1
1 = a−1b−1cba

x3 = x−1
2 bax2

x4 = a−1ca

x5 = x−1
4 x1x4

x6 = x−1
3 x4x3

y1 = y2x5

y3 = y2x3

y3 = y1x6

We have two expressions for y3. Setting these equal to each other gives

y2x3 = y1x6

⇐⇒ y2x3 = y2x5x6

⇐⇒ x3 = x5x6

For x3, x5, x6 we obtain the following expressions:

x3 = x−1
2 bax2

= a−1b−1c−1babaa−1b−1cba

= a−1b−1c−1bacba

x5 = x−1
4 x1x4

= a−1c−1acbc−1a−1ca

x6 = x−1
3 x4x3

= a−1b−1c−1a−1b−1cbaa−1caa−1b−1c−1bacba

= a−1b−1c−1a−1b−1cbcb−1c−1bacba

Using these expressions and the equality x3 = x5x6 we obtain

a−1b−1c−1bacba = a−1c−1acbc−1a−1caa−1b−1c−1a−1b−1cbcb−1c−1bacba

⇐⇒ 1 = c−1acbc−1a−1cb−1c−1a−1b−1cbc

⇐⇒ 1 = acbc−1a−1cb−1c−1a−1b−1cb

We make case distinctions to find what colours can be given to the arcs a, b, c in order for the equality
above to hold. Before doing so we can exclude several cases. We note that the left hand side of the
equality is a rotation. The right hand side contains the terms a, a−1 three times, b, b−1 four times and
c, c−1 five times. If we colour a with a rotation rα and b, c with reflections rβ , rγ , then the right hand
side of the equality is a reflection, but then the equality does not hold. There are a total of four cases
leading to the same result.

• a is coloured with a reflection and b, c with rotations.

• a, b are coloured with rotations and c with a rotation.
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• a, b are coloured with a reflections and c with a rotation.

• a is coloured with a rotations and b, c with reflections.

This leaves us to consider four cases. Here we use srα, rα, srβrβ , srγ , rγ to denote the reflections and
rotations given to a, b, c. Here α, β, γ ∈ Z/3Z.

Case 1: a, b, c are coloured with rotations. Using 1 = acbc−1a−1cb−1c−1a−1b−1cb we have

1 = rαrγrβr−γr−αrγr−βr−γr−αr−βrγrβ

= r−α+γ

This gives −α + γ = 0, thus α = γ. a and c are hence given the same rotation. We can pick one of
three rotations, 1, r, r2, thus there are three colour options for a, c and three for b. Case 1 gives a total
of 32 = 9 colourings.

Case 2: a, c are coloured with rotations and b with a reflection.

1 = rαrγsrβr−γr−αrγr−βsr−γr−αr−βsrγsrβ

= srβ−2α−2γ+γ−βsr−γ−α−βr−γ+β

= sr−2α−γsr−2γ−α

= rα−γ

Hence α− γ = 0. Case 2 also gives 32 = 9 tricolourings.
Case 3: a, c are coloured with reflections and b with a rotation.

1 = srαsrγrβr−γsr−αssrγr−βr−γsr−αsr−βsrγrβ

= srαsrγrβr−γsr−αrγr−βr−γsr−αsr−βsrγrβ

= rγ+β−γ−αr−α+α−γ+β+γrγ+2β

= r−α+4β+γ

This gives us −α+ 4β + γ = 0. We can freely choose two of the colours which then determine the third
colour by this equality. There are hence 32 = 9 tricolourings.

Case 4: a, b, c are coloured with reflections.

1 = srαsrγsrβr−γsr−αssrγr−βsr−γsr−αsr−βssrγsrβ

= srαsrγsrβr−γsr−α+γ−βsr−γsr−αsr−β+γsrβ

= rγ−αr−α+2γ−2βr−α+γr2β−γ

= r3γ−3α

Thus we have 3γ − 3α = 0, which holds for all α, γ ∈ Z/3Z. In case 4 we can choose any combination of
reflections for the arcs a, b, c, giving 33 = 27 tricolourings.

In total there are 54 tricolourings of the Celtic KTG of figure 32.

