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Introduction

The topic of this thesis is the result of a personal quest to understand mirror symmetry.
As such, this project really started in the summer of 2021 when I first started exploring
mirror symmetry. It is my hope that readers of this text come to appreciate the beauty
of the subject as I perceive it, and that they will be motivated to delve into the subject
further. We will assume that the reader is familiar with differential geometry and alge-
braic geometry, as it is taught in a typical graduate course. We will also use homological
algebra at various points. The relevant theory is recalled in the appendices. Having said
that, let us begin by attempting to describe what mirror symmetry is in non-technical
terms, before giving an overview of the topics covered in this text.

Mirror symmetry is a principle in string theory, so we begin there. The basic premise
in string theory is that the fundamental particles should not be modelled by 0-dimensional
points, but by 1-dimensional objects, namely strings. The different modes of vibration
of these strings correspond to the particles that we observe. For this to work out, space-
time as we know it, i.e. R4 with the Minkowski metric, has to be replaced by R4 ×X ,
where X is some tiny geometric shape called a Calabi-Yau threefold. String theory on
R4 ×X is also called string theory compactified on X , and X is called the compactifica-
tion. It provides additional dimensions for the strings to vibrate in, but it is supposedly
so small that we do not currently have access to the energy scales that are required to
detect it. Calabi-Yau manifolds are a very special class of smooth manifolds. The "three"
in threefold refers to the complex dimension of X , which implies it has real dimension
6. This leads to the famous 4+6 = 10 dimensions of string theory.

So string theorists assert that, for every Calabi-Yau threefold X , we obtain some no-
tion of a string theory. Different choices of X lead to different theories, just as two in-
struments with different shapes have different acoustics. Given that we live in a uni-
verse, which may or may not be described by string theory, the natural question to ask
is: which choice of X corresponds to the universe that we observe? Mirror symmetry
says that this question cannot be answered definitely: for every choice of X , there is
another choice, called the mirror, denoted by X∨, which results in an identical string
theory. This observation has startling implications: the string theories obtained from
these spaces encode some of their geometry, and as a result, mirror symmetry implies a
relation between the geometry of X , and that of X∨. In general, X and X∨ will not be
isomorphic as complex manifolds, or even diffeomorphic. Hence, from the perspective
of classical geometry, it seems absurd to suggest that any meaningful properties of X
could be derived from X∨, and vice versa. But mirror symmetry gives us the tools to
do so. This is the beauty of mirror symmetry: a completely unexpected duality in the
geometry of Calabi-Yau manifolds,1 which is revealed to us through ideas from physics.

1Actually, mirror symmetry goes beyond Calabi-Yau manifolds, but we will not discuss that further.
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In full generality, string theory is not mathematically precise. So how do we go from
string theory to something which is mathematically precise, and allows us to make math-
ematical claims about the relation between the geometry of X and its mirror? This
is done through a procedure known as topological twisting, which yields a topological
quantum field theory (TQFT). What such a TQFT is exactly does not matter right now -
the point is that these topological string theories are mathematically precise, and much
simpler than the original string theory. There are two ways to obtain a TQFT from a
string theory on a given Calabi-Yau manifold X , and each retains some of the proper-
ties of the original string theory. One uses only the symplectic geometry of the manifold
(this is called the A-model), and the other uses only the complex geometry of the man-
ifold (this is called the B-model). It can be shown that mirror symmetry exchanges the
A-model on X with the B-model on X∨, and vice versa. In this way, string theory relates
two completely different types of geometry, namely algebraic geometry, and symplectic
geometry.

In algebraic geometry, structures are very rigid in some precise sense. In symplec-
tic geometry, there is much less rigidity, and this is why the symplectic side of mirror
symmetry requires many more technicalities to be addressed. In spite of this, mirror
symmetry allows one to make claims about symplectic geometry, based on known ideas
from algebraic geometry (and vice versa, in principle). This is the beauty of mirror sym-
metry, in my eyes, and it is part of the underlying philosophy of the Thomas-Yau con-
jecture [1, 2]. More famously, it is how mirror symmetry became a mathematical disci-
pline, when Candelas et al. used period integrals (related to Hodge theory, i.e. algebraic
geometry) on the mirror quintic, to compute the Gromov-Witten invariants (which are
symplectic invariants) of the quintic threefold in CP4 [3].

Overview of the text

Our first objective is to make the claim of mirror symmetry mathematically precise. To
this end, it should be noted that there are many variants of mirror symmetry, some more
precise than others. Indeed, if one were to ask a physicist what mirror symmetry is, the
answer might be that, given a Calabi-Yau manifold X , there is a second Calabi-Yau man-
ifold X∨, such that type IIA string theory compactified on X is isomorphic to type IIB
string theory compactified on X∨. But this is not a mathematically rigorous statement.
Therefore, mathematicians have constructed their own mirror symmetry conjectures,
primarily within the framework of topological string theory, which is mathematically
rigorous. One of these is the conjecture formulated by Kontsevich, which was named
homological mirror symmetry. It states the following.

Convention 1. Throughout the text, we will be working with complex manifolds, which
will typically be denoted by a calligraphic letter X or Y . Sometimes, relevant construc-
tions do not depend on the holomorphic structure on the manifold. This is why we will
denote the underlying smooth manifold, which contains strictly less data, by X , Y , etc.
When something does not depend on the holomorphic structure, we use X (e.g. bk (X )
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for Betti numbers), but when something does depend on the holomorphic structure, we
use X (e.g. hp,q (X ) for Hodge numbers).

Conjecture 0.0.1 (Kontsevich [4]). Let (X ,ω) and (X∨,ω∨) be a mirror pair of Calabi-Yau
threefolds. Then there exists a quasi-equivalence of A∞-categories

Db(X ) ∼= DbFuk(X ∨,ω∨) Db(X∨) ∼= DbFuk(X ,ω)

Here, the respective categories are the bounded derived category of coherent sheaves,
and the bounded derived Fukaya category. This is a weaker statement than the physi-
cist’s mirror symmetry conjecture, but is derived from it by first performing a "topolog-
ical twisting" and obtaining a topological string theory. In the first part of this thesis,
we will explain the mathematical ingredients that go into this conjecture, as well as the
notion of a mirror pair of Calabi-Yau manifolds.

To do this, after reviewing the relevant differential geometry, we will briefly touch on
the string theoretic notions which motivate homological mirror symmetry, mainly fol-
lowing [5, 6]: the A-model and the B-model which are obtained from a non-linear sigma
model with Calabi-Yau target space, after performing some topological twisting, and the
notion of a D-brane. The basic way to think about a D-brane is as a boundary condition
for the worldsheet of an open string. As an open string propagates through spacetime,
it traces out its worldsheet. The paths traced out by the endpoints of the string live on
D-branes. For now, say that such data is given by a submanifold Y ⊂ X , where X is
the smooth manifold underlying the Calabi-Yau manifold, together with a vector bun-
dle E → Y and a connection ∇ on E , i.e. a triple (Y ,E ,∇). In general, this may not be
true; one has to work in the large volume limit to obtain a geometric interpretation of
D-branes, which is what we will do, without further mention of this.

A D-brane for the A-model, called an A-brane, is given by the data of a graded La-
grangian submanifold L ⊂ X , a vector bundle E → L and a flat unitary connection ∇ on
E . It can be shown that a D-brane for the B-model, called a B-brane, consists of a triple
(Y ,E ,∇) where Y ⊂X is a complex submanifold and ∇ is a connection whose curvature
is of type (1,1). Equivalently, this means that a B-brane is given by a complex submani-
fold Y together with a holomorphic vector bundle E →Y .

As mentioned, the A- and B-model are topological twistings of some string theory.
This untwisted theory also has its D-branes. Some of these may arise as A-branes or
B-branes from the twisted theories, and the ones that do are called A-type BPS branes
and B-type BPS branes, respectively.2 The A-type BPS branes are A-branes with an addi-
tional criterion imposed: the connection∇needs to satisfy a partial differential equation
called the Hermitian-Yang-Mills equation. The B-type BPS branes are B-branes with an

2The A-type BPS branes are BPS states for type IIB string theory, whereas B-type BPS branes are BPS
states for type IIA string theory. Because this is rather confusing, we will omit any mention of type IIA/IIB
string theory.
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additional criterion imposed: they satisfy a partial differential equation called the spe-
cial Lagrangian condition. All of these terms will be explained in the text.

This brings us to the Thomas-Yau conjecture. It starts with a celebrated theorem
known as the Kobayashi-Hitchin correspondence, or as the Donaldson-Uhlenbeck-Yau
theorem [7]. The B-type BPS branes carry connections which satisfy the Hermitian-
Yang-Mills equation. The Kobayashi-Hitchin correspondence asserts that the existence
of a solution to this equation is equivalent to µ-stability - this is an algebro-geometric
condition which comes from geometric invariant theory. More specifically, it says that
the gauge orbit of the Chern connection contains a unique solution to the Hermitian-
Yang-Mills equation if and only if the holomorphic vector bundle is µ-(poly)stable.

The story behind the Kobayashi-Hitchin correspondence can be viewed through the
lens of infinite dimensional symplectic reduction, as seen in [8]. This shows how there
is an infinite dimensional Lie group acting on the space of B-branes (Y ,E ,∇) with fixed
Chern character ch(E) ∈ H ev(X ,Q), and the orbit of the Chern connection under this
group has a unique Hermitian-Yang-Mills representative (i.e. has a B-type BPS brane)
if and only if the vector bundle is µ-stable. By analogy, there is a group acting in a
Hamiltonian fashion on the space of A-branes (L,E ,∇) with a fixed homology class [L] ∈
H 1

2 dim X (X ,Z), and we will work out some of the details that are left implicit in the litera-

ture on the subject. The Thomas-Yau conjecture asserts that the orbit of a given A-brane
has a unique special Lagrangian representative (i.e. has an A-type BPS brane in its or-
bit) if and only if the A-brane is stable in some appropriate sense. Furthermore, a stable
A-brane should converge to its special Lagrangian representative under the mean cur-
vature flow [2].

After explaining this conjecture, we discuss the Thomas-Yau conjecture for the sim-
plest possible case, namely that of the elliptic curve, which was worked out in [1], but
we will provide some further details. Using this, we perform some calculations for co-
homogeneity one Lagrangian submanifolds in higher dimensional tori, proving a T n−1-
invariant version of the Thomas-Yau conjecture in this case. In fact, we also show the
following: given that the Thomas-Yau conjecture holds on a Calabi-Yau manifold X , it
holds in some appropriate T n-invariant sense on X ×T 2n for T n-invariant Lagrangian
submanifolds. To the authors best knowledge, this result is not stated or proved any-
where in the literature, but we will use the methods employed in [9] to arrive at this re-
sult. We then recover higher dimensional tori by taking X to be the elliptic curve, which
is presently the only compact Calabi-Yau manifold for which the Thomas-Yau conjec-
ture is known to hold. We also look at the behaviour of fibres of the standard Lagrangian
torus fibration of CPn . Whilst not Calabi-Yau, CPn is a Fano variety for which a version
of mirror symmetry is known to hold [10]. The mean curvature flow will turn out to
preserve the fibration, but exhibits very different behaviour from the Calabi-Yau case.
Of course, this is to be expected, given that CPn is not Ricci flat. In fact, it turned out
that relatively recently, a much more general result was established in [11], where the
mean curvature flow of the fibration of an arbitrary toric Kähler manifold is determined.
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Our method of proof is quite different, however, as we will be lifting Lagrangians in CPn ,
to Lagrangians in Cn+1 using symplectic reduction, and calculate the mean curvature
vector in Cn+1 by using the Calabi-Yau property of Cn+1. In [11], a method is employed
which only uses the data of the Delzant polytope of the toric manifold, and we will use
this to see what happens to the toric fibrations of Hirzebruch surfaces as well.

After performing these calculations, we turn our eye to the Thomas-Yau-Joyce con-
jecture, which is an updated version of the Thomas-Yau conjecture, taking into account
the formulation of a categorical notion of stability, called a Bridgeland stability condi-
tion [12]. The Thomas-Yau-Joyce conjecture asserts that the map

DbFuk(X ,ω) →C (L,E ,∇) 7→
∫

L
Ω

defines a Bridgeland stability condition (or, more accurately, the central charge corre-
sponding to such a stability condition). We explain that the machinery of Kontsevich-
Soibelman [13] may be used to extract enumerative invariants, called refined Donaldson-
Thomas invariants, from a CY3 (Calabi-Yau threefold) category together with a Bridge-
land stability condition on it. In his original paper, Thomas noted that there was no
A-side analogue of Donaldson-Thomas invariants, introduced in [14], on Calabi-Yau
threefolds. These invariants "count" the number of B-type BPS branes in the large vol-
ume limit, in some appropriate sense. If correct, the Thomas-Yau-Joyce conjecture al-
lows one to define this A-side analogue using the Kontsevich-Soibelman machinery, and
not just in the large volume limit. Using homological mirror symmetry, the Thomas-
Yau-Joyce conjecture, and the construction of Kontsevich-Soibelman, one can define
the appropriate count of B-type BPS branes, outside of the large volume limit as well.
This may be interesting because there are currently no known Bridgeland stability con-
ditions on Db(X ) for a general Calabi-Yau threefold. If the Thomas-Yau-Joyce conjec-
ture is true, one can invoke homological mirror symmetry to establish the existence of a
Bridgeland stability condition on Db(X∨).

Along the way, we will also touch on various other topics: closed string mirror sym-
metry for K 3 surfaces, the SYZ conjecture, moduli spaces of Higgs bundles and the
Hitchin system, as well as the P = W phenomenon for abelian varieties as treated in
[15]. This allows us to look at a class of hyper-Kähler manifolds which exhibit mirror
symmetry in a rather interesting way, related to the geometric Langlands correspon-
dence and Langlands dual groups. We will then be able to see how mirror symmetry
can lead to rather surprising mathematical predictions, namely the P = W conjecture.3

The P =W conjecture yields a way to calculate some of the enumerative invariants that
are introduced throughout the text. In general, these are difficult to compute, and the
P = W conjecture, which has been shown to hold in many cases, simplifies this prob-
lem greatly for Calabi-Yau threefolds which are local curves (i.e. the total space of an
appropriate rank 2 holomorphic bundle over a Riemann surface).

3The authors of the original paper [16] which contains the P =W conjecture did not seem to be explic-
itly motivated by mirror symmetry.

9



Notational Conventions

Throughout the text, we employ certain conventions with regards to notiation, and abuse
thereof.

X ,Y , . . . Smooth manifolds
X ,Y , . . . Complex manifolds and complex

projective varieties
v, w, . . . Tangent vectors, vector fields
E ,F, . . . Smooth vector bundles
E ,F , . . . Holomorphic vector bundles, co-

herent sheaves
E•,F•, . . . Complexes of holomorphic vector

bundles, coherent sheaves
L Lagrangian submanifolds
L Holomorphic line bundles

OX ,KX ,TX Structure sheaf, canonical bundle,
holomorphic tangent bundle

∇, A Connection on a vector bundle
Γ(U ,E), H 0(U ,E) Sections of a sheaf E over an open

subset U
Ωk
X Sheaf of holomorphic k-forms on

X
Ωk (X ,E) Differential k-forms with values in

a vector bundle E
R× Multiplicative group of units of a

ring R

Also, note the following:

1. If we write A for a connection on a vector bundle, this means A ∈ Ω1(X ,End(E))
and we are really considering ∇=∇0+A with respect to some fixed connection ∇0.

2. We write E for a holomorphic vector bundle, as well as for its sheaf of holomorphic
sections.

3. If E is a smooth vector bundle, we write Ex for the fibre at x ∈ X . If E is a holomor-
phic vector bundle (or coherent sheaf), we instead write Ex for its stalk at x.

4. We often regard a complex projective variety as a complex manifold and vice versa,
without mentioning this.

5. We will use physics terminology occasionally even though IANAP,4 so some of it
may be used incorrectly.

4I am not a physicist.
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Homological Mirror Symmetry
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Chapter 1

Symplectic Geometry

Symplectic manifolds arise in physics, as the phase space of some state space. They
encode Hamilton’s equations, which are as the foundation of Hamiltonian mechanics.
Furthermore, symplectic geometry is closely related to complex geometry, via almost
complex structures, discussed in the appendix C.1.1. Kähler manifolds, and in particular
Calabi-Yau manifolds, lie at the intersection of these two overlapping domains. In this
section, we recap the basics of symplectic geometry, which are required to define the
Fukaya category of a symplectic manifold as well as our subsequent discussion of the
Thomas-Yau conjecture. This chapter is based on [17, 18].

1.1 Symplectic Manifolds

Let us start off by recalling the basic definitions.

Definition 1.1.1. Let X be a smooth manifold, and ω ∈ Ω2(X ). Then the pair (X ,ω) is
called a symplectic manifold if ω is closed and non-degenerate. A symplectomorphism
between symplectic manifolds (X1,ω1), (X2,ω2) is a diffeomorphism f : X1 → X2 such
that f ∗ω2 =ω1.

Non-degeneracy ofω can be phrased in several different ways. In local coordinates, it
amounts to invertibility of a matrix representation ofω. Because the matrix ofω is skew-
symmetric, its invertibility implies that X must be even dimensional. We will generally
take the dimension of X to be 2n. More invariantly, non-degeneracy can be stated as
saying that ω provides an isomorphism ϕ : T X → T ∗X through v 7→ ιvω. The canonical
example of a symplectic manifold is given by the cotangent bundle.

Example 1. Let X be any smooth manifold, and consider the tautological 1-
form τ on T ∗X , which is defined as follows. For v ∈ T(x,η)(T ∗X ), we define τ(x,η)(v) :=
η(dπ(x,η)v), where π : T ∗X → X is the canonical projection. Then the 2-form −dτ is
a symplectic form on T ∗X , called the canonical symplectic form. In standard local
coordinates (x1, . . . , xn , p1, . . . , pn) on T ∗X , the 1-form τ is given by

∑
p i d xi , and the

symplectic form is given by
∑

d xi ∧d p i .

This example is typically interpreted physically as saying that X is the state space, and
T ∗X is the phase space. Hence, the coordinates xi parameterise the position of some

12



1.2. LAGRANGIAN SUBMANIFOLDS

particle, while the coordinates p i parameterise its momentum. The following classical
theorem tells us that this is the model space for any symplectic manifold.

Theorem 1.1.2 (The Darboux Theorem). Let (X ,ω) be a symplectic manifold, and x ∈
X . Then there exist local coordinates (x1, . . . , xn , p1, . . . , pn) centered at x such that ω =∑

d xi ∧d p i .

Like the cotangent bundle, every symplectic manifold is orientable, sinceωn provides
a volume form on X . To describe a physical system, we also need a Hamiltonian. This is
a smooth function H ∈C∞(X ).

Definition 1.1.3. Let H ∈C∞(X ) be a smooth function. The Hamiltonian vector field vH

of H is defined by
d H = ιvHω

Observe that H is preserved under the flow of vH , since vH H = d H(vH ) =ω(vH , vH ) =
0. If we take vH to describe the dynamics of a physical system, then this means we are
constrained to the level sets of H , which is also known as conservation of energy.

We could also consider a time-dependent Hamiltonian, which would be a smooth
function Ht ∈C∞(X × I ). These will be of some importance for the Thomas-Yau conjec-
ture. In particular, we will need the notion of a Hamiltonian isotopy. Let us start with a
symplectic isotopy. We have a group of symplectic diffeomorphisms ϕ : X → X , which
we denote Symp(X ,ω). It is a subgroup of Diff(X ), and inherits a topology. A symplectic
isotopy is a continuous family of symplectomorphisms ϕt : X → X , which can also be
viewed as a smooth map ϕt : X × I → X such that ϕt0 : X → X is a symplectomorphism
for all t0 ∈ I . A symplectic isotopy is generated by a unique time-dependent vector field
vt : X × I → T X , defined by

d

d t
ϕt = vt ◦ϕt

Definition 1.1.4. Let ϕt : X × I → X be a symplectic isotopy. Then ϕt is said to be a
Hamiltonian isotopy if there exists H ∈C∞(X × I ) such that for all t ∈ I ,

ιvtω= d Ht

1.2 Lagrangian Submanifolds

Objects which are of central importance in symplectic geometry are so-called Lagrangian
submanifolds. To define these, we first define some preliminary notions. We considerωx

as a bilinear form on the vector space Tx X . Let W ⊆ Tx X be a linear subspace. Then we
define W ⊥ := {v ∈ Tx X | ω(v, w) = 0 ∀w ∈ W } to be its symplectic complement. A lin-
ear subspace W is called isotropic if W ⊆ W ⊥, co-isotropic if W ⊥ ⊆ W , and Lagrangian
if W = W ⊥. Every Lagrangian subspace must have dimension 1

2 dimV , so Lagrangian
subspaces can also be characaterised as maximally isotropic subspaces.

13



1.2. LAGRANGIAN SUBMANIFOLDS

Definition 1.2.1. Let Y ⊆ X be an embedded submanifold of a symplectic manifold.
Then Y is called Lagrangian if TxY ⊆ Tx X is a Lagrangian subspace for all x ∈ Y .

Of course, (co-)isotropic submanifolds are defined in analogous fashion. By defini-
tion, a submanifold Y is Lagrangian if and only if dimY = 1

2 dim X and ω|Y ≡ 0.

Example 2. The most important example of a Lagrangian submanifold is the
zero section of the cotangent bundle T ∗X with its canonical symplectic form. We-
instein’s Lagrangian neighbourhood theorem states that any closed Lagrangian sub-
manifold looks like this. More precisely, every Lagrangian submanifold L ⊆ X admits
an open neighbourhood U and a symplectomorphism ϕ : U → V ⊆ T ∗L, such that
ϕ(L) is the zero section of T ∗L.

Lagrangian submanifolds generalise the idea of conservation of energy, as we will
now see through the lens of integrable systems.

Definition 1.2.2. Let (X ,ω) be a symplectic manifold. Then there exists a Poisson bracket
on C∞(X ), defined by

{ f , g } :=ω(v f , vg )

We recall that a Poisson bracket is a Lie bracket on C∞(X ) which is a derivation with
respect to the multiplicative structure, as well as the Lie algebra structure. That is, is
also satisfies { f · g ,h} = f · {g ,h}+ g · { f ,h}. The requirement that dω = 0 in the defini-
tion of a symplectic form, amounts precisely to the requirement that this bracket satis-
fies the Jacobi identity. Two functions are said to Poisson commute when their Poisson
bracket vanishes. Note that ω(v f , vg ) = d f (vg ) = vg f , so this amounts to saying that the
functions are preserved under each other’s flows. We can locally write a submanifold as
Y = f −1(0), where f = ( f1, . . . , fn) : X →Rn is smooth with 0 as a regular value.

Proposition 1.2.3. [18] The submanifold Y is Lagrangian if and only if the functions fi

Poisson commute pairwise. That is, { fi , f j }|Y = 0 for all i , j ≥ 1.

Recall that kerd fx = TxY . Since d( fi ) = ιv fi
ω, this implies that a Hamiltonian H ∈

C∞(X ) satisfies (vH )x ∈ TxY ⇐⇒ { fi , H } = 0 for all i .

Definition 1.2.4. Let (X ,ω, H) be a Hamiltonian system. A function f ∈C∞(X ) is called
an integral of motion if { f , H } = 0, i.e. if vH f = 0.

Thus, if a Lagrangian submanifold is defined by n-many integrals of motion (which
are necessarily in involution), then the trajectory of the flow of vH is completely con-
tained in any Lagrangian submanifold that it intersects.

Definition 1.2.5. Let (X ,ω, H) be a Hamiltonian system. If the system admits n indepen-
dent Poisson commuting integrals of motion, then the system is said to be completely
integrable.

14
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Theorem 1.2.6 (Arnold-Liouville [18]). Let (X ,ω, H) be a completely integrable Hamilto-
nian system with integrals of motion fi . Suppose that 0 is a regular value of f = ( f1, . . . , fn).
Then there exists an open interval (−ε,ε) = I such that f −1(E) := LE is a Lagrangian sub-
manifold for all E ∈ I . If L0 is compact and connected, then LE

∼= T n .

The manifold L0 is always compact if f is a proper map. In the case where LE
∼= T n ,

the trajectories are constrained to these tori. Arnold also proved that this motion is lin-
ear on the torus. In particular, completely integrable systems give us examples of La-
grangian torus fibrations. Such fibrations are also intimately related to so-called SYZ
(Ströminger-Yau-Zaslow) approach to mirror symmetry, originating from their famous
paper [19]. Completely integrable systems are the "holy grail" of Hamiltonian mechan-
ics, because this gives us a (relatively) simple way to describe the time evolution of the
system.

Every integrable system admits a Lagrangian torus fibration by taking as the fibres
the common level sets of the integrals of motion. A fibration is distinctly different from
a fibre bundle, because a Lagrangian torus fibration may admit singular fibres.

Definition 1.2.7. Let (X ,ω) be a symplectic manifold. A Lagrangian torus fibration of X
is a proper continuous map π : X → B such that there is a dense open subset Breg ⊂ B
for which π−1(Breg) → Breg is a smooth submersion whose fibre is a Lagrangian torus. If
Bsing = B \ Breg, then the fibre of π over Bsing is a connected stratified space whose strata
are isotropic in X .

Example 3. Suppose that B is an integral affine manifold, which means that it
admits an atlas whose associated transition functions take values in GL(n,Z)⋉Rn ⊂
Diff(Rn). We can choose a local Zn-system TZB ⊂ T B , which exists globally because
of the assumption on the transition functions. This yields a dual lattice T ∗

Z
B ⊂ T ∗B

after choosing a metric. Define X = T ∗B/T ∗
Z

B , which carries a natural projection
map π : X → B . The manifold X is a symplectic manifold, since the natural sym-
plectic structure on T ∗B descends to X . Since each T ∗

b B is a Lagrangian submani-
fold of T ∗B , each fibre of π is a Lagrangian submanifold which is diffeomorphic to
T ∗

b B/Zn ∼= T n , which means that π : X → B is a Lagrangian torus fibration.

1.3 Momentum Maps and Toric Manifolds

Later on, we will be considering a very special kind of integrable system, namely a toric
manifold. To define these, we first need the notion of a momentum map. Suppose that
a Lie group G acts on a symplectic manifold (X ,ω) by symplectomorphisms. Then each
ξ ∈ g defines a vector field

(vξ)x := d

d t

∣∣∣
t=0

x ·exp(tξ)
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1.3. MOMENTUM MAPS AND TORIC MANIFOLDS

The group action is said to be Hamiltonian if there exists a smooth function µ : X → g∗

which is G-equivariant (w.r.t. the coadjoint representation of G on g∗) and satisfies

ιvξω= d〈µ,ξ〉

for all ξ ∈ g. Note that µ−1(0) is invariant under the G-action (in fact, this is true for any
central element of g∗).

Definition 1.3.1. Suppose that G acts on (X ,ω) with momentum map µ. Suppose G acts
freely and properly on µ−1(0). Then

X �G :=µ−1(0)/G

is called the symplectic reduction of X (at 0).

Example 4. Consider the group action

Cn ×S1 →Cn ((z1, . . . , zn),e iθ) 7→ (z1e iθ, . . . , zne iθ)

It has a momentum map given by µ(z1, . . . , zn) = |z1|2 +·· ·+ |zn |2. Symplectic reduc-
tion at 1 yields

Cn �S1 =µ−1(1)/S1 = S2n−1/S1 ∼=CPn−1

Definition 1.3.2. A toric manifold consists of a compact symplectic manifold (X ,ω) to-
gether with a Hamiltonian T n-action.

Theorem 1.3.3 (Delzant). The image of the momentum map of a toric manifold is a con-
vex polytope in Rn , called the Delzant polytope. The fibres are the T n-orbits.

Example 5. Consider the T n-action on CPn given by

([z0 : · · · : zn],e iθ1 , . . . ,e iθn ) 7→ [z0 : z1e iθ1 : · · · : zne iθn ]

This action has a momentum map given by

µ : [z0 : · · · : zn] 7→ 1

|z|2 (|z1|2, . . . , |zn |2)

The Delzant polytope is the regular n-simplex in Rn , which we denote∆n . The fibres
of µ over int(∆n) are Lagrangian tori. The fibres of µ over the k-dimensional faces of
∆n are k-dimensional isotropic tori. For instance, take CP1 ∼= S2. Then the Delzant
polytope is I = [0,1]. The fibre over {0} and {1} is a single point, and the fibre over
c ∈ (0,1) is a circle. This is the fibration associated to the height function h : S2 ⊃
R3 → I ⊂R given by h(x, y, z) = z, which can easily be visualised.
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Example 6. There is another class of examples that we will return to, namely
the Hirzebruch surfaces which are indexed by an integer. We denote the n-th Hirze-
bruch surface by Hn , and its Delzant polytope is given by the vertices {(0,0), (n +
1,0), (0,1), (1,1)}. One can use this data to reconstruct the T 2-action on C4, and its
momentum map, from which the n-th Hirzebruch surface is obtained by symplec-
tic reduction. We refer to [17] for the details of this construction, which we outline
now. Since we are given the vertices, we can find the primitive inward pointing nor-
mal vectors of the polytope, and they are {νi } = {(0,1), (−1,−n), (0,−1), (1,0)}. Next
we wish to determine the maps π and ι in an exact sequence

0
ι−→R2 →R4 π−→R2 → 0

which are the Lie algebras of tori. In particular, R4 corresponds to the Lie algebra of
T 4 acting on C4 in the standard manner, which we will use in a moment. The map π
is determined by ei 7→ νi , so we have

(1,0,0,0) 7→ (0,1) (0,1,0,0) 7→ (−1,−n)

(0,0,1,0) 7→ (0,−1) (0,0,0,1) 7→ (1,0)

Hence im ι= kerπ= spanR{e1+e3,ne1+e2+e4}, and these vectors are the columns of
the matrix of the map ι. Then the momentum map we need for the construction of
the Hirzebruch surfaces is given by ι∗◦µ0, where µ0 :C4 →R4 is the momentum map
of the standard T 4-action onC4, i.e. (z1, z2, z3, z4) 7→ (e iθ1 z1,e iθ2 z2,e iθ3 z3,e iθ4 z4) with
momentum map (z1, z2, z3, z4) 7→ (|z1|2, |z2|2, |z3|2−n−1, |z4|2−1), with the additional
constants coming from the data of the polytope. So our momentum map is found to
be

µ(z1, z2, z3, z4) = (|z1|2 +|z3|2 −n −1,n|z1|2 +|z2|2 +|z4|2 −1)

with the torus action being given by

(z1, z2, z3, z4) 7→ (e iθ1 e i nθ2 z1,e iθ2 z2,e iθ1 z3,e iθ2 z4)

for (e iθ1 ,e iθ2 ) ∈ T 2. The symplectic reduction µ−1(0)/T 2 is defined to be Hn . These
manifolds are also complex manifolds, inheriting their complex structure from C4.
One can show that Hn

∼=P(O⊕O(−n)), where O⊕O(−n) →CP1 is a rank 2 holomor-
phic vector bundle, defined in the next chapter. In particular, H0

∼=CP1 ×CP1.

The behaviour of these fibres is typical of toric manifolds: they are themselves smooth
tori, although their dimensions vary. If we have an integrable system which is not toric,
the fibres may acquire singularities, like the pinched tori that appear in fibrations of a
K 3 surface, as we will see later.
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Chapter 2

Calabi-Yau Manifolds and Varieties

Homological mirror symmetry is a statement about a pair of Calabi-Yau manifolds (or
varieties). These are special kinds of Kähler manifolds, which in turn are special kinds
of complex manifolds. As such, we start by discussing complex manifolds, and work our
way up to Calabi-Yau manifolds. The content in this chapter is based on [20, 21, 22].

2.1 Complex Manifolds

Definition 2.1.1. A complex manifold X is a topological manifold X of dimension1 2n
which admits an atlas {Uα,ϕα} such that

ϕα ◦ϕ−1
β :Cn ⊇ϕβ(Uβ∩Uα) →Cn

is holomorphic for all non-empty intersections.

The notion of holomorphicity of functions and maps between complex manifolds is
defined in the same way that it is defined for smooth manifolds, namely by verifying the
definitions in local charts.

Example 7. The first non-trivial example of a complex manifold is CPn , and it
plays a very important role in complex geometry. We recall thatCPn = (Cn+1\{0})/C×

by definition, and we have homogeneous coordinates [z0 : · · · : zn] on CPn , which are
defined up toC×-scaling. We have the standard open cover {Ui }i=0,...,n where the sets
Ui = D(zi ) := {[z0 : · · · : zn] ∈CPn | zi ̸= 0} are called the standard affine opens of CPn .
We consider a homeomorphism Ui

∼=Cn given by

ϕi : Ui →Cn [z0 : · · · : zn] 7→ (
z0

zi
, . . . , ẑi , . . . ,

zn

zi
)

The transition maps are then found to be

ϕ j ◦ϕ−1
i (w1, . . . , wn) =ϕ j ([w1 : · · · : 1 : · · · : wn]) = (

w1

w j
, . . . ,

1

w j
, . . . , ŵ j , . . . ,

wn

w j
)

where we have assumed that j < i . The case j > i is quite similar, and in both cases,
we see that we obtain holomorphic maps, so thatCPn is indeed a complex manifold.

1Whenever we talk about the dimension of X , we mean dimX = dimC X . Whenever we talk about the
dimension of X , we mean dim X = dimR X .
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Example 8. Preimages of regular values of holomorphic maps between com-
plex manifolds are again complex manifolds, by the holomorphic implicit function
theorem. In particular, homogeneous polynomials whose Jacobian have maximal
rank everywhere define complex manifolds X ⊆ CPn , and Chow’s theorem states
that every closed submanifold of CPn , which we will call a projective complex man-
ifold, arises in this way, as the intersection of vanishing loci of homogeneous poly-
nomials. That is, every projective complex manifold defines a smooth projective
algebraic variety over C. In particular,

{[z0 : · · · : zn] ∈CPn |∑zn+1
i = 0}

is a complex manifold of dimension n−1, which is a Calabi-Yau manifold, as we will
show later.

Serre’s GAGA theorems state that we have an equivalence of categories between pro-
jective complex manifolds and projective smooth varieties. Furthermore, if we denote
by X an the projective manifold with its Euclidean topology, and by X the projective
smooth variety which it corresponds to, there is an equivalence of categories between
their coherent sheaves: Coh(X an) ∼= Coh(X ). All of this is simply to say that we can trans-
late back and forth between algebraic geometry, and complex differential geometry on
projective manifolds.

On a complex manifold, we can take local holomorphic coordinates zk : Uα→Cn and
anti-holomorphic coordinates z̄k : U → Cn . These also contain smooth coordinates via
zk = xk + i yk . We can define the 1-forms

d zk := d xk + i d yk d z̄k := d xk − i d yk

Dual to these are the vector fields

∂

∂zk
= 1

2
(
∂

∂xk
+ i

∂

∂yk
)

∂

∂z̄k
= 1

2
(
∂

∂xk
− i

∂

∂yk
)

These define an almost complex structure (see C.1.1). Namely, take U ⊆ X sufficiently
small so that T X |U is trivial, which makes Γ(U ,T X |U ) a free C∞(U )-module. Then we
define J on a basis for this free module via

J (
∂

∂xk
) = ∂

∂yk
J (

∂

∂yk
) =− ∂

∂xk

This local definition for J is globally well-defined because the transition functions are
holomorphic, since we are on a complex manifold. The endomorphism J induces a
decomposition T X ⊗C = T X 1,0 ⊕T X 0,1 into its ±i eigenspaces. When the distribution
T X 1,0 is integrable, the almost complex structure J comes from a complex structure.
This is the Newlander-Nirenberg theorem, which we rephrase slightly in a moment.
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The decomposition of T X ⊗C induces one on T ∗X ⊗C via pullback. This also yields
∧k T ∗X⊗C=⊕p+q=k∧p T ∗X 1,0⊗∧q T ∗X 0,1. Consequently, any almost complex manifold
has Ωk (X ,C) =⊕p+q=kΩ

p,q (X ). In local coordinates, a basis for Ωp,q (U ) is given by

{d z j1 ∧·· ·∧d z jp ∧d z̄k1 ∧·· ·∧d z̄kq | j1 < ·· · < jp , k1 < ·· · < kq }

One can define ∂=πp+1,q ◦d and ∂̄=πp,q+1 ◦d . By definition, then, we have

∂ :Ωp,q (X ) →Ωp+1,q (X ) ∂̄ :Ωp,q (X ) →Ωp,q+1(X )

Theorem 2.1.2 (Newlander-Nirenberg [23]). An almost complex structure is integrable if
and only if d = ∂+ ∂̄. Equivalently, if and only if ∂̄2 = 0.

On a complex manifold, one defines the operators ∂ and ∂̄ on functions by locally
setting

∂ f =∑
k

∂ f

∂zk
d zk ∂̄ f =∑

k

∂ f

∂z̄k
d z̄k

It should be clear how to extend this definition to (p, q)-forms.

Example 9. Suppose that Σ is a real oriented surface, and equip Σ with a Rie-
mannian metric g . We can define the Hodge star operator ⋆ : ∧k TΣ→∧2−k TΣ. In
particular, we get ⋆ : TΣ→ TΣ, and for dimensional reasons, ⋆2 = −id. Thus, ev-
ery oriented surface with a Riemannian metric admits an almost complex structure.
Since Ω2,0(Σ) = 0, again for dimensional reasons, we see that ∂̄2 = 0, so the complex
structure is necessarily integrable.

Let us also mention the example of complex tori, as they allow for an explicit descrip-
tion of the so-called complex moduli space.

Example 10. Let Λ be a lattice of maximal rank in Cn . Then Cn/Λ is a complex
manifold, and it will be called a complex torus. We will use these as a testing ground
for various ideas throughout this text.

It is instructive to consider the case n = 1. Since C is the universal covering space
of C/Λ, any holomorphic map f : C/Λ1 → C/Λ2 between two complex tori lifts to a
holomorphic map F : C→ C. Suppose F1,F2 are both lifts of f . Define G = F1 −F2

and let πi :C→C/Λi be the projection maps. Then for all z ∈Cwe get

f ◦π1(z) =π2 ◦F1(z) =π2 ◦F2(z) =⇒ π2 ◦F1(z)−π2 ◦F2(0) = 0 =⇒ G(z) ∈Λ2

By continuity of G and the fact that a lattice is discrete, we must have G = const. ∈Λ2.
Now, we claim that F (z) = αz +β for some α ∈ C such that αΛ1 ⊆ Λ2. For λ ∈ Λ1,
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2.1. COMPLEX MANIFOLDS

define Gλ(z) = F (z+λ)−F (z). Since F (z) and F (z+λ) are both lifts of f , we must have
Gλ(z) ∈ Λ2 constant. Furthermore, d

d z F (z +λ) = d
d z F (z) so that d

d z F is Λ1-periodic.
Thus, it is a bounded, holomorphic function onC, which must be constant. It follows
that F (z) = αz +β for some complex numbers α,β. Finally, if λ ∈ Λ1, then Gλ(0) =
αλ+β−β=αλ ∈Λ2, so indeed αΛ1 ⊆Λ2.

Theorem 2.1.3. Two complex tori C/Λ1 and C/Λ2 are isomorphic if and only if there
exists an α ∈C× such that αΛ1 =Λ2.

Proof. Suppose αΛ1 = Λ2. Let mα(z) = αz. Since mα(Λ1) = Λ2, this descends to a
holomorphic map m̃α :C/Λ1 →C/Λ2. This map has a holomorphic inverse given by
m̃α−1 :C/Λ2 →C/Λ1 so that C/Λ1

∼=C/Λ2.

Conversely, suppose C/Λ1
∼= C/Λ2. Let f : C/Λ1 → C/Λ2 be a biholomorphism,

with lift F : C→ C, and inverse lift G : C→ C. Then F (z) = αz +β and G(z) = γz +δ.
Looking at F ◦G(z) =αγz +αδ+β, we see that αγ= 1. We know that

αΛ1 ⊆Λ2 γΛ2 ⊆Λ1 =⇒
αγΛ1 =Λ1 ⊆ γΛ2 ⊆Λ1 αγΛ2 =Λ2 ⊆αΛ1 ⊆Λ2

Therefore, αΛ1 =Λ2.

Now, if {w1, w2} ⊂ C defines a lattice Λ in C, then we can take α = w−1
1 so that

αw1 = 1. Set αw2 := τ. We have αΛ = Z+ τZ. Therefore, every complex torus is
isomorphic to C/(Z+τZ), where im τ ̸= 0. If im τ < 0 then Z−τZ defines the same
torus. Thus, every complex torus can be represented by a complex parameter τ ∈H,
whereH is the complex upper half plane. This complex torus is denoted Cτ.

Theorem 2.1.4. Let τ,σ ∈ H. Then Cτ ∼= Cσ if and only if τ and σ lie in the same
SL(2,Z)-orbit, where the group acts by Möbius transformations.

Proof. We need to quotient out by the choice of basis of the lattice Λ, which means
taking H/GL(2,Z) for some group action of GL(2,Z). Any element of this group has
determinant ±1, and we can restrict to SL(2,Z) because we have already made the
identification Z⊕τZ = Z⊕−τZ. The action of SL(2,Z) on H is given by Z2 7→ C, de-
termined by (1,0) 7→ 1 and (0,1) 7→ τ. Precomposing this with an element of SL(2,Z)
acting on Z2, one finds

τ 7→ aτ+b

cτ+d
where a,b,c,d are the matrix entries. In other words, SL(2,Z) acts by Möbius trans-
formations.

Thus, the coordinate τ onH/SL(2,Z) parameterises isomorphism classes of com-
plex structures on the topological torus S1 ×S1.
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More generally, for a given smooth manifold X , one can always define the complex
moduli space of X .

Definition 2.1.5. The complex moduli space of a smooth manifold X is defined as

Mc (X ) = {Integrable complex structures J on X }/ ∼

where J0 ∼ J1 ⇐⇒ J0 =ϕ∗ J1 for some ϕ ∈ Diff(X ).

We would like this to be a projective complex manifold itself, but this is typically not
the case. So instead of studying the global object Mc (X ), one typically studies local
deformations of a given complex structure. This is done by establishing the existence of
a first order neighbourhood Def(X ) of X = (X , J ) in Mc (X ), together with a morphism
π called the universal deformation π : U → Def(X ). It satisfies the property that, given
any proper holomorphic submersion S → B with π−1(b0) ∼= X for some b0 ∈ B, there
exists a uniquely defined morphism Φ : B ⊃ V → Def(X ) such that S|V ∼=Φ∗U for some
sufficiently small neighbourhood V of b0. In general, Def(X ) will be a germ of a complex
analytic space. For Calabi-Yau manifolds, one can show the following.

Theorem 2.1.6 (Bogomolov-Tian-Todorov [21]). Let X be a Calabi-Yau manifold with
no global holomorphic vector fields. Then Def(X ) exists, and it is a germ of a complex
manifold, with tangent space H 1(X ,TX ).

Here, H 1(X ,TX ) may be interpreted as sheaf cohomology of the sheaf of holomor-
phic vector fields, or as the Dolbeault cohomology group to be discussed later. In ei-
ther case, the point is that the complex manifolds which will be of interest to us have
a smooth complex moduli space of dimension dimCMc (X ) = dimCH 1(X ,TX ). How-
ever, Mc (X ) may not be compact, let alone projective. Moduli spaces are very intri-
cate objects and we shall not discuss these intricacies presently. We refer the reader to
[21, 20, 24] and references therein.

2.2 Holomorphic Vector Bundles

Once we have a smooth manifold, most of differential geometry is done by considering
appropriate vector bundles and sections thereof. The natural analogue is the notion of
a holomorphic vector bundle, which will be very important for us.

Definition 2.2.1. Let X be a complex manifold. A holomorphic vector bundle E over X
consists of an open cover {Uα} together with holomorphic maps 2 ϕαβ : Uαβ → GL(n,C)
for all intersections Uαβ, such that the cocycle condition ϕαβ ◦ϕβγ ◦ϕγα = id is satisfied
on triple intersections, and ϕαα = id.

2Observe that GL(n,C) ⊆ Cn2
is a complex manifold, since it is an open subset of a complex vector

space.
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Evidently, forgetting about the complex structure, every holomorphic vector bundle
is a smooth vector bundle. The converse is not true. We denote the smooth complex vec-
tor bundle which underlies a holomorphic vector bundle E by E . As for smooth vector
bundles, all the natural linear algebra operations apply to holomorphic vector bundles
to produce holomorphic vector bundles. We are referring to Hom-bundles, dual bun-
dles, wedge powers, tensor products, and so forth. With this in mind, let us give some
examples of holomorphic vector bundles.

Example 11. Consider the complex manifold CPn , and take the product CPn ×
Cn+1. View elements of CPn as lines ℓ⊂Cn+1 and define

O(−1) := {(ℓ, w) ∈CPn ×Cn+1 | w ∈ ℓ}

This associates a complex line to each point ℓ ∈CPn , and it is easily verified in local
coordinates that this defines a sub-bundle of the trivial bundle CPn ×Cn+1. We leave
it as an exercise to the reader to verify that the transition functions are in fact given
by ϕi j = z j /zi . Its dual bundle is denoted by O(1), whose transition functions are
then ϕi j = zi /z j . We denote O(k) =O(1)⊗k , with negative powers obviously being
tensor powers of the dual bundle instead.

One can show that every line bundle CPn is isomorphic to O(k) for some k. By using
the definition in terms of cocycles, it is easy to see that O(k)⊗O(l ) =O(k + l ), and also
O(0) =O, the trivial bundle. As such, the line bundles on CPn form a group isomorphic
to Z. More generally, the group of line bundles on a complex manifold (or variety) is
called the Picard group, denoted by Pic(X ). The group operation is the tensor product,
for which taking the dual bundle defines an inverse.

Definition 2.2.2. Let X be a complex manifold with underlying smooth manifold X .
We define TX := T X 1,0 to be the holomorphic tangent bundle, KX :=∧nT ∗X to be the
canonical bundle of X , and OX := X ×C to be the trivial holomorphic vector bundle.

Every holomorphic vector bundle comes with a canonical differential operator.

Theorem 2.2.3. Let E →X be a holomorphic vector bundle with smooth vector bundle E.
There exists a natural operator

∂̄ :Ωp,q (X ,E) →Ωp,q+1(X ,E)

called the Dolbeault operator, which squares to zero.

The Dolbeault operator is defined locally as ∂̄ acting on vector valued functions. This
is well-defined globally because the transition functions are holomorphic, so the ∂̄-operator
kills this term off. We leave the details as an exercise.

Definition 2.2.4. Let E → X be a holomorphic vector bundle, and let η ∈ Ωp,0(X ,E).
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2.2. HOLOMORPHIC VECTOR BUNDLES

Then η is called holomorphic if ∂̄η = 0. The holomorphic sections of E yield a sheaf,
denoted by the same symbol. Its sections will be denoted Γ(X ,E) or H 0(X ,E).3.

In particular, if E =OX and p = 0, we recover the definition of a holomorphic func-
tion, since ∂̄ f = 0 if and only if the Cauchy-Riemann equations are satisfied. Holomor-
phic sections of O(k) over CPn may be identified with polynomials of degree k in n vari-
ables. After homogenisation, these correspond to homogeneous degree k polynomials
in n +1 variables, and so projective algebraic varieties are cut out by sections of various
O(k) over CPn .

A morphism of holomorphic vector bundles is a holomorphic section of Hom(E ,F ),
and an isomorphism of holomorphic vector bundles is an invertible morphism. Impor-
tantly, there are holomorphic vector bundles which are isomorphic as smooth vector
bundles, but not as holomorphic vector bundles, as we now illustrate. We will use the
notion of a meromorphic section of a line bundle, which is defined in local coordinates
by the same conditions as a meromorphic function Cn → C. Well-definedness is non-
trivial, but we will not digress into this. See [20].

