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Abstract

The standard model of particle physics is expected to be an incomplete description.
For instance, it provides no natural explanations for the observed baryon asymmetry
and the hierarchy problem. Possible extensions of the standard model are grand unified
theories (GUTs). Many GUTs predict the existence of leptoquarks: hypothetical particles
that directly couple quarks to leptons. This thesis discusses the possible mass scales of
leptoquarks in GUTs based on the groups SU(5), SO(10) and SU(3)C×SU(3)L×SU(3)R
(trinification). Minimal SU(5) contains twelve vector leptoquarks (X/Y bosons) and a
single scalar leptoquark Tα, all of which mediate proton decay. The X/Y bosons lie at the
GUT scale MU ≈ 1015 GeV, while Tα must have a mass of at least 1011 GeV. However,
minimal SU(5) predicts a proton lifetime that is incompatible with experimental limits,
so it is not considered a viable GUT. Minimal SO(10) contains vector leptoquarks that
mediate proton decay (A/Y bosons), as well as ones that do not (X bosons). If the
SO(10) symmetry is broken using a single intermediate symmetry scale, X bosons lie
at MI ≈ 1011 GeV, whereas A/Y bosons lie at MU ≈ 1016 GeV. If three intermediate
symmetry scales are included, the masses of X bosons can naturally be lowered to the
TeV scale. Minimal SO(10) also contains many scalar leptoquarks that are believed to lie
at the GUT scale, but scalar-mediated proton decay is suppressed. Trinification forbids
gauge-mediated proton decay by assigning quarks and leptons to separate irreducible
representations. The scalar leptoquarks must have masses of at least 1011 GeV, since
they mediate proton decay. Without intermediate symmetry scales, the unification scale
is MU ≈ 1014 GeV. If an intermediate SU(3)C ×SU(2)L×SU(2)R×U(1)B−L symmetry
scale is used, one obtains MI ≈ 1011 GeV and MU ≈ 1016 GeV. Among the theories
that we have considered in this thesis, the model with the lowest leptoquark masses is an
SO(10) GUT with three intermediate symmetry scales. In this scenario, TeV-scale vector
leptoquarks are naturally possible. As far as we are aware, such a scenario has not been
explored yet in any existing literature.

2



Contents

1 Introduction 3

2 Standard model preliminaries 6
2.1 Representations of SU(N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Particle representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The Higgs mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Spontaneous symmetry breaking . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Massless particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Spontaneous symmetry breaking in gauge theories . . . . . . . . . . . 14
2.3.4 The electroweak theory . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Renormalization group equations . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 The running of the couplings . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 The running above and below electroweak symmetry breaking . . . . . 19
2.4.3 Matching conditions in general . . . . . . . . . . . . . . . . . . . . . . 22

3 SU(5) grand unification 24
3.1 The 5 and 10 dimensional irreducible representations . . . . . . . . . . . . . . 24

3.1.1 The generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Placing fermions in the 5 . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Placing fermions in the 10 . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 The X and Y vector leptoquarks . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 The color triplet scalar leptoquark . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Gauge coupling unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 SO(10) grand unification 41
4.1 The spinor representation of SO(10) . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 The local isomorphism between SO(3) and SU(2) . . . . . . . . . . . . 42
4.1.2 Spinor representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 The gauge sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 The gauge bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 The Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Symmetry breaking and gauge coupling unification . . . . . . . . . . . . . . . 48
4.3.1 A single intermediate Pati-Salam symmetry scale . . . . . . . . . . . . 49

1



CONTENTS

4.3.2 Three intermediate symmetry scales . . . . . . . . . . . . . . . . . . . 51
4.3.3 Comparison to experimental limits . . . . . . . . . . . . . . . . . . . . 53

4.4 Scalar leptoquarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Trinification 58
5.1 The 27 representation of E6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Baryon number conservation in the gauge sector . . . . . . . . . . . . . . . . 62
5.3 Symmetry breaking and gauge coupling unification . . . . . . . . . . . . . . . 63

5.3.1 The symmetry breaking scheme . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 The scalar potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.3 Gauge coupling unification . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Fermion mixing within generations . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Scalar mixing and proton decay . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Conclusions 76

A Broken symmetries in trinification 78

2



Chapter 1

Introduction

The standard model is the current best description of all interactions between elementary
particles. It is a gauge theory based on the group SU(3)C × SU(2)L × U(1)Y . However, the
theory has several shortcomings. For example, the standard model provides no explanation
for the baryon asymmetry problem: the imbalance between matter and antimatter in the
universe. It also does not naturally explain why the weak force is so much stronger than
gravity, a problem known as the hierarchy problem. Apart from phenomenological issues,
the standard model is unsatisfactory from a theoretical point of view. The theory has many
free parameters, all of which have to be measured experimentally. Furthermore, the charges
of particles appear to be assigned rather arbitrarily. For instance, the exact equality of the
magnitudes of the electric charges of protons and electrons seems very coincidental. The
standard model does not offer an explanation for such relations between charges.

Many of these issues are naturally solved in the context of grand unified theories (GUTs).
The idea of grand unification is that beyond some high energy scale, all interactions can be
described by a single coupling constant. Hence, all interactions would be unified. The relative
strength of each interaction would be fixed solely by factors that the GUT group provides.
Only at low energies the symmetry reduces to the standard model group, at which point
the electroweak and strong interactions become separate again. Contrary to the standard
model, GUTs do offer an explanation for relations between quantum numbers of fermions,
because several different fermions can be combined in irreducible representations. These
relations once again follow from the GUT group. Thus, GUTs allow us to reduce the amount
of arbitrary and coincidental aspects that the theory contains.

Besides this, GUTs predict new phenomena. The standard model does not contain any
bosons carrying both color and weak isospin/hypercharge. Consequently, there are no vertices
involving both quarks and leptons. GUTs, on the other hand, are based on larger symmetry
groups, which necessarily introduce new particles and hence new interactions. These inter-
actions may lead to direct couplings between quarks and leptons. The particles that mediate
them are referred to as leptoquarks. If their interactions violate baryon number, they may
lead to proton decay (Figure 1.1). Many GUTs predict the existence of such particles, so an
important test of GUTs is the observation of proton decay.

The main purpose of this thesis is to find out at which energy scales leptoquarks can be
expected in various GUTs. The GUTs that will be considered are subgroups of the exceptional
group E6. Many of its subgroups (Figure 1.2) are candidates for grand unification. Strictly

3



CHAPTER 1. INTRODUCTION

Figure 1.1: An example of a process where a proton decays into a neutral pion and a positron.
The particle X here, is a leptoquark.

speaking, a symmetry group and the corresponding GUT based on that symmetry are not
the same. Nevertheless, in literature these are used interchangeably and in this thesis we will
also do this. Typically, though not always, we will be looking at minimal versions of GUTs.
In minimal GUTs, particles are assigned to the smallest representations necessary to make
the GUT phenomenologically acceptable.

E6 contains SU(5), one of the first and simplest GUTs proposed. However, SU(5) in
its minimal form turns out to be in disagreement with limits on proton decay. A different
subgroup of E6 that can potentially supersede SU(5) is SO(10), which contains SU(5). E6

can also be seen to contain the trinification group SU(3)C×SU(3)L×SU(3)R. In this thesis,
these three GUT groups will be considered.

E6

SO(10)

SU(5)× U(1)

SU(5)

SU(4)× SU(2)
×SU(2)

SU(6)× SU(2)

SU(6)

SU(3)× SU(3)
×SU(3)

SU(3)× SU(2)
×SU(2)× U(1)

Figure 1.2: Various subgroups of E6 [1].

Chapter 2 discusses several concepts that appear in the standard model, which are necessary
to understand more complicated theories. In GUTs, the standard model is recovered by
spontaneously breaking the GUT symmetry to the standard model group. Depending on the
subgroups that a GUT contains, this may happen in one or more stages, which each have
an associated energy scale. The masses of leptoquarks are intimately tied to these energy
scales. For this reason, chapter 2 details the mechanism of spontaneous symmetry breaking.
Chapter 3 covers SU(5) grand unification. Even though minimal SU(5) has been refuted, it
allows us to see how leptoquarks and other features of GUTs appear in a tangible manner.
Many of the same ideas and issues appear in other GUTs as well. Chapter 4 discusses SO(10)
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CHAPTER 1. INTRODUCTION

grand unification. SO(10) has the aesthetic benefit that all fermions can be placed into a
single irreducible representation. Moreover, the mass scales of leptoquarks are high enough
to sufficiently suppress proton decay. SO(10) is large enough to allow a symmetry breaking
pattern with multiple stages. As a result, the scale at which new physics occurs can, at least
in theory, be lowered to the TeV scale. Lastly, chapter 5 covers trinification, which is based
on an SU(3)C × SU(3)L × SU(3)R symmetry together with a Z3 symmetry to ensure gauge
coupling unification. Trinification avoids the issue of gauge-mediated proton decay altogether
by imposing baryon number conservation on its gauge sector. As we will see, this means that
the constraints on the theory are much less stringent.
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Chapter 2

Standard model preliminaries

Many of the ideas appearing in the standard model are present in GUTs as well. For instance,
the types of interactions that particles can have, are still based on symmetry principles and
fermions and gauge bosons acquire their masses through the Higgs mechanism. In this sense,
the standard model serves as a basis for understanding more complicated theories. Moreover,
any extension has to be compatible with the standard model. So at low enough energies, a
GUT should reduce to the standard model. A good understanding of this theory is therefore
essential. The first section discusses a very common group in particle physics: SU(N). Next,
we discuss the transformation properties of SM particles and how this determines the types
of interactions they have. After that, we cover how particles can acquire mass through the
Higgs mechanism. In the final section we turn to the renormalization group equations, which
are used to impose gauge coupling unification in GUTs. The information presented here is
largely based on refs. [2–5].

2.1 Representations of SU(N)
One of the most common groups in particle physics is SU(N). In the standard model,
for instance, color and weak isospin are desribed by an SU(3)C and a SU(2)L symmetry.
Moreover, many GUTs are based on symmetries involving SU(N) groups: SU(5), SU(3)C ×
SU(3)L×SU(3)R, the Pati-salam group SU(4)C×SU(2)L×SU(2)R and so on. Understanding
the structure of SU(N) is therefore very useful. SU(N) is defined as the group of unitary
N × N matrices with unit determinant. The two conditions, unitarity and unimodularity,
leave N2− 1 free parameters. So a general SU(N) transformation U can be written in terms
of N2 − 1 generators T a:

U = e−iαaTa
, (2.1)

where αa are real parameters and all generators are hermitian and traceless. The N -
dimensional fundamental representation of SU(N) is denoted as N . The basis of this repre-
sentation consists of N complex numbers ψi. In some cases there is also an antifundamental
representation N , obtained by taking the complex conjugate of the fundamental representa-
tion. A basis for this representation is formed by ψi∗. For convenience, lower indices are used

6



CHAPTER 2. STANDARD MODEL PRELIMINARIES

to denote complex conjugation: ψi ≡ ψi∗. The transformation rules for ψi and ψi are then

ψi → ψi′ = U i
jψ

j , (2.2)

ψi → ψ′
i = ψj(U

†)ji . (2.3)

Note that we do not use a similar convention for the transformation matrices U ; there is no
difference between upper and lower indices for them. An important example where there is
no antifundamental representation is SU(2), whose representations are all real. So the 2 and
the 2, in particular, are equivalent. To see this, consider the generators of the 2: T a = σa/2,
where σa are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.4)

The 2 of SU(2) is real if there exists a matrix S such that

S−1TaS = −T ∗
a , a = 1, 2, 3. (2.5)

This is satisfied by S = iσ2. So ψ∗ and iσ2ψ transform in the same way under SU(2). Hence,
there is no antifundamental representation for SU(2).

Higher dimensional representations of SU(N) can be obtained by taking tensor products
of (anti) fundamental representation. This is known as the tensor method. An SU(N) tensor
is defined as any object that transforms in the same way as a product of the objects in Eq.
(2.2). Since we are only interested in the transformation properties, the only thing that
matters is the number of upper and lower indices. A tensor with n lower indices and m upper
indices is then written as ψi1...im

j1...jn
, which transforms as

ψi1...im
j1...jn

→
(
ψi1...im
j1...jn

)′
= U i1

k1
. . . U im

km
ψk1...km
l1...ln

(U †)l1j1 . . . (U
†)lnjn . (2.6)

This representation is generally reducible. To find out how SU(N) tensors can be decomposed
into irreps, a few observations have to be made. The first follows from the fact that all upper
(lower) indices transform the same way. So if a tensor were to have a symmetry in its
upper or lower indices, this symmetry will be preserved under transformations. For instance,
consider a second rank tensor ψij . From this we can create a symmetric tensor Sij and an
antisymmetric tensor Aij as follows:

Sij =
1

2
(ψij + ψji), Aij =

1

2
(ψij − ψji). (2.7)

Under a transformation, Sij would go to U i
kU

j
l S

kl, which is still symmetric in i and j. In the
same manner, the antisymmetry of Aij is preserved. Thus, a general tensor can be reduced
by forming linear combinations with certain permutation symmetries.

So far, no information about SU(N) has been used, so this holds for tensor products of
any group. The two properties U †U = I and detU = 1, can be used to further reduce a
tensor. Because of unitary, contractions between upper and lower indices are left invariant.
Another way of saying this is that the Kronecker delta δij is invariant:

δij → U i
kδ

k
l (U

†)lj = U i
k(U

†)kj = δij . (2.8)
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CHAPTER 2. STANDARD MODEL PRELIMINARIES

Hence, δij is an invariant tensor. Now suppose we use the Kronecker delta to contract an
upper and a lower index of a rank (n+m) tensor:

ψi1i2...im
i1j2...jn

= δj1i1ψ
i1...iN
j1...jN

. (2.9)

Then because of Eq. (2.8), this will transform like a tensor of rank (n+m− 2). If a tensor
has just as many upper as lower indices, contracting all of them would give an invariant.

The determinant of SU(N) transformations being equal unity, gives us two other invariant
tensors: the totally antisymmetric symbols εi1...iN and εi1...iN . These transform as

εi1...iN → U j1
i1
. . . U jN

iN
εj1...jN

= εi1...iNU
j1
1 . . . U jN

N εj1...jN
= εi1...iN detU
= εi1...iN ,

(2.10)

and likewise for εi1...iN . So to reduce SU(N) tensors, εi1...iN can be contracted with upper
indices and εi1...iN with lower indices.

Now we discuss a few examples that often show up. First consider the N × N tensor
product, which is furnished by a tensor with two upper indices ψij . We can reduce this
representation by symmetrizing and antisymmetrizing the two indices. ψij then decomposes
into a symmetric and an antisymmetic part as

ψij =
1

2
(ψij + ψji) +

1

2
(ψij − ψji). (2.11)

The symmetric part has N(N +1)/2 independent components, while the antisymmetric part
has N(N − 1)/2 independent components. Thus, in terms of dimensions the N × N tensor
product decomposes into irreps as

N ×N =
1

2
N(N + 1) +

1

2
N(N − 1). (2.12)

Next, consider the N ×N tensor product, which is furnished by a tensor with one upper and
one lower index: ψi

j . Since, there is only one upper and one lower index, we cannot reduce
this representation by symmetrizing or antisymmetrizing indices. We can only contract the
two indices, which gives an invariant tensor. ψi

j can therefore be decomposed into two irreps
as follows:

ψi
j = (ψi

j −
1

N
ψk
k) +

1

N
ψk
k , (2.13)

In terms of dimensions this means that

N ×N = (N2 − 1) + 1. (2.14)

The N2 − 1 dimensional representation can be recognized as the adjoint representation.
As a final example we consider the N × N × N tensor product. This is furnished by a

tensor with two upper indices and one lower index: ψij
k . First, to reduce the tensor we can
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CHAPTER 2. STANDARD MODEL PRELIMINARIES

symmetrize and antisymmetrize the two upper indices. this produces a tensor Sij
k , which is

symmetric in i in j, and a tensor Aij
k , which is antisymmetric in i and j:

Sij
k =

1

2
(ψij

k + ψji
k ), (2.15)

Aij
k =

1

2
(ψij

k − ψji
k ). (2.16)

Then, for every k, Sij
k contains N(N+1)/2 independent components and Aij

k contains N(N−
1)/2 independent components. Since k runs from 1 to N , this means that Sij

k furnishes a
representation of dimension N2(N + 1)/2, while Aij

k furnishes a representation of dimension
N2(N − 1)/2. Both tensors can be reduced further by contracting an upper and a lower
index. Note that it does not matter which upper index we pick, because Sij

k and Aij
k are

symmetric/antisymmetric. If we separate out the traceless parts in Sij
k and Aij

k , we obtain
the following decompositions.

Sij
k = (Sij

k − 1

N
Sij
j ) +

1

N
Sij
j , (2.17)

Aij
k = (Aij

k − 1

N
Aij

j ) +
1

N
Aij

j , (2.18)

where the first term in each expression is traceless. The trace in each expression has just one
free upper index, so it furnishes the N representation. The traceless part of Sij

k therefore
has dimension N2(N + 1)/2 − N = N(N + 2)(N − 1)/2 and the traceless part of Aij

k has
dimension N2(N − 1)/2 −N = N(N − 2)(N + 1)/2. Thus, the N ×N ×N tensor product
can be decomposed into four irreps:

N ×N ×N =
1

2
N(N + 2)(N − 1) +

1

2
N(N − 2)(N + 1) +N +N. (2.19)

2.2 Particle representations
In the standard model, all particles transform according to representations of SU(3)C ×
SU(2)L × U(1)Y and the Lorentz group. The Lagrangian has to be invariant under these
groups, so the transformation properties of a particle restrict the types of interactions it can
have. In this section we review these transformation properties. First, the spin 1/2 fermions.
Spin 1/2 fermions transform according to the four-dimensional spinor representation of the
Lorentz group:

ψ → ψ′ = e−
i
4
ωµνσµν

ψ, (2.20)

where ωµν is antisymmetric and σµν = i[γµ, γν ]/2. This representation is reducible into two
parts. These are the chiral spinors

ψL = PLψ =
1

2
(1 + γ5)ψ, ψR = PRψ =

1

2
(1− γ5)ψ. (2.21)

We can find another object which transforms in the same way as ψ. Consider the charge
conjugate spinor ψc = Cγ0ψ∗, where C = γ2γ0 is the charge conjugation matrix. C satisfies

C = C−1 = −C∗ = −CT = C†, (2.22)
Cγ0γµ∗ = −γµCγ0, (2.23)

9



CHAPTER 2. STANDARD MODEL PRELIMINARIES

and hence,

Cγ0(σµν)∗ = −Cγ0 i
2
[γµ∗, γν∗] = − i

2
[γµ, γν ]Cγ0 = −σµνCγ0. (2.24)

Then, under a Lorentz transformation ψc transforms as

ψc → Cγ0e
i
4
ωµν(σµν)∗ψ∗ = e−

i
4
ωµνσµν

Cγ0ψ∗ = e−
i
4
ωµνσµν

ψc. (2.25)

So ψc transforms in the same way as ψ. An additional property of the charge conjugate
spinor is that it interchanges left and right handedness:

(ψL)
c =

1

2
Cγ0(1 + γ∗5)ψ

∗ =
1

2
(1− γ5)Cγ

0ψ∗ = (ψc)R, (2.26)

and likewise (ψR)
c = (ψc)L. So for example, if the subscript L would be assumed implicit,

then we can denote left handed fields by ψ and right handed fields by ψc. A final common
usage of ψc is to rewrite the bilinear ψφ. ψc can be used in favor of ψ as follows:

ψφ = −ψ†Cγ0Cφ = −(Cγ0ψ∗)TCφ = −(ψc)TCφ. (2.27)

Now, to write down a fermion mass term, we couple a spinor to its charge conjugate spinor.
So far we have covered the transformations of fermions under space-time symmetries. Now

we discuss the transformation properties under the gauge group SU(3)C × SU(2)L ×U(1)Y .
The bases of representations of the gauge group are the particles themselves. So the irrep
that a particle is in, determines how it couples to other particles. The gauge interactions, in
particular, are completely fixed once we specify the transformation properties of the fermions.
To see this, suppose we have n irreps Ri of dimension di, i = 1 . . . n. So in total we can fit∑

i d
i particles in them. We combine the di basis states of the irrep Ri in a column vector

Ψi:

Ψi =


ψ
(i)
1

ψ
(i)
2
...

ψ
(i)
di

 . (2.28)

The interactions between fermions and gauge bosons are then given by a Lagrangian of the
form

Lgauge =
∑
i

Ψ
i
i /DΨi, (2.29)

where

Dµψ
i =

[
∂µ − igaT

a(Ri)Aa
µ

]
Ψi. (2.30)

The fields Aa
µ are the gauge fields and T a(Ri) are the generators of the irrep Ri. So we see

that corresponding to every generator of a group, there is a gauge boson. It is the form of
that generator that determines which fermions Aa

µ couples to. More precisely, the component

10



CHAPTER 2. STANDARD MODEL PRELIMINARIES

ψ
(i)
j of Ψi will only couple to Aa

µ if it transforms under a transformation in the direction of
T a(Ri). Only then will the product T a(Ri)Ψi (for fixed i) contain ψ(i)

j . Thus, the irrep that
a given particle is in, directly determines to which gauge bosons it couples.

Starting with the leptons e− and νe, their left handed components form an SU(2)L doublet
with hypercharge −1/2:

LL =

(
νe
e−

)
L

. (2.31)

The right handed electron e−R is an isoscalar with hypercharge −1. A right handed neutrino
is absent in the SM. The colour components of the u and d quarks each transform as triplets
under SU(3)C and their left handed components form an SU(2)L doublet with hypercharge
1/6:

QL =

(
u1 u2 u3
d1 d2 d3

)
L

. (2.32)

The right handed components of the u and d quarks are isoscalars with hypercharges 2/3 and
−1/3 respectively. For product groups, such as the SM group, it is customary to summarize
the transformation properties by giving the dimensions of the irreps of each of the factor
groups. The irreps of abelian factors are necessarily one-dimensional, so only the eigenvalue
of the generator is given. The transformation properties of fermions under SU(3)C×SU(2)L×
U(1)Y are then given by

LL ∼ (1, 2,−1/2),

eR ∼ (1, 1,−1),

QL ∼ (3, 2, 1/6),

uR ∼ (3, 1, 2/3),

dR ∼ (3, 1,−1/3).

(2.33)

Note that this only includes the fermions of the first generation. The other two generations
have the same transformation properties. Then in total the standard model contains fifteen
chiral fermions per generation.

As shown before, every generator of the gauge group has an associated gauge boson.
The standard model group has twelve generators and hence twelve gauge bosons associated
with them. These are the eight gluons G1

µ . . . G
8
µ, the W±

µ and Z0
µ bosons and the photon

Aµ. Gauge bosons transform according to the adjoint representation of the group, so their
transformation properties are given by

G1
µ . . . G

8
µ ∼ (8, 1, 0),

W+
µ , Z

0
µ,W

−
µ ∼ (1, 3, 0),

Aµ ∼ (1, 1, 0).

(2.34)

Aside from fermions and gauge bosons, there are also scalar particles that have their own
transformation properties. These are discussed in section 2.3.

11
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2.3 The Higgs mechanism
Fermions and gauge bosons acquire their masses through the Higgs mechanism. The main
ingredient of the Higgs mechanism is spontaneous symmetry breaking. In many cases, if the
Lagrangian is invariant under a transformation U , the ground state is also invariant under U ,
which is to say that U |0〉 = |0〉. If, on the other hand, the ground state is not invariant, then
U |0〉 will be a different state with the same energy. We could therefore pick this state to be
the ground state as well. However, if we were to choose a preferred ground state and describe
the system in terms of it, the symmetries of the Lagrangian would no longer be manifest. In
that case, the symmetry is broken spontaneously. The consequence of this is that a scalar
field φ can obtain a non-vanishing vacuum expectation value (vev) 〈φ〉, which can be used to
label the different ground states. For continuous symmetries this non-vanishing vev leads to
the appearance of massless particles. When combined with gauge invariance, these particles
are what gives mass to the various gauge bosons.

2.3.1 Spontaneous symmetry breaking

Consider a set of N real scalar fields φi whose Lagrangian takes the form

L =
1

2
(∂µ~φ) · (∂µ~φ)− V (~φ) (2.35)

To illustrate the concept of spontaneous symmetry breaking we assume that the fields trans-
form according to the fundamental representation of O(N). A potential invariant under O(N)
is

V (~φ) = −µ
2

2
~φ2 +

λ

4
(~φ2)2, λ > 0. (2.36)

For µ2 < 0, ~φ can be interpreted to give rise to spin 0 bosons with mass
√
−µ2 and the

quartic term in the potential leads to interactions. Moreover, the ground state is just ~φ = 0.
For µ2 > 0, the same interpretation would not make sense anymore and the ground state is
not given by ~φ = 0. Minimizing V (~φ) gives the condition

~φ2 =
µ2

λ
≡ v2. (2.37)

There are many values of ~φ that satisfy this, all of which are connected by an O(N) trans-
formation. Suppose we pick a ground state that points along the i = 1 direction:

〈~φ〉 =


v
0
...
0

 . (2.38)

With this choice, only rotations and reflections in planes orthogonal to the i = 1 axis will leave
the groundstate invariant. The O(N) symmetry has therefore been broken to an O(N − 1)
symmetry. Infinitesimally this means that some generators do not annihilate the vev. This

12



CHAPTER 2. STANDARD MODEL PRELIMINARIES

can be seen as follows. Under an infinitesimal symmetry transformation, the fields transform
as

φi → φ′i = φi +∆(φi) = φi − iαa(T a)ijφj , (2.39)

where αa are real infinitesimal parameters and T a are the generators of the fundamental
representation of O(N). If the groundstate does not have the same symmetries as the La-
grangian, there are values of αa such that 〈~φ〉 6= 〈~φ′〉. In other words, there exists at least
some linear combination S of the generators that does not annihilate the vev:

S〈~φ〉 6= 0. (2.40)

The linear combinations for which this is the case, are referred to as broken generators.

2.3.2 Massless particles

The interpretation of the Lagrangian in Eq. (2.35) becomes clear if we describe all fields
relative to the groundstate ~φ = 〈~φ〉. To do this we introduce shifted fields ~φ′, defined through
~φ = 〈~φ〉+ ~φ′. In terms of φ′ fields the Lagrangian is

L =
1

2
(∂µ~φ

′) · (∂µ~φ′)− µ2φ′21 + . . . (2.41)

The field φ′1 now has a mass
√
2µ, whereas all other particles are massless. So because

the O(N) symmetry is spontaneously broken, one massive and N − 1 massless bosons have
appeared. The masses of the particles may also be calculated directly from the potential as
follows. A general power series expansion of the potential V (~φ) around ~φ = 〈~φ〉 is

V (~φ) = V (〈~φ〉) + 1

2

∂2V

∂φi∂φj

∣∣∣∣
〈~φ〉

(φi − 〈φi〉)(φj − 〈φj〉) + . . . (2.42)

There are no first order terms because 〈~φ〉 is assumed to minimize V (~φ). The fields φi − 〈φi〉
are the shifted fields φ′i, so their masses can be obtained by diagonalizing the matrix

(
M2

H

)ij ≡ ∂2V

∂φi∂φj

∣∣∣∣
〈~φ〉
, (2.43)

In our case, M2
H has a 0 eigenvalue with a degeneracy of N−1. More generally, the Goldstone

theorem states that for every spontaneously broken generator of a continuous symmetry in
a relativistic theory, there will be a massless particle (or Goldstone boson). So if a group G
is spontaneously broken to a subgroup H, there will be dim(G)− dim(H) Goldstone bosons.
Since the O(N) symmetry was broken to O(N − 1), there will be N(N − 1)/2− (N − 1)(N −
2)/2 = N − 1 Goldstone bosons, precisely the amount that we found.

We can find out which states correspond to Goldstone bosons by considering an infinites-
imal transformation of the potential:

V (φi) → V (φi +∆(φi)) = V (φi)−
∂V

∂φj
∆(φj). (2.44)

13
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Since V (φ) is invariant, this means that

∂V

∂φj
∆(φj) = 0. (2.45)

If we take the derivative w.r.t. φi and evaluate the resulting expression at ~φ = 〈~φ〉, we obtain

∂V

∂φj

∣∣∣∣
〈~φ〉

∂∆(φj)

∂φi

∣∣∣∣
〈~φ〉

+
∂2V

∂φi∂φj

∣∣∣∣
〈~φ〉

∆(〈φj〉) = 0. (2.46)

Since 〈~φ〉 minimizes V (φ), the first term is zero. Hence,

M2
H∆(〈~φ〉) = 0. (2.47)

Now suppose some linear combination S of the generators is broken. That is, S〈~φ〉 6= 0. Eq.
(2.47) then says that the vector S〈~φ〉 is an eigenvector of M2

H with eigenvalue 0. S〈~φ〉 would
therefore be a massless state. Thus, the Goldstone bosons lie in the directions of the vectors
S̃〈~φ〉, where S̃ is any broken generator.

2.3.3 Spontaneous symmetry breaking in gauge theories

In the previous sections we imposed a global symmetry on the Lagrangian and this led to the
emergence of massless spin 0 bosons. In gauge theories, where local symmetries are imposed,
the interpretation is different, as we will see. To obtain a gauge invariant Lagrangian, we
replace the partial derivative with the covariant derivative:

L =
1

2
(Dµ

~φ) · (Dµ~φ)− V (φ), (2.48)

with Dµ = ∂µ − igT aAa
µ. (2.49)

If we insert ~φ = 〈~φ〉 + ~φ′, the part containing the covariant derivative up to terms second
order in the fields is

L =
1

2
(∂µ~φ

′) · (∂µ~φ′)− ig(T aAa
µ〈~φ〉) · (∂µ~φ′)−

1

2
g2(T aAa

µ〈~φ〉) · (T bAb
µ〈~φ〉) + · · · . (2.50)

The third term is second order in the gauge fields and by itself, this would give mass to the
gauge bosons. However, the second term shows that the gauge fields are not independent
modes: they also mix with φ′. This term consists of a dot product between T aAa

µ〈~φ〉 and
∂µ~φ′. So Aa

µ only couples to those fields that are in the direction of T a〈~φ〉. But as we saw
before, if T a〈~φ〉 6= 0, this vector lies in the direction of the Goldstone bosons. Thus, after
spontaneous symmetry breaking, the gauge fields only mix with these particles. However,
in gauge theories, the fields of the Goldstone bosons are unphysical. It can be proved [6]
that there always exists a gauge in which ~φ does not contain any Goldstone bosons. More
precisely, this means that for every broken generator S we would have

(S〈~φ〉) · ~φ′ = 0. (2.51)

14



CHAPTER 2. STANDARD MODEL PRELIMINARIES

The gauge in which this holds is known as the unitary gauge. In this gauge, the second term
in Eq. (2.50) would vanish. The Lagrangian then takes the form

L =
1

2
(∂µ~φ) · (∂µ~φ)−

1

2
(M2

G)
abAa

µA
bµ + · · · , (2.52)

where M2
G is the mass matrix for gauge bosons:(

M2
G

)ab
= g2(T a〈~φ〉) · (T b〈~φ〉). (2.53)

This is a symmetric matrix, so it can always be diagonalized by an orthogonal transformation
O, under which M2

G → M2′
G = OM2

GO
T . If we include indices, the diagonal components of

M2′
G are (

M2′
G

)aa
= g2(OabT b〈~φ〉) · (OacT c〈~φ〉) = g2(T a′〈~φ〉)2, (2.54)

where T a′ = OabT b. The gauge bosons Aa
µ transform as

Aa
µ → Aa′

µ = OabAb
µ. (2.55)

The mass eigenstates are therefore the states Aa′
µ whose masses are given by

MAa′
µ
=
√(

M2′
G

)aa
= g

∣∣∣T a′〈~φ〉
∣∣∣ . (2.56)

So the field Aa′
µ only acquires mass if T a′〈~φ〉 6= 0. In other words, the generator T a′ must be

broken. We can interpret this generator as follows. Each gauge boson Aa
µ couples to particles

via the product T aAa
µ in the covariant derivative. For this reason, the generator T a is said to

be associated with Aa
µ. But we may equally well use a different basis of gauge bosons, such

as the mass eigenstates Aa′
µ . From the fact that OabOac = δbc it follows that

T aAa
µ = T bOabOacAc

µ = T a′Aa′
µ . (2.57)

Hence, T a′ has the interpretation that it is the generator associated with the mass eigenstate
Aa′

µ . Only if T a′ is broken, Aa′
µ becomes massive. So associated with every broken generator,

there is a massive gauge boson.

2.3.4 The electroweak theory

To illustrate the aforementioned ideas, we show how they are used in the standard model
to give mass to the gauge bosons. The Lagrangian of the standard model is invariant under
SU(3)C × SU(2)L × U(1)Y . The gauge bosons associated with it are the eight gluons, the
W± and Z0 bosons and the photon. Of the twelve gauge bosons, only the W± and Z0

bosons acquire mass, while the gluons and photon remain massless. Hence, after spontaneous
symmetry breaking, color and electric charge must still be explicitly conserved. We are
therefore looking for a Higgs mechanism that yields the following symmetry breaking pattern:

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)Q, (2.58)
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where Q is the electric charge operator. In the standard electroweak theory, an isospin doublet
of complex scalar fields with hypercharge 1/2 is used to perform the symmetry breaking:

Φ =

(
φa
φb

)
. (2.59)

So the standard model Higgs particles transform according to the (1, 2, 1/2) representation
of the SM group. The scalar sector of the SM Lagrangian is given by

L = (DµΦ)
†DµΦ− V (Φ), (2.60)

where

Dµ = ∂µ − igT aW a
µ − ig′Y Bµ, (2.61)

V (Φ) = −µ2Φ†Φ+ λ(Φ†Φ)2, µ2, λ > 0. (2.62)

Here, T a = σa/2 are the generators of the fundamental representation of SU(2)L and Y = 1/2
is the hypercharge generator. The stationary points of V (Φ) are determined by the condition

Φ†Φ =
µ2

2λ
. (2.63)

All solutions are related by an SU(2)L × U(1)Y transformation, so any choice will have the
same physical consequences. We can for instance pick the vev

〈Φ〉 = 1√
2

(
0
v

)
, with v =

√
µ2

λ
. (2.64)

A general field Φ is obtained by expanding around the ground state:

Φ(x) =
1√
2

(
η1(x) + iη2(x)

v + σ(x) + iη3(x)

)
, (2.65)

where the four real fields σ and ηi have been introduced. Consider the vector of these real
fields ~φ =

(
η1 η2 η3 σ

)T . From Eq. (2.43), the mass matrix for Higgs particles in this
basis can be calculated to be

M2
H = 2µ2


0

0 ‘
0

1

 . (2.66)

So the fields ηi are the anticipated massless Goldstone bosons, while σ has a mass
√
2µ. After

switching to the unitary gauge, the ηi will be eliminated. The remaining field σ is the Higgs
field, which can be interpreted to be a real spin 0 boson. At this point the gauge bosons have
acquired mass. The mass matrix for gauge bosons can be worked out to be

M2
G =

v2

4


g2

g2

g2 −gg′
−gg′ g′2

 . (2.67)
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The (normalized) eigenvectors give the mass eigenstates and the eigenvalues their masses.
From W 1

µ and W 2
µ we can form a particle-antiparticle pair:

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)
, mW =

vg

2
. (2.68)

The neutral states contain the Z0 and the massless photon:

Z0
µ =

1√
g2 + g′2

(
gW 3

µ − g′Bµ

)
, mZ =

v

2

√
g2 + g′2, (2.69)

Aµ =
1√

g2 + g′2

(
g′W 3

µ + gBµ

)
, mγ = 0. (2.70)

Since there is one massless state, there must also be an associated unbroken generator. This
generator can be found by writing the covariant derivative in terms of mass eigenstates:

Dµ = ∂µ − igg′√
g2 + g′2

(T3 + Y )Aµ + . . . (2.71)

So the photon couples to particles via the operator

Q = T3 + Y. (2.72)

The coupling constant can be identified with the elementary charge e:

e =
gg′√
g2 + g′2

. (2.73)

We can also check explicitly that Q is unbroken by acting on 〈Φ〉 with an arbitrary linear
combination of SU(2)L × U(1)Y generators:

(αaT a + βY )〈Φ〉 = 1

2
√
2

(
α3 + β α2 − iα3

α2 + iα3 β − α3

)(
0
v

)
=

v

2
√
2

(
α2 − iα3

β − α3

)
(2.74)

The unbroken generators are those linear combinations that annihilate the vev. This happens
only if

α2 = α3 = 0, α3 = β. (2.75)

But this gives precisely the linear combinations that are proportional to Q. Thus, by em-
ploying a single Higgs representation, the SU(2)L×U(1)Y symmetry has been broken to the
electromagnetic group U(1)Q. The standard model is special in this regard, since only one
vev parameter was necessary to break the symmetry. The masses of the gauge bosons that
acquired mass, are all related to this single parameter, so the vev v sets the energy scale of
these particles: the electroweak scale MEW ≈ 100 GeV. We will see that for different models,
such as grand unified theories, multiple stages may be necessary to break the symmetry,
resulting in a hierarchy of mass scales.
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2.4 Renormalization group equations
GUTs are based on the assumption that all coupling constants unify at some scale. To be
able to calculate the value of this scale, as well as any intermediate scales, we first have to
understand how the coupling constants evolve. Many calculations in quantum field theories
give inifinity as a result. The procedure to get rid of the infinities is known as renormalization.
The standard method of renormalization involves redefining the parameters of the theory in
such way that the infinities are absorbed. If this procedure is carried out, the parameters
become functions of the energy scale. The precise manner in which the parameters evolve
from one energy scale to another, is governed by the renormalization group equations (RGEs).
Suppose the value of a parameter is given at some energy scale µ1 and we want to know its
value at a different scale µ2. The RGEs can then be used to ’run’ the parameter from the
scale µ1 to µ2. Most of this section is based on [7].

2.4.1 The running of the couplings

In general, the RGEs depend on the entire particle content of the theory. However, it often
happens that some particles have a mass much larger than the scale we are interested in. In
that case, the theory can be described completely by a Lagrangian containing only the light
particles. The resulting theory is referred to as an effective field theory. Consequently, the
RGEs at a scale µ depend, to a good approximation, only on particles with a mass m < µ.
If the relevant coupling constants at some scale µ are gi, the RGE for gi up to order O(g3i ) is
given by

dgi
d lnµ

= βi(gi) = bi
g3i

(4π2)
. (2.76)

The function βi(gi) is known as the β-function and the corresponding coefficient bi is the
β-coefficient. Conventionally, these equations are expressed in terms of the fine structure
constants αi = g2i /(4π). The RGE then becomes

dαi

d lnµ
= bi

α2
i

2π
, (2.77)

which can be solved to give

α−1
i (µ2) = α−1

i (µ1)−
bi
2π

ln
µ2
µ1
. (2.78)

Determining the evolution of the fine structure constants comes down to calculating the β-
coefficients. Their values depend on certain properties of the representations according to
which the relevant particles transform:

bi = −11

3
C2(Gi) +

4

3
κS2(Fi) +

1

6
ηS2(Si). (2.79)

C2(Gi) is the quadratic Casimir of the gauge group associated with gi. This is given by

C2(G) =

{
0 for U(1),

N for SU(N).
(2.80)
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S2(R) is the Dynkin index of an irreducible representation R, defined through

Tr[T aT b] = S2(R)δ
ab, (2.81)

where T a are the generators of R. Then, S2(Fi) is short for the sum of the Dynkin indices of
all fermion irreps. Likewise, S2(Si) means the sum of the Dynkin indices of all scalar irreps.
S2 is also sometimes referred to as the normalization of an irrep.

There is some ambiguity in the definitions for C2(Gi) and S2(Fi), because we can always
rescale T a → αT a and gi → gi/α. The end result would be the same. Usually for SU(N) the
generators are normalised such that

S2(R) =

{
1/2 for fundamental representations,
N for adjoint representations.

(2.82)

There is no convention for U(1) groups. In general, if the generator of an irrep of U(1)λ is λ,
the Dynkin index is

S2(R) = λ2 for U(1)λ. (2.83)

Eq. (2.79) also contains the factors κ and η, which specify the kinds of spinor or scalar fields
we are dealing with. Their values are given by

κ =

{
1/2 for chiral spinors,
1 for Dirac spinors,

(2.84)

η =

{
1 for real scalars,
2 for complex scalars.

(2.85)

2.4.2 The running above and below electroweak symmetry breaking

To illustrate the use of Eq. (2.79), we calculate the β-coefficients above and below electroweak
symmetry breaking (EWSB), which occurs at the energy scale MEW. Below MEW there is a
SU(3)C ×U(1)Q symmetry. We denote the fine structure constants associated with them as
αs and αQ. At low enough energies (µ � me) the only relevant particles would be photons,
gluons and neutrinos, since these are assumed to be massless in the SM. Once the energy scale
is increased, we would start noticing the effects of quarks and leptons. Each time another
particle becomes relevant, this affects the running of the couplings. Suppose we are at a scale
where, apart from the top quark, all quarks and leptons are relevant. Say, at µ ≈ 10 GeV.
Then up to MEW, the running of the couplings is essentially fixed. First we show how to
calculate the β-coefficient for SU(3)C . There are a total of five quarks present, which each
transform according to the fundamental representation of SU(3)C . These are all 4-component
spinors, so κ = 1. The β-coefficient for SU(3)C below MEW is then given by

bs = −11

3
· 3 + 4

3
· 1
2
· 5 = −22

3
. (2.86)

For U(1)Q we need to include all electrically charged particles. This includes two up-type
quarks with charge +2/3, three down-type quarks with charge −1/3 and the three charged
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leptons with charge −1. Moreover, the contribution from the quarks needs to be multiplied
by three, because each quark has three color components.

Next we calculate β-coefficient for U(1)Q. As mentioned before, there is no convention
for the normalisation of U(1) groups. In GUTs, on the other hand, all generators that appear
in the Lagrangian have the same normalisation. It is the couplings associated with them
that are assumed to unify at the GUT scale. In SU(5), SO(10) and trinification GUTs (see
the corresponding chapters) it turns out that the properly normalised electric charge and
hypercharge generators are always

Q′ =

√
3

8
Q, Y ′ =

√
3

5
Y. (2.87)

This is the convention that we use. The appropriate Dynkin indices are therefore 3Q2/8 and
3Y 2/5. The β-coefficient for U(1)Q below MEW is then given by

bQ =
4

3
· 3
8

[(
2

3

)2

· 2 · 3 +
(
−1

3

)2

· 3 · 3 + (−1)2 · 3

]
=

10

3
. (2.88)

Above MEW the symmetry is SU(3)C × SU(2)L × U(1)Y and all SM particles become rele-
vant. This means that we also get contributions from the Higgs field Φ. This is a complex
field, so η = 2. Moreover, the chiral components of fermions transform differently under
SU(2)L × U(1)Y , so we should also treat them separately. Consequently, κ = 1/2 for the
couplings associated with SU(2)L and U(1)Y . We begin by calculating bY , the β-coefficient
corresponding to U(1)Y . The hypercharges for fermions were given in Eq. (2.33). Note that
QL, for instance, contains six states with Y = 1/6, so its contribution should be multiplied by
a factor six. The total contribution from the fermions in one generation should be multiplied
by three, since we have three generations. bY is then given by

bY =
4

3
· 1
2
· 3 · 3

5

[
6 ·
(
1

6

)2

+ 3 ·
(
−2

3

)2

+ 3 ·
(
1

3

)2

+ 2 ·
(
−1

2

)2

+ 12

]

+
1

6
· 2 · 2 · 3

5
·
(
1

2

)2

=
41

10
.

(2.89)

The β-coefficients for SU(3)C and SU(2)L are calculated similarly:

b2L = −11

3
· 2 + 4

3
· 1
2
· 3 · 1

2
· 4 + 1

6
· 2 · 1

2
= −19

6
, (2.90)

b3C = −11

3
· 3 + 4

3
· 6 · 1

2
= −7. (2.91)

The running of the couplings is constrained by the fact that their energy-dependence is
continuous. So even though the β-coefficients are different above and below MEW, there
cannot be a sudden jump at MEW in the value of the fine structure constant associated with
a single group. Then, at MEW we necessarily have

αs(MEW) = α3C(MEW) (2.92)

This is an example of a matching condition: a condition that needs to be satisfied by the
fine structure constants when we move to an energy scale with a different symmetry. For αQ,
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α2L and αY the situation is different, because Q is a linear combination of T3 and Y (Eq.
2.72). There will then also be a relation between αQ, α2L and αY . To find this we need to
relate the coupling constants associated with U(1)Q, SU(2)L and U(1)Y to each other. This
was already done in Eq. (2.73). However, the coupling constants e and g′ correspond to the
unnormalized generators Q and Y , respectively. The coupling constants corresponding to the
normalized generators (Eq. 2.87) are gQ =

√
3/8e and gY =

√
3/5g′. Substituting this into

Eq. (2.73) gives

1

g2Q
=

3

8

1

g2
+

5

8

1

g2Y
, (2.93)

or

α−1
Q =

3

8
α−1
2L +

5

8
α−1
Y . (2.94)

Notice the difference between Eqs. (2.92) and (2.94). The reason for this is that U(1)Q is
embedded into SU(2)L × U(1)Y through Eq. (2.72). So αQ ’splits’ into two fine structure
constants: α2L and αY . This does not mean that the energy-dependence of the couplings is
discontinuous, because unlike αs and α3C , the fine structure constants αQ, α2L and αY each
correspond to a different group.

Now we will make a graph of the running of the couplings. We have already calculated the
β-coefficients, which determine how the couplings evolve from one energy scale to another.
The matching conditions then tell us what happens to the couplings ones we reach a scale at
which a different symmetry holds. The only piece of information we are missing is the initial
conditions. For this we use the values of the fine structure constants at the electroweak scale
[8]:

α−1
3C(MEW) ≈ 8.45, (2.95)
α−1
2L (MEW) ≈ 29.61, (2.96)
α−1
Y (MEW) ≈ 58.97. (2.97)

That this completely fixes the running of the couplings can be seen as follows. We have
a total of five fine structure constants: αQ, αs, α3C , α2L and αY . Each of these contains
one parameters, which is its value at some reference scale. The values of the fine structure
constants at MEW provide three conditions and Eqs. (2.92) and (2.94) provide two more.
So in total there are five unknowns and five conditions, which fixes the running. Figure 2.1
shows a plot of the energy-dependence of the fine structure constants. Important to note
here is that at each scale we show the values of the fine structure constants corresponding
to the symmetry that holds at that scale. So below MEW αQ and αs are shown and above
MEW α3C , α2L and αY are shown.

Figure 2.1 also clearly shows the effect of the matching conditions. At MEW we see that
the line corresponding to SU(3)C remains continuous. However, the line corresponding to
U(1)Q splits into two lines corresponding to SU(2)L and U(1)Y . Both of these features are
consequences of the matching conditions Eqs. (2.92) and (2.94).

The running up to µ ≈ MEW has been measured experimentally. The part of the graph
beyond that is merely a prediction of the standard model. Judging from the slopes of the
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Figure 2.1: Running of the fine structure constants above and below EWSB.

three lines corresponding to SU(3)C , SU(2)L and U(1)Y , it appears as though their couplings
will unify at some scale. This is a point to which we will return when discussing SU(5) grand
unification.

2.4.3 Matching conditions in general

Beyond the electroweak scale a different symmetry holds and different coupling constants are
relevant. However, the requirement of continuity relates the coupling constants above and
below the electroweak scale to each other. This resulted in the matching conditions Eqs.
(2.92) and (2.94). We can generalize this. Suppose that at some energy scale MI a group H
gets embedded into a larger group G. We assume that the group H is simple, so only a single
coupling constant h is associated with it. G, on the other hand, can be a product of different
groups, so several coupling constants might be associated with it. Since all generators T a

H of
H are associated with the same coupling constant, we can focus on just one of them. For
instance T 1

H . This generator can be written as a linear combination of the generators T b
G of

G:

T 1
H =

∑
b

cbT
b
G, (2.98)

where cb are real constants. It can be proved [8] that at MI the relation between the coupling
constant h and the coupling constants gb associated with T b

G, is given by
1

h2(MI)
=
∑
b

c2b
1

g2b (MI)
. (2.99)

So Eq. (2.92) is just a special case where cb = 1 for only one value of b and all others are zero.
The matching condition in Eq. (2.94) also follows from Eq. (2.99), because the expression
for the electric charge operator in terms of normalized generators is

Q′ =

√
3

8
T3 +

√
5

8
Y ′. (2.100)
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If we substitute the coefficients in front of T3 and Y ′ into Eq. (2.99), we obtain Eq. (2.94).
If all the generators in Eq. (2.98) have the same normalisation we obtain a useful relation.

To derive it, suppose that the generators of G and H are normalized such that

Tr
[
T a
GT

b
G

]
= Tr

[
T a
HT

b
H

]
= ∆δab, (2.101)

for some ∆. Then from Eq. (2.98) it follows that

∆ = Tr
[
(T 1

H)2
]
=
∑
a,b

cacbTr
[
T a
GT

b
G

]
=
∑
a,b

cacb∆δ
ab = ∆

∑
a

c2a, (2.102)

and hence, ∑
a

c2a = 1. (2.103)

So the sum of the squares of the coefficients in Eq. (2.98) is equal to 1. This is satisfied by
Eq. (2.94) because we only worked with generators that have the same normalisation. Eq.
(2.103) is also useful if we want to normalise linear combinations of normalised generators.
For instance, suppose we have two generators T 1 and T 2 that have the same normalisation
and we want to normalise the combination T 1+T 2. Then Eq. (2.103) tells us that this must
be (T 1 + T 2)/

√
2, since the sum of the squares of the coefficients is equal to 1.

Another scenario that may occur is when several simple groups Hi, i = 1 . . . n, are em-
bedded into a single simple group G at an energy scale MI . Since G is simple, it only has
one coupling constant g. Hi becomes part of G so the coupling constant hi of Hi has to be
equal to g at MI . Thus, at MI we have the matching conditions

g(MI) = h1(MI) = h2(MI) = . . . = hn(MI). (2.104)

A scenario like this can, for instance, occur at the unification scale, where all coupling con-
stants are assumed to be equal to each other.
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Chapter 3

SU(5) grand unification

One of the first grand unification groups that were proposed is SU(5) [9]. It is the smallest
SU(N) group that can contain the standard model. SU(5) has dimension 24, so it has twelve
generators more than the standard model and thus twelve new gauge bosons associated with
them. Some of these new bosons may carry both color and weak isospin/hypercharge. As it
turns out, this is the case for all new gauge bosons in SU(5), which leads to the appearance
of vector leptoquarks.

The smallness of SU(5) and the ease with which all fermions can be fitted into irreps,
made it an attractive candidate for grand unification. However, several issues exclude minimal
SU(5). The first of these is that gauge coupling unification turns out to be impossible. So
minimal SU(5) is inconsistent with the hypothesis of grand unification. Unification is only
possible if we take some experimentally measured parameters to be a free parameter. As we
will see, this yields a unification scale MU ≈ 1015 GeV. But, as we will also see, the masses
of all vector leptoquarks lie at this scale and they mediate proton decay. So MU is directly
related to the proton’s lifetime. The prediction for the proton’s lifetime is incompatible with
experimental limits on proton decay. Lastly, the minimal Yukawa sector predicts wrong
relations between the masses of quark and leptons.

We start by discussing which representations are necessary to fit the fermions into SU(5).
Next, the phenomenon of proton decay, as mediated by vector leptoquarks, is discussed. After
that, we cover how SU(5) must be broken to the standard model and show that minimal
SU(5) also contains a scalar leptoquark. This will lead to a yet unsolved issue known as the
doublet-triplet splitting problem. Lastly, we discuss gauge coupling unification in minimal
SU(5). Throughout, several issues are emphasized that lead to the exclusion of minimal
SU(5). The information presented here about SU(5) appears in many places. For this
chapter, refs. [2, 8, 10] were mostly used.

3.1 The 5 and 10 dimensional irreducible representations
The hypothesis of SU(5) grand unification is that at some high energy scale, the GUT scale
MU , all interactions exhibit an SU(5) symmetry. At that point the gauge interactions would
be described by a single coupling constant g. In such a scenario, all particles transform
according to irreps of SU(5). In the minimal version of the model [9], five of the fermions
are placed in the 5-dimensional fundamental representation and the other 10 are placed in
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the 10-dimensional irrep. This choice is not arbitrary, because the goal is to extend the
standard model. So at the very least, the new interactions should contain all interactions
present in the standard model. As we will see, SU(5) contains the standard model group as
a subgroup. So a subset of the generators of SU(5), generates SU(3)C × SU(2)L × U(1)Y .
To ensure that we recover the interactions from the standard model, it is required that the
fermions transform in the same way under the SM subgroup as they do in the SM (see Eq.
2.33 for these transformation properties). In this section we look at the structure of the 5-
and 10-dimensional irreps of SU(5) and we will see how the fermions can be placed in them.

3.1.1 The generators

The generators of the 5-dimensional fundamental representation consist of all Hermitian,
traceless 5× 5 matrices. The first eight generate an SU(3) subgroup.

λa =


0 0
0 0λa

0 0
0 0 0 0 0
0 0 0 0 0

 , a = 1 . . . 8. (3.1)

Note that we use the name λa both for SU(3) and SU(5) generators. However, it should
always be clear from context which ones are being referred to. The next twelve generators
are:

λ9 =


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 , λ10 =


0 0 0 −i 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0
0 0 0 0 0

 ,

λ11 =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 , λ12 =


0 0 0 0 −i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0

 ,

λ13 =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 , λ14 =


0 0 0 0 0
0 0 0 −i 0
0 0 0 0 0
0 i 0 0 0
0 0 0 0 0

 ,

λ15 =


0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

 , λ16 =


0 0 0 0 0
0 0 0 0 −i
0 0 0 0 0
0 0 0 0 0
0 i 0 0 0

 , (3.2)
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λ17 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0

 , λ18 =


0 0 0 0 0
0 0 0 0 0
0 0 0 −i 0
0 0 i 0 0
0 0 0 0 0

 ,

λ19 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0

 , λ20 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 0 0
0 0 i 0 0

 .

Three others generate an SU(2) subgroup:

λ20+a =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0
0 0 0

σa

 , a = 1, 2, 3. (3.3)

The last generator is:

λ24 =
1√
15


−2

−2
−2

3
3

 . (3.4)

The hypercharge generator Y is related to λ24 through

Y =

√
5

12
λ24 =


−1/3

−1/3
−1/3

1/2
1/2

 . (3.5)

Note that the normalization of λa is chosen such that Tr(λaλb) = 2δab. In the Lagrangian, one
uses the generators T a = λa/2, which have normalization Tr(T aT b) = δab/2, as is customary
for fundamental representations of SU(N).

Now we are in a position to see that the SM group is indeed a subgroup of SU(5). Recall
that the SM group is a direct product of SU(3)C , SU(2)L and U(1)Y . We have seen which
generators generate each subgroup separately, but if the direct product of these subgroups
is also a subgroup of SU(5), then their generators should commute with each other. From
Eqs. (3.1) and (3.3) it is clear that the generators of the SU(3)C and SU(2)L subgroups
act on different subspaces. So they commute with each other. Moreover, the hypercharge
generator (Eq. 3.5) is diagonal with respect to the generators of both SU(3)C and SU(2)L,
so it commutes with them as well. Thus, SU(5) contains the SM group as a subgroup.
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3.1.2 Placing fermions in the 5

Having established that the SM group is contained in SU(5), we can now find out which
particles can be placed into the fundamental representation. To do so, we need to know how
it decomposes into irreps of the SM group. From the block-diagonal forms of the generators
of the SM subgroup, it follows that the fundamental representation can be decomposed into
two irreps: a color triplet with hypercharge −1/3 and an isospin doublet with hypercharge
1/2,

5 = (3, 1,−1/3) + (1, 2, 1/2). (3.6)

In the first term the transformation properties of the right handed down quark dR can be
recognized. The second term resembles the transformation properties of the lepton doublet
LL, but with opposite hypercharge. To flip the sign of the hypercharge, the charge conjugate
of the fields can be used:

Lc
L =

(
νce
ec

)
R

(3.7)

Note that we used the fact that (ψL)
c = (ψc)R to rewrite Lc

L in terms of right handed fields.
We do this so that all fields in the fundamental representation are right handed. Simply
replacing the fields with their charge conjugates would, however, mean that (νce)R and (ec)R
transform as if they have T3 = 1/2 and T3 = −1/2, respectively. This is wrong, because a
conjugated field should transform according to the complex conjugate of the representation.
So all quantum numbers should flip sign. Fortunately, SU(2) representations are real, so
to do this we can simply switch to a different basis. We already found this basis in section
2.1: it was iσ2Lc

L. Thus, the following choice gives the right transformation properties under
SU(2)L:

Le = SLc
L =

(
ec

−νce

)
R

. (3.8)

Then Lc
L transforms infinitesimally as δLc

L = S−1δLe = −iαiS
−1σiL

e = iαiσ
∗
i L

c
L, confirming

that Lc
L has the right transformation properties. The five basis states di and Le can be

combined into an SU(5) vector:

Ψ =


d1
d2
d3
ec

−νce


R

, (3.9)

which transforms according to the 5 of SU(5). Occasionally, the conjugate of Eq. (3.9) is
necessary. This will be denoted Ψc:

Ψc =


dc1
dc2
dc3
e−

−νe


L

, (3.10)
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which transforms according to the 5 of SU(5). For SU(5) tensors, it will be convenient to
denote color indices by greek letters α, β, . . . = 1, 2, 3 and isospin indices by a, b, . . . = 4, 5.
Then Ψ consists of two sets of states:

Ψα ∼ (3, 1,−1/3), Ψa ∼ (1, 2, 1/2). (3.11)

3.1.3 Placing fermions in the 10

Now we turn to the 10-dimensional representation. Unlike the fundamental representation,
we do not list the generators of the 10-dimensional irrep, but instead use tensor methods to
examine its structure. In section 2.1 we showed how the N × N tensor product of SU(N)
decomposes into a symmetric and an antisymmetric irrep. For SU(5) this gives

5× 5 = 15 + 10, (3.12)

where the 10 is antisymmetric. So we can describe the 10 with a two-indexed tensor χij that
is antisymmetric in its indices. To see how the 10 decomposes into irreps of the SM group,
the notation that was introduced for color and isospin indices will be useful. The components
of a general 5× 5 tensor ψij can be divided into four parts: ψαβ, ψaα, ψαa and ψab. The first
of these, ψαβ, can be written in terms of a symmetric and an antisymmetric part as

ψαβ =
1

2
(ψαβ + ψβα) +

1

2
εαβγεγµνψ

µν . (3.13)

The antisymmetric part contains a tensor εγµνψµν (under the SM group). But notice that it
has one lower color index γ so it transforms according to the 3 of SU(3)C . The tensor has
no isospin indices, so it is a singlet under SU(2)L. The hypercharge quantum numbers add,
because under a hypercharge transformation a product state ψi

1ψ
j
2 transforms like

ψi
1ψ

j
2 → e−iaY1ψi

1e
−iaY2ψj

2 = e−ia(Y1+Y2)ψi
1ψ

j
2. (3.14)

So the hypercharge of ψαβ is −1/3 − 1/3 = −2/3. We can therefore conclude that χαβ,
which is the antisymmetric part of ψαβ, transforms according to the (3, 1,−2/3) irrep of the
SM group. But this is precisely how (uR)

c = (uc)L would transform. So we can identify
(uc)αL = εαβγψ

βγ/
√
2. The factor 1/

√
2 accounts for the fact that the particle appears twice.

We can then write χαβ = εαβγ(uc)γL/
√
2.

The components ψaα and ψαa can be decomposed in terms of symmetric and antisym-
metric parts as

ψaα =
1

2
(ψaα + ψαa) +

1

2
(ψaα − ψαa), (3.15)

ψαa =
1

2
(ψaα + ψαa)− 1

2
(ψaα − ψαa) (3.16)

The antisymmetric part χaα = (ψaα−ψαa)/2 has one upper color index and one upper isospin
index. So it transforms according to the 3 of SU(3)C and the 2 of SU(2)L. Its hypercharge is
−1/3 + 1/2 = 1/6. Thus, χaα transforms according to the (3, 2, 1/6) irrep of the SM group,
which is how QL transforms. We identify χaα = Qaα

L /
√
2. Finally, there are the components

ψab. Written in terms of its symmetric and antisymmetric part, this is

ψab =
1

2
(ψab + ψba) +

1

2
εabεcdψ

cd. (3.17)

28



CHAPTER 3. SU(5) GRAND UNIFICATION

Strictly speaking, the only non-zero components of εij are ε12 and ε21. However, since isospin
indices can only have the values 4 and 5, it will be convenient to redefine εab such that
ε45 = −ε54 = 1.

The antisymmetric part of Eq. (3.17) contains the tensor εcdψcd, which is both a color
singlet and an isospin singlet. Its hypercharge is 1/2 + 1/2 = 1. The tensor therefore
transforms according to the (1, 1, 1) irrep of the SM group, which is how (eR)

c = (ec)L
transforms. We identify (ec)L = εcdψ

cd/
√
2. Then χab = εab(ec)L/

√
2.

To summarize, the 10-dimensional irrep of SU(5) can be decomposed into three irreps of
the SM group:

10 = (3, 1,−2/3) + (3, 2, 1/6) + (1, 1, 1). (3.18)

We describe it using an antisymmetric second rank tensor χij , whose components are given
by

χαβ =
1√
2
εαβγ(uc)γL, χaα =

1√
2
Qaα

L , χab =
1√
2
εab(ec)L. (3.19)

In matrix notation this is

χ =
1√
2


0 uc3 −uc2 −u1 −d1

−uc3 0 uc1 −u2 −d2
uc2 −uc1 0 −u3 −d3
u1 u2 u3 0 ec

d1 d2 d3 −ec 0


L

. (3.20)

Thus, we have succeeded in placing all fifteen fermions into irreps of SU(5), in such a way
that their transformation properties under the SM group are retained. This ensures that all
gauge interactions present in the standard model also appear in our SU(5) GUT.

So far, only one generation of fermions has been placed into representations. In the
standard model, each generation has exactly the same transformation properties as other
generations. This principle is assumed to hold in GUTs as well. The Lagrangian therefore
contains three copies of the 5 and 10 representations, one for each generation.

3.2 The X and Y vector leptoquarks
That some of the gauge bosons of SU(5) are leptoquarks, can already be seen in their trans-
formation properties. The gauge bosons transform according to the adjoint representation of
SU(5), which decomposes in terms of irreps of the SM group as [8]

24 = (8, 1, 0) + (1, 3, 0) + (1, 1, 0) + (3, 2,−5/6) + (3, 2, 5/6). (3.21)

The first three multiplets correspond to the twelve standard model gauge bosons. The eight
gluons belong to the color octet (8, 1, 0), the W± and Z0 to the isospin triplet (1, 3, 0) and
the photon to the singlet (1, 1, 0). The two other sets of six bosons each, are new. The fact
that they carry colour, weak isospin and hypercharge opens up the possibility that quarks
and leptons couple directly to each other. Since these bosons originate from the gauge sector,
they transform as Lorentz vectors and are consequently categorized as vector leptoquarks. In
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SU(5)-based grand unified theories, these are denoted as X and Y bosons. We assign them
to the (3, 2,−5/6) irrep as follows:(

X1 X2 X3

Y1 Y2 Y3

)
∼ (3, 2, 5/6). (3.22)

With this notation, colour indices run horizontally and isospin indices vertically. Then X is
the isospin up component and Y the isospin down component. Their antiparticles X and Y
are assigned to the (3, 2, 5/6) irrep:(

X1 X2 X3

Y 1 Y 2 Y 3

)
∼ (3, 2,−5/6). (3.23)

To see precisely what kinds of interactions the X and Y bosons mediate, we write down the
gauge sector of the Lagrangian. Since the fermions were placed into two irreps, Ψ and χ, the
gauge sector will also consist of two parts. One part only contains couplings to Ψ and the
other only contains couplings to χ. The part containing Ψ is

LΨ = Ψi /DΨ, (3.24)

where the covariant derivative Dµ is

Dµ = ∂µ − igT aAa
µ, (3.25)

It will be convenient to define the gauge boson matrix Aµ = T aAa
µ. We can divide it into a

part that leads to SM couplings and one that leads to leptoquarks couplings:

Aµ = ASM
µ +ALQ

µ . (3.26)

For ASM
µ we run over all generators associated with the SM subgroup:

ASM
µ =

8∑
a=1

Aa
µT

a +

23∑
a=21

Aa
µT

a +A24
µ T

24

=
1

2


8∑

a=1

Ga
µλ

a

3∑
i=1

W a
µσ

a

+BµY.

(3.27)

Note that in the second line, we related the gauge bosons Aa
µ from SU(5) to Ga

µ, W a
µ and Bµ

from the standard model:

G1
µ . . . G

8
µ = A1

µ . . . A
8
µ, (3.28)

W 1
µ . . .W

3
µ = A21

µ . . . A23
µ , (3.29)

Bµ =

√
12

5
A24

µ . (3.30)
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Since ASM
µ consists of a 3 × 3 block that acts on Ψα and a 2 × 2 block that acts on Ψa,

it cannot couple Ψα to Ψa. ASM
µ will therefore not produce any leptoquark couplings. To

obtain such couplings we need a gauge boson matrix with non-zero components outside the
3 × 3 and 2 × 2 blocks. These are contained in ALQ

µ . For ALQ
µ we run over the remaining

generators:

ALQ
µ =

20∑
a=9

Aa
µT

a =
1√
2


X1µ Y 1µ

X2µ Y 2µ

X3µ Y 3µ

X1µ X2µ X3µ

Y1µ Y2µ Y3µ

 . (3.31)

So the X and Y vector leptoquarks appear as linear combinations of A9
µ . . . A

20
µ .

Before we can write down the Lagrangian involving χ, we have to know how the generators
act on it. Recall that χ is the antisymmetric part of a 5× 5 tensor. So whereas Ψ transform
as Ψ → Ψ′ = UΨ, χ transforms as

χ→ χ′ = UχUT = χ− iαaT aχ− iαaχ(T a)T + . . . (3.32)

The action of the covariant derivative on χ is then

Dµχ = ∂µχ− ig
[
Aa

µT
aχ+ χAa

µ(T
a)T
]
. (3.33)

The couplings between gauge bosons and χ are then contained in

Lχ = Tr
[
χT i /Dχ

]
. (3.34)

Now that we have the explicit form of the gauge sector, we can find out which leptoquark
couplings it contains. The parts of LΨ and Lχ containing couplings to X and Y bosons are
[10]

LX,Y = g

(
Ψ /A

LQ
Ψ+ Tr

[
χT /A

LQ
χ
]
+ Tr

[
χTγµχ

(
ALQ

µ

)T])
=

g√
2

(
−εαβγuαL /Xβu

c
γL + ecL /Xαd

α
L − ecR /Xαd

α
R

− εαβγdαL /Y βu
c
γL − ecL /Y αu

α
L + νceR /Y αd

α
R

)
+ h.c.

(3.35)

Evidently, the X and Y bosons have diquark as well as direct lepto-quark couplings. This
shows that by exchanging a single X or Y boson many baryon number violating processes
are possible. The ones that contribute to proton decay are shown in Figure 3.1. Diagrams
3.1a-d contribute to p→ e+π0, whereas 3.1e contributes to p→ νeπ

+. These interactions do
not preserve baryon number B and lepton number L separately. But perhaps there might be
another quantum number that is conserved by them. This turns out to be the combination
B − L [8]. From Eq. (3.35) we can see that the B − L quantum numbers of the X and Y
bosons are

(B − L)X = (B − L)Y =
2

3
. (3.36)
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Figure 3.1: Proton decay diagrams in minimal SU(5).

So while a process may alter both B and L, only interactions with ∆B = ∆L are allowed.
This is why proton decay in SU(5) can only produce the antileptons e+ and νe, since we
always have ∆B = −1.

To conclude, the gauge sector of the Lagrangian has shown that SU(5) contains two
vector leptoquarks which mediate the decays p → e+π0 and p → νeπ

+. However, this does
not tell us anything about the masses of the leptoquarks, so we cannot calculate the decay
rates of the processes. Which mass scale are possible, is discussed in the next sections.

3.3 Symmetry breaking
Just as in the standard model, particles obtain their masses by spontaneously breaking the
symmetry. In the standard model the masses of the W± and Z0 bosons were all related to
one vev parameter. This parameter sets the electroweak scale MEW. In GUTs, it is assumed
that there is at least one larger scale MU , at which the GUT symmetry holds. The vector
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leptoquarks X and Y mediate proton decay, which has never been observed. So it is natural
to expect them to lie at a scale larger than MEW. The kinds of mass scales that are possible
depend on which symmetry breaking patterns we choose. Nevertheless, if the theory is to be
compatible with experimental data, we have to make sure that there is an electroweak scale
with an SU(3)C × SU(2)L × U(1)Y symmetry. This symmetry must then be broken further
to SU(3)C ×U(1)Q. Moreover, the scalar particles that are used to break the symmetry have
to include the Higgs field from the standard model. This section discusses the most minimal
way in which the SU(5) symmetry can be broken, while adhering to the aforementioned
constraints.

Once the GUT symmetry is broken, we are always left with a symmetry group that
is one of its subgroups. For SU(5) the largest subgroups are SU(3)C × SU(2)L × U(1)Y
and SU(4) × U(1) [11]. The latter can only be broken further to SU(3)C × U(1)Q. This
is unacceptable because there has to be a scale with the SM symmetry. So SU(5) must
be broken directly to the SM group. To achieve this, we need a scalar representation that
contains at least one SM singlet. In other words: a state that is chargeless w.r.t the SM.
The simplest representation that can break SU(5) to the SM, is the 24-dimensional adjoint
[9], whose decomposition was given in Eq. (3.21). This scalar multiplet is denoted φ. If the
(1, 1, 0) singlet obtains a vev, the symmetry will be reduced to that of the standard model.
To reduce it further to SU(3)C ×U(1)Q we need a colorless state, carrying no electric charge.
Such a state is contained in the (1, 2, 1/2) component of the fundamental representation.
Hence, the symmetry can be broken to SU(3)C × U(1)Y using a 5-dimensional Higgs [9],
denoted as H. In this case, the (1, 2, 1/2) doublet corresponds to the SM Higgs doublet. The
full symmetry breaking mechanism then consists of two steps:

SU(5)
24−→ SU(3)C × SU(2)L × U(1)Y

5−→ SU(3)C × U(1)Q. (3.37)

Recall that a gauge boson only becomes massive if the generator associated with it is broken.
So in the first step, the leptoquarks X and Y obtain their masses, since the generators
associated with them do not generate the SM subgroup. These masses are related to the
vev 〈φ〉 obtained by φ. Thus, 〈φ〉 sets the mass scale of the vector leptoquarks. The adjoint
of SU(5) corresponds to the traceless part of the 5 × 5 tensor product. So to expand this
tensor in terms of fields that transform according to the adjoint representation, we need to
find 24 traceless matrices. Moreover, if we take φ to be hermitian, these matrices need to be
hermitian as well. Therefore, φ can be written as a linear combination of the generators of
the fundamental representation:

φ =
24∑
i=1

φiλi. (3.38)

That this really furnishes the adjoint representation, can be seen from an infinitesimal trans-
formation of φ:

φ→ φ′ = UφU †

= (I − iajλj)φiλi(I + iajλj) + . . .

= φiλi − iajφi[λj , λi] + . . .

= φiλi − ajφkf
j
ikλi + . . . .

(3.39)
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Thus, the induced transformation on φi is

φi → φ′i = φi − iaj

(
−if jik

)
φk + . . . , (3.40)

which shows that φi transforms according to the adjoint representation. The next step is to
find a potential V (φ), which allows us to spontaneously break the symmetry to the standard
model. As mentioned before, this occurs if the SM singlet contained within the adjoint
obtains a vev. To make sure that the symmetry is only broken spontaneously, the potential
has to consist of SU(5) invariant terms. Up to terms quartic in φ, the most general potential
is [10]

V (φ) = −1

2
µ2Tr

[
φ2
]
+
a

4

(
Tr
[
φ2
])2

+
b

2
Tr
[
φ4
]
, µ2 > 0. (3.41)

If the vev is to be invariant under the SM group, it needs to commute with λ1 . . . λ8, and
λ21 . . . λ24. This can only be λ24, since it is the only generator that is diagonal w.r.t both the
SU(3) and SU(2) generators. This fixes the form of the vev:

〈φ〉 = −
√
15

2
vλ24 = v


1

1
1

−3/2
−3/2

 . (3.42)

Minimizing the potential with this vev gives [10]

v =

√
2µ2

15a+ 7b
. (3.43)

So this only has a real solution if a > −(7/15)b. The full Lagrangian containing the Higgs
field φ is [10]

L =
1

2
Tr[(Dµφ)

†(Dµφ)]− V (φ), (3.44)

with Dµφ = ∂µφ+ ig[Aµ, φ]. (3.45)

This allows us to calculate the masses of the leptoquarks X and Y . The mass terms originate
from the covariant derivative:

Lφ
M =

1

2
Tr[(Dµ〈φ〉)†(Dµ〈φ〉)]

= −1

2
g2Tr

(
[Aµ, 〈φ〉]†[Aµ, 〈φ〉]

)

= −25

16
g2v2Tr

∣∣∣∣∣∣∣∣∣∣


−X1µ −Y 1µ

−X2µ −Y 2µ

−X3µ −Y 3µ

X1µ X2µ X3µ

Y1µ Y2µ Y3µ


∣∣∣∣∣∣∣∣∣∣

2

= −25

8
g25v

2
∑
i

(
|Xi|2 + |Yi|2

)
.

(3.46)

34



CHAPTER 3. SU(5) GRAND UNIFICATION

Therefore, the masses of the leptoquarks X and Y are [10]

MX =MY =
5

2
√
2
gv. (3.47)

This expression obtains a small correction if the Higgs multiplet H is included, which is
necessary to reduce the symmetry to SU(3)C × U(1)Q below the electroweak scale. Just as
we did for the fermions in the fundamental representation, we can divide H into two parts:
a color triplet Tα and an isospin doublet Da,

H =

(
Tα

Da

)
. (3.48)

The breaking to SU(3)C ×U(1)Q can be achieved by giving the fifth component of H a vev:

〈H〉 = 1√
2


0
0
0
0
v0

 , (3.49)

which leaves the SU(3)C generators unbroken as well as the combination

Q = T23 + Y, (3.50)

which is electric charge. The potential that allows such a vev, is analogous to the SM Higgs
potential:

V (H) = −ν
2

2
H†H +

λ

4
(H†H)2, ν2, λ > 0 (3.51)

Note that this would mean that all components of H lie at the same mass scale. This cannot
be true, because the doublet Da is the Higgs doublet from the SM, whereas the triplet Tα

has never been observed. Tα must therefore lie at a larger mass scale than Da. We return
to this issue in the next section, where we discuss the couplings of Tα in more detail.

The contributions to the masses of the gauge bosons due to H are

LH
M =

1

2
Tr[(Dµ〈H〉)†(Dµ〈H〉)]

= −1

2
g2Tr[(Aµ〈H〉)†Aµ〈H〉]

= −1

8
g2v20

∣∣∣∣∣∣∣∣∣∣∣∣∣



Y1µ
Y2µ
Y3µ

1√
2

(
W 3

µ −
√

3

5
Bµ

)
W+

µ



∣∣∣∣∣∣∣∣∣∣∣∣∣

2

= −1

8
g2v20

∑
i

|Yi|2 +
4

5

∣∣∣∣∣
√

5

8
W 3

µ −
√

3

8
Bµ

∣∣∣∣∣
2

+W+
µ W

µ−

 .

(3.52)
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So both the W± and Z0 bosons as well as the Y boson obtain contributions to their masses
of order gv0. Thus, the Higgs multiplet H slightly lifts the degeneracy between the masses
of the leptoquarks.

3.4 The color triplet scalar leptoquark
The Higgs multiplet H can be coupled to fermions in the Yukawa sector. The terms appearing
in the Yukawa sector consist of the minimal set that is necessary to generate masses for the
fermions. A mass term has the form −mψRψL = m(ψc)LCψL, plus its hermitian conjugate.
So to generate masses for the down quark and the electron, we need to couple the 5 to the
10. This can then be coupled to another 5, the Higgs field H, to obtain an SU(5) invariant
expression:

L5
Y = Y5(Ψ

c)TCχH + h.c. (3.53)

Both uL and ucL are contained in the 10, so the 10 needs to be coupled to itself to obtain a
mass for the up quark. To make this SU(5) invariant, these two factors can be coupled to H
and the resulting tensor should be antisymmetrized:

L10
Y = Y10ε

ijklmχijCχklHm + h.c. (3.54)

The masses can be found by setting H to its expectation value 〈H〉. For L5
Y this results in

L5
Y (〈H〉) = −Y5v0

(
dd+ ee

)
. This means that the masses of the down quark and the electron

are equal:

me = md = Y5v0 (3.55)

This mass relation is, however, scale dependent. So it is only exact when the SU(5) symmetry
holds. Nevertheless, even when extrapolated down to lower energy scales, minimal SU(5)
yields wrong mass relations [8]. This is yet another reason why minimal SU(5) does not
work.

Now we turn to the color triplet Tα. If we restrict to the parts in L5
Y containing Tα, we

obtain

L5
Y =

Y5√
2

(
dc1 dc2 dc3 e− −νe

)
L
C


T 2u

c
3 − T 3u

c
2

T 3u
c
1 − T 1u

c
3

T 1u
c
2 − T 2u

c
1

T 1u1 + T 2u2 + T 3u3
T 1d1 + T 2d2 + T 3d3


L

+ h.c.

=
Y5√
2

(
εαβγdcαLCT βu

c
γL + e−LCTαu

α
L − νeLCTαd

α
L

)
+ h.c..

(3.56)

These interaction terms lead to the same type of diagrams as the vector leptoquarks X and
Y . Thus, Tα is a scalar leptoquark that mediates proton decay. This further reinforces that
Tα must be much heavier than the SM Higgs doublet contained in H. In [12], for instance,
it is estimated that to keep the proton from decaying to quickly, a lower bound on the mass
MT of Tα is

MT > 3 · 1011 GeV. (3.57)
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The question is then, how can such a mass hierarchy be incorporated in the theory? This is
known as the doublet-triplet splitting problem [13]. First of all, the potential in Eq. (3.51)
cannot produce a mass hierarchy, since both the doublet and triplet are treated the same way.
However, since two Higgs multiplets, H and φ, are present, a potential involving couplings
between the two is also possible [10]:

V (φ,H) = αH†HTr
[
φ2
]
+ βH†φ2H. (3.58)

This gives additional contributions to the masses of each component of H. The essence of
the doublet-triplet splitting problem can already be illustrated if we include only the vev
obtained by φ. The first three diagonal components of 〈φ〉 are different than the last three,
so the couplings in Eq. (3.58) treat the triplet and the doublet differently, leading to mass
splitting. If we denote the doublet as Da, the part of the full potential containing H at
φ = 〈φ〉 can be written as [14]

V (T,D) =

(
−ν

2

2
+

15α

2
v2 + βv2

)
T †T +

(
−ν

2

2
+

15α

2
v2 +

9β

4
v2
)
D†D + . . . , (3.59)

where higher order terms have been omitted, since they do not contribute to the mass. Thus,
the masses of the doublet and triplet are given by

m2
D = −ν

2

2
+

15α

2
v2 +

9β

4
v2 = −ν

2

2
+

15α+ 9β

15a+ 7b
µ2, (3.60)

m2
T = −ν

2

2
+

15α

2
v2 + βv2 = −ν

2

2
+

15α+ 2β

15a+ 7b
µ2. (3.61)

To solve the problem, we would have to choose values for the parameters such that mD lies
around 100 GeV and mT lies at a much larger scale. However, the scales of µ2 and ν2 can be
very different so the terms in Eqs. (3.60) and (3.61) are generally dominated by the larger
one. The scales of the masses would therefore be the same. The only way out would be to
rely on precise cancellations between the two contributions.

3.5 Gauge coupling unification
Section 3.3 showed that minimal SU(5) contains two non-zero mass scales: the electroweak
scale MEW where the W± and Z0 bosons lie, and the unification scale MU where the vector
leptoquarks lie. The magnitude of MEW is known from experiments to be around 100 GeV.
The magnitude of the unification scale, if there even is one, has not been measured exper-
imentally. Nevertheless, if SU(5) grand unification is correct, all coupling constants should
be equal to each other at MU . As we will see, this places constraints on the value of MU .

In minimal SU(5), there is an SU(3)C × SU(2)L × U(1)Y symmetry from MEW up to
MU . Moreover, of the scalar particles only the Higgs doublet Da is assumed to lie around
the electroweak scale. The particles that are relevant from MEW up to MU , are therefore
the same as in the standard model. Before we discuss running of the couplings in SU(5),
we first show that the normalized hypercharge and electric charge generators agree with the
expressions given in Eq. (2.87). In SU(5) the normalization of the generators is always given
by Tr(T aT b) = δab/2. This is not the case for the hypercharge and electric charge generators.
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For instance, for the fermions in the fundamental representation the normalization of Y and
Q are

Tr(Y 2) = 3 · (1/3)2 + 2 · (1/2)2 = 5/6, (3.62)
Tr(Q2) = 3 · (−1/3)2 + 12 + 02 = 4/3. (3.63)

So to obtain the same normalization as the SU(5) generators we must multiply Y by
√

3/5
and Q by

√
3/8. Thus the properly normalized hypercharge and electric charge generators

are:

Q′ =

√
3

8
Q, Y ′ =

√
3

5
Y, (3.64)

in agreement with Eq. (2.87). We can therefore conclude that below MU the running of the
couplings in minimal SU(5) is identical to the standard model.

The running above and below EWSB was shown in Figure 2.1 from section 2.4. Judging
from the graph, it seems as though the coupling constants will unify at some scale. However, if
we extrapolate the values we obtain the graph shown in Figure 3.2. The couplings associated
with SU(3)C , SU(2)L and U(1)Y do not meet at a common point. Instead, they have three
distinct intersections at energy scales of roughly 1013, 1014 and 1017 GeV. The gaps between
these scales is large enough to conclude that gauge coupling unification is impossible in
minimal SU(5).

One reason that unification is impossible is that SU(5) can only be broken directly to
the SM. So if no particles are added at the electroweak scale, the running of the couplings
is fixed by the SM. Thus, one possible way of extending SU(5) would be to find a larger
symmetry group that can be broken to the SM in multiple stages. Nevertheless, to get an

Figure 3.2: Running of the fine structure constants in minimal SU(5).

idea of the magnitude of MU , we can try to adjust the low energy parameters such that grand
unification is possible. The values of the fine structure constants α = e2/4π and α3C at the
electroweak scale have been determined very precisely. Following [15], these two values will
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be used as input:

α−1(MEW) ≈ 128, (3.65)
α−1
3C(MEW) ≈ 8.45. (3.66)

Note that α is the fine structure constant associated with the unnormalized Q. In SU(5),
this generator is related to T23 and Y ′ through

Q = T23 +

√
5

3
Y ′, (3.67)

which implies that

α−1(MEW) = α−1
2L (MEW) +

5

3
α−1
Y (MEW). (3.68)

Together with the condition for unification,

αU ≡ αY (MU ) = α2L(MU ) = α3C(MU ), (3.69)

this yields four equations in the four unknowns αY (MEW), α2L(MEW), α3C(MEW) and MU .
Solving the system of equations results in the values (see Figure 3.3):

MU ≈ 7.7 · 1015 GeV, (3.70)
α−1
U ≈ 41.5, (3.71)

α−1
Y (MEW) ≈ 60.9, (3.72)
α−1
2L (MEW) ≈ 26.6, (3.73)

So with the assumption of unification in SU(5), we would expect the masses of the X and Y
bosons to lie around 1015 GeV. If minimal SU(5) is a viable theory, these masses should be
consistent with limits on proton decay rates. One of the most recent limits comes from the
Super-Kamiokande Collaboration, which reported a lower bound τp > 2 · 1034y [16]. We can
compare this to the SU(5) prediction. The lifetime of the proton is approximately given by
[17]

τp ≈
M4

U

g4m5
p

SI
=

~
16π2c2α2

Ump

(
MU

mp

)4

≈ 1.8 · 10−34y · α−2
U

(
MU

GeV

)4

. (3.74)

So if this is to be consistent with the experimental limit, we need MU > 2 ·1016 GeV. Clearly,
the predicted unification scale is too low. Minimal SU(5) is therefore also ruled out by limits
on proton decay rates.

3.6 Conclusions
In this chapter we reviewed how leptoquarks appear in one of the simplest grand unified
theories: minimal SU(5). Minimal SU(5) contains the twelve standard model gauge bosons
as well as twelve new gauge bosons that have lepto-quark couplings. These latter bosons
are the vector leptoquarks of SU(5) and are conventionally denoted as X and Y bosons.
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Figure 3.3: Running of the fine structure constants in SU(5) if unification is assumed.

The gauge sector of the Lagrangian showed that they mediate the proton decay processes
p→ e+π0 and p→ νeπ

0. These processes violate both baryon number B and lepton number
L, but they preserve the combination B − L.

The most minimal way to break the SU(5) symmetry involved two scalar multiplets, φ and
H, which transform according to adjoint representation and the fundamental representation of
SU(5), respectively. The vev of φ breaks the SU(5) symmetry to SU(3)C×SU(2)L×U(1)Y at
the unification scale MU . The vev of H then further breaks the symmetry to SU(3)C×U(1)Q
at the electroweak scale MEW. All vector leptoquarks lie at the unification scale. However,
unification turned out to be impossible in minimal SU(5) because the gauge couplings do not
meet at a common point. Nevertheless, if one adjust the parameters such that unification is
possible, one obtains MU ≈ 1015 GeV. The vector leptoquarks would therefore have masses
around 1015 GeV. That being said, leptoquark masses in this range are inconsistent with
limits on proton decay. Moreover, the minimal Yukawa sector yields wrong relations between
the masses of quarks and leptons. Minimal SU(5) is therefore not a viable model.

The scalar multiplet H contains both the SM Higgs doublet and a color triplet. The min-
imal Yukawa sector showed that this color triplet mediates the same proton decay processes
as the vector leptoquarks. Minimal SU(5) therefore also contains a scalar leptoquark. To
keep the proton from decaying too quickly, its mass is estimated to be at least 1011 GeV. The
triplet in H must then somehow become much heavier than the doublet; a problem known
as the doublet-triplet splitting problem. Minimal SU(5), therefore, does not contain any
leptoquarks below 1011 GeV.
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Chapter 4

SO(10) grand unification

A possible grand unified theory beyond SU(5) is based on SO(10) [18]. In minimal SU(5),
the fermions were placed into two different irreps: the 5 and 10. In minimal SO(10), however,
all fermions can be placed into a single 16 dimensional spinor representation. SO(10) contains
various other GUT groups as its subgroup. One of them is SU(5) [8]. In terms of SU(5)
irreps, the spinor representation decomposes as [2]

16 = 10 + 5 + 1. (4.1)

The 10 and 5 can be recognized from SU(5) and they contain the standard model fermions.
But apparently, SO(10) comes with an extra singlet, leaving room for a right handed neutrino.
SO(10) also contains the Pati-Salam group SU(4)C×SU(2)L×SU(2)R as one of its subgroups
[8]. SO(10) is, therefore, a left-right symmetric theory. In the standard model parity is
explicitly broken, because left hand and right handed particles transform differently. But
because SO(10) is left-right symmetric, parity is only implicitly broken at low energies.

Gauge coupling unification failed in minimal SU(5), partly because it had to be broken
to the standard model in on step. Due to the many subgroups of SO(10), the breaking can
occur in multiple steps. As we will see, this means that gauge coupling unification can be
achieved in SO(10) by means of one or more intermediate scales. Moreover, the resulting
unification scale is found to be consistent with proton decay limits.

The first section discusses the spinor representation of SO(10) and how fermions are
placed into it. The second section provides an overview of which gauge bosons SO(10)
contains and what their associated generators are. Here we also examine which gauge bosons
are leptoquarks and whether they can mediate proton decay. Then, the third section discusses
how the SO(10) symmetry can be broken to the standard model and we explore the energy
scales this yields. Finally, the last section covers the Yukawa sector and the scalar leptoquarks
that it contains.

4.1 The spinor representation of SO(10)
The group SO(10) is generated by 10 · 9/2 = 45 antisymmetric matrices Σab satisfying the
Lie algebra

[Σab,Σcd] = δadΣbc + δbcΣad − δacΣbd − δbdΣac, a, b, c, d = 1 . . . 10. (4.2)
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This generates representations consisting of orthogonal matrices. But there exist more rep-
resentations that satisfy the Lie algebra in Eq. (4.2). The spinor representation of SO(10)
falls into this category [19]. This representation is based on a local isomorphism between
SO(10) and its double cover Spin(10). The method used to build this representation is a
generalization of the way in which a local isomorphism between SO(3) and SU(2) is estab-
lished. Before we move on to the spinor representation of SO(10) We first review the local
isomorphism between SO(3) and SU(2).

4.1.1 The local isomorphism between SO(3) and SU(2)

Consider a hermitian, traceless 2× 2 matrix X. This can be written as a linear combination
of the Pauli matrices σi:

X = ~x · ~σ =

(
x3 x1 − ix2

x1 + ix2 −x3

)
. (4.3)

The determinant of X is related to the norm x2 of ~x:

detX = −x21 − x22 − x33 = −x2 (4.4)

Now suppose that X transforms as

X → X ′ = UXU †, (4.5)

where U is an SU(2) transformation. Since X is hermitian and traceless, so is X ′. X ′ can
therefore also be written as

X ′ = ~x′ · ~σ. (4.6)

The norm x′2 is then related to x2 by

x′2 = −detX ′ = −det(UXU †) = −detX = x2. (4.7)

So under an SU(2) transformation, the norm x2 is preserved. The vector ~x must then
transform according to some orthogonal representation:

~x→ ~x′ = O~x, (4.8)

where O is an orthogonal matrix. To find the transformation we use that U can in general
be parameterized as

U(φ, n̂) = e−iφn̂·~σ = I cos
φ

2
− in̂ · ~σ sin φ

2
. (4.9)

Suppose we pick n̂ to point in the z direction. In that case

Uσ1U
† = σ1 cosφ+ σ2 sinφ, (4.10)

Uσ2U
† = −σ1 sinφ+ σ2 cosφ, (4.11)

Uσ3U
† = σ3. (4.12)
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From this it follows that

X ′ = (x1 cosφ− x2 sinφ)σ1 + (x1 sinφ+ x2 cosφ)σ2 + x3σ3. (4.13)

Thus, the orthogonal transformation O is given by

O(φ) =

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

 , (4.14)

which is an SO(3) transformation. But notice that in U(φ) there appears the half angle φ/2,
whereas in O(φ) there is only the full angle φ. This means that when φ runs from 0 to 4π we
cover all SU(2) transformations exactly once, but we cover all SO(3) transformations twice.
For this reason SU(2) is said to be the double cover of SO(3). We can then only say that
SU(2) and SO(3) are locally isomorphic to each other. This local isomorphism can be made
more explicit by using the trace identities for the Pauli matrices:

Tr(σiσj) = 2δij . (4.15)

Then the components of ~x′ are given by

x′i =
1

2
Tr(σiX ′) =

1

2
Tr(σiUXU †) =

1

2
Tr(σiUσjU †)xj . (4.16)

Thus, the orthogonal transformation O is related to U through

Oij =
1

2
Tr(σiUσjU †), (4.17)

Both U and −U can be seen to give the same matrix O. Therefore, SU(2) and SO(3) are
only locally isomorphic to each other.

4.1.2 Spinor representations

The ideas presented in the previous section can be extended to obtain the spinor repre-
sentation of SO(2n). Now one looks for 2n matrices Γi that anticommute with each other
[19]:

{Γi,Γj} = 2δij , i, j = 1 . . . 2n. (4.18)

For n = 1, this is satisfied by the Pauli matrices σ1 and σ2. Solutions for higher n can be
obtained by iteratively taking tensor products. Suppose one has found 2n matrices Γn

i that
satisfy Eq. (4.18). Then the 2n+ 2 matrices [20]

Γ
(n+1)
i = Γn

i ⊗ σ3, i = 1, 2 . . . 2n

Γ
(n+1)
2n+1 = I2n×2n ⊗ σ1,

Γ
(n+1)
2n+2 = I2n×2n ⊗ σ2,

(4.19)
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also satisfy Eq. (4.18). So after each iteration, the dimension of the representation is doubled.
The dimension of the spinor representation of SO(2n) is therefore equal to 2n. The generators
are obtained by taking commutators [19]:

Σij = − i

2
[Γi,Γj ] =

{
−iΓiΓj , for i 6= j,

0, for i = j,
(4.20)

which is antisymmetric in i and j. So in total there are 2n(2n− 1)/2 generators for SO(2n).
The resulting representations are reducible into two pieces of equal size. To see this, consider
the product of all Γ-matrices:

ΓF = (−i)nΓ1Γ2 . . .Γ2n = σ3 ⊗ σ3 ⊗ . . .⊗ σ3. (4.21)

Since ΓF anticommutes with all Γi, it commutes with all the generators. Furthermore,
Γ2
F = 1. This allows us to form the projection operators P± = (1 ± ΓF )/2. A general

spinor Ψ can therefore be decomposed into two irreducible left- and right-handed spinors as
Ψ = ΨL +ΨR, with

ΨL = P−Ψ, ΨR = P+Ψ. (4.22)

The chirality of a spinor is obtained by acting on it with ΓF : ΓFΨL = −ΨL and ΓFΨR =
−ΨR. From the form of ΓF it follows that it is diagonal and contains just as many 1’s
as -1’s. So the two irreducible spinors have the same size. Therefore, the 2n dimensional
representation decomposes into two irreps of size 2n−1. In some cases, these two irreps are
related to each other. Consider the charge conjugation matrix B, which transforms the
representation to its complex conjugate:

BσijB
−1 = −σ∗ij . (4.23)

Note that in this case, B acts on SO(2n) spinors, and not on Dirac spinors. For n = 1 one
can take B1 = iσ2. For general n, Bn can be obtained recursively [2]:

Bn+1 =

(
0 Bn

(−1)nBn 0

)
= iσ2 ⊗ σ1 ⊗ . . .⊗ iσ2 ⊗ σ1. (4.24)

Since σ3 anticommutes with both σ1 and σ2, Bn and ΓF commute if n is even and anticommute
if n is odd:

ΓFBn = (−1)nBnΓF . (4.25)

and hence,

P±Bn =

{
BnP±, for n even,
BnP∓, for n odd.

(4.26)

Now consider an infinitesimal transformation of ΨL:

δΨL = − i

4
ωijΣijP−ΨL. (4.27)
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Under charge conjugation this becomes

δ(B−1Ψ∗
L) = − i

4
ωijB

−1Σ∗
ijP−Ψ

∗
L

=
i

4
ωij

{
ΣijP−(B

−1Ψ∗
L), for n even,

ΣijP+(B
−1Ψ∗

L), for n odd.

(4.28)

For SO(10), n = 5 is odd, meaning that a charge conjugated spinor transforms as a spinor
with opposite chirality. In other words, the two irreducible representations are each other’s
conjugates. Hence, the spinor representation of SO(10), which has a dimension of 25 = 32,
decomposes as

32 = 16 + 16. (4.29)

Sometimes the names 16L and 16R, under which ψL and ψR transform, are used to denote
the 16 and 16 representations. When broken to the standard model, the 16 decomposes as
[20]

16 = (3, 2, 1/6) + (1, 2,−1/2) + (3, 1, 1/3)

+ (3, 1,−2/3) + (1, 1, 1) + (1, 1, 0),
(4.30)

where the transformation properties of QL, LL, (dc)L, (uc)L, (ec)L and (νc)L, respectively,
can be recognized. Then, in the basis defined by Eq. (4.19), the fermions can be inserted
into ΨL and ΨR as follows [20]:

ΨL =



u1
νe
u2
u3
−νce
−uc1
−uc2
−uc3
d1
e−

d2
d3
ec

dc1
dc2
dc3


L

, ΨR =



u1
νe
u2
u3
−νce
−uc1
−uc2
−ucb
d1
e−

d2
d3
ec

dc1
dc2
dc3


R

, Ψ =

(
ΨL

ΨR

)
. (4.31)

4.2 The gauge sector
In this section we turn to the gauge sector of SO(10), with an emphasis on the leptoquark
interactions. First we discuss which gauge bosons SO(10) contains and the generators that
correspond to them. We will also note some of the subgroups they generate. The generators
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can in general be expressed as linear combinations of Σij . But unlike in SU(5), where the
generators were 5× 5 matrices, the generators of the spinor representation are considerably
more complex, since they are 32 × 32 in size. Nevertheless, all the appropriate linear com-
binations have been identified in [20]. Here we simply state the findings or quote the linear
combinations we need. Lastly, we construct the Lagrangian of the leptoquarks to see what
kinds of interactions they mediate.

4.2.1 The gauge bosons

We first start with the Pati-Salam subgroup SU(4)C × SU(2)L × SU(2)R. The SU(4)C
factor has 42 − 1 = 15 generators. These are linear combinations of the generators Σij , with
i, j = 1 . . . 6, which have 6·5/2 = 15 independent generators. Eight of the linear combinations
generate an SU(3)C subgroup and the physical fields corresponding to them are the eight
gluons:

G1 . . . G8, with generators UG1 . . . UG8 . (4.32)

Six other generators correspond to the fields X1 . . . X3 and X1 . . . X3:

X1 . . . X3, X1 . . . X3, with generators UX1 . . . UX6 . (4.33)

Later on, we will see that these are leptoquarks. The last generator is proportional to B−L,
and the corresponding field is denoted XB−L:

XB−L, with generator UB−L. (4.34)

So whereas in SU(5), B − L was an accidental symmetry of the Lagrangian, it is now part
of the gauge symmetry.

The SU(2)L × SU(2)R subgroup is generated by the generators with i, j = 7 . . . 10. The
bosons associated with the SU(2)L subgroup are the left handed W bosons:

W 1
L,W

2
L,W

3
L, with generators L1, L2, L3. (4.35)

Their right handed counterparts are associated with the SU(2)R subgroup:

W 1
R,W

2
R,W

3
R, with generators R1, R2, R3. (4.36)

The linear combination corresponding to hypercharge is also given in [20] and turns out to
be a combination of SU(4)C and SU(2)R generators:

Y =
UB−L

2
+R3. (4.37)

SO(10) also contains SU(5) as a subgroup. As we know from the chapter about SU(5), a
subset of the SU(5) generators generates the SM group. These generators are UG1 . . . UG8 ,
L1 . . . L3 and Y that were mentioned before. As we will see, the gauge bosons associated
with the remaining twelve generators are leptoquarks, just as in minimal SU(5). There we
called them X and Y bosons, but in the context of SO(10) they are called Y and Y ′ bosons.
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The generators associated with them are denoted as DYα , DY ′
α

and the generators associated
with their antiparticles are DY α

, D
Y

′
α
:

Y1 . . . Y3, Y 1 . . . Y 3,

Y ′
1 . . . Y

′
3 , Y

′
1 . . . Y ′

3,
with generators DYα , DY ′

α
, DY α

, D
Y

′
α
. (4.38)

There are twelve remaining generators that generate neither the Pati-Salam subgroup nor the
SU(5) subgroup. The gauge bosons associated with these generators are new leptoquarks,
as we will see, and they are denoted as A and A′:

A1 . . . A3, A1 . . . A3,

A′
1 . . . A

′
3, A

′
1 . . . A′

3

with generators DAα , DA′
α
, DAα

, D
A

′
α
. (4.39)

To identify the leptoquarks, let us see how the gauge bosons transform under the SM group.
The 45 decomposes into irreps of the SM group as [20]

45 = (8, 1, 0) + (1, 3, 0) + (1, 1, 0) + (3, 2,−5/6) + (3, 2, 5/6)

+ (3, 2, 1/6) + (3, 2,−1/6) + (3, 1, 1/3) + (3, 1,−1/3)

+ (1, 1, 1/2) + (1, 1, 0) + (1, 1,−1/2).

(4.40)

In the first three irreps we can recognize the transformation properties of the gluons, W±

and Z0 bosons and the photon, respectively. The last three terms, which are all color and
isospin singlets, contains the transformation properties of the right handed bosons W a

R. The
states of the remaining six irreps all carry both color and weak isospin/hypercharge. These
are the vector leptoquarks of SO(10). The (3, 2,−5/6) multiplet also appeared in SU(5)
and this is how the Y and Y ′ bosons transform. The A and A′ transform according to the
(3, 2, 1/6) irrep. Finally, the X and X bosons can be assigned to the (3, 1, 1/3) irrep. The
transformation properties of the leptoquarks can then be summarized as(

Y1 Y2 Y3
Y ′
1 Y ′

2 Y ′
3

)
∼ (3, 2, 5/6),

(
A1 A2 A3

A′
1 A′

2 A′
3

)
∼ (3, 2, 1/6),

(
X1 X2 X3

)
∼ (3, 1, 1/6),

(4.41)

where color indices run horizontally and isospin indices vertically. The antiparticles of the
leptoquarks are all assigned to the complex conjugate representations.

4.2.2 The Lagrangian

Now we turn to the Lagrangian of the gauge sector to see which leptoquark couplings it
contains. But first we make sure that the generators we use are properly normalized. Con-
ventionally, the generators of SU(N) irreps are normalized to Tr[T aT b] = δab/2. But in
SO(10), the 32 dimensional spinor representation contains a total of eight color triplets and
also eight isospin doublets. So the generators Σij should be normalized to 8 · 1/2 = 4. From
the definition of Σij it follows that for i 6= j

Tr[Σ2
ij ] = −Tr[ΓiΓjΓiΓj ] = Tr[ΓiΓiΓjΓj ] = Tr[I32×32] = 32. (4.42)
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The normalization of Σij can then be summarized as

Tr[ΣijΣkl] = 32(δikδjl − δilδjk). (4.43)

Hence, the properly normalized generators are Σ′
ij = Σij/2

√
2. Having normalized the gen-

erators, we can now write the Lagrangian of the gauge sector as

L = Ψiγµ
(
∂µ − igW ij

µ

Σij

2
√
2

)
Ψ, (4.44)

where the gauge boson matrix is [20]

W ij Σij

2
√
2
= G · UG +X · UX +

√
3

8
XB−L · UB−L

+WL · L+WR ·R+ (Aα ·DAα + Yα ·DYα

+A′
α ·DA′

α
+ Y ′

α ·DY ′
α
+ h.c.).

(4.45)

Focusing on the leptoquarks special to SO(10), the relevant parts of the gauge boson matrix
are those involving X and A bosons. For X bosons this yields the following interaction
Lagrangian [20]:

LX =
g√
2
(−dcαL /Xαe

c
L − ucαL /Xαν

c
L + dαL /X

α
eL + uαL /X

α
νL) + h.c.. (4.46)

Evidently, X bosons are always coupled to a single quark and X bosons to a single anti-
quark. Hence, if we were to assign a baryon number of −1/3 to X bosons, LX conserves
baryon number. Proton decay is therefore not mediated by gauge interactions in Pati-Salam
models. The other leptoquarks, A/A and A′/A′, do mediate proton decay, as can seen in
their interaction Lagrangians [20]:

LA =
g√
2
(−εαβγdαL /Aβd

c
γL + νceL /Aαu

α
L − ucαL /AανeL) + h.c., (4.47a)

LA′ =
g√
2
(−εαβγuαL /A

′
βd

c
γL + νceL /A

′
αd

α
L − ucαL /A

′
αeL) + h.c. (4.47b)

The possible proton decay diagrams are shown in Figure 4.1. More diagrams can be generated
for A′ bosons than for A bosons, because A bosons mostly mediate neutron decay.

4.3 Symmetry breaking and gauge coupling unification
As SU(5) was the smallest candidate for grand unification, it contained no subgroups that
could act as an intermediate stage. Consequently, the running of the couplings is determined
solely by low energy parameters. And as it has turned out, the standard model does not
automatically unify. To truly achieve gauge coupling unification at the GUT scale, one would
either have to add particles at the electroweak scale or implement at least one intermediate
symmetry. In contrast to SU(5), SO(10) contains several maximal subgroups that can serve
as intermediate symmetries, so SO(10) can be broken to the standard model in multiple
stages. These maximal subgroups are SU(5) × U(1) and the Pati-Salam group SU(4)C ×
SU(2)L × SU(2)R [8]. Using an intermediate SU(5)×U(1) symmetry scale would, however,
lead to a prediction for the proton’s lifetime that is even lower than that of minimal SU(5)
[8]. An SU(5) intermediate scale in SO(10) is therefore impossible. Consequently, in this
section we only consider symmetry breaking patterns with an intermediate Pati-Salam scale.
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Figure 4.1: Proton decay diagrams in SO(10), mediated by A and A′ bosons.

4.3.1 A single intermediate Pati-Salam symmetry scale

Including an intermediate Pati-Salam scale allows for many symmetry breaking patterns.
The simplest possibility is a breaking mechanism where the Pati-Salam scale is the only
intermediate scale. Then all leptoquarks that were found to mediate proton decay, lie at
the GUT scale. The ones associated to the Pati-Salam subgroup, which do not mediate
proton decay, lie at the intermediate scale. Two candidate scalar representations that break
the symmetry to this scale are a 54 and a 210 [21]. If the 54 is used, this also leaves a Z2

symmetry that forces the SU(2)L and SU(2)R couplings to be equal [22, 23]. This symmetry
is more commonly referred to as D-parity. However, this leads to a unification scale of
∼ 1015 GeV [22, 23], which is in disagreement with proton decay limits. The 210, on the
other hand, breaks D-parity, leading to a higher unification scale consistent with proton
decay limits [22]. The next step, where the symmetry is broken to the standard model, can
be performed by a 126 Higgs [22, 23]. This representation also plays a role in the Yukawa
sector. Finally, the symmetry is broken further to SU(3)C × U(1)Q by a 10 Higgs. Under
SU(3)C × SU(2)L × U(1)Y this decomposes as

10 = (1, 2, 1/2) + (1, 2,−1/2) + (3, 1,−1/3) + (3, 1, 1/3). (4.48)

The (1, 2, 1/2) contains the standard model Higgs, so it must stay at the electroweak scale.
To summarize, the complete breaking mechanism is

SO(10)
210−−→ SU(4)C × SU(2)L × SU(2)R
126−−→ SU(3)C × SU(2)L × U(1)Y
10−→ SU(3)C × U(1)Q.

(4.49)
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The values of the intermediate and unification mass scales follow from gauge coupling uni-
fication. In addition to the RGEs, there are several matching conditions that need to be
imposed. Continuity requires that at the Pati-Salam scale,

α3C(MI) = α4C(MI), (4.50)
α2L(MI) = α′

2L(MI). (4.51)

Note that α2L is associated with the SU(2)L symmetry at the electroweak scale, while α′
2L

corresponds to the SU(2)L symmetry at the intermediate scale. In general, whenever a
symmetry group appears multiple times in a breaking pattern, we add primes to the fine
structure constant and the β-coefficient of that group at higher scales.

At the Pati-Salam scale U(1)Y is embedded into SU(4)C × SU(2)R through Eq. (4.37).
To impose boundary conditions in this case, we must work with normalized generators. In
terms of the generators Σij , the expressions for Y and UB−L are [20]

UB−L =
1

3
(Σ12 +Σ34 +Σ65), (4.52)

Y =
1

6
(Σ12 +Σ34 +Σ65) +

1

4
(Σ78 +Σ10,9). (4.53)

From Eq. (4.43), their square traces are found to be 32/3 and 20/3, respectively. So the
normalized generators are

U ′
B−L =

√
3

8
UB−L, Y ′ =

√
3

5
Y. (4.54)

In the terms of normalized generators, the epxression for the hypercharge generator is then

Y ′ =

√
2

5
U ′
B−L +

√
3

5
R′

3. (4.55)

U ′
B−L is a generator of SU(4)C and R3 is a generator of SU(2)R. Hence, the matching

condition is

α−1
Y (MI) =

2

5
α−1
4C(MI) +

3

5
α−1
2R(MI). (4.56)

Finally, at the unification scale MU we have

α4C(MU ) = α2L(MU ) = α2R(MU ). (4.57)

The values of the fine structure constants and the β-coefficients at the electroweak scale were
given in section 2.4. The β-coefficients between the scales MI and MU are [17]

b′2L = 2, b2R = 26/3, b4C = −7/3. (4.58)

The total system of equations then consists of five matching conditions and five unknowns:
α4C(MI), α

′
2L(MI), α2R(MI),MI and MU . This yields a unique solution for the intermediate

and unification scales:

MI ≈ 3.1 · 1011 GeV, (4.59)
MU ≈ 2.5 · 1016 GeV. (4.60)

The full evolution of the fine structure constants is shown in Figure 4.2. Judging by the order
of magnitude of MI , no new physics is to be expected around the TeV scale.
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Figure 4.2: Running of the fine structure constants in SO(10) from the electroweak scale up
to the unification scale with one intermediate Pati-Salam scale.

4.3.2 Three intermediate symmetry scales

To lower the scale at which new physics occurs, multiple intermediate stages can be im-
plemented. One such model is discussed in [24]. Here, the symmetry is first broken to a
Pati-Salam symmetry with D-parity by a 54 Higgs. A 210 Higgs then breaks D-parity at
an intermediate scale MDP

. The Pati-Salam symmetry is broken again by a 210 Higgs to
an asymmetric left-right symmetry based on SU(3)C × SU(2)L ×U(1)R ×U(1)B−L. At this
stage the right-handed WR boson obtains its mass, with mass scale MWR

. Since the SU(4)C
symmetry is broken to SU(3)C , this also sets the mass scale of the leptoquarks X1 . . . X3

and X1 . . . X3. A 16 Higgs breaks the symmetry to the standard model, at which point the
right-handed ZR obtains its mass, with mass scale MZR

. As before, the final breaking stage
to SU(3)C ×U(1)Q is performed by a 10 Higgs. The total breaking mechanism thus contains
three intermediate stages:

SO(10)
54−→ SU(4)C × SU(2)L × SU(2)R ×D

210−−→ SU(4)C × SU(2)L × SU(2)R
210−−→ SU(3)C × SU(2)L × U(1)R × U(1)B−L

16−→ SU(3)C × SU(2)L × U(1)Y
10−→ SU(3)C × U(1)Q.

(4.61)

The β-coefficients in the energy range between MZR
and MU are summarized in Table 4.1.

Several more matching conditions now dictate the evolution of the coupling constants.
Eq. (4.56) turns into

α−1
Y (MZR

) =
3

5
α−1
B−L(MZR

) +
2

5
α−1
1R(MZR

), (4.62)
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Energy range Symmetry bi

MZR
−MWR

SU(3)C × SU(2)L
×U(1)R × U(1)B−L

b′3C = −7
b2L = −3
b1R = 53/12
bB−L = 33/8

MWR
−MDP

SU(4)C × SU(2)L
×SU(2)R

b4C = −19/3
b′′2L = −8/3
b2R = 8

MDP
−MU

SU(4)C × SU(2)L
×SU(2)R ×D

b4C = −2
b2LR = 8

Table 4.1: β-coefficients in the energy range between MZR
and MU . The values were taken

from [24].

and continuity at µ =MZR
requires that

α2L(MZR
) = α′

2L(MZR
), (4.63)

α3L(MZR
) = α′

3L(MZR
). (4.64)

At µ = MWR
, U(1)B−L and SU(3)C are embedded into SU(4)C and U(1)R into SU(2)R,

resulting in the conditions

α1R(MWR
) = α2R(MWR

), (4.65)
α′
2L(MWR

) = α′′
2L(MWR

), (4.66)
αB−L(MWR

) = α′
3C(MWR

) = α4C(MWR
). (4.67)

At the scale at which D-parity holds, the couplings for SU(2)L and SU(2)R must be equal,
resulting in the conditions:

α′′
2L(MDP

) = α2R(MDP
) = αDP

(MDP
), (4.68)

α4C(MDP
) = α′

4C(MDP
). (4.69)

Finally, at the unification scale

α′
4C(MU ) = α2LR(MU ). (4.70)

In total there are thirteen parameters and eleven conditions, leaving two free parameters. In
the current model it is therefore possible that MZR

lies at the TeV scale. As in [24], taking
MZR

= 5 TeV and MWR
= 108.3 GeV results in

MU ≈ 1.6 · 1016 GeV, (4.71)
MDP

≈ 4.3 · 1015 GeV, (4.72)
α−1
U ≈ 42.2. (4.73)

The running of the couplings is shown in Figure 4.3.

52



CHAPTER 4. SO(10) GRAND UNIFICATION

Figure 4.3: Running of the fine structure constants in SO(10) from the electroweak scale up
to the unification scale with three intermediate scales.

4.3.3 Comparison to experimental limits

To find out whether the scenarios discussed in the previous sections are viable, we need to
compare the predicted proton lifetime to the experimental limit τp > 2 · 1034y [16]. From
Eq. (3.74) it followed that we roughly need MU > 1016 GeV. Strictly speaking, the predicted
proton lifetime also depends on α−1

U , but the value of α−1
U typically does not change much

(compare it to SU(5), for which very similar values were found).
First we compare the estimated lower bound on MU with the scenario where there is one

intermediate Pati-Salam scale. In this scenario, the X leptoquarks lie at the intermediate
scale of roughly 1011 GeV. These leptoquarks do not mediate proton decay, so their relatively
low masses are not an issue. The A/A′ and Y/Y ′ leptoquarks, which do mediate proton
decay, lie the unification scale of roughly 1016 GeV. Thus, the scenario with one intermediate
scale is not excluded.

Next we compare the lower bound to the scenario with three intermediate scales. Now,
the X leptoquarks lie at the scale MWR

at which the right handed WR boson obtains its mass.
The A/A′ and Y/Y ′ leptoquarks still lie at the unification scale. In this scenario, imposing
gauge coupling unification leaves two free parameters. In particular, this means that we can
vary the two lowest intermediate scales: MZR

and MWR
. In Eq. (4.71) it can be seen that

the values for MZR
and MWR

from [24] yield a prediction for the unification scale that is
right at the estimated. So this scenario is not excluded.

However, there might be more values for MZR
and MWR

that are consistent with the
experimental limit. Figure 4.4 shows MU as a function of MZR

for several values of MWR

ranging between 104 GeV and 1014 GeV. A noteworthy feature is that MU increases with
MZR

but decreases with MWR
. Thus, the proton decay limit only offers an upper bound on

MWR
, meaning that the masses of the X leptoquarks could in principle be low. From the

graph it can be seen that MWR
cannot exceed roughly 109 GeV in order to keep MU above

1016 GeV. Lower bounds on the mass of the WR boson come from experimental searches. For
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instance, the CMS experiment at CERN LHC excluded the mass range below 5 TeV [25].
So in the scenario where there are three intermediate scales, Tev scale leptoquarks are not
excluded. An example of a scenario where MWR

lies at the TeV scale is shown in Figure 4.5.
Here we took MZR

= 5 TeV and MWR
= 20 TeV. This results in MU ≈ 2 · 1017 GeV, which

is well above the lower bound. As far as we are aware, scenarios like this have not yet been
explored in any existing literature.

Figure 4.4: The unification scale MU as a function of MZR
for several values of MWR

. For
each value of MWR

, MZR
ranges between MEW and MWR

.

Figure 4.5: Example of a scenario where MWR
lies at the TeV scale.

4.4 Scalar leptoquarks
In this section we will see that aside from vector leptoquarks, minimal SO(10) also contains
many scalar leptoquarks. A mass term takes the form m(ψc)LCψL+ h.c., where C is the
Dirac charge conjugation matrix. So to obtain masses for the fermions, we need to couple
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left handed SO(10) spinors to each other:

LY = ΨT
LBCΦΨL + h.c. (4.74)

Here, Φ is some yet to be determined Higgs field and B is the SO(10) charge conjugation ma-
trix introduced earlier. B is inserted because the combination ΨT

LB transforms into ΨT
LBU

†
R.

To see this, consider a transformation U under which Ψ → UΨ. In that case the left handed
SO(10) spinor ΨL transforms like ΨL → ULΨL, where UL = P+U . Then from Eq. (4.26) it
follows that

(ΨT
LBCΦΨL)

′ = ΨT
LU

T
LBCΦ

′ULΨL = ΨT
LBCU

†
RΦ

′ULΨL. (4.75)

To make this invariant under SO(10) we need that Φ transforms as

Φ′ = URΦU
†
L. (4.76)

In other words, Φ is in the 16R × 16L representation. But since the 16L and 16R represen-
tations are each other’s conjugates, this is just the 16× 16 representation of SO(10), whose
decomposition into irreps is [17]

16× 16 = 10 + 120 + 126. (4.77)

Two of these irreps, the 10 and the 126, already appeared in the symmetry breaking patterns.
Apparently, the 120 can also be used to generate masses for the fermions. The most minimal
choice would be to only use the smallest representation: the 10. But just like in SU(5) this
leads to wrong mass relations. At least one other irrep is necessary to obtain the correct
fermion masses [26]. Thus, in general the Yukawa sector (the matrices B and C will be left
out) takes the form

LY = Y10Ψ
T
LΦ10ΨL + Y120Ψ

T
LΦ120ΨL + Y126Ψ

T
LΦ126ΨL + h.c., (4.78)

where Y10, Y120 and Y126 are Yukawa matrices. Since the Higgs representations used are
rather large, it is no surprise that many scalar leptoquarks are contained in them. This
opens up the possibility for scalar-mediated proton decay in SO(10).

Nevertheless, this type of proton decay is generally suppressed compared to those medi-
ated by vector leptoquarks, because the Yukawa coupling of the first generation is relatively
small: Yu/g ≈ 10−4 [27]. This holds provided that the scalar and vector leptoquarks have
similar mass scales. In principle, the masses of Higgs particles have a lot of freedom. A
simple rule that is often used is the extended survival hypothesis [28], which says that only
those Higgs fields that obtain a vev at some scale, obtain a mass at that scale. All other
fields stay at the grand unification scale. Since leptoquarks necessarily carry color, none of
them are allowed to obtain vevs. All leptoquarks are therefore assumed to obtain masses at
the GUT scale. Consequently, these particles are at least as heavy as the vector leptoquarks.

In this section, the scalar leptoquarks appearing in each representation are discussed,
based on the analysis in [27]. The decomposition of the 10 under the standard model group
is given in Eq. (4.48). It contains two triplets carrying both color and hypercharge:

Tα = (3, 1,−1/3), Tα = (3, 1, 1/3). (4.79)

55



CHAPTER 4. SO(10) GRAND UNIFICATION

These are the only leptoquarks in the 10. Their Lagrangian takes the form [27]

L10
LQ ∼ ucαLT

αecL +
1

2
εαβγu

αT
L T βdγL − 1

2
εαβγd

α
LT

βuγL

− εαβγucαLT βd
c
γL − uαLTαeL + dαLTανeL + h.c.

(4.80)

Since Tα and Tα have both di-quark couplings and direct lepto-quark couplings, they can
mediate proton decay. Unlike the 10, the sizes of the 120 and 126 representations make them
much less tangible. Generally, these representations are first decomposed in terms of SU(5)
irreps [29]. Here we discuss the existence of leptoquarks in terms of these irreps. The 126
decomposes as

126 = 1 + 10 + 15 + 5 + 45 + 50. (4.81)

The one-dimensional irrep involves couplings to the right-handed neutrino, so it is irrelevant
for proton decay. The 10 and 15 contain leptoquarks, but they conserve baryon number. The
5, 45 and 50 all contain a leptoquark with the same couplings as Tα, so they mediate proton
decay. Similarly, the 120 decomposes as

120 = 5 + 5 + 10 + 10 + 45 + 45. (4.82)

In this case the 5 does not couple to quarks. The triplet in the 5 however, has the same
couplings as Tα. Leptoquarks can be found in both the 10 and 10, but none of them violate
baryon number. The 45 and 45 contain two leptoquarks. They have di-quark couplings in
the 45 and their conjugates have lepto-quark couplings in the 45, so they contribute to proton
decay.

4.5 Conclusions
SO(10) extends SU(5) by including all fermions into a single 16-dimensional spinor repre-
sentation. Since the SM only contains fifteen fermions, this means that SO(10) predicts the
existence of one extra fermion. This extra state transforms as a singlet under the SM group,
so it may correspond to the right handed neutrino.

Two important subgroups of SO(10) are the Pati-salam group SU(4)C×SU(2)L×SU(2)R
and SU(5). The Pati-Salam subgroup has vector leptoquarks associated with it, which are
denoted as X bosons. Their Lagrangian conserves baryon number, so they do not mediate
proton decay. The SU(5) subgroups also has vector leptoquarks associated with it, which
are denoted as Y/Y ′ bosons. These bosons, which originally appeared in minimal SU(5), do
mediate proton decay. Finally, there are vector leptoquarks that are associated with neither
the Pati-Salam subgroup nor the SU(5) subgroup. These are denoted as A/A′ bosons and
they mediate proton decay.

Since SO(10) contains many subgroups which in turn contain the SM group, the existence
of one or more intermediate symmetry scales is allowed. The option where SO(10) is first
broken to SU(5) is ruled out, as it would lead to a prediction for the proton’s lifetime that
is inconsistent with experimental data. The other option is to include an intermediate Pati-
Salam scale. If only one intermediate scale is included, this results in MI ≈ 1011 GeV and
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MU ≈ 1016. The X leptoquarks would therefore have a mass around 1011 GeV, while the
Y/Y ′ and A/A′ leptoquarks would lie around 1016 GeV.

If more intermediate stages are included, the scale at which new physics occurs can be
lowered. One such model includes two additional scales MZR

and MWR
, at which the right-

handed ZR and WR bosons obtain masses. In this scenario MWR
is also the scale at which

the X leptoquarks lie, while the Y/Y ′ and A/A′ leptoquarks still lie at the unification scale.
Imposing gauge coupling unification, does not fix the values of MZR

and MWR
. The only

constraints stem from experimental measurements, such as proton decay limits and lower
bounds on the WR mass. This allows for the possibility that both MZR

and MWR
lie at

the TeV scale. Thus, the scenario with three intermediate scales allows for TeV scale vector
leptoquarks.

The Yukawa sector consists of those scalar multiplets appearing in the tensor product
16 × 16 = 10 + 120 + 126. Many leptoquarks are contained in these multiplets and some of
them mediate proton decay. The ones that do not mediate proton decay could, in principle,
be light. However, in accordance with the extended survival hypothesis, the masses of all
scalar leptoquarks are generally believed to lie at the unification scale of at least 1016 GeV.
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Chapter 5

Trinification

Both SU(5) and SO(10) GUTs were based on simple groups in which quarks and leptons
appeared in the same irreducible representations. This led to gauge mediated proton decay,
which has not been observed yet. In trinification this is avoided by asserting that the gauge
group is G333 = SU(3)C ×SU(3)L×SU(3)R [22]. The fermions are then placed in the funda-
mental 27 representation of the exceptional group E6, which has G333 as one of its subgroups.
As we will see, this means that quarks and leptons appear in different irreducible represen-
tations, which forbids gauge mediated proton decay. Scalar mediated proton decay, on the
other hand, is possible. Since gauge-mediated proton decay is generally more important, this
means that a lower unification scale is acceptable.

The three factor groups of the trinification model have three separate couplings gC , gL
and gR. Gauge coupling unification is ensured by imposing an additional Z3 symmetry that
interchanges quarks with leptons, leptons with antiquarks and antiquarks with quarks [30].
Since Z3 is a finite and discrete group, no gauge bosons are associated with it.

An additional advantage of trinification is its left-right symmetry. In the standard model
the asymmetry between left and right handed fields has to be inserted manually. So there is
no natural explanation for parity violation. Trinification suggests that this assymmetry is a
result of spontaneous symmetry breaking and only appears at low energies.

The setup of this chapter is as follows. The first section discusses how fermions are placed
into the 27 representation and how we can deal with their transformations under G333. The
next section examines the gauge sector and shows that it conserves baryon number. Section
3 focuses on how the symmetry can be broken to the standard model and which energy scales
are possible. We then turn our attention to the mass scales of fermions and their mixings
within a generation. The final section discusses the scalar leptoquarks of the trinfication
model and the consequences they have for proton decay.

5.1 The 27 representation of E6

The fermions are placed in the fundamental 27 representation of E6 [31]. This introduces
twelve new fermions alongside the fifteen standard model fermions. The 27 decomposes into
three irreps of G333:

27 = (1, 3, 3) + (3, 1, 3) + (3, 3, 1) = ψl + ψqc + ψq. (5.1)
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Each multiplet is a cyclic permutation of others, in accordance with the Z3 symmetry. The
fermions now have to be assigned, such that they possess the right transformation properties
under the SM group. The understanding of these transformations can be simplified by noting
that each multiplet is a direct product of a fundamental and an antifundamental representa-
tion of SU(3). The generators of the three SU(3) subgroups are denoted T a

C , T a
L and T a

R. For
the fundamental representation, these can be expressed in terms of the Gell-man matrices as
T a
C = T a

L = T a
R = λa/2, where

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2


(5.2)

Note that the normalization of the generators is such that Tr(T aT b) = δab/2. For the 3
representation, the generators are T a

C,L,R = −(T a
C,L,R)

∗ = −(T a
C,L,R)

T .
To illustrate how a general G333 transformation can be parameterized, we focus on the

irrep ψl ∼ (1, 3, 3). It transforms according to the direct product of the 3 of SU(3)L and the
3 of SU(3)R. ψl thus consists of 3 · 3 = 9 states ψij

l , i, j = 1, 2, 3. We use the convention
from [22], where fundamental representations act on the first index and antifundamental
representations act on the second. Then, given a 3 transformation UL ∈ SU(3)L and a 3
transformation UR ∈ SU(3)R, ψl transforms as

ψl → ψ′
l = ULψlU

†
R (5.3)

= ψl − iαaT
a
Lψl − iβaψl(T

a
R)

T + . . . (5.4)
= ψl − iαaT

a
Lψl + iβaψlT

a
R + . . . . (5.5)

Note that we took the hermitian conjugate of UR to obtain the 3 of SU(3)R. The transfor-
mation properties of the other irreps, ψqc and ψq, are obtained by cyclically permuting L, R
and C. The action of a general G333 transformation on the fermion multiplets can then be
parameterized as

ψl → ψ′
l = ULψlU

†
R = ψl − iαaT

a
Lψl − iβaψl(T

a
R)

T + . . . ,

ψqc → ψ′
qc = URψqcU

†
C = ψqc − iβaT

a
Rψqc − iγaψqc(T

a
C)

T + . . . ,

ψq → ψ′
q = UCψqU

†
L = ψq − iγaT

a
Cψq − iαaψq(T

a
L)

T + . . .

(5.6)

Since we are dealing with direct product representations, it will be useful to introduce upper
and lower indices. The convention for upper and lower indices is similar to the one discussed
in section 2.1: fundamental representations are indicated by an upper index and antifunda-
mental representations are indicated by a lower index. Since all G333 irreps contained in the

59



CHAPTER 5. TRINIFICATION

27 are direct products of a 3 and a 3 representation, each multiplet will have an upper and a
lower index. The indices on the multiplets are then written as (ψl)

i
j , (ψqc)

i
j and (ψq)

i
j . But

note that whether an index refers to the 3(3) of SU(3)C , SU(3)L or SU(3)R, depends on the
multiplet. For example, for ψl an upper index refers to the 3 of SU(3)L and a lower index
refers to the 3 of SU(3)R.

The transformation properties under the SM subgroup can be obtained if we restrict to
the appropriate generators. The SU(3)C subgroup is generated by T 1

C . . . T
8
C and the SU(2)L

subgroup by T 1
L, T 2

L and T 3
L. So from Eq. (5.6) we see that each column in ψl transforms

as a color singlet, whereas in each row the first two entries form an isospin doublet and the
last is a singlet. The rows in ψqc are color antitriplets and isospin singlets. And finally, the
columns in ψq are color triplets and the rows contain an isospin (anti) doublet and a singlet.
To summarize, the decomposition of the irreps under SU(3)C × SU(2)L is

ψl → 3(1, 2) + 3(1, 1), (5.7)
ψqc → 3(3, 1), (5.8)
ψq → (3, 2) + (3, 1). (5.9)

The hypercharge quantum numbers are obtained from the following combination of the gen-
erators (see appendix A):

Y = T 3
R − 1√

3

(
T 8
L + T 8

R

)
. (5.10)

In expressions like these, T a
C,L,R is shorthand for whichever generator corresponds to the

SU(3)C,L,R representation that a given multiplet is in. So whenever it is in the 3, the
generators T a

C,L,R are used or the contribution disappears if it is in the trivial representation.
Moreover, the index that each generator acts on still follows the convention mentioned before.
The action of Y on the different multiplets is then given explicitly by

Y ψl = − 1√
3
T 8
Lψl + ψl

(
T
3
R − 1√

3
T
8
R

)
, (5.11)

Y ψqc =

(
T 3
R − 1√

3
T 8
R

)
ψqc , (5.12)

Y ψq = − 1√
3
ψqT

8
L. (5.13)

From this we can calculate the hypercharge quantum numbers of the states in each multiplet:

Y (ψl) =

−1/2 1/2 −1/2
−1/2 1/2 −1/2
0 1 0

 , Y (ψqc) =

 1/3 1/3 1/3
−2/3 −2/3 −2/3
1/3 1/3 1/3

 ,

Y (ψq) =

1/6 1/6 −1/3
1/6 1/6 −1/3
1/6 1/6 −1/3

 .

(5.14)

The expression for the electric charge operator is (see appendix A)

Q = T 3
L + Y = T 3

L + T 3
R − 1√

3

(
T 8
L + T 8

R

)
. (5.15)
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The electric charges of the states are then

Q(ψl) =

 0 1 0
−1 0 −1
0 1 0

 , Q(ψqc) =

 1/3 1/3 1/3
−2/3 −2/3 −2/3
1/3 1/3 1/3

 ,

Q(ψq) =

−1/3 2/3 −1/3
−1/3 2/3 −1/3
−1/3 2/3 −1/3

 .

(5.16)

Having determined the SU(3)C , SU(2)L and U(1)Y quantum numbers of the states, we can
decompose the 27 into irreps of the SM group as follows:

ψl → (1, 2, 1/2) + 2(1, 2,−1/2) + (1, 1, 1) + 2(1, 1, 0),

ψqc → (3, 1,−2/3) + 2(3, 1, 1/3),

ψq → (3, 2, 1/6) + (3, 1,−1/3).

(5.17)

We can now determine how the fermions can be placed in irreps [31]. In the decomposition
of ψl we can recognize two lepton doublets with the same transformation properties as the
doublet LL from the standard model. However, we do not directly assign LL to one of the
irreps. This is because, as we will later see, the vev of some of the scalar fields that are
responsible for generating masses, can in general be non-diagonal. As a result, some of states
contained in ψl, ψqc and ψq that we use, will mix with each other and are therefore not mass
eigenstates. In anticipation of this, we use different notation for states that are not mass
eigenstates.

The fields corresponding to two (1, 2,−1/2)) multiplets are denoted E and L . Out
of these, two mass eigenstates can be formed, L and E. L is the familiar lepton doublet
containing (νe)L and (e−)L. The other (1, 2, 1/2) doublet with opposite hypercharge is the
conjugate of E. To the (1, 1, 1) we can assign the conjugate of the right handed electron
(eR)

c = (ec)L. The two remaining (1, 1, 0) multiplets, denoted N1 and N2, are sterile w.r.t.
the standard model. The mass eigenstates corresponding to these are N1 and N2. The field
N1 pairs up with (νe)L to form a Dirac neutrino, so N1 is the right handed neutrino.

In ψqc we find the transformation properties of (uc)L and twice that of (dc)L. The latter
two multiplets are denoted Dc and Bc. The conjugate of the usual down quark dc will be a
linear combination of the two and the field orthogonal to that is denoted Bc.

Finally, ψq contains the transformation properties of the quark doublet QL (up to a basis
transformation) and the B field. The fields of each G333 multiplet can now be placed in 3×3
matrices as follows [31]:

ψl =

(
(E ) (Ec) (L )
N1 ec N2

)
, ψqc =

Dc

uc

Bc

 ,

ψq =
(
−d u B

)
,

(5.18)

where all fields are left-handed and color indices have been omitted. If the fermions are
assigned in this way, we do not directly use the quark doublet QL, but instead use the
conjugate Q̃ = (QL)

T iσ2 =
(
−d u

)
. In this chapter, this will just be called Q.
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5.2 Baryon number conservation in the gauge sector
Generally baryon number violating processes mediated by gauge bosons are the largest con-
tribution to proton decay. The masses of these bosons lie around the unification scale, so this
puts constraints on the magnitude of the unification scale. In trinification models, however,
this constraint can be relaxed, because proton decay cannot be mediated by gauge bosons.
This can be seen more explicitly by writing out the Lagrangian for the gauge sector. Trini-
fication consists of three copies of SU(3), so it contains 3 · 8 = 24 gauge bosons. Thus,
trinification introduces twelve new gauge bosons. The generators of each of the three SU(3)
subgroups commute with those in the other subgroups, so the adjoint of G333 consists of three
copies of the eight-dimensional adjoint of SU(3):

24 = (8, 1, 1) + (1, 8, 1) + (1, 1, 8), (5.19)

The first multiplet contains the transformation properties of the eight gluon fields G1 . . . G8.
The second multiplet contains left handed gauge bosons W 1

L . . .W
8
L. Trinification also intro-

duces right handed gauge bosons W 1
R . . .W

8
R, which are contained in the third multiplet. The

photon, W± and Z0 are linear combinations of left handed and right handed bosons. The
assignment of the gauge bosons is therefore as follows:

G1 . . . G8 → (8, 1, 1),

W 1
L . . .W

8
L → (1, 8, 1),

W 1
R . . .W

8
R → (1, 1, 8).

(5.20)

Now we need to find out how the covariant derivative acts on the multiplets ψl, ψqc and ψq.
However, since we already know how the generators T a

C,L,R act on these multiplets, we can
write it as

Dµψl = ∂µψl − igLW
a
LµT

a
Lψl − igRW

a
Rµψl(T

a
R)

T ,

Dµψqc = ∂µψqc − igRW
a
RµT

a
Rψqc − igCG

a
µψqc(T

a
C)

T ,

Dµψq = ∂µψq − igCG
a
µT

a
Cψq − igLW

a
Lµψq(T

a
L)

T .

(5.21)

The corresponding Lagrangian for the gauge sector is

L = Tr
[
ψl /Dψl

]
+ Tr

[
ψqc /Dψqc

]
+ Tr

[
ψq /Dψq

]
. (5.22)

It follows from this expression that the different multiplets ψl, ψqc and ψq do not mix in the
gauge sector. We can therefore phase rotate each multiplet individually without changing
the Lagrangian, meaning that the gauge sector has an accidental symmetry [31]:

U(1)l × U(1)qc × U(1)q. (5.23)

The linear combination q−qc must be proportional to baryon number, so proton decay cannot
be mediated by gauge bosons in the trinification model. Vector leptoquarks are absent in
trinification. The only particles that do violate baryon number conservation are scalar Higgs
particles.
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5.3 Symmetry breaking and gauge coupling unification
In this section we explore the ways in which trinification can be broken to the standard model
and the energy scales associated with each symmetry breaking pattern. Compared to the
standard model, trinification contains many new particles. The scalar sector, as we will see,
contains several new colorless scalar doublets in addition to the SM Higgs doublet. If these
were to obtain low enough masses, they can change the running of the couplings such that
one-step unification is possible [32]. The other option is to implement intermediate scales.
Trinification has an SU(3)C ×SU(2)L×SU(2)R×U(1)L+R subgroup [33], which can be used
for this purpose. We consider both the cases with and without an intermediate scale.

5.3.1 The symmetry breaking scheme

The simplest way to break the symmetry involves two scalar multiplets, Φ1 and Φ2, trans-
forming according to the 27 representation [22]. One scalar multiplet would not suffice,
because its vev can always be diagonalized by a basis transformation. The theory would
therefore always contain a left-right symmetry. If another scalar multiplet is added, both
vevs cannot be diagonalized simultaneously, allowing us to break the left-right symmetry.
The components of the scalar multiplets are denoted as follows [31]:

Φl =

(
(φ1) (φ2) (φ3)
S1 S2 S3

)
, Φqc =

Dc
H

U c
H

Bc
H

 ,

Φq =
(
−DH UH BH

)
.

(5.24)

Just as for the fermions, we can define a scalar doublet QH =
(
−DH UH

)
.

To leave SU(3)C unbroken, only the colorless components can obtain vevs. So the only
components that play a role in the breaking mechanism are Φ1,2

l ∼ (1, 3, 3). If the vev of Φ1
l

is kept diagonalized, the most general expression for 〈Φ1
l 〉 is [30, 31]

〈Φ1
l 〉 =

b1 0 0
0 v1 0
0 0 M1

 , (5.25)

where M1 lies at the unification scale, while v1 and b1 lie at the electroweak scale. Note that
the doublet φ2 transforms as (1, 2, 1/2) under the SM subgroup, so φ2 can be identified with
the standard model Higgs doublet. Its isospin down component obtains the vev v1.

The vev of Φ2
L can contain off-diagonal components as well. The most general expression

for 〈Φ2
l 〉 that breaks G333 to SU(3)C × U(1)Q is [30, 31]:

〈Φ2
l 〉 =

b2 0 b3
0 v2 0
M 0 M2

 , (5.26)

where M2 lies at the unification scale, M lies at the intermediate scale and v2, b2 and b3
lie at the electroweak scale. Precisely which generators are broken by the vevs at each
scale is shown in Appendix A. Here we summarize the results. The parameters M1 and
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M2 break the generators T 4
L,R . . . T

8
L,R and leave only the combination (T 8

L + T 8
R) unbroken.

Thus, the symmetry that remains is SU(3)C ×SU(2)L×SU(2)R×U(1)L+R. M then breaks
SU(2)R × U(1)L+R to U(1)Y at the intermediate scale. The expression for the hypercharge
generator was given in Eq. (5.10). At the electroweak scale, the SU(2)L×U(1)Y symmetry is
reduced further to U(1)Q by the remaining vev parameters v1, v2, b1, b2, b3, which all break
the same generators. Apart from T a

C , this leaves only one combination of generators, which
is electric charge (given in Eq. 5.15). The symmetry breaking chain can then be summarized
as

G333 × Z3
M1−−→ SU(3)C × SU(2)L × SU(2)R × U(1)L+R

M−→ SU(3)C × SU(2)L × U(1)Y
v1−→ SU(3)C × U(1)Q.

(5.27)

5.3.2 The scalar potential

The most general potential, invariant under G333, that can generate the vevs 〈Φ1,2
l 〉, consists

of many terms [22]. Since the trinification group only has SU(N) factors, the concepts
introduced in section 2.1 will be useful in finding the invariants. Recall that for SU(3) there
are three kinds of invariant tensors: the Kronecker deltaa δij and the antisymmetric symbols
εijk and εijk. These three can be used to form invariants.

For the fermion multiplets we introduced upper and lower indices. Since the scalar fields
transform according to the same representation, we do the same for the scalar multiplets.
The fields are then written as (Φa

l )
i
j , (Φa

qc)
i
j and (Φa

l )
i
j . But as for the fermions, an upper

(lower) index may refer to the 3(3) of either SU(3)C , SU(3)L or SU(3)R. When contracting
indices with invariant tensors, we have to make sure that the indices refer to the same SU(3)
group. For instance consider combining two scalar multiplets as (Φa∗

l )ij(Φ
b∗
l )ji = Tr[(Φa

l )
†Φb

l ].
This will then transform as

Tr[(Φa
l )

†Φb
l ] → Tr[UR(Φ

a
l )

†U †
LULΦ

b
lU

†
R]

= Tr[U †
RUR(Φ

a
l )

†Φb
l ]

= Tr[(Φa
l )

†Φb
l ].

(5.28)

So it is an invariant. But now consider for example Tr[(Φa
l )

†Φb
q]. This transforms as

Tr[(Φa
l )

†Φb
l ] → Tr[UR(Φ

a
l )

†U †
LUCΦ

b
qU

†
L]. (5.29)

This is not invariant, since in general U †
LUC 6= I and U †

LUR 6= I. So we see that the indices
we contract must refer to the same SU(3) group. We then define

Φ
a
αΦ

b
α ≡ (Φa∗

α )ji (Φ
b
α)

i
j = Tr

[
(Φa

α)
†Φb

α

]
, (5.30)

where the subscript α can take any of the values l, qc or q. The invariants that can be formed
using two scalar multiplets are then

Φ
a
l Φ

b
l , Φ

a
qcΦ

b
qc , Φ

a
qΦ

b
q (5.31)
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Now we consider combining three scalar multiplets. There are two options. First, we can
contract pairs of indices using δij . However, this only gives an invariant if all three scalar
multiplets are in different irreps:

Φa
qΦ

b
qcΦ

c
l ≡ (Φa

q)
i
j(Φ

b
qc)

j
k(Φ

c
l )

k
i = Tr

[
Φa
qΦ

b
qcΦ

c
l

]
. (5.32)

This transforms as

Φa
qΦ

b
qcΦ

c
l → Tr

[
URΦ

a
qcU

†
CUCΦ

b
qU

†
LULΦ

c
lU

†
R

]
= Tr

[
Φa
qcΦ

b
qΦ

c
l

]
= Φa

qΦ
b
qcΦ

c
l ,

(5.33)

confirming that it is invariant. If the fields would not be in different irreps we would get
products like U †

CUR, which are not equal to the identity matrix.
The second option requires that all three fields are in the same irrep. In that case, we

can antisymmetrize on all upper indices and all lower indices separately:

Φa
αΦ

b
αΦ

c
α ≡ εijkεrst(Φ

a
α)

r
i (Φ

b
α)

s
j(Φ

c
α)

t
k, (5.34)

where, as before, the subscript α may take any of the values l, qc or q. The invariants that
can be formed using three scalar multiplets are thus given by

Φa
qΦ

b
qcΦ

c
l , Φa

l Φ
b
lΦ

c
l , Φa

qcΦ
b
qcΦ

c
qc , Φa

qΦ
b
qΦ

c
q. (5.35)

Up to cubic terms the Higgs potential is then given by

V (Φ1,Φ2) = − µ21lΦ
1
lΦ

1
l − µ22lΦ

2
lΦ

2
l + γ1detΦ1

l + γ2detΦ2
l

+ γ3Φ
1
lΦ

1
lΦ

2
l + γ4Φ

1
lΦ

2
lΦ

2
l + γ5Φ

1
qΦ

1
qcΦ

1
l + γ6Φ

2
qΦ

2
qcΦ

2
l

+ γ7Φ
1
qΦ

1
qcΦ

2
l + γ8Φ

1
qΦ

2
qcΦ

1
l + γ9Φ

2
qΦ

1
qcΦ

1
l

+ γ10Φ
2
qΦ

2
qcΦ

1
l + γ11Φ

2
qΦ

1
qcΦ

2
l + γ12Φ

1
qΦ

2
qcΦ

2
l + cyclic + h.c.,

(5.36)

where ’cyclic’ means any terms that are obtained by cyclically permuting the subscripts l, qc
and q. With only cubic terms and lower included, the quadratic terms determine the masses
of the Higgs bosons and the cubic terms lead to additional mixing and mass splitting after
spontaneous symmetry breaking. We could go on and include quartic terms as well, which
would have additional contributions to the masses and mixing. For simplicity these are left
out. As a final remark, it is worth noting that the notation introduced here for the different
kinds of couplings, is not specific to scalar multiplets. Scalar particles and fermions have the
same transformation properties in trinification, so the invariants we found work just as well
for fermions. So for instance, some of the scalar fields can be replaced by fermions, as is done
in the Yukawa sector.

5.3.3 Gauge coupling unification

In this section we use the RGEs to obtain the possible mass scales in trinification. First
we consider the case where G333 is broken immediately to the standard model. In SU(5)
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we saw that if the particle spectrum below the GUT scale stays the same, gauge coupling
unification does not happen automatically. In trinification this can be fixed, by giving the
six Higgs doublets in Φ1

l and Φ2
l a mass around the electroweak scale [32]. This modifies the

β-coefficients in such a way that one-step unification might be possible. Nevertheless, only
the SM Higgs doublet has been found at the electroweak scale. The five other Higgs doublets
may possibly lie around the TeV scale.

Before we calculate the β-coefficients we first normalize the hypercharge generator. To do
this the result from Eq. (2.103) can be used. In the expression for the hypercharge generator
(Eq. 5.10), one can see that the sum of the squares of the coefficients is 1+ 1/3+ 1/3 = 5/3.
So the normalized hypercharge generator is

Y ′ =

√
3

5
Y, (5.37)

which agrees with Eq. (2.87).
Since Φ1

l and Φ2
l are color singlets, only the β-coefficients of SU(2)L and U(1)Y are

changed: bY and b2L. The coefficient for SU(3)C stays at b3C = −7. If there are Nf fermion
generations and NH Higgs doublets, the general expressions for bY and b2L are

bY =
4

3
Nf +

1

10
NH , (5.38)

b2L =
4

3
Nf +

1

6
NH − 22

3
. (5.39)

For three generations and six Higgs doublets this gives

bY =
23

5
, b2L = −7

3
. (5.40)

So we see that bY has increased from 41/10 to 23/5 and b2L has increased from −19/6 to
−7/3). This means that the slopes of α−1

Y and α−1
2L will both decrease (note that β-coefficients

appear with a minus sign in the RGEs), but the slope of α−1
2L decreases more. If we plot

the running (Figure 5.1) we see the couplings become very close to each other around 1014

GeV. Compare this to Figure 3.2 from the chapter about SU(5). There we saw that the
couplings intersected each other at energy scales that lied several orders of magnitude apart.
So unification was impossible and the only way to make it work, was to tweak the parameters
somewhat. But now that we have included five more Higgs doublets, the couplings intersect
at scales that lie much closer to each other, without ever tweaking any parameters. While
unification as shown Figure 5.1 is not exact, one has to keep in mind that this is only a
leading order approximation (see section 2.4). Within the accuracy of this approximation,
we can say that the couplings unify around 1014 GeV [32]. In a GUT this would normally
be disastrously low, but trinification has the advantage that gauge bosons do not mediate
proton decay.

Gauge coupling unification can also be ensured by including an intermediate SU(3)C ×
SU(2)L × SU(2)R × U(1)L+R scale. First we determine which particles are present at each
scale. For fermions, we assume that only the SM fermions contribute to the RGEs at the
electroweak scale. The right handed neutrino N1 is an SM singlet, so it can only contribute
past the intermediate scale. As in SO(10), we assume that only those Higgs particles are
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Figure 5.1: Running of the fine structure constants in trinification with six electroweak-scale
Higgs doublets.

present that obtain vevs at or below a given scale. Looking at Eqs. (5.25) and (5.26), this
means that there are a total of five Higgs doublets present at the electroweak scale.

Past the intermediate scale, the SU(3)C ×SU(2)L×SU(2)R×U(1)L+R symmetry holds,
so we will need to know the decomposition of the 27 under this group. The SU(3)C and
SU(2)L quantum numbers do not change, but now there is also a right handed isospin group
SU(2)R, generated by T 1

R . . . T
3
R. From the general transformation Eq. (5.6), it then follows

that the first two states in each row of ψl form a right isospin doublet and so do the first two
states in each column of ψqc . All the states in ψq are SU(2)R singlets.

The U(1)L+R subgroup is generated by

TL+R =
1√
2
(T 8

L + T 8
R) (5.41)

The factor 1/
√
2 ensures that it has the same normalization as the other generators of G333.

However, it is customary to normalize it as

TB−L =

√
8

3
TL+R, (5.42)

which corresponds to B −L in a different basis [30]. For the RGEs, it is still the eigenvalues
of TL+R that are relevant, since the coupling constants associated with normalized generators
are assumed to unify. We can now decompose the multiplets in the 27 in terms of SU(3)C ×
SU(2)L × SU(2)R × U(1)B−L as follows:

ψl =

(
(1, 2, 2, 0) (1, 2, 1, 1)
(1, 1, 2,−1) (1, 1, 1, 0)

)
, ψqc =

(
(3, 1, 2, 1/3)
(3, 1, 1,−2/3)

)
,

ψq =
(
(3, 2, 1,−1/3) (3, 1, 1, 2/3)

)
.

(5.43)

For the contribution from Higgs particles we should now also include the multiplet that
obtains the intermediate scale vev M . The decompositions of the particles that contribute
to the RGEs at each scale and the β-coefficients are summarized in Table 5.1.
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Energy range Symmetry Fermions Scalars bi

MEW −MI
SU(3)C × SU(2)L

×U(1)Y

(1, 2,−1/2)
(1, 1,−1)
(3, 2, 1/6)
(3, 1, 2/3)
(3, 1,−1/3)

2(1, 2, 1/2)
3(1, 2,−1/2)

b3C = −7
b2L = −5/2
bY = 9/2

MI −MU
SU(3)C × SU(2)L

×SU(2)R × U(1)B−L

(1, 2, 1, 1)
(1, 1, 2,−1)
(3, 1, 2, 1/3)
(3, 2, 1,−1/3)

2(1, 2, 2, 0)
(1, 2, 1, 1)
(1, 1, 2,−1)

b3C = −7
b2L = −5/2
b2R = −5/2
bL+R = 9/2

Table 5.1: Decompositions of the particles that contribute to the RGEs at each scale and the
associated β-coefficients.

Finally, there are several matching conditions which need to be satisfied. At MI , U(1)Y
is embedded in SU(2)R × U(1)L+R through Eq. (5.10). In terms of normalized generators,
this expression becomes

Y ′ =

√
3

5
T 3
R −

√
2

5
TL+R. (5.44)

The corresponding matching condition is then

α−1
Y (MI) =

3

5
α−1
2R(MI) +

2

5
α−1
L+R(MI), (5.45)

At MI , continuity requires that

α2L(MI) = α′
2L(MI), (5.46)

α3C(MI) = α′
3C(MI). (5.47)

Finally, at the unification scale MU we have

α′
3C(MU ) = α′

2L(MU ) = α2R(MU ) = αL+R(MU ). (5.48)

This yields six conditions on the six unknowns α2L(MI), α3C(MI), α2R(MI), αL+R(MI), MI

and MU . Hence, we get a unique solution for the intermediate and unification scales:

MI ≈ 1.0 · 1011 GeV, (5.49)
MU ≈ 1.3 · 1016 GeV. (5.50)

The running of the couplings is shown in Figure 5.2. Note that since the β-coefficients
for SU(2)L and SU(2)R at the intermediate scale are identical, their running overlaps. In
conclusion, the current model predicts that the only new physics that can occur at the TeV
scale, is the production of additional Higgs doublets. All other new particles lie at a mass
scale of at least 1011 GeV.
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Figure 5.2: Running of the fine structure constants in trinification, with one intermediate
scale.

5.4 Fermion mixing within generations
The masses of the fermions originate from the Yukawa sector after spontaneous symmetry
breaking. On top of mixing between generations, the minimal Yukawa sector also allows
fermions within a generation to mix with each other. To be able to discuss their couplings
to leptoquarks, it is important to know which combinations of states correspond to mass
eigenstates. This section discusses which fermion fields mix with each other as well as their
mass scales. Recall that the Higgs fields are in the same 27 representation of E6 as the
fermions, so the Yukawa couplings consist of triple products of the irreps in Eq. (5.1). In
section 5.3, we found the types of invariants that can be formed from three fields in the 27
representation under G333. To form a Yukawa coupling, we simply replace two of the fields
by fermions. The first type of invariant consisted of traces between three fields in different
irreps. Thus, we can write down the following Yukawa couplings (the charge conjugation
matrix C is left out) [31, 32]:

Lq = ψqcψq(g1Φ
1
l + g2Φ

2
l ) + cyclic + h.c., (5.51)

where the Z3 symmetry ensures that the Yukawa coupling constants are the same for cyclic
permutations. This Lagrangian leads to mass terms for the quarks. If we write out Eq. (5.32)
we obtain [31]

ψqcψqΦ
a
l = DcQφa1 + ucQφa2 + BcQφa3

+ DcBSa
1 + ucBSa

2 + BcBSa
2 .

(5.52)

Since Φa
l are the only Higgs multiplets that obtain vevs, this is the relevant part as far as

quark masses are concerned. The B quark acquires a mass at the unification scale and pairs
up with a linear combination of Dc and Bc. This can be seen as follows. Suppose only the
vevs M1, M2 and M would be used. The part of the couplings containing these vevs is

Lq 3 (g1M1 + g2M2)B
cB + g2MDcB + h.c. (5.53)
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We can write this in terms of mass eigenstates by rotating the states Dc and Bc via an
orthogonal transformation. One of them will be Bc and the linear combination orthogonal
to that will be dc: (

dc

Bc

)
=

(
cosα − sinα
sinα cosα

)(
Bc

Dc

)
. (5.54)

Filling this in and eliminating the cross terms gives tanα = (g1M1 + g2M2)/g2M . The mass
of the B quark is then given by

mB = (g1M1 + g2M2) sinα+ g2M cosα

=
√
(g1M1 + g2M2)2 + (g2M)2,

(5.55)

and other quarks remain massless at this stage. Hence, theB quark mass lies at the unification
scale. This also shows that if M is an intermediate scale vev, there will barely be any mixing
and its contribution to the masses is negligible. To obtain masses for the up and down quark,
we need to include electroweak scale vevs as well. Inserting the vevs v1 and b1 then yields

mu = g1v1, md = g1b1 sinα. (5.56)

So the up and down quarks stay at the electroweak scale. Actually, b1 slightly alters the
mixing between Dc and Bc, but this contribution is negligible. More generally, including all
the vevs will lead to more complicated mixing between the states. The calculations shown
here are only crude estimates that reveal the mass scales of the fermions. Masses for the
leptons are generated by including antisymmetric products. The corresponding Lagrangian
can then be written as [31, 32]

Ll =
1

2
ψlψl(h1Φ

2
l + h2Φ

2
l ) + cyclic + h.c. (5.57)

To see how this gives masses to the leptons, we restrict to the part containing Φa
l [31]:

1

2
ψlψlΦ

a
l =− (EcN2 − L ec)φa1 + (E N2 − L N1)φ

a
2 + (EcN1 − E ec)φa3

+ EcL Sa
1 − E L Sa

2 − EcE Sa
3 ,

(5.58)

where a factor iσ2 is implicitly placed between products involving two doublets, in keeping
with the antisymmetry. When S1

3 , S2
3 and S2

1 obtain the vevs M1, M2 and M , respectively,
we get the terms

Ll 3 h2MEcL − (h1M1 + h2M2)E
cE + h.c. (5.59)

So the fields E and L will mix with each other into the lepton doublet E. The orthogonal
combination will be the lepton doublet L from the standard model. As before, E and L can
be rotated into E and L by an orthogonal transformation:(

E
L

)
=

(
cosβ − sinβ
sinβ cosβ

)(
L
E

)
, (5.60)
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with tanβ = (h1M1 + h2M2)/h2M . The mass of E is then given by

ME = (h1M1 + h2M2) sinβ + h2M cosβ

=
√
(h1M1 + h2M2)2 + (h2M)2.

(5.61)

So apparently only the lepton doublet E stays at the unification scale. The other new
fermions, N1 and N2, obtain masses at or below the electroweak scale, as we will see. If we
include the vevs v1 and b1, and neglect couplings to the super massive lepton doublet E, we
obtain

Ll 3 − sinβh1b1e
ce− h1v1νe(sinβN1 − cosβN2) + h.c. (5.62)

So νe pairs up with a linear combination of the SM singlets N1 and N2. This is the right
handed neutrino N1 and the orthogonal combination is N2:(

N1

N2

)
=

(
sinβ − cosβ

− cosβ − sinβ

)(
N1

N2

)
. (5.63)

The masses are

me = h1b1 sinβ, mve,N1 = h1v1. (5.64)

The remaining SM singlet N2 obtains a mass proportional to b1v1, which leaves it at the
eV scale. Thus, both of the unobserved fermions N1 and N2 are predicted to have masses
at measurable energy scales. This poses a problem and has to be fixed by large radiative
corrections to the masses [31]. On the other hand, from the expressions for the fermions
masses we can see that there are no relations between them. So minimal trinification offers
enough freedom to accommodate all fermion masses, which was impossible in minimal SU(5).

5.5 Scalar mixing and proton decay
The general Higgs potential, Eq. (5.36), introduces many cross terms when the Higgs fields
acquire their vevs. This leads to mixing and mass splitting between the Higgs fields. Since
vector leptoquarks are absent in trinification, this mixing between scalar fields is especially
relevant for proton decay. If two fields, which would otherwise be independent modes, mix
with each other, this could lead to new interactions.

To obtain interactions that lead to proton decay, both Lq and Ll have to be included.
This can be understood as follows [31]. If we would assign baryon numbers 0 to Φl, 1/3 to Φq

and -1/3 to Φqc , then Lq conserves baryon number. Similarly, if we assign baryon numbers 0
to Φl, -2/3 to Φq and 2/3 to Φqc , Ll conserves baryon number. Including both Lagrangians
would therefore violate baryon number conservation, since Φq and Φqc do not have the same
baryon numbers in each case. Φl, however, has the same baryon number in both cases, so
only colored Higgs particles can mediate proton decay.

Since only the fields Φ1,2
l acquire vevs, the cubic terms in the Higgs potential that con-

tribute to the masses take the form ΦqcΦqΦl or ΦlΦlΦl. So the colored fields Φqc and Φq

mix with each other and the leptonic Higgs fields Φl mix separately. The colored Higgs fields
mediate proton decay, so we focus on terms involving Φqc and Φq. For the most general
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potential, the expressions for the masses and mass eigenstates would be very complicated.
However, for simplicity we assume that the two Higgs fields Φ1 and Φ2 do not mix with each
other. In that case, the only terms of interest are

V (Φ1,Φ2) 3 γ5Φ
1
qΦ

1
qcΦ

1
l + γ6Φ

2
qΦ

2
qcΦ

2
l + γ7Φ

1
qΦ

1
qcΦ

2
l

+ γ10Φ
2
qΦ

2
qcΦ

1
l + h.c.

(5.65)

This would mean that the way Φ1 and Φ2 particles mix among themselves is identical. Only
a few indices would be different, but the essential features stay the same. From here on out,
only expressions pertaining to Φ1 are shown and the index denoting whether its Φ1 or Φ2

is dropped. To simplify it even further we take all γi to be equal: γi ≡ γ. We also take
µq = µqc ≡ µ. If we then insert the vevs M , M1 and M2, we obtain

VM = γ(M1B
c
HBH +MDc

H +M2B
c
H)BH + h.c., (5.66)

To find the mass eigenstates we first rewrite VM as VM = a†(∆M2
H)a, where

a =

 BH

(Dc
H)†

(Bc
H)†

 , ∆M2
H = γ

 0 M M1 +M2

M 0 0
M1 +M2 0 0

 . (5.67)

Since ∆M2
H is symmetric it can be diagonalized by an orthogonal transformation. Its eigen-

vectors give the mass eigenstates B1,2,3H :B1H

B2H

B3H

 =
γ√
2

 1 αM α(M1 +M2)
−1 αM α(M1 +M2)

0 −α
√
2(M1 +M2) α

√
2M

 BH

(Dc
H)†

(Bc
H)†

 , (5.68)

α =
1√

M2 + (M1 +M2)2
. (5.69)

Thus, in general, the states BH , Dc
H and Bc

H mix with each other. The mass splitting follows
from the eigenvalues:

∆m2
1 = γ/α, (5.70)

∆m2
2 = −γ/α, (5.71)

∆m2
3 = 0. (5.72)

So mixing increases the mass of B1H , reduces that of B2H and leaves the mass of B3H

unchanged. Therefore, the field B2H will be relevant at a lower scale than the other colored
scalar fields. In the context of proton decay, this scalar field will be of most interest. The
full expression for the mass of B2H is [31]

M2
B2H

= µ2 − γ

α
. (5.73)

If M would lie at an intermediate scale, αM would be negligibly small and α(M1+M2) ≈ 1.
In that case the state Dc

H decouples from the other two and the mass eigenstates would be
[31]

B1,2H =
1√
2
(±BH + (Bc

H)†), B3H = −Dc
H . (5.74)
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Diagrams for proton decay can be generated either by putting together two Yukawa couplings
involving the same colored Higgs field, or by connecting two different colored Higgs fields via
the term ΦqcΦqΦl in the Higgs potential [31]. The latter would lead to the creation of a Φl

particle. Both processes are depicted in Figure 5.3.

Φq

ψq

ψq ψl

ψqc

(a)

Φq

Φl

Φqc
ψq

ψq ψl

ψq

(b)

Figure 5.3: The two types of proton decay in the trinification model.

The relevant couplings for proton decay can be found by writing out the Yukawa couplings
involving colored Higgs bosons. The terms in Lq give [31]

ψlψqcΦq =− (Ecuc + E Dc + L Bc)QH

+ (ecuc + N1D
c + N2B

c)BH ,
(5.75a)

ψqψlΦqc =(QEc +Bec)U c
H + (QE +BN1)D

c
H

+ (QL +BN2)B
c
H .

(5.75b)

The terms in Ll give [31]

ψqψqΦq = QQBH +BQQH , (5.76a)
ψqcψqcΦqc = DcucBc

H + ucBcDc
H + BcDcU c

H . (5.76b)

As mentioned before, the colored Higgs field with lowest mass is B2H . With an intermediate
scale, only BH and Bc

H will mix into B2H (Eq. 5.74), so the most relevant couplings are [31]:

Lq 3 g

[
ecuc

1√
2
(B1H −B2H) +QL

1√
2
(B†

1H +B†
2H)

]
+ h.c., (5.77a)

Ll 3 h

[
QQ

1√
2
(B1H −B2H) + Dcuc

1√
2
(B†

1H +B†
2H)

]
+ h.c. (5.77b)

This yields three diagrams for the first type of proton decay that lead to the decays p→ e+π0

and p→ νeπ
+ (shown in Figure 5.4).

To summarize, trinification exclusively contains scalar leptoquarks. When the symmetry
is broken spontaneously, one scalar leptoquark obtains the lowest mass, which is B2H . This
field mediates several proton decay processes. In our simplified model, the mass splitting
of the scalar leptoquarks depends on a single parameter γ. This parameter determines the
strength of the cubic couplings in the scalar potential. Couplings of this type have never
been observed. However, for scalar leptoquarks that mediate proton decay, their masses are
constrained by the estimated lower bound 1011 GeV [12]. Thus, the lightest leptoquark that
we can expect acccording to trinification, is the scalar B2H , which has a mass of at least 1011
GeV.
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B†
2H

u

d e+

u

(a)

B†
2H

u

d d

νe

(b)

B2H

u d

e+u

(c)

Figure 5.4: Proton decay diagrams in the trinification model.

5.6 Conclusions
This chapter discussed the leptoquarks that appear in trinification, a GUT based on the
group G333 = SU(3)C × SU(3)L × SU(3)R. This is a product of three simple groups, so
gauge coupling unification does not happen automatically. It can be ensured by manually
imposing a Z3 symmetry that interchanges quarks with leptons, leptons with antiquarks and
antiquarks with quarks. The fermions are placed in the fundamental 27 representation of E6,
introducing twelve new fermions. This includes the field N1, which may correspond to the
right handed neutrino. A possible identity for the other new fermions is unknown.

When restricted to G333, the 27 representation decomposes into three irreps. Quarks,
antiquarks and leptons are each assigned separately to one of these irreps. As a consequence,
the gauge sector conserves baryon number. Trinification therefore, does not contain any
vector leptoquarks. Since gauge mediated proton decay is generally most important, this
saves the theory from limits on proton decay.

In order to break the symmetry to the SM, two scalar multiplets that transform according
to the 27 representation could be used. Gauge coupling unification could be achieved by
including five extra Higgs doublets at the electroweak scale, resulting in a unification scale
around 1014 GeV. The same scalar fields can be used to implement an intermediate SU(3)C×
SU(2)L × SU(2)R × U(1)L+R scale. From the RGEs it followed that this intermediate scale
could lie at 1011 GeV, whereas the unification scale lies at 1016 GeV.

Scalar mediated proton decay does occur in trinification, because the Yukawa sector has
enough freedom to allow for baryon number violating processes. The Yukawa sector allowed
two types of Yukawa couplings: ψqcψqΦ

a
l and ψlψlΦ

a
l (plus cyclic permutations). Both types

are necessary to violate baryon number conservation. Before any symmetry breaking the
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mass spectrum of each scalar multiplet is entirely degenerate. However, when they acquire
vevs, the masses of the components split. Consequently, the field B2H obtains the lowest mass
among the colored scalar fields. From its Yukawa couplings to SM particles it followed that
it mediates the proton decay processes p→ e+π0 and p→ νeπ

+. Since B2H mediates proton
decay, its mass is subject to the estimated lower bound of 1011 GeV. Hence, the lightest
leptoquark that we can expect according to trinification is the scalar B2H whose mass must
exceed 1011 GeV.
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Chapter 6

Conclusions

In this thesis we have studied the leptoquarks that appear in several grand unified theories,
with an emphasis on the possible mass scales that these particles can have. The standard
model does not explain all observed phenomena and it contains many arbitrary parameters.
A possible solution is provided by grand unified theories. Many GUTs predict the existence
of leptoquarks, so it is of interest to carefully study their properties. This thesis discussed
the leptoquarks appearing in GUTs based on the follwing E6 subgroups: SU(5), SO(10) and
SU(3)C × SU(3)L × SU(3)R.

We first reviewed SU(5) grand unification, one of simplest GUTs. SU(5) contains twelve
additional gauge bosons, commonly denoted as X and Y bosons, that carry both color and
weak isospin/hypercharge. These are the vector leptoquarks of SU(5). They mediate the
proton decays channels p → e+π0 and p → νeπ

0. These processes violate both baryon and
lepton number. Only the combination B − L is preserved. We reviewed how the SU(5)
symmetry is broken to the standard model group and then to SU(3)C × U(1)Q at a second
stage. This required the use of a 24 and a 5 dimensional Higgs field. In the first step, the X
and Y leptoquarks obtain their masses, so their mass scales coincide with the GUT scale MU .
From the RGEs it followed that gauge coupling unification is impossible in minimal SU(5).
Nevertheless, if the low energy parameters are adjusted slightly, this results in MU ≈ 1015

GeV. From an estimate of the predicted proton lifetime, it was found that this is inconsistent
with the experimental limit τp > 2 · 1034y. In addition, the minimal Yukawa sector produces
incorrect relations between the masses of quarks and leptons. Because of these issues, minimal
SU(5) is not considered a viable GUT. The Yukawa sector also showed that SU(5) contains
a scalar leptoquark, originating from the 5 dimensional Higgs field. Since it mediates proton
decay, its mass has to exceed 1011 GeV.

SO(10) has a richer spectrum of leptoquarks. It contains many subgroups, one of which
is the Pati-Salam group SU(4)C × SU(2)L × SU(2)R. Several gauge bosons associated with
it are leptoquarks, but the processes they mediate conserve baryon number. All 24 gauge
bosons that lie outside the Pati-Salam subgroup are leptoquarks that mediate proton decay.
In SO(10), gauge coupling unification can be accomplished by using intermediate scales. If
the Pati-Salam subgroup acts as the only intermediate stage, this results in MI ≈ 1011 GeV
and MU ≈ 1016 GeV. So the masses of leptoquarks associated with the Pati-Salam group
would lie around 1011 GeV, whereas all other leptoquarks lie around 1016 GeV. These energy
scales are far outside the reach of particle accelerators, but they can be lowered by including
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more than one intermediate stage. We reviewed a symmetry breaking pattern with three
intermediate stages: MDP

, MWR
and MZR

. MWR
is the scale at which the baryon number

conserving leptoquarks lie. In this scenario, imposing gauge coupling unification did not fix
all energy scales. This left the possibility that MWR

lies at the TeV scale. Thus, TeV-scale
vector leptoquarks can occur in SO(10) GUTs with several intermediate symmetry scales.
SO(10) also contains many scalar leptoquarks in 10, 120 and 126 dimensional representations.
These are assumed to lie at the GUT scale. However, since the Yukawa couplings of the
first generation are much smaller than gauge couplings, scalar-mediated proton decay is
suppressed.

Trinification, on the other hand, only allows scalar mediated proton decay to occur.
This GUT is based on the group G333 = SU(3)C × SU(3)L × SU(3)R with an additional Z3

symmetry to ensure gauge couplings unification. Fermions are placed in the 27 representation
of E6, which decomposes into three irreps under G333. Quarks and leptons are each placed
in separate irreps. Consequently, the gauge sector conserves baryon number. Trinification
therefore does not contain any vector leptoquarks. The symmetry is broken to the standard
model group by two 27 scalar multiplets. Their colored components mediate proton decay,
so trinification does contain scalar leptoquarks. If six of the scalar doublets contained in
the two scalar multiplets are present at the TeV scale, unification can occur in one step
with MU ≈ 1014 GeV. It is also possible to implement an intermediate SU(3)C × SU(2)L ×
SU(2)R × U(1)B−L scale. This scale would then lie at 1011 GeV, whereas the unification
scale lies at 1016 GeV. Trinification, therefore, does not predict the existence of leptoquarks
at accessible energies.

To conclude, the GUTs we considered revealed that in most cases, leptoquarks reside
at rather large scales (1011 GeV or higher). Nevertheless, we identified a single scenario
where TeV-scale leptoquarks can naturally arise: an SO(10) GUT with three intermediate
symmetry scales. This provides theoretical motivation to continue the search for leptoquarks
at accessible energy scales.
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Appendix A

Broken symmetries in trinification

In this appendix we show which symmetries are broken at each energy scale in trinification.
The symmetry breaking is performed by two scalar fields Φ1

l and Φ2
l , which obtain the vevs

〈Φ1
l 〉 =

b1 0 0
0 v1 0
0 0 M1

 , 〈Φ2
l 〉 =

b2 0 b3
0 v2 0
M 0 M2

 . (A.1)

The vevs M1 and M2 lie at the unification scale, M lies at an intermediate scale and v1, v2,
b1, b2, b3 all lie at the electroweak scale.

The procedure used to find out which symmetries remain when we move to lower energies
is as follows. First we consider the vevs at the highest scale (i.e. the unification scale) and
determine which generators it breaks. The symmetry group that the unbroken generators
generate, is the symmetry that remains. We then include the vevs at the next highest scale.
But adding more vevs will only break more generators, so we only have to consider the action
of the yet unbroken generators on the new vevs. We repeat this procedure until we have
reached the lowest scale.

To see how the generators act on Φl, consider an infinitesimal transformation:

Φl → Φ′
l = Φl − iαaT a

LΦl + iβaΦlT
a
R (A.2)

So the generators T a
L act on the left of Φl, while the generators T a

R act on the right of Φl with
a minus sign. Note that since Φ1

l and Φ2
l are both singlets under SU(3)C , the generators T a

C

always remain unbroken.
Let us first focus on the unification scale vevs M1 and M2. Since Φ1

l and Φ2
l have the

same transformation properties, M1 and M2 break the same generators. So we focus just on
M1. The action of a general linear combination of the generators on M1 is

8∑
a=1

αaT a
L

0 0 0
0 0 0
0 0 M1

−

0 0 0
0 0 0
0 0 M1

 8∑
a=1

βaT a
R

=
M1

2

 0 0 α4 − iα5

0 0 α6 − iα7

iβ5 − β4 iβ7 − β6 −2(α8 − β8)/
√
3

 (A.3)
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We see that the linear combinations that annihilate the vev have

α4 . . . α7 = 0, (A.4)
β4 . . . β7 = 0, (A.5)

α8 = β8 (A.6)

So M1 and M2 leave the following generators unbroken:

T 1
L, T

2
L, T

3
L, T 1

R, T
2
R, T

3
R, T 8

L + T 8
R. (A.7)

Thus, the unbroken generators generate an SU(2)L × SU(2)R × U(1)L+R symmetry.
Next we include the intermediate scale vev M . The action of the yet unbroken generators

on M is(
3∑

a=1

αaT a
L + γL+RT 8

L

) 0 0 0
0 0 0
M 0 0

−

 0 0 0
0 0 0
M 0 0

( 3∑
a=1

βaT a
R + γL+RT 8

R

)

=
M

2

 0 0 0
0 0 0

−β3 −
√
3γL+R −β1 + iβ2 0

 (A.8)

To annihilate the vev we need

β1 = β2 = 0, β3 = −γ
L+R

√
3
, (A.9)

which leaves the following generators unbroken:

T 1
L, T

2
L, T

3
L, Y = T 3

R − 1√
3
(T 8

L + T 8
R), (A.10)

where Y is the hypercharge generator. So at the intermediate scale SU(2)L × SU(2)R ×
U(1)L+R is broken to the electroweak symmetry group SU(2)L × U(1)Y .

Finally, we include the electroweak scale vevs. Again, since Φ1
l and Φ2

l have the same
transformation properties, 〈Φ2

l 〉 breaks at least all generators that 〈Φ1
l 〉 breaks. So we focus

only on 〈Φ2
l 〉. The action of the yet unbroken generators on v2, b2 and b3 is(

3∑
a=1

αaT a
L − γY√

3
T 8
L

)b2 0 b3
0 v2 0
0 0 0

− γY

b2 0 b3
0 v2 0
0 0 0

(T 3
R +

1√
3
T 8
R

)

=
1

2

b2(α3 − γY ) v2(α
1 − iα2) b3(α

3 − γY )
b2(α

1 + iα2) v2(−α3 + γY ) b3(α
1 + iα2)

0 0 0

 (A.11)

So to annihilate the vev we need

α1 = α2 = 0, α3 = γY . (A.12)
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Note that including any one of the electroweak vevs would have led to these conditions, as
can be seen in Eq. (A.11). So the electroweak vevs all break the same generators.

We are now left with a single unbroken generator, which is electric charge:

Q = T 3
L + T 3

R − 1√
3
(T 8

L + T 8
R). (A.13)

Thus, the symmetry that remains is U(1)Q. The full symmetry breaking pattern can therefore
be summarized as

G333 × Z3
M1−−→ SU(3)C × SU(2)L × SU(2)R × U(1)L+R

M−→ SU(3)C × SU(2)L × U(1)Y
v1−→ SU(3)C × U(1)Q.

(A.14)
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