Two similar looking Celtic designs and their simplified representations are depicted in figure 34. The
number of tricolourings of both KTGs can be computed with a similar method as used above. These
computations can be found in the appendix. For the left KTG we find that there are 216 tricolourings,
but for the right KTG we find 108. By the contrapositive of theorem 4.4 we conclude that these KTGs
are different.
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Figure 34: Celtic designs from the Gospel of Saint Luke in the Quatuor evangelia.
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5 Constructing Celtic knots

As we have seen in chapter 2 there are a variety of different Celtic knots, some consisting of the patterns
from figure 5 tied together, others being a link of different knots. The majority of Celtic knots, however,
seem to have a common characteristic: they are alternating knots.

In chapter 2 a construction of Celtic knots was given based on the work of George Bain. However, for
the sake of this thesis we want to make a more concrete, algorithmic method for drawing Celtic knots,
as described in [9].

The Celtic knot is drawn in a 2m × 2n grid with n,m ∈ Z>0. We place a dot at a lattice point
(x, y) ∈ [0, 2n] × [0, 2m] if x + y is odd. Two diagonal intersecting line segments are drawn at each of
the dots. For x odd we have an overlapping line from the top left to the top right (upper image of figure
35b). If x is even, the overlapping line runs from the top right to the bottom left, as in the lower image
of figure 35b. Finally we connect these line segment, which can be done in one of two ways. Firstly, we
can connect two line segments from squares diagonally adjacent to each other, which is indicated with
green in figure 35a. The second option is to extend the segments along the border of the grid, which is
shown in blue in 35a. This construction leads to a so-called barrier-free Celtic knot and is the same as
what was constructed in figure 3.

(a)

(b) (c)

Figure 35: From left to right: a drawing of a Celtic knot, crossing subgrids and barrier subgrids. Image
taken from [9] and edited.

Similarly to what was done in chapter 2, we can make other Celtic knots by placing barriers. These
barriers are placed through the dots in our grid, which removes the crossings through the dots. We get
one of the two situations shown in figure 35c. An example of a Celtic knot design using barriers is shown
in figure 36.

Figure 36: Celtic knot in a grid with barriers.

Based on this construction of Celtic knots can create a method of making Celtic designs with KTGs.
We again have a grid with dots as in the method for knots. Next horizontal or vertical barriers can
be placed at one or more dots. The theta graph is then drawn in the grid with each half of the theta
corresponding to one of the ‘circles ’which we obtain if we make barrier-free Celtic knot. If we have
barriers then we cannot always pick our theta halves like this and must instead break the circles at the
barriers to create a larger circle. To illustrate this idea figure 37 shows two thetas that can be used to
make the Celtic knot of figure 36.
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Figure 37: Two possible placements for the theta graph.

We continue by creating bubbles, triangles and squares until all the barrier-free dots are connected by
double forks (figure 39). Finally half twists are used on the double forks, after which these double forks
are unzipped. This is done such that the resulting knot is alternating. Alternatively, we can choose to
leave several double forks unzipped leading to a KTG with both crossings and forks.

An example of this construction is shown in figure 38. In step b and c a bubble is created. Next,
in figure 38d KTG move A is applied twice, after which we unzip the edge between the two triangles to
create a ‘rectangle’. In step f two triangles are again created, after which the edge connecting them in
unzipped in step g. Then the double forks are given a half twist and are unzipped. These half twists
must be placed such that when we unzip the double forks the resulting knot is alternating. The resulting
Celtic knot is equivalent to the design found using the method from the beginning of this chapter.
The details on the creation of bubbles and rectangles can be found in the appendix.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 38: Construction of a Celtic design using KTG theory.
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Figure 39: Double fork.

24



6 Conclusion

This thesis discussed Celtic knots within the framework of KTGs and how the concept of knot colouring
can be adjusted for applying it to KTGs with the aim of answering the question

How can we build Celtic knots using KTGs and prove invariance of KTGs?

To find the answer to this question we first explored basic knot theory and the theory of KTGs.
Next it was explained how knots can be coloured and how this colouring is used for finding knot

invariants. The relation between knot colouring and the dihedral group was given and proven. Moreover,
we proved that KTGs can be coloured using reflections and rotations by showing that there exists a
bijection between the n-colourings of a KTG and the dihedral group. Using this theory we have proven
that the number of n-colourings is preserved by the trivalent isotopy moves, which allowed us to find KTG
invariants. We then examined several Celtic KTGs from medieval manuscripts. Simplified representations
of such KTGs were coloured using elements of the dihedral group and we applied the earlier results from
the chapter to prove that some of the KTGs were not equivalent.

The final chapter discussed how Celtic KTGs can be created using the grid method by Gross and
Tucker, which was an adjusted version of Bain’s grid method. The Celtic KTGs were constructed starting
from a theta graph, after which the KTG moves H+, H−, U,A were applied to adjust the theta graph.
The final result of our method is the same as that of Gross and Tucker’s method.

While this thesis answered the question “How can we build Celtic knots using KTGs and prove
invariance of KTGs?” it also raises new questions for future research.

There are multiple knot invariants other than colouring, for example knot polynomials. In the future
research could be done into finding KTG polynomials or a different KTG invariant. Another topic for
research is formulating a method of denoting KTGs. A possible idea is to find names which allow us to
read off what KTG moves were used to create the KTG when starting with the theta graph.

An issue that arose during this research was the complexity of KTG colouring. When computing the
relations of the paths of the KTG group the expressions could become complicated, even for quite simple
KTGs. It would hence be useful to program an algorithm which does these computations and gives the
number of n-colourings of KTGs.

Finally, one could explore knotted graphs with vertices of degrees larger than three and adjust concepts
proven in this thesis as well as other ideas.
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7 Appendix

Proof of lemma 4.2.

Lemma 4.2. Let G be a KTG and [a] ∈ π1

(
S3\G

)
. h : π1

(
S3\G

)
→ D2n is a homomorphism.

Proof. Let [a], [b] ∈ π1

(
S3\G

)
be arbitrary with h([a]) = sirα and h([b]) = sjrβ . We now want to make

some case distinctions.
Case 1: i = j = 1. See the proof of lemma 4.1.
Case 2: i = 1, j = 0.

h
(
[a]−1[b][a]

)
= r−β

= r−α−β+α

= r−α−βssrα

= r−αsrβsrα

= (srα)
−1

rβsrα

= h
(
[a]−1

)
h([b])h([a])

Case 3: i = 0, j = 1.

h
(
[a]−1[b][a]

)
= sr2α+β

= r−αsrβrα

= h
(
[a]−1

)
h([b])h([a])

Case 4: i = j = 0.

h
(
[a]−1[b][a]

)
= sr2α+β

= r−αrβrα

= h
(
[a]−1

)
h([b])h([a])

Thus h is a homomorphism.

Proof of theorem 4.3

Theorem 4.3. Let C be the set of n-colourings of a KTG G and H be the set of group homomorphisms
h : π1

(
S3\G

)
→ D2n. There exists a bijection between C and H.

Proof. Define φ : C → H by c 7→ h, where h is a homomorphism mapping [a] → sirα, i ∈ {0, 1},
α ∈ Z/nZ. To prove that φ is injective, suppose that we have φ(c) = h, φ (c̃) = h̃ and φ(c) = φ (c̃). This
implies that h = h̃, thus h, h̃ map an element [a] to the same sirα ∈ D2n. But the sirα determine the
colouring of the KTG, hence h, h̃ give the same colouring of the KTG. Thus c = c̃.
Then we must show surjectivity. Let h ∈ H be an arbitrary homomorphism which maps [a] → sirα.
h hence assigns a rotation or reflection to every arc of the KTG. By construction this mapping gives a
colouring of the KTG. Hence there exists a colouring c ∈ C such that φ(c) = h and we conclude that φ
is surjective. This concludes the prove of the theorem.

Colouring knots from the St. Luke gospel in the Quatuor evangelia

We can place a circle around each design which hits the loose ends. This turns the Celtic designs into
KTGs. The first of these KTGs is shown in figure 40. To determine the amount of tricolourings we start
by labelling three arcs with a, b, c and compute the labels for the other arcs. We also find the relations of
the arcs meeting at forks. These are the forks which are made by the loose ends hitting the circle around
the KTG.
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Figure 40: First design from the Gospel of Saint Luke as a KTG.

x1 = cac−1b

x2 = b−1cb

x3 = c−1x1c

x4 = x3x2x
−1
3

x5 = x−1
2 cx2

x8 = x7x3x
−1
7

x9 = x−1
7 x8x7 = x3

x5 = x7x6

y1 = y2a

y4 = y1b

y3 = y4x7

y3 = y2x4

We have two expressions for y3, giving us the equality

y4x7 = y2x4

⇐⇒ y1bx7 = y2x4

⇐⇒ y2abx7 = y2x4

⇐⇒ abx7 = x4

Using the expressions above we find the following for x4.

x4 = x3x2x
−1
3

= c−1x1cb
−1cbc−1x−1

1 c

= c−1cac−1bcb−1cbc−1b−1ca−1c−1c

= ac−1bcb−1cbc−1b−1ca−1

To find x7 we must first compute x6. From figure 40 we find that

x3x6x
−1
3 = x9 = x−1

7 x8x7

28



Here x−1
7 x8x7 = x3. It follows that x6 = x3. This allows us to compute x7.

x7 = x5x
−1
6

= x5x
−1
3

= x−1
2 cx2c

−1x−1
1 c

cac−1b = b−1c−1bcb−1cbc−1b−1ca−1c−1c

= b−1c−1bcb−1cbc−1b−1ca−1

We can now put these expression into the equality abx7 = x4.

abb−1c−1bcb−1cbc−1b−1ca−1 = ac−1bcb−1cbc−1b−1ca−1

⇐⇒ ac−1bcb−1cbc−1b−1ca−1 = ac−1bcb−1cbc−1b−1ca−1

We obtain the same expression on the left and right hand side. Hence the colours assigned to a, b, c
can be chosen arbitrarily. As we can choose one of six colours for a, b, c there are 63 = 216 tricolourings.

The second design from figure 34 can also be made into a KTG, as shown in figure 41. We again
begin by labelling three of the arcs a, b, c and proceed by finding the labels for the remaining arcs and
the relations of the arcs meeting at forks.

Figure 41: Second design from the Gospel of Saint Luke as a KTG.

x1 = c−1ac

x2 = bcb−1

x3 = x−1
3 bax3 ⇐⇒ x3 = ba

x5 = x−1
3 x4x3

x6 = x3x5x
−1
3

x2 = x3x4

y1 = y4x6

y2 = y1b

y3 = y2a

y3 = y4c

There are two expressions for y3. Using them we find that
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y2a = y4c

⇐⇒ y1ba = y4c

⇐⇒ y4x6ba = y4c

⇐⇒ x6ba = c

By the expressions above we obtain the following for x6:

x6 = x3x5x
−1
3

= x3x
−1
3 x4x3x

−1
3

= x4

= x−1
3 x2

= a−1b−1bcb−1

= a−1cb−1

Having obtained this expression we can use it in x6ba = c.

x6ba = c

⇐⇒ a−1cb−1ba = c

⇐⇒ a−1ca = c

⇐⇒ ca = ac

We thus only have restrictions on how arcs a, c are coloured. b can be any of the six colours. To
find the amount of tricolourings we make four case distinctions. We use srα, rα, srγ , rγ to denote the
reflections and rotations given to a, c with α, γ ∈ Z/3Z

Case 1: a, c are coloured with rotations. Using ca = ac we get

rα+γ = rα+γ

This holds for any α, γ ∈ Z/3Z. Recall that b could be given any of the six colours, hence case 1 gives
32 · · · 6 = 54 tricolourings.

Case 2: a is coloured with a reflection and c with a rotation.

rγsrα = srαrγ

⇐⇒ srα−γ = srα+γ

Thus α− γ = α+ γ which implies 2γ = 0. In Z/3Z this holds for γ = 0. There are no restrictions on α,
hence a can be coloured using any of s, sr, sr2. There are hence 3 · 6 = 18 tricolourings.

Case 3: a is coloured with a rotation and c with a reflection.

srγrα = rαsrγ

⇐⇒ srγ+α = srγ−α

Hence α + γ = γ − α which holds for 2α = 0. Similarly to case 2 we find α = 0 and that there are no
restrictions on γ. This case gives 3 · 6 = 18 tricolourings.

Case 4: a, c are coloured with reflections.

srγsrα = srαsrγ

⇐⇒ rα−γ = srγ−α
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This equality holds if 2α = 2γ. The arcs a, c must hence be coloured with the same reflection. As a result
we have 3 · 6 = 18 tricolourings for case 4.

In total there are 108 tricolourings for this KTG.

Construction of rectangles and bubbles in KTGs

Below are two figures showing the construction of a rectangle and of a bubble in a KTG. In each figure
the KTG moves are applied to the red vertex or edge of the KTG.

Figure 42: Construction of a rectangle in a KTG.

Figure 43: Construction of a bubble in a KTG.
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