Example 12. Let X be a complex torus and z0 ∈X . Let U0 =X \ {z0} and U1 a
small disk centered at z0. Define a function g : U0 ∩U1

∼= D \ {0} → C× by g (z) = 1/z.
Declare Lz0 to be the line bundle associated to this cocycle. Then Lz0 is a holomor-
phic line bundle, which admits a holomorphic section with a simple zero at z0, and
no other zeroes or poles.

Proof. The transition function g (z) is clearly holomorphic on its domain, so Lz0 is a
holomorphic line bundle over X . Define a section s ∈ H 0(X ,Lz0 ) by defining it on
the cover {U0,U1}. We set s|U0 = 1 and s|U1 = z. On the overlap, we have z 7→ z/z = 1
and so these locally defined functions glue to give a section s ∈ H 0(X ,Lz0 ) with the
desired property.

Given Lz0 as above, it is clear that L∗
z0

admits a section with a single simple pole
at z0, and no other zeroes and poles. Namely by taking the section σ ∈ H 0(X ,L∗

z0
)

such that σ(s) = 1. Now we can construct a non-trivial holomorphic line bundle
with c1(L) = 0, as follows. Take z0, z1 ∈X , z0 ̸= z1 and consider (Lz0 , s0) and (Lz1 , s1),
where the si are sections as in the proof. Then we have a section s0 ⊗σ1 ∈Lz0 ⊗L∗

z1

which has a simple pole at z1, and a simple zero at z0. Supposing that Lz0 ⊗L∗
z1

is trivial, we can identify s0 ⊗σ1 with a meromorphic function. As we know from
complex analysis, we can identify meromorphic functions with holomorphic maps
f : X → CP1, mapping singularities to the point at infinity. We get a map of de-
gree one f : X → CP1, which has to be an isomorphism (see [25]). However, this

3We make an exception for holomorphic sections of ∧k T ∗X Its sheaf of holomorphic sections will be
denoted by Ωk

X .
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is impossible, as can already be seen at the level of topological spaces. Conse-
quently, L = Lz0 ⊗L∗

z1
is non-trivial as a holomorphic bundle. However, it is clear

that Lz0
∼= Lz1 as smooth vector bundles by looking at their Chern classes. Therefore

c1(L) = 0, implying that L is trivial as a smooth line bundle. Thus, we have found two
vector bundles, L and OX , which are not isomorphic as holomorphic vector bun-
dles, although they are isomorphic as smooth vector bundles.

In conclusion, a given smooth vector bundle E → X may admit many different holo-
morphic structures. The space of all holomorphic structures on E can be expressed as a
quotient space, just as the complex moduli space of a smooth manifold. We will elabo-
rate on this in the second part of the text.

An important fact that we will use many times throughout the text, is that holomor-
phic vector bundles have an intrinsically defined notion of cohomology, namely their
Dolbeault cohomology groups.

Definition 2.2.5. Let E →X be a holomorphic vector bundle. The Dolbeault cohomol-
ogy groups H p,q (X ,E) are defined as

H p,q (X ,E) := ker(∂̄ :Ωp,q (X ,E) →Ωp,q+1(X ,E))

im (∂̄ :Ωp,q−1(X ,E) →Ωp,q (X ,E))

By standard results from sheaf cohomology 4, we have an isomorphism between the
Dolbeault cohomology groups, and the sheaf cohomology groups:

H q (X ,Ωp
X ⊗E) ∼= H p,q (X ,E)

When E =OX , we simply denote these groups by H p,q (X ).

2.3 Kähler Manifolds

Next, we introduce Kähler manifolds. A Riemannian metric g on a complex manifold is
called Hermitian if g (J v, J w) = g (v, w).

Definition 2.3.1. A Kähler manifold (X , g ) is a complex manifold X together with a Her-
mitian metric g such that ω(v, w) := g (J v, w) defines a symplectic form on X .

The symplectic form obtained from g in this way is called the Kähler form of the
Kähler metric g .

Proposition 2.3.2. The Kähler form ω is of type (1,1).

4See D.2.3.
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Proof. It suffices to check this for a vector space with inner product g and complex
structure J . We note that ∧2V ∗ ⊗C = ∧2,0V ∗ ⊕∧1,1V ∗ ⊕∧0,2V ∗. By definition and C-
linearity, ω ∈ ∧2,0V ∗⊕∧0,2V ∗ ⇐⇒ J∗ω = −ω, and ω ∈ ∧1,1V ∗ ⇐⇒ J∗ω = ω. Thus, it
suffices to verify that J∗ω=ω. This is straightforward when we use the characterisation
ω(v, w) = g (J v, w), and the fact that g is Hermitian.

(J∗ω)(v, w) =ω(J v, J w) = g (J 2v, J w) = (J∗g )(J v, w) = g (J v, w) =ω(v, w)

Example 13. Let Ui denote the standard affine opens of CPn . Define

ωi = i

2π
∂∂̄ log(1+|z|2)

A routine verification confirms that these ωi agree on overlaps, to give a globally
defined 2-form ω, which is closed since ∂2 = 0 = ∂̄2. Thus, it remains to verify that

∂∂̄ log(1+|z|2) =
∑

d zk ∧d z̄k

1+|z|2 − (
∑

z̄k d zk )∧ (
∑

zk d z̄k )

(1+|z|2)2
=

1

(1+|z|2)2

∑
((1+|z|2)δi j − z̄i z j )d zi ∧d z̄ j

defines a Riemannian metric. That is, the matrix ((1+ |z|2)δi j − z̄i z j )i j := h should
be positive definite. This is done using Cauchy-Schwarz. Namely, for 0 ̸= v ∈ Cn we
have5

h(v, v) = vT hv = |v |2 +|z|2|v |2 − vT z̄zT v = |v |2 +|z|2|v |2 −|〈z, v〉|2 > 0

The matrix h clearly defines a Hermitian metric. Thus, CPn is indeed a Kähler man-
ifold.

Example 14. Every complex submanifold ι : Y ,−→ X of a Kähler manifold is
again a Kähler manifold. Indeed, if g is a Kähler metric on X , then ι∗g is a Hermitian
metric on Y . This holds since ι is an immersion. Furthermore, d ι∗ω = ι∗dω = 0, so
that ι∗g is Kähler. This means that every projective manifold ι : X ,−→CPn is a Kähler
manifold by the previous example.

It turns out that every (closed) Riemann surface is projective, and thus Kähler. How-
ever, this is not the easiest way to prove that a Riemann surface is a Kähler manifold.

5We let | · | and 〈·, ·〉 denote the standard norm/Hermitian inner product on Cn .
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Indeed, our construction of a complex structure on an orientable surface already tells
us how to do this.

Example 15. Recall that we construct a complex structure on an oriented sur-
face using a Riemannian metric, namely the Hodge star isomorphism. By construc-
tion, the Riemannian metric is Hermitian with respect to the complex structure,
since the Hodge star is an isometry. Since a Riemann surface has real dimension 2,
the associated 2-form is trivially closed, and hence symplectic, giving the Riemann
surface a Kähler metric.

Example 16. Every complex torus Cn/Λ is a Kähler manifold when equipped
with a flat metric.

A rather remarkable fact about Kähler manifolds is that the (p, q) decomposition of
forms descends to cohomology. This is known as the Hodge decomposition theorem.
For background, see [22] which covers the topic extensively.

Theorem 2.3.3 (Hodge Decomposition Theorem). Let X be a compact Kähler manifold.
Then there is a natural decomposition

H k (X ,C) =⊕p+q=k H p,q (X )

By the universal coefficients theorem, we have H k (X ,R) ⊂ H k (X ,C). We then set
H p,q (X ,R) = H p,q (X ) ∩ H p+q (X ,R). The Kähler class refers to the cohomology class
[ω] ∈ H 1,1(X ,R), but we simply denote it by ω. The set of all cohomology classes which
may arise as a Kähler class is called the Kähler cone (since it is invariant under scaling
by R>0 for obvious reasons), and it is an open subset of H 1,1(X ,R).

2.4 Calabi-Yau Manifolds

Definition 2.4.1. An almost Calabi-Yau manifold (X , g ) is a Kähler manifold (X , g ) whose
canonical bundle is holomorphically trivial: KX ∼=OX .

The triviality of KX is equivalent to the existence of a holomorphic (n,0)-form which
is nowhere vanishing. This form Ω ∈Ωn

X (X ) will be called a holomorphic volume form.
By Yau’s resolution of the Calabi conjecture, every almost Calabi-Yau manifold admits a
unique Ricci flat Kähler metric which represents the Kähler class.

Definition 2.4.2. A Calabi-Yau manifold (X , g ,Ω) is a Ricci flat Kähler manifold together
with a holomorphic volume form. The holomorphic volume form is normalised up to
S1-scaling by

ωn = n!(−1)n(n−1)/2Ω∧Ω
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Unless stated otherwise, Calabi-Yau manifolds will be assumed to be compact.

Example 17. Every complex torusCn/Λwith a flat metric is Calabi-Yau. A holo-
morphic volume form is given by d z1 ∧·· ·∧d zn .

Up to diffeomorphism, compact Calabi-Yau manifolds are quite rare. In complex di-
mension 1, the only example of a Calabi-Yau manifold is topologically a torus C/Λ. In
complex dimension 2, one has C2/Λ and the K 3-surface as smooth manifolds which
admit a Calabi-Yau structure. In complex dimension 3, there is a much larger num-
ber (possibly infinite - this is unknown according to [26]) of Calabi-Yau manifolds that
are topologically distinct. We will construct some examples further below (2.4.1). It is
important to note that, just as for complex tori, there are non-isomorphic Calabi-Yau
structures on the same smooth manifold.

One can also consider Calabi-Yau manifolds in the strict sense. What this means is
the following. The metric g gives a holonomy group (see the Appendix A.3) via the Levi-
Civita connection. If X is a Calabi-Yau manifold, then Hol(g ) ⊆ SU(n). When we have
equality, we say that X is a strict Calabi-Yau manifold. Thus, Cn/Λ with its flat metric is
not a strict Calabi-Yau (unless n = 1), as the holonomy is trivial. This can be translated
into an algebraic condition (see [21]). The condition for a Calabi-Yau manifold to be
strict is equivalent to H q (X ,OX ) = 0 for 0 < q < n. Sheaf cohomology is defined on
algebraic varieties as well.

Definition 2.4.3. A Calabi-Yau variety is a projective variety X such that KX ∼= OX . If
the sheaf cohomology groups H q (X ,OX ) vanish for 0 < q < n, then X is called a strict
Calabi-Yau variety.

For us, Calabi-Yau varieties will always be smooth, and we will refer to them simply
as Calabi-Yau manifolds. This is because strict Calabi-Yau manifolds of dimension ≥ 3
are always algebraic, so we can consider them as projective algebraic varieties, or as
projective manifolds.

2.4.1 Constructing Calabi-Yau Threefolds

We will now construct some Calabi-Yau manifolds, although we will not construct their
Ricci flat Kähler metrics (also known as Calabi-Yau metrics). Indeed, there are no explic-
itly known Calabi-Yau metrics on compact Calabi-Yau manifolds (apart from flat metrics
on tori), although their existence is guaranteed by Yau’s resolution of the Calabi conjec-
ture.

Theorem 2.4.4 (Calabi-Yau [21]). Let (X , g ′) be a compact Kähler manifold with c1(X ) =
0. Then there exists a unique Ricci flat Kähler metric g on X in the Kähler class of g ′. We
call g the Calabi-Yau metric of X with Kähler class ω.
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To check whether the manifolds we construct are distinct, we use their Hodge num-
bers. When X is compact, the vector spaces H p,q (X ) are finite dimensional vector
spaces, and we define the integers hp,q (X ) := dimCH p,q (X ). They are called the Hodge
numbers of X , and they are deformation invariant. That is to say, when we have a holo-
morphic family S → B of Kähler manifolds which is a proper submersion onto some
base space B, then the Hodge numbers of the fibres will agree. Recall that bk (X ) :=
dimRHk (X ,R) are called the Betti numbers.

Theorem 2.4.5. [20] Let X be a Kähler manifold. Then hp,q (X ) satisfy the following rela-
tions:

1. hp,q (X ) = hq,p (X ) (conjugate symmetry)

2. hp,q (X ) = hn−p,n−q (X ) (Serre duality)

3. hp,q (X ) = hn−q,n−p (X ) (the Hodge star isomorphism)

Furthermore, bk (X ) =∑
p+q=k hp,q (X ) (the Hodge decomposition).

With this in mind, let us start constructing some Calabi-Yau manifolds.

Example 18. The original example of mirror symmetry was discovered by physi-
cists, and pertained to the Calabi-Yau threefold known as the Fermat quintic. It is
defined as the zero locus in CP4 of a homogeneous degree 5 polynomial in the same
number of variables:

Q := {(z0 : z1 : z2 : z3 : z4) ∈CP4 |∑
i

z5
i = 0}

In other words, Q is the vanishing locus of a holomorphic section of the bundle O(5)
overCP4. We can use this to show that it is a Calabi-Yau manifold. Firstly, we observe
that Q is non-singular because its Jacobian vanishes if and only if z = 0 which does
not occur in CP4. Furthermore, the knowledge that Q = Z (s) for s ∈ H 0(X ,O(5))
allows us to calculate the Chern class c(Q) because the normal bundle can be identi-
fied with O(5), i.e. the smooth vector bundle underlying O(5). Thus, we have an iso-
morphism TCP4|Q ∼= TQ ⊕O(5)|Q , which implies that c(TCP4|Q ) = c(Q)c(O(5)). We
let x denote the hyperplane class, i.e. the generator of the cohomology ring H•(CP4).
We also denote x = ι∗x by abuse of notation. By construction, c(O(5)) = 1+5x. By
elementary arguments, one can check that c(TCP4) = (1+x)5, and in fact c(TCPn) =
(1+x)n+1. This yields

c(TCP4|Q ) = (1+x)5 = 1+5x +10x2 +10x3 = (1+ c1(Q)+ c2(Q)+ c3(Q))(1+5x) =⇒
c1(Q) = 0 c2(Q) = 10x2 c3(Q) =−40x3

So indeed, Q is a Calabi-Yau manifold, since it is a Kähler manifold with c1(Q) = 0.
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From the same computation, we can calculate the Euler characteristic χ(Q) of Q.

χ(Q) = 〈−40x3, [Q]〉 =−40 ·5 =−200 =⇒
b0(Q)−b1(Q)+b2(Q)−b3(Q)+b4(Q)−b5(Q)+b6(Q) =

1−0+1−dimRH 3(Q,R)+1−0+1 =−200

Thus, we must have dimRH 3(Q,R) = 204. Since h3,0(Q) = h0,3(Q) = 1, it follows that
h2,1(Q) = h1,2(Q) = 101. Here, we have used the Lefschetz hyperplane theorem to
conclude that H2(Q,R) ∼= R, which implies that b2(Q) = h1,1(Q) = 1. The same the-
orem tells us that Q is a strict Calabi-Yau manifold, i.e. h1,0(Q) = h2,0(Q) = 0. In
conclusion, we have proved the following.

Theorem 2.4.6. The quintic threefold Q is a strict Calabi-Yau manifold with Hodge
diamond 6given by

1

0 0

0 1 0

1 101 101 1

0 1 0

0 0

1

The above computations make it evident that the machinery from algebraic geome-
try is very useful, and can easily be generalised to e.g. complete intersections in CPN .
We will construct Calabi-Yau threefolds X ⊆ CP5 as complete intersections explicitly,
and mention how to generalise this construction to CPN more generally.

Example 19. If we want a threefold in CP5, we will need X = Z (s1)∩ Z (s2) for
some transversal intersection. Thus, we will take si ∈ Γ(CP5,O(ni )) and assume that
X is a complete intersection of these two homogeneous polynomials. Denote Xi =
Z (si ), so that X =X1 ∩X2. Then we have a Cartesian diagram:

X X2

X1 CP5

j

ι

κ

i

6See 4.1 for what we mean by the Hodge diamond.
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By the same argument we employed for the quintic, the ideal sheaf of X1 is O(−n1)
which yields an exact sequence of sheaves

0 →O(−n1) →O→ κ∗OX1 → 0

Pulling back by ι is exact (as can be verified locally), which yields an exact sequence

0 →O(−n1)|X2 → ι∗OX → ι∗κ∗OX1 → 0

Now, we have ι∗OX =OX2 , and the Cartesian diagram yields ι∗κ∗OX1 = j∗i∗OX1 =
j∗OX . Therefore, we obtain an exact sequence of sheaves

0 →O(−n1)|X2 →OX2 → j∗OX → 0

Thus, by definition, the ideal sheaf of X
j
,−→ X2 is O(−n1)|X2 . Using this, we can

once again calculate c1(X ), because c(X2) = c(X )c(O(n1)|X2 ) via the splitting T X2|X ∼=
T X ⊕O(n1)|X . Clearly, a computation analogous to the one we carried out for the
quintic yields

c(X2) = 1+ (6−n2)x + (15−6n2 +n2
2)x2 + (20−15n2 +6n2

1 −n3
2)x3 + c4(X2)

We omit the fourth Chern class because it will not be relevant for us. We can now
calculate:

c(X2) = c(X )c(O(n1)) ⇐⇒
1+ (6−n2)x + (15−6n2 +n2

2)x2 + (20−15n2 +6n2
1 −n3

2)x3 + c4(X2) =
(1+ c1(X )+ c2(X )+ c3(X ))(1+n1x) ⇐⇒

c1(X ) = (6−n1 −n2)x

c2(X ) = (15−6n1 −6n2 +n2
1 +n2

2 +n1n2)x2

c3(X ) = (−n3
1 −n2

1n2 +6n2
1 −n1n2

2 +6n1n2 −15n1 −n3
2 +6n2

2 −15n2 +20)x3

If we wish forX to be Calabi-Yau, we must select n1,n2 > 0 such that n1+n2 = 6. More
generally, if we want to obtain a complete intersection in CPN , we must take N −3
sections si ∈ Γ(CPN ,O(ni )) such that

∑
ni = N . But how do we know that the Calabi-

Yau threefolds we obtain in this way are topologically distinct? For this, we calculate
some more of the Hodge numbers. It is not difficult to show by induction on the
dimension that h1,0(X ) = h2,0(X ) = 0 for complete intersections, using the Lefschetz
hyperplane theorem. The same argument then yields h1,1(X ) = 1. It remains for us
to calculate h1,2(X ). We do this via the same argument as for the quintic. That is,
c3(X ) = e(X ), and furthermore, the cup product is Poincaré dual to intersections.
Therefore, the Poincaré dual of [X ] = [X1 ∩ X2] is c1(X1)∧ c1(X2) = n1n2x2. We can
then calculate:

χ(X ) = 〈c3(X ), [X ]〉 = 〈n1n2x2c3(X ),CP5〉 =
n1n2(−n3

1 −n2
1n2 +6n2

1 −n1n2
2 +6n1n2 −15n1 −n3

2 +6n2
2 −15n2 +20)
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Here, we used that 〈x5,CP5〉 = 1. It follows that

χ(X ) = b0(X )−b1(X )+b2(X )−b3(X )+b4(X )−b5(X )+b6(X ) =
1−0+1−b3(X )+1−0+1 = 4−b3(X ) ⇐⇒

b3(X ) = 4−n1n2(−n3
1 −n2

1n2 +6n2
1 −n1n2

2 +6n1n2 −15n1 −n3
2 +6n2

2 −15n2 +20) ⇐⇒
h2,1(X ) = 1−n1n2(−n3

1 −n2
1n2 +6n2

1 −n1n2
2 +6n1n2 −15n1 −n3

2 +6n2
2 −15n2 +20)/2

Let us examine if we can choose n1,n2 such that we obtain a threefold which is man-
ifestly different from the quintic. Clearly, our options are:

n1 = 1 n2 = 5 =⇒ h2,1(X ) = 101

n1 = 2 n2 = 4 =⇒ h2,1(X ) = 89

n1 = 3 n2 = 3 =⇒ h2,1(X ) = 73

As such, we have obtained (at least) two new distinct Calabi-Yau threefolds, as com-
plete intersections in CP5. Observe that the case n1 = 1 corresponds to X1

∼= CP4,
which results in X1 ∩X2

∼= Q. It is clear that the procedure may be applied by in-
tersecting N −3 submanifolds in CPN , as we remarked earlier. The computation for
the Hodge numbers will become increasingly tedious when doing this, but it gives a
whole range of Calabu-Yau manifolds.

2.4.2 Calibrations on Calabi-Yau Manifolds

For the Thomas-Yau conjecture, as well as the SYZ approach to mirror symmetry, we will
will need the notion of a calibration, and the associated calibrated submanifolds.

Definition 2.4.7. A calibrated manifold is a Riemannian manifold (X , g ) together with a
closed k-form ϕ such that 0 ≤ϕ|V ≤ Volg |V for all oriented k-dimensional V ⊆ Tx M and
all x ∈ X .

The k-form ϕ is called the calibration.

Definition 2.4.8. Let (X , g ,ϕ) be a calibrated manifold. Then a calibrated submanifold
is a submanifold Y ⊆ X such that ϕ|Tx Y = Volg |Tx Y for all x ∈ Y .

The following is proved in [27].

Theorem 2.4.9. Let (X ,ω) be a Kähler manifold. Then ωk for 1 ≤ k ≤ dimX is a calibra-
tion on X , and the calibrated submanifolds are precisely complex submanifolds Y ⊆ X .
Suppose that (X ,ω) is additionally Calabi-Yau. Then Re exp(iθ)Ω is a calibration for
Lagrangian submanifolds of (X ,ω), and the calibrated submanifolds are called special
Lagrangian submanifolds.
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Thus, special Lagrangian submanifolds are Lagrangian submanifolds L ⊂ X for which
there exists a choice of holomorphic volume form such that Re Ω|L = Volg . Equivalently,
there exists a choice of holomorphic volume form such that Im Ω|L = 0. Special La-
grangians are necessarily oriented submanifolds. These special Lagrangians submani-
folds are going to be the central objects of interest for the Thomas-Yau conjecture.

Proposition 2.4.10. Let Y ⊂ X be a calibrated submanifold. Then Y is volume minimis-
ing within its homology class in X .

Proof. Let Y ⊆ X be a calibrated submanifold and suppose that [Y ] = [Y ′] for some cycle
Y ′ ⊆ X . Then by Stokes’s theorem,

Vol(Y ) =
∫

Y
Volg =

∫
Y
ϕ=

∫
Y ′
ϕ≤

∫
Y ′

Volg = Vol(Y ′)

So indeed, calibrated submanifolds are volume minimising in their homology class.

The implication is that calibrated submanifolds are solutions to a difficult problem:
finding minimal submanifolds. The second fundamental form A ∈ Γ(Y ,Sym2(T ∗Y )⊗
N Y ) for a submanifold Y ⊂ X is defined as ∇X

v w =∇Y
v w + A(v, w), where ∇X and ∇Y are

the Levi-Civita connections of the respective metrics and N Y is the normal bundle of Y
is T X |Y . The mean curvature vector H⃗ is defined to be the trace of this tensor, so that
H⃗Y ∈ Γ(Y , N Y ).

Definition 2.4.11. A submanifold Y ⊂ X of a Riemannian manifold (X , g ) is called min-
imal if H⃗Y = 0. Equivalently, if it locally minimises the volume functional.

Solving the equations for the minimisation of the volume functional is, in general, a
very difficult problem. Since calibrated submanifolds are volume minimising, they are
also minimal submanifolds, and so provide a solution to this problem.

Example 20. If dimX = 1, then special Lagrangian submanifolds are the same
as geodesics.

If dimX = 2, a Lagrangian submanifold Y is special Lagrangian if and only if there
exists a complex structure on X which makes Y a complex submanifold. Because of
this, special Lagrangians really only become interesting if dimX ≥ 3.

In X =Cn with its standard Calabi-Yau structure, let φ⃗ ∈Rn be fixed, and consider

Πφ⃗ = {(e iφ1 x1, . . . ,e iφn xn) ∈Cn | (x1, . . . , xn) ∈Rn}

Then Re Ω|
Πφ⃗

= ±cos(
∑
φi ). So for Πφ⃗ to be special Lagrangian, we need

±cos(
∑
φi ) = 1 ⇐⇒ ∑

φi ∈ πZ. However, the question of when a union of two spe-
cial Lagrangian planes in Cn is volume minimising is more subtle, and we will come
back to this in the second part of the text, when special Lagrangians will be more at
the forefront of our discussion.
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Chapter 3

The A∞-Categories

We now discuss the A∞-categories through which homological mirror symmetry is for-
mulated, based on [5, 28, 29, 30]. We refer to [31] for a discussion of higher category
theory in physics. A short summary of the respective categories, for those readers who
do not wish to go through the technicalities, can be given as follows.

For an algebraic variety or complex manifold X , the derived category of coherent
sheaves Db(X ) consists of chain complexes of coherent sheaves, i.e. sequences

. . .
di−1−−−→ Ei

di−→ Ei+1
di+1−−−→ . . .

with di+1 ◦di = 0. The morphism in this category are just the usual morphisms between
chain complexes: termwise morphisms of sheaves which intertwine the differentials.
The subtlety is that quasi-isomorphisms are inverted in Db(X ). That is to say, whenever
f : E• →F• induces an isomorphism between the cohomology sheaves of the respective
complexes, it is an isomorphism in Db(X ).

A Lagrangian submanifold L ⊂ X of a Calabi-Yau manifold X is called graded if it
comes equipped with a function θ : L → R such that Volg = Re exp(iθ)Ω|L where Ω is
a holomorphic volume form. There is a topological obstruction to the existence of this
function, called the Maslov class of L. The objects of the Fukaya category consist of
graded Lagrangian submanifolds (L,θ), together with a flat unitary connection on a line
bundle E → L. The morphism space of two objects (L0,∇0) and (L1,∇1) is obtained from
C F •(L0,L1), the Floer chain complex of L0 and L1, and the parallel transport of the con-
nections, by viewing the vector space generated by the intersection points L0 ∩ L1 as
C〈L0 ∩L1〉 = ⊕p∈L0∩L1 HomC(E0,p ,E1,p ). It turns out that the morphisms which one gets
from these spaces are not associative, but they are associative up to higher homotopy.
This is what an A∞-category captures, see the appendix. The derived Fukaya category
can then be obtained from the Fukaya category through a procedure outlined in the ap-
pendices.

The physical interpretation for both of these A∞-categories will be discussed when
we arrive at homological mirror symmetry. We also note that in the appendix B, we
recall the basics of sheaf theory, particularly coherent sheaves. In the appendix D, we
recall the basics of homological algebra (e.g. abelian categories, additive functors, the
cohomology functor, triangulated categories, etc.), which are necessary to understand
the technical details of the constructions below.
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3.1 The Derived Category of Coherent Sheaves

In the appendices, we recall the definition of an abelian category, the particular example
of the category of coherent sheaves, and the definition of the derived category of an
abelian category. See the appendix D.

Definition 3.1.1. Let X be a complex manifold or variety. Then we denote by Db(X ) :=
Db(Coh(X )) the bounded derived category of coherent sheaves on X .

We recall that the objects in this category are chain complexes of coherent sheaves,
and we invert quasi-isomorphisms.

We also recall that the derived category is not an abelian category, although it is con-
structed from an abelian category. Instead, Db(X ) is a triangulated category, with dis-
tinguished triangles (also called exact triangles) as subsitutes for short exact sequences.
We refer to the appendices for details, since the technicalities will not be too important
for our purposes.

Example 21. There is a relatively explicit description of Db(CPn). Define A[0,k]

to be the category of OCPm -modules whose objects are isomorphic to finite direct
sums O(−r1)⊕·· ·⊕O(−rm), with 0 ≤ ri ≤ k. Then a theorem of Beilinson is that

Db(CPn) ∼= K (A[0,n])

where K (A) is the homotopy category of bounded complexes of A[0,n].

Example 22. When X is a Riemann surface, all indecomposable coherent
sheaves on it are either indecomposable vector bundles, or torsion sheaves sup-
ported at a single point x ∈ X . Let A denote the full subcategory of Db(X ) whose
objects are finite direct sums of indecomposable sheaves in each degree. Then in
[32] it is shown that

Db(X ) ∼=A

Let X =C/Λ. Torsion sheaves supported at points are just specified by a point x ∈X ,
a finite dimensional C-vector space, and a nilpotent endomorphism. Holomorphic
bundles on an elliptic curve are also fully classified, see [33]. Serre duality on an
elliptic curve yields

HomDb (X )(E ,F ) = Hom(E ,F ) HomDb (X )(E ,F [1]) = Ext1(E ,F ) ∼= Hom(F ,E)∗

So the objects of Db(X ) can be described as chain complexes of direct sums of vector
bundles and torsion sheaves supported at a point in each degree, and the morphism
spaces can be calculated quite explicitly, making Db(X ) relatively hands-on.
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3.1. THE DERIVED CATEGORY OF COHERENT SHEAVES

We now give some geometric motivation for doing this. As a first guess, maybe the
derived category of coherent sheaves classifies an algebraic variety, in the same way that
the chain complex of singular (co)chains classifies a simplicial complex up to homotopy
equivalence. It turns out that, in some cases, the bounded derived category is indeed a
complete invariant of the algebraic variety, as we mention below. Moreover, the derived
category allows us to express dualities like the famous Fourier-Mukai transform.

Theorem 3.1.2 (Mukai [34]). Let X be an abelian variety and let X̂ be its dual. Then

Db(X ) ∼= Db(X̂ )

The isomorphism is constructed as follows. Consider the product X × X̂ , with pro-
jections π and ρ to the respective factors. Then the isomorphism is given by

E• 7→ Rρ∗(π∗E•⊗L K•)

where E• ∈ Db(X ), ⊗L is the derived tensor product and K• ∈ Db(X × X̂ ) is called the
kernel, by analogy with the Fourier transform. The Fourier-Mukai transforms has close
ties to homological mirror symmetry, see [35]. We will touch on this later.

From another point of view, derived categories are important because, in certain
cases, they provide a complete invariant of the algebraic variety X .

Theorem 3.1.3 (Bondal-Orlov [36]). Let X1 and X2 be smooth projective varieties. Sup-
pose X1 has ample (anti-)canonical divisor. Then X1

∼= X2 ⇐⇒ Db(X1) ∼= Db(X2) as
triangulated categories.

When the anti-canonical divisor of a variety is ample, it is called a Fano variety. A ver-
sion of mirror symmetry can be formulated for such varieties, but we will not investigate
that. We merely wish to illustrate that the derived category is truly an important object
that we can associate to a variety, sometimes so strong that it completely classifies the
variety. However, in the present case of Calabi-Yau varieties, this is not the case.

Theorem 3.1.4 (Bridgeland [37]). If two Calabi-Yau varieties are birationally equivalent,
then their derived categories are equivalent.

Birational equivalence is much weaker than isomorphism. If two varieties are related
via a sequence of blow-ups (i.e. we get isomorphic varieties after taking appropriate
blow-ups), then they are birationally equivalent. Thus, for Calabi-Yau varieties, we cer-
tainly cannot view the derived category as a complete invariant. So why should we care
about it, from a geometric perspective?

One such reason is given in [38], which is that we can do intersection theory of subva-
rieties via sheaves. We let X denote a smooth projective variety of dimension n, and we
let D1 and D2 be two divisors on X . These define homology classes [Di ] ∈ Hn−2(X ,Z),
where X is the smooth manifold obtained from X , as in the case where X denotes a
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3.1. THE DERIVED CATEGORY OF COHERENT SHEAVES

complex manifold. Their Poincaré duals are c1(Li ) for two line bundles Li . As we men-
tioned previously, the cup product is dual to the intersection product, so the intersection
class should correspond to the Poincaré dual of c1(L1)∧ c1(L2) ∈ H 4(X ,Z), when the in-
tersection is transversal. Alternatively, we can view the intersection as being Z (s1|D2 ).
This can be translated into the language of sheaves. When considering a subvariety
Y ⊆X , we will consider coherent sheaves on Y as coherent sheaves on X via the push-
forward. The section s1 can be viewed as a morphism of sheaves

L∗
1

s1−→OX

and similarly, its restriction to D2 gives a morphism of sheaves L∗
1 |D2

s1|D2−−−→OD2 . If we
consider the cokernel of this morphism, we obtain a sheaf whose support is precisely
the intersection D1 ∩D2 (which we assume to be transversal for convenience), and is in
fact the structure sheaf. In essence, this comes down to the following. We have a short
exact sequence of sheaves

0 →L∗
1

s1−→OX →OD1 → 0

which means that we can view OD1 as the cohomology of the chain complex

· · ·→ 0 →L∗
1

s1−→OX → 0 → . . .

We take the cochain complex and tensor it with OD2 to obtain

· · ·→ 0 →L∗
1 ⊗OD2 =L∗

1 |D2

s1⊗id−−−→OX ⊗OD2 =OD2 → 0 → . . .

The cohomology of this chain complex is again just the cokernel of the morphism of
sheaves, which is the structure sheaf OD1∩D2 . On the other hand, we also know that the
intersection corresponds to the fibre product

D1 ∩D2 D2

D1 X

ι2

ι1

And consequently, the structure sheaf of D1 ∩D2 is just OD1 ⊗OD2 . The assumption
that the intersection is transversal is quite important here, because otherwise the result
may well be incorrect. For example, the case in which D := D1 = D2 already provides
an example for which we obtain the wrong result. After all, this would yield OD as the
structure sheaf of the self intersection of D , which we know is not the right way to think
about self intersections; instead, we should be intersecting D with a divisor which is lin-
early equivalent to D , and consider its intersection with this linearly equivalent divisor.
This can be thought of as saying that the intersection product is a multiplication map
on homology, and D ∩D = D would amount to saying that x2 = x with respect to this
multiplication. So instead, we deform D so that we get a transversal intersection. Can
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3.1. THE DERIVED CATEGORY OF COHERENT SHEAVES

the sheaf approach to intersection theory help us to solve this problem? Tensoring the
chain complex 0 →L∗ s−→OX → 0 with OD , we get

0 →L∗|D s|D−−→OD → 0

Of course, s|D = 0 since D = Z (s). As such, we are now given two pieces of information:
the structure sheaf OD , as well as the line bundle L∗|D . The latter gives us the correct
intersection, by looking at its first Chern class in H 2(D,Z). These two pieces of informa-
tion are the cohomology of the chain complex. The upshot of this observation is that the
sheaf approach is actually a correct approach to intersection theory, whereas the more
naive approach is not.

Longer chain complexes would appear if, instead of divisors, we took subvarieties
of higher codimension. This gives us a reason why we should be interested in chain
complexes of sheaves and their cohomology. The reason why we should invert quasi-
isomorphisms, is that this method depends on the chosen (projective) resolution, which
for our example was

0 →L∗
i →OX →ODi → 0

We only care about the cohomology which we obtain in this way, and so we should be
working in the (bounded) derived category Db(X ). The fact that we can work with locally
free sheaves is another convenient fact of passing to the derived category, and it can be
exploited in much more generality, as we describe below.

Now that we have some intuition for why we should care about the derived cate-
gory Db(X ), let us investigate some of the additional structure that it has. After all,
mirror symmetry relates Db(X ) to DbFuk(X ∨,ω∨), through a quasi-equivalence of A∞-
categories, but we do not yet know what the A∞-structure on Db(X ) is. We will give it
such a structure via D.5.6, by first constructing a different dg-category.

Definition 3.1.5. A complex of (coherent) sheaves on X is called perfect if it is quasi-
isomorphic to a bounded complex of locally free sheaves (i.e. vector bundles).

We will now construct a dg-category Db∞(X ) whose objects are perfect complexes.
Let E•,F• ∈ Db∞(X ). Then we need to give HomDb∞(X )(E•,F•) the structure of a chain
complex, which we can do as follows, as per [5]. We first define a complex at the level of
OX -modules

Hom•
OX

(E•,F•) ∈ Coh(X ) Homm
OX

(E•,F•) :=⊕nHomOX (En ,Fm+n)

We can construct a differential D ′ by using the differentials on the chain complexes E•
and F•. We define it on homogeneous elements by

D ′ :Homn
OX

(E•,F•) →Homn+1
OX

(E•,F•) (D ′( f ))m := dF• ◦ fm − (−1)n fm+1 ◦dE•

where fm : Em → Fm+n for f a morphism of degree n. Next, we choose an affine open
cover U and consider the corresponding Čech complex. We define

Homk
Db∞(X )

(E•,F•) := ⊕
p+q=k

Čp (U ,Homq
OX

(E•,F•))
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3.1. THE DERIVED CATEGORY OF COHERENT SHEAVES

Using the standard Čech differential D ′′ : Čp (U ,F ) → Čp+1(U ,F ), we can combine D ′

and D ′′ into a differential D on the total complex:
. . . . . .

. . . Čp (U ,Homq+1
OX

(E•,F•)) Čp+1(U ,Homq+1
OX

(E•,F•)) . . .

. . . Čp (U ,Homq
OX

(E•,F•)) Čp+1(U ,Homq
OX

(E•,F•)) . . .

. . . . . .

D ′

D ′′

D ′′

D ′

The diagonals are the homogeneous degree parts of the total complex. We define a dif-
ferential D on it by

D := D ′+ (−1)p D ′′ : Homk
Db∞(X )

(E•,F•) → Homk+1
Db∞(X )

(E•,F•)

This gives Db∞(X ) the structure of a dg-category, i.e. an A∞-category for which mk = 0
when k ≥ 3. Indeed, we define m1( f ) := (−1)| f |D( f ) and m2( f , g ) := (−1)| f |g ◦ f , where
the composition is defined via the composition of morphisms of sheaves. Hence, this
composition is certainly associative, which means we can indeed take the higher mul-
tiplication maps to vanish. Of course, any other affine open cover would give a quasi-
isomorphic complex, and at the level of cohomology, we get

H i (Hom•
Db∞(X )

(E•,F•)) = Exti (E•,F•)

Theorem 3.1.6. There is an equivalence of triangulated categories Db(X ) ∼= H•(Db∞(X )).

It is important that X is smooth and projective, otherwise the result would not hold.
To prove the result, we cite [39] which says that any coherent sheaf on a (quasi-)projective
variety has a finite locally free resolution. That is, if F is a coherent sheaf on X , then
there exists a bounded exact sequence of sheaves

E• →F → 0

and each term in E• is the sheaf of sections of a vector bundle on X . The cohomology
of the chain complex E• → 0 is F , and so we have an isomorphism E• ∼=F [0] in Db(X ).
Thus, each object in Db(X ) which is concentrated in degree 0 is quasi-isomorphic to a
perfect complex. Now, let

E• F•

G•

be a distinguished triangle in Db(X ). If two out of the three complexes are perfect, then
the third is also perfect. We omit the proof, see [40]. Once we know this, it is easy to
prove the following:
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3.2. THE FUKAYA CATEGORY

Theorem 3.1.7. Let E• be a bounded complex of coherent sheaves onX . Then E• is perfect.

The proof is by induction on the length of the complex, using distinguished trian-
gles and the truncation of complexes. This gives us the desired equivalence Db(X ) ∼=
H•(Db∞(X )). However, we know from D.5.6 that there is a quasi-equivalence of A∞-
categories

Db
∞(X ) ∼= H•(Db

∞(X ))

which we can use to transfer the dg-structure to Db(X ) ∼= H•(Db∞(X )), such that the
differential on Db(X ) is identically 0. On the other hand, the mk for k ≥ 3 no longer have
to be 0, and so the resulting A∞-structure on Db(X ) is not at all trivial. In summary, we
have given an interpretation of the kind of structure that the derived category encodes,
and we have shown that it can be given an A∞-structure.

3.2 The Fukaya Category

The construction of the Fukaya category makes the need for A∞-structures manifest in
a geometric way. Denote the Fukaya category of a Calabi-Yau manifold X by Fuk(X ,ω),
whereω is the Kähler form. The construction can be extended to more general symplec-
tic manifolds, but we restrict to the Calabi-Yau case.

The objects in the Fukaya category are easy to define, and they are essentially La-
grangian submanifolds - just with some extra data. We will see why the extra data is
needed only when constructing the Hom-spaces.

Definition 3.2.1. The objects of Fuk(X ,ω) consist of tuples (L, f ,E ,∇,SL) where

1. L is a Lagrangian submanifold.

2. f : L →R is such that Re f Ω|L = Volg , which is called a grading.1

3. SL is a spin structure on L.

4. (E ,∇) is a flat unitary (i.e. structure group U(1)) line bundle over L.

The first two items are to ensure that the morphism spaces are well-defined, as we
will see in a moment. The Fukaya category describes the intersection theory of La-
grangian submanifolds in the symplectic manifold (X ,ω). It does not make reference
to the complex structure X in any way. We will typically denote objects of the Fukaya
category simply by L, and the other data will be implicit.2 Next, we want to define the
Hom-spaces. To do this, we need the Floer chain complex, which is somewhat techni-
cal to define. We refer to the appendix C.3 for its construction. The main point is this:
whenever we have two intersecting Lagrangians, we can perturb them via Hamiltonian

1There is a topological obstruction to the existence of such a function, called the Maslov class. See C.2.3
for details.

2One should also demand that the Lagrangian submanifolds in the Fukaya category are unobstructed,
in an appropriate sense. We are not going to discuss this technicality.

40



3.2. THE FUKAYA CATEGORY

isotopies (see 1.1.4) to intersect transversally. We define a vector space which is gener-
ated by the intersection points. There is a natural way to define a grading on this vec-
tor space, and to define a differential, one "counts" pseudo-holomorphic disks which
connect two points, and whose boundary components lie in the respective Lagrangian
submanifolds. The resulting chain complex is denoted (C F •(L0,L1),∂) for Lagrangian
submanifolds L0,L1 ⊆ X . In order for the grading to be a Z-grading, we need a grading
on the submanifolds. In order to get a well-defined differential when we take C F •(L0,L1)
to be a vector space over a field with characteristic other than 2, we need to equip the
Lagrangians with spin structures. This is why the objects in the Fukaya category are
defined as they are.

Having said that, let us take L0,L1 ∈ Fuk(X ,ω) with Ei = Li ×C and ∇i = d . We define

HomFuk(X ,ω)(L0,L1) :=C F •(L0,L1)

This vector spaces is already graded, and has a differential from Floer theory. To make
Fuk(X ,ω) into an A∞-category, we need higher multiplication maps which satisfy the
A∞-relations. In the present case, the multiplication maps should be given as

mk : C F •(Lk−1,Lk )⊗·· ·⊗C F •(L0,L1) →C F •(L0,Lk )[2−k]

where [2− k] denotes a degree shift. We first state how this map is defined, and then
explain what it means geometrically. We set

mk (pk , . . . , p1) := ∑
q∈L0∩Lk ,

[u]∈π2(X ,L0∪···∪Lk ):
ind([u])=2−k

#M(p1, . . . , pk , q, [u], J )T 〈ω,[u]〉 ·q

For k = 1, we recover the definition of the Floer differential. The moduli space in this
equation is completely analogous to the one we defined in C.3, so we will not describe
it explicitly. Instead, we describe it geometrically. Namely, for the Floer differential, we
considered pseudo-holomorphic disks (with two points removed) which connected the
points p and q , such that the boundary was mapped to the respective Lagrangian sub-
manifolds. The idea here is the same. Instead of 2 punctures in the disk, we get 1+k
punctures. These punctures should map to the points p1, . . . , pk , q ∈ X . The boundary
of this (k +1)-punctured disk will consist of equally many line segments, and these line
segments are required to map to the respective Lagrangian submanifolds Li . For exam-
ple, see the diagram below for an example of a map u which will contribute to m2:

u(q)

u(p1)

u(p2)

L0

L1

L2

u
q

p1

p2

D
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In this way, we get a space of maps, and we again quotient out reparameterisations. We
obtain a space of dimension ind([u])+k −2. Hence, we sum over all homotopy classes
of maps which yield a 0-dimensional moduli space. This space can then be compacti-
fied via Gromov compactification, and the signed count of its points (coming from the
orientation induced by the spin structures) determines the higher multiplication maps.

Theorem 3.2.2. [28] Let mk be as above. Then the mk satisfy the A∞-relations for all
k ≥ 1.

In particular, m2 defines an associative multiplication at the level of cohomology, but
not at the level of chain complexes. When L0 = L1, this product structure coincides with
the usual cup product on HF •(L,L) = H•(L,Λ), under the right cirumstances (see [28]).

Now that we have defined the Hom-spaces when E ∼= L×Cwith the trivial connection,
the general case is a only a mild generalisation, and it is going to involve the parallel
transport of the connection ∇ on E . We note that

C F •(L0,L1) =C〈L0 ∩L1〉⊗CΛ

In other words, for each intersection point, we get a 1-dimensional complex vector space,
before we pass to the Novikov field. This 1-dimensional complex vector space C ·p is in-
terpreted as HomC(E0,p ,E1,p ), where the Ei are the flat unitary line bundles which are
part of the definition of the objects of the Fukaya category. This definition can be im-
mediately adapted to non-trivial Ei . For the multiplication maps, we use the parallel
transport of the connection. Namely, let u ∈ M(p1, . . . , pk , q, [u], J ). Then each of the
boundary strips will be mapped to some Lagrangian submanifold. Let us denote the
image of the boundary strip on Li by γi , which connects pi with pi+1 (and we identify
pk+1 = q). Then we restrict Ei to the strip γi , and the restricted connection gives us the
parallel transport operator from A.3.2.

Parγi : Ei ,pi

∼=−→ Ei ,pi+1

Geometrically, this map can be pictured as in the following image:

C/Λ
γ(t )

s(t ) ∈ Γ(I ,γ∗E)

x0

x0

Ex0

Parγ =−1

Ex0

0 0
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This depicts a non-trivial (real) line bundle over a Lagrangian submanifold of C/Λ. The
blue vectors depict the parallel transport of a given vector v ∈ Ex0 along a curve γ : I →
C/Λ over which E may be trivialised. The section s(t ) in red is a parallel section of this
trivialisation of γ∗E over I . Evidently, the resulting operator is Parγ =−1 ∈ GL(1,R).

Now, the idea is to define mk (ak , . . . , a1) by viewing ai ∈ HomC(Ei ,pi ,Ei+1,pi ) as en-
domorphisms of the fibres of the line bundles. Then we can use the parallel transport
operators to define

mk (ak , . . . , a1) := ∑
q∈L0∩L1

( ∑
u∈M(p1,...,pk ,q,[u],J )

(−1)σ(u)Parγk ◦ak ◦ · · · ◦a1 ◦Parγ0 ⊗T 〈ω,[u]〉
)
·q

(3.1)
In this expression, (−1)σ(u) is determined by the orientation of the point u in the moduli
space. These multiplication maps again satisfy the A∞-relations.

Definition 3.2.3. Let (X ,ω) be a Calabi-Yau manifold. The Fukaya category Fuk(X ,ω) is
the A∞-category defined by the following data:

1. The objects defined in 3.2.1.

2. The Hom-spaces defined as

HomFuk(X ,ω)(L0,L1) := ⊕
p∈L0∩L1

HomC(E0,p ,E1,p )⊗CΛ

3. The multiplication maps mk defined in 3.1

There is a shift functor on the Fukaya category, which shifts the grading by 1. Hence,
we can consider the derived Fukaya category DbFuk(X ,ω) (see the appendix).

Example 23. We will discuss the (twisted) Fukaya category of a 2-torus in 4.4.1.
Essentially, each object is isomorphic to a direct summand of a twisted complex built
from the standard generators of π1(T 2). See [28] for details.
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Chapter 4

Homological Mirror Symmetry

4.1 Mirror Symmetry and String Theory

We now aim to give an overview of the origins of mirror symmetry in string theory. This
will be a high level discussion, in the sense that we omit many technicalities. We start
in the 1990s when B. Greene and M. Plesser published their paper [41] titled "Duality in
Calabi-Yau Moduli Space", but many more references will be given throughout the text.
Their abstract reads:

"We describe a duality in the moduli space of string vacua which pairs topo-
logically distinct Calabi-Yau manifolds and shows that they yield isomorphic
conformal theories. At the level of the geometrical description, this dual-
ity interchanges the roles of Kähler and complex structure moduli and thus
pairs manifolds whose Euler numbers differ by χ(X ) 7→ −χ(X )."

Let us try to give an explanation of what this means. In relativity, one considers the
worldline of a particle, which is its trajectory in spacetime. When we consider strings in-
stead of point particles, we speak of worldsheets rather than wordlines, because we are
now looking at the surface which is traced out by a 1-dimensional object, i.e. a string. We
can consider either open strings, diffeomorphic to the interval I , or closed strings, dif-
feomorphic to the circle S1. Let us start by considering only closed strings. In this case,
worldsheets will be Riemann surfaces Σ with boundary. Interactions between strings
are naturally encoded in the theory. We denote ∂Σ= ∂Σ−∪∂Σ+, the incoming and out-
going boundary components. Each component is thought of as a string. The Riemann
surfaces which provide a cobordism between the components are thought of as inter-
actions between the incoming strings and the outgoing strings, such as in the following
diagram:

,−→∂Σ− ←−- ∂Σ+Σ

Such diagrams are the string theoretic analogues of Feynman diagrams in quantum field
theory. For instance, the diagram above represents an interaction in which a single

44



4.1. MIRROR SYMMETRY AND STRING THEORY

closed string splits into two closed strings.

To get a physical theory, we need to prescribe some action functional. The action
functional will be a functional on the space of maps Map(Σ, X ) for a target manifold X ,
which is our spacetime. This is called a non-linear sigma model (if X were a vector space,
it would be a linear sigma model). The natural way to do this, is by imposing a metric on
Σ and X and defining

S(φ) =
∫
Σ

dφ∧⋆dφ

One readily verifies that this action is invariant under conformal transformations (i.e.
rescaling of the metric and diffeomorphisms), which means that the action only de-
pends on the conformal structure on Σ. Since there is a bijection between conformal
structures and complex structures on Σ, we can indeed regard Σ as a Riemann surface.
Furthermore, conformal invariance allows us to shrink the boundary components to be
arbitrarily small, and as such, it is typical to view the worldsheets in a closed string the-
ory as closed Riemann surfaces, by inserting vertex operators - these correspond to the
boundary string states via the operator-state correspondence. For example:

∼=

In the above picture, the marked points on CP1 denote the punctures which were "filled
up" by using vertex operators. This is our crude justification for considering closed Rie-
mann surfaces as the worldsheets for closed strings. We refer to [42, 43, 44] for a more
rigorous discussion of this fact.

Next, we want to include supersymmetry, so that we will be considering superstrings.1

From the physical perspective, there are several reasons to do this. Most importantly, it
gives a way to include fermions in the theory. Supersymmetry says essentially that the
Lie algebra of infinitesimal symmetries of the theory is a super Lie algebra. That is, it
should be a Z/2-graded vector space g = g0 ⊕ g1 with a Lie bracket that is also appro-
priately graded. When restricted to g0, it should yield an ordinary Lie algebra, presently
the Poincaré algebra of Minkowski spacetime symmetries. However, there is a marked
distinction between these local symmetries, and global symmetries. Indeed, consider
for instance general relativity, in which the action functional depends on the metric. In
this case, the Killing vector fields generate the global symmetries of the theory. These are
the vector fields whose flow preserve the metric. They may not even exist, even though
we have local symmetries given by the Poincaré algebra, which is the Lie algebra of the
gauge group of general relativity. Likewise, local supersymmetry (for the present pur-

1See [45, 43] for a mathematical perspective on supersymmetry.
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poses, a super Lie algebra whose g0 component is the Poincaré algebra) does not imply
the existence of a global supersymmetry. In the supermanifold formalism, such a global
supersymmetry would be an odd vector field (i.e. a spinor) which preserves the action.
In [46] it is shown that the existence of sufficient local supersymmetry (called N = (2,2)
supersymmetry) in a non-linear sigma model requires the target space to have a Kähler
structure (X , g ). If we additionally require the existence of a global supersymmetry (for
the "effective" theory on R4), then this is precisely the requirement that there exists a
parallel spinor on (X , g ).2 In turn (see [47]), this implies that (X , g ) must be a Calabi-
Yau manifold. This was the primary case of interest for physicists, cf. [43]. Furthermore,
Ricci flatness of the metric is required for the quantisation of the theory to remain su-
perconformally invariant. To make the physics work out, it is required that dimCX = 3,
which is how we arrive at Calabi-Yau threefolds, as well as the famous 4+6 = 10 dimen-
sions in which string theory takes place. But dimX = 3 is not essential for the definition
of the sigma model, and the discussion below applies to Calabi-Yau manifolds more
generally.

So the setup is to consider Riemann surfaces Σ, and base the theory around maps
φ : Σ→ R4 ×X where (X , g ) is a Calabi-Yau manifold. We will focus on maps φ : Σ→X ,
which comprises one part of the theory. In fact, since the worldsheets Σ can naturally
be coupled to a closed 2-form B ∈Ω2(X ) via pullback, we will consider it as part of the
data of a Calabi-Yau manifold. It should be interpreted as a higher gauge field, i.e. as the
connection form on a trivial unitary gerbe, a higher analogue of the electric potential.3

Only its cohomology class enters into the action functional, through intergration, so we
view B as the representative of some class B ∈ H 2(X ,R). Physicists believe that every
such triple (X , g ,B) gives rise to an N = 2 superconformal vertex algebra (SCVA). We are
not going to define what these are explicitly, referring instead to [48]. The main point
is that these objects are algebraic gadgets which encode the string theory, and they are
representations of an infinite dimensional super Lie algebra called the super Virasoro
algebra (all of this is discussed in the cited source). Not all N = 2 SCVA arise from non-
linear sigma models with Calabi-Yau target space. We call the ones that do geometric.

At the algebraic level, it is quite easy to write down an involution of an N = 2 SCVA
which yields another N = 2 SCVA. If two N = 2 SCVAs are related in this way, they are said
to be mirror to each other. It should be noted that the generators which are exchanged
by the mirror morphism have a distinct geometric interpretation, when the N = 2 SCVA
comes from a Calabi-Yau threefold. In fact, the Gepner conjecture claims that every
N = 2 SCVA with some additional property is geometric. This property is preserved by
the mirror morphism, and so the mirror morphism acts on the moduli space of Calabi-

2Spinors model fermions in the standard model. In the appendix, we give a brief review of spinor
bundles and spinors.

3A unitary gerbe is some higher analogue of a unitary line bundle. Flat unitary lines bundles are clas-
sified by H 1(X ,R/Z), and flat unitary gerbes are classified by H 2(X ,R/Z). We consider a trivial unitary
gerbe, i.e. one which lies in the kernel of H 2(X ,R/Z) → H 3(X ,Z). This allows a lift to a class B ∈ H 2(X ,R)
and subsequently to a closed 2-form.

46



4.1. MIRROR SYMMETRY AND STRING THEORY

Yau threefolds.

Definition 4.1.1. Let (X , g ,B) be a Calabi-Yau threefold, SCVA(X , g ,B) the associated
N = 2 SCVA, and let µ be the mirror morphism. Then the mirror4 of (X , g ,B) is the
Calabi-Yau threefold (X∨, g∨,B∨) such that

µ(SCVA(X , g ,B)) ∼= SCVA(X∨, g∨,B∨)

Unfortunately, string theory in its full generality is too difficult for us to study mathe-
matically. In his paper "Topological Quantum Field Theory" [49], Witten discusses how
one can perform a topological twisting on the original string theory, which isolates some
"topological sector" of the theory. This can then be used to obtain a topological quan-
tum field theory, which has no dynamics, i.e. the Hamiltonian is identically zero. How-
ever, because of the quantum effects, this still produces a mathematically interesting
theory, and more importantly, a mathematically well-defined theory. It turns out that
there are two inequivalent ways to twist a supersymmetric non-linear sigma model, and
produce a topological string theory:

1. The A-model, which depends only on the complexified Kähler class (X ,B + iω)

2. The B-model, which depends only on the complex structure X

Witten argues in [50] that the mirror morphism exchanges the A-model on (X , g ,B) with
the B-model on (X∨, g∨,B∨).5 Furthermore, the moduli spaces of the physical theories
should be isomorphic in some open neighbourhood of the corresponding points in the
moduli space, because deformations of the respective physical theories should coin-
cide. This is what is meant with the quote from [41]. This statement has very non-trivial
mathematical implications, particularly on Calabi-Yau threefolds, which is the case we
will now specialise to. For a start, there is a relation between the Hodge diamonds of X
and X∨. Recall that hp,q (X ) := dimCH p,q (X ). The Hodge diamond of a complex mani-
fold X is the following diagram:

h0,0(X )

h1,0(X ) h0,1(X )

h2,0(X ) h1,1(X ) h0,2(X )

h3,0(X ) h2,1(X ) h1,2(X ) h0,3(X )

h3,1(X ) h2,2(X ) h1,3(X )

h3,2(X ) h3,3(X )

h3,3(X )

4Although we refer to "the" mirror, there is not necessarily a unique mirror manifold of a given Calabi-
Yau manifold.

5As noted in the introduction, physicists actually conjecture that this is true more generally, not just at
the level of topological string theory, but at the level of supersymmetric conformal field theories, known
as type IIA and type IIB string theory. But this is not a mathematically rigorous claim.
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On a Kähler manifold, the Hodge numbers exhibit a number of symmetries, which we
mentioned in 2.4.5. In the setting of strict Calabi-Yau 3-folds, we have imposed that
h1,0(X ) = h2,0(X ) = 0. Using this, together with the symmetries of the Hodge diamond
for a Kähler manifold, this means that the Hodge diamond of a strict Calabi-Yau 3-fold
takes the following shape:

1

0 0

0 h1,1(X ) 0

1 h2,1(X ) h2,1(X ) 1

0 h1,1(X ) 0

0 0

1

Mirror symmetry earned its name because of the fact that, for the mirror manifold X∨,
we have h1,1(X∨) = h2,1(X ) and h2,1(X∨) = h1,1(X ). In other words, the Hodge dia-
mond of X∨ is obtained by a mirror reflection along the diagonal of the Hodge dia-
mond of X . The reason for this is as follows. The complexified Kähler moduli space
is MK (X ) := (H 2(X ,R) + iK(X ))/H 2(X ,Z), where K(X ) denotes the set of all 2-forms
which may arise as Kähler classes on X . This is an open subset of H 2(X ,R), and so
dimCMK (X ) = h1,1(X ). The complex moduli space Mc (X ) of X is defined as the space
of complex structures on X modulo diffeomorphisms. The Bogomolov-Tian-Todorov
theorem states that, when X admits a Calabi-Yau structure, Mc (X ) is smooth, with tan-
gent space given by H 1(X ,TX ), where (X , J ) =X . Observe that on a Calabi-Yau three-
fold, we have a non-degenerate pairing

∧ : TX ⊗∧2TX →∧3TX ∼=OX

We obtain TX ∼= ∧2T ∗X , implying that H 1(X ,TX ) ∼= H 1(X ,Ω2
X ) = H 2,1(X ). It follows

that dimCMc (X ) = h2,1(X ). Thus, the assertion that some open neighbourhoods of the
moduli spaces of the physical theories are isomorphic is translated into a mathematical
statement about the topology of the mirror manifold, and about the existence of Calabi-
Yau manifolds with certain topological properties, since χ(X ) =−χ(X ∨).

To be slightly more precise, for certain distinguished complex structures J (large com-
plex structure limit points, which we will not define), there should be an open neigh-
bourhood U ⊆Mc (X ) of J and a holomorphic mapµ : U →MK (X ∨) which is an isomor-
phism onto its image. The mapµ is called the mirror map. In physics terms, the B-model
of a point p ∈Mc (X ) should correspond to the A-model of the point µ(p) ∈MK (X ∨).
Mathematically, this is expressed in terms of the Yukawa couplings. They determine the
physical theory, so under the mirror map, the Yukawa couplings should coincide. For
the A-model, the Yukawa coupling is given as follows. Let p := B + iω ∈MK (X ). Then
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we have a canonical identification TpMK (X ) ∼= H 2(X ,C). The Yukawa coupling is a map

Y1,1
p : H 2(X ,C)⊗3 →C[[q ;S]]

where C[[q ;S]] is the ring of formal power series over C whose exponents lie in some
semigroup S. Presently, the semigroup is given by

S = {Y ∈ H2(X ,Z) |
∫

Y
ω≥ 0 ∀ω ∈K(X )}

We think of Y1,1
p as a "quantum deformation" of the usual intersection pairing on coho-

mology, defined by

Y1,1
p (η1,η2,η3) := η1 ∧η2 ∧η3 +

∑
0 ̸=Y ∈H2(X ,Z)

GWY (η1,η2,η3)
qY

1−qY
∈C[[q ;S]]

When H2(X ,Z) is torsion free, this may be interpreted as some formal power series, and
for practical purposes it should simply be interpreted as a function on the tangent space
of the moduli space. The expression GWY (η1,η2,η3) is the genus zero Gromov-Witten
invariant of the homology class Y , on the Calabi-Yau manifold X . It counts the num-
ber of holomorphic curves CP1 → X which represent the homology class Y , modulo
reparameterisations, such that the points 0,1,∞∈ CP1 are mapped to cycles which are
Poincaré dual to the ηi . The Gromov-Witten invariants give us information about the
enumerative geometry of X , and mirror symmetry says that this information can be
computed from the Yukawa coupling of the B-model on the mirror X∨. As noted previ-
ously, TpMc (X ) ∼= H 1(X ,TX ). The Yukawa coupling Y2,1

p for the B-model at the point
q is a map

Y2,1
p : H 1(X ,TX )⊗3 →C

Observe that Serre duality 6 tells us that H 3(X ,∧3TX ) ∼= H 0(X ,KX ⊗Ω3
X ) = H 0(X ,KX ⊗

KX ). Assuming a suitable normalisation on the holomorphic volume form Ω, a Calabi-
Yau manifold gives us a canonical element Ω⊗Ω ∈ H 0(X ,KX ⊗KX ). Denote the Serre
duality pairing by 〈·, ·〉. Then we set

Y2,1
p (η1,η2,η3) := 〈η1 ∧η2 ∧η3,Ω⊗Ω〉

The physics of mirror symmetry suggests that under the mirror map µ : U →MK (X ∨),
we get

µ∗Y1,1 =Y2,1

Conjecture 4.1.2 (The Mirror Conjecture). Let (X , g ) be a Calabi-Yau threefold. Then
there exists a Calabi-Yau threefold (X∨, g∨), and a mirror map µ : Mc (X ) ⊇ U

∼−→ V ⊆
MK (X ∨) which makes the respective Yukawa couplings coincide.7

6Serre duality states, for any coherent sheaf E , that H i (X ,E) ∼= H n−i (X ,KX ⊗E∗)∗.
7If the complex moduli space of a Calabi-Yau manifold is 0-dimensional, it cannot have a mirror in this

sense, because the Kähler cone is always of dimension ≥ 1. This is a hint that mirror symmetry holds more
generally, which indeed it does, but we will not investigate that.
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This is remarkable for several reasons. Firstly, we noted that there were "quantum
corrections" in the A-model Yukawa coupling, which is why we get a formal power se-
ries. However, for the B-model Yukawa coupling, we simply get a complex number,
no quantum corrections. Mathematically, this means that certain notoriously difficult
computations (e.g. the Gromov-Witten invariants) can be obtained by performing much
simpler calculations in the B-model of the mirror manifold X∨. This calculation was
performed for the mirror quintic by Candelas et al., in their famous paper [3]. This was
done by considering a family of Calabi-Yau manifolds π : S → B for a 1-dimensional
base space (considered as a subspace of the moduli space of the mirror quintic), so that
the Yukawa coupling Y2,1 becomes a function on B, which is calculated by evaluating
certain integrals, called period integrals. This function has a Taylor expansion, and its
coefficients coincide with those of the Yukawa couplingY1,1 on the Kähler moduli space
of the quintic. As such, the Gromov-Witten invariants for Q can be read off.

There is a Gromov-Witten invariant for each degree of the mapCP1 →Q, correspond-
ing to H2(Q,Z) ∼= Z, and the degree 1, 2 and 3 Gromov-Witten invariants had been cal-
culated by mathematicians at this point in time. The number of degree 1 and 2 curves
obtained by Candelas et al. agreed with the number that was known. However, there
was a discrepancy for degree 3. Was the mirror symmetry conjecture misguided? As
it turned out, the computer code used by mathematicians to calculate the number of
degree 3 curves on Q contained an error. Once this had been corrected, the two num-
bers agreed. However, the physicists produced at least 10 coefficients, far more than any
mathematician had been able to produce. Thus, mirror symmetry as a mathematical
discipline was born, as it became clear that there are deep connections to be discovered
in this area. While this is a beautiful story, the derived category of coherent sheaves has
not appeared anywhere - nor has the derived Fukaya category. The story has a contin-
uation which leads to homological mirror symmetry. We will continue telling this story
after discussing mirror symmetry for K 3 surfaces.

4.2 Example: Mirror Symmetry for K 3 surfaces

Taking a step back from Calabi-Yau threefolds, we can consider one dimension lower
to see how mirror manifests itself. In complex dimension 2, we have one strict Calabi-
Yau manifold up to diffeomorphism, which is the K 3 surface. Because of this, mirror
symmetry for K 3 surfaces is not going to give any relation between topologically distinct
manifolds, in contrast to the case of Calabi-Yau threefolds.

Definition 4.2.1. A K 3 surface X a simply connected Calabi-Yau manifold of dimension
dimX = 2.

It should come as no surprise that the quartic surface

X = {[z0 : z1 : z2 : z3] ∈CP3 |∑z4
i = 0}
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is a K 3 surface, just as the Fermat quintic was a Calabi-Yau threefold. Other examples of
K 3 surfaces may be obtained by resolving certain orbifolds, e.g. resolving the quotient
of an abelian twofold by the natural Z2-action a 7→ −a. One can also adapt 2.4.1 to
complex dimension 2, to obtain K 3 surfaces as complete intersections in CPN . From
the description as a quartic surface, it is easy to deduce the Hodge numbers as we did
for the quintic, and the only Hodge number that is interesting in this case is h1,1(X ) = 20.

There is a well-known isomorphism Sp(1) ∼= SU(2). Riemannian manifolds of dimen-
sion 4n with Hol(g ) ⊆ Sp(n) are called hyper-Kähler manifolds, and they have interesting
properties. In particular, they are Calabi-Yau since Sp(n) ⊆ SU(2n), but we will focus on
the case n = 1 in which the two notions coincide. Let (X , g ) be a hyper-Kähler mani-
fold and take x ∈ X , so we may identify Tx X ∼= R4 ∼=H, where H denotes the quaternion
algebra. Then we have three complex structures on Tx X , denote them by Ix , Jx ,Kx , cor-
responding to multiplication by the imaginary basis vectors. Now, Hol(g ) ⊆ Sp(1) leaves
each of these vectors invariant, and so the holonomy principle A.3.5 tells us that we get
three complex structures I , J ,K on X . The manifold X is a Kähler manifold with respect
to each of these complex structures, and they satisfy I 2 = J 2 = K 2 = I JK = −id. We de-
note the respective Kähler forms by ωI ,ωJ ,ωK , and we denote the K 3 surface equipped
with the respective complex structures by XI ,XJ ,XK .

Proposition 4.2.2. A holomorphic volume form for XI is given by ΩI =ωJ + iωK .

Proof. First, we show that ΩI is of type (2,0) w.r.t. I . Let v, w ∈ Tx X . Then

ΩI (I v, w) =ωJ (I v, w)+ iωK (I v, w) = g (I v, J w)+ i g (I v,K w) =
g (J I v, J 2w)+ i g (K I v,K 2w) = g (K v, w)− i g (J v, w) =−g (v,K w)+ i g (v, J w) =

−ωK (v, w)+ iωJ (v, w) = i (ωJ (v, w)+ iωK (v, w))

A similar calculation for the second argument then indeed shows ΩI ∈ Ω2,0(X ). Now,
both ωJ and ωK are symplectic forms on X , irrespective of the complex structure, so
they are closed. But closed forms of type (2,0) are precisely the holomorphic ones, since
d = ∂+ ∂̄ and ∂ΩI = 0 since dimX = 2. So Ω is a holomorphic 2-form, and it is nowhere
vanishing since ωJ and ωK are symplectic.

It is also easy to show that every hyper-Kähler manifold admits a CP1 worth of com-
patible complex structures, namely by taking a,b,c ∈ R and considering aI + b J + cK
with a2 +b2 + c2 = 1. This means that the complex deformations and the Kähler defor-
mations are not "decoupled", in the way that we described for Calabi-Yau threefolds.
In some ways, this makes the analysis more intricate. However, K 3 surfaces allow for a
very explicit description of their complex moduli, which makes mirror symmetry for K 3
surfaces rather concrete.

What makes K 3 surfaces particularly well-behaved is that their complex moduli can
be encoded through a lattice. We consider the usual bilinear form on the middle coho-
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mology, given by the cup product:

∪ : H 2(X ,Z)⊗H 2(X ,Z) → H 4(X ,Z) ∼=Z

We get a lattice in the usual sense, i.e. a free abelian group together with a bilinear form.
From now on, this bilinear form will just be denoted by juxtaposition of elements, or by
〈·, ·〉 if the context requires it.

Theorem 4.2.3. If X is a K 3 surface, then H 2(X ,Z) is an even8 unimodular lattice of
signature (3,19).

By the classification of unimodular lattices, there a unique lattice up to isomorphism
which satisfies the above properties, and we will denote it by Γ3,19. An isomorphism of
lattices H 2(X ,Z) ∼= Γ3,19 will usually be implicit.

The lattice structure together with the Hodge decomposition of H 2(X ,C), coming
from the Kähler structure on X , allows one to describe the complex modulus of a K 3
surface in terms of lattice theory.

Definition 4.2.4. A Hodge structure of weight k is a lattice Γ together with a decompo-
sition Γ⊗C=⊕p+q=k H p,q such that H p,q = H q,p .

For a K 3 surface, we take k = 2 and Γ = H 2(X ,Z), with the decomposition given by
the Hodge decomposition H 2(X ,C) ∼= H 2,0(X )⊕H 1,1(X )⊕H 0,2(X ). The lattice sits inside
of the the vector space H 2(X ,C) via the universal coefficients theorem H 2(X ,Z)⊗C ∼=
H 2(X ,C), but the Hodge decomposition varies as the complex structure on X changes.

Definition 4.2.5. An isometry of Hodge structures is a lattice isometry which preserves
the (p, q)-grading.

The following theorem is the description of the complex moduli that we alluded to.

Theorem 4.2.6 (Global Torelli theorem). Two K 3 surfaces X1 and X2 are isomorphic as
complex manifolds if and only if there is a Hodge isometry between their Hodge structures.

This manifests itself concretely by examining the so-called period integrals. Con-
sider a marked K 3 surfaces, so that we have fixed an isomorphism H 2(X ,Z) ∼= Γ3,19.
This amounts to choosing a basis {γi } for H2(X ,Z). We then have a map Φ : Mcx(X ) →
P(H 2(X ,C)) determined by

Ω 7→ [
∫
γ1

Ω : · · · :
∫
γ22

Ω]

This is well defined because Ω2
X (X ) ∼= C, so a holomorphic volume form is determined

up to C×-scaling, which projectivising takes care of. The image of this map is called the
period domain, which we denote D, and the Torelli theorem states thatΦ :Mcx(X ) →D
is a local isomorphism. As such, its complex dimension is h1,1(X ). The only reason why
the period map is not an isomorphism onto its image, is that the complex moduli space

8This means that α∪α ∈ 2Z for all α ∈ H 2(X ,Z).
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has two components. When we restrict to a single component, we essentially get that
the complex moduli of a K 3 surface is completely described by its period vector, i.e. the
integrals

∫
γi
Ω.

Mirror symmetry can be understood as an isomorphism between two (variations of)
Hodge structures over the complexified Kähler moduli space, and the complex moduli
space, respectively. This is the point of view which is presented in the classical textbook
on the subject [51]. For a K 3 surface, this takes the following form when considered
pointwise in the respective moduli spaces. Consider the bilinear form on H•(X ,Z) given
by

〈α,β〉 = 〈(α0,α2,α4), (β0,β2,β4)〉 =
∫

X
α2 ∪β2 −α0 ∪β4 −α4 ∪β0

It is called the Mukai pairing, which extends the cup product pairing on H 2(X ,Z). As a
lattice with the Mukai pairing, H•(X ,Z) is isomorphic to Γ3,19⊕H , where H is the lattice
which is called the hyperbolic plane, given by Z2 with bilinear form e2

1 = e2
2 = 0 and

e1e2 = 1. Given a K 3 surface with complexified Kähler form B = B + iω, we can obtain
two different Hodge structures on H•(X ,Z): one for the A-model, and one for the B-
model. For the A-model, define

Ω= exp(B) ∈ H•(X ,C). It is easy to verify that one has
(cf. the relations satisfied by the holomorphic volume form):

Ω2 = Ω2 = 0

ΩΩ> 0

Define a subspace H 2,0
A (X ,B) ⊂ H•(X ,C) by the complex span of

Ω

, and let H 0,2
A (X ,B)

be its conjugate. Also take H 1,1
A (X ,B) = (H 2,0

A (X ,B)⊕H 0,2
A (X ,B))⊥, where the orthogonal

complement is now with respect to the Mukai pairing. Then we obtain a Hodge structure
on H•(X ,Z), denoted by HA(X ,B).

For the B-model, we also obtain a Hodge structure on H•(X ,Z). This is done in analo-
gous fashion, by setting H 2,0

B (X ) to be the span of the holomorphic volume form. Notice

that H 1,1
B (X ) = H 0(X ,C)⊕ H 1,1(X ,C)⊕ H 4(X ,C), it is not just the (1,1) part of the coho-

mology. Denote this Hodge structure by HB (X ). Then there is the following theorem.

Theorem 4.2.7 ([52]). The mirror of a K 3 surface (X ,Ω,B) is a K 3 surface (X∨,Ω∨,B∨)
such that there is an isometry of Hodge structures:

HA(X ,B) ∼= HB (X ) HA(X ∨,B∨) ∼= HB (X )

Now let Λ⊂ H 2(X ,Z) be a sublattice isomorphic to H in Γ3,19. Then we can choose a
basis { f1, f2} for this sublattice, satisfying the relations f 2

1 = f 2
2 = 0 and f1 f2 = 1. We also

get a decomposition Γ3,19 = Γ′⊕Λ, see [53]. Define

K= {(Ω,ω) |Ω ∈D, ω ∈Ω⊥ ⊂ H 2(X ,R), ω2 > 0}
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Theorem 4.2.8 (Huybrechts [53]). Let (Ω,ω,B) ∈K×H 2(X ,R) with ω,B ∈ (Γ′⊗R)⊕R f1.
Then the Λ-mirror K 3 surface is given by

Ω∨ = 1

〈Re Ω, f1〉
(
−1

2
(B + iω+ f2)2 f1 +B + iω+ f2

)
ω∨ = 1

〈Re Ω, f1〉
(
Im Ω−〈Im Ω, f2〉 f1 −〈Im Ω,B〉 f1

)
B∨ = 1

〈Re Ω, f1〉
(
Re Ω−〈Re Ω, f1〉 f2 −〈Re Ω, f2〉 f1 −〈Re Ω,B〉 f1

)
Notice that this depends on a choice of sublattice Λ ⊂ Γ3,19, which illustrates non-

uniqueness of the mirror manifold. We refer to [52] for the string theoretic perspective
on this story. It is essentially shown that the lattice which really governs the string theo-
retic moduli space is Γ4,20

∼= H•(X ,Z), which is obtained as Γ3,19 ⊕H . The choice of Λ is
then a choice of lattice that will be exchanged with H 0(X ,Z)⊕H 4(X ,Z) under the mirror
map.

In most cases of interest, a natural choice ofΛ can be made. We are referring to those
K 3 surfaces which admit an elliptic fibration X → CP1 and a section σ : CP1 → X . In
this case, one can take f to be the Poincaré dual of the homology class of the fibre, and
s that of the section. Then f 2 = 0, f s = 1 and s2 = −2. Define f1 = f and f2 = f + s, so
that f 2

1 = f 2
2 = 0 and f1 f2 = 1, meaning we can take Λ to be generated by f and s. We

can then define the mirror of an elliptic K 3 surface using 4.2.8, without ambiguity. In
fact, if the elliptic fibration is given w.r.t. a complex structure I , one can hyper-Kähler
rotate to the complex structure J , which renders the same fibration a special Lagrangian
fibration, and σ a special Lagrangian section for the Kähler form ωJ . Therefore, f1 and
f2 pair with ωJ and Im ΩJ to give 0, and so the mirror K 3 surface has a relatively simple
expression.

4.3 The Homological Mirror Symmetry Conjecture

Recall that when we outlined how the mirror conjecture was arrived at, we assumed that
we were dealing with closed string theories. That is, all of the strings we are consider-
ing are diffeomorphic to S1. To be more general, we can include open strings, which
are diffeomorphic to an interval I . In this case, we still obtain Riemann surfaces as
worldsheets, and we can still consider a physical theory which is based around maps
φ :Σ→X for some Calabi-Yau threefold X . This time, the ends of the open strings trace
out 1-dimensional objects, and we need to specify some boundary conditions in the tar-
get manifold X for the ends of these strings to live on. These will be D-branes. When
we are in a neighbourhood of the large volume limit of the theory, these objects have a
geometric interpretation, and this will be our primary interest. Hence, from now on, we
will always assume that we are in a neighbourbood of the large volume limit.
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Remark 4.3.1. In the discussion that follows, we will assume that the B-field on X and
its mirror manifold both vanish. It should be noted that it is not necessarily true that
a vanishing B-field on X implies a vanishing B-field on its mirror. However, in many
concrete examples this is true (see e.g. [53]). Nevertheless, it should be noted that the
constructions below have to be modified in cases where the B-field is non-vanishing.

Note that the worldsheet is going to have two different types of boundaries: there
are the boundaries traced out by the ends of the open strings, but also the boundary
components corresponding to the incoming and outgoing strings. As before, we use
conformal invariance to get rid of one type of boundary by inserting certain operators.
Then we are looking to put boundary conditions on the boundary segments which are
traced out by the ends of the open strings. In [5] it is determined that the appropriate
boundary condition for an open string is φ(∂Σ) ⊆ L, where (L,E ,∇) is a submanifold
L ⊆ X together with a connection ∇ on a unitary line bundle E over L,9 and stipulate
that

∂φi

∂z
= R i

j (φ)
∂φ j

∂z̄
+Fermionic terms

where R i
j is an orthogonal matrix.

For the closed string, the N = (2,2) supersymmetry was generated by so-called su-
percharges, typically denoted Q+,Q−,Q+,Q−, which are elements of the aforementioned
super Lie algebra. For the open string, it turns out that the full N = (2,2) supersymmetry
cannot be preserved, because translational supersymmetry is broken by the presence of
the boundary. To be able to define the topological twisting, which we need to get a math-
ematically rigorous theory, we need N = 2 supersymmetry. Fortunately, one can choose
the boundary conditions to be time-independent, in which case time translation super-
symmetry can be maintained. More concretely, it means we can take a pair of linear
combinations of the supercharges above, which generate an N = 2 supersymmetry alge-
bra. There are two different choices of pairs that one can make: these are called A-type
supersymmetry, and B-type supersymmetry. They allow for the topological twisting of a
supersymmetric sigma model for the open string to obtain the topological A-model and
the topological B-model, respectively.

We have just attempted to summarise a very intricate topic in half a page, with the
goal being to inform the reader about the main ideas that lead up to the open topological
string models. To find out about the details of these constructions, we refer the reader
to [5, 4, 49, 54, 42, 55, 56]. We will now instead move on to discuss the main objects of
interest to us.

Remark 4.3.2. We stress that we will assume that we are in a neighbourhood of the large
volume limit of X . There is no general understanding of D-branes in the more general
setting.

9This picture naturally extends to higher rank bundles, which is called "brane stacking".
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The analysis in [55] reveals, under the above assumption, which additional condi-
tions are imposed on the D-branes in these models. A D-brane in the A-model (resp.
B-model) will be called an A-brane (resp. a B-brane). Then it is shown that an A-brane
consists of:

1. A Lagrangian submanifold L ⊂ X .

2. A grading f on L.

3. A spin structure SL on L.

4. A flat unitary line bundle (E ,∇) on L.

In other words, A-branes are the objects of the Fukaya category.10 On the other hand, a
B-brane consists of 11:

1. A complex submanifold Y ⊆X .

2. A smooth vector bundle E → Y .

3. A connection ∇ on E such that F∇ is of type (1,1).

As discussed in [8], there is a bijection

(E → Y ,∇) with F∇ ∈Ω1,1(Y ) ⇐⇒ Holomorphic vector bundles E →Y

In other words, B-branes are complex submanifolds together with holomorphic vector
bundles. If ι :Y →X is the inclusion, then we get a coherent sheaf ι∗E onX . The support
of this sheaf is Y , so we see that the preliminary B-branes are objects in Coh(X ).

Next, we wish to turn the respective collections of branes into categories. This seems
like a reasonable thing to do, geometrically: we view strings as being elements of Hom(A,B)
for some boundary conditions A and B . If we then additionally have a string in Hom(B ,C ),
we should be able to concatenate these strings, given matching boundary conditions,
and obtain an element of Hom(A,C ), i.e an open string spanning from A to C . This is
the basic motivation for the following constructions.

The Category of A-branes Let (Li ,Ei ,∇i ) for i = 0,1 be a pair of A-branes, which will
be abbreviated simply to Li . What is the Hilbert space of open string states, for strings
beginning on L0 and ending on L1? We assume that the intersection L0 ∩L1 is transver-
sal, which can be achieved by using a Hamiltonian perturbation, if necessary. Those
A-branes which are related by a Hamiltonian isotopy should be considered as isomor-
phic A-branes. Morphisms from L0 to L1 are interpreted as open strings beginning on
L0 and ending on L1. The space of morphisms is Hom(L0,L1) :=C F •(L0,L1), which can
be turned into a chain complex (Hom(L0,L1),Q) = (C F •(L0,L1),∂) where Q is the BRST

10There is an "unobstructedness" criterion for A-branes, akin to the one we mentioned for objects in
the Fukaya category. We omit it here as well.

11This is a preliminary definition that we will refine below.
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operator, presently given by the Floer differential.12 The cohomology of this complex
(i.e. the Floer cohomology) is the "true" Hilbert space of open string states from L0 to
L1. The action of taking cohomology can be interpreted as quotienting out gauge equiv-
alences. That is, if two states differ by a Q-exact term, then they are gauge equivalent,
so we should really consider them as equal in the Hilbert space. Elements of the Hilbert
space correspond to certain operators, under the operator-state correspondence. Physi-
cists would like these operators to form an algebra, at the level of Q-cohomology.

For technical reasons explained in [5], one wants to preserve the information con-
tained in the chain complexes. We know the solution: instead of passing to cohomol-
ogy, we consider A∞-categories up to quasi-equivalence. We take m1 = Q, and the
higher multiplication maps mk are determined by the (k + 1)-point correlation func-
tions13 of the theory and non-degenerate forms on the morphism spaces, which can be
obtained from the geometry of the Calabi-Yau manifold. Defining these forms rigor-
ously is the subject of much technical analysis, for the A-side. Given ai ∈ Hom(Li ,Li+1)
we consider the (k+1)-point function, denoted 〈a0 . . . ak〉, and we define m(ak , . . . , a1) by
〈mk (ak , . . . , a1), a0〉 = 〈ak . . . a0〉, where 〈·, ·〉 denotes the non-degenerate bilinear form on
Hom(L0,Lk ). Remarkably, one can show (see [56]) that these mk satisfy the A∞-relations,
and in fact yield the Fukaya category (up to some technicalities, such as changing the
field from C to Λ). The cohomology category H•(Fuk(X ,ω)) has a grading on its mor-
phism spaces. The degree of an element in the Hilbert space is called the ghost number.
Mathematically, these ghost numbers are obtained via the Maslov index from C.2. The
pseudo-holomorphic disks which define the Floer differential (i.e. the BRST operator)
are interpreted as the process of quantum tunneling from one intersection point to an-
other. The higher order multiplication maps have a similar geometric interpretation
through quantum tunneling. For instance, consider m2 : C F •(L1,L2) ⊗C F •(L0,L1) →
C F •(L0,L2) which is derived from the 3-point function. Its contributions come from
maps u :D\ {q, p1, p2} → X as in the following diagram:

∼=

p2

p1

q
u(q)

u(p1)

u(p2)

L0

L1

L2

u
q

p1

p2

D

On the left hand side of the figure, we have the so-called pair of pants (for open strings),
which physically represents an interaction in which the string state q splits into p1 and
p2. One can evaluate the 3-point function of the theory on these states, once they have
been mapped into X , and this contributes to the multiplication map m2. Geometri-

12As the notation suggests, this operator Q comes from the supercharges.
13We can think of these as giving the vacuum expectation values of certain observables in the quantum

theory.
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cally, this can be seen as the conformal equivalence between the pair of pants and the
thrice-punctured disk, which gives us the contribution to m2 in the sense of the Fukaya
category, see 3.2. Taking the derived Fukaya category can be interpreted physically as al-
lowing certain states to bind together or decay into each other, we refer to [5] for details.

The Category of B-branes Next, we wish to turn B-branes into a category. The first
thing to note is that our original definition does not yield enough B-branes, particularly
if we wish mirror symmetry to be true. The way to solve this is by considering the ghost
number, which in the A-model required the Maslov index of an intersection point p ∈
L0 ∩L1 of two Lagrangians. To eventually include more objects into our category of B-
branes, we will (paradoxically) first restrict our attention to locally free sheaves on X , i.e.
holomorphic vector bundles. The intricacies of the morphisms between two B-branes
will reveal that by analysing this case, we have in fact already included the more general
types of B-branes as well. One can show that the BRST operator Q for the B-model may
be identified with ∂̄, which leads to the Hilbert space of open string states between E
and F , namely Hom(E ,F ) =⊕q H 0,q (X ,Hom(E ,F )) =⊕q Extq (E ,F ). This space already
comes equipped with a natural integer grading, so it is tempting to say that the integer
q is the ghost number. However, given the lengths one needs to go to on the A-model
side, let us instead assign an integer µ(E) to every holomorphic vector bundle on X .
Then we will say that an element of H 0,q (X ,Hom(E ,F )) has ghost number q +µ(F )−
µ(E), by analogy with the Maslov index. Then we can consider E• = ⊕kEk where Ek is a
holomorphic vector bundle with µ(Ek ) = k.

To enlarge the class of objects we are considering, we will deform the objects. It is
ghost number one operators which correspond to deformations of the theory, i.e. ele-
ments of Extq (Ek ,Ek−q+1). Taking q = 1 corresponds to Ext1(Ek ,Ek ) which are sheaf de-
formations of Ek , as discussed in 5.3.1. Taking q = 0, we get morphisms dk : Ek → Ek+1.
We denote d =∑

k dk . Under the operator-state correspondence, these open string states
yield operators W , which can be used to deform the action of the theory by adding a
boundary term S 7→ S +∫

∂ΣW . As it turns out (see again [55]), to keep the condition that
the BRST operator of the deformed theory squares to zero (which is required for physi-
cal consistency), we must have d 2 = 0. In other words, (E•,d) is a complex of locally free
sheaves, and this is really a better way to think about a B-brane (for Y =X ), because we
cannot assume that the B-model inherently knows the "right" ghost number, while the
A-model does not. Thus, imposing this "ignorance" on the B-model, we are naturally
led to consider complexes of locally free sheaves. We still include holomorphic vector
bundles E → X as B-branes, since these are complexes in a trivial way. The Hilbert
space of open string states spanning from E• to F• is then given by ⊕q Extq (E•,F•), and
this time, the integer q really is the ghost number. However, once again, rather than
passing to cohomology, we will take the category of B-branes to be Db∞(X ) (the differ-
ential graded category of perfect complexes). That is, we only obtain the Hilbert spaces
of open string states after taking the cohomology category H•(Db∞(X )).

As we know, H•(Db∞(X )) ∼= Db(X ). So the question is: how did we end up in the
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derived category, if we started out by considering complexes of vector bundles? Math-
ematically, we already know this. Physically, the answer to this question is given by the
notion of an isomorphism between the branes, which will tell us that we need to in-
vert quasi-isomorphisms. In this way, it turns out that the category of B-branes really is
H•(Db∞(X )) = Db(X ). Suppose that E• → E ′• is a quasi-isomorphism, and suppose that
E ′• → I• is an injective resolution (i.e. a quasi-isomorphism with a chain complex of
injective objects). The latter quasi-isomorphism may lie in the category of chain com-
plexes of OX -modules, for instance. Then E• → I• is also an injective resolution, and so
for all chain complexes F• of (locally free) sheaves, we get

Extq (E•,F•) ∼= Extq (E ′
•,F•) Extq (F•,E•) ∼= Extq (F•,E ′

•)

Thus, the resulting Hilbert spaces are isomorphic with respect to an arbitrary B-brane
F•, and we should consider E• and E ′• isomorphic as B-branes because they are phys-
ically indistinguishable. That is, we should invert quasi-isomorphisms. In conclusion,
the category of B-branes is really Db(X ). Its A∞-structure is given by the dg-structure
on Db∞(X ) and the minimal model D.5.6.

This also remedies the issue we caused by restricting to locally free sheaves on X .
Namely, we now have complexes of arbitrary sheaves, which are supported on subman-
ifolds ι : Y ,−→X . Given a locally free sheaf E →Y , it is tempting to think of ι∗E as being
the corresponding element in the category of B-branes. This is not true, and this result is
called the Freed-Witten anomaly. It states that when Y does not admit a Spin-structure,
the bundle over Y which corresponds to ι∗E as a B-brane, is not in fact E itself, but a
twisted version (i.e. tensored with a line bundle). Let us not be too concerned about
this, as it does not detract from the fact that by considering the locally free sheaves on
X itself, we have in fact also obtained the B-branes which are supported on proper sub-
manifolds. See [57] for more on this. As for the A-model, the higher multiplication maps
mk on the morphisms in Db(X ) are determined by the k-point correlation functions of
the theory and the non-degenerate forms on the Hilbert spaces, see above and also [58].
In this case, the non-degenerate forms come from Serre duality on Db(X ).

Given that the mirror conjecture was based on an isomorphism between the A-model
with target space (X , g ), and the B-model with target space (X∨, g∨), their respective
categories of boundary conditions should then also be isomorphic. Thus, the mathe-
matical statement of this conjecture becomes:

Conjecture 4.3.3 (Kontsevich). Let (X , g ) and (X∨, g∨) be a mirror pair of Calabi-Yau
threefolds. Then there is a quasi-equivalence of A∞-categories

Db(X ) ∼= DbFuk(X ∨,ω∨) Db(X∨) ∼= DbFuk(X ,ω)

Shockingly, the idea of D-branes did not yet exist when Kontsevich formulated his
conjecture. Furthermore, it is not yet known whether the homological mirror symmetry
conjecture (as it is formulated in 0.0.1) implies the mirror conjecture, but it is suspected
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that it does, since open string theories include more data than closed string theories.
Homological mirror symmetry is known to hold more generally, namely for Calabi-Yau
hypersurfaces in CPN . The case N = 2 corresponds to an elliptic curve, which was orig-
inally treated in [59]. The case N = 3 is the quartic surface, for which Seidel proved
homological mirror symmetry in [60]. The case N ≥ 4 was covered by Sheridan in [61].
This result covers the quintic threefolds, for which mirror symmetry was originally es-
tablished.

One thing that should immediately stand out to us, is the following. The derived
Fukaya category (i.e. the A-model) is very difficult to work with. There are many techni-
calities to be addressed and it is unpleasant to attempt to compute things directly in this
setting. On the other hand, the derived category of coherent sheaves (i.e. the B-model)
is much more pleasant to work with. This is the realm of algebraic geometry, in which
there are methods to calculate things concretely. As we mentioned before, the derived
equivalence of categories typically does not arise from an equivalence of the underly-
ing categories. Specifically, there is no equivalence of categories between Fuk(X ,ω) (or
its twisted version) and Coh(X∨). However, one might hope that we can still translate
between the symplectic geometry of X , and the algebraic geometry on the mirror X∨,
as was done when physicists computed the Gromov-Witten invariants of the quintic via
period integrals on the mirror manifold. Especially when we have something which is
defined on the heart of the t-structure on Db(X∨) (see D.4.4) and can be extended to
the entire derived category, we might hope that this has an analogue on the symplectic
side. This is part of the motivation of the Thomas-Yau conjecture, which we will discuss
in the next part of the text.

4.4 Example: Homological Mirror Symmetry for Complex
Tori

As noted, homological mirror symmetry was shown to hold for Calabi-Yau hypersur-
faces inCPN . This is the most general class of Calabi-Yau manifolds for which homolog-
ical mirror symmetry is known to hold, but it does not contain those Calabi-Yau man-
ifolds which are easiest to work with: complex tori (except the elliptic curve). In fact,
Abouzaid showed that homological mirror symmetry holds on 4-tori (see [62]), but the
general case remains more elusive. In spite of this, most objects of interest can be writ-
ten down quite explicitly, and so complex tori provide a nice class of examples to study,
as per [63].

4.4.1 The Elliptic Curve

We start by considering an elliptic curve X =C/ΛwhereΛ is some lattice. In this setting,
it is quite evident how to define the mirror morphism at the level of objects, because
this is one of the few cases in which the entire Fukaya category is well-understood. The
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Calabi-Yau metric on a complex torus is the natural flat metric, induced by the Euclidean
metric on C. Taking smooth coordinates x, y , the metric is just A(d x ⊗d x +d y ⊗d y) for
some A ∈ R>0. The complex structure acts via ∂

∂x 7→ ∂
∂y and ∂

∂y 7→ − ∂
∂x . As such, we

get d x 7→ −d y and d y 7→ d x under the pullback. This means the Kähler form, defined
as ω(v, w) = g (v, J w), is given by A(−d x ⊗d y +d y ⊗d x) = Ad y ∧d x = A

2i d z ∧d z̄. We

choose the holomorphic volume form to be Ω = p
Ad z, so that 1

2iΩ∧Ω = ω. These
are the standard conventions. A complexified Kähler form is then given as B = B + iω,
and we write its cohomology class as ρ = B + i A (because

∫
X ω= A). The mirror elliptic

curve C/Λ̃ is given by τ̃= ρ and ρ̃ = τ. But what does this mean for homological mirror
symmetry?

As a first step, we should identify the Lagrangian submanifolds - but this is trivial in
complex dimension 1, they are just the submanifolds of dimension 1. We will be inter-
ested in closed submanifolds, and so we look for embeddings γ : S1 →C/Λ. We write the
image as γ(S1) = Lγ. Now that we know what the Lagrangians look like, we need to de-
termine which ones admit a grading. That is, we need to identify the Lagrangians whose
Maslov class vanishes. We distinguish between two cases: when γ is null-homotopic,
and when it is not. Suppose first that γ is null-homotopic, say a circle in a fundamen-
tal domain U ⊂ C. This determines a map f : Lγ → LGr(1) by sending a point t ∈ Lγ to
Tt Lγ ∈ LGr(1). Geometrically, this is the following map:

S1 t0

Tt0 S1

t1

Tt1 S1

t2

Tt2 S1
t3

Tt3 S1

t4

Tt4 S1

f

Tt0 S1

Tt1 S1

Tt2 S1Tt3 S1

Tt4 S1

RP1 ∼= LGr(1)

The arrows indicate the direction in which we move in LGr(1), as we go around Lγ coun-
terclockwise. We can see that f winds LGr(1) twice, so the Maslov class of Lγ is non-
trivial. As such, these Lagrangian submanifolds cannot be graded.

On the other hand, we have Lagrangian submanifolds which represent non-trivial
loops. In C, we may perturb these to straight lines (with rational slope) without altering
the homotopy class of f . It is clear that these straight lines correspond to the constant
map f :R→ LGr(1) under the canonical identification Tt Lγ ⊂ TtC

∼=C. Therefore, all the
homotopically non-trivial Lagrangian submanifolds admit a grading.

So it is quite clear what the Lagrangian submanifolds of the elliptic curve look like. In
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fact, there is a specific class of Lagrangian submanifolds which is distinguished, namely
the geodesics. In our discussion leading up to the Thomas-Yau conjecture, we will see
that geodesics are the first incarnation of special Lagrangian submanifolds, and these
objects are really of fundamental importance. We can in fact define the Fukaya category
of the elliptic curves by only considering geodesics as objects, and excluding the more
general Lagrangian submanifolds, even if they are graded.

Before we do so, we need to equip each Lγ with a complex line bundle and a flat uni-
tary connection. Every complex line bundle over Lγ ∼= S1 is necessarily trivial, which
means that a flat connection on it is completely specified by ∇= d −2πiβd x (where we
assume for convenience that the x-coordinate parameterises Lγ). Taking our objects to
be geodesics, then, any object in the Fukaya category is isomorphic to an object which
is completely specified by three numbers (y0,α,β), where y0 is the y-coordinate of the
intersection of γ(t ) with the y-axis in C, α is the grading14 of γ(t ), and β specifies the flat
connection ∇. Establishing mirror symmetry at the level of objects is not too difficult
now (with the B-field turned off - although turning it on would only require mild adap-
tations). Denote (L,E ,∇) := L(y0,α,β). Then homological mirror symmetry at the level of
objects is, essentially, the map

L(y0,α,β) 7→ (µ∗
−i y0+βL)⊗Lk−1 :=L(y0,α,β)

for some distinguished holomorphic line bundleL=O(p0) of degree 1. Here,µz :C/Λ̃→
C/Λ̃ is the translation map, i.e. the group law on the mirror elliptic curve. Technically,
one would also have to specify where the skyscraper sheaves are sent, and consider
twisted objects in the Fukaya category, but the above correspondence is the main intu-
ition. Higher rank vector bundles also appear, as the transforms of special Lagrangians
with non-integral slope. This does not say anything about the mirror functor at the level
of morphisms, and doing so would be significantly more involved, as it is most conve-
niently expressed through the theory of θ-functions. We refer to [59] for the original
proof.

4.4.2 Interlude: The Ströminger-Yau-Zaslow Conjecture

We now want to consider the case X = Cn/Λ. First, we need to establish what its mir-
ror manifold is. There is no obvious way of doing so, as there was for n = 1. But there
is a more geometric approach to mirror symmetry which, in the present case at least,
allows for an explicit construction of a mirror manifold. We will outline the procedure
for complex tori, and then explain how it is motivated by homological mirror symmetry,
and what the more general picture is. We follow [64, 63].

We start by considering a real symplectic torus X =V /Λ where V is some real vector
space of dimension 2n, together with a complexified Kähler form B = B + iω. We take a

14The slope is to be thought of as a complex phase, with rational tangency, and hence can be written as
exp(πiα). A choice of grading is a choice of α.
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linear Lagrangian subspace L ⊂V , and assume that L∩Λ⊗R= L. Then we may obtain a
Lagrangian fibration π : V /Λ→V /(L+Λ). Consider the map

Φ : V ⊕V ∗ → HomR(V ,C) (w,η) 7→ (v 7→ B(v, w)+η(v))

Suppose that Φ(w,η) = 0. Then Im Φ(w,η)(v) = ω(v, w) = 0 for all w ∈ V , and hence
w = 0. As such, Φ is an injective map between vector spaces of equal dimension 2n, so
it is an isomorphism. Since Φ(L⊕L⊥) = HomR(V /L,C), we get an isomorphism

V /L⊕L∗ ∼= HomR(L,C)

which gives a complex structure to V ∨ = V /L ⊕L∗ in a natural way, with a lattice Λ∨ =
Λ/(Λ∩L)⊕ (Λ∩L)⊥. The mirror manifold to (V /Λ,B) is then given by the complex torus
X∨ = V ∨/Λ∨. But why is this a reasonable construction? We will outline the geometric
argument for this below.

We can view the symplectic torus (V /Λ,ω) as the quotient T ∗M/T ∗
Z

M where M =
V /(L +Λ) is the base space, i.e. a real n-torus. We have denoted by T ∗

Z
M a (constant)

lattice in T ∗M . Thus, T ∗M/T ∗
Z

M amounts to taking the quotient of Rn by a lattice in
each fibre, resulting in an n-torus fibration V /Λ over M . The choice of L can be viewed
as the choice of cotangent fibres of M , which gives a splitting

Λ= (Λ∩L)⊕ (Λ∩L)⊥ :=Λ f ⊕Λb

The quotient L/Λ f gives the fibre. The Lagrangian fibration π : X = V /Λ→ V /(L +Λ)
from above is now just T ∗M/T ∗

Z
M → M w.r.t. the canonical symplectic structure on

T ∗M . The mirror manifold was obtained as

X ∨ =V ∨/Λ∨ = V /L⊕L∗

(Λ/Λ f )⊕Λb

Recall that L⊥ ∼= L∗ naturally, via the symplectic form, which is why we can view the
second summand as a lattice in L∗. It is clear that (V /L)/(Λ/Λ f ) = M , so we in fact get
a torus fibration π∨ : X ∨ → M . The difference lies in the fact that the fibres are now
L∗/(Λ∩L)⊥, which is the dual torus of the fibre of π : X → M . Using the isomorphism Φ

constructed from B together with the Euclidean metric, X ∨ acquires a complex structure
X∨.

Definition 4.4.1. The pair (π : X → M ,B) and π∨ : X∨ → M is called an SYZ dual fibra-
tion.

The SYZ construction from [19] is based on the following idea. We have the skyscraper
sheaves Ox for x ∈ X . The space of isomorphism classes of skyscraper sheaves is just
the manifold X , since such skyscraper sheaves are given by specifying a single point.
Skyscraper sheaves are BPS branes15 for type IIA string theory. Under mirror symmetry,

15We will discuss BPS branes in greater detail in the second part of the text. For now: we can think of
a BPS brane as a D-brane for the full string theory which preserves some supersymmetry. They are the
D-branes that appear in the topological string theories, but which also arise in the genuine string theory,
and so they are also called physical A-branes (resp. physical B-branes).
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the type IIA model on X is exchanged with the type IIB model on X∨. A skyscraper sheaf
is mapped to some BPS brane for the type IIB string theory on X∨, which is a special La-
grangian submanifold L ⊂ X ∨ together with a flat unitary line bundle on it. These branes
can be deformed into nearby BPS branes, and the space which parameterises these de-
formations is the moduli space of the brane. Hence, there is a BPS brane in X∨ whose
moduli space is X . It turns out that deformations of special Lagrangian submanifolds
are given by harmonic 1-forms on it, so we must have b1(L) = n for the dimensions to
match, and the authors determine L to be a special Lagrangian n-torus, see also [65] for
a more rigorous explanation.

Given a torus, say T = W /Γ for some real vector space W and lattice Γ, we may
view Γ = H1(T,Z), and so Γ∗ = H 1(T,Z). Then W ∗ = H 1(T,R) and one has W ∗/Γ∗ =
H 1(T,R)/Γ∗ ∼= H 1(T,R/Z). But H 1(T,R/Z) = Hom(π1(T),R/Z). Hence, W ∗/Γ∗, the dual
torus, may be viewed as the moduli space of flat unitary line bundles on T. Because
of this, the moduli space of flat unitary line bundles on any fixed Lagrangian torus L is
given by H 1(L,R/Z) ∼= T n (one may have to allow singularities, if L is immersed but not
embedded). Say the moduli space of a given special Lagrangian torus L ⊂ X ∨ is M . We
argued that the moduli space of the full BPS brane is X , so we need to include deforma-
tions of the flat unitary line bundles, if we want to obtain X from M . By the preceding
discussion, these deformations fiber as n-tori over M . The conclusion is that X may
be expressed as a T n-fibration π : X → M , where M is the moduli space associated to a
special Lagrangian n-torus in X ∨ and the fibres of π are the moduli spaces of flat uni-
tary line bundles. Furthermore, SYZ argue that each fibre π−1(m) ⊂ X is itself a special
Lagrangian torus in X , so that π : X → M is a special Lagrangian fibration.

Definition 4.4.2. Let π : X → M be a special Lagrangian fibration of a Calabi-Yau man-
ifold, such that the Calabi-Yau metric is flat along the fibres. Let M0 = M \ Msing be the
complement of the singular locus of M , and X0 = π−1(M0). Let X ∨

0 be the dual torus
fibration over M0, obtained using the flat metric on each fibre. Then an SYZ mirror of
π : X → M is a compactification of X ∨

0 .

The above definition is purely at a topological level. We used the Calabi-Yau structure
on X to define a special Lagrangian torus fibration, but we did not say how to obtain a
Calabi-Yau structure on X ∨. Doing so would be considerably more involved, and there is
currently no mathematically rigorous statement on how to obtain the Calabi-Yau metric
on the mirror manifold in general. The semi-flat case, i.e. when M = M0, does allow for a
description of the Calabi-Yau structure on the mirror manifold, see [5]. This is precisely
the construction we gave above for complex tori.

Remark 4.4.3. In [66] it is shown that Calabi-Yau manifolds in complex dimension ≤ 3
which satisfy some regularity assumptions have a well-behaved dual torus fibration. It
is also shown that the dual torus fibration of the quintic 3-fold coincides with a model
of the mirror quintic, providing strong evidence in favour of the SYZ approach. It serves
as a testing ground for ideas, for example in [67] where the ideas of homological mir-
ror symmetry are tested for an SYZ dual pair, and are indeed shown to hold. We will
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comment more on this later.

The main appeal of the SYZ approach is that it gives an intrinsic way to construct
a mirror manifold X ∨ at the topological level (and conjecturally for the full Calabi-Yau
structure). The first step is to find a special Lagrangian torus fibration. This was easy to
do for a torus, but more generally it is a non-trivial matter, and this is where the Thomas-
Yau conjecture may be of use. Before we go on to discuss the Thomas-Yau conjecture,
we will discuss homological mirror symmetry for complex tori.

4.4.3 Homological Mirror Symmetry and Complex Tori

Having discussed the SYZ approach to mirror symmetry, we know how to construct a
mirror of a symplectic torus (X =V /Λ,B = B + iω). We choose a linear Lagrangian sub-
space L ⊂V , and then the mirror torus is given by

X∨ = V /L⊕L∗

(Λ∩L)⊕ (Λ∩L)⊥

together with the flat metric, and the complex structure is determined by B. We would
like to get a feeling for homological mirror symmetry on these spaces, and this is done by
using the smooth Fourier-Mukai transform, which we will now explain. For simplicity,
we assume that B = iω, so the B-field is turned off.

As noted previously, given a torus T = W /Γ, the dual torus T∗ = W ∗/Γ∗ may be
viewed as the moduli space of unitary line bundles on it, so we denote its points by pairs
(E ,∇) with E →T a flat unitary line bundle. There is a canonical line bundle P →T×T∗

together with a connection ∇P (which is not flat). The restriction P |T×{(E ,∇)} is given
by E , and ∇P |T×{(E ,∇)} = ∇. Strictly speaking this is not a definition, but the intuition is
clear. Next we take the complex torus π : X → B and its mirror π∨ : X∨ → B . Apply the
construction to the Lagrangian fibres of π. Then we get a line bundle with connection
PB → X ×B X ∨.

Definition 4.4.4. Let ι : L → X be a compact Lagrangian submanifold which is transver-
sal to the fibres of π (but not necessarily a section), together with a flat line bundle (E ,∇)
on it. Let p : L ×B X ∨ → X ∨ and q : L ×B X ∨ → L be the natural projection maps. Then
the smooth Fourier-Mukai transform of (L,E ,∇) is a vector bundle on X ∨

F (L,E ,∇) = p∗
((

(ι× id)∗PB
)⊗q∗E

)
together with its natural connection.16

So we get a vector bundle with connection F (L,E ,∇) on X ∨. The rank of F (L,E ,∇) is
the cardinality of L in a generic fibre of π. The following is proved in [68].

16Since we use the pushforward p∗, it is not immediate that we get a connection. However, p is a proper,
unramified covering map, and for this reason, the pushforward of a connection along p is well-defined.
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Theorem 4.4.5. The curvature of the connection onF (L,E ,∇) has vanishing (0,2)-component
w.r.t. the complex structure X∨. Hence, F (L,E ,∇) defines a holomorphic bundle on X∨.

The authors also prove that in the case of the elliptic curve, every holomorphic vector
bundle on C/Λ can be obtained in this way, so this construction generalises what we
discussed for the elliptic curve previously. This sets up the mirror functor for a large
class of objects in the Fukaya category. For the morphisms, we refer to [63], where it is
also shown that Hamiltonian isotopic A-branes yield isomorphic holomorphic bundles
on X∨. Of course, the discussion at the level of morphisms is once again much more
intricate and technical, which is why we choose to omit it.

4.5 The B-field in Homological Mirror Symmetry

In the discussion of homological mirror symmetry that we presented above, we essen-
tially neglected the B-field, in the sense that we assumed B = 0 on the Calabi-Yau man-
ifold, as well as its mirror. In[48], it is argued that homological mirror symmetry does
not work without including the B-field. This makes sense, given the fundamental role
that the B-field plays in mirror symmetry itself: if we would only consider the Kähler
cone, there could never be a local isomorphism between it, and the complex moduli
space. Let alone a holomorphic one. So one should include the B-field when talking
about homological mirror symmetry as well. The B-field is really a cohomology class
[B ] ∈ H 2(X ,R/Z) which lies in the kernel of H 2(X ,R/Z) → H 3(X ,Z) and can hence be
lifted to [B ] ∈ H 2(X ,R) and then represented by a 2-form B ∈Ω2(X ), which we have been
calling the B-field. In the same way that H 1(X ,R/Z) classifies flat U(1)-bundles, the co-
homology group H 2(X ,R/Z) classifies so-called flat U(1)-gerbes. Point particles acquire
an electric charge from pulling back a connection 1-form from a U(1)-bundle to their
worldline. Strings acquire an electric charge from pulling back a connection 2-form on
a U(1)-gerbe to their worldsheet. In the case of a trivial U(1)-bundle, the connection
may be represented as ∇= d+A, so the 1-form A determines the (flat) connection. For a
trivial U(1)-gerbe, the 2-form B characterises a connection, and this is what the B-field
represents: a higher analogue of the electric potential.

The A-model The category of A-branes does not change very much when the B-field
is turned on. Instead of considering graded (unobstructed) Lagrangians with flat unitary
line bundles on them, one considers graded Lagrangians with unitary line bundles such
that

F∇ = 2πi B |L

The B-model The category of B-branes changes quite substantially when the B-field
is turned on. Instead of considering coherent sheaves on X , one considers B-twisted
sheaves on X . Consider the canonical inclusion of sheaves R/Z ,−→O×

X . Then we may
also view B as a class in B ∈ H 2(X ,O×

X ). Such a class may be represented by a 2-cocycle
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on X , i.e. an open cover {Ui } of X together with sections Bi j k ∈ Γ(Ui ∩U j ∩Uk ,O×
X )

which represent B . That is, we require

δ(B)i j kl := B j kl |Ui j kl −Bi kl |Ui j kl +Bi j l |Ui j kl −Bi j k |Ui j kl = 0

so that the chosen sections indeed yield a cohomology class, which should be B .

Definition 4.5.1. Let B ∈ H 2(X ,O×
X ) be represented by a 2-cocycle B . Then a B-twisted

sheaf on X is a collection {(Ei )i∈I , (ϕi j )i , j∈I } where Ei is a sheaf on Ui ⊆ X and ϕi j :
Ei |Ui j → E j |Ui j is an isomorphism of sheaves, satisfying

ϕi j ◦ϕ j k ◦ϕki = Bi j k idEi

One can show that this definition does not depend on the choice of 2-cocycle which
is chosen to represent B . Like coherent sheaves on X , twisted sheaves on X form an
abelian category, and so one can consider the derived category Db(X ,B) of B-twisted
sheaves on X .

In their paper [48], Kapustin and Orlov consider complex tori. These are specified
by four pieces of data: (Λ, J , g ,B). Here, Λ is a lattice in a real vector space V so that
X =V /Λ yields a torus, J is a complex structure, g is a flat metric and B ∈ H 2(X ,R/Z) is
a class which lies in the kernel of the map H 2(X ,R/Z) → H 3(X ,Z).

From the above data, they explicitly construct the N = 2 SCVA of the complex torus.
They then deduce a criterion under which two such N = 2 SCVA are isomorphic. If one
supposes that two complex tori (Λ1, J1, g1,B1) and (Λ2, J2, g2,B2) are both mirror to a
given complex torus (Λ∨, I∨, g∨,B∨), then the N = 2 SCVAs of these two tori are isomor-
phic, by definition. Kapustin and Orlov prove that if two N = 2 SCVAs are isomorphic,
then there exists an isomorphism of lattices from Λ1 ⊕Λ∗

1 to Λ2 ⊕Λ∗
2 which intertwines

some complex structures on the complex tori V /Λ1×V ∗/Λ∗
1 and V /Λ2×V ∗/Λ∗

2 . Homo-
logical mirror symmetry would imply that Db(X1) ∼= Db(X2), since X1 and X2 are both
mirror toX∨. There is a known condition under which such an equivalence of categories
holds for two algebraic tori, and this condition is different from the one that Kapustin
and Orlov deduce from an isomorphism of the N = 2 SCVAs. So generically, there will be
no isomorphism between Db(X1) and Db(X2). But they prove the following.

Theorem 4.5.2 (Kapustin and Orlov [48]). Let (Λ1, J1, g1,B1) and (Λ2, J2, g2,B2) define two
algebraic tori such that their N = 2 SCVAs are isomorphic. Then

Db(X1,B1) ∼= Db(X2,B2)

Because of this theorem, they suggest to modify the homological mirror symmetry
conjecture as follows, in the presence of the B-field (necessary only if h2,0(X ) ̸= 0.

Conjecture 4.5.3 (Homological Mirror Symmetry with B-field). Let (X ,ω,B) and (X∨,ω∨,B∨)
be a mirror pair of Calabi-Yau manifolds. Then there exists a quasi-equivalence of A∞-
categories

Db(X ,B) ∼= DbFuk(X ∨,ω∨,B∨) Db(X∨,B) ∼= DbFuk(X ,ω,B)
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Chapter 5

Donaldson-Thomas Invariants

Donaldson-Thomas invariants are numbers that one can extract from a Calabi-Yau three-
fold. They are obtained by doing intersection theory on the moduli space of stable
sheaves, of some given Calabi-Yau variety X , depending on a choice of Kähler class.
They have an interpretation in terms of string theory, as counting certain branes in type
IIA string theory, called BPS branes. These BPS branes will be of great importance to us,
as they are the central motivation for the Thomas-Yau conjecture. References for this
chapter are [29, 14, 69, 70], as well as [8] for the final section.

The Donaldson-Thomas invariants themselves will, at first, not be directly related to
the Thomas-Yau conjecture, but they appear in the table that Thomas gives at the start
of his paper (which we have replicated in 8.2), which we aim to explain. However, in
turn, the Thomas-Yau conjecture inspired further developments of Donaldson-Thomas
theory which we will return to later and therefore we will start this second part of the text
by dicussing Donaldson-Thomas invariants, to be interpreted in the context of string
theory later on.

5.1 Stability of Sheaves

Let E be a coherent sheaf on X , and let Ex denote the stalk at x ∈ X . We recall that
Supp(E) = {x ∈X | Ex ̸= 0}. When X is coherent, this is a closed subset, and thus defines
a subscheme of X , which has a dimension.

Definition 5.1.1. The dimension of a coherent sheafE onX is defined as dimE = dimSupp(E).
A coherent sheaf E is called pure if dimF = dimE for all subsheaves F ⊆ E .

If we denote the irreducible components of the support by Yk , then these define a
homology class

[E] :=∑
k

Length(Eηk )[Yk ] ∈ H2dimE (X ,Z)

where ηk is the unique generic point of the irreducible component Yk . We use the nota-
tion [E] to refer either to this class, or its Poincaré dual.

Every coherent sheaf has a determinant line bundle, and a Chern character, which
generalise those of vector bundles. Define the determinant line bundle of E by taking a
locally free resolution E• → E → 0. Then we set

det(E) = det(E•) =⊗k det(Ek )(−1)k ∈ Pic(X )
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The determinant line bundle of a locally free sheaf is just its top exterior power. Similarly,
we define

ch(E) :=⊕k (−1)k ch(Ek ) ∈ H•(X ,Q)

Let n = dimX , d = dimE and c = n − d . The following result tells us that the Chern
character of a coherent sheaf encodes topological information about its support.

Proposition 5.1.2. For a coherent sheaf E on X , we have chk (E) = 0 if k < c, and chk (E) =
[E] if k = c.

Recall thatχ(X ,E) =∑
k (−1)k dimCH k (X ,E). A version of the Grothendieck-Riemann-

Roch theorem can that be stated as follows.

Theorem 5.1.3. Let X be a smooth projective variety and E ∈ Coh(X ). Then

χ(X ,E) =
∫

X
ch(E)td(X )

We will use this in a moment. First we consider the Hilbert polynomial. We fix an
ample line bundle OX (1) on X (obtained as the pullback of O(1) for some embedding
X → CPN ). Denote by E(m) = E ⊗OX (m). The Kähler class of X is c1(OX (1)) and will
thus be denoted by ω.

Definition 5.1.4. The Hilbert polynomial P (E) is defined by the function

m 7→χ(X ,E ⊗OX (m))

One can show that this indeed defines a polynomial P (E ,m) ∈Q[m], see [29].

Proposition 5.1.5. The Hilbert polynomial P (E) can be uniquely written as

P (E ,m) =
dimE∑
k=0

αk (E)

k !
mk

for some integers αk (E).

Some of these integers have a clear topological meaning to them. For example, α0(E)
is obtained by evaluating at m = 0, which yields χ(X ,E). More interesting is the coeffi-
cient of the leading term αd (E), where d = dimE . By the Grothendieck-Riemann-Roch
theorem and the fact that ch(E ⊗OX (m)) = ch(E)ch(OX (1))m , we find that

αd (E) = 〈[E],ωd 〉

For instance, taking E =OX yields

αn(OX ) =
∫

X
ωn = deg(X ) αn−1(OX ) =−1

2
〈KX ,ωn−1〉

70



5.2. THE MODULI SPACE

where KX is the homology class of the canonical divisor of X . The rank of a sheaf is
defined as rank(E) =αn(E)/αn(OX ). The degree of E is defined as

deg(E) =αn−1(E)− rank(E)αn−1(OX )

All of this is to say that the Hilbert polynomial encodes certain discrete invariants of the
sheaf. This information is generally not equivalent to that of the Chern character. One
can determine the Hilbert polynomial from the Chern character, but not vice versa.

We define p(E ,m) = P (E ,m)/αd (E) and recall that there is a natural ordering on the
set Q[m]. We say f ≤ g if and only if f (m) ≤ g (m) for m sufficiently large, and f < g if
and only if f (m) < g (m) for m sufficiently large.

Definition 5.1.6. Let E be a coherent sheaf on X . Then E is called semi-stable if it is
pure, and for all proper subsheaves F ⊂ E , we have p(F ) ≤ p(E). If the inequality is
strict, then E is called stable.

Now we know what it means for a sheaf to be (semi-)stable. Next we want to under-
stand what it means to have a moduli space of stable sheaves.

5.2 The Moduli Space

To understand what a moduli space is, we first want to establish what it means to "de-
form" a sheaf. In essence, this can be interpreted as varying the holomorphic structure
on some smooth vector bundle. But one has to be a lot more careful, particularly if one
wants a compact moduli space. Let S =X ×B for some fixed scheme X (which will be a
Calabi-Yau threefold for our purposes), while the scheme B may vary.

Definition 5.2.1. Suppose thatE is a coherentOS-module. Then the collection {E |π−1(b) :=
Eb} where b is a closed point of B is called a flat family of coherent sheaves on X if E is
flat over B.

This is the "correct" definition to ensure that the family of sheaves Eb vary along the
base space B is a nice way. The definition for a module to be flat over a ring is not
illuminating. It is best to phrase this condition in some equivalent way which makes
its use more apparent. We fix a line bundle OS (1) on S , whose restriction to each fibre
of π is ample. This is essentially specifying an embedding S =X ×B→CPN ×B.

Theorem 5.2.2. [29] Suppose that B is reduced. Then the following are equivalent:

1. E is flat over B.

2. The Hilbert polynomial P (Eb) is a locally constant function on B.

If B is not reduced, then 1 =⇒ 2.

The fact that the Hilbert polynomial becomes a locally constant function for flat fam-
ilies gives us a good reason to believe that this is indeed the right definition, in the sense
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that the sheaves vary "continuously" along the base B in some appropriate sense, be-
cause the discrete invariants do not jump. We can think of a flat family of sheaves on X
as a deformation of some given sheaf, say Eb0 for some base point b0 ∈B. For example,
if E |b0 is (the sheaf of sections of) a vector bundle on X , then such a family might corre-
spond to different holomorphic structures on the underlying smooth vector bundle E .
The following result tells us that (excluding the case of the empty set) this is a reasonably
good intuition to keep in mind, as we are really considering families of vector bundles,
which "degenerate" along closed subsets on B to sheaves which are less well-behaved
(we remind the reader that Zariski open subsets in irreducible varieties are dense).

Proposition 5.2.3. [29] Let E be a flat family of coherent sheaves over B. Then the set
{b ∈B | E |Xb is locally free} is open in B.

The moduli space of sheaves is interpreted as a scheme whose points parameterise
isomorphism classes of sheaves with fixed topological data, such as the Chern charac-
ter. Inside of this space sits an open subset which parameterises the holomorphic struc-
tures on a given vector bundle with the corresponding Chern character (again, up to
isomorphism). Having established the goal, let us outline how this is done more for-
mally. Recall the following definition, in which the functor hM : SchC → Set is defined
by S 7→ Mor(S ,M).

Definition 5.2.4. Let M : SchC → Set be a contravariant functor. Then a scheme M is
said to represent M if there is an isomorphism of functors M ∼= hM.

To define the moduli space of sheaves, we wish to define a suitable functor. If this
functor can be represented by a scheme M, then we call M the fine moduli space of
sheaves (with some fixed discrete invariants). So what should the functor be? First, we
fix the data of a smooth, irreducible and projective variety X , together with an embed-
ding X → CPN and an element η ∈ H ev(X ,Q) such that η0 > 0, which will be the Chern
character of the sheaves we want to parameterise. The condition η0 > 0 rules out the
case of torsion sheaves. We define a functor M ss

η (X ) : SchC → Set, which sends B to the
set of semi-stable coherent sheaves on X parameterised by B whose Chern character is
η, modulo S-equivalence (see B.2.2 for a definition).

This functor is typically not representable, in which case a fine moduli space does not
exist. We look for a slightly weaker notion, which is that of a coarse moduli space.

Definition 5.2.5. A coarse moduli space for a moduli functor M is a scheme M together
with a natural transformation M → hM, such that

1. For every natural transformation M → hS , there exists a unique natural transfor-
mation hM → hS which makes the obvious diagram commute.

2. There is a bijection M(Spec(C)) → hM(Spec(C)).

We can describe the difference between a coarse moduli space and a fine moduli
space in more geometric terms. If M is a fine moduli space, then every family parame-
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terised by B gives rise to a unique morphism B→M, which is the definition of hM ∼= M .
Consider hM(M) = Mor(M,M), which contains the identity map, and hence defines a
tautological family F →M. The family parameterised by B is then obtained as the pull-
back of the tautological family by the morphism B→M.

A coarse moduli space, on the other hand, also determines a morphism B→M, but
this time, there may not be a universal family. However, the second condition in the
definition still says that two objects correspond to the same point in the moduli space
if and only if they are isomorphic. This is a more reasonable criterion to ask for. And
indeed, in [29], the following is proved.

Theorem 5.2.6. The functor M ss
η (X ) has a coarse moduli space Mss

η (X ) which is a pro-
jective C-scheme. There is an open subset Ms

η(X ) which is a coarse moduli space of stable
sheaves.

There is a reason why we restrict to semi-stable sheaves: this is required to use the
machinery of geometric invariant theory, which is how the moduli spaceMss

η (X ) is con-
structed (see [29]). But that is not a satisfactory reason. A better reason is as follows: we
want the moduli space to be a scheme of finite type, but if we consider families of un-
stable sheaves, then we get unbounded families of sheaves, such as {O(−n)⊕O(n)} over
CP1 for all n ≥ 0.

Another reason is perhaps more conceptual, and is related to the automorphisms of
the objects we are parameterising.

Proposition 5.2.7. Let E be a stable sheaf on X . Then End(E) ∼=C.

Since the identity morphism is always an automorphism, this means that stable sheaves
have the minimal automorphism size that we could ask for, i.e. C×. Non-trivial auto-
morphisms of the objects being parameterised are problematic because they give rise to
non-trivial families whose fibres are all isomorphic. Such a family cannot correspond to
a constant map B→M, because this map already corresponds to the trivial family. This
immediately rules out the existence of a fine moduli space. Because the automorphisms
of stable sheaves are as small as they can be, this can be accounted for, so that we can
still hope for a coarse moduli space.

5.3 Donaldson-Thomas Invariants

The Donaldson-Thomas invariants, originally defined in [14], are obtained from the
moduli space Ms

η(X ), using a virtual fundamental class. First, we need to establish
some preliminary results.

Theorem 5.3.1. Let E ∈Ms
η(X ). Then TEMs

η(X ) ∼= Ext1(E ,E).

At the level of holomorphic vector bundles, this is not a mystery. If E is a holomor-
phic vector bundle, then Ext1(E ,E) = H 1(X ,End(E)). Its elements may be viewed as
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endomorphism-valued (0,1)-forms deforming the ∂̄-operator. One has to take coho-
mology because ∂̄-exact terms are the result of complex gauge transformations. These
are infinitesimal deformations of the holomorphic structure, because there is a bijec-
tion between holomorphic structures on E , and ∂̄-operators squaring to 0 up to gauge
equivalence. We elaborate on this in the next section.

Tangent vectors in the moduli space correspond to infinitesimal deformations of the
sheaf. Not all infinitesimal deformations can be integrated to give a deformation, there
are obstruction classes. That is, every tangent vector yields an element in Extk (E ,E)
for k ≥ 2. These spaces are called the obstruction spaces, and the elements in them
determined by a tangent vector are called the obstruction classes. The tangent vector
can be integrated if and only if each obstruction class vanishes.1

We now move on to state the main result given in [14], which leads to the definition
of the Donaldson-Thomas invariants.

Theorem 5.3.2 (Thomas). LetX be a smooth projective algebraic threefold, and letMs
η(X )

be a moduli space of sheaves on X . Suppose the dimension of Ext3(E ,E) is constant for
E ∈Ms

η(X ). Then the groups Ext1(E ,E) and Ext2(E ,E) govern a perfect obstruction theory
of virtual dimension

vdim Ms
η(X ) = dimExt1(E ,E)−dimExt2(E ,E)

Let us address the notion of a virtual dimension. Intuitively, one can think about
this as follows. Suppose that E → X is a holomorphic vector bundle (where X is some
complex manifold, not necessarily an algebraic threefold), and Y ⊆ X is given as Z (s)
for some s ∈ H 0(X ,E). For a generic section which intersects the zero section transver-
sally, we would get dimY = dimX − rank E . But the intersection does not have to be
transversal. Using the machinery of virtual cycles, however, there is a way to construct a
homology class [Y ]vir ∈ H2vdim Y (X ,Z) which behaves as if the section s were transversal.
This homology class is called the virtual fundamental class. So what are the conditions
under which a moduli space admits a virtual fundamental class? An answer is given by
[71].

Theorem 5.3.3. Suppose M is a moduli space with a perfect obstruction theory. Then it
admits a virtual fundamental class [M ]vir ∈ H2vdimM(M ,Z).

So this is what Thomas’s thesis established: that the moduli spaces of sheaves on a
smooth projective algebraic threefold carry a perfect obstruction theory, and hence al-
low for the definition of a virtual fundamental class. We will not comment on the notion
of a perfect obstruction theory, as it is a highly technical one. We refer to [71]. Calabi-Yau
threefolds are of particular interest, for the following reason.

1Intuitively, we can picture this as follows: if all the obstruction classes of the tangent vectors at a point
vanish, then the deformations are unobstructed, which corresponds to a smooth point in the moduli
space. If the deformations are obstructed, this corresponds to a singular point.
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Corollary 5.3.4. Let X be a Calabi-Yau threefold. Then vdim Ms
η(X ) = 0.

Proof. We see that Ext0(E ,E) = Hom(E ,E) = End(E) =C. By Serre duality

Extq (E ,E) ∼= Ext3−q (E ,E ⊗KX )∗ ∼= Ext3−q (E ,E)∗

so the dimension of Ext3(E ,E) is constant whenX is a Calabi-Yau threefold. Futhermore,
by the same argument, Ext1(E ,E) ∼= Ext2(E ,E)∗ which implies that the virtual dimension
of Ms

η(X ) is zero.

This finally brings us to the definition of the Donaldson-Thomas invariants. We as-
sume that semi-stability implies stability. This happens for instance whenever the rank
and degree are coprime. In this case, the moduli space is compact, so we can integrate
over it.

Definition 5.3.5. Let X be a Calabi-Yau threefold, and η ∈ H ev(X ,Q) with η0 > 0. Let
M be the corresponding moduli space of stable sheaves. Then the Donaldson-Thomas
invariant DTη(X ) is defined as

DTη(X ) := 〈[M ]vir,1〉 =
∫

M vir
1

In much of the literature, however, Donaldson-Thomas invariants are something more
specific. Namely, one looks at the moduli space of rank 1 torsion free sheaves satisfying
det(I) ∼=OX . These are ideal sheaves for curves C ⊂X . By fixing

η= (1,0,−β,−n)

one fixes a (co)homology class [C ] =β and χ(OC) = n. The moduli space of these objects
sits inside of the one whose construction we outlined above. It is a projective scheme
with a symmetric obstruction theory, so that we again get a virtual fundamental class of
dimension 0. The invariants obtained by integrating 1 over these virtual fundamental
cycles are also called the Donaldson-Thomas invariants DTβ,n(X ) in the literature. They
are assembled into a generating function

Z DT
β (q) =∑

n
DTβ,n(X )qn

This is typically normalised by dividing by zero dimensional subschemes, i.e. setting

Z red
β (q) = Z DT

β (q)/Z DT
0 (q)

In this way, Donaldson-Thomas theory becomes a theory of counting curves on a Calabi-
Yau threefold. Furthermore, it has been shown in [72] that Donaldson-Thomas invari-
ants for higher ranks may be deduced from this, at least on certain Calabi-Yau manifolds
such as the quintic threefold, so it appears that interpreting Donaldson-Thomas theory
as a curve counting theory is really the right thing to do.
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We encountered another curve counting theory, namely Gromov-Witten theory, where
one insteads considers the moduli space of (stable) maps from a curve into the Calabi-
Yau manifold. A deep conjecture, known as the MNOP (Maulik-Nekrasov-Okounkov-
Pandharipande) conjecture asserts that these two theories actually coincide. That is, the
generating function Z red

β
(q) should coincide with the corresponding generating func-

tion for the Gromov-Witten invariants, after making a change of variables. There is an
extensive list of examples for which the MNOP conjecture has been shown to hold. We
refer the reader to [70] for more details. By [72], Gromov-Witten theory also determines
the higher rank Donaldson-Thomas invariants, which is quite surprising. After all, the
curves which appear in Gromov-Witten theory are interpreted as closed strings in the
target space X , where the Donaldson-Thomas invariants count certain "stable" bound-
ary conditions for open strings.

5.4 Gauge Theory and Holomorphic Bundles

We can also view the story outlined above from a gauge theoretic perspective. We will
need some results from [8] for this, as well as for the next chapters. Let (E ,h) be a Hermi-
tian holomorphic vector bundle on a complex manifold X . A connection ∇ on E splits
into

∇=∇1,0 ⊕∇0,1 : Γ(X ,E) →Ω1,0(X ,E)⊕Ω0,1(X ,E)

Definition 5.4.1. A connection ∇ on a holomorphic bundle E →X is called compatible
with the holomorphic structure if ∂̄E =∇0,1. A connection∇ on a Hermitian bundle (E ,h)
is called unitary if for all s1, s2 ∈ Γ(X ,E),

d〈s1, s2〉 = 〈∇s1, s2〉+〈s1,∇s2〉

Given a Hermitian metric on a holomorphic bundle, there is a unique connection
which is both compatible with the metric and the holomorphic structure. We call this
connection the Chern connection. It can be defined locally by choosing an orthonormal
frame, and representing h as a matrix of functions. Then the local connection 1-form is
defined as A = h−1∂h. This is a (1,0)-form and so the (0,1) component of ∇ = d + A is
just ∂̄, as desired. It is also clear that the curvature form F∇ is of type (1,1). We will use
the following two results later on in the text.

Theorem 5.4.2 ([8]). Let (E ,h) be a Hermitian holomorphic vector bundle on X . Then a
unitary connection on E is the Chern connection of (E ,h) if and only if F∇ is of type (1,1).

Theorem 5.4.3 ([8]). Let (E ,h) be a Hermitian vector bundle on a complex manifold X .
There is a bijective correspondence between holomorphic structures on E, and unitary
connections ∇ on E which satisfy (∇0,1)2 = 0. Given such a connection, it is the Chern
connection of the holomorphic structure on (E ,h).
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Because of this, we get a bijective correspondence between holomorphic structures
on E , and unitary connections with curvature of type (1,1).

Definition 5.4.4. A partial connection is a linear operator ∂̄ : Γ(X ,E) →Ω0,1(X ,E) which
satisfies the Leibniz rule.

Similar to connections, partial connections form an infinite dimensional affine space
modelled onΩ0,1(X ,End(E)). Note that the unitary connection is determined by its par-
tial connection. For the local one forms, A =α−α†, where † is the Hermitian conjugate.

Theorem 5.4.5 ([8]). A partial connection on a complex vector bundle over a complex
manifold is the Dolbeault operator of a holomorphic structure if and only if ∂̄2 = 0.

Isomorphic holomorphic structures on E correspond to (partial) connections which
are related by a (unitary) gauge transformation. Because of this, we can interpret the
moduli space of holomorphic structures on a given vector bundle E in two ways. Either,
we consider the space of "flat" partial unitary connections and quotient by unitary gauge
transformations, or we consider the space of "flat" partial connections and quotient by
complex gauge transformations, instead of just unitary ones. The latter brings us to the
motivation for Donaldson-Thomas invariants.

Thomas called these invariants "holomorphic Casson invariants", for the following
reason. On a simply connected smooth 3-manifold X , one can consider the Chern-
Simons action functional on the space of connections A of a given vector bundle E →
X . Fixing some connection ∇0 as the origin of the affine space, we may identify A ∼=
Ω1(X ,End(E)). The Chern-Simons action functional is defined as

S(A) :=
∫

X
tr(A∧dA0 A+ 2

3
A3)

The functional itself is not gauge invariant, but its differential is. Indeed, it is readily
seen to be

dS A : TAA →R a 7→
∫

X
tr(a ∧FA)

which is gauge invariant. The zeroes of the differential give flat connections in the mod-
uli space of connections M = A /G . Counting these zeroes of the differential in M
gives the Casson invariant. In their paper [73], Donaldson and Thomas discuss how
Calabi-Yau manifolds are the natural complex analogue of oriented manifolds, since
they have a trivial canonical bundle. This motivates them to search for an analogue
of the Casson invariant for Calabi-Yau threefolds. Given a simply connected Calabi-Yau
threefold, we can take a holomorphic volume form Ω ∈ Ω3,0(X ). We want to pair this
with some (0,3)-form so that we can integrate over X . If we are looking for an analogue
of the Casson invariant, it makes sense to consider vector bundles E → X and define
A 0,1 =Ω0,1(X ,End(E)), which we can identify with the space of ∂̄-operators on E , after
fixing some basepoint ∂̄0. One then defines a functional on A 0,1 by

SC(A) =
∫

X
tr(A∧ ∂̄0 A+ 2

3
A3)∧Ω
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Once again, the differential descends to M 0,1 = A 0,1/GC, but this time, the differential
is given by

dSC : TAA 0,1 →C a 7→
∫

X
tr(a ∧F 0,2

A )∧Ω

Thus, its zeroes correspond to ∂̄-operators which square to 0 - these are in bijective cor-
respondence with holomorphic structures on E . This gives a solid foundation to believe
that the moduli space M(X ,E) of holomorphic structures on E has (virtual) dimension
0, since it corresponds to the critical points of some functional.

Donaldson had developed the analytic techniques to do intersection theory on the
moduli space of connections using the Yang-Mills functional on 4-manifolds (which
is referred to as Donaldson theory, see [8]), instead of the holomorphic Chern-Simons
functional on Calabi-Yau threefolds. These analytic techniques could not be carried over
to the world of Calabi-Yau threefolds in any straightforward manner, so instead, Thomas
worked within the more rigid framework of algebraic geometry to formulate his result,
which culminated in Donaldson-Thomas invariants.
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Chapter 6

The Kobayashi-Hitchin Correspondence

The Kobayashi-Hitchin correspondence (also known as the Donaldson-Uhlenbeck-Yau
theorem) will relate stability in algebraic geometry, to the existence of a solution to a
certain partial differential equation. The result holds for any compact Kähler manifold,
and so whenever Y ⊂ X is a compact complex submanifold of a Calabi-Yau manifold,
the discussion below applies to Y . This will be quite important for us.

6.1 µ-Stability

We recall that we discussed the notion of stable coherent sheaves in 5.1. There, we pre-
sented one definition of stability. There are other notions of stability, such as µ-stability
(also known as slope stability) which we now define. Recall that the rank of a coherent
sheaf can be defined as rank(E) = αn(E)/αn(OX ), where αk are the coefficients of the
Hilbert polynomial for the respective sheaves.

Proposition 6.1.1. Suppose that E is the sheaf of sections of a holomorphic vector bundle
of rank r on a Kähler manifold (X ,ω). Then rank(E) = r , where the left hand side is the
rank as defined by the Hilbert polynomial.

Proof. The Grothendieck-Riemann-Roch theorem yields

χ(X ,E(m)) = r mn

n!
deg(X )+ mn−1

(n −1)!

∫
X
ωn−1 ∧ c1(E)+Lower degree terms

It follows from the definition, and the fact that αn(OX ) = deg(X ), that rank(E) = r .

Consequently, we also find deg(E) = ∫
X ω

n−1 ∧ c1(E), so we take this to be the defi-
nition of the degree of a vector bundle, and we have the notion of µ-stability for vector
bundles. Define µ(E) = deg(E)/rank(E).

Definition 6.1.2. Let E be a vector bundle over X . Then E is called µ-semi-stable if, for
all proper sub-sheaves F ⊂ E , it holds that

µ(F ) ≤µE)

If the inequality is strict, then E is called µ-stable.
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One can verify that every µ-stable vector bundle is also stable in the sense of 5.1, so
every µ-stable vector bundle corresponds to a point in the appropriate moduli space of
stable sheaves. It is these µ-stable vector bundles which will be related to some partial
differential equation, known as the Hermitian-Yang-Mills equation.

6.2 The Hermitian-Yang-Mills Equation

The Hermitian-Yang-Mills (HYM) equation is a partial differential equation which in-
volves the curvature of a connection on a Hermitian vector bundle over a Kähler man-
ifold. In essence, its solutions correspond to connections with the most "convenient"
curvature properties. For instance, we would prefer to have flat connections. But flat
connections on a vector bundle do not always exist, for example if c1(E) ̸= 0. Define
FA ·ω ∈ Γ(X ,End(E)) by FA ∧ωn−1 = (FA ·ω)ωn . This corresponds to orthogonal projec-
tion in Ω2(X ,End(E)) onto the span of ω⊗ idE . The inner product on Ω2(X ,End(E)) is
induced by the Kähler metric on X and the Hermitian metric on End(E).

Definition 6.2.1. Let A be a connection on a Hermitian vector bundle E over a Kähler
manifold X . Then we say that A has constant central curvature if

FA ·ω=λ(E)idE

for some constant1 λ(E).

If λ(E) = 0, i.e. when the vector bundle has degree 0, then a connection has constant
central curvature if and only if it is flat. However, when E does not admit a flat connec-
tion, constant central curvature connections are those which are projectively flat, which
is the next best thing that one could hope for.

Definition 6.2.2. Let E → X be a smooth vector bundle with Hermitian metric over a
compact Kähler manifold X . Let A be a unitary connection on E with curvature FA.
Then A satisfies the HYM equation if{

FA ·ω=λ(E)idE

F 0,2
A = 0

The first condition says that we are "minimising" the curvature, and the second con-
dition says that the ∂̄-operator determined by the (0,1)-part of the covariant derivative
of A

∇0,1 : Γ(X ,E) →Ω0,1(X ,E)

is the Dolbeault operator of some holomorphic structure E on E . The name is derived
from Yang-Mills theory, combined with the theory of complex Hermitian geometry. We

1This constant is πi
3Vol(X )µ(E), for a threefold.
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refer to the paper by Donaldson [74] as well as the book [8] by Donaldson and Kron-
heimer for its relation to Yang-Mills theory, in which they relate stability of bundles to
Yang-Mills connections on complex surfaces. Presently, however, we are interested in
complex threefolds, for which the following was proved by Uhlenbeck and Yau in [7].

Theorem 6.2.3 (Kobayashi-Hitchin Correspondence). Let E be a Hermitian holomorphic
vector bundle over a compact Kähler manifold. Then E is µ-(poly)stable2 if and only if E
admits a HYM connection. This is the unique HYM connection in the orbit of the Chern
connection.

Remark 6.2.4. Recall that the Chern connection ∇ on a Hermitian holomorphic vector
bundle E →X is defined uniquely by the following properties:

1. ∇0,1 = ∂̄E
2. d〈s1, s2〉 = 〈∇s1, s2〉+〈s1,∇s2〉
This beautiful theorem relates something which can be defined algebraically, to some-

thing which requires the analysis of infinite dimensional vector spaces, partial differen-
tial equations and Hermitian metrics. This is quite a remarkable result, which gives us
yet another insight into why complex geometry is a fascinating playground in which
to combine algebraic and analytic methods. Another example of such interplay is, of
course, mirror symmetry. Is the Kobayashi-Hitchin correspondence related to mirror
symmetry in any tangible way? The Thomas-Yau conjecture asserts that the answer to
this question is affirmative, as we will explain when discussing the conjecture.

6.3 Hermitian-Yang-Mills as Symplectic Quotient

The Kobayashi-Hitchin correspondence can also be viewed as a version of the Kempf-
Ness theorem, but now in infinite dimensions. We first recall the Kempf-Ness theorem
in finite dimensions, which states the following. Suppose that X ⊆ CPN is a complex
manifold, with a complex reductive Lie group G acting on X holomorphically. Suppose
that K is the maximal compact subgroup (e.g. SU(n) ⊂ SL(n,C), which is not itself a
complex Lie group, only a smooth Lie group) of G acting on the symplectic manifold
(X ,ω) by symplectomorphisms, as well as preserving the complex structure. Suppose
this action admits a momentum map µ : X → g∗.3 Let ξ ∈ g∗ be a central element. Then
we can consider two quotients: the symplectic reduction X �K := µ−1(ξ)/K , or the GIT
quotient X /G . The Kempf-Ness theorem asserts that X �K ∼=X /G is an isomorphism.

We explain an important feature of the theorem above, for which we first need to re-
call some geometric invariant theory. The GIT quotient X /G requires a linearisation of

2Polystable means that the vector bundle is a direct sum of stable vector bundles of the same rank. We
can exclude these by requiring the connection to be irreducible.

3A momentum map for the group action is a map such that ιρ(ξ)ω = 〈µ,ξ〉 for all ξ ∈ g, where ρ(ξ)x :=
d

d t |t=0 exp(tξ) · x is the fundamental vector field of ξ.
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the action, to an action of G on OX (−1). The latter is the restriction of the tautological
line bundle CN+1 ⊃O(−1) → CPN . Choose a lift x̃ of a point x ∈ X to the fibre π−1(x).
Then the point x is said to be semi-stable if and only if the closure of G · x̃ does not con-
tain the origin. There is a surjective morphism X ss →X /G from the semi-stable points
to the GIT quotient. Thus, in some sense, the GIT quotient only sees those points which
are semi-stable. On the other hand, we have the symplectic quotient X �K . The Kempf-
Ness theorem then implies that the momentum map allows us to select distinguished
representatives of the (semi-)stable points. In particular, the momentum map informs
us about the "right" notion of stability. This perspective is important for the Thomas-
Yau conjecture, but more immediately, for what we are about to demonstrate.

We now move on to the infinite dimensional case. Let E → X be a Hermitian vector
bundle on a complex manifold X , and consider the space of unitary connections A ,
which we identify with Ω1(X ,u(r )), the 1-forms with values in the adjoint bundle of the
U(r )-bundle over X . We will consider Kähler manifolds (X ,ω).

Proposition 6.3.1. Define ϑ : TAA ×TAA →R by

(a,b) 7→
∫

X
tr(a ∧b)∧ωn−1

Then ϑ is a symplectic form on the infinite dimensional manifold A .

For the proof, we use some Hodge theory. We recall that the Hermitian metric on E
together with the Riemannian metric on X give us an inner product 〈·, ·〉 on Ωk (X ,u(r )),
defined using the Hodge star operator ⋆ :Ωk (X ,u(r )) →Ωn−k (X ,u(r )) by

(a,b) 7→
∫

X
tr(a ∧⋆b)

Here, the trace map is induced by the Hermitian metric, and we have

tr :Ωk (X ,u(r ))×Ωl (X ,u(r )) →Ωk+l (X )

which is non-degenerate. The operator L : Ωk (X ,u(r )) →Ωk+2(X ,u(r )) defined by a →
a∧ω is called the Lefschetz operator, and its adjoint with respect to the inner product is
denoted by Λ :Ωk (X ,u(r )) →Ωk−2(X ,u(r )). Both L and Λ are isometries with respect to
the inner product.

Proof. The form ϑ is evidently skew-symmetric and bilinear. It is defined independently
of A ∈ A , hence closed. For non-degeneracy, suppose that 0 ̸= a ∈ TAA . Consider the
1-form b :=Λn−1 ◦⋆a ∈Ω1(X ,u(r )). Then

ϑ(a,b) =
∫

X
tr(a ∧b)∧ωn−1 =

∫
X

tr(a ∧Λn−1 ◦⋆a ∧ωn−1) =
∫

X
tr(a ∧Ln−1 ◦Λn−1 ◦⋆a) =

〈a,Ln−1 ◦Λn−1a〉 = 〈Λn−1a,Λn−1a〉 = ||a||2 > 0

where we used that Λ is an isometry w.r.t. 〈·, ·〉.
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There an an infinite dimensional Lie group acting on A , namely the group of unitary
bundle automorphisms G . It acts on connections ∇ as (ϕ ·∇)s =ϕ◦∇ϕ−1(s).

Proposition 6.3.2. The group G acts on (A ,ϑ) by symplectomorphisms.

Proof. First, we need to calculate the differential of the group action Θϕ : A 7→ A , for
ϕ ∈ G . Using the transformation rule of connection 1-form and taking the curve A + t a
in A , we obtain

dΘϕA(a) = d

d t

∣∣∣
t=0

ϕ · (A+ t a) = d

d t

∣∣∣
t=0

AdϕA+ tAdϕa +ϕdϕ−1 = Adϕ−1 a ∈Ω1(X ,u(r ))

We conclude that dΘϕA = Adϕ−1 . Since the trace is invariant under conjugation, it follows
that Θϕ is a symplectomorphism of (A ,ϑ).

Denote by Lie(G ) = Γ(X ,u(r )) =Ω0(X ,u(r )) the Lie algebra of G . Using the trace map
and integration again, we make the identification Lie(G )∗ = Ω2n(X ,u(r )). Then a mo-
mentum map for the action of G is going to be a map µ : A → Ω2n(X ,u(r )) such that
d〈µ,ξ〉 = ιρ(ξ)ϑ for all ξ ∈Ω0(X ,u(r )), where ρ(ξ) denotes the fundamental vector field of
ξ on A .

Proposition 6.3.3. The symplectic action of G on (A ,ϑ) has momentum map

µ : A 7→ FA ∧ωn−1

Proof. First we compute the derivative of µ at A ∈ A , taking the curve A + t a. Observe
that FA+t a = d(A+ t a)+ 1

2 [A+ t a, A+ t a] = FA + t (d a + [A, a])+ t 2[a, a]. Then

dµA(a) = d

d t

∣∣∣
t=0

µ(A+ t a) = d

d t

∣∣∣
t=0

FA+t a ∧ωn−1 = (d a + [A, a])∧ωn−1 = dA a ∧ωn−1

Next we want to know the fundamental vector field of ξ ∈Ω0(X ,u(r )). By definition, its
value at a point A ∈A is

d

d t

∣∣∣
t=0

exp(tξ)·A = d

d t

∣∣∣
t=0

exp(tξ)◦A◦exp(−tξ)+exp(tξ)d exp(−tξ) = ξ◦A−A◦ξ−dξ=−dAξ

Now we need to check that ϑA(ρ(ξ), a) = d〈µ,ξ〉A(a). We use integration by parts and
closedness of ω to find

d〈µ,ξ〉A(a) = d

d t

∣∣∣
t=0

∫
X

tr(FA+t a ∧ωn−1 ∧ξ) =
∫

X
tr(dA a ∧ωn−1 ∧ξ) =∫

X
dtr(a ∧ωn−1 ∧ξ)−

∫
X

tr(a ∧ωn−1 ∧dAξ) =−
∫

X
tr(a ∧dAξ)∧ωn−1 =ϑA(a,ρ(ξ))
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Furthermore, we can give A the structure of an infinite dimensional Kähler manifold,
since the complex structure on X induces an almost complex structure on A . The latter
is an affine space, so the almost complex structure is automatically integrable. Inside
of this infinite dimensional Kähler manifold (A ,ϑ, J ) we can consider the submanifold
(in fact, it may have singularities - let us not worry about this) which consists of con-
nections whose curvature is of type (1,1). Denote this subspace by A (1,1). Because the
connections are unitary, the connection is completely determined by its ∂̄-part. We also
have a complex gauge group GC which acts on these operators via ∂̄ 7→ ϕ ◦ ∂̄ ◦ϕ−1. We
may view GC as the complexification of G .

Given the data of the infinite dimensional Kähler manifold with a Hamiltonian Lie
group action, we can take the formal symplectic quotient

A (1,1) �G :=µ−1(ωn ⊗λ(E)idE )/G

These correspond precisely to those gauge orbits which contain a HYM connection. The
Kobayashi-Hitchin correspondence may then be phrased as saying that the notion of µ-
stability is the right notion for the infinite dimensional Kempf-Ness theorem to hold,
i.e.

A (1,1) �G ∼=A (1,1)/GC

where the latter is interpreted as the GIT quotient (whose definition relies on the notion
of stability). This is a good formal picture to keep in mind. It does not constitute a proof
of anything4, since many technicalities have to be worked out when dealing with infinite
dimensional spaces, as well as the singularities of A (1,1). In [8], the analytic framework
to deal with these problems is presented for algebraic surfaces.

4Except that the virtual dimension of the moduli space is H 1(X ,End(E), which readily follows from the
description M=A (1,1)/GC. But we already knew this.
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Chapter 7

Hitchin Systems and P =W Phenomena

In this chapter, we apply the same ideas of infinite dimensional symplectic reduction
to obtain some different moduli spaces, namely the so-called Higgs moduli space and
the de Rham moduli space. Each of them is a non-compact hyper-Kähler manifold, and
it will turn out that we can view one as a hyper-Kähler rotation of the other. It turns
out that the former admits a fibration by holomorphic Lagrangian tori, provided by an
algebraically completely integrable system. This is a special Lagrangian torus fibration
for the rotated complex structure, i.e. the de Rham moduli space, and one can show that
(for bundles with structure group GL(r,C)) the de Rham moduli space is mirror to itself.

There is also a third moduli space, called the Betti moduli space. It is an affine vari-
ety, which is analytically isomorphic to the de Rham moduli space, but not algebraically
so. Mirror symmetry does not care about whether the isomorphism is algebraic or an-
alytic, so we may just as well say that the Betti moduli space is mirror to the de Rham
moduli space. But the Betti moduli space carries a certain filtration on its cohomology
ring, stemming from the fact that it is an algebraic variety. This filtration is preserved by
algebraic maps, but not by analytic maps. The question then becomes: what happens
to this filtration under the analytic isomorphism between the two spaces? From the
perspective of mirror symmetry, the special Lagrangian torus fibration of the de Rham
moduli space is an important geometric property, and the P =W conjecture states that
it induces a filtration which coincides with the filtration on the cohomology of the Betti
moduli space. In this way, mirror symmetry gives rise to an interesting mathematical
conjecture, which has in fact been verified (for structure group G = GL(r,C)) in [75].

7.1 Mirror Symmetry from Hitchin Systems

Mirror symmetry is exhibited by one particularly beautiful class of examples, namely by
various Hitchin systems. These are algebraically completely integrable systems, which
are generally quite rare to find. Hitchin constructed a whole class of these, depending on
a choice of Riemann surface and a complex reductive algebraic group G . Such a group
has a so-called Langlands dual group G∨, and it turns out that certain moduli spaces
associated to G-bundles and G∨-bundles over the chosen Riemann surface exhibit mir-
ror symmetry. These moduli spaces can be obtained through infinite dimensional quo-
tients, in the same way that one obtains the moduli space of HYM equations. This way,
mirror symmetry can be used to relate areas within mathematics such as the geometric
Langlands correspondence and the duality theory of Lie groups.
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Definition 7.1.1. Let (X , g ) be a Kähler manifold, and GC a complex reductive algebraic
group. A GC-Higgs bundle on X is a pair (P ,φ) where P is a holomorphic GC-bundle,
and φ ∈ Γ(X ,T ∗X 1,0 ⊗Ad(P )) such that{

∂̄φ= 0

φ∧φ= 0

A Higgs bundle is called semi-stable if, for every sub-bundle F ⊂ E such that φ(F ) ⊂
Ω1
X ⊗F , we have µ(F ) ≤µ(E), and stable if the inequality is strict.

On a Riemann surface, the condition φ∧φ= 0 is vacuous, and this is the case we will
consider first. Hitchin studied these moduli spaces in [76], because rank 2 Higgs bundles
appeared as solutions to Hitchin’s equations which he encountered a year prior, see [77].
This is an interesting story in and of itself, since Hitchin’s equations are the dimensional
reduction of the Yang-Mills equations to 2 dimensions, but we shall not digress. We will
be considering GC = GL(r,C) so that we can just look at vector bundles for simplicity, but
the story carries over for any complex reductive algebraic group. We fix a fixed smooth
vector bundle E →Σ over a Riemann surfaceΣ, which is equivalent to specifying its rank
r and degree d . Denote the moduli space of holomorphic structures on E by M(r,d). As
we have seen, its tangent space is H 0,1(Σ,End(E)). Dual to this space is H 1,0(Σ,End(E)),
via the integration map

(φ, A) 7→
∫
Σ

tr(φ∧ A)

In other words, as our notation suggests, the space of Higgs fields φ for a given complex
structure ∂̄ = ∂̄0 + A on E is precisely T ∗

AM(r,d). In similar vein to the previous sec-
tion, we can consider the affine space A ×Ω1,0(Σ,End(E)) = T ∗A . It carries a natural
integrable complex structure, with respect to which the map

((α1,β1), (α2,β2)) 7→ i
∫
Σ

Tr(α1 ∧β2 −α2 ∧β1)

is a holomorphic symplectic form. It carries a natural action of GC, namely

ϕ · (∂̄,φ) = (ϕ◦ ∂̄◦ϕ−1,ϕ◦φ◦ϕ−1)

Proposition 7.1.2. The action of GC on T ∗A is symplectic, with moment map

µ(∂̄,φ) = i
∫
Σ

Tr(ξ∧ ∂̄φ)

where ξ ∈ Γ(Σ,End(E)).

The proof is similar to the one we presented when discussing the Kobayashi-Hitchin
correspondence, so we leave it as an exercise to the reader.

Definition 7.1.3. The moduli space of (stable) Higgs bundles of rank r and degree d is
defined by

MH (r,d) = T ∗A �GC
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A crucial insight is now that T ∗A is in fact a hyper-Kähler manifold. In this case, it
is often possible to instead take a hyper-Kähler quotient X /GC = X �h G , which gives
a hyper-Kähler structure on the quotient. This is presently the case, and we can give
MH (r,d) the structure of a hyper-Kähler manifold. To do this, we equip E with a Hermi-
tian connection and consider pairs (A,Φ) where ∇=∇0+A is a unitary connection on E ,
andΦ ∈Ω1(Σ,u(E)). The space of such pairs, which we denote H is an affine space over
Ω1(Σ,u(E))⊕Ω1(Σ,u(E)). We see that it is isomorphic to T ∗A by (∂̄,φ) 7→ (∂+ ∂̄,φ−φ†),
where φ† denotes the Hermitian conjugate.

It carries three natural complex structures, namely

I (α,β) = (⋆α,−⋆β)

J (α,β) = (−β,α)

K (α,β) = I ◦ J (α,β)

Of course the Hodge star is defined w.r.t. the conformal structure on Σ, and the Her-
mitian metric on E . Furthermore, H carries three distinct symplectic forms which are
holomorphic w.r.t. the respective complex structures:

ωI ((α1,β1), (α2,β2)) =
∫
Σ

tr(−α1 ∧α2 +β1 ∧β2)

ωJ ((α1,β1), (α2,β2)) =
∫
Σ

tr(β1 ∧⋆α2 −α1 ∧⋆β2)

ωK ((α1,β1), (α2,β2)) =
∫
Σ

tr(β1 ∧α2 +α1 ∧β2)

The unitary gauge group G acts on H by conjugation on both factors, as GC does on
T ∗A .

Theorem 7.1.4. The metric g on H defined by

g ((α1,β1), (α2,β2)) =−
∫
Σ

tr(α1 ∧⋆α2 +β1 ∧⋆β2)

is a hyper-Kähler metric on H with respect to I , J ,K , andωI ,ωJ ,ωK are the corresponding
symplectic forms. The group G acts by symplectomorphisms w.r.t. each symplectic form,
and carries a hyper-Kähler moment map defined by

µ1(A,Φ) =−FA +Φ∧Φ−2πiµ(E)ω

(µ2 + iµ3)(A,Φ) = 2i ∂̄φ

where ω is the Kähler form on Σ and we used H ∼= T ∗A .

The equations FA −Φ∧Φ=−2πiµ(E)ω and ∂̄φ= 0 are precisely Hitchin’s equations,
and we have a diffeomorphism MH (r,d) ∼= H �h G (after restricting to reducible con-
nections), giving MH (r,d) the structure of a hyper-Kähler manifold, and (H �h G , I ) ∼=
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MH (r,d) as complex manifolds. (Actually this is not quite true, because of the difference
between the notions of stability. What is true, is thatMH (r,d) ⊂H �hG as a dense open
subset. But from now on, we define MH (r,d) :=H �h G instead).

So now, we are in a situation where the moduli space of stable Higgs bundlesMH (r,d)
is itself a (non-compact) hyper-Kähler manifold. But Hitchin showed that even more is
true. One can give MH (r,d) the structure of an algebraically completely integrable sys-
tem. We do this following [78]. Consider the spaceB =⊕r

k=1H 0(Σ,K ⊗k
Σ ). We can compute

the dimension of this space using the Riemann-Roch theorem, which states

dim H 0(Σ,F )−dim H 1(Σ,F ) =
∫
Σ

ch(F )Td(Σ) = deg(F )− g +1

Take F = K ⊗k
Σ . Serre duality states that

H 1(Σ,K ⊗k
Σ ) = H 0(Σ, (K ⊗k

Σ )∗⊗KΣ)∗ = H 0(Σ,K 1−k
Σ )∗

We assume that g > 1, in which case deg(KΣ) = 2g−2 > 0, implying that dim H 0(Σ,K ⊗1−k
Σ ) =

0 whenever k > 1. Using Riemann-Roch again, we also find

dim H 0(Σ,K ⊗k
Σ ) = deg(K ⊗k

Σ )− g +1 = k(2g −2)− g +1 = (2k −1)(g −1)

It follows that dimCB = g +∑r
k=1(2k −1)(g −1) = 1− r 2(1− g ), where the extra g comes

from H 0(Σ,KΣ) which we had to consider separately. As noted, MH (r,d) = T ∗M(r,d)
(morally), and we saw that TEM(r,d) = H 1(Σ,End(E)). Now, ch(End(E)) = ch(E)ch(E∗) =
(r + c1(E))(r − c1(E)) = r 2, so we get

dimMH (r,d) = 2dimM(r,d) = 2

(
1−

∫
Σ

r 2Td(Σ)

)
= 2(1− r 2(1− g ))

where we used that dim H 0(Σ,End(E)) = 1 because E is stable by assumption. In con-
clusion, dimB = 1

2 dimMH (r,d). Then Hitchin defines a holomorphic map

f :MH (r,d) →B
(E ,φ) 7→ (tr(φ), . . . , tr(∧rφ))

where we view ∧kφ : ∧kE →∧k (E ⊗KΣ) = (∧kE)⊗K ⊗k
Σ , and take the natural trace map,

so that det(λ−φ) = λr +∑r
k=1 tr(∧kφ)λr−k . In other words, the Hitchin map f sends φ

to the coefficients of its characteristic polynomial. After choosing a basis in H 0(Σ,K ⊗k
Σ ),

we identify B =Cm where m = 1−r 2(1−g ). We can then separate f into its components
f j =π j ◦ f :MH (r,d) →Cm →Cwhere π j is projection onto the j -th coordinate.

Definition 7.1.5. Take b ∈B. Define

Cb = {(z, w) ∈ T ∗Σ | det(w −φ(z)) = 0}

where z is a local holomorphic coordinate on Σ, and w a holomorphic coordinate for
the fibre of T ∗Σ. Then Cb is called the spectral curve of b ∈B.
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Evidently, the characteristic polynomial will generically have r distinct solutions, so
that we get an r -sheeted ramified covering map π : Cb → Σ. Hitchin then proves the
following.

Theorem 7.1.6. The fibre f −1(b) of the Hitchin map is Jac(Cb), the Jacobian variety of the
spectral curve.

More generally, there is a singular locus, the discriminant locus, in the base B over
which the spectral curve is singular, and one has to be somewhat more careful. But for a
dense open subset in B, the generic fibre is a projective complex torus. In summary:

Theorem 7.1.7 (Hitchin [76]). The moduli space of stable Higgs bundles MH (r,d) is a
hyper-Kähler manifold, which admits the structure of an algebraically completely inte-
grable system f : MH (r,d) → B. The fibres of f are the Jacobian varieties of the spec-
tral curves Cb ⊂ T ∗Σ, which are Lagrangian w.r.t. the holomorphic symplectic form ϑI =
ωJ + iωK .

Proof. It remains to show that the fibres are Lagrangian. To see this, fix 1 ≤ k ≤ r and
take a ∈Ω0,1(Σ,K ⊗(1−k)

Σ ). Define fa(∂̄,φ) = ∫
Σ tr(φk )∧a : T ∗A →C. Then

d fa(α,β) =
∫
Σ

tr(φ̇∧φk−1)∧a =

i
∫
Σ

tr(φ̇∧ (−i a)∧φk−1) =ϑI ((−i aφk−1,0), (α,β))

where we have taken a curve with γ̇(0) = (α,β) to compute the differential. We conclude
that the Hamiltonian vector field of d fa is (−i aφk−1,0), which are all tangent to the fibres
since the second component, which is the component in TB, vanishes. For this reason,
all the fa Poisson commute for various a, also after descending to the quotientMH (r,d).
We can choose sufficiently many ai such that {d fai }i∈I span T ∗B, because of the non-
degenerate pairing between H 0,1(X ,K ⊗(1−k)) and H 0(X ,K ⊗k ). By non-degeneracy ofΩI ,
the corresponding Hamiltonian vector field span the tangent space to the fibre, which
leads one to conclude thatϕI | f −1(b) = 0 for all b ∈B. Hence, the fibres are Lagrangian.

Now, the fact that the Lagrangian fibres are holomorphically embedded w.r.t. to the
complex structure I means that they are calibrated by ωI . The fact that they are La-
grangian w.r.t. ϑI means that, for each fibre f −1(b) = Lb , we have ωJ |Lb = ωK |Lb = 0.
Because of this, we have the following corollary.

Corollary 7.1.8. The Hitchin map f : MH (r,d) → B is a special Lagrangian fibration for
the Calabi-Yau manifold (MH (r,d),ωK ,ΩK = (ωI + iωJ )n/2), where n = dimCMH (r,d).

So what interpretation do the complex structures J and K on MH (r,d) have, if any?
Fortunately for us, it has a very nice geometric interpretation. Recall that J acts by
J (α,β) = (−β,α). This corresponds to multiplying α+ iβ by i , and so the space (T ∗A , J )
consists of all complex connections on E , not unitary ones. We can split a complex con-
nection ∇ into its unitary and self-adjoint part, writing ∇ = D + iΦ. Then GC acts by
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complex gauge transformations on the space of complex connections. Its momentum
map is

µ(D,Φ) =µ3 + iµ1 = DΦ+ i (−FD +Φ∧Φ−2πiµ(E)ω)

The space µ−1(0) consists of those complex connections satisfying FD + i DΦ−Φ∧Φ =
F∇ =−2πiµ(E)ω. In other words, those complex connections with constant central cur-
vature. We consider the case d = 0, meaning we obtain the space of flat complex con-
nections. In other words, (MH (r,d), J ) is the moduli space of flat connections on E . Its
topology and smooth structure comes from infinite dimensional symplectic reduction,
as we have been discussing. Denote this moduli space by MdR (r,d). Recall that a flat
connection on E corresponds to a representation ρ : π1(Σ) → GL(r,C). Connections are
gauge equivalent if and only if the representations are conjugate. Associated to the gen-
eral linear group is its representation variety, which is an affine variety. Using geomet-
ric invariant theory, one can look at the moduli space of these representations (i.e. the
conjugacy classes of representations) which is an affine algebraic variety associated to a
ring of invariant polynomials. After endowing it with the analytic topology instead of the
Zariski topology, we get a non-compact algebraic complex manifold denotedMB (r,0) (a
minor adaptation generalises to any d ̸= 0). It is not at all clear if MdR (r,0) and MB (r,0)
are diffeomorphic, since their constructions are very different. All we know is that there
is a natural bijection between them, which may or may not preserve the possibly very
distinct topologies and smooth structures.

Theorem 7.1.9 (Non-abelian Hodge Correspondence [79]). Let X be a projective Kähler
manifold. Then there are diffeomorphisms

MH (r,d) ∼= MdR (r,d) ∼= MB (r,d)

The Riemann-Hilbert correspondence gives an analytic isomorphism MdR (r,d) ∼=
MB (r,d). Note that we are not dealing with projective manifolds now, so analytic iso-
morphisms are not necessarily algebraic, and indeed, this isomorphism is not an alge-
braic one. In conclusion, we have a non-compact hyper-Kähler manifold (MH (r,d), g )
for which (MH (r,d), g , I ) ∼= MH (r,d) and (MH (r,d), g , J ) ∼= MdR (r,d) ∼= MB (r,d), but
the final isomorphism is only complex analytic, and not algebraic. We have outlined
the intuition for the case when X = Σ is a Riemann surface, but remarkably this theo-
rem holds much more generally. Of course, one has to impose the additional condition
φ∧φ= 0 on the Higgs field in higher dimensions.

Convention 2. From now on, we will write MH :=MH (1,0) and MB :=MB (1,0).

Example 24. LetX =Cn/Λbe an abelian variety with a principal polarisation, so
that Jac(X ) ∼=X . The moduli space of degree 0 line bundles on X is precisely Jac(X ),
and its tangent space is H 0,1(X ) as we noted previously. The condition φ∧φ = 0 is
always satisfied for line bundles. Therefore,

T ∗M=MH = Jac(X )×H 1,0(X ) ∼=X ×Cn
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The Hitchin map is the projection X ×Cn → Cn . Now we want to find MH (r,0) for
r > 0. Suppse (E ,φ) is a semistable Higgs bundle on X . It is S-equivalent to the
direct sum of the sub-quotients of its Jordan-Hölder filtration, so we may take a di-
rect sum (L1 ⊕ ·· · ⊕Lr ,φ|L1 ⊕ ·· · ⊕φ|Lr ) to represent its isomorphism class. Since
φ|Li ∈ Hom(Li ,Li ⊗Ω1

X ) and Ω1
X
∼=O⊕n

X , we can identify (φ|L1 , . . . ,φ|Lr ) ∈ Cn . There
is an obvious map

MH (r,0) → Symr (Jac(X )×Cn)

(E ,φ) 7→ (L1, . . . ,Lr ,φ|L1 , . . . ,φ|Lr )

which likewise has an obvious inverse. In [15], it is shown that this is indeed an
isomorphism of varieties. We conclude that MH (r,0) ∼= Symr (X ×Cn).

Return briefly to the case r = 1. Then the Betti moduli space is Hom(Λ,C×), since
C× is abelian so conjugation acts trivially. We have diffeomorphisms

Hom(Λ,C×) ∼= Hom(Λ,S1)×Hom(Λ,R) ∼=X ×H 1,0(X ,R) ∼=MH

The first isomorphism is polar decomposition, the second isomorphism is the
Kobayashi-Hitchin correspondence (since an element of Hom(Λ,S1) is a flat uni-
tary connection), and the Hodge decomposition theorem η = φ+ φ 7→ φ (since
Hom(Λ,R) = H 1(X ,R). Now, when r > 1 we are just looking for tuples of 2n in-
vertible matrices which pairwise commute, and geometric invariant theory yields
that they additionally need to be simultaneously diagonalisable. It follows that
MB (r,0) ∼= Symr ((C×)2n), and we again get a diffeomorphism

MH (r,0) ∼= MB (r,0)

Note that MB (r,0) is an affine variety, so it does not contain any projective subva-
rieties. Hence, it is clear that MH (r,d) and MB (r,d) are not biholomorphic, since
MH (r,d) contains many projective subvarieties - the fibres of the Hitchin map.

Remark 7.1.10. The Kobayashi-Hitchin correspondence can be viewed as a corollary to
the non-abelian Hodge correspondence. Indeed, if φ= 0 then the condition of stability
for a Higgs bundle is just the same as the underlying holomorphic vector bundle being
stable. The subset of those representations of π1(X ) which are unitary can be shown to
correspond to the set of Higgs bundles with φ = 0. This yields the Kobayashi-Hitchin
correspondence for d = 0, and arbitrary degree follows by making small modifications.

Now, we can also consider moduli spaces of GC-Higgs bundles for any complex re-
ductive algebraic group GC. In this case, the Higgs field becomes a holomorphic section
φ ∈ H 0(Σ,Ad(P)⊗KΣ), and the topological type is fixed by an element d ∈π1(GC). The re-
sulting constructions are highly analogous and can be found in Hitchin’s original paper.
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We denote the respective moduli spaces byMH (GC,d),MdR (GC,d) andMB (GC,d). For
a complex reducitve algebraic group GC, we can consider its root datum (Γ∗,∆,Γ∗,∆∨)
where Γ∗ is the lattice of characters of a maximal torus, Γ∗ is the dual lattice, ∆ the roots
of the Lie algebra, and ∆∨ the coroots. There is an involution on the set of complex
reductive algebraic groups, defined by

(Γ∗,∆,Γ∗,∆∨) 7→ (Γ∗,∆∨,Γ∗,∆)

The image of a group GC under this involution is called its Langlands dual, denoted by
G∨
C

.

Example 25. Some examples of Langlands dual groups:

1. GL(r,C)∨ = GL(r,C)

2. SL(r,C)∨ = PGL(r,C)

3. SO(2n +1,C)∨ = Sp(2n,C)

4. SO(2n,C)∨ = SO(2n,C)

Theorem 7.1.11 ([80]). Let GC be a complex reductive group and G∨
C

its Langlands dual.
Let f : MdR (GC,d) → B and f ∨ : MdR (G∨

C
,d) → B∨ be the respective special Lagrangian

fibrations obtained from the Hitchin system, for some Riemann surface. Then B = B∨ and
the fibrations are an SYZ mirror pair.1

The Langlands dual group of GL(r,C) is itself, which means the corresponding special
Lagrangian fibration is mirror to itself. Recall also that we have a complex analytic iso-
morphism MdR (r,d) ∼=MB (r,d), so MB (r,d) is mirror to MdR (r,d). The question is:
can the Betti moduli space "see" the special Lagrangian fibration of the de Rham moduli
space in some way? The P =W conjecture claims that it can, through a certain filtration
on its cohomology which we explore next.

7.2 The P =W Phenomenon

Every complex algebraic variety comes equipped with its weight filtration, which is an
abstraction of the Hodge decomposition on H•(X ,Q) that also works for for non-projective
varieties. In particular, the Betti moduli space has a canonical weight filtration associ-
ated to it, denote it by W•(H•(MB (r,d),Q)). We will give a precise definition in a mo-
ment. The special Lagrangian fibration MdR (r,d) → B also induces a filtration on coho-
mology, through the perverse filtration. This is a filtration which can be associated to a
proper morphism between irreducible smooth quasi-projective varieties. We can hyper-
Kähler rotate our special Lagrangian fibration to return to the Hitchin map, which sat-

1Each of these moduli spaces also has a natural B-field on it, coming from a U(1)-gerbe.
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isfies these conditions. As such, we get a filtration P•(H•(MH (r,d),Q)). Again, a precise
definition will be given in a moment.

Conjecture 7.2.1 (The P = W conjecture [16]). Under MH (r,d) = MdR (r,d) ∼= MB (r,d),
we have

Pk (H m(MH (r,d),Q)) =W2k (H m(MB (r,d),Q)) =W2k+1(H m(MB (r,d),Q))

One can really think of this as a refined version of topological mirror symmetry (i.e.
at the level of Hodge numbers) for non-projective varieties. The P = W conjecture has
been shown to hold for G = GL(r,C) in [75]. Other structure groups and their Langlands
duals give rise to a similar statement, as was addressed in the original paper, where they
prove their conjecture for certain low rank groups and their duals. In [15], it was ob-
served that the P =W phenomenon holds for the Higgs and Betti moduli spaces associ-
ated to abelian varieties of any dimension. This is the example that we will investigate
further, as it allows for some explicit computations.

To treat these examples, we need to familiarise ourselves with the respective coho-
mology filtrations, starting with Deligne’s weight filtration.

Definition 7.2.2. A pure Hodge structure of weight k is an abelian group HZ of finite
rank, together with a filtration

HZ⊗C= F 0 ⊇ F 1 ⊇ ·· · ⊇ F k+1 = 0

such that F p ∩F q = 0 and F p ⊕F q = HZ⊗C for all p +q = k +1.

Example 26. Take any compact Kähler manifold X and let HZ = H k (X ,Z) and
F p =⊕i≥p H i ,k−i . This yields a pure Hodge structure of weight k.

Theorem 7.2.3 (Deligne). Let X be a quasi-projective C-variety. Then every cohomology
group H m(X ,Q) carries a natural weight filtration

0 =W−1H m(X ,Q) ⊆W0(H m(X ,Q)) ⊆ ·· · ⊆W2m H m(X ,Q) = H m(X ,Q)

and a Hodge filtration

H m(X ,C) = F 0H m(X ,C) ⊇ ·· · ⊇ F m H m(X ,C) ⊇ F m+1H m(X ,C) = 0

such that the sub-quotients GrW
k (H m(X ,C)) = Wk H m(X ,C)/Wk−1H m(X ,C) carry a pure

Hodge structure of weight k induced by F •. This is called a mixed Hodge structure. It
satisfies the following properties:

1. If X is projective and smooth, then

0 =Wm−1H m(X ,Q) ⊆Wm H m(X ,Q) = H m(X ,Q)
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2. If X is smooth (but not necessarily projective) then

0 =W−1H m(X ,Q) ⊆ ·· · ⊆W2m H m(X ,Q) = H m(X ,Q)

and for any smooth compactification ι :X −→X one has

Wm H m(X ,Q) = ι∗H m(X ,Q)

3. For any algebraic map f :X →Y , one has

f ∗(Wk H m(Y ,Q)) ⊆Wk H m(X ,Q)

4. The weight filtration is compatible with the cup product, so we may write

Wk H•(X ,Q)

5. The weight filtration is compatible with the Künneth formula

Wk H•(X ×Y ,Q) ∼=⊕i+ j≤kWi H•(X ,Q)⊗W j H•(Y ,Q)

The theorem above is rather lengthy, but it mostly just expresses the naturality of the
weight filtration with respect to natural operations such as compactifications, pullback,
products, etc. The weight filtration of Deligne’s theorem will be denoted by W•H•(X ,Q).

Example 27. Let’s consider X =C×. There is a smooth compactification ι :X →
CP1, and H 1(CP1,Q) = 0. It follows from 2) that W1H 1(X ,Q) = 0. This is sufficient to
determine the entire weight filtration of X , since X is smooth:

W0H 0(X ,Q) = H 0(X ,Q) =Q
W0H 1(X ,Q) =W1H 1(X ,Q) = 0 W2H 1(X ,Q) = H 1(X ,Q) =Q

W4H 2(X ,Q) = H 2(X ,Q) = 0

By the Künneth formula, we can now compute the weight filtration for MB (r,0) =
(C×)2n , and it is given essentially by the binomial theorem. That is, the 2k-th step
of the weight filtration consists of the first k summands of the cohomology of T 2n ,
which is the exterior algebra:

W2k H m((C×)2n ,Q) =⊕k
j=0 ∧ j Q2n =W2k+1H m((C×)2n ,Q)

We define H k;p,q (X ) := Grp
F GrW

p+q H k (X ,C).
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Definition 7.2.4. The Deligne-Hodge numbers are hk;p,q (X ) = dimCH k;p,q (X ). The
Deligne-Hodge polynomial is defined as

WX (t ,u, v) = ∑
k,p,q≥0

hk;p,q (X )t k up v q

The Deligne-Hodge polynomial can be treated as a refinement of the Hodge numbers
of a compact Kähler manifold, which satisfies additional convenient properties and re-
lations. For example, it follows from Deligne’s theorem that the polynomials are multi-
plicative with respect to Cartesian products.

Example 28. Take an abelian variety X . We saw in 24 that the corresponding
Higgs moduli space of rank 1 and degree 0 is MH

∼=X ×Cn . Its Deligne-Hodge poly-
nomial is easy to deduce, since this is a Cartesian product, and X is smooth and
projective. By equipping an abelian variety with a flat metric, we can compute the
harmonic forms, as they are the constant ones. Thus, we can compute the Deligne-
Hodge polynomial as the product of the Deligne-Hodge polynomial of an elliptic
curve, which is W(t ,u, v) = 1+ tu+ t v+ t 2uv = (1+ tu)(1+ t v). We also have WC = 1.
Therefore,

WX×Cn (t ,u, v) = (1+ tu)n(1+ t v)n

We saw that the Betti moduli space isMB = (C×)2n . We have H 0(C×,C) ∼= H 1(C×,C) ∼=
C, and all other cohomology groups vanish. Since C× is smooth, we get h0;0,0(X ) =
h1;1,1(X ) = 1, with all other Hodge numbers vanishing, so WC× = 1+ tuv and

W(C×)2n = (1+ tuv)2n

We deduce that H•(MB ,Q) =⊕p H p,p ((C×)2n ,Q), so in fact we can simply define the
Hodge numbers of MB by hp,p (MB ) = hp;p,p (MB ), and all other Hodge numbers
vanishing.

Clearly, WMH ̸=WMB in spite of the diffeomorphism between the two spaces. In-
stead, the P = W conjecture says that the perverse filtration of MH should coincide
with the weight filtration of MB , so let us see how this perverse filtration is defined.

Definition 7.2.5. Let Y be a quasi-projective variety equipped with a flag Y0 ⊂ ·· · ⊂Yd =
Y (generic with dimYk = k), and let f : X → Y be a morphism of varieties. Then the
perverse P• filtration on H•(X ,Q) is defined by

Pm−k−1H m(X ,Q) = ker(H m(X ,Q) → H m( f −1(Yk ),Q))

Remark 7.2.6. Actually the above definition is a massive shortcut. The perverse filtra-
tion can be defined in much more general context, which involves significantly more
machinery as well, such as in the references we have given [16, 75].
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Definition 7.2.7. Let P•H•(X ,Q) be a perverse filtration. Then the perverse Hodge num-
bers hp,q

P
(X ) are defined as

hp,q
P

(X ) = dimQGrP
p H q (X ,Q) = dimQPp H q (X ,Q)/Pp−1H q (X ,Q)

Our goal in this section will be to check if it is true that

hp,q
P

(MH (r,0)) = hp,q (MB (r,0))

Example 29. We are interested in the perverse filtration associated to the
Hitchin map f : MH (r,0) ∼= Symr (X ×Cn) → Cr n . We start with the case r = 1, i.e.
f :X ×Cn →Cn the projection map. Homotopy invariance of cohomology yields

Pk H•(X ×Cn ,Q) ∼= Pk H•(X ,Q)

So the perverse filtration on MH is induced by the constant map c : X → {∗}. It
follows from the definition that

Pk H m(MH ,Q) = Pk H m(X ,Q) =
{

H m(X ,Q) if k ≥ m

0 if k < m

Equivalently, we have
Pk H•(MH ,Q) =⊕k

j=0 ∧ j Q2n

which shows that the P = W conjecture holds for X and r = 1, as per [15]. To find
hp,q

P (MH ), we need the dimension of

GrP
p H p+q (MH ,Q) = Pp H p+q (MH ,Q)/Pp−1H p+q (MH ,Q)

So fix p, q ∈N and let k = p+q . From the description of the perverse filtration we see
that this quotient is non-trivial if and only if H k (X ,Q) ̸= 0 and p = k, in which case it
is H k (X ,Q). We conclude that

hp,q
P

(MH ) =
{

bp (X ) if p = q

0 else

The generating function is PMH (u, v) = ∑
p,q hp,q

P
(MH )up v q = (1+uv)2n . We con-

clude that
WMB (1,u, v) =PMH (uv, v)

Thus, the Hodge numbers of the perverse filtration on H•(MH ,Q) match those of the
weight filtration on H•(MB ,Q):

hp,q
P

(MH ) = hp,q (MB )
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Now, using the fact that MH (r,0) = Symr (MH ) and MB (r,0) = Symr (MB ), we want to
deduce the r > 1 case from this. Given a variety M, one obtains Symr (M) as a quo-
tient of Mr by a group action of the symmetric group Sr . From this, it follows that
H•(Symr (M),Q) = H•(M r ,Q)Sr , the Sr -equivariant cohomology ring of M r . In [81] it
is shown that

Pp H•(Symr (M),Q) = (Pp H•(M r ,Q))Sr

Furthermore, naturality of the weight filtration implies that

W2k H•(Symr (M),Q) =W2k+1H•(Symr (M),Q) = (W2k H•(M r ,Q))Sr

This is how the P = W conjecture is proved for r > 1 in [15], for any abelian variety. It
also implies the result that we wanted to verify.

Corollary 7.2.8. Let X be an abelian variety and let MH (r,0) and MB (r,0) be the Higgs
moduli space and the Betti moduli space, respectively. Then

hp,q
P

(MH (r,0)) = hp,q (MB (r,0))

Now, one can use the results from [82] to obtain the perverse Hodge numbers of
MH (r,0). In the citation, a formula is given for the Deligne-Hodge polynomials of sym-
metric products of certain algebraic groups, such as Symr ((C×)2n). Letσ ∈ Sr and let Mσ

denote the corresponding permutation matrix. Then the result states that

WSymr ((C×)2n (t ,u, v, ) = 1

r !

∑
σ∈Sr

det(I + tuv Mσ)2n

And indeed, we see that r = 1 just yields the familiar formula (1+ tuv)2n .

7.3 Enumerative Geometry and P =W

We saw that the moduli spaces that are involved in the P =W conjecture can be obtained
by infinite dimensional symplectic reduction, akin to the moduli space of holomorphic
structures on a complex vector bundle on a Kähler manifold. Aside from this analogy,
and the appearance of a special Lagrangian fibration, it turns out that the P = W phe-
nomenon is closely related to enumerative geometry, and can be used to obtain (local)
Donaldson-Thomas invariants and (local) Gromov-Witten invariants. We briefly explain
how this comes about.

Let X be a Riemann surface. It turns out (see [83]) that the perverse Hodge numbers
hp,q
P

(MH (r,d)) of the associated Higgs moduli space are the Gopakumar-Vafa invariants
of the local Calabi-Yau threefold Tot(KX ⊕L), where deg(L) = 2−2g and Tot denotes the
total space of the vector bundle. In the case of an elliptic curve, which we treated above,
this is just X ×C2. The Gopakumar-Vafa invariants are certain invariants of a Calabi-Yau
threefold which are motivated by M-theory, and they count curves in the Calabi-Yau
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threefold together with line bundles on them, in some appropriate sense. There are also
invariants called Pandharipande-Thomas invariants (introduced in [84]) which count
curves with points on them (scheme theoretically) in a Calabi-Yau threefold. It has been
shown that the generating functions of these invariants coincide with the (reduced) gen-
erating functions of the Donaldson-Thomas invariants, i.e.

Z PT
β (q) = Z red

β (q)

This is established in [85, 86]. So essentially Donaldson-Thomas theory and Pandharipande-
Thomas theory are equivalent ways of counting curves in a Calabi-Yau threefold.

Gopakumar-Vafa invariants are a refined invariant in the sense that they count curves,
as well as line bundles on them. In the case of the local Calabi-Yau threefold associated
to a curve, these are the spectral curves of the Hitchin system, which lie in the total space
of KX ⊕OX , with line bundles on them. The corresponding moduli space is the Higgs
moduli space MH (r,d) which is why hp,q

P
(MH (r,d)) arise as Gopakumar-Vafa invari-

ants. In [87], there is a conjectured correspondence between Pandharipande-Thomas
and (conjecturally defined) Gopakumar-Vafa invariants. In other words, the perverse
Hodge numbers hp,q

P
(MH (r,d)) determine the Pandharipande-Thomas invariants, and

in turn, the Donaldson-Thomas invariants of the local Calabi-Yau threefold Tot(KX ⊕L).
So in fact, the P = W conjecture tells us that all of these enumerative invariants of the
local Calabi-Yau threefold can be obtained from the Hodge numbers of Deligne’s weight
filtration on the cohomology of MB (r,d). Quite a remarkable result, because the per-
verse weight filtration is (in general) not at all well-understood, where the weight filtra-
tion on an affine variety is well-understood. For more details, we refer to [88, 69].

With this in mind, it is interesting to consider whether the P = W phenomenon ap-
pears in more generality. For instance, suppose we have a Calabi-Yau threefold which
is fibred by K 3 surfaces, and looks like S ×C away from the singular fibres. Here, S is
a K 3 surface. Then one can also consider the Gopakumar-Vafa invariants of the local
Calabi-Yau threefold S ×C. To compute these, one needs to consider the moduli space
of curves with line bundles on them for a given K 3 surface. Mathematically, this moduli
space is constructed as the moduli space of 1-dimensional stable sheaves E on S such
that Supp(E) = β ∈ H2(S,Z) and χ(E) = 1, where β is the homology class of the curve in
S ⊂ X . Denote this moduli space byMβ. Then there is a morphismπ :Mβ→ Chowβ(S),
the Chow variety which parameterises algebraic cycles of dimension 1 and homology
class β in S . Naturally, π sends the sheaf E to its support. It turns out (see [89]) that for a
K 3 surface, this map is induced by a morphism

S [n] →CPn

with n = 1
2β

2 + 1 (recall that the K 3 lattice is even, so β2 is always even) and S [n] the
Hilbert scheme of n-points on of S . To extract the Gopakumar-Vafa invariants, one
needs to compute the perverse Hodge numbers associated to this morphism π. In gen-
eral, this is not a simple task, so it would be much easier if the P =W phenomenon could
be used for S [n]. The main result of [89] is that this can indeed be done.
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Theorem 7.3.1. [89] For any projective irreducible holomorphic symplectic variety M,
equipped with a holomorphic Lagrangian fibration π :M→B, it holds that

hp,q
P

(M) = hp,q (M)

In this way, the various enumerative invariants (the local Gromov-Witten, Pandharipande-
Thomas and Donaldson-Thomas invariants) ofS×C can be deduced through the P =W
phenomenon and the Göttsche formula [90], which states

∞∑
n=1

WS [n] (1,u, v)t n =
∞∏

k=1

2∏
p,q=0

(1+ (−1)p+q+1up+k+1v q+k+1t k )(−1)p+q+1hp,q (S)

This holds for any projective complex surface. Note that the formula on the right hand
side depends only on the Hodge numbers of the surface S , so the Hodge numbers of
S [n] can be determined explicitly. In the case of a K 3 surface, one finds

Wtot =
∑
n
WS [n] t n =

∞∏
k=1

(
(1−uk+1vk+1t k )(1−uk+3t k )(1−uk+2vk+2t k )20(1− vk+3t k )(1−uk+3vk+3t k )

)−1

Running a program, one can then obtain hp,q (S [n]) = hp,q
P

(S [n]) as

1

n!p !q !

(
∂n+p+qWtot

∂t n∂up∂v q

)
(0,0,0)
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Chapter 8

The Thomas-Yau Conjecture

We are now almost ready to discuss the Thomas-Yau conjecture, although we need one
more piece of the puzzle. This piece comes from the realm of string theory, and is related
to the notion of stability and BPS (Bogomolnyi-Prasad-Sommerfield) branes. These
are certain distinguished branes in the Calabi-Yau target space of the supersymmetric
non-linear open string sigma model which preserve some supersymmetry, and so they
are also called supersymmetric branes. We will give a very brief overview of these BPS
branes, and then start to piece together the puzzle.

8.1 BPS Branes

We refer the reader to [55] and [5] for extensive discussions on the topic that we are about
to discuss. As before, we will assume in the following that we are ar the large volume
limit. This means that the volume of the Kähler form tends to infinity. In this case, we
may view A-branes as objects in the Fukaya category, and B-branes as coherent sheaves.

We recall that the homological mirror symmetry conjecture pertains to the category
of A-branes and B-branes, which are the D-branes of the A-model and B-model, respec-
tively. In turn, these models were topological twistings of some underlying string theory,
the "untwisted" theory. Recall that a D-brane in the untwisted theory with Calabi-Yau
target space (X , g ) is (simplistically) viewed as a submanifold Y ⊂ X together with a vec-
tor bundle E → Y and a connection ∇ on E . Some branes from the twisted theory arise
as branes in the untwisted theories, namely those which correspond to so-called BPS
branes. If an open string ends on two BPS branes, this means that its equations of mo-
tion are invariant under half of the supersymmetry, which is the maximal amount of su-
persymmetry that can be preserved for open strings, and are therefore of great interest to
string theorists, e.g. [91]. Supersymmetry demands that the submanifolds correspond-
ing to these branes are volume minimising with respect to the metric on the Calabi-Yau
manifold (X , g ), and the existence of covariantly constant spinors on the submanifolds.
Mathematically, this translates into the condition that the submanifolds need to be cal-
ibrated (see 2.4.2 where we discussed calibrations on Calabi-Yau manifolds).

On a Calabi-Yau manifold (X , g ) which is the target space of our theory, a calibrated
submanifold can either be a complex submanifold Y ⊆X with respect toωk , or a special
Lagrangian submanifold L ⊆ X with respect to Re exp(iθ)Ω. These arise as the subman-
ifolds for BPS branes in type IIA, respectively type IIB string theory. The terminology
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is very confusing for us, since BPS branes for type IIA string theory resemble B-branes
while BPS branes for type IIB string theory resemble A-branes. This is why we will con-
tinue to avoid mentioning type IIA/IIB string theory.

There are further restrictions which are imposed on the triple (Y ,E ,∇), for it to cor-
respond to BPS a brane in the untwisted theory. In each case, this additional condition
comes in the form of a partial differential equation that must be satisfied. The first type
of BPS branes consist of

1. A complex submanifold Y ⊆X .

2. A connection ∇ on E → Y which satisfies the HYM equation.

We call these B-type BPS branes. The second type of BPS branes consist of

1. A special Lagrangian submanifold L ⊆ X , i.e. Im exp(iθ)Ω|L = 0 and ω|L = 0

2. A Hermitian line bundle E → L with unitary connection ∇ and F∇ = 0.

These are called A-type BPS branes. Evidently, every special Lagrangian can be graded,
and defines an object in the derived Fukaya category. Similarly, a B-type BPS brane
defines an object in Coh(X ). But in both cases, some additional criteria are satisfied.

Recall that we discussed the SYZ picture of mirror symmetry in 4.4.2. As mentioned
there, the SYZ approach to mirror symmetry, particularly in the semi-flat limit (when
the metric is flat along the torus fibres), provides a nice testing ground for certain ideas.
For instance, in [67], the authors show that the smooth Fourier-Mukair transform (also
called T -duality transform) of a special Lagrangian fibration, takes A-type BPS branes
on X to B-type BPS branes on X∨, whenever the Lagrangian submanifold underlying
the A-brane can be expressed as a (multi-)section of the fibration. Whilst not conclu-
sive by any means, it is evidence in favour of homological mirror symmetry. But the
condition for a B-brane to be BPS actually depends on the the Kähler form, since the
Hermitian-Yang-Mills equation does. Conversely, the special Lagrangian criterion for
A-type branes requires the presence of the holomorphic volume form. So the citation is
evidence in favour of more than homological mirror symmetry - it is evidence in favour
of mirror symmetry at the level of the untwisted string theory, which is what string the-
orists believe to be true (sometimes referred to as quantum mirror symmetry):

Conjecture 8.1.1. The set of A-type BPS branes on X is isomorphic to the set of B-type
BPS branes on X∨.

This is a consequence of the isomorphism (whatever this means is not mathemati-
cally rigorous) between type IIB string theory on X , and type IIA string theory on X∨.
By the Kobayashi-Hitchin correspondence, B-type BPS branes are precisely complex
submanifolds Y ⊆ X together with a µ-stable holomorphic vector bundle, which give
µ-stable coherent sheaves on X via pushforward. So in fact, we will view the set of B-
type BPS branes as the set of µ-stable coherent sheaves on X . Thus, B-type BPS branes
are intricately tied to some notion of stability, at least at the large volume limit. Is the
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same true of A-type BPS branes? This is the question that the Thomas-Yau conjecture
attempts to answer, as we discuss next.

A more rigorous notion of stability was introduced in the string theory literature un-
der the name Π-stability, see [6, 92], which applies away from the large volume limit as
well. This was adapted to the framework of triangulated categories by Bridgeland, see
[93]. The Thomas-Yau conjecture was reinterpreted in this context by Joyce, see [12]. We
will discuss this later on.

Remark 8.1.2. Note that the Donaldson-Thomas invariants of (X , g ) can be interpreted
as the count of BPS branes for the large volume limit of type IIA string theory compacti-
fied on (X , g ).

8.2 The Mirror Image

The Thomas-Yau conjecture has its origins in a paper written by Thomas [1], where he
looks for an analogue of the notion of µ-stability for A-branes. Mirror symmetry is used
as a guiding principle, and he presents a table which provides the dictionary between
the A-side and the B-side of the story. The entries that we have not yet discussed will
be explained shortly. We fix some basepoint ∇0 in the affine space of connections on a
vector bundle E , and we denote by ∂̄0 its (0,1) part.

Mirror Symmetry Dictionary
(X ,ω,Ω) (X∨,ω∨,Ω∨)
Ω ∈ H 3,0(X ) ω∨ ∈ H 1,1(X∨)
Connections on E with charge η =
ch(E)

p
td(X ) ∈ H ev(X ,Q)

Submanifolds L in homology class [L] ∈
H3(X ∨) with connection on L×C

SC(∂̄= ∂̄0 + A) = ∫
X tr(A∧ ∂̄0 A+ 2

3 A3)∧Ω fC(A,L) = ∫ L
L0

(F +ω∨)2

Critical points: holomorphic bundles Critical points: Lagrangians with flat
line bundles

Invariant: DTη(X ) Invariant: "counting" special La-
grangian submanifolds

Symmetry group: bundle automor-
phisms

Symmetry group: Hamiltonian defor-
mations

ω ∈ H 1,1(X ) Ω∨ ∈ H 3,0(X∨)
Momentum map: A 7→ FA ∧ω2 Momentum map: (A,L) 7→ Im Ω∨|L
Slope: µ(E) = 1

rank(E)

∫
X c1(E)∧ω2 Slope: µ(L) = 1

Vol(L)

∫
L Im Ω∨

Note that, aside from the functionals SC and fC and the associated invariants, the story
actually applies to any Calabi-Yau manifold. Next we will explain this table in more de-
tail, and how it leads to the conjecture by Thomas in [1].

We begin on the left hand side of the table, which concerns holomorphic vector bun-
dles on a Calabi-Yau threefold X . Suppose we fix a smooth vector bundle with the topo-
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logical data of the charge vector ch(E)
p

td(X ).1 Endow it with a Hermitian metric, and
consider the space of unitary connections on E . Equivalently, consider the space of
∂̄-operators on E compatible with the metric. We can define a functional on this infi-
nite dimensional space, the holomorphic Chern-Simons functional SC(A). Its critical
points correspond to connections whose curvature satisfies F 0,2

∇ = 0, i.e. to holomor-
phic structures on E . From this, we learn that the moduli space of holomorphic vector
bundles of a given topological type has virtual dimension zero, and we may define the
Donaldson-Thomas invariants DTη(X ). This may also be viewed as the process of sym-
plectic reduction, by taking the bundle automorphisms G to act on the space of uni-
tary connections (with curvature of type (1,1)), denoted A (1,1). We can give a momen-
tum map for this symplectic group action using the Kähler form ω, namely A 7→ F ∧ω2.
The Kobayashi-Hitchin correspondence tells us that this is equivalent to the formal GIT
quotient A (1,1)/GC, where the notion of stability is defined by the slope µ(E). That is,
the moduli space of stable holomorphic vector bundles coincides with the symplectic
quotient A (1,1) �G , and the orbit spaces of the latter may be represented by a unique
HYM connection, whereas points in the GIT quotient correspond to orbits of (semi-
)stable points in A (1,1). In other words, solutions to some PDE imply a certain well-
behavedness on the algebraic side. This is a retelling of the story we discussed in 6.3.

So can a similar theory be developed for the A-type branes? Answering this question
is the goal of [1]. To start with, we should find some infinite dimensional space which
plays the role of A . The general principles behind this are outlined in [94]. Denote by
M the space whose elements consist of pairs (L, A) where L is a submanifold L ⊆ X in a
fixed homology class [L] ∈ H3(X ,Z) and ∇ = d + A is a unitary connection on L ×C. We
are interested in the case where L is a Lagrangian submanifold. In this case, the complex
structure on X allows us to identify normal vectors with tangent vectors, i.e. T L ∼= N L.
Infinitesimal deformations of L can be viewed as normal vector fields on L, and using
the complex structure and the metric, these can be represented by elements of Ω1(L).
On the other hand, infinitesimal deformations of the unitary connection are given by 1-
formsΩ1(L,u(1)) ∼= iΩ1(L), since this is the tangent space to the space of connections. As
such, we see that the tangent space of M at a Lagrangian submanifold may be identified
with Ω1(L)⊕ iΩ1(L) =Ω1(L)⊗C, so that T(L,A)M acquires a natural complex structure,
at least when L is Lagrangian. Since M is not an affine space, we cannot guarantee
that this almost complex structure is integrable by some elementary argument. Let us
proceed under the assumption that it is, for the purpose of developing an analogy with
the B-type branes.

The next step in doing so is to define a functional fC on M whose critical point yield
A-branes, i.e. Lagrangian submanifolds with flat line bundles. In the same way that we
fixed a reference connection ∇0 for the holomorphic Chern-Simons functional, we now

1Recall that the Chern character is an isomorphism K (X )⊗ZQ→ H ev(X ,Q), where K (X ) denotes the
topological K -theory group which consists of isomorphism classes of topological vector bundles. So up
to torsion, a vector bundle is determined by its Chern class, and

p
Td(X ) is just a change of basis.
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fix L0 ∈M to represent the homology class of a given L ∈M . Then we can define

fC(L, A) :=
∫ L

L0

(F +ω)2

where the integration is over a 4-cycle whose boundary is L −L0. Such a cycle is guar-
anteed to exist since [L] = [L0]. The curvature form F is that of a connection on a bun-
dle on the 4-cycle, which restricts to A on L, and to A0 on L0. Therefore, fC(L, A) is
only well-defined up to addition of some period. Evidently, critical points correspond to
pairs (L, A) such that ω|L = 0 and F = 0, i.e. Lagrangian submanifolds together with flat
connections. Like the Chern-Simons functional, the functional fC is holomorphic with
respect to the complex structure on M . We denote its space of critical points by M 0.
That is,

M 0 = {(L, A) | [L] = [L0] ∈ H3(X ,Z),ω|L = 0,FA = 0}

Next in the table is some enumerative invariant, which should be mirror to the Donaldson-
Thomas invariant. In other words, it should count A-type BPS branes. A first attempt at
defining this invariant was made by Joyce in [95], in which the proposal is to count spe-
cial Lagrangian homology spheres, together with gauge equivalence classes of flat line
bundles. This is because special Lagrangian homology spheres are isolated, so they have
a 0-dimensional moduli space. Note that the publication of this paper (in 1999) predates
much of the development of D-branes in string theory, so this was not thought of as an
A-side invariant, although Joyce speculates that his invariants are related to Gromov-
Witten invariants. Either way, the attempt was inconclusive.

So the "right" definition of the A-side invariant has not yet been given. Perhaps the
method of symplectic reduction can give us a hint as to what this invariant should be,
through a similar infinite dimensional Kempf-Ness picture as the Kobayashi-Hitchin
correspondence. First, we can try to find the symmetry group based on string theory
arguments. On the B-side, two holomorphic vector bundles are isomorphic as branes
if they are related by a unitary gauge transformation, which is why we obtained G as
a symmetry group. On the A-side, two branes are isomorphic if they are related by a
Hamiltonian deformation, since the Floer cohomology is invariant under Hamiltonian
deformations in both arguments. Can these act by symplectomorphisms with respect to
an appropriately defined symplectic structure on M 0? To answer this, we first need to
understand what TLM 0 ⊆Ω1(L,C) looks like.

We recall that we obtainedΩ1(L,C) asΩ1(L,R)⊕Ω1(L,u(1)). These were infinitesimal
deformations of the submanifold L and the connection ∇ = d + A, respectively. Now,
we want L to remain Lagrangian under the infinitesimal deformation, and we want ∇ to
remain flat. For the former, we require symplectic vector fields2, i.e. vector fields v such
that Lvω = 0. Equivalently, this means d ◦ ιvω = 0. As a result, the subspace in Ω1(L,R)
which corresponds to Lagrangian deformations is ker(d :Ω1(L,R) →Ω2(L,R)), which we

2We are still considering Calabi-Yau manifolds in the strict sense. Thus, H 1(X ,R) = 0, which means that
every symplectic vector field is in fact Hamiltonian.
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write as Z 1(L,R). Similarly, suppose that ∇= d+A 7→ ∇t =∇+t a for a ∈Ω1(L,u(1)). Then
the curvature of ∇t is given by

FA + t (d a + [A, a])+ t 2

2
[a, a] = FA + td a

since U(1) is abelian. Differentiating, we find that for ∇t to remain flat, we need d a = 0,
i.e. a ∈ Z 1(L,u(1)). We conclude that TLM 0 = Z 1(L,C). Now we can attempt to define
a symplectic form on M 0. By analogy with the B-side, we would like to use the 3-form
Ω|L ∈Ω3(L,C) to define this symplectic form. We use this form to define a metric on M 0,
which combines with the complex structure to yield a symplectic form. Fix a homology
class for L and normalise Ω so that

∫
L Im Ω= 0. For the metric, we can then take

〈·, ·〉 : TLM 0 ×TLM 0 →R ((a1, a2), (b1,b2)) 7→
∫

L
a1 ∧ (ιb̃1

Im Ω|L)+
∫

L
a2 ∧ (ιb̃2

Im Ω|L)

where b̃ ∈ Γ(L,T L) is obtained from b ∈ Z 1(L,R) from the isomorphism T ∗X |L → T X |L
provided by ω, and the isomorphism N L ∼= T L provided by J and the fact that L is La-
grangian. As written, it is not so clear that this should define a metric. However, if we
consider Ω|L = exp(iθ)dVolg then the expression may be written as

((a1, a2), (b1,b2)) 7→
∫

L
cos(θ)a1 ∧⋆b1 +

∫
L

cos(θ)a2 ∧⋆b2

We are already restricting our attention to graded Lagrangians, but for this to define an
inner product, we cannot allow θ = ±π/2. As such, we restrict our attention to almost
calibrated Lagrangians, which means that θ(x) ∈ (−π/2,π/2) for all x ∈ L. We redefine
M 0 to consist of pairs (L, A) where L is an almost calibrated Lagrangian submanifold,
together with a flat connection.

Proposition 8.2.1. The map 〈·, ·〉 : TLM 0×TLM 0 →R defines a Hermitian metric on M 0.

Proof. Let (L, A) ∈ M 0. Since L is almost calibrated, the function cos(θ) ∈ C∞(L) is
nowhere vanishing. As such,

∫
L cos(θ)a ∧⋆b is just a deformed version of the Hodge

inner product on Ω1(L,R). Then 〈·, ·〉 is simply the induced inner product on the direct
sum

TAM 0 = Z 1(L,C) ∼= Z 1(L,R)⊕Z 1(L,R)

Next, we must show that this metric is compatible with the complex structure. Writing
the tangent space as TLM 0 =Ω1(L,R)⊕Ω1(L,R), the complex structure acts as the matrix(

0 −1
1 0

)
:Ω1(L,R)⊕Ω1(L,R) →Ω1(L,R)⊕Ω1(L,R)

As such, we find that

〈J (a1, a2), J (b1,b2)〉 = 〈(−a2, a1), (−b2, a2)〉 =
∫

L
cos(θ)(−a2)∧⋆(−b2)+

∫
L

cos(θ)a1 ∧⋆b1 =∫
L

cos(θ)a1 ∧⋆b2 +
∫

L
cos(θ)a2 ∧⋆b2 = 〈(a1, a2), (b1,b2)〉

We conclude that this is indeed a Hermitian metric.
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Since we now have a Hermitian manifold (M 0, J ,〈·, ·〉), we also have a symplectic
structure by taking ϑL(a,b) = 〈a, Jb〉, assuming that the Hermitian metric is Kähler.3

Definition 8.2.2. Let (X ,ω) be a symplectic manifold. A Hamiltonian deformation of X
is a diffeomorphismϕ : X → X which is generated by a Hamiltonian vector field. Let L ⊆
X be a Lagrangian submanifold. Then a Hamiltonian deformation of L is a deformation
of L which is pulled back from a Hamiltonian deformation ϕ : X → X .

For strict Calabi-Yau manifolds, one has H 1(X ,R) = 0 so every symplectic vector field
on X is Hamiltonian. The group of Hamiltonian deformations of L acts on M 0 by ϕ :
(L,∇) 7→ (ϕ(L), (ϕ−1)∗∇). It combines with the group of gauge transformations into a
group action of the semidirect product H := Ham(L,ω)⋉G .

Proposition 8.2.3. The group H acts on (M 0,ϑ) by symplectomorphisms.

Proof. This follows straightforwardly from the invariance of ϑ under the gauge group
part of the action, and the diffeomorphism invariance of the integral. That is,∫

L
η=

∫
ϕ(L)

(ϕ−1)∗η

Together with the naturality of the Hodge star operator, this yields the result.

Given that we have a group acting by symplectomorphisms, we would now like to
find a momentum map. First, then, we must identify the dual of the Lie algebra of H .
In fact, since the gauge transformations do not affect the symplectic form, we need only
know the dual of the Lie algebra of the group of Hamiltonian deformations of L. The Lie
algebra of this group consists of closed 1-forms, since every Hamiltonian deformation
is symplectic when H 1(X ,R) = 0. Thus, we may identify this vector space with V :=
C∞(L)/R, since every closed 1-form is exact.

Proposition 8.2.4. Let Ω3
0(L) denote those 3-forms η such that

∫
L η= 0. Then we identify

Ω3
0(L) with V ∗ as vector spaces.

Note that we do not require this to be a morphism of Lie algebras. We are content with
being able to identify elements in V ∗ with some other vector space (or the converse).

Proof. We already have Ω0(L)×Ω3(L) → R which is given by integration. We used this
to make the identification Ω3(L) ∼= C∞(L)∗. We may normalise this isomorphism so
that dVol is mapped to 1. In this case, taking the quotient C∞(L)/R amounts to taking
Ω3(L)/(R ·dVol). We identify the latter withΩ3

0(L), by taking the unique representative of
each equivalence class which integrates to 0.

3If we instead model the space M on maps of some fixed compact manifold into X , then one can
certainly construct a Kähler metric. However, not all homologous Lagrangian submanifolds arise in this
way.
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Thus, a momentum map for the action of H on M 0 will be a map M 0 →Ω3
0(L). This

notation is somewhat imprecise since the submanifold L varies as we move within M 0.
We would really like to identify it with C∞(L0)/R for some fixed L0 in the homology class
we have chosen. However, this causes some issues which are also discussed in [1]. We
will ignore these rather subtle issues and continue to outline the main ideas.

Just as we used the Kähler form to construct a momentum map for the B-side story,
here we want to use the holomorphic volume form. Recall that we normalised Ω so that∫

L Im Ω= 0.

Proposition 8.2.5. A momentum map for the action of H on M 0 is given by L 7→ Im Ω|L .

Proof. The moment mapµpairs with the Lie algebra C∞(L)/R via 〈µ,h〉 = ∫
L hIm Ω|L , for

h ∈C∞(L)/R. We will take a tangent vector to M 0 to consist of a single closed 1-form a,
even though the tangent space is Z 1(L)⊕Z 1(L). This is because one of these summands
represents infinitesimal deformations of the connection, which will not be affected. So
we pick a 1-form a ∈ Z 1(L) representing an infinitesimal deformation of L. That is, it
corresponds to a normal vector field v ∈ Γ(L, N L) via the Kähler form. The derivative of
〈µ,h〉 in the direction of v is just ∫

L
Lv (hIm Ω|L)

where L is the Lie derivative. We extend h to an open neighbourhood L ⊂ U ⊆ X such
that h is constant along the flow of v . This is possible since v is normal to L. As a result,
we get∫

L
Lv (hIm Ω|L) =

∫
L

0 · Im Ω|L +
∫

L
hLv Im Ω|L =

∫
L

h(d ◦ ιv + ιv ◦d)Im Ω|L =
∫

L
h(d ◦ ιv Im Ω|L)

using Cartan’s formula and the fact that Ω is closed. Integrating by parts, this is just

−
∫

L
dh ∧ ιv Im Ω|L =ϑ(dh, a) = (ιρ(h)ϑ)(a)

So now, we can once again carry out formal symplectic reduction. Can we complexify
the group H to get a group action of HC on M 0? It is clear that the complexified Lie al-
gebra should be C∞(L,C)/C. However, there appears to be no natural way to complexify
the group action, and so the analogy with a formal GIT quotient or formal Kempf-Ness
theorem seems to break down here. Nevertheless, we can perform the formal symplectic
reduction and find that M 0�H is the moduli space of special Lagrangian submanifolds
together with flat U(1)-connections, since Im Ω|L = 0 is precisely the special Lagrangian
condition for the set M 0 (whose elements are already Lagrangian).

At the infinitesimal level, the analogy is also very tantalising. Mirror symmetry relates
the Ext•-groups to the Lagrangian-Floer cohomology groups. Presently, Ext1(E ,E) ∼=
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H 1(X ,End(E)) and HF 1(L,L) ∼= H 1(L,C) (modulo the technicality of taking coefficients
in the Novikov field). These are precisely the tangent spaces of the respectively mod-
uli spaces, which is another hint that there may be truth behind the analogy presented
above.

The B-side story had a very nice feature: the Kobayashi-Hitchin correspondence. Un-
fortunately, the lack of a formal GIT quotient picture for the A-side story does not allow
for a direct analogy with this. However, an initial version of the Thomas-Yau conjec-
ture may now be informally understood as follows (meaning: this is not how Thomas
formulated the conjecture).

Conjecture 8.2.6 (Thomas). There exists a condition on M 0, say a stability condition,
such that (L, A) is stable if and only if (L, A) has a unique special Lagrangian representa-
tive in its orbit under H .

The stability condition in the above conjecture should play the same role as the sta-
bility of holomorphic vector bundles, which ensures that a given connection ∇ on E has
a unique HYM representative in its gauge orbit. In fact, Thomas proposed a stability
condition on M 0, which leads to the actual conjecture as it is presented in [1]. Before
we get there, we first discuss the evidence for the conjecture presented in loc. cit., which
will also introduce the necessary definitions that are needed to understand Thomas’s
initial definition of stability for A-branes.

8.3 Wall-Crossing

We return to the B-side picture of holomorphic bundles on a Calabi-Yau threefold (X , g ).
From both physical considerations (BPS states) and mathematical considerations (enu-
merative invariants), it is interesting to consider the moduli space of semi-stable coher-
ent sheaves on X of some fixed Chern character. Looking at the smooth manifold X ,
there are many choices of complex structure (provided X is not rigid), and these change
which sheaves are the coherent ones. Furthermore, we can let the Kähler form vary, and
this would change which coherent sheaves are stable, since stability is defined using the
Kähler class. In his thesis, Thomas proves that the invariant which bears his name is in
fact invariant under the former.

Theorem 8.3.1. [14] The Donaldson-Thomas invariant DTη(X ) is invariant under com-
plex deformations of X .

This result justifies the moniker "invariant". However, the Kähler deformations do
not have this convenient property. Consider some fixed coherent sheaf E over X . It may
happen that we choose a 1-parameter family of Kähler formsωt :R→Ω2(X ) such that E
is stable if t > 0, semi-stable if t = 0 and unstable if t < 0.
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Example 30. [1] Suppose we have two coherent sheaves Ei with Ext1(E2,E1) ∼=
C. Then there exists a unique non-trivial extension (up to scaling), since these are
classified by Ext1(E2,E1). So define E by

0 → E1 → E → E2 → 0

Suppose furthermore that we can choose a 1-parameter family ωt of Kähler forms
with the property that ∆t := µt (E2)−µt (E1) : R→Q is such that the sign of ∆t agrees
with the sign of t for all t ∈ (−ε,ε).4 Furthermore, suppose that the Ei are stable w.r.t.
ωt for t ∈ (−ε,ε). Then E will be stable w.r.t. ωt for sufficiently small t > 0, but un-
stable for t < 0. To see this, we fix µt (E2) :=µ, and let µt (E1) =µ− t , for convenience.
Because of the injection E1 ,−→ E , it is then immediate that E is no longer stable for
t ≤ 0, because µt≤0(E1) ≥µt≤0(E). However, let t > 0 be sufficiently small. Stability of
E2 implies there are no subsheaves F ⊂ E2 with µt (F ) > µ− t . Suppose that F ⊂ E is
a stable destabilising subsheaf, meaning µt (F ) ≥ µt (E), but F itself is stable. Then
the composition F ,−→ E → E2 cannot be an injection, unless it is an isomorphism.
Since the extension above does not split by virtue of the fact that the extension is
defined by a non-trivial element of Ext1(E2,E1), it cannot be an isomorphism. We
conclude that F ∩E1 ̸= 0. The quotient does define an injection F/(F ∩E1) ,−→ E2.
We get µt (F/(F ∩E1)) > µt (F ) > µ− t , following from the stability of F . This is a
contradiction, since E2 is stable. Therefore, E must be stable.

The example above demonstrates the so-called wall-crossing phenomenon. By vary-
ing the stability condition, stable objects may simply disappear when we cross certain
walls in the space of stabilitiy conditions. This can be made more precise, as we will see
later, using the notion of Bridgeland stability. The wall-crossing phenomenon is an ac-
tive area of research within the theory of Donaldson-Thomas invariants, see e.g. [96] or
[97].5

This is perhaps the first case in which the B-side picture is more difficult to describe
than the A-side picture. Before we outline how, we recall that the phase of a graded,
oriented Lagrangian submanifold L ⊂ X is defined as the function θ : L →R such that

Ω|L = exp(iθ)dVolg |L
We also define the average phase φ(L) ∈R as∫

L
Ω|L = A exp(iφ(L))

5It should be noted that these articles investigate the wall-crossing phenomenon for stability condi-
tions in the sense of Bridgeland. The stability of sheaves does not define a Bridgeland stability condition
on Calabi-Yau 3-folds. Nevertheless, there is a close relation.
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This is defined up to shifts φ(L) 7→ φ(L)+2πn for integers n. The slope of L, which will
be denoted µ(L) by analogy with the slope of a coherent sheaf, is defined as

µ(L) =
∫

L Im Ω∫
L Re Ω

= tan(φ(L))

The slope and the phase capture similar information, but the slope is invariant under
a change of orientation of L. This may seem like somewhat of a deficiency if we wish
to develop a close analogy to holomorphic vector bundles. However, since we are con-
sidering vector bundles on the B-side, rather than objects in the derived category, we
have thrown away the grading of the complexes in the derived category. As such, it is no
wonder that we lost some information by naively considering bundles only.

The starting point for wall-crossings on the A-side is the notion of a Lagrangian con-
nected sum. We consider two Lagrangian submanifolds L0,L1 ⊂ X such that L0 ∩L1 =
{x0}. In this case, one can use the Lagrangian connected sum L0 ↬ L1. The nota-
tion is meant to reflect the fact that this construction is asymmetric in its arguments:
L0 ↬ L1 ̸≈ L1 ↬ L0, where ≈ denotes being Hamiltonian isotopic, as we will now see.
Consider an embedding of the unit ball ι :Cn ⊃ B 2n ,−→ X such that the following hold:

1. ι(0) = x0

2. ι−1(L0) =Rn ∩B 2n ⊂Cn

3. ι−1(L1) = iRn ∩B 2n ⊂Cn

4. ι∗ω=αωstd for some α> 0

where ωstd is the standard symplectic form on Cn . This seems very restrictive, but this
is purely a statement about the differential geometric aspects of these Lagrangian sub-
manifolds so there are no holomorphicity requirements on the embedding B 2n → X . As
such, a variant on the Weinstein tubular neighbourhood theorem will guarantee the ex-
istence of such an embedding. Next, we take an embedding γ : R→ C which satisfies
γ(t ) = t for t ≤ −1/2, γ(t ) = i t for t ≥ 1/2 and γ(R)∩−γ(R) = ;. One may show that
H = ∪tγ(t )Sn−1 ⊂ Cn is a Lagrangian submanifold. By construction, H ∩ (Cn \ B 2n) =
(Rn ∪ iRn) \ B 2n . The plan is now clear: we define

L0 ↬ L1 = (L0 \ ι(B 2n))∪ (L1 \ ι(B 2n))∪ ι(H ∩B 2n)

This is a submanifold of X , and we call it the Lagrangian connected sum of L0 and L1.
This procedure may be illustrated as follows:
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R

iR

L0

L1

γ∩B 2

−γ∩B 2

R

iR

L0 ↬ L1

A different γ or ι will lead to a Hamiltonian isotopic submanifold, so for our purposes,
this is a good definition. We can already see that this connected sum is asymmetric. The
two options correspond to the two distinct ways of resolving the singularity of R∪iR⊂C
at the origin. For example, if we picture the above scenario as happening on the torus,
then the following two diagrams are not Hamiltonian isotopic:

R

iR

L0 ↬ L1

̸≈ R

iR

L1 ↬ L0

As abstract smooth manifolds, L0 ↬ L1 is obviously diffeomorphic to L1 ↬ L0 because
they are both the familiar connected sum L0#L1, which is symmetric (up to diffeomor-
phisms). However, in the ambient space X , the two may not be deformed into one an-
other by a Hamiltonian isotopy. This is the crucial difference.

Now we know how to construct the Lagrangian connected sum. But for our purposes,
Lagrangiangs also come with a grading. Hence, we need to perform a graded Lagrangian
connected sum. This is not always possible. In fact, rather remarkably, it is possible to
to give L0 ↬ L1 a grading which is compatible with the gradings on L0 and L1 if and only
if the intersection point {x0} = L0 ∩L1 has absolute Maslov index 1.

Proposition 8.3.2. [98] Suppose the intersection point x0 has absolute Maslov index 1.
Then there exists a grading on L0 ↬ L1 which agrees with that of L0 and L1 on the respec-
tive intersections (L0 ↬ L1)∩L0 and (L0 ↬ L1)∩L1.
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The converse is likewise true. Observe that this forces the Floer cohomology HF •(L0,L1)
to be concentrated purely in degree 1, i.e. HF •(L0,L1) = HF 1(L0,L1). It is suggested in
the references above that the graded connected sum should be the mirror analogue of
extensions of bundles, which are controlled by Ext1(E ,F ). Once again, this seems very
tantalising, since mirror symmetry relates these two cohomology groups.

In the same way that a bundle extension can cease to be stable, so too is there the
possibility that a Lagrangian connected sum (which we will always assume to be com-
patibly graded from now on) will cease to be stable as we vary the complex structure
on (X ,ω). This time, we can construct quite explicit examples of this wall-crossing phe-
nomenon occurring, due to Joyce [95], predicated on the so-called Lawlor neck. As per
the construction of the Lagrangian connected sum, we would like to find some special
Lagrangian submanifolds in Cn . To start with, we look for special Lagrangian planes
Rn ⊂Cn . We write such an embedding by specifying its angles, say

Πφ = {(exp(iφ1)x1, . . . ,exp(iφn)xn) | xi ∈R}

With respect to the standard holomorphic volume formΩ= d z1∧·· ·∧d zn , the phase is
given by

φ(Πφ) = arg
∫
Πφ
Ω=∑

k
φk

Naturally, we fix 0 ≤ φ1 < 2π and 0 ≤ φk < π for k > 1. Taking φ1 7→ φ1 +π reverses
the orientation, and we will denote by Π(π,0) the standard embedding Rn ⊂ Cn with its
orientation reversed. Now, suppose we have a transverse intersection Π(π,0) ∪Πα. In
particular, this forces φk > 0 for all k. We assume that φ(Π(π,0)) =φ(Πφ), which can hold
only if n > 1. In this case, the union of these Lagrangian planes may be viewed as the
limit of a family of special Lagrangian submanifolds of Cn . Smooth members of this
family are called Lawlor necks, and they can be described explicitly through equations.
Namely, define a rational function

P (x) =
∏n(1+ak x2)−1

x2

and a real number A. The latter is denoted as such because it will be the A appearing in∫
LΩ= A exp(iφ(L)). Then the a j in the above equation are uniquely determined by the

following constraints:

φk = ak

∫ ∞

−∞
d x

(1+ak x2)
p

P (x)
A = Vol(Sn)p

a1 . . . an

The reason we assumed that the phases of Π(π,0) and Πφ agree, is that these equations
have a solution if and only if

∑
φk =π. One may then define functions γk :R→C by

γk (y) = exp

(
i ak

∫ y

−∞
d x

(1+ak x2)
p

P (x)

)√
1

ak
+ y2
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This leads to the Lawlor neck, which is defined by the real constant A and the angles
{φk }. We write

L A,φ = {(γ1(y)x1, . . . ,γn(y)xn) | y, x1 . . . , xn ∈R,
∑

x2
k = 1}

Such a manifold is diffeomorphic to Sn−1 ×R. The xk are the spherical coordinates, and
the y is the R-coordinate.

Proposition 8.3.3 ([99]). L A,φ is a special Lagrangian submanifold of (Cn ,ωstd,Ωstd).

It is quite easy to picture what this family looks like, as A varies, for the case n = 2. We
get a cylinder which is squeezed as we approach the origin, and as A goes to 0, this shape
approaches the union of two cones, whose tips meet at the origin. Note, however, that
we should really imagine this as happening in C2 = R4. Viewed in this 4-dimensional
world, we asymptotically approach Π(π,0) as y →−∞, and Πφ as y →∞. As promised,
then, the union of the two linear subspaces may be viewed as the limit of this family.

Next, the idea is to use the above construction globally. That is, suppose (X ,ω) is
a Calabi-Yau manifold. Suppose we have two BPS A-branes L0,L1 on X , i.e. special
Lagrangians with flat line bundles, which intersect transversally in a point x0 ∈ X with
absolute Maslov index 1. After using some unitary transformation if necessary, we may
assume that Tx0 L0 = Π0 ⊂ Tx0 X ∼= Cn and Tx0 L1 = Πφ for some φ ∈ [0,2π)× [0,π)× ·· ·×
[0,π). Suppose we let the complex structure vary slightly over (−ε,ε), so that the phase
difference remains sufficiently small. We denote the fibre over t ∈ (−ε,ε) by X t .

Theorem 8.3.4 (Joyce). For all t ∈ (−ε,ε), there exists a special Lagrangian submanifold
L0 ↬ L1 ⊂ X t which is close6 to L0 ∪L1 if and only if φt (L1) ≤φt (L0).

The Lagrangian connected sum in the theorem above is constructed using the Lawlor
necks, and gluing them into the union L0 ∪L1 as the Lagrangian surgery procedure dic-
tates. Since the intersection point had index 1, the special Lagrangian L0 ↬ L1 further-
more has a grading which is compatible with those of L0 and L1 respectively.

Proposition 8.3.5. [1] In the above theorem, we may view the family of special Lagrangians
as a family of Lagrangian submanifolds in a fixed symplectic manifold. The special La-
grangians are special representatives for this family as the complex structure varies.

In the subsequent paper by Thomas and Yau, the following is proved.

Theorem 8.3.6. [2] Let L ⊂ X be an A-brane. Then there exists at most one (smooth)
special Lagrangian in the Hamiltonian deformation class of L.

This theorem is some remarkable evidence for a potential Kobayashi-Hitchin-like
correspondence, on the side of A-branes.

In summary: let Mc (X ) denote the complex moduli space of X . Locally, the holo-
morphic volume form Ω gives a coordinate in Mc (X ) via the period integrals. Suppose

6Formulating this statement precisely requires the theory of currents, from geometric measure theory.
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U ⊂Mc (X ) is such that the holomorphic volume form provides local coordinates. Let
L0 and L1 be special Lagrangian submanifolds of X . Define

U± = {Ω ∈U | ±(φΩ(L0)−φΩ(L1)+π) < 0}

Then for U−, there exists a special Lagrangian submanifold in the homology class [L0]+
[L1]. On the wall where φ1(L0) +π = φ(L1), this special Lagrangian degenerates to a
singular union of special Lagrangian, which are of the same phase (since we take the
phase to be modulo π). For U+, it disappears. This is the wall-crossing that happens
on the mirror side. By analogy, notice that on U− we have µ(L0) < µ(L1). On the wall,
we have µ(L0) = µ(L1), while µ(L0) > µ(L1) on U+. Naturally, the objects still exist as
Lagrangian submanifolds (or even as A-branes), but they are no longer special (or BPS
branes). In the same way, the bundle extension 30 continues to define a coherent sheaf,
even when it is no longer a (semi-)stable sheaf, i.e. when it no longer admits a HYM
connection. This HYM connection on the bundle side is the unique representative of its
gauge orbit, in the same way that the special Lagrangians are unique representatives of
orbits of Lagrangian submanifolds under the group of Hamiltonian deformations.

8.4 The Thomas-Yau Conjecture

The wall-crossing phenomenon motivates the following definition, found in [1]. Com-
pare to what happens in 30.

Definition 8.4.1. Let L0 and L1 be A-branes such that L0 ↬ L1 can be defined.7 Let
L be another A-brane. Then L is said to be destabilised by (L0,L1) if L ≈ L0 ↬ L1 and
φ(L0) ≥φ(L1). If no such pair exists, then L is said to be stable.

If the A-branes are mirror to some coherent sheaves, then the above is a very close
analogue for the stability of sheaves. Note, however, that we are using the phase φ(Li )
rather than the slope µ(Li ). They are closely related, but the phase can also detect
changes in the orientation of Li .

Given the above definition, the Thomas-Yau conjecture as it was originally formu-
lated is then an analogue of the Kobayashi-Hitchin correspondence, on the A-side of
mirror symmetry.

Conjecture 8.4.2. [Thomas [1]] Let L ⊂ X be an A-brane. Then there exists a special La-
grangian submanifold in the Hamiltonian deformation class of L if and only if L is stable.

In the cited source, Thomas demonstrates that this conjecture holds on elliptic curves.
Of course, an elliptic curveC/Λ is not a Calabi-Yau threefold. However, besides the moti-
vation from Donaldson-Thomas theory, most of the story can be carried over to Calabi-
Yau manifolds of any dimension, in which case the elliptic curve becomes the easiest

7We have not discussed the case in which there are multiple intersections, and we will not do so explic-
itly.
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example. In the follow-up paper [2], Thomas and Yau attempt to relate Thomas’s con-
jecture to the Lagrangian mean curvature flow.

Proposition 8.4.3. [2] Let (L,θ) be a graded Lagrangian submanifold of a Calabi-Yau
manifold. Then H⃗ = J∇θ.

The mean curvature flow of a submanifold Y of a Riemannian manifold (X , g ) is de-
fined to be the 1-parameter family of submanifolds Yt satisfying

d

d t

∣∣∣
t=t0

Yt = H⃗Yt0
Y0 = Y

A relatively messy proof reveals that in fact, on a Calabi-Yau manifold, the Lmcf exists,
in the sense that the evolution of a Lagrangian submanifold under this flow remains
Lagrangian. See [100]. Aside from the fact that the grading appears, it is not so clear how
this relates to the conjecture by Thomas. The answer is given in loc. cit., by the following
result, in which µ denotes the momentum map L 7→ Im Ω|L that we saw previously.

Proposition 8.4.4. [2] The gradient flow of −|µ|2 with respect to an appropriate metric on
Ω3

0(L) is the Lmcf. This metric is constructed from the volume form on L induced by g .

As such, it follows that d
d t θ =−∆θ under the Lmcf, and the range of θmust decrease in

time by the maximum principle. Of course, the smallest possible range is when θ is con-
stant, i.e. when L is special Lagrangian. With this in mind, the conjecture is rephrased
(in fact sharpened) into the following statement:

Conjecture 8.4.5 (The Thomas-Yau Conjecture [2]). Suppose that L ⊂ X is a stable La-
grangian submanifold. Then the Lmcf of L exists for all time, and it converges to the
unique special Lagrangian in the Hamiltonian isotopy class of L conjectured in 8.4.2.

The authors then work out an example for which the conjecture holds, namely a fam-
ily of affine quadrics. This is a non-compact manifold, and it is not quite Calabi-Yau.
However, it is sufficiently close to being Ricci flat that the Lmcf has similar behaviour,
and so the fact that the conjecture holds for this example is a good indication that the
underlying philosophy is correct, even if the conjecture as it is stated does not turn out
to be true.

We should note that according to e.g. [12], the Thomas-Yau conjecture as stated
above is very unlikely to be true, but mostly for technical reasons, namely the long time
existence of solutions to the mean curvature flow. He then outlines how to modify the
conjecture within the framework of Bridgeland stability, to incorporate the singularities
which a Lagrangian submanifold may develop under the mean curvature flow. See also
[101] for a recent re-interpretation of the Thomas-Yau conjecture, which is less ambi-
tious than the proposal by Joyce (which we will discuss later).
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8.5 Example: The Elliptic Curve

The simplicity of elliptic curves allows us to write everything down explicitly, so let us do
that. We remind the reader that we discussed the Fukaya category of the elliptic curve in
4.4. The upshot was as follows: every object in the Fukaya category can be represented
by a geodesic, together with a flat unitary line bundle on it. This data is specified com-
pletely by three numbers, so we denote the corresponding object by L(y0,k,β). Here, y0 is
the y-intercept of the geodesic, lifted to C, and k is its slope (although we should really
consider its lift to a grading α). The flat connection ∇ is defined by ∇= d −2πiβd x.

Firstly, identifying special Lagrangian submanifolds is easy. They are geodesics. The
slope µ(Lγ) = k is going to have a nice geometric interpretation in this example. Namely,
we consider the pullback:

γ∗Ω= A(d t + i kd t )

Write A(1+ i k) = r exp(−iθ). Then we can see that exp(iθ)Ω|Lγ = r d t , implying that Lγ
is indeed special Lagrangian of phase θ. As such, the slope is give by µ(Lγ) = tan(θ) = k,
which is precisely the slope of the line γ :R→C.

Recall also from 4.4 that the graded Lagrangian submanifolds are those which are
homotopically non-trivial. The intuition is clear, then. The Thomas-Yau conjecture
suggests that the Lmcf for homotopically non-trivial Lagrangians should converge to
straight lines with rational slope. This is in fact a known result within geometric mea-
sure theory, see [102], which predates the inception of mirror symmetry.

Theorem 8.5.1. The mean curvature flow of a homotopically non-trivial curve on a Rie-
mannian 2-manifold converges to a geodesic.

In this case, the Lmcf is known as a curve-shortening flow. This tells us that every
graded Lagrangian submanifold will converge to a line with rational slope, which is a
special Lagrangian submanifold. Hence, the Thomas-Yau conjecture additionally as-
serts that every graded Lagrangian submanifold in C/Λ is stable. This is also the case, as
we now explain.

Suppose that (L,θ) is an unstable Lagrangian. By definition, this means that L ≈ L0 ↬
L1 for two graded Lagrangians (Li ,θi ), with φ(L0) ≥φ(L1). Using a Hamiltonian isotopy,
we may as well assume that the Li are special Lagrangian. For concreteness, takeφ(L0) =
3π/4 and φ(L1) = π/4. Then it is not even possible to form the graded connected sum,
because the grading would become discontinuous. Instead, we have to first reverse the
orientation on, say, L0 so that we can form the graded connected sum L0[1] ↬ L1, but
now we haveφ(L0) =−π/4 <π/4 =φ(L1) and so this does not destabilise (L,θ) anymore.
In conclusion, it is impossible for a Lagrangian submanifold of C/Λ to be unstable. To
see this pictorially, we use the following diagram:
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iR

R

L1

L0

iR

R

L0 ↬ L1

This is the torus viewed as a square, with the usual identifications. The directions of
the arrows indicate the phase of the special Lagrangian submanifolds. Notice, then, the
impossibility of the diagram on the right hand side. The arrows which result from the
connected sum point in opposite direction, and so as we approach the point at which
the intersection was resolved, we necessarily get a discontinuity in the phase, arising
from a mismatch between the orientations. Instead, we need to take the shifted special
Lagrangian L0[1], reversing the orientation on L0, which results in the following diagram:

iR

R

L1

L0

iR

R

L0 ↬ L1

This time, the phases align in the right way, as can be seen by following the arrows, so
that we can in fact form the connected sum L0[1] ↬ L1 without issues. The same argu-
ment applies wheneverφ(L0) ≥φ(L1), and so it is not possible for a Lagrangian subman-
ifold of C/Λ to be unstable. This proves the Thomas-Yau conjecture for the 2-torus, as
was already noted by Thomas in his original paper.

Bearing in mind mirror symmetry for the elliptic curve, we could say that the dia-
grams we drew above really do represent sheaves, and their extensions. For example,
the special Lagrangian with y0 = 0 and k = 1 corresponds to O(p0). The special La-
grangian with y0 = 0 and k = 0 corresponds to OX =O, the structure sheaf. Moreover,
we can concretely relate the Lagrangian connected sum to bundle extensions. To do this,
we calculate Ext1(O(p0),O). By Serre duality, this is Ext0(O,O(p0))∗ = Hom(O,O(p0)) =
H 0(X ,O(p0))∗ ∼=C, sinceO(p0) has degree 1. Therefore, there exists a unique non-trivial
extension E . Pictorially, this extension corresponds to the Lagrangian connected sum
(notice that the resulting slope of L0 ↬ L1 is not integer, which is why it corresponds to
a higher rank bundle):
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iR

R

L1

L0

O⊕O(p0)

iR

R

L0 ↬ L1

0 →O→ E →O(p0) → 0

Notice that µ(L(y0,k,β)) = k = deg(L(y0,k,β)) = µ(L(y0,k,β)). For the given example, we
furthermore have deg(E) = 1, so µ(E) = 1/2 = µ(L0 ↬ L1). This is a general feature: the
slopes are invariant under mirror symmetry. This is non-trivial, because a priori, ho-
mological symmetry only knows about symplectic data on the A-side, not the holomor-
phic volume form which defines the notion of stability. Likewise, the B-side does not
know about the Kähler structure which defines the notion of stability for sheaves. This
is another indication that there really is more to the story than just homological mirror
symmetry.

8.6 Example: Cohomogeneity one Lagrangian submani-
folds in T 2n

If we want to do any sort of explicit calculations, then we need to know an explicit ex-
pression for the Calabi-Yau metric. The only compact Calabi-Yau manifolds for which
such metrics are known, are flat tori. Thus, we either need to work with non-compact
Calabi-Yau manifolds, or the flat torus (Cn/Λ, g ) where Λ is the lattice generated by the
standard (real) basis for Cn . In this section, we will prove a Thomas-Yau-type result for
Lagrangian submanifolds with a large symmetry group. These are known as cohomo-
geneity one Lagrangian submanifolds in the literature. Imposing these restrictions on
the symmetry group greatly simplifies the problem to the case of the Thomas-Yau con-
jecture on a 2-torus.

So we take (Cn/Λ, g ), where the metric is the induced flat metric which we write in
coordinates (x1, . . . , xn , y1, . . . , yn) as

g =∑
i

d xi ⊗d xi +∑
i

d y i ⊗d y i

Naturally we may view Cn/Λ as T 2n = S1×·· ·×S1. We will consider an action of T n−1 on
T 2n such that the total space becomes a principal T n−1-bundle π : T 2n → T n+1. Then we
will restrict our attention to submanifolds L ⊂ T 2n which are invariant under this T n−1

action. We will denote k = n −1. If L is a T k -invariant submanifold in T 2n , then π(L) ⊂
T k+2 must be a curve. We will assume that L is closed, so that π(L) is a closed curve.
Conversely, every closed curve γ : I → T k+2 determines a T k -invariant submanifold in
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T 2n by Lγ :=π−1(γ), where we also denote by γ the image of γ. Thus, we have a bijective
correspondence between closed curves in T k+2, and closed T k -invariant submanifolds
in T 2n . We denote the submanifolds associated to a closed curve γ by Lγ, so π(Lγ) = γ.
Clearly, each Lγ is a (k + 1)-torus as an abstract smooth manifold. We will denote the
coordinates on the base of the principal T k -bundle by {p i } ⊂ {x1, . . . , xn , y1, . . . , yn}, and
the coordinates on the fibre by {q i }, i.e. {q i } = {x1, . . . , xn , y1, . . . , yn} \ {p i }.

Proposition 8.6.1. The mean curvature flow of Lγ coincides with the preimage of the
mean curvature flow of γ.

Proof. We assume that γ is parameterised by arc-length, and we denote by γ̇ the deriva-
tive with respect to arc-length. We also fix a global orthonormal frame {ei } for T n , namely

{
∂

∂p1
, . . . ,

∂

∂pk+2
,
∂

∂q1
, . . . ,

∂

∂qk
} = {ei }

Then we compute
∇γ̇γ̇=∇γ̇i ei

(γ̇ j e j ) = γ̈+ γ̇i γ̇ j∇ei e j = γ̈
since ∇ei e j = Γk

i j ek , and the connection coefficients vanish for the flat metric. In fact,

γ̇i = 0 whenever i > k +2, because the curve lies in the base space T k+2.

Now, the mean curvature of Lγ is the normal projection of(
2n∑

j=k+3
∇e j e j

)
+∇γ̇γ̇

Immediately, the sum drops out because ∇e j e j = 0 for the flat metric. Since γ̈ j = 0 when-
ever j > k +2, and 〈γ̇, γ̈〉 = 0 the normal projection becomes

γ̈−〈γ̇, γ̈〉γ̇− ∑
j>k+2

〈e j , γ̈〉e j = γ̈

where we used that {γ̇}∪ {e j } j>k+2 is a global frame for Lγ. It follows that the mean cur-
vature of Lγ at a point in π−1(γ(t )) is just γ̈(t ). It is clear, then, that the mean curvature
flow will preserve T k -invariance, so the time evolution of Lγ along the mean curvature
flow will be of the form Lγs for some 1-parameter family of curves γs . Such a Lγs is a
solution to the mean curvature flow if and only if

∂Lγs

∂s
= γ̈s

Thus, we see that the mean curvature flow of Lγ is Lγs where γs is the curve shortening
flow (i.e. 1-dimensional mean curvature flow) of the curve γ in T k+2.

The Thomas-Yau conjecture for T k -invariant Lagrangians may then be reduced to
studying the curve shortening flow. Thus, we are very close to the Thomas-Yau conjec-
ture on T 2. The difference is that the curve shortening flow for space curves, rather than
planar curves, is not as easy to study. Hence, we would like to show the following.
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Proposition 8.6.2. Let γ : I → T k+2 be a closed curve. Then Lγ is a Lagrangian submani-
fold of T n only if γ is contained in a 2-torus.8

Proof. Suppose that we have a pair (xi , y i ) of coordinates such that one of the following
holds:

1. Both xi and y i are coordinates for the fibre.

2. One of the coordinates is a coordinate for the fibre, and γ has non-zero derivative
along the other coordinate.

In either of these cases, Lγ cannot be a Lagrangian submanifold. Indeed, since the mod-
ule Ω2(Lγ) is free:

1. We may complete d xi ∧d y i to a basis for Ω2(Lγ). Hence, ω|Lγ ̸= 0.

2. We may complete d t ∧d xi and d t ∧d y i to a basis forΩ2(Lγ). Thenω|Lγ expressed
as a linear combination of the basis elements contains the terms

πyi (γ̇)d xi ∧d t +πxi (γ̇)d t ∧d y i

implying that ω|Lγ ̸= 0. We denoted by πyi and πxi the projection onto the respec-
tive components of the vector γ̇.

As such, neither of these two scenarios can occur if Lγ is Lagrangian. But this means we
need to make k choices out of k +1 pairs (x1, y1), . . . , (xn , yn), which will be the coordi-
nates of the fibres. Once a pair has been chosen, we choose one of the two coordinates
to be along the fibre. The derivative of γ in the direction of the other coordinate is nec-
essarily zero, by the above observation. We are left with a single pair, say (x j , y j ). Since
we had to take πxi (γ̇) =πyi (γ̇) = 0 for i ̸= j , we find

ω|Lγ =πx j (γ̇)πy j (γ̇)d t ∧d t = 0

Therefore, γ is unconstrained in the (x j , y j )-plane, but it cannot move in any other di-
rection. Thus, γ is contained in a 2-torus.

This reduces the study of the mean curvature flow of T k -invariant Lagrangians, to the
mean curvature flow of curves on T 2, which is well-understood. It remains to identify
which of the T k -invariant Lagrangians can be graded. Since the mean curvature can
also be given as H = J d̃θ it follows that θ̇ = κ, where κ is the curvature of γ in the (x j , y j )-
plane.

Proposition 8.6.3. The T k -invariant Lagrangian Lγ can be graded if and only if
∫
γκ= 0.

8By which we mean: the image of a real affine plane V ⊂ Cn under the projection to T 2n , which is
diffeomorphic to T 2.
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Proof. Let [ dθ
2π ] denote the cohomology class of dθ

2π in H 1(Lγ,Z). Since Lγ is topologi-
cally a (k +1)-torus, a basis for its first homology is given by by the cycles α,β1, . . . ,βk ∈
H1(Lγ,Z), where we choose α = [γ] and β j the class of the circle which is defined by
the fibre coordinate q j on T k . We see that

∫
β j

dθ = 0 since θ is constant along the q j -

coordinate by T k -invariance. Furthermore,

1

2π

∫
α

dθ = 1

2π

∫
γ

dθ = 1

2π

∫
γ
κ

Therefore, [ dθ
2π ] = 0 if and only if

∫
γκ= 0, which proves the result.

Corollary 8.6.4. The T k -invariant Lagrangian Lγ can be graded if and only if γ is homo-
topically non-trivial in T k+2.

Proof. If γ is a homotopically trivial closed loop in T k+2, then
∫
γκ=±2π. Conversely, if

γ is homotopically non-trivial, then
∫
γκ= 0.

Putting it all together:

Theorem 8.6.5. Let π : T 2n → T k+2 be the trivial principal T k -bundle over T k+2. Let L be
a graded, closed, T k -invariant Lagrangian submanifold of T 2n . Then L =π−1(γ) := Lγ for
some homotopically non-trivial closed curve γ : I → T k+2, such that γ is contained in a
2-torus in T k+2. Furthermore, Lγ converges under the mean curvature flow to Lγ0 , where
γ0 is the geodesic (i.e. straight line) in the flat 2-torus to which γ converges under the curve
shortening flow.

Proof. The only statements which we have not yet discussed is that Lγ0 is in fact a special
Lagrangian submanifold. Consider θ ∈ [0,2π) such that(

Im exp(−iθ)Ω|Lγ0

)
γ0(0)

= 0

Since the derivative of γ0 along x j and y j is constant, this implies that the same num-
ber θ suffices along all of γ. Consequently, T k -invariance of the holomorphic volume
form Ω = d z1 ∧ ·· · ∧d zn implies that the same constant suffices on all of Lγ0 , so that
Im exp(−iθ)Ω|Lγ0

= 0, whence Lγ0 is a special Lagrangian submanifold.

A natural question arises: which homology classes may be represented by such T k -
invariant Lagrangians? The answer is as follows. In 8.6.2, we outlined the possible
choices that one can make for the fibre coordinates, which leaves the curveγ constrained
to some plane with coordinates (x j , y j ). We can then choose for γ to wind either of these
two directions as well. As a result, we may obtain 2k+1 out of

(2k+2
k+1

) = dimRHn(T 2n ,R)

generators as T k -invariant Lagrangian submanifolds.9 In other words, the theorem be-
comes increasingly less relevant as n increases. For example, for k = 1,2,3 we have:

9Note: not all of these are T k -invariant with respect to the same T k -action. We get 2 generators for
each possible choice of symplectic T k -action on T 2n .
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1. 4 out of 6 generators

2. 8 out of 20 generators

3. 16 out of 70 generators

The trend is clear. More generally, there are

(2n)!

(n!)2
−2n

generators for the homology of T 2n which do not admit a T k -invariant Lagrangian rep-
resentative. Nevertheless, we have shown the following result, since every T k -invariant
Lagrangian submanifold converges to a special Lagrangian submanifold in T 2n .

Corollary 8.6.6. The Thomas-Yau conjecture holds for T k -invariant Lagrangians in the
trivial T k -bundle over T k+2, with respect to T k -invariant Hamiltonian isotopies.

Proof. When we restrict our attention to T k -invariant Hamiltonian isotopies, the prob-
lem once again reduces to the Thomas-Yau conjecture on the 2-torus, which we already
know to be true.

In essence, the entirety of this argument boils down to the fact that the Thomas-Yau
conjecture is known to hold on the 2-torus. Suppose that we know that the Thomas-
Yau conjecture holds on some Calabi-Yau manifold Y . Then we are naturally led to the
following.

Theorem 8.6.7. If the Thomas-Yau conjecture holds on Y , then it holds for T k -invariant
Lagrangians in X =Y ×Ck /Λ, where T k acts symplectically on Ck /Λ.

We denote by π1 :X →Y and π2 :X →Ck /Λ the natural projection maps.

Proof. Suppose that N ⊂ Y is a Lagrangian submanifold. Then L = N ×T k ⊂ X , the T k -
invariant lift of N , is a Lagrangian submanifold, since TxL = Tπ1(x)L ⊕Tπ2(x)T k , and X
is equipped with the symplectic structure of the product Y ×T 2k . Similarly, the mean
curvature vector of L in X is the T k -invariant lift of H⃗N ∈ Γ(Y ,T N⊥) to a section of
Γ(L,T L⊥) ⊂ Γ(L,T X |L). This is because the product metric on X is flat along the fibres of
π2. Therefore, the mean curvature flow of L is the T k -invariant lift of the mean curvature
flow of N . Now, by assumption, the Thomas-Yau conjecture holds on Y , so supposing
that N is stable, let Nt be a family of Lagrangians converging to N∞ ⊂ Y under the mean
curvature flow, with N∞ special Lagrangian. Let Lt be the T k -invariant lift of Nt . Then
Lt is also a family of Lagrangian submanifolds. We claim that L∞ is special Lagrangian.
Indeed, the holomorphic volume form on X is π∗

1Ω1∧π∗
2Ω2, whereΩ j are the holomor-

phic volume forms on Y and Ck /Λ respectively. Then it is easy to verify that e−iθΩ|L = 0,
where θ = θ1+θ2 with θ1 the Lagrangian angle of π1(L∞) in Y , and θ2 the Lagrangian an-
gle ofπ2(L∞) inCk /Λ. It follows that L is stable w.r.t. T k -invariant Hamiltonian isotopies
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if and only if L converges to a T k -invariant special Lagrangian submanifold under the
mean curvature flow. Hence, the T k -invariant Thomas-Yau conjecture holds on X .

For example, in [9] an S1-invariant version of the Thomas-Yau conjecture is shown
to hold on hyper-Kähler manifolds which arise through the Gibbons-Hawking ansatz.
Whilst these are non-compact manifolds, it has been shown that the Ooguri-Vafa metric
(which belongs to this class of metrics) is a very close approximation to the local model
of a Ricci flat Kähler metric on an elliptic K 3 surface (see [103]). We get the following
corollary:

Corollary 8.6.8. Let X be an elliptic K 3 surface with the Ooguri-Vafa metric. Then the
Thomas-Yau conjecture holds for T 2-invariant Lagrangians in X ×C/Λ, where we have
an S1-action on C/Λ and a (local) S1-action on X , as per the Gibbons-Hawking ansatz.

8.7 Example: Lagrangian fibrations of CPn

As noted, restricting our attention to Calabi-Yau manifolds poses a major problem: we
do not know of any Calabi-Yau metrics on compact Calabi-Yau manifolds. As such, what
we have instead opted to do here, is to investigate the behaviour of the Lagrangian fibra-
tion defined by the standard T n-action on CPn , under the mean curvature flow. These
prototypical Kähler-Einstein manifolds are Fano varieties, and so there exists a version
of mirror symmetry for them. In fact, one may define the notion of a special Lagrangian
submanifold of a Fano variety, after making a choice of anti-canonical divisor D . Indeed,
since the anti-canonical bundle of a Fano variety is, by definition, positive, there exists a
section s ∈ H 0(X ,O(D)) which vanishes precisely along the divisor D . Hence, there is a
dual section Ω ∈Ωn

X (X \ D), which is nowhere vanishing on X \ D , which makes X \ D a
non-compact Calabi-Yau manifold.

Definition 8.7.1. Let (X ,D) be a Fano variety with an anti-canonical divisor D . A special
Lagrangian submanifold of (X ,D) a is a special Lagrangian submanifold L of X \ D .

We can also construct a category of A-branes and a category of B-branes for topolog-
ically twisted string theories compactified on Fano varieties. The category of A-branes
will again contain Lagrangian submanifolds, possibly with additional restrictions im-
posed. However, we must note that special Lagrangian submanifolds in a Fano variety
do not enjoy the same properties as special Lagrangian submanifolds of a Calabi-Yau
variety. Indeed, when X is Calabi-Yau, the closed n-form Re Ω is a calibration, which
means that special Lagrangian submanifolds are volume minimising. When X is Fano,
the closed n-form Re Ω ∈Ω1(X \D) is not a calibration with respect to the pullback met-
ric, and so these special Lagrangian submanifolds are not volume minimising. For more
on mirror symmetry for Fano varieties (and their mirror Landau-Ginzburg models), we
refer to [104, 10].

We will consider the Fano variety CPn with its Fubini-Study metric. This is a toric
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symplectic manifold, meaning it carries a Hamiltonian T n-action CPn ×T n → CPn de-
fined by

([z0 : · · · : zn], (e iθ1 , . . . ,e iθn )) 7→ [z0 : z1e iθ1 : · · · : zne iθn ]

The corresponding momentum map will be denoted µ : CPn → (u(1)∗)n ∼= Rn and is
given by

µ : [z0 : · · · : zn] 7→ 1

|z|2 (|z1|2, . . . , |zn |2)

By the Delzant theorem, the image ofµ is a convex polytope, called the Delzant polytope.
For our chosen momentum map, this is the standard polytope corresponding to the
unit basis vectors and the origin. We denote this polytope by ∆. The boundary divisor
D ⊂CPn is defined as D =µ−1(∂∆), which is the set

D = {[z0 : · · · : zn] ∈CPn | z0 . . . zn = 0}

This is an anti-canonical divisor, and a holomorphic volume form on CPn \D is given by
Ω= d log z1 ∧·· ·∧d log zn , in local coordinates z0 ̸= 0.

Proposition 8.7.2. The Lagrangian fibres of the momentum map µ :CPn →∆ are special
Lagrangian in CPn \ D.

Proof. The fibres of µ are the orbits of the T n-action. In CPn \ D ∼= (C×)n , we can take
coordinates (z1, . . . , zn) and write the action as

((z1, . . . , zn), (e iθ1 , . . . ,e iθn )) 7→ (z1e iθ1 , . . . , zne iθn )

Therefore, the orbits are products of circles LR = S1
R1
×·· ·×S1

Rn
, where R = (|z1|, . . . , |zn |) ∈

Rn . Then we can compute the phase of Ω on LR , as follows. Evidently, Ω = 1
z1...zn

d z1 ∧
·· ·∧d zn . Take radial coordinates zk = rk e iθk . Then d zk = e iθk drk + i rk e iθk dθk . Pulling
back to LR gives d zk |LR = i rk e iθk dθk . Therefore,

Ω|LR = i nr1 . . .rne i (θ1+···+θn )

r1 . . .rne i (θ1+···+θn )
dθ1 ∧·· ·∧dθn = i ndθ1 ∧·· ·∧dθn

It follows that LR is special Lagrangian of phase nπ/2 w.r.t. Ω.

As previously noted, the reader should not be under the misapprehension that these
fibres of the momentum map are volume minimising. In fact, let us consider the case
CP1 ∼= S2 first, to see what is going on. In this case, the Delzant polytope is the unit inter-
val ∆= [0,1]. We have µ−1((0,1)) ∼= C×, and the individual fibres are the circles centered
at the origin. We can identify these with the fibres of the height function R3 ⊃ S2 → R

sending (x1, x2, x3) 7→ x3. In particular, the fibre of 1/2 ∈ (0,1) is the equator of S2, which
is volume maximising. It is also clear what the behaviour of these fibres will be under
the mean curvature flow. If x3 < 0, it will flow towards the south pole. If x3 > 0 it will flow
towards the north pole. The equator, i.e. x3 = 0, remains stationary under the flow. As
we will see, this behaviour generalises in the obvious way to higher dimensions.
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The idea is as follows. The manifold CPn is obtained as the Kähler reduction of Cn+1

with its standard S1-action. Therefore, any compact Lagrangian L ⊂ CPn may be lifted
to a compact Lagrangian L̃ ⊂Cn+1. Since Cn+1 is Calabi-Yau, we may compute the mean
curvature vector of L̃ from its Lagrangian angle. This is a section of L̃ ×Cn+1 ⊂ TCn+1.
We may then project to T S2n+1 using a normal vector field, and this is essentially the the
mean curvature vector of L, since the resulting projection will be S1-invariant.

Given R ∈Rn
>0, we will consider

LR = {[1 : R1e iθ1 : · · · : Rne iθn ] ∈CPn | θ ∈ [0,2π)n}

After reparameterising, this lifts to a Lagrangian submanifold L̃R ⊂ S2n+1 given by

L̃R = {
1p

1+R2
(e iθ0 ,R1e iθ1 , . . . ,Rne iθn ) | θ ∈ [0,2π)n+1}

So we want to know the Lagrangian angle of Lagrangian submanifolds L which are prod-
ucts of circles of some given radius. It will be convenient to work in radial coordinates
(r0,θ0, . . . ,rn ,θn), i.e. zk = rk e iθk . The standard holomorphic volume form on Cn then
restricts to L as

Ω|L = i n+1r0 . . .rne i (θ0+···+θn )dθ0 ∧·· ·∧dθn

On the other hand, using the obvious orthonormal frame for the normal bundle N L w.r.t.
the Euclidean metric, we see that the induced volume form of the metric on L is

volL = r0 . . .rndθ0 ∧·· ·∧dθn

As such, the Lagrangian angle of L is given by θ0 + ·· · + θn + (n + 1)π/2, so the mean
curvature 1-form is H = dθ0 + ·· · +dθn . The symplectic form in radial coordinates is
given by

ω= r0dr0 ∧dθ0 +·· ·+ rndrn ∧dθn

The mean curvature vector H⃗ is related to the mean curvature 1-form H by H = −ιH⃗ω,
so it is clear that

H⃗ =− 1

r0
∂r0 −·· ·− 1

rn
∂rn

A unit normal vector field to S2n+1 is given by n⃗ = r0∂r0+·· ·+rn∂rn . The Euclidean metric
is

dr 2
0 +·· ·+dr 2

n + r 2
0 dθ2

0 +·· ·+ r 2
ndθ2

n

so we have 〈∂r j ,∂rk 〉 = δ j k . Hence, we find 〈H⃗ , n⃗〉n⃗ =−(n +1)n⃗, implying that

H⃗ −〈H⃗ , n⃗〉n⃗ = ((n +1)r0 − 1

r0
)∂r0 +·· ·+ ((n +1)rn − 1

rn
)∂rn

which is the mean curvature vector of L ⊂ S2n+1. Since this depends only on the rk

coordinates, it induces a vector field on the Delzant polytope ∆ by dµ(π∗H⃗), where
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we denote by µ : CPn → ∆ the momentum map and π : S2n+1 → CPn is the projection
(z0, . . . , zn) 7→ [z0 : · · · : zn]. Equivalently, this is d µ̃(H⃗), where µ̃ : S2n+1 → Rn is the obvi-
ous lift of µ to Cn+1, defined by

µ̃(z0, . . . , zn) = 1

|z|2 (|z1|2, . . . , |zn |2) = 1

r 2
(r 2

1 , . . . ,r 2
n)

The resulting vector field on ∆, whose coordinates are xk = r 2
k , is then

d µ̃(H⃗) = (2(n +1)x1 −2)∂1 +·· ·+ (2(n +1)xn −2)∂n

Clearly, the flow has a stationary point at the barycentre of the polytope, whose fibre
corresponds to the Clifford torus in CPn . All the other points flow radially outwards, see
the cases ofCP2 andCP1×CP1 in the images below. The red outline denotes the Delzant
polytope, which is [0,1]× [0,1] for CP1 ×CP1.

Figure 8.1: The flow on the Delzant polytope ofCP2 induced by the mean curvature flow.

Figure 8.2: The flow on the Delzant polytope ofCP1×CP1 induced by the mean curvature
flow.
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In [11], a different method is used to show a much stronger result. The authors show
the following. The main ingredient that goes into this, which we have not touched upon,
is a potential function for the Kähler form/metric, denoted here by u.

Theorem 8.7.3 ([11]). Let (X ,ω, g ,µ) be a toric Kähler manifold, and give the Delzant
polytope ∆ the pushforward metric g∆ (which is possible because of T n-invariance). The
mean curvature of the Lagrangian orbits can be written as H = −∇ logV , where V =
det(Hess(u))−1/2, with u : ∆→ R a potential for g∆. Given x ∈ int(∆), one has µ(Lt ) = xt

and {xt } is a solution of the negative g∆-gradient flow of logV , starting at x.

This naturally leads one to wonder: can the argument be adapted to say something
about the mean curvature flow of the fibres of an almost toric Calabi-Yau manifold (i.e.
T 4 or a K 3 surface)?

Definition 8.7.4. An almost toric 4-manifold is a Lagrangian fibration of a symplectic
4-manifold such that every critical point of the fibration is an elliptic or a focus-focus
singularity.

Neither T 4 nor a K 3 are themselves toric manifolds, but they are almost toric Käh-
ler manifolds, see [105]. They are the only Calabi-Yau almost toric manifolds. In their
classification, the authors show that any Lagrangian fibration which renders T 4 an al-
most toric manifold turns T 4 into a principal T 2-bundle, via the angle coordinates of
the Liouville-Arnold theorem. As such, they are cohomogeneity one Lagrangian sub-
manifolds for an S1-action on T 4, which means we have the following corollary to 8.6.5,
telling us that the answer to the above question is negative for T 4 (and thus likely also
for K 3 surfaces).

Corollary 8.7.5. Let T 4 be given the structure of an almost toric manifold. Then the mean
curvature flow does not preserve the fibration, unless it is a special Lagrangian fibration.

Indeed, this is the expected result in light of the Thomas-Yau conjecture; if we have
a Lagrangian fibration, then each of the fibres should converge to a special Lagrangian
submanifold. There is no reason for this special Lagrangian to be a fibre in the fibration,
and so the mean curvature flow will not preserve the fibration. It is interesting that the
toric case differs so much from the almost toric case, in this regard.

Notice that the theorem from [11] applies to toric Kähler manifolds in complete gen-
erality, the corresponding T n-invariant Kähler metric need not even be Kähler-Einstein.
For example the first Hirzebruch surface H1 is a blow-up of CP2 in a point. It has been
shown in [106] that such a complex surface does not admit a Kähler-Einstein metric.
This is very closely related to a notion of stability, just as for the Hermitian-Yang-Mills
equation. Using the results from the paper, we can calculate the mean curvature flow
induced on the polytope, purely from the combinatorial data of the polytope. We will do
this for the Hirzebruch surfaces Hn .
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Example 31. The polytope ∆n of Hn lies in R2, with vertices given by

{(0,0), (n +1,0), (0,1), (1,1)}

The first step is to express this in the form

∆n = {x = (x1, x2) ∈R2 | 〈x,νi 〉 ≥λi i ∈ {0,1,2,3}}

where the νi are primitive inward pointing normal vectors. Presently, we have ν0 =
(0,1), ν1 = (−1,−n), ν2 = (0,−1) and ν3 = (1,0). Since x1 ≥ 0, x2 ≥ 0, x2 ≤ 1 and
x1 +nx2 ≤ n +1, this results in

∆n = {x ∈R2 | x2 ≥ 0,−x1 −nx2 ≥−n −1,−x2 ≥−1, x1 ≥ 0}

Next, one defines ℓi (x) = 〈x,νi 〉 − λi , which presently yields ℓ0(x) = x2, ℓ1(x) =
n + 1 − x1 − nx2, ℓ2(x) = 1 − x2 and ℓ3(x) = x1 and the potential function u(x) =∑

i ℓi (x) log(ℓi (x))−ℓi (x). We obtain a metric on∆1 by delcaring the metric tensor to
be given by the matrix Hess(u), which is presently given by

g∆ =
(

1
x1

+ 1
n+1−x1−nx2

n
n+1−x1−nx2

n
n+1−x1−nx2

1
x2

+ 1
1−x2

+ n2

n+1−x1−nx2

)
Next, one defines

V (x) = det(Hess(u))−1/2 =
(

x1x2(x1 +nx2 −n −1)

n +1−nx2 −n2x2

) 1
2

From this, one can explicitly calculate −∇ log(V ), as we will do for n = 1, because the
expression for arbitrary n becomes rather lengthy. For n = 1, we get:

d log(V ) =
(

2x1 +x2 −2

x1(x1 +x2 −2)
,

x1(x2
2 −4x2 +2)+x4

2 −8x2
2 +12x2 −4

x2(x2 −1)(x2
2 −2)(x1 +x2 −2)

)
The gradient is then obtained simply by multiplying by g−1

∆ (or the isomorphism
T∆1 → T ∗∆1, more invariantly). Plotting the result yields an outward radial flow,
just as for CP2. Use e.g. this mathematica code:

n = 2;
u[x, y] = y*Log[y] + (n + 1 - x - n*y)*Log[n + 1 - x - n*y] - n - 2 +
n*y + (1 - y)*Log[1 - y] + x*Log[x];
hess[x, y] = D[u[x, y], {{x, y}, 2}];
ginv[x, y] = Inverse[hess[x, y]];
V[x, y] = 1/Det[hess[x, y]];
diff = Grad[-Log[V[x, y]], {x, y}];
ginvsimp = Simplify[ginv[x, y]];
diffsimp = Simplify[diff];
VectorPlot[ginvsimp . diffsimp, {x, 0, n + 1}, {y, 0, 1}]

128



8.7. EXAMPLE: LAGRANGIAN FIBRATIONS OF CPn

The resulting vector plots very closely resemble the behaviour that is exhibited by
CP2, as can be seen in the images below. Note that n = 0 simply corresponds to
CP1 ×CP1, which we discussed previously.

Figure 8.3: H0 =CP1 ×CP1

Figure 8.4: H1

Figure 8.5: H2
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Chapter 9

The Thomas-Yau-Joyce Conjecture

The way in which Thomas and Yau phrased their conjecture was somewhat of a depar-
ture from the framework of homological mirror symmetry. In fact, this already started
in Thomas’s original paper, which was motivated by Donaldson-Thomas theory. The
Donaldson-Thomas invariants are extracted from moduli spaces of sheaves - the struc-
ture of Db(X ) does not make an appearance. Of course, this is unimportant if one’s sole
purpose is to extract invariants. However, if one wants to relate the Donaldson-Thomas
invariants to string theory, then the category Coh(X ) is the category of B-branes at the
large volume limit. As such, the Donaldson-Thomas invariants, which count certain
BPS states, should have a more general interpretation when we move away from the
large volume limit. There should be a notion of "stability" in the category Db(X ) which
tells us what the BPS states are, for the corresponding point in the Kähler moduli space.
This notion of stability is conjectured to be Bridgeland stability, and its development
was in part inspired by the Thomas-Yau conjecture. We will explain what a Bridgeland
stability condition is, and how it inspired Joyce’s reformulation of the Thomas-Yau con-
jecture. After doing so, we will conclude by outlining the ideas of Joyce and Song, and
independently, Kontsevich and Soibelman, on how to obtain invariants from a Bridge-
land stability condition on any CY3-category. These are categories which have the same
properties as Db(X ) for a Calabi-Yau threefoldX , and in this specific case, the invariants
should be the Donaldson-Thomas invariants of X (or a suitable refinement). We will ex-
plain how this fits into the framework of the Thomas-Yau conjecture, and its underlying
philosophy.

9.1 Bridgeland Stability

We considered the notion of µ-stability for vector bundles, in relation to the Hermitian-
Yang-Mills equation. Furthermore, we considered (Gieseker) stability to form the mod-
uli space of sheaves. In particular, µ-stability should be the limiting notion of stability
on Db(X ) at the large volume limit that we assumed throughout our discussion of ho-
mological mirror symmetry. More generally, we have Bridgeland stability, first defined
in [93], inspired by the notion of Π-stability which dates back to [6]. Π-stability is the
string theoretic notion of stability which was put into a more mathematical framework
by Bridgeland. First, we must define a slicing of a triangulated category.

Definition 9.1.1. Let A be a triangulated category. A slicing of A is a collection of full,
additive subcategories {P(φ)} for φ ∈R such that
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1. P(φ)[1] =P(φ+1)

2. If φ1 >φ2, then HomA(A1, A2) = 0 whenever Ai ∈P(φi )

3. Every object E ∈A admits a Harder-Narasimhan filtration, i.e. a sequence of exact
triangles

0 = E0 E1 . . . En−1 En = E

A1 . . . An

such that Ai ∈P(φi ) for some sequence φ1 > ·· · >φn .

Intuitively, this axiomatises the Harder-Narasimhan filtrations which are exhibited by
sheaves. The objects ofP(φ) are the semi-stable objects of phaseφ, and the first axiom is
the behaviour of the phase under the shift functor in the derived category (resp. derived
Fukaya category) of a Calabi-Yau threefold.

Definition 9.1.2. Let (A,P) be a triangulated category together with a slicing. Then a
central charge is a group homomorphism1 Z : K (A) →C such that Z (E) = m(E)exp(iπφ)
with m(E) ∈R>0 whenever 0 ̸= E ∈P(φ).

This definition essentially says that the phase φ should really be the angle w.r.t. the
positive real axis of the complex number Z (E), and the terminology "central charge"
comes from physical considerations.

Definition 9.1.3. A Bridgeland stability condition on a triangulated category is a slicing
of A together with a homomorphism cl : K (A) → Γ for some free abelian group Γ, and a
homomorphism Z : Γ→ C such that Z ◦cl is a central charge for (A,P). The lattice Γ is
called the charge lattice.

By abuse of notation, we also simply denote Z ◦cl = Z .

Remark 9.1.4. We have deviated slightly from the definition of a Bridgeland stability
condition as it is normally given, in that the homomorphism cl : K (A) → Γ usually does
not make an appearance. However, we will only be interested in cases where such a
homomorphism already naturally exists, and so we include it as part of the data.

The point of the homomorphism cl, short for class, is that the objects in A vary in
continuous families. Given E ∈ K (A), we should think of cl(E) as being some topological
invariant such as the Chern character of a holomorphic vector bundle, or the homology
class of a Lagrangian submanifold.

We would like to give some explicit examples of stability conditions. Unfortunately,
the notion ofµ-stability does not yield a Bridgeland stability condition on Db(X ), when-

1We denote by K (A) the numerical Grothendieck group, which is a quotient of the usual Grothendieck
group in order to make it a countable set.
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ever dimX > 1. Rather, µ-stability is thought to be the large volume limit of some ap-
propriate stability condition. For Calabi-Yau threefolds, there are in general no known
Bridgeland stability conditions on Db(X ), see [107]. For abelian threefolds, there has
been some progress, namely [108]. Similarly, there are no known Bridgeland stability
conditions on the derived Fukaya category of a Calabi-Yau threefold. However, this
is where Joyce’s interpretation of the Thomas-Yau conjecture will come into play. Be-
fore explaining this, let us first present the Bridgeland stability condition provided by
µ-stability when dimX = 1.

We refer to D.4.4 for the definition of a t-structure, and its heart. Suppose that A is
given a t-structure, and let A♥ be its heart. We will define a stability function on A♥

to be a group homomorphism Z : K (A♥) → C, such that Z (E) = m(E)exp(iπφ(E)) with
m(E) ∈R>0 whenever E ̸= 0, and 0 <φ(E) ≤ 1. Once again φ(E) is called the phase of the
object E ∈A♥. An object E ∈A♥ is said to be semi-stable (w.r.t. Z ) if every subobject
0 ̸= F ⊂ E satisfies φ(F ) ≤φ(E). The Harder-Narasimhan property of Z then amounts to
the condition that every object should admit a filtration whose sub-quotients are semi-
stable, of increasing phase, similar to the above definition. If these properties are satis-
fied, the group homomorphism Z is said to be a stability function on A♥.

Theorem 9.1.5. [5] A Bridgeland stability condition on A is equivalent to a bounded t-
structure together with a stability function on its heart.

The proof is almost immediate from the definitions. With this in mind, we present an
instructive example.

Example 32. Let X be a smooth algebraic curve (i.e. dimX = 1). Define a
monoid homomorphism Z : Coh(X ) → C by Z (E) = −deg(E)+ i rank(E). By addi-
tivity of rank and degree on curves, this is indeed a monoid homomorphism, and
so can be extended to give a group homomorphism Z : K (Coh(X )) → C. Then Z is
a stability function for the standard t-structure on Db(X ) (see right below D.4.4 for
this standard t-structure). It is easy to see that the slope of the line going through
0 and Z (E) is precisely the slope of E , i.e. µ(E). We have omitted the charge lattice
here, but it is simply the image of the Chern character in H 0(X ,Q)⊕H 2(X ,Q). Note
that we have to take −deg(E) to make the Harder-Narasimhan property hold, i.e. the
Harder-Narasimhan filtration from B.2.

For dimX > 1, this no longer works because of sheaves with support on submanifolds
of codimension greater than 1. For K 3 surfaces, there are known stability conditions.
As stated, for Calabi-Yau threefolds, there are not, except in the special case of abelian
threefolds. Now we can state the conjecture by Joyce, which is the content of [12].

Conjecture 9.1.6 (Joyce). Let (X ,ω,Ω, g ) be a Calabi-Yau manifold with derived Fukaya
category DbFuk(X ,ω). Then there exists a natural Bridgeland stability condition on DbFuk(X ,ω),
with the following properties.
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1. The charge lattice is H3(X ,Z), and the class map is (L,E ,∇) 7→ [L] ∈ H3(X ,Z).

2. The central charge is Z : [L] 7→ ∫
LΩ.

3. If (L,E ,∇) lies in the isomorphism class of a special Lagrangian submanifold of
phase φ, then (L,E ,∇) ∈P(φ).

4. Every isomorphism class of objects in P(φ) contains a unique special Lagrangian
representative of phase φ, possibly immersed.

In fact, Joyce is more cautious: he indicates that the final point in his conjecture is
probably false, as stated, and this is because, unlike Thomas-Yau, Joyce does not expect
the mean curvature flow of stable Lagrangians to exist for all time without acquiring sin-
gularities, so there will be some technical issues that need to be addressed. Nevertheless,
the bigger picture is clear: this is the natural extension of the Thomas-Yau conjecture to
the realm of the derived Fukaya category, together with the notion of Bridgeland stability
(which was conceived after the conjecture by Thomas and Yau).

In his paper, Joyce outlines the following programme for proving his conjecture, im-
proving the Thomas-Yau conjecture. It is clear that Z : (L,E ,∇) 7→ ∫

LΩ is a central charge,
once the main obstacle has been overcome, which is to prove that defining P(φ) as in
the conjecture indeed yields a slicing of DbFuk(X ,ω). The difficult part is to prove the
Harder-Narasimhan property, and the proposal by Joyce is the following. Construct a
family {(Lt ,E t ,∇t )}t∈[0,∞) such that

1. (L0,E 0,∇0) = (L,E ,∇).

2. There is a series 0 < T1 < . . . of singular times such that, for t ∈ [0,∞)\{T1, . . . }, there
is an isomorphism (Lt ,E t ,∇t ) ∼= (L,E ,∇) in DbFuk(X ,ω).

3. For t ∈ [0,∞)\{T1, . . . }, the family {Lt } satisfies the Lagrangian mean curvature flow.

4. At the singular times Ti , the (possibly singular) Lagrangian submanifolds have to
undergo surgery so that the Lagrangian mean curvature flow may be continued.

5. limt→∞ Lt = L1∪·· ·∪Ln with each Li a (possibly singular) special Lagrangian with
phase φi , ordered so that φ1 > ·· · > φn , yielding a Harder-Narasimhan filtration
for L.

Joyce notes how this is similar to Perelman’s proof of the Poincaré conjecture, and spec-
ulates that the (complex) dimension 3 case will be of similar difficulty, which higher
dimensions being more difficult yet. In complex dimension 2, the Thomas-Yau-Joyce
conjecture was verified in [109] for circle invariant Lagrangians in hyper-Kähler mani-
folds of the Gibbons-Hawking ansatz type.

Remark 9.1.7. A very observant reader may have noticed that, when we stated the ho-
mological mirror symmetry conjecture 0.0.1, we made no mention of the so-called Karoubi
envelope of the derived Fukaya category. Usually, this is included to make the derived
Fukaya category idempotent closed, as the derived category of an algebraic variety is
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naturally. Otherwise, it would not be possible for there be an equivalence of categories.
Our reason for omitting this, is that the Thomas-Yau-Joyce conjecture implies (if true)
that the derived Fukaya category is already idempotent closed, and so we do not need
to go through this extra construction. Moreover, the Karoubi envelope would enlarge
the derived Fukaya category by including objects for which the central charge cannot be
defined.

9.2 Refined Donaldson-Thomas Invariants

Denote by C[d ] the chain complex which is trivial in all degrees except d , where it is C.

Definition 9.2.1. A CY3 category consists of an A∞-category A, and for each pair of
objects A,B ∈A, a morphism of chain complexes

〈·, ·〉 : Hom(A,B)⊗Hom(B , A) →C[3]

which is

1. Non-degenerate for each pair of objects.

2. Cyclicallly invariant: 〈mk−1(a0⊗·· ·⊗ak−2), ak−1〉 = (−1)⋆〈mk−1(a1⊗·· ·⊗ak−1), a0〉
The map 〈·, ·〉 is meant to encode Serre duality in a more categorical framework, and

will be called the trace map.

Example 33. The most important examples of CY3 categories for us will be:

1. The category Db(X ) for X a Calabi-Yau threefold, where the trace map is given
by Serre duality.

2. The category DbFuk(X ,ω) for X a Calabi-Yau threefold. The construction of
the relevant trace map is the content of e.g. [110].

In a series of papers, Kontsevich-Soibelman [13] (and, independently, Joyce-Song
[111]2) outline how to extract enumerative invariants from a Bridgeland stability con-
dition on a CY3 category. We will sketch the procedure below, but explaining it in full
detail would require far too much time, so we refer the reader to the cited papers and
references therein.

First, suppose that we are given a free abelian group Γ ∼= Zn together with a skew-
symmetric bilinear form 〈·, ·〉 : Γ×Γ→ Z. From this, one may construct a Γ-graded Lie
algebra overQ, defined as gΓ :=⊕γ∈ΓQ ·eγ with Lie bracket

[eγ,eµ] = (−1)〈γ,µ〉〈γ,µ〉eγ+µ
2The machinery of Joyce-Song only applies to abelian categories, not to triangulated categories. How-

ever, their methods are more concrete and less conjectural.
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We can also define a commutative, associative multiplication on the vector space gΓ by
setting

eγ ·eµ = (−1)〈γ,µ〉eγ+µ

Denote this ring, which is a Q-algebra, by SΓ. We set TΓ := SpecSΓ. This scheme has the
natural structure of a Poisson manifold, since its algebra of functions is SΓ = (gΓ, ·), so it
has a Poisson structure given by the Lie bracket on gΓ.

Next, we will need the notion of a stability condition on the graded Lie algebra gΓ.
This is a pair (Z , a) where Z : Γ→C is a group homomorphism, and a = {a(γ)}γ∈Γ ⊂ gΓ is
a collection with a(γ) ∈Q ·eγ := gγ, such that, for a given norm || · || on Γ⊗ZR, there exists
C > 0 with the property that ||γ|| ≤C |Z (γ)| for all γ ∈ Supp(a).

Suppose we are given a stability condition (Z , a) on gΓ as above. Then there is a func-
tion Ω : Γ\ {0} →Q such that we can uniquely write

a(γ) =− ∑
n≥1

γ
n ∈Γ\{0}

Ω( γn )

n2
eγ

We then have an equality

exp

( ∑
n≥1

a(nγ)

)
= exp

(
− ∑

n≥1
Ω(nγ)

∑
k≥1

eknγ

k2

)

as elements of the Lie group3 exp(gΓ). The numbers Ω(γ) for γ ∈ Γ \ {0} will be the re-
fined Donaldson-Thomas invariants. So it remains for us to explain how to associate a
stability condition (Z , a) to gΓ for some lattice Γwith a bilinear form, given a Bridgeland
stability condition on the CY3 categories above.

First, we should specify the lattices and the bilinear forms.

1. In the case of Db(X ), the lattice Γ is the image of ch : K (Coh(X )) → H ev(X ,Q). The
bilinear form is given by the Euler form4, and the class map is the Chern character.

2. In the case of DbFuk(X ,ω), the lattice Γ is H 3(X ,Z). The bilinear form is given by
the polarised Hodge structure on H 3(X ,Z), and the class map takes an object to
the (Poincaré dual of the) homology class of the Lagrangian submanifold.

From this data, we get the graded Lie algebra gΓ from above, as well as the algebraic
Poisson manifold (TΓ, {·, ·}). The next step is to specify the stability condition (Z , a) on
gΓ. To do this, we assume that the respective categories carry a Bridgeland stability
whose charge lattice is the one stated above. In this case, the homomorphism Z : Γ→C

3We are working over Q here, so this should be called a pro-nilpotent Lie group, but we do not wish to
digress into this.

4The Euler form is defined on K (Coh(X )) by defining it on objects E ,F ∈ Coh(X ) as χ(E ,F ) =∑
(−1)k dimCExtk (E ,F ).
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is given by Bridgeland stability condition, so it remains to explain how the collection
a = {a(γ)}γ∈Γ is obtained. This is the part which is rather involved, and in their paper,
Kontsevich-Soibelman use the theory of motives to achieve this. We do not wish to di-
gress into this, and so we will take the following to be a black box:

Theorem 9.2.2 (Kontsevich-Soibelman). Let A be a CY3 category with a Bridgeland sta-
bility condition and an orientation. Then for every strict sector5 in C, there exist elements
Amot

V ∈RV , where RV is an associative ring called the quantum torus associated with V .
The collection

{Amot
V |V ⊂C a strict subsector}

are called the motivic Donaldson-Thomas invariants of (A,P , Z ). Furthermore, let RΓ,q

be the Dq = Z[q1/2, q−1/2, ((qn −1)−1)n≥1]-algebra generated by {êγ}γ∈Γ, subject to the re-
lations

êγêµ = q〈γ,µ〉/2êγ+µ ê0 = 1

For every strict subsector V ⊂C, there is a subalgebra RV ,q ⊂RΓ,q , and a homomorphism
RV →RV ,q .

Denote the image of Amot
V under the homomorphism RV →RV ,q by AV ,q . Then each

AV ,q is a series in êγ whose coefficients are rational functions in q1/2, possibly with
poles as qn = 1 for some n ≥ 1. The numerical Donaldson-Thomas invariants should
be obtained from the motivic ones by taking a semi-classical limit, which means taking
q1/2 → −1. The "integer quantum torus", i.e. the ring R = ⊕γ∈Γ∩C0(V )Z[q±1/2]êγ, has
a semi-classical limit which is a Poisson algebra with basis {eγ}γ∈Γ∩C0(V ) and relations
eγeµ = (−1)〈γ,µ〉eγ+µ. The Poisson bracket is {eγ,eµ} = (−1)〈γ,µ〉〈γ,µ〉eγ+µ.

Conjecture 9.2.3 (Kontsevich-Soibelman). The automorphism Ad(AV ,q ) of R preserves
the subring ∏

γ∈Γ∩C0(V )
Z[q±1/2] · êγ

This automorphism should then yield a formal symplectic automorphism (i.e. ex-
pressed as a not necessarily convergent power series) AV of TΓ = SpecSΓ in the semi-
classical limit. There is a bijection of sets between gΓ and exp(gΓ), and this yields ele-
ments a(γ) ∈ gγ such that exp(a) = AV , which yields a stability condition, and hence de-
fines the functionΩ : Γ\{0} →Q. The (a priori rational, conjecturally integral for generic
Z ) number Ω(γ) is the Donaldson-Thomas invariant which counts semi-stable objects
of class γ. More explicitly, there exists a decomposition

AV =
→∏

Z (γ)∈V
TΩ(γ)
γ

where the arrow over the product indicates that the ordering of the product is done in
clockwise order w.r.t. the rays in the plane Z (Γ) ⊂ C, and Tγ denotes the exponentiated

5This means it is a cone which does not contain a straight line. Also, the origin is removed.
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infinitesimal Poisson automorphism

Tγ = exp(−{
∑
k≥1

ek
γ

k2
, ·})

which acts as Tγeµ = (1−eγ)〈γ,µ〉eµ.

Definition 9.2.4. The rational number Ω(γ) is called the refined Donaldson-Thomas
invariant counting semi-stable objects of class γ inAw.r.t. the given Bridgeland stability
condition.

Even without presenting the main ingredients that go into this definition, the con-
struction of the refined Donaldson-Thomas invariants requires some ingenious combi-
natorics and algebra. The essential point that we wished to convey with our brief pre-
sentation of this construction, is the importance of stability conditions.

9.3 The A- and B-model Donaldson-Thomas Invariants

Finally, then, this brings us full circle. We started our discussion of the Thomas-Yau con-
jecture in 8.2 by presenting the table in which Thomas outlines the mirror dual objects
on a Calabi-Yau threefold, and we explained how this gives rise to the Thomas-Yau con-
jecture. On either side of mirror symmetry, when looked at on a Calabi-Yau threefold, we
should obtain some invariant which counts BPS branes. In full generality, this invariant
should not just be the classical Donaldson-Thomas invariants, which are extracted from
semi-stable objects in Coh(X ), but the refined Donaldson-Thomas invariants extracted
from semi-stable objects in Db(X ) with some Bridgeland stability condition. Granting
the Thomas-Yau-Joyce conjecture, we make the following definition.

Definition 9.3.1. Let (X ,ω) be a Calabi-Yau threefold. We define the A-model Donaldson-
Thomas invariants DTA of X as the refined Donaldson-Thomas invariants of the CY3
category DbFuk(X ,ω), with Bridgeland stability condition given by the Thomas-Yau-
Joyce conjecture.

This is somewhat peculiar, for the following reason: the classical Donaldson-Thomas
invariants, extracted from the moduli space of sheaves, has no known symplectic ana-
logue. When we move to the derived category (that is: away from the large volume limit),
we need a Bridgeland stability condition to define semi-stable objects. Since we knew
what the stable objects were on the B-side at the large volume limit, while we did not
know this on the A-side, it stands to reason that it should be easier to find Bridgeland
stability conditions on Db(X ) than on DbFuk(X ,ω). As it turns out, this is not the case:
according the Thomas-Yau-Joyce conjecture, there is a very natural Bridgeland stability
condition on the latter category. This does not appear to be the case on Db(X ), since
there is still no known Bridgeland stability condition for most Calabi-Yau threefolds.
This is related to the fact that the B-side central charge requires instanton correction
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terms, see [5]. However, we can make the following definition, if we also grant the ho-
mological mirror symmetry conjecture:

Definition 9.3.2. Let (X ,ω) and (X∨,ω∨) be a mirror pair of Calabi-Yau threefolds. Then
we define the B-model Donaldson-Thomas invariants DTB ofX as the A-model Donaldson-
Thomas invariants of X∨.

So what goes wrong if we try to make an ansatz for a stability condition on Db(X )? As
noted, the charge lattice is the image of the Chern character in H ev(X ,Q), and so there
is an obvious choice for a central charge. Namely, we take the standard t-structure on
Db(X ) whose heart is Coh(X ). Then we are looking for a stability function Z : K (Coh(X )) →
C, which we may try to define by

Z (E) =
∫

X
exp(iω)ch(E)

√
Td(X )

We are assuming that the B-field is turned off. Then this is the natural way to pair the
charge vector ch(E)

p
Td(X ) with the Kähler class to produce a complex number. How-

ever, this does not actually produce a stability function. There is a much stronger result,
found in [112].

Proposition 9.3.3. [112] Let X be a smooth projective variety of dimension ≥ 2. Then
there is no stability function on K (Coh(X )).

We sketch the proof, in order to understand what goes wrong when dimX > 1.

Proof. Since dimX > 1, there exists a smooth subvariety ι : Y ,−→X with dimY = 2. Sup-
pose that we have a stability functions on K (Coh(X )). Then Z ◦ ι∗ is a stability function
on K (Coh(Y)), and so it suffices to consider the case dimX = 2. Take a curve C ⊂X and
a divisor D on C. The proof then uses the fact that we can take D to be of any degree, to
show that Z (Ox) = 0 for any x ∈X , which contradicts the assumption that Z is a stability
function.

To conclude, then, the presence of subvarieties of codimension greater than 1 results
in the fact that we cannot choose a Bridgeland stability structure on Db(X ) whose t-
structure has Coh(X ) as its heart. This is the reason why there is no obvious choice of
Bridgeland stability condition on Db(X ), since the most natural way to work with Db(X )
is to work with the heart of the standard t-structure, i.e. Coh(X ). This does not mean
that Db(X ) does not admit a Bridgeland stability condition, it simply means that we
need to consider a different t-structure. Using the technique known as tilting, one can
create new t-structures from old ones, and this method is used extensively in attempts
to construct Bridgeland stability conditions on Db(X ), but it is still a work in progress.

On the other hand, it should be noted that the Hermitian-Yang-Mills equation is the
large volume limit of the so-called deformed Hermitian-Yang-Mills (dHYM) equation.
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Given a triple (Y ⊆ X ,E ,∇) with dimCY = k, E → Y a line bundle, and F = F∇, the de-
formed Hermitian-Yang-Mills equations are{

F 2,0 = 0

Im e iθ(ω+F )k = 0

To leading order, this is the HYM equation (e.g. substitute ω 7→ cω with c ∈R and look at
the leading order in c), and when moving away from the large volume limit, the correc-
tion terms are no longer negligible. The dHYM equations are the equations of motions
for B-type BPS branes, as is shown in [67] - at least for line bundles. So when looking for
Bridgeland stability conditions on Db(X ), there are some string theoretic ideas which
should light the path as well. Indeed, the following conjecture is stated in [113].

Conjecture 9.3.4. A line bundle E → Y admits a metric whose Chern connection is a
solution to the dHYM equation if and only if E is stable in Db(X ) with respect to an ap-
propriate Bridgeland stability condition.

As we can see, this picture is noticeably less complete than the Thomas-Yau-Joyce
conjecture, as it has only been formulated for line bundles thusfar. In conclusion: away
from the large volume limit, the B-side is somehow more mysterious than the A-side, at
least from this perspective, in spite of the fact that the A-side in the large volume limit
required many more technicalities to be addressed (some of which we omitted entirely).

Some final remarks: the reader should not be under the misapprehension that our
definition of the B-model Donaldson-Thomas invariants is practical in any way. The
original problem was to find a Bridgeland stability condition on Db(X ), and then to un-
derstand the category Db(X ) (e.g. finding sheaves which split-generate the category)
so that one can calculate the invariants. Using our definition (which rests on two open
conjectures), one needs to find a mirror manifold X∨ and then understand the category
DbFuk(X ,ω). The derived Fukaya category is typically much more difficult to under-
stand than the derived category of sheaves, and finding a mirror manifold explicitly is
certainly no easy matter.

Finally, we would like to note that in [114], the authors give an explicit mapping

Φ : im (ch : K (X ) → H ev(X ,Q)) → H3(X ∨,Q)

which tells us the homology class of the Lagrangian submanifold that a given coherent
sheaf gets mapped to under homological mirror symmetry. Thus, modulo issues of tor-
sion in H3(X ∨,Z), given γ ∈ H ev(X ,Q), one can argue that DTA(γ) := DTB (Φ(γ)).
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Chapter 10

Conclusion

Conclusion

To conclude, let us briefly outline what was discussed in this thesis. The overarching
story is homological mirror symmetry, and how it can be used to motivate new ideas in
symplectic and algebraic geometry. We started by explaining homological mirror sym-
metry in a way which is (hopefully) accessible to a relatively broad audience. Essentially
no understanding of physics is required, and we kept the technicalities which arise in
the mathematics to a minimum. We then discussed mirror symmetry for K 3 surfaces,
and homological mirror symmetry for the elliptic curve (albeit not in full generality), as
well as aspects of homological mirror symmetry for complex tori of any dimension.

We discussed two ideas which can be motivated by homological mirror symmetry:
the Thomas-Yau conjecture, and the P = W conjecture (the latter has been shown to
hold in many cases). The elliptic curve, being the simplest Calabi-Yau manifold, also
proved to be helpful in understanding both of these conjectures, and we discussed their
generalisations to complex tori of higher dimensions.

For the P =W conjecture, we discussed the recent publication [15] which generalises
the P = W conjecture to moduli spaces associated to abelian varieties, i.e. a specific
class of complex tori, of any dimension.

For the Thomas-Yau conjecture, we discussed how the conjecture holds for certain
cohomogeneity one Lagrangian submanifolds. This also led us to conclude that a certain
invariant version of the Thomas-Yau conjecture 8.6.7 which can be stated for Calabi-
Yau manifolds which are a product of a Calabi-Yau manifold on which the Thomas-Yau
conjecture is known to hold, and a complex torus.

Some interesting follow-up questions which remain open:

• A precise formulation of what happens in the semi-flat case, when we have a spe-
cial Lagrangian torus fibration of a Calabi-Yau threefold for which the torus fibres
are flat. In this case, one can also define a T k -action locally, which may have fixed
points in the singular fibres. We can still lift submanifolds in the base space un-
der this action, and investigate their mean curvature flow. The lifted submanifolds
will not always be tori anymore.

• A version of 8.6.7 where the total space is instead fibred by complex tori, which
is quite different from the semi-flat picture, where the fibres are Lagrangian. This
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should allow one to inductively construct more examples of Calabi-Yau manifolds
on which the Thomas-Yau conjecture holds.

• A general understanding of mean curvature flow of higher dimensional subman-
ifolds is lacking, which makes it difficult to study examples of the Thomas-Yau
conjecture explicitly. However, given an understanding of the mean curvature
flow of surfaces in R4, for instance, one could prove the Thomas-Yau conjecture
on T 4 and subsequently prove an invariant version of the Thomas-Yau conjecture
in higher dimensional Calabi-Yau manifolds, similar to what we did. This would
already give quite a large class of examples of Lagrangian submanifolds in Calabi-
Yau threefolds for which the Thomas-Yau conjecture holds.

• An understanding of the singularities that develop and how to resolve them. We
only treated examples in which such singularities are avoided, because the curve
shortening flow in the plane does not result singularities. For higher dimensional
submanifolds, one has to develop techniques to resolve singularities.

We also looked at the mean curvature flow of Lagrangian fibrations of CPn . The result
would lead one to suspect that something similar can be said for toric Kähler-Einstein
manifolds, and we noted that [11] proves that this is indeed the case. It also leads one
to wonder about almost toric Calabi-Yau twofolds, which are T 4 and the K 3 surface. We
answered the question of what happens in the case of T 4, but an almost toric fibration
of a K 3 surface is not yet understood. This is probably the next simplest example that
can be explored, and the close approximations for Ricci flat Kähler metrics on elliptic
K 3 surfaces such as the quartic may allow one to do this.

We commented on how the Thomas-Yau-Joyce conjecture, if true, may be combined
with homological mirror symmetry to define a Bridgeland stability condition on Db(X ).
Since the existence of such stability conditions is, in general, an open problem, this may
be worth investigating, as there is evidence in favour of the Thomas-Yau-Joyce conjec-
ture. On the other hand, there is also progress being made towards proving the existence
of Bridgeland stability conditions on Db(X ), which is likely nearer to completion than
proving the Thomas-Yau-Joyce conjecture.

Finally, we commented on how the Thomas-Yau-Joyce conjecture may be used to
define the Donaldson-Thomas invariants of a Calabi-Yau threefold in full generality, by
using the machinery from Kontsevich-Soibelman. This answers a question (which we
were certainly not the first to address) raised by Thomas in his paper which motivated
the Thomas-Yau conjecture - finding an analogue of Donaldson-Thomas invariants for
the A-model. It seems poetic that a refinement of his conjecture will, if true, lead to the
correct definition of these invariants.
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Final Remarks

In closing, I would like to thank both of my supervisors, dr. N. Martynchuk and prof.
M. Kool, for agreeing to supervise this master’s thesis. I had decided that I wanted to
write my thesis about mirror symmetry well before I started looking for supervisors, and
so the task became to find two people people who were willing to supervise the project
that I envisioned, rather than having my supervisor(s) suggest a topic to me. This proved
somewhat challenging, so I am very thankful to both of them - for agreeing to supervise a
master’s thesis about a topic that, at least partially, falls outside of their area of expertise,
as well as for many helpful suggestions along the way.

Homological mirror symmetry, as well as the classical (closed string) version of mirror
symmetry are both very rich subjects. It was at times difficult to select the right topics
and examples to include, that would not stray too far from the main narrative, whilst also
presenting the beauty of the subject. It is my hope that the right balance was struck, and
that readers of this text come to appreciate that beauty. May it serve as a motivation to
explore all the other facets of (homological) mirror symmetry, of which there are many.
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Appendix A

Appendix: Differential Geometry

Here, we will recall some elementary notions from differential geometry.

A.1 Vector Bundles and Connections

We denote byK either R or C.

Definition A.1.1. A vector bundle on a smooth manifold X is a smooth submersion π :
E → X such that:

1. Every x ∈ X has an open neighbourhood U and a diffeomorphism Φ : π−1(U ) →
U ×Kr .

2. The restriction Φ|x :π−1({x}) → {x}×Kr is a linear isomorphism.

3. πU ◦Φ=π, where πU : U ×Kr →U is the projection.

We denote the fibre of E at x by Ex . A morphism of vector bundles is a smooth map
ϕ : E1 → E2 such that π1 = π2 ◦ϕ and ϕx : E1,x → E2,x is a linear transformation for all
x ∈ X . If Uα and Uβ both trivialise E , then there is a function ϕαβ : Uα∩Uβ := Uαβ →
GL(r,K), which is defined by

Φβ ◦Φ−1
α (x,e) = (x,ϕαβ(x)e)

This function ϕαβ is called the transition function, and it satisfies the cocycle condition
on triple intersections Uαβγ

ϕαβ ◦ϕβγ =ϕαγ
A vector bundle can be equivalently defined by an open cover {Uα} of X , together with
functionsϕαβ satisfying the cocycle condition on triple intersections, as well asϕαα = 1.
In practice, this is often the most convenient way to define a vector bundle.

Example 34. The tangent bundle is defined by taken an open cover of X by
coordinate neighbourhoods, and defining ϕαβ := D(ψαβ) where ψαβ :ψα(Uα) → Rn

is the transition function associated to the chart mapsψα andψβ. The fibre Tx X can
be identified with DerR(C∞

x ), the R-linear derivations of the germ at x of the sheaf of
smooth functions on X (see the corresponding appendix B).
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The most important examples of vector bundles are the trivial bundle X ×K and the
tangent bundle T X . We can obtain many other vector bundles from these, by extending
the linear algebraic operations to vector bundles. In particular, suppose that F ⊂ E , E1

and E2 are vector bundles over X . Then we can form the following vector bundles over
X :

1. The direct sum E1 ⊕E2

2. The tensor product E1 ⊗E2

3. The exterior poweres ∧k E

4. The symmetric powers Symk (E)

5. The dual E∗

6. The homomorphism bundle Hom(E1,E2)

7. The quotient bundle E/F

Furthermore, if f : X → Y is a smooth map and E is a vector bundle on Y , then we
may define the pullback bundle f ∗E → X . This bundle is characterised by a pullback
diagram:

f ∗E E

X Y

π

f

As such, f ∗E = {(x,e) ∈ X ×E | f (x) =π(e)}.

Importantly, a morphism ϕ : E1 → E2 does not have a kernel, image, or cokernel
which is a vector bundle, unless ϕ has constant rank.

Definition A.1.2. A section of a vector bundle E → X is a smooth map s : X → E such
that π◦ s = idX .

This means that for each x ∈ X , we get a vector s(x) ∈ Ex . For example, a morphism
of vector bundles is just a section of Hom(E1,E2). Crucially, every smooth vector bun-
dle admits non-zero sections. This is easily proven using cutoff functions. As such, the
analogous argument fails for holomorphic bundles on complex manifolds, and indeed,
many holomorphic bundles do not have non-trivial global sections. Sections of X ×R
are just smooth functions, while sections of T X are vector fields, and sections of ∧k T ∗X
are differential k-forms.

We denote the space of sections of E over U ⊆ X by Γ(U ,E). This is naturally an
infinite dimensionalK-vector space. In fact, it is a module overΓ(U ,U×R) in the obvious
way, by setting ( f · s)(x) = f (x) · s(x).

Exceptions to the above notation Γ(−,E) are the vector bundles X ×R and ∧k T ∗X .
We denote their sections by C∞(U ) and Ωk (U ), respectively.
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The trivial vector bundle X ×K has a canonical way to differentiate sections. Sections
of this bundle are just smooth functions on X , and we use the exterior derivative to
differentiate these functions. More generally, we can do this for X ×Kr . However, for ar-
bitrary vector bundles, there is no canonical way to differentiate sections. Nevertheless,
we can still develop exterior calculus for vector bundles. This is the role of a connec-
tion on a vector bundle. First, we note that the exterior derivative is characterised by the
following properties:

1. d( f · g ) = g ·d f + f ·d g for f , g ∈C∞(X ).

2. d(a · f ) = a ·d f for a ∈R, f ∈C∞(X ).

These are the natural properties that we would like a derivative to satisfy: linearity, and
the Leibniz rule. We denote by Ωk (X ,E) := Γ(X ,∧k T ∗X ⊗E).

Definition A.1.3. A connection ∇ on a vector bundle E is a linear map ∇ : Γ(X ,E) →
Ω1(X ,E) such that for all f ∈C∞(X ) and s ∈ Γ(X ,E),

∇( f · s) = d f ⊗ s + f ·∇s

This should be interpreted as follows. Given ∇s ∈Ω1(X ,E), we can take a vector field
v ∈ Γ(X ,T X ). Then we should interpret ∇v s as being the derivative of s along v , with
respect to the connection ∇. The expression ∇v s is defined as follows, in local coordi-
nates. We have ∇s ∈Ω1(X ,E), so locally ∇s|U = ∑

i ηi ⊗ ei for some ηi ∈ Γ(U ,T ∗U ) and
ei ∈ Γ(U ,E). We define ∇v s|U as

∑
i ηi (v) ·ei ∈ Γ(U ,E).

Using a partition of unity, it is easy to show that any vector bundle admits a connec-
tion. Furthermore, if ϕ ∈ Ω1(X ,End(E)), then ∇+ϕ defines another connection on E .
Locally, we have E |U ∼=U ×Kr , which has the canonical connection d . Hence, any con-
nection ∇ on E may be restricted to E |U , and can then be written as ∇= d + A for some
A ∈Ω1(U ,End(E)). This endomorphism-valued 1-form is called the local connection 1-
form. If we have two trivialisations over Uα and Uβ with Uα∩Uβ non-empty, then these
1-forms are related by the transformation rule

Aβ =ϕ−1
αβ ◦ Aα ◦ϕαβ+ϕ−1

αβdϕαβ

where ϕαβ : Uαβ→ GL(r,K) is the transition function.

Like the exterior derivative, a connection can be extended to the exterior covariant
derivative on higher degree forms. Recall that the exterior derivative on k-forms is de-
fined as

dη(v0, . . . , Xk ) :=∑
i

(−1)i viη(v0, . . . , v̂i , . . . , vk )+∑
i< j

(−1)i+ jη([vi , v j ], X0, . . . , v̂i , . . . , v̂ j , . . . , vk )
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Definition A.1.4. Let (E ,∇) be a vector bundle with a connection. Then the exterior
covariant derivative

d∇ :Ωk (X ,E) →Ωk+1(X ,E)

is defined by the same formula as the exterior derivative, for η ∈Ωk (X ,E):

d∇η(v0, . . . , vk ) :=∑
i

(−1)i∇viη(v0, . . . , v̂i , . . . , vk )+∑
i< j

(−1)i+ jη([vi , v j ], v0, . . . , v̂i , . . . , v̂ j , . . . , vk )

We had to use the connection ∇ to prescribe how the section η(v0, . . . , v̂i , . . . , vk ) is
differentiated along vi , and this is the only difference.

Observe that Ω•(X ,E) is a module over Ω•(X ) in the obvious way. Then d∇ can be
characterised uniquely by the following axioms.

Theorem A.1.5. The exterior covariant derivative d∇ for a vector bundle with connec-
tion (E ,∇) is the unique linear operator d∇ : Ω•(X ,E) →Ω•(X ,E) which restricts to ∇ on
Ω0(X ,E), and satisfies

d∇(α∧η) = dα∧η+ (−1)|α|α∧d∇η
for α ∈Ωk (X ) and η ∈Ωl (X ,E).

Suppose that (E ,∇), (E1,∇1) and (E2,∇2) are vector bundles with connections on X ,
and f : Y → X is a smooth map. Then we get

1. The dual connection ∇∗ on E∗ by setting d〈s,σ〉 = 〈∇s,σ〉+〈s,∇∗σ〉 for s ∈ Γ(X ,E),
σ ∈ Γ(X ,E∗) and 〈·, ·〉 the natural pairing.

2. The direct sum connection∇1⊕∇2 on E1⊕E2 by setting (∇1⊕∇2)(s1, s2) = (∇1s1,∇2s2)
for si ∈ Γ(X ,Ei ).

3. The tensor product connection ∇1 ⊗∇2 on E1 ⊗E2 by setting (∇1 ⊗∇2)(s1 ⊗ s2) =
(∇1s1)⊗ s2 + s1 ⊗ (∇2s2) for si ∈ Γ(X ,Ei ) and extending by linearity.

4. The pullback connection f ∗∇ on f ∗E by setting ( f ∗∇)( f ∗s) = f ∗∇s and extending
by linearity.1

In particular, this yields a connection on Hom(E1,E2) and End(E).

A very convenient, and in fact defining property of the exterior derivative d :Ωk (X ) →
Ωk+1(X ) is that d 2 = 0. This allows us to define de Rham cohomology, a very important
invariant of the manifold. The same is not true for d∇.

Theorem A.1.6. There exists a section F∇ ∈Ω2(X ,End(E)) such that

d 2
∇η= F∇∧η

1The module Γ(Y , f ∗E) is generated over C∞(Y ) by the sections f ∗s.
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This section F∇ is called the curvature 2-form of ∇. If F∇ = 0, then ∇ is called a flat
connection, in which case it does define a chain complex. If our connection is obtained
as the dual, direct sum, tensor product, or pullback of some existing connection(s), then
the curvature forms are related in the following way:

1. F∇∗ =−F T
∇

2. F∇1⊕∇2 = F∇1 ⊕F∇2

3. F∇1⊗∇2 = F∇1 ⊗ id2 + id1 ⊗F∇2

4. F f ∗∇ = f ∗F∇

If a local trivialisation over U is given, we get a local connection 1-form A, discussed
above. This gives us an explicit local formula for the curvature 2-form.

Theorem A.1.7 (Cartan’s Structural Equation). Let A be the local connection 1-form of a
connection ∇ on E. Then the curvature 2-form may be locally written as

F∇ = d A+ A∧ A = d A+ 1

2
[A, A]

where the wedge product of endomorphism valued forms is defined using the composition
of endomorphisms, respectively the Lie bracket on endomorphisms.

Using this theorem, one may easily deduce the transformation rule of the curvature
2-form. In fact, we already know its transformation rule, since it is a 2-form. Neverthe-
less, it is given by

Fβ =ϕ−1
αβ ◦Fα ◦ϕαβ

Theorem A.1.8 (Bianchi Identity). The curvature 2-form satisfies d∇F∇ = 0, where ∇ also
denotes the connection on End(E) induced by the connection on E.

On a local trivialisation with connection 1-form A, the exterior covariant derivative
on End(E) is given by by d∇Φ = dΦ+ A ∧Φ for Φ ∈Ωk (X ,End(E)). As such, the Bianchi
identity can also be written as dF = F ∧ A. Inductively, one can show that d(F k ) = F k ∧
A− A∧F k .

A.2 Chern Classes

We now present the differential geometric approach to Chern classes. We will not cover
the Euler or Pontrjagin classes, since we will not be using them. As such, we will be
considering complex vector bundles E → X of rank r . Suppose that P ∈ Inv(gl(r,C)),
meaning that P is an element of Sym•(gl(r,C)) which is invariant under the adjoint rep-
resentation of GL(r,C).

Theorem A.2.1. Let F∇ ∈ Ω1(X ,End(E)) be the curvature 2-form of the connection ∇.
Then
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1. The differential form P (F∇) on X is closed.

2. The cohomology class [P (F∇)] ∈ H ev(X ,C) is independent of the choice of connec-
tion.

3. The map Ξ : Inv(gl(r,C)) → H ev(X ,C) defined by Ξ(P ) = [P (F∇)] is an algebra ho-
momorphism.

Proof. We give a sketch of the proof. To start with, we note that the invariance of P im-
plies that the local expressions indeed glue to give a differential form P (F∇) on X . Next,
one shows that Inv(gl(r,C)) is generated by the trace polynomials, i.e. the polynomials
A 7→ tr(Ak ) for A ∈ gl(r,C). Then we only need to prove the relevant statements for the
trace polynomials. Then:

1. Follows from the fact that dtr(F k
∇) = tr(d(F k

∇)) and applying the Bianchi identity.

2. Is the most involved part, and requires the fact that the space of all connection
is an affine vector space modelled on Ω1(X ,End(E)). Then we can take the line
segment between two connections, and using this, one may prove that tr(F k

∇0 )−
tr(F k

∇1 ) is exact. This is done via the so-called transgression formula∫ 1

0

d

d t
tr(F k

∇t )d t = d
∫ 1

0
ktr(F k−1

∇t ∧ d

d t
At )d t = tr(F k

∇0 )− tr(F k
∇1 )

3. A simple verification.

The homomorphism Ξ is called the Chern-Weil homomorphism. It allows us to de-
fine the Chern classes.

Definition A.2.2. Let E → X be a complex vector bundle. Then its Chern class c(E) ∈
H ev(X ) is defined by

c(E) = det(I − F∇
2πi

)

for any choice of connection ∇. The k-th Chern class ck (E) is defined to be the coeffi-
cient of t k in the polynomial

det(I − tF∇
2πi

) =∑
k

ck (E)t k ∈ H ev(X )[t ]

Some further remarkable facts about the Chern classes:

1. The Chern classes are integral, meaning that ck (E) ∈ im (H 2k (X ,Z) → H 2k (X ,R)).
This is ensured by the normalisation of 2πi , as will be demonstrated in the exam-
ple below.
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2. The Chern classes are functorial, so that if f : X → Y is a smooth map, we have
f ∗ck (E) = ck ( f ∗E). This simply follows from the fact that f ∗F∇ = F f ∗∇.

These characteristic classes can be given by a more explicit formula, using the relation
between the determinant, trace and logarithm of matrices. Namely, we have

c(E) = det(I − t
F

2πi
) = exp◦tr◦ ln(I − t

F

2πi
) =

1− t
tr(F )

2πi
+

t 2 tr(F ∧F )− tr(F )∧ tr(F )

8π2
+

t 3 2tr(F ∧F ∧F )−3tr(F )∧ tr(F ∧F )+ tr(F )∧ tr(F )∧ tr(F )

48π3i
+ . . .

This gives a complete expression for Chern classes on manifolds up to dimension 6,
as all the higher degrees would have to vanish. We will give an example in which we
compute the first Chern class of a line bundle. For this example, we use the following
fact: suppose that E → X is a vector bundle, and that E ,−→ X ×CN is a sub-bundle. Let
ρ : CN → E denote the projection onto E . Then we get a connection on E by setting
∇s = ρ(d s) for s ∈ Γ(X ,E).

Example 35. Consider the complex projective line CP1. It parameterises com-
plex lines in C2. There is a tautological line bundle L over CP1, which is obtained
as a sub-bundle of CP1 ×C2. Namely, given x ∈ CP1, we take the fibre of L at x to
be the line in C2 which corresponds to the point x. This clearly defines a smooth
sub-bundle L ⊂ CP1 ×C2, which then inherits a connection from the trivial bundle.
We consider local coordinates on U0 = {[z0 : z1] ∈ CP1 | z0 ̸= 0}, and write this local
coordinate as z = z1/z0, so that Lz = spanC{e1+ze2}. This yields d(e1+ze2) = d z⊗e2.
Using the standard Hermitian inner product on C2, we project e2 onto the subspace
spanned by e1 + ze2, which yields

z

1+|z|2 (e1 + ze2)

Under the local trivialisation of L over U0 given by ([z0 : z1],λ(e1 + ze2)) 7→ (z,λ), we
have that the constant section 1 corresponds to the section e1+ze2 and therefore the
local 1-form is given by

A = zd z

(1+|z|2)

This is an ordinary complex valued 1-form, so A ∧ A = 0. It follows that the local
curvature form is

F = d A =− d z ∧d z

(1+|z|2)2
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The set U0 excludes only a single point of CP1, namely [0 : 1]. Therefore,
∫
CP1 F =∫

U0
F = −2πi . This implies that

∫
CP1 c1(L) = −1, and in particular that c1(L) ̸= 0. If

L was the trivial bundle, then we would have the canonical connection on it which
is obviously flat, and therefore would have vanishing curvature. We conclude that L
cannot be trivial, because c1(L) does not depend on the choice of connection.

This example is typical, in the sense that the first Chern class of a line bundle informs
us about the triviality of the bundle. More generally, given a vector bundle π : E → X
over a compact oriented manifold X , we can think of c1(E) as being Poincaré dual to
the zero locus of a generic section. By generic, we mean a section which intersects the
zero section transversally. Denoting this zero locus by Z , it defines a submanifold Z ⊂ X
because of the assumption that the intersection is transveral. Then Poincaré duality
amounts to the statement that given α ∈ H n−2(X ,R), we have∫

Z
α=

∫
X

c1(E)∧α

Remark A.2.3. Recall that Poincaré duality asserts that the map

H k (X ,R)⊗H n−k (X ,R) →R (α,β) 7→
∫

X
α∧β

is a perfect pairing, so that H n−k (X ,R) ∼= H k (X ,R)∗ = Hk (X ,R). The Poincaré dual of an
element α ∈ H n−k (X ,R) is the cycle D ∈ Hk (X ,R) such that∫

X
α∧β=

∫
D
β

The first Chern class for line bundles comes very close to being a full classification
of line bundles. To see this, we use some notions from the appendix B. Denote by C∞

C

the sheaf of smooth complex valued functions on a smooth manifold X and by (C∞
C

)×

the sheaf of invertible smooth complex valued functions on the same manifold. Then by
local invertibility of the exponential map, via the complex logarithm, we have an exact
sequence of sheaves

0 →Z→C∞
C

exp(2πi ·)−−−−−−→ (C∞
C )× → 0

Clearly, C∞
C

is a sheaf of C∞-modules, and therefore it is a soft sheaf, so its higher coho-
mology groups vanish. Consequently, the long exact sequence in cohomology reads

· · ·→ 0 → H 1(X , (C∞
C )×)

δ−→ H 2(X ,Z) → 0 → H 2(X , (C∞
C )×) → . . .

This means that the connecting homomorphism δ is in fact an isomorphism. However,
the sheaf cohomology group H 1(X , (C∞

C )×) classifies complex line bundles, by sending a
line bundle to its collection of transition functions, which are cocycles. So it follows that
the image of δ also classifies complex line bundles. The following theorem tells us that
the first Chern class classifies line bundles modulo torsion.
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Theorem A.2.4. [20] The image of an isomorphism class of line bundles L under δ is
δ(L) := c1(L)Z and c1(L) = ι∗c1(L)Z under the natural inclusion of sheaves ι :Z→R.

In fact, the higher Chern classes could be defined axiomatically from the first Chern
class, so this characterisation of the first Chern class in terms of Poincaré duality is prob-
ably the most important one to keep in mind. Higher Chern classes can be be inter-
preted as being the locus where k generic sections fail to be linearly independent. In
this sense, Chern classes give us some crude approximation to whether a given complex
vector bundle is trivial or not.

An important property of Chern classes is that they obey the splitting principle. We
will use this property later in some calculations. It says that given a short exact sequence
of vector bundles

0 → E ′ → E →Q → 0

we have that c(E) = c(E ′)∧ c(Q). It is not difficult to prove this, using that every short
exact sequence of vector bundles splits, i.e. E ∼= E ′⊕Q. It then suffices that we prove
c(E ′⊕Q) = c(E ′)∧c(Q). However, the Chern class is defined in terms of the determinant,
which obeys the analogous property det(A1 ⊕ A2) = det(A1)det(A2). The result then fol-
lows from the fact that F∇1⊕∇2 = F∇1 ⊕F∇2 , which is a straightforward consequence of the
definition of the product connection.

We also have a characteristic class which is additive with respect to exact sequences.
This is called the Chern character.

Definition A.2.5. The Chern character of E → X is defined as

ch(E) = trexp(
−F∇
2πi

)

The k-th Chern character is the degree 2k part of ch(E) ∈ H•(X ).

The Chern character is so-named because of the fact that

1. ch(E1 ⊕E2) = ch(E1)+ch(E2)

2. ch(E1 ⊗E2) = ch(E1)∧ch(E2)

The Chern character may be written in terms of the Chern classes as

ch(E) = rank(E)+ c1(E)+ 1

2
(c1(E)2 −2c2(E))+ 1

6
(c1(E)3 −3c1(E)c2(E)+3c3(E))+ . . .

This also shows that ch(E) ∈ H ev(X ,Q). In fact, the Chern character determines a ring
homomorphism from the topological K -theory of the manifold X , to its rational coho-
mology. This will let us extend the Chern character to coherent sheaves. We need this to
fix certain topological data, so that we can form some geometric objects (moduli spaces)
which parameterise isomorphism classes of sheaves with these discrete invariants.
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A.3 Holonomy

Let π : E → X be a vector bundle over a smooth manifold with a connection ∇. We fix a
basepoint x0 ∈ X , and denote the fibre V = π−1(Ex0 ), which is a real or complex vector
space. If a path (resp. loop) starts at the base point x0, then the path (resp. loop) will be
called based.

Definition A.3.1. A section s ∈ Γ(E) is called parallel if ∇s = 0. If γ : I → X is a based path
in X , then a section s ∈ Γ(γ∗E) along γ is called parallel over γ if (γ∗∇)s = 0.

Given v ∈V , there exists a unique parallel section s along γ such that s(0) = (x0, v).

Definition A.3.2. Let γ : I → X be a based path in X , and take v ∈V . Let s be the parallel
section along γ with s(0) = (x0, v). Then the parallel transport of v along γ is defined as

Parγ(v) = s(γ(1)) ∈ Tγ(1)X

When written in local coordinates, the equation for (γ∗∇)s = 0 is a linear ODE, which
means that the parallel transport map is in fact a linear map. It is an automorphism of
V , because Parγ−1 = Par−1

γ . Here, γ−1 is the inverse parameterisation of γ. One can also
show that concatenating loops results in composition of parallel transport operators:

Parγ1∗γ2 = Parγ1 ◦Parγ2

Furthermore, the constant path c obviously has Parc = id. As a result, the set

Hol(∇) := {Parγ | γ ∈ΩX }

acquires the structure of a group. We denote by Hol0(∇) the subgroup which is obtained
by restricting to based loops which are homotopic to the constant loop.

Definition A.3.3. The group Hol(∇) is called the holonomy group of ∇. The subgroup
Hol0(∇) is called the reduced holonomy group.

Of course, all of this takes place relative to the fixed based point x0, but the conjugacy
class of the holonomy group is a well-defined object regardless of the basepoint x0.

Theorem A.3.4 ([115]). The holonomy group is a Lie subgroup of GL(V ), whose identity
component is the reduced holonomy group. In particular, Hol0(∇) is a normal subgroup
of Hol(∇).

Observe that Hol(∇) ⊆ GL(V ) comes equipped with a natural representation on V .
We call this the holonomy representation.

Theorem A.3.5 (The Holonomy Principle). [115] There is a bijective correspondence be-
tween parallel sections of E with respect to a connection ∇, and vectors v ∈ V which are
invariant under the holonomy representation of ∇.
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The correspondence is defined using parallel transport. Namely, given v ∈ V , we
define a section s ∈ Γ(E) by setting s(x) = Parγ(v), where γ is a path from x0 to x. If
the vector v is invariant under the holonomy representation, then we readily see that
this is well-defined.

Theorem A.3.6. Let X be of dimension ≥ 2, and let π : E → X be a vector bundle. Sup-
pose G ⊂ GL(V ) is a connected Lie subgroup. Then there exists a connection ∇ on E with
Hol(∇) =G if and only if the structure group of E can be reduced to G.

A.4 Spin Structures

For any Riemannian manifold (X , g ), we get a principal SO(n)-bundle, namely its bundle
of oriented orthonormal frames. Denote this bundle by SO(X , g ). Given a Lie group
homomorphism H →G , we say that a principal G-bundle P lifts to a principal H-bundle
if there exists a principal H-bundle which yields P under the homomorphism φ : H →G
(e.g. defining the cocycles of P by φ(gαβ)).

Definition A.4.1. Suppose that SO(X , g ) admits a lift to a Spin(n)-bundle, for the double
cover Spin(n) → SO(n). Then (X , g ) is said to admit a spin structure.

The obstruction to the existence of a spin structure on a manifold is its second Stiefel-
Whitney class w2(X ) ∈ H 2(X ,Z/2Z). When defining the Floer complex and the Fukaya
category, we will make assumptions about the existence of these spin structures. We
will also mention spinors when discussing the need for Calabi-Yau manifolds in string
theory. Given a representation ρ : Spin(n) → GL(V ), we get an associated vector bundle
Σ = Spin(X , g )×ρ V . If ρ is a so-called spin representation, we say that the associated
bundle is a spinor bundle, and its section are spinors (or, more accurately, spinor fields).
There are complex spin representations and real spin representations, both of which
may be classified completely, and they satisfy certain periodicity conditions. Typically,
one would consider complex representations. In even dimensions, there are two in-
equivalent irreducible complex spin representations. Their direct sum yields an associ-
ated bundle whose sections we call Dirac spinors, although we will just refer to them as
spinors.

The Levi-Civita connection on SO(X , g ) induces a connection on Spin(X , g ) via pull-
back. This connection is called the spin connection, and we denote it by ∇S .

Definition A.4.2. A spinorψ ∈ Γ(X ,Σ) is called parallel (or covariantly constant) if ∇Sψ=
0.

For Kähler manifolds, it is known that the existence of a spin structure is equivalent
to the existence of a square root of KX , the canonical line bundle. That is, we require the
existence of a holomorphic line bundle L such that L⊗L∼= KX . When X is Calabi-Yau,
we have KX ∼=OX , which is its own square root. Therefore, Calabi-Yau manifolds always
admit a spin structure.
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Appendix B

Appendix: Sheaf Theory

B.1 Coherent Sheaves

Sheaves may be defined on any topological space X . Such a space yields a category
Open(X ), in which the objects are open sets, and the morphisms are inclusion maps.

Definition B.1.1. A presheaf F on X is a functor Open(X )op → Set.

Here, Open(X )op is the opposite category of Open(X ). We will generally be interested
in refining the category of sets to the category of groups. Then the above definition
means that, for every V ⊆ U ⊆ X open in X , we get abelian groups F (U ), F (V ) and a
homomorphism resUV : F (U ) →F (V ). Given s ∈F (U ), the restriction map is denoted
s|V ∈F (V ).

Definition B.1.2. A presheaf F on X is called a sheaf if the following are satisfied for
every U ⊆ X , with {Ui } and open cover for U :

1. If si ∈F (Ui ) such that si |U j = s j |Ui for all i , j , then there exists s ∈F (U ) such that
s|Ui = si .

2. If s, t ∈F (U ) are such that s|Ui = t |Ui for all i , then s = t .

These axioms encode the familiar notions of gluing, and locality. We can also have
sheaves of rings, and sheaves of modules over a sheaf of rings. The restriction maps are
then required to be compatible with the various multiplication maps.

Definition B.1.3. Let F ,G be sheaves on X . Then a morphism ϕ : F → G of presheaves
consists of a morphism ϕU : F (U ) → G(U ) for each U ⊆ X open, such that the following
diagram commutes for all V ⊆U ⊆ X :

F (U ) G(U )

F (V ) G(V )

ϕU

resUV

ϕV

resUV

A morphism of sheaves is just a morphism of presheaves between sheaves. Thus, sheaves
on X form a category denoted by Sh(X ).

Morphisms of sheaves (of abelian groups) can be added. As such, we get a sheaf
Hom(F ,G) on X by taking

U 7→ Hom(F |U ,G|U )
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Not every presheaf is a sheaf. The simplest counterexample is when X = {x, y} consists
of two points with the discrete topology. We define a sheaf by F (U ) = Z for each open
subset. Then the first sheaf axiom fails. Indeed, suppose we are given s ∈ F ({x}) and
t ∈F ({y}). Clearly, they agree on the intersection, since the intersection is empty. Hence
they should glue to give a section in F (X ). However, this is evidently impossible, since
no such section could restrict to s on {x} and to t on {y} if s ̸= t . The idea is that the
presheaf does not encode the locality of the topological space. This can be corrected
by considering the direct limit Fx = lim←−−x∈U

F (U ). The abelian group Fx is called the
stalk of F at x, and it allows us to sheafify a presheaf. Elements of Fx may be seen as
equivalence classes (U , s), with s ∈F (U ). The equivalence relation is that

(U1, s1) ∼ (U2, s2) ⇐⇒ ∃V ⊆U1 ∩U2 | s1|V = s2|V
Let us use the stalk to give the definition of sheafification. Let F̃ be a presheaf on X . We
will say that property (⋆) holds for (sx) ∈∏

x∈U F̃x if, for each x ∈U , there exists an open
neighbourhood x ∈V ⊆U an a section s ∈ F̃ (V ) such that sx = (V , s) for all x ∈V .

Definition B.1.4. Define a sheaf F by

F (U ) = {(sx) ∈ ∏
x∈U

F̃x | (sx) has property (⋆)}

Then F is called the sheafification of F̃ .

The sheafification satisfies the universal property that any morphism from F̃ to a
sheaf (not just a presheaf) factors through the sheafification. Applying the sheafifica-
tion to the constant sheaf from above yields a sheaf of locally constant sections. That is,
because X = {x, y} has two components, we would get F (X ) = Z⊕Z, which each sum-
mand corresponding to a component.

A very important notion is the exactness of a sequence of sheaves.

Definition B.1.5. A sequence of sheaves (of abelian groups) · · · → Fk
dk−→ Fk+1 → . . . is

called exact if the induced sequence at the level of stalks is an exact sequence of abelian
groups, for all x ∈ X :

. . . (Fk )x
dk−→ (Fk+1)x → . . .

It is very important to appreciate this definition. It is distinctly not the same as asking
that Fk (U ) →Fk+1(U ) is exact for all U ⊆ X open. This would include U = X , which is
not the right notion of exactness, as illustrated by 39. Rather, this definition requires that
the sequence becomes exact once we shrink to a sufficiently small open neighbourhood
of each point. This is why lemma’s such as the Poincaré lemma are so important when
defining cohomology: it tells us that the sequence

0 →C∞ d−→Ω1 d−→ . . .
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is an exact sequence of sheaves, because every smooth manifold is locally just Rn , for
which the Poincaré lemma holds. Thus, the Poincaré lemma may be rephrased as stating
that the above sequence of sheaves is exact. They are equivalent statements.

If f : X → Y is a continuous map, then we may push a sheaf F on X forward along
f . This gives a sheaf f∗F on Y defined by U 7→F ( f −1(U )). Conversely, if F is a sheaf on
Y , we may take the inverse image sheaf f −1F by taking ( f −1F )(U ) := lim←−− f (U )⊂V

F (V ).

These operations are adjoint to each other:

HomSh(X )( f −1F ,G) ∼= HomSh(Y )(F , f∗G)

if F and G are sheaves of modules on the respective spaces.

Definition B.1.6. A locally ringed space is a pair (X ,OX ) where X is a topological space,
and OX is a sheaf of rings on X such that OX ,x is a local ring for all x ∈ X .

The most important examples of the above definition are (Rn ,C∞), (Dn ,C an)1 and
(Spec(R),OX ). In case of the latter, the sheaf OX is defined on a basis for the Zariski
topology of Spec(R), by stipulating that OX (D( f )) = R f , where R f denotes localisation
at f .

Definition B.1.7. A morphism of ringed spaces (X ,OX ) → (Y ,OY ) consists of a contin-
uous map f : X → Y together with a morphism of sheaves ϕ : f −1OY →OX . For us, a
section s ∈ OY (U ) will be a function (smooth, analytic or algebraic depending on the
context) s : U →K, and we will always assume that ϕ is given by s 7→ s ◦ f | f −1(U ).

Definition B.1.8. Let (X ,OX ) be a ringed space.

1. If (X ,OX ) is locally isomorphic to (Rn ,C∞), then (X ,OX ) is called a smooth mani-
fold.

2. If (X ,OX ) is locally isomorphic to (Dn ,C an), then (X ,OX ) is called a complex man-
ifold.

3. If (X ,OX ) is locally isomorphic to (Spec(R),OX ) for some ring R (the ring R could
vary depending on x ∈ X ), then (X ,OX ) is called a scheme.

Locally isomorphic means that each x ∈ X has an open neighbourhood U ⊆ X such that
(U ,OX |U ) is isomorphic to the relevant ringed space.

For us, all schemes will be over C, which means that R will be a C-algebra. Moreover,
we will often be considering Noetherian schemes, which means that each ideal I ⊆ R is
finitely generated over R. When referring to points on schemes, we will generally refer
to maximal ideals.

We will use the phrase "ringed space" to refer to any of the above three situations. In
each of them, we will be interested in sheaves of OX -modules. We want to generalise the

1We denote the unit polydisc in Cn by Dn .
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linear algebraic operations that one can perform on modules, to the sheaves of modules.
To do so, we will often require sheafification. This will be implicit in the following list.

Definition B.1.9. LetF andG be sheaves ofOX -modules on a ringed space (X ,OX ), and
let ϕ : F → G be a morphism of OX -modules. Then we define the following sheaves of
OX -modules on X , by sheafifying if necessary:

1. F ⊕G by U 7→F (U )⊕G(U )

2. F ⊗OX G by U 7→F (U )⊗OX (U ) G(U )

3. Hom(F ,G) as defined above

4. F∗ =Hom(F ,OX )

5. kerϕ by U 7→ kerϕU

6. im ϕ by U 7→ im ϕU

7. G/F by U 7→G(U )/ϕ(F (U ))

If f : X → Y is a morphism of ringed spaces, we define

f ∗F = f −1F ⊗ f −1OY
OX

where the sheafOX becomes an f −1OY -module via the morphism of sheavesϕ : f −1OY →
OX which is part of the definition of a morphism of ringed spaces.

Thus, sheaves of OX -modules form a (monoidal) category. Morphisms of ringed
spaces induce functors between the respective categories, either by pushforward or by
pullback. These are adjoints:

HomOX ( f ∗F ,G) ∼= HomOY (F , f∗G)

Of particular importance will be those OX -modules F which are locally free. That is,
every x ∈ X has an open neighbourhood U such that F |U ∼=OX |U ⊕·· ·⊕OX |U .

Proposition B.1.10. There is a bijective correspondence between locally free OX -modules
of finite rank, and vector bundles on X .

If X is a smooth manifold, these vector bundles are smooth. If it is a complex mani-
fold, they are holomorphic. We sketch a proof to aid with the intuition.

Proof. Suppose that E → X is a vector bundle. Then every x ∈ X has a local trivialisation
Φ : π−1(U ) → U ×Kr . Hence Γ(U ,E) ∼= ⊕r

i=1OX (U ). Thus, the sheaf on X defined by
V 7→ Γ(V ,E) is locally free. Conversely, suppose that F is a locally free sheaf. Let {Uα} be
an open cover for X such that F |Uα is free for all α. Then for all intersections Uαβ, there
are morphisms Uαβ → GL(r,K) which serve as transition functions. Hence, F defines a
vector bundle.
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From this algebraic perspective on vector bundles, we can also recover the fibres of
the vector bundle. If mx is the unique maximal ideal of OX ,x , then the fibre of a vector
bundle (or more generally a sheaf of OX -modules) at x is the finite dimensional vector
space Fx/mx ·Fx .

Vector bundles on a space X do not form an abelian category. For our purposes, we
will need to address this deficiency, by introducing coherent sheaves. These definitions
make sense for an arbitrary ringed space, but we will only apply them for complex man-
ifolds and schemes. We denote a complex manifold or scheme by X instead of X . This
is because we view a complex manifold X as a smooth manifold X with extra structure.

Definition B.1.11. A coherent sheaf on a scheme X is a sheaf F of OX -modules such
that

1. F is of finite type: for each x ∈ X there is an open neighbourhood U of x, and a
surjective morphism Ok

X |U →F |U for some k ∈N.

2. For any open U ⊆ X and any natural number n, any morphism ϕ : On
X |U → F |U

has a kernel of finite type.

For our purposes, we will be working on Noetherian schemes when dealing with co-
herent sheaves. In this case, there is a better intuition given by the following.

Theorem B.1.12. Let X be a projective Noetherian scheme. