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A.F. Esselink

Abstract

B meson decays containing leptons can offer important insights into physics beyond the Standard
Model through comparison of experimental measurements and their SM estimates. Using the
method presented in Fleischer et al., 2021, observables containing ratios of B meson decays
and their experimental measurements were used to constrain the Wilson coefficients in this new
physics parameter space. The process uses the operator product expansion and effective field
theory to derive and define the operators and coefficients. The results found are consistent with
those found in Fleischer et al. and are in agreement with the SM at the (1-2)σ level. The impact
of the currently unmeasured decay Bc → τντ , that the LHCb is planning, was also examined.
It was shown that this measurement could remove ambiguity and improve the precision of the
new physics Wilson coefficient constraints. Additionally, predictions for Bc → τντ branching
fraction are provided for scenarios where the new physics effects enter through pseudoscalar or
left-handed vector interactions only.
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A.F. Esselink 1. Introduction

1 Introduction

Over the last one and half century, since the original discovery of the electron by J.J. Thomson,
many more particles and atoms have been discovered. Many particles initially assumed to be
elementary, turned out to have a complex structure. Even protons and neutrons turned out
to be composed of quarks. The Standard Model (SM) contains all particles considered to be
fundamental point-like particles, which can be used to build up all other existing particles. The
SM contains three generations of quarks and three generations of leptons. Additionally, there
are four gauge boson types that allow interactions to occur between the quarks and leptons.

The Standard Model successfully explains the majority of particle physics aspects. However,
several phenomena cannot be clarified by the SM. For example, it is not capable of resolving
the matter-antimatter asymmetry in the universe, which according to the SM, should have been
created in equal amounts [2]. Additionally, the SM is not able to define the nature of dark matter
and dark energy. It is currently theorized that the Universe consists of 5% matter, 26% dark
matter, and 69% dark energy. However, the SM does not contain possible dark matter candidates
that would match the needed properties. Equivalently, attempts to define dark energy using the
SM vacuum energy, results in a disagreement of 50–120 orders of magnitude with observations.
This is also known as the cosmological constant problem [3]. Additionally, the SM accounts
for all fundamental forces except for gravity and conflicts with the theory of general relativity
[4]. Furthermore, the SM defines neutrinos as massless particles. This is in disagreement with
neutrino oscillation experiments. The exact mass and nature of the neutrino masses are still
unknown [5].

These shortcomings of the SM and several others have led to the search for physics beyond the
SM. To this day, no experimental proof has yet been found that shows a disagreement with the
SM beyond the set threshold of 5σ. However, strong hints of physics beyond the SM have been
discovered. Experiments that look for this ’new physics’ (NP) can mainly be divided into so
called direct and indirect methods. Direct experiments look for new particles that are not in
the SM. Indirect experiments do this largely by comparing the SM prediction to experimental
measurements of for example branching fractions of certain decay modes. This includes the
test of lepton flavour universality (LFU), which implies the three charged leptons of the SM are
identical except for their mass. Consequently, the coupling between leptons and bosons should
be identical, independent of lepton flavour [6]. Additionally, there is the quark sector of the SM,
which is described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix which characterizes the
mixing between different quark flavours.

One particular particle that is used to explore the NP parameter space, is the B meson. A B
meson is a composite particle that consists of a bottom quark paired with an up, down, charm,
or strange quark. Particularly rare B meson decay modes are of interest. Many of which are also
used to probe violation of LFU. Previously, physicists have already observed discrepancies be-
tween theoretical predictions and experimental measurements in the parameters known as R(D)
and R(D∗). R(D) and R(D∗) are both defined by a ratio of the fraction of B meson decays
to the D(∗) meson and leptons. The Large Hadron Collider beauty experiment (LHCb) also
examines decays involving the bottom (also called beauty) quark. Currently, the LHCb group
of the Van Swinderen Institute in Groningen is planning to measure the decay of the Bc meson
to a tau lepton and neutrino. Its branching fraction can be compared to its SM prediction to
potentially give more information on the tension with the SM.
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2. Theoretical Background A.F. Esselink

In this thesis we will follow the work of Fleischer et al. [1]. In this paper a method is presented
to constraint coefficients corresponding to the NP parameter space. The method is applied to
observables that are related to different (semi-) leptonic B meson decays containing b → u and
b → c transitions. This thesis will reproduce the NP constraints for b → c transitions and extend
this work by showing in more detail the potential impact of a Bc → τντ measurement.

This thesis will first cover the basics of the standard model, including the CKM matrix (sec-
tion 2.1). After this, the decay modes of the B meson relevant to this thesis will be elaborated
(section 2.2), and a short summary of the LHCb experiment is given (section 2.3). Sections 2.4
and 2.5 explain the theoretical framework and context needed for the analysis of the NP coef-
ficients. Afterward, we will first look at constraining the NP components of the short-distance
parameters, known as Wilson coefficients, for b → c transitions (section 3). In this process R(D)
and R(D∗) play a major role. Finally, the potential impact of a Bc → τντ measurement on this
NP parameter space will be determined (section 4). Constraining the short-distance parameters
further could also contribute and give more insight into physics beyond the standard model.

2 Theoretical Background

2.1 The Standard Model

The goal of the Standard Model is to describe all phenomena in particle physics as a result of
three of the four fundamental forces: the electromagnetic, weak, and strong force. Gravity is not
taken into account. It defines the properties and interactions of a limited number of fundamental
particles, defined as point-like particles. Some characteristics of these particles are their mass,
charge, and spin. Half-integer spin particles are defined as fermions and those with integer spin
as bosons. In the SM, there are two fermion families. The first is the quarks, which interact
through strong interactions. The second is the leptons, which include the electron, muon, tau
lepton, and neutrinos. The bosons include a spin-1 family, which are the force carriers of the SM.
The spin-0 boson is the Higgs boson, which is involved in the mass of the fundamental particles.
[7]

Electromagnetic interactions are mediated by the exchange of photons. Similarly, the weak in-
teractions are mediated by the W+, W−, and Z0 bosons, which are also spin-1 gauge bosons.
The strong interactions are mediated by gluons, which are massless neutral bosons. In the SM
strong interactions can be described by the theory of quantum chromodynamics (QCD). In this
theory, gluons are coupled to colour charges. In total, there are three colour states for quarks,
which all also have an anticolour. Gluons carry a combination of colour and anticolour, which
results in eight unique possible colour states. [7]

Besides fundamental particles, the SM also includes bound states of quarks, named hadrons.
There exist hundreds of different hadrons, of which the majority are unstable and decay by
electromagnetic, weak, or strong interactions. Two common subgroups are baryons, which consist
of 3 quarks and mesons, which consist of 2 quarks, a quark, and an antiquark. According to the
QCD, composite particles like hadrons must have a zero colour charge. [8]
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A.F. Esselink 2.1 The Standard Model

Figure 1: Elementary particles of the SM, consisting of 12 fermions and 5 bosons. The 3 quark
generations are shown in purple. Also, the charged and neutral lepton make up 3 generations,
shown in green. For both fermion families, corresponding anti-particles exist. In red, the gauge
bosons are shown, which are responsible for interactions between fermions. The Higgs boson,
shown in yellow, generates the mass of bosons. [5]

2.1.1 CKM Matrix

In contrast to electromagnetic interactions and QCD, weak interactions do mix quark flavours.
The mixing between quarks is described by the Cabibbo–Kobayashi–Maskawa (CKM) Matrix
(eq. (2.1)), which allows for the decay of the three quark generations by weak interactions.d′s′

b′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

ds
b

 (2.1)

Each element Vαβ (α = u, c, t; β = d, s, b) is related to the probability of a transition from
quark flavour β to α, with the probability being proportional to |Vαβ|2 [7].

An important factor in branching fractions of decays involving b → c quark transitions, is the
CKM matrix element |Vcb|. There are an inclusive and exclusive determinations of this value,
which are not in full agreement with each other. The exclusive determination is dependent on
certain decay processes, specifically particular B meson decays involving b → c quark transitions
with leptons in the final state. The value is extracted from measurements of observables that
include these decays. A external determination was computed using the B̄ → Dℓ−ν̄ℓ decay,
giving the following value [1]:

|Vcb| = 0.03958± 0.00117 (2.2)

The inclusive determination instead is determined from a wide range of decays, namely all (semi-)
leptonic B decays involving b → c quark transitions. The inclusive value of |Vcb| is given by [9]:

|Vcb| = 0.04162+0.00026
−0.00080 (2.3)
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2.2 B meson decays A.F. Esselink

Both methods use different theoretical frameworks and calculation, which could partially explain
the disagreement between the two determinations. The exclusive determinations are also more
strongly model-dependent compared to inclusive determinations, which increases the probability
of discrepancies in the results. Due to the exclusive determinations being dependent on specific
decay modes with limited statistics, it is more likely statistical uncertainties corresponding to
these modes are involved. On the contrary, inclusive determinations have larger statistics but
can still be limited by for example the separation of signal from background contributions [9].

2.2 B meson decays

This thesis will analyse the impact of different B meson decays on the New Physics parameter
space. Therefore it is important to understand how the different components and decays are
defined. Each meson is composed of an equal number of quarks and antiquarks. In the case
of the B meson, it consists of a bottom antiquark together with an up quark (B+, charged B
meson), down quark (B0, neutral B meson), strange quark (B0

s , strange B meson) or charm
quark (B+

c , charmed B meson). For each of these, a corresponding anti B meson exists as well.
B mesons are of particular interest due to the sensitivity of their rare decay paths on NP effects
and the CKM elements.

An example of this are the semileptonic B → D∗ℓν decays. Semileptonic implies that a hadron
decays to form a different hadron and leptons. The B̄ → D(∗)+τ−ντ decay is shown in fig. 2
(right-hand side). The down antiquark does not interact in the decay and is therefore labelled a
spectator quark. The decay is sensitive to the CKM element |Vcb|, due to the vertex between the
bottom and charm quark. Several more B → D∗ℓνℓ are possible and used in this thesis. When-
ever the specific state of the B or D meson is left unspecified, e.g. B → D∗τ ν̄τ , a combination
of transitions containing a D∗ meson in the final state is implied.

The final focus of the thesis will be on the tauonic decay of the charmed B meson Bc:

B+
c → τ+ντ , B−

c → τ−ν̄τ (2.4)

This decay is purely leptonic, meaning the final state contains only leptons. The Feynman dia-
gram of the B+

c decay is given in fig. 2 (left-hand side). The decay is theoretically well understood
because the decay can be split into a quark initial state (QCD) and a lepton final state, indepen-
dent of QCD. The sensitivity to QCD shows through the Bc decay constant. This decay is also
sensitive to weak interactions, due to the flavour asymmetry of the bottom and charm quark,
making annihilation through a gluon or photon impossible. [10]

All discussed decays in this thesis are purely or semileptonic decays involving a b → c transition.
Consequently, they are all sensitive to |Vcb| and the same set of coefficients.

6



A.F. Esselink 2.2 B meson decays

Figure 2: The tauonic decay of B+
c (left) and a semileptonic decay of B0 (right), both containing

a b → cτντ transition through the exchange of a W boson.

2.2.1 Disagreement of R(D) and R(D∗) SM values and measurements

Besides physical phenomena that cannot be explained by the SM, the first hints towards finding
physics beyond the SM are experimental results that are in tension with the SM. An example
of this is certain B meson decays. This is accomplished by analysing and comparing the decay
probability of different purely or semileptonic decays for which only the flavour of the lepton
differs. The probability of a certain decay mode occurring is given by the branching fraction B,
which is the fraction of decays to the final state of interest compared to all possible final states [7].
Comparing the experimental ratio between the branching fractions with the SM prediction could
reveal a disagreement. If there is sufficient statistical certainty, this could prove the existence of
physics beyond the SM. One particular set of decays for which these measurements are performed
are: B̄ → D(∗)τ−ν̄τ and B̄ → Dℓ′−ν̄ℓ′ , where ℓ′ = e, µ. The ratio between the branching fractions
of these decays are labelled R(D) and R(D∗). The equations of R(D) and R(D∗) are independent
of |Vcb|, because the CKM element cancels in the fractions.

R(D) =
B(B̄ → Dτ−ν̄τ )

B(B̄ → Dℓ′−ν̄ℓ′)
(2.5)

R(D∗) =
B(B̄ → D∗τ−ν̄τ )

B(B̄ → D∗ℓ′−ν̄ℓ′)
(2.6)

D is a pseudoscalar meson state and D∗ is a vector meson state. The branching fractions included
here are the combined average of the B̄0 → D(∗)+ℓ−ν̄ℓ and B− → D̄(∗)0ℓ−ν̄ℓ decays. These ratios
have been measured by LHCb, BaBar and Belle [11] and presented as [12]:

R(D) = 0.340± 0.030, R(D∗) = 0.295± 0.014 (2.7)

These measurements have a 3σ discrepancy with SM. The theoretical SM values have been
estimated at [1]:

R(D)|SM = 0.300± 0.006, R(D∗)|SM = 0.253± 0.005 (2.8)

The Heavy Flavour Lattice Averaging Group (HFLAV) has collected and combined measurements
from different collaborations including LHCb, Belle, and BaBar (see fig. 3). The weighted average
of these results shows a 3.2σ disagreement with SM prediction [13]. The Bc → τντ decay shares
the dependency on the same NP coefficients as R(D) and R(D∗). Consequently, this tension
with the SM, is likely to be present in Bc → τντ as well.
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2.3 LHC and the LHCb experiment A.F. Esselink

Figure 3: Combination of measurements of R(D) and R(D∗) from LHCb, BaBar and Belle to
provide a preliminary HFLAV average of R(D) and R(D∗). The contours shown correspond to
∆χ2 = 1.0 or 1σ [13].

2.3 LHC and the LHCb experiment

Despite the main focus of this thesis being a theoretical analysis of several B meson decays, it
is connected to the experiments performed at the Large Hadron Collider (LHC) near Geneva,
Switzerland, specifically the Large Hadron Collider beauty (LHCb) experiment. LHCb is one of
the four main detectors, the others are ATLAS, CMS, and ALICE.

LHC is the largest particle accelerator on earth, with a 27-kilometer ring. It was built by the
European Organization of Nuclear Research (CERN) and finished in 2008. However, it has un-
dergone several upgrades over the last decade. It functions by accelerating and colliding protons
and heavy ions at high speeds. One of the most notable results of the LHC is the discovery of
the Higgs boson in 2012 [14].

The LHCb experiment is focused on measuring decays involving the bottom (beauty) quark. Its
main goal is to explore physics beyond the SM by examining b-hadron decays and CP-violation.
This could try to help resolve the matter-antimatter asymmetry problem. Despite LHCb being
originally designed for heavy-flavour physics, it is also able to do measurements for electroweak
and heavy ion physics [15]. Some LHCb measurements are focused on measuring rare decay
modes of B mesons. Their rarity implies they are strongly suppressed in the SM, which increases
the probability of discovering NP effect, due to their relatively higher deviation from the SM
prediction. One such example is the decay B0 → K∗0µ+µ−, for which the found decay rate and
angle distribution of decay products is in disagreement with the SM prediction [16].
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A.F. Esselink 2.4 From Full Theory to Effective Field Theory

Currently, the LHCb group that is located at the Van Swinderen Institute in Groningen is
planning to measure the Bc → τντ decay. This measurement could help probe the NP parameter
space through its sensitivity of NP effects coming from certain interactions. More details on this
and the potential impact of the measurement are provided in section 4.

2.4 From Full Theory to Effective Field Theory

The full SM theory of weak interactions can get very complex and computationally challenging.
Instead one can employ a theoretical framework known as Effective Field Theory (EFT), which
makes it possible to describe weak interactions at certain energy scales without knowing the exact
underlying theory at higher energies. This makes EFT a useful tool to examine and understand
experimental results.

A popular EFT framework is the Standard Model effective field theory (SMEFT). Due to a
lack of evidence for NP from colliders, it can be assumed with a high probability that NP par-
ticles will have a mass significantly larger than the weak scale. SMEFT also helps to resolve
issues with the SM, like the hierarchy problem, dark matter, and neutrino masses. This has led
to the search for NP at the TeV energy scale. The LHC has also led attraction to SMEFT. [5, 17]

Weak transitions can be analysed as occurring through a point interaction. This was first de-
scribed by Fermi in 1933 for the nuclear β decay n → p+e−ν̄e [18]. B meson decays can also be
described as a four-point fermion interaction and constitute a low-energy effective theory. The
formalism used to describe such interactions is the operator product expansion (OPE). OPE
makes the computation of weak interactions possible by removing the dependence on higher
energy scales.

2.4.1 Effective Hamiltonian of a Non-Leptonic Transition using OPE

As an example cs̄ → ud̄ transitions will be used. Figure 4 shows the Feynman diagram of the
non-leptonic decay for the full SM theory and the weak effective theory. The latter uses a local
4-fermion interaction, which is formed by contracting the propagation of the W boson, thereby
removing the W boson dependence. This process will be further explained and derived in this
section. The decay amplitude corresponding to the full SM theory can be constructed from
the Feynman diagram. The first and last components in the equation of the decay amplitude
(eq. (2.9)) represent the initial and final state respectively; the second and fourth components
represent the two vertices, and the middle component represents the propagator. [19]

A = (s̄βcα)V-A × gEWV ∗
cs

2
√
2

δαβ × 1

k2 −m2
W

(
gµν − kµkν

m2
W

)
× gEWVud

2
√
2

δγδ × (ūδdγ)V-A (2.9)

Where α, β, γ, and δ are the colour indices of the quarks. µ and ν are Lorentz indices, specifying
the space-time dimension. gEW is electroweak coupling constant. gµν is the metric tensor. k is
the momentum transferred by the W boson. Finally, V-A stands for the subtraction of an axial
vector from a vector, and represents the chiral structure of the interaction. The components
(q̄p)V-A can be expressed in terms of gamma matrices γµ as follows:

(q̄p)V-A ≡ q̄γµ(1− γ5)p (2.10)
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2.4 From Full Theory to Effective Field Theory A.F. Esselink

Figure 4: The Feynman diagram of a simply non-leptonic decay according to the full SM theory
(left). The interaction occurs through exchange of a W boson. Based on the weak effective
theory, the interaction can be simplified to a local 4-fermion interaction (right). [19]

.

Based on eq. (2.9), the Hamiltonian H of cs̄ → ud̄ transitions can be constructed equivalently
[20]:

H =
g2EW
8

V ∗
csVud(s̄αcα)V-A(ūβdβ)V-A × 1

k2 −m2
W

(
gµν − kµkν

m2
W

)
(2.11)

Due to the fermions and boson involved in the interaction, the interactions can be separated
into two different energy scales. The average energy scale is on the same scale as the b quark
mass (mb = 4.18 ± 0.03 GeV/c2), compared to (mW = 80.385 ± 0.015 GeV/c2) mass of the W
boson. [21] Consequently, the propagator term eq. (2.11) can be simplified on the basis that the
momentum k is on the same order as mq, using a Taylor series expansion to first order:

1

k2 −m2
W

(
gµν − kµkν

m2
W

)
k≪mW−−−−−−→ gµν

m2
W

+O
(

k2

m2
W

)
(2.12)

As a result, the expression has become independent of the W boson and larger energy scales. Now
the full SM Hamiltonian can be expressed in terms of the Fermi constant (GF =

√
2g2EW/8m2

W ),
to obtain the following expression:

H =
GF√
2
V ∗
csVud(s̄αcα)V-A(ūβdβ)V-A +O

(
k2

m2
W

)
(2.13)

Equation (2.13) can be rewritten in terms corresponding to the Operator Product Expansion
(OPE). Substituting the operator O2 = (s̄αcα)V-A(ūβdβ)V-A and Wilson coefficient C2 = 1, and
removing the higher orders, results in the following effective Hamiltonian [22]:

Heff =
GF√
2
V ∗
csVudC2O2 (2.14)

Figure 5 shows different contributions to O2 that occur besides the leading order diagram (fig. 4).
This includes higher-order QCD effects like a vertex correction (fig. 5a), where a gluon is ex-
changed in the initial state. Additionally, a colour-neutral gluon exchange can occur between the
initial and final state (fig. 5b). However, there is also a possibility a coloured gluon is exchanged.
In this case a gluon mixes the colour indices of the initial and final state, as is shown in fig. 5c.
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A.F. Esselink 2.4 From Full Theory to Effective Field Theory

Consequently, a new operator has to be added, corresponding to a different colour structure.
The new operator is defined as: O1 = (s̄βcα)V-A(ūαdβ)V-A, and has a corresponding Wilson
coefficient C1. The final possible gluon exchange is shown in fig. 5d. This diagram contributes to
both operators (O1, O2) and coefficients (C1, C2). The resulting effective Hamiltonian is given
by [22]:

Heff =
GF√
2
V ∗
csVud(C1O1 + C2O2) (2.15)

(a) Gluon is exchanged in the initial state, with
no change to colour structure. Contributes to
the O2 operator.

(b) Colour-neutral gluon exchange, with no
change to colour structure. Contributes to the
O2 operator.

(c) Coloured gluon exchange, colour indices
are mixed, resulting in a new colour structure.
Contributes to the O1 operator.

(d) Gluon exchange with the possibility of
changing the colour structure. Contributes to
both the O1 and O2 operator.

Figure 5: Next to Leading Order QCD diagrams of a local 4-fermion interaction [19].

The operators discussed so far correspond to current-current diagrams. Other operators exist as
well, for example, operators corresponding to QCD and electroweak penguin diagrams. Besides
the suppression that occurs due to additional gluon exchange, these penguin diagrams have an
extra suppression by a factor of αs/4π and αQED/4π respectively, at the µ = mb energy scale
[20]. However, in this thesis, the focus will lie on current-current operators and the others will
not be further discussed. Higher-dimensional operators are suppressed by powers of 1/mW and
will also be neglected in the following derivation and analysis.
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2.4 From Full Theory to Effective Field Theory A.F. Esselink

For any weak decay interaction, the effective Hamiltonian can be similarly constructed as eq. (2.15),
and will take the form of:

Heff =
GF√
2
V ∗
pqVab

∑
j

CjOj (2.16)

In OPE, the operators Oj and Wilson coefficients Cj are related to long- and short-distance
physics respectively. Where long-distance physics is related to QCD effects below the energy
scale µ, and short-distance physics to energies above µ. Subsequently allowing for the separa-
tion of low and high energies [20]. The values of the Wilson coefficients solely depend on hard
scattering processes. As a consequence, the coefficients are universal. While the effective Hamil-
tonian is independent of the energy scale µ, both Oj and Cj are dependent on µ, meaning their
dependence cancels. µ allows for the separation of the long- and short-distance regimes [22].
Consequently, OPE facilitates the computation of weak decays that would otherwise be too com-
putationally challenging. Due to the Wilson coefficients being universal, results of the effective
theory at low energies can be matched to the full theory and vice versa computations of the full
theory at high energies can be related to a prediction of the effective theory at lower energies [20].

The example shown in this section covered a non-leptonic decay. However, it can also be applied
to semi- and purely leptonic decays. In these cases, the final state in the operators Oj can often
be replaced by (ℓ̄ℓ)V or (ℓ̄ℓ)A.

2.4.2 Search for BSM using OPE

New Physics can take shape as undiscovered particles or interactions that contribute to these
four-fermion interactions. Having different masses or coupling strengths than the SM predicts,
leads to new contributions of the Wilson coefficients.

OPE is a useful method to search for physics beyond the SM. In this case, the Wilson coefficients
are split up into a SM and a NP contribution. It is possible to compute the SM contribution
CSM
j to high precision, leaving the NP contributions CNP

j the only unknowns.

Heff =
GF√
2
V ∗
pqVab

∑
j

(
CSM
j + CNP

j

)
Oj (2.17)

Based on experimental data of e.g. branching fraction and ratios, NP Wilson coefficients can be
constrained using a model-independent approach. However, this method also has its downsides.
Depending on which interaction is being examined, there are likely many different Wilson coef-
ficients, leading to too many degrees of freedom. Consequently, one needs to make a selection of
which operators and coefficients are included in the analysis, making it increasingly difficult to
determine the significance of different components.
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A.F. Esselink 2.5 Theoretical Framework

2.5 Theoretical Framework

In this thesis, we will look at purely and semileptonic decays of the B meson involving b → c
transitions. Part of the reason these particular decays are of interest is the insight they give into
the potential violation of LFU. Based on experimental results of the semi-leptonic B → D(∗)ℓν̄ℓ
transitions, constraints can be put on the NP contributions to the short-distance Wilson coeffi-
cients, related to their corresponding operators (section 3). This is done using the same method
as presented by Fleischer et al. [1] (section 2.5). The results from the relevant effective Hamilto-
nian at the low energy scale µ = mb are connected to high energies at 1 TeV through the proper
renormalisation group evolution, presented in section 2.5.1. Additionally, we will examine how
the planned measurement of the Bc → τν decay could potentially help further constrain these
coefficients.

For b → cτ ν̄ℓ transitions at the lowest dimension, the general effective Hamiltonian is given by
eq. (2.18) (assuming neutrinos are left-handed). Unlike the current-current operators used in
section 2.4 to define the effective Hamiltonian of a non-leptonic decay, specific vector, (pseudo-)
scalar, and tensor operators are used for these (semi-)leptonic transitions. These are all the
possible four-fermion operators for this transition, at the lowest dimension, which results in the
following Hamiltonian:

Hc
eff =

GF√
2
Vcb

[
C̃c,ℓ
VL

Oc,ℓ
VL

+ C̃c,ℓ
VR

Oc,ℓ
VR

+ C̃c,ℓ
S Oc,ℓ

S + C̃c,ℓ
P Oc,ℓ

P + C̃c,ℓ
T Oc,ℓ

T

]
+ h.c. (2.18)

Where c represents the charm quark, and ℓ the lepton flavour ℓ = e, µ, τ . C̃q,ℓ
a are the Wilson

coefficients and Oq,ℓ
a the operators. Where the subscript a can represent left-handed vector VL,

right-handed vector VR, scalar S, pseudo-scalar P or the tensor T interactions. In case LFU is
violated, these Wilson coefficients will be different for the three different lepton flavours. The
Wilson coefficients consist of a SM and a potential NP part:

C̃q,ℓ
a = C(SM)q,ℓ

a + Cq,ℓ
a (2.19)

Where a = VL, VR, S, P, T . The SM components are:

C
(SM)q,ℓ
VL

= 1, C
(SM)q,ℓ
VR

= C
(SM)q,ℓ
S = C

(SM)q,ℓ
P = C

(SM)q,ℓ
T = 0 (2.20)

So C
(SM)q,ℓ
a for a = VR, S, P, T are only dependent by their NP component. [1]

For b → cτ ν̄ℓ transitions, the operators can be defined using the same formalism as discussed in
section 2.4.1, representing the initial, quarks fields state and final, lepton fields state [1, 23].

Oc,ℓ
VL

= (c̄γµPLb) (τ̄ γµPLνℓ) (2.21)

Oc,ℓ
VR

= (c̄γµPRb) (τ̄ γµPLνℓ) (2.22)

Oc,ℓ
S = (c̄b) (τ̄PLνℓ) (2.23)

Oc,ℓ
P = (c̄γ5b) (τ̄PLνℓ) (2.24)

Oc,ℓ
T = (c̄σµνPLb) (τ̄σµνPLνℓ) (2.25)

Where γµ represents four 4-dimensional gamma matrices, also known as Dirac matrices. PL,R =
1 ∓ γ5, with γ5 being a gamma matrix used to separate left and right chirality. µ and ν are
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2.5 Theoretical Framework A.F. Esselink

Lorentz indices, defining the spacetime dimension.

In the process of constraining the Wilson Coefficients, each lepton flavour should be analysed.
To simplify this, three possible relations between the electron Ce

a and muon Cµ
a coefficients are

applied. To make the analysis model-independent, Ce
a being smaller, equal, and greater than Cµ

a

are considered. To be consistent with Fleischer et al., the ratio:

Ce
a = fe

µC
µ
a (2.26)

between Ce
a and Ce

µ is chosen to take the values: fe
µ = 0.1, 1, 10.

2.5.1 Evolution of NP Wilson Coefficients from the Low to High Energy Scale

The effective Hamiltonian (eq. (2.18)) and subsequent branching fractions are given for the low
energy scale µ = mb. The resulting Wilson coefficient constraints can be connected to the high
energy scale µ = 1 TeV through the renormalisation group equation presented in eq. (2.27) [24].
This will also facilitate the comparison to the results of Fleischer et al., which are presented for
µ = 1 TeV. 

Cq,ℓ
VL

(mb)

Cq
VR

(mb)

Cq,
S (mb)

Cq,ℓ
P (mb)

Cq,ℓ
T (mb)

 ≃


1 0 0 0 0
0 1 0 0 0
0 0 1.71 0 −0.27
0 0 0 1.71 0.27
0 0 0 0 0.84




Cq,ℓ
VL

(1TeV)

Cq
VR

(1TeV)

Cq,ℓ
S (1TeV)

Cq,ℓ
P (1TeV)

Cq,ℓ
T (1TeV).

 . (2.27)
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3 b → c Transitions — Constraining Wilson Coefficients

Fleischer et al., 2021 [1] have computed and analysed the constraints on Wilson Coefficients
corresponding to b → c transitions, with the goal of estimating the |Vcb| element. Specifically,
the semileptonic B decays B → Dτν̄τ and B → D∗ℓν̄ℓ are used. In this section we follow the
derivation and discussion from Fleischer et al., which is summarised below. I have reproduced
the figures and numerical values and compare them to the results published in [1]. In section 4,
these constraints will be used in combination with the (inclusive and exclusive) determination of
|Vcb| to analyse how potential measurements of Bc → τντ can further constraint the NP coeffi-
cients.

To successfully constrain NP Wilson coefficients, observables that have been experimentally de-
termined are required. The ratio of branching fractions R(D) and R(D∗), presented in eqs. (2.5)
and (2.6), fulfil this requirement. In the upcoming analysis, the NP effects of the heavy and
light lepton generation will be evaluated separately. Therefore, to equate the R(D(∗) ratio to its
experimental result, the expressions of the heavy and light generations have to be multiplied. If
NP comes through the light generations, the ratio evaluated for τ , will become 1, and vice versa.
Furthermore, eq. (3.1) allows for a relation between Cc,τ

a and Cc,µ
a , Cc,e

a to be established.

R(D(∗))

R(D(∗))SM
=

R(D(∗))

R(D(∗))SM

∣∣∣∣
e,µ

R(D(∗))

R(D(∗))SM

∣∣∣∣
τ

(3.1)

Based on the experimental values presented in eqs. (2.7) and (2.8), the following values and
uncertainties are computed:

R(D∗)

R(D∗)SM
= 1.17± 0.06,

R(D)

R(D)SM
= 1.1± 0.1 (3.2)

Furthermore, the polarization ratio (eq. (3.3)) can be used for NP Wilson coefficients constraints,
for semileptonic decays that decay to a final state containing a D∗ meson. The ratio is expressed
in terms of the decay width of the B meson decay to the left-handed vector meson state D∗

L and
the unpolarized state D∗.

FL(D
∗) =

Γ(B → D∗
Lτ ν̄τ )

Γ(B → D∗τ ν̄τ )
(3.3)

Also for this observable a SM estimate [1] and experimental results by Belle [25] are available.
The values have a disagreement of 1.6σ.

FL(D
∗)|SM = 0.458± 0.004, FL(D

∗) = 0.60± 0.08± 0.04 = 0.60± 0.09 (3.4)

The final observable used to determine the constraints is the ratio represented in eq. (3.5). Which
can be used to analyse the LFU between electrons and muons. Subsequently, it can be used to
constrain the coefficients corresponding to ℓ′.

Re
µ(D

∗) =
B(B0 → D∗−e+νe)

B(B0 → D∗−µ+νµ)
(3.5)

The SM estimate [1] and the experimental results by Belle [26] are:

Re
µ(D

∗)|SM = 1.0045(1), Re
µ(D

∗) = 1.01± 0.01± 0.03 = 1.01± 0.04 (3.6)

In sections 3.1 to 3.4, ratios between R(D), R(D∗), FL(D
∗), Re

µ(D
∗) and their SM counterparts,

will be used to constrain the NP Wilson coefficients for pseudoscalar, scalar, vector, and tensor
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3.1 Constraints on Pseudo-scalar Wilson Coefficients A.F. Esselink

interactions. Each will be considered separately, assuming no contribution from other interaction
types. In reality, a combination of different interactions is likely to contribute to the NP effects.
Furthermore, the method will only reveal the interactions that are allowed, without revealing
anything about the underlying theory.

Fleischer et al. [1] provides expressions, showing the dependence of these observables on the
NP Wilson coefficients at µ = mb. For every interaction type, the relevant components will be
extracted from these expressions, and the resulting equations will be presented in each section.
Subsequently, the constraints will be determined by relating these equations to the experimental
measurements and theoretical SM estimates of the observables. The constraints will be evalu-
ated and presented for the three different scenarios concerning the relation between Ce

a and Ce
µ

(eq. (2.26)).

3.1 Constraints on Pseudo-scalar Wilson Coefficients

The first variables to be constrained are the pseudo-scalar Wilson coefficients. The ratio between
R(D) and R(D∗) and their SM prediction are evaluated for two different scenarios: heavy
generation, τ leptons contribute the NP; or light generations, electrons, and muons contribute
the NP. Additionally, FL(D

∗) will only be related to the τ coefficients, due to it being solely
defined by semileptonic b → cℓν̄ℓ transitions containing τ in the final state (eq. (3.3)). The
following dependencies on the pseudoscalar coefficients for the τ lepton are found from derivation
of expressions provided by Fleischer et al. [1]:

R(D∗)/R(D∗)SM |τ = 1.00 + 0.11Re[Cc,τ∗
P ] + 0.034|Cc,τ

P |2 (3.7)

R(D)/R(D)SM |τ = 1.00 (3.8)

FL(D
∗) =

(
R(D∗)SM/R(D∗)|τ

) (
0.46 + 0.11Re[Cc,τ∗

P ] + 0.034|Cc,τ
P |2

)
(3.9)

Where an ∗ in the superscript of Cc,ℓ
a indicates the complex conjugate. Recall that Cc,ℓ

a repre-
sents only the NP contribution to the Wilson coefficients. It can be seen that in this case for the
B → Dτ−ν̄τ transition, there is no dependence on NP pseudoscalar coefficient, i.e. any deviation
of R(D) from the SM cannot be explained by pseudoscalar NP effects.

Similarly, we find the expressions for the light generations. For both cases, the electron and
muon components are separately given.

R(D∗)/R(D∗)SM |e,µ =
1

GD∗
µ +GD∗

e

(3.10)

With

GD∗
µ = 0.499 + 0.009Re[Cc,µ∗

P ] + 0.025|Cc,µ
P |2 (3.11)

GD∗
e = 0.501 + 4.50× 10−5Re[Cc,e∗

P ] + 0.026|Cc,e
P |2 (3.12)

And the effects on R(D):

R(D)/R(D)SM|e,µ =
1

GD
µ +GD

e

= 1.00 (3.13)

Like the evaluation for τ leptons, R(D)/R(D)SM shows no NP pseudoscalar dependence for
electrons and muons either.
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Due to FL(D
∗) being only dependent on Cc,τ

P , the bounds imposed by the experimental data
(eq. (3.4)) are straightforwardly determined. The resulting constraints on Cc,τ

P at µ = 1 TeV are:
(−3.83,−2.34) and (0.44, 1.94). The connection from µ = mb to µ = 1 TeV is made by eq. (2.27),
which simplifies to Cc,ℓ

P (mb) = 1.71Cc,ℓ
P (1TeV) for the current evaluated circumstance. These

bounds are represented by the blue rectangular area in fig. 6. Likewise, the allowed regions in
the Cc,τ

P - Cc,µ
P plane can be determined using eq. (3.1). These are shown as blue, red, and green

bands in fig. 6, where the width of the bands is directly related to the uncertainty in the observ-
able. Additionally, it can be observed that the computed allowed regions are in disagreement
with the SM at 1σ.

Figure 6: Bounds in the Cc,τ
P - Cc,µ

P plane, for three different Cc,e
P , Cc,µ

P relations, derived from
the observables R(D∗) and FL(D

∗). The black star corresponds to the SM values, where Cc,τ
P =

Cc,µ
P = 0

Based on the overlap of the R(D∗) and FL(D
∗) regions in fig. 6, constraints on Cc,µ

P can be
extrapolated. The results are presented in the second column of table 1. To potentially improve
the currently determined constraints, the observable Re

µ(D
∗) is used.

Re
µ(D

∗)/Re SM
µ (D∗) =

G̃D∗
e

G̃D∗
µ

(3.14)

Where the e and µ contribution are given by:

G̃D∗
e = 1 + 8.981× 10−5Re[Cc,e∗

P ] + 0.051|Cc,e
P |2 (3.15)

G̃D∗
µ = 1 + 0.018Re[Cc,µ∗

P ] + 0.051|Cc,µ
P |2 (3.16)

Figure 7 plots eq. (3.14) for the three different Cc,e
P - Cc,µ

P scenarios. The limits imposed by the
experimental result, lead to a new constraint of Cc,µ

P presented in the third column of table 1.
Through the relation between Cc,τ

P and Cc,µ
P as a result of R(D∗), the constraints of Cc,τ

P can
also be improved, and are presented in the last column of table 1. It can be noted that the SM
value (Cc,ℓ

P = 0) is not present in the presented interval for Cc,τ
P , but is for Cc,µ

P and Cc,e
P .
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3.1 Constraints on Pseudo-scalar Wilson Coefficients A.F. Esselink

Figure 7: The observable’s Re
µ(D

∗) relation to Cc,µ
P for three different relations with Cc,e

P . The
experimental measurement of Re

µ(D
∗) allows bounds to be placed on the NP Wilson coefficient

Cc,µ
P .

Limits Cc,µ
P (1 TeV) Cc,τ

P (1 TeV)

Limit parameters R(D∗), FL(D
∗) Re

µ(D
∗) R(D∗), FL(D

∗)
R(D∗), FL(D

∗),
Re

µ(D
∗)

Cc,e
P = 10Cc,µ

P [-0.27, 0.27] [-0.049, 0.051] [-3.83, -2.34],
[0.44, 1.94]

[-2.80, -2.34],
[0.44, 0.90]

Cc,e
P = Cc,µ

P [-2.01, 1.91] [-1.62, 1.00] [-3.83, -2.34],
[0.44, 1.94]

[-3.72, -2.34],
[0.44, 1.34]

Cc,e
P = 0.1Cc,µ

P [-2.89, 2.68] [-0.54, 0.33] [-3.83, -2.34],
[0.44, 1.94]

[-2.77, -2.34],
[0.44, 0.88]

Table 1: Constraints on the NP Wilson coefficients Cc,µ
P and Cc,τ

P for three different Cc,e
P , Cc,µ

P

relations. The observables used to compute the bounds are given in the second row.

To find these constraints, the same method as presented in Fleischer et al. [1] was used. Hence, we
can compare our results to theirs. For each interaction type, equivalent relations were found in the
Cc,τ
P - Cc,µ

P plane. Small differences can be found in the numerical intervals for the pseudoscalar
coefficients. It is probable these differences can largely be attributed to rounding differences
of the numerical values in the equations of the observables. The deviation is largest for the
Cc,e
P = Cc,µ

P scenario. This can be explained by the fact that a small deviation in Re
µ(D

∗), leads
to a larger shift in Cc,µ

P compared to the other scenarios (see fig. 7). In this thesis, the values
presented in ref. [1] were used, where instead they could have used more precise values in their
computations.
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3.2 Constraints on Scalar Wilson Coefficients

Like the pseudoscalar coefficients, the dependence of the observables on the scalar Wilson coef-
ficients can be derived:

R(D∗)/R(D∗)SM |τ = 1.00 (3.17)

R(D)/R(D)SM |τ = 1.00 + 1.46Re[Cc,τ∗
S ] + 0.98|Cc,τ

S |2 (3.18)

FL(D
∗) =

(
R(D∗)SM/R(D∗)|τ

)
(0.46) (3.19)

R(D∗) and FL(D
∗) yield no relation to Cc,τ

S and hence any deviation between experimental
measurements of R(D∗) and FL(D

∗) and the SM cannot be explained by scalar NP effects. For
the light generations, the following expressions are found:

R(D∗)/R(D∗)SM |e,µ =
1

GD∗
µ +GD∗

e

= 1 (3.20)

R(D)/R(D)SM |e,µ =
1

GD
µ +GD

e

(3.21)

With

GD
µ = 0.50 + 0.07Re[Cc,µ∗

S ] + 0.52|Cc,µ
S |2 (3.22)

GD
e = 0.50 + 3.6× 10−4Re[Cc,e∗

S ] + 0.53|Cc,e
S |2 (3.23)

Again, no dependence on the scalar coefficients is found for R(D∗). Using eq. (3.1) a relation
between Cc,τ

S and Cc,µ
S can be found by multiplying the heavy (eq. (3.18)) and light (eq. (3.21))

generations contribution. The result is plotted in fig. 8. Also Re
µ(D

∗) provides no dependence on
Cc,µ
S and Cc,e

S . From this figure, it can be concluded that no strict constraints can be placed on
the scalar Wilson coefficients. Considering the decay Bc → τντ will not improve this, since its
branching fraction has no dependence on the NP scalar Wilson coefficients. More experimental
data from other (semi-)leptonic decay modes sensitive to NP scalar effects would be needed to
provide better constraints. The SM values do not overlap with the allowed regions on the coef-
ficients within 1σ.

The dependence of the observables on the scalar NP coefficients found and displayed in this
section are consistent with the results presented in Fleischer et al. [1].
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3.3 Constraints on Vector Wilson Coefficients A.F. Esselink

Figure 8: Constraints in the Cc,τ
S - Cc,µ

S plane, for three different Cc,e
S , Cc,µ

S relations, derived
from the observable R(D). The black star corresponds to the SM values, where Cc,τ

S = Cc,µ
S = 0

3.3 Constraints on Vector Wilson Coefficients

The left- and right-handed Wilson coefficients will be evaluated separately. At the lowest order
in the SMEFT, the right-handed vector coefficient adheres to LFU, i.e. Cq,ℓ

VR
= Cq

VR
[1]. The

observables have the following dependency on Cc
VR

:

R(D∗)/R(D∗)SM =
1 + |Cc

VR
|2 − 1.80Re(Cc∗

VR
)

1 + |Cc
VR

|2 − 1.752Re(Cc∗
VR

)
(3.24)

R(D)/R(D)SM = 1 (3.25)

FL(D
∗) =

0.46|1− Cc
VR

|2

1 + |Cc
VR

|2 − 1.80Re(Cc∗
VR

)
(3.26)

Re
µ(D

∗)/Re SM
µ (D∗) = 1 (3.27)

Figures 9 and 10 show that the discussed observables that are related to CVR
(R(D∗) and FL(D

∗))
are in disagreement with the experimental measurements. Hence, the experimental results can-
not be explained by solely NP right-handed vector interactions. This is also consistent with the
results found by Fleischer et al.

Therefore, only the left-handed coefficient will be further considered in this section. The NP
effects entering through τ for the CVL

NP contribution is given by:

R(D∗)/R(D∗)SM |τ = |1 + Cc,τ
VL

|2 (3.28)

R(D)/R(D)SM |τ = |1 + Cc,τ
VL

|2 (3.29)

FL(D
∗) =

(
R(D∗)SM/R(D∗)|τ

) (
0.46|1 + Cc,τ

VL
|2
)

(3.30)

At first glance it seems like all the expressions above are dependent on Cc,τ
VL

, however, the de-
pendence on Cc,τ

VL
for the numerator and denominator of FL(D

∗) are equal and therefore cancel.

20



A.F. Esselink 3.3 Constraints on Vector Wilson Coefficients

Figure 9: The observable’s R(D∗) relation
to Cc

VR
. The experimental measurement of

R(D∗) does not overlap with the found depen-
dency on Cc

VR
at 1σ, hence no bounds can be

placed.

Figure 10: The observable’s FL(D
∗) relation

to Cc
VR

. The experimental measurement of
FL(D

∗) does not overlap with the found de-
pendency on Cc

VR
at 1σ, hence no bounds can

be placed.

The effects of the light generations are given by:

R(D∗)/R(D∗)SM |e,µ =
1

GD∗
µ +GD∗

e

(3.31)

With
GD∗

µ = 0.499|1 + Cc,µ
VL

|2, GD∗
e = 0.501|1 + Cc,e

VL
|2 (3.32)

R(D)/R(D)SM |e,µ =
1

GD
µ +GD

e

(3.33)

With
GD

µ = 0.50|1 + Cc,µ
VL

|2, GD
e = 0.50|1 + Cc,e

VL
|2 (3.34)

Based on the observables R(D) and R(D∗), the allowed regions in the Cc,τ
VL

- Cc,µ
VL

plane can
be plotted (fig. 11). However, these regions are not bounded and therefore do not yield strict
constraints. Figure 12 shows the regions around the SM value, showing that it falls outside the
1σ constraints.

The observable Re
µ(D

∗) is related to Cc,µ
VL

and Cc,e
VL

, and is given by:

Re
µ(D

∗)/Re SM
µ (D∗) =

G̃D∗
e

G̃D∗
µ

(3.35)

Where the e and µ contribution are given by:

G̃D∗
e = |1 + Cc,e

VL
|2, G̃D∗

µ = |1 + Cc,µ
VL

|2 (3.36)

Figure 13 shows that Re
µ(D

∗) does lead to bounds on Cc,µ
VL

and Cc,e
VL

. Except for when Cc,µ
VL

= Cc,e
VL

.
The resulting constraints are presented in the second column of table 2. Based on the relation
between Cc,τ

VL
and Cc,µ

VL
as shown in fig. 11, constraints on Cc,τ

VL
can be extrapolated and are

presented in the third column of table 2.

Similar to the pseudoscalar, the found constraints can be compared to Fleischer et al. [1]. Again
for each interaction type, equivalent relations were found in the Cc,τ

VR
- Cc,µ

VR
plane. The small

deviations that are present can still be ascribed to rounding differences of the values in the used
expressions.
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Figure 11: Constraints in the Cc,τ
VL

- Cc,µ
VL

plane, for three different Cc,e
VL

, Cc,µ
VL

relations, derived
from the observables R(D) and R(D∗). The black star corresponds to the SM values, where
Cc,τ
VL

= Cc,µ
VL

= 0.

Figure 12: The same relations as shown in fig. 11, zoomed in on the region around the SM value.
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Figure 13: The observable’s Re
µ(D

∗) relation to Cc,µ
VL

for three different relations with Cc,e
VL

. The
experimental measurement of Re

µ(D
∗) allows bounds to be placed on the NP Wilson coefficient

Cc,µ
VL

.

Limits Cc,µ
VL

(1 TeV) Cc,τ
VL

(1 TeV)
Limit parameters Re

µ(D
∗) R(D∗), R(D) and Re

µ(D
∗)

Cc,e
VL

= 10Cc,µ
VL

[-0.183, -0.181]
[-0.0012, 0.0023]

[-1.917, -1.827] ∪ [-0.173, -0.083]
[-2.126, -2.009] ∪ [0.0086, 0.126]

Cc,e
VL

= 0.1Cc,µ
VL

[-1.826,-1.803]
[-0.0224, 0.0122]

[-1.913, -1.824] ∪ [-0.176, -0.086]
[-2.111, -2.003] ∪ [0.0028, 0.119]

Table 2: Constraints on the NP Wilson coefficients Cc,µ
VL

and Cc,τ
VL

for two different Cc,e
VL

, Cc,µ
VL

relations. The observables used to compute the bounds are given in the second row.
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3.4 Constraints on Tensor Wilson Coefficients

The final situation that is evaluated is NP entering through the tensor Wilson coefficients. The
effects from τ are given by the following equations:

R(D∗)/R(D∗)SM |τ = 1− 5.02Re[Cc,τ∗
T ] + 15.94|Cc,τ

T |2 (3.37)

R(D)/R(D)SM |τ = 1 + 1.14Re[Cc,τ∗
T ] + 0.91|Cc,τ

T |2 (3.38)

FL(D
∗) =

(
R(D∗)SM/R(D∗)|τ

) (
0.46− 1.95Re(Cc,τ∗

T ) + 3.08|Cc,τ
T |2

)
(3.39)

It is found that the expression for FL(D
∗) does not intersect with the experimental data. Hence,

at the 1σ level, it can already be concluded that CT cannot be the only NP contribution based
on the observables that are currently analysed. Despite this, the possible regions in the Cc,τ

T -
Cc,µ
T plane can still be examined. Therefore, the effect of e, µ on R(D∗) and R(D) are needed:

R(D∗)/R(D∗)SM |e,µ =
1

GD∗
µ +GD∗

e

(3.40)

With

GD∗
µ = 0.499− 0.221Re[Cc,µ∗

T ] + 7.710|Cc,µ
T |2 (3.41)

GD∗
e = 0.501− 0.001Re[Cc,e∗

T ] + 7.743|Cc,e
T |2 (3.42)

R(D)/R(D)SM |e,µ =
1

GD
µ +GD

e

(3.43)

With

GD
µ = 0.50 + 0.10Re[Cc,µ∗

T ] + 0.37|Cc,µ
T |2 (3.44)

GD
e = 0.50 + 5.0× 10−4Re[Cc,e∗

T ] + 0.37|Cc,e
T |2 (3.45)

The resulting regions are shown in fig. 14. With fig. 15 showing the area around the SM value,
from which can be seen it is in disagreement with the found regions.

24



A.F. Esselink 3.4 Constraints on Tensor Wilson Coefficients

Figure 14: Constraints in the Cc,τ
T - Cc,µ

T , for three different Cc,e
T , Cc,µ

T relations, derived from the
observables R(D) and R(D∗). The black star corresponds to the SM values.

Figure 15: The same relations as shown in fig. 14, zoomed in on the region around the SM value.
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Additionally, the relation to the observable Re
µ(D

∗) and the resulting bounds on Cc,e
T and Cc,µ

T

can be analysed:

Re
µ(D

∗)/Re SM
µ (D∗) =

G̃D∗
e

G̃D∗
µ

(3.46)

With

G̃D∗
e = 1 + 2.164× 10−3Re[Cc,e∗

T ] + 15.455|Cc,e
T |2 (3.47)

G̃D∗
µ = 1 + 0.433Re[Cc,µ∗

T ] + 15.458|Cc,e
T |2 (3.48)

Re
µ(D

∗) does result in constraints on Cc,µ
T (see fig. 16), the corresponding numerical values of the

allowed intervals of Cc,µ
T at the 1σ level can be found in table 3.

Figure 16: The observable’s Re
µ(D

∗) relation to Cc,µ
T for three different relations with Cc,µ

T . The
experimental measurement of Re

µ(D
∗) allows bounds to be placed on the NP Wilson coefficient

Cc,µ
VT

.

Limits Cc,µ
T (1 TeV)

Limit parameters Re
µ(D

∗)

Cc,e
T = 10Cc,µ

T [-0.0060, 0.0064]
Cc,e
T = 1Cc,µ

T (-∞, 0.695], [-0.131, 0.064], [1.45,∞)
Cc,e
T = 0.1Cc,µ

T [-0.065, 0.031]

Table 3: Constraints on the NP Wilson coefficient Cc,µ
VL

for three different Cc,e
VL

, Cc,µ
VL

relations,
based on the experimental measurements of Re

µ(D
∗).

The relation shown in fig. 16 is not in full agreement with Fleischer et al. It appears the sign of
Cc,µ
T has to be reversed to obtain the same relations. Upon close examination of the expression

of Re
µ(D

∗) provided by Fleischer et al. and eqs. (3.46) to (3.48), which are derived from the
expression by the paper, no inconsistencies are found, which could indicate an error by Fleischer
et al. The constraints derived from R(D) and R(D∗) (fig. 14) are consistent with Fleischer et al.
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4 Potential impact of a Bc → τντ measurement

In combination with the constraints determined in section 3, the potential impact of a measure-
ment of the Bc → τντ decay on the NP coefficients will be analysed. At the energy scale µ = mb,
the ratio between the branching fraction of the Bc decay and its SM prediction is defined by the
following equation: [1]

B(Bc → τντ )/B(Bc → τντ )
SM = |1 + Cc,τ

VL
+ 4.06Cc,τ

P |2 (4.1)

Where

B(Bc → τντ )
SM =

G2
F

8π
|Vcb|2MBcm

2
τ

(
1− m2

τ

M2
Bc

)2

f2
Bc
τBc (4.2)

Where GF is the Fermi coupling constant, MBc is the mass of Bc, mτ is the mass of the τ
lepton, fBc is the Bc meson decay constant and τBc is the lifetime of Bc. Unlike the previously
discussed ratios in section 3, the ratio in eq. (4.1) is not independent of the CKM element |Vcb|.
To compute this ratio, inclusive and exclusively determined value of |Vcb| are used. Their values
were presented in section 2.1.1 [9].

To compute the branching fraction, natural units are used (h̄ = c = 1). Additionally, the units
of the Bc lifetime need to be converted from seconds to GeV−1 using the conversion factor:
1s = 6.582× 10−25 GeV−1. The result of the eq. (4.2) for the external |Vcb| value is:

B(Bc → τντ )
SM
excl. = (2.07± 0.20)× 10−2 (4.3)

Which is not in full agreement with [1], which states the following value for the branching fraction:

B(Bc → τντ )
SM
excl. = (2.25± 0.21)× 10−2 (4.4)

For the inclusive determination of |Vcb| the corresponding SM branching fraction is:

B(Bc → τντ )
SM
incl. = (2.29± 0.19)× 10−2 (4.5)

Equation (4.1) shows that the branching fraction of Bc → τντ is dependent on the pseudoscalar
and left-handed vector Wilson coefficient. On the other hand, this implies it cannot be used
to put constraints on the NP scalar, tensor and right-handed vector Wilson coefficients. An
experimental measurement of the branching fraction could help constrain Cc,ℓ

P and Cc,ℓ
VL

further.
Ref. [1, 27] argue that bounds on the branching fraction stricter than 60% cannot be placed,
considering the limits on the NP parameter space and the contributions of the Bc → τντ decay.
Hence, in this analysis 60% will be taken as an upper bound, but the effect of lower values will
still be examined.

B(Bc → τντ ) < 0.60 (4.6)

4.1 Impact on the Pseudo-scalar Wilson Coefficients

Figure 17 shows the relation between Cc,τ
P , |Vcb| and the branching fraction. The bounds used

for Cc,τ
P come from table 1. For each scenario, the new constraint from Bc → τντ resolves the

2-fold ambiguity by eliminating the negative interval of Cc,τ
P . From fig. 17 it can be concluded

that values B(Bc → τντ ) < 0.356 are in disagreement with experimental results at 1σ if NP ef-
fects come exclusively from pseudoscalar interactions. Or in other words, the branching fraction
would have to be more than 17 times greater than its SM prediction to be consistent with the NP
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scenario derived from R(D∗), FL(D
∗) and Re

µ(D
∗). Furthermore, for all relations between Cc,e

P

and Cc,µ
P , an upper bound of 0.614 is found for Cc,τ

P at 1σ, using the exclusive |Vcb| value. Using
the regions in Cc,τ

P - Cc,µ
P (fig. 6) that were established using R(D∗) and FL(D

∗), new constraints
for Cc,e

P and Cc,µ
P can be found. Compared to the bounds that were given in table 1, only the

constraints of the Cc,e
P = Cc,µ

P scenario are improved. Table 4 shows the updated constraints.
Note that for Cc,µ

P and Cc,e
P , the SM value is still within the given intervals.

The same analysis can be performed for the inclusive |Vcb| value, for which similar results are
found. In this case the upper bound of Cc,τ

P is found to be 0.607. Concerning the branching
fraction, values B(Bc → τντ ) < 0.363 are in disagreement with experimental results at 1σ if NP
effects come exclusively from pseudoscalar interactions. The final updated constraints for Cc,τ

P

and Cc,µ
P are presented in table 4.

Limits Cc,µ
P (1 TeV) Cc,τ

P (1 TeV)
Vcb excl. incl. excl. incl.
Cc,e
P = 10Cc,µ

P [-0.049, 0.051] [-0.049, 0.051] [0.44, 0.61] [0.44, 0.61]
Cc,e
P = Cc,µ

P [-0.59, 0.48] [-0.58, 0.47] [0.44, 0.61] [0.44, 0.61]
Cc,e
P = 0.1Cc,µ

P [-0.54, 0.33] [-0.54, 0.33] [0.44, 0.61] [0.44, 0.61]

Table 4: Constraints on the NP Wilson coefficients Cc,µ
P and Cc,τ

P for three different Cc,e
P - Cc,µ

P

relations and the inclusive and exclusive determination of |Vcb|. R(D∗), FL(D
∗) and Re

µ(D
∗)

were used to compute the bounds in combination with B(Bc → τντ ) < 0.60.

4.2 Impact on the Left-handed Vector Wilson Coefficients

For the left-handed vector coefficient, a full agreement between the previously determined bounds
for the coefficient and |Vcb| can be found together with the 60% limit of the branching fraction,
as can be seen in fig. 18. The contour lines of the branching fraction show that the overlapping
regions correspond to a branching fraction similar to the SM prediction. The numerical values
of the branching fraction limits at the 1σ level are given in table 5.

For the NP left-handed vector coefficients, Fleischer et al. [1] claims the limit on the branching
fraction at 60% eliminates two of the four regions found previously in the Cc,τ

VL
- Cc,µ

VL
plane (see

table 2), specifically those corresponding to branching fractions smaller than the SM estimate.
This is not in agreement with the regions found in the Cc,τ

VL
- |Vcb| plane, which correspond to

branching fraction values of around ∼ 0.01− 0.03 (see fig. 18).

Limits B(Bc → τντ )

Vcb excl. incl.
Cc,e
VL

= 10Cc,µ
VL

[0.0134, 0.0185], [0.0199, 0.0279] [0.0151, 0.0195], [0.0224, 0.0294]
Cc,e
VL

= 0.1Cc,µ
VL

[0.0133, 0.0184], [0.0196, 0.0271] [0.0150, 0.0194], [0.0222, 0.0291]

Table 5: Constraints on the Bc → τντ branching fraction, for the scenario where NP effects
are coming from left-handed vector interactions only. Computed for two different Cc,e

VL
- Cc,µ

VL

scenarios, together with the inclusive and exclusive determination of |Vcb|.
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Figure 17: The relation of the branching fraction of Bc → τντ to the CKM element Vcb and
Cc,τ
P . The Cc,τ

P constraints for three different Cc,e
P , Cc,µ

P relations are displayed together with
the inclusive and exclusive determination of |Vcb|. The values in the plot are branching fractions
corresponding to the contour lines or data points. The overlap between the regions allow new
improved constraints to be placed on Cc,τ

P .

Figure 18: The relation of the branching fraction of Bc → τντ to the CKM element Vcb and
Cc,τ
VL

. The Cc,τ
VL

constraints for two different Cc,e
VL

- Cc,µ
VL

scenarios are displayed. The range of the
branching fraction values in the overlapping regions is close to the SM estimate.
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5 Conclusion

Shortcomings of the standard model have led physicists to search for physics beyond the SM
or new physics. The LHCb experiment does this by comparing experimental measurements to
their SM estimates. In this thesis, the methodology used to explore the NP parameters space
is the operator product expansion, using effective field theory to make computations of weak
interactions feasible. This is achieved by focusing on a single energy scale without having to
know the underlying theory at higher energy scales.

To find constraints on NP Wilson coefficients corresponding to b → cℓν̄ℓ transitions, the work
by Fleischer et al. [1] was followed. Based on different observables defined by ratios of various
branching fractions and decay widths, combined with their experimental measurements, the NP
coefficients were constrained. The coefficients are also dependent on lepton flavour. To sim-
plify the analysis and keep it model-independent, three scenarios were considered: Ce

a < Cµ
a ,

Ce
a = Cµ

a and Ce
a > Cµ

a . For all constraints, there is an agreement with the SM between the (1-
2)σ level. Only for the pseudoscalar and left-handed vector interactions strict constraints could
be placed on the coefficients. The results found are consistent with Fleischer et al. The differ-
ence in the quantitative values of the intervals can be largely contributed to rounding differences.

The LHCb group is planning to measure the tauonic decay of the Bc meson. Therefore, the
potential impact of such a measurement on the NP Wilson coefficients was explored in section 4.
The branching fraction of Bc → τντ decay is only sensitive to NP effects from pseudoscalar and
left-handed vector operators. Additionally, the branching fraction is dependent on the CKM
element Vcb, unlike the other observables used in the analysis. Consequently, the impact was
analysed for both the exclusive and inclusively determined value of |Vcb|.

Assuming the Bc → τντ branching fraction to be 60%, the pseudoscalar constraints of Cc,µ
P for

the Cc,e
P = Cc,µ

P scenario could be improved. Additionally, for all scenarios, it was able to remove
the 2-fold ambiguity that was present in Cc,τ

P . If the NP effects enter through pseudoscalar
interactions at the 1 TeV energy scale only and results that are consistent with the observables
(R(D∗), FL(D

∗) and Re
µ(D

∗)) are taken, the branching fraction is expected to be ∼ 17−30 times
greater than the SM estimate. If the NP effects come from only left-handed vector interactions,
the branching fraction is ∼ 0.5− 1.5 the value of the SM estimate. Due to the regions at the 1σ
level being close to the SM estimate, no improvements could be made to the left-handed vector
Wilson coefficients constraints.

In this thesis, we have shown that a measurement of Bc → τντ could eliminate ambiguity and
improve the precision of constraints in the NP parameters space. To provide more definitive proof
of the existence of NP, a 5σ discrepancy with the SM needs to be found, which is not satisfied
by the results presented in this thesis. To potentially achieve this, more precise experimental
measurements of a wider range of observables are needed. The measurement of Bc → τντ
is a step in this direction. Additionally, measurements of semileptonic decays including light-
generation leptons would be interesting. If the decay modes of electrons and muons are measured
separately, it would also allow for improved limits on lepton flavour universality between the two.
The picture of the NP parameter space is ever involving and more insight is gained by the day.
We look forward to seeing what the future holds.
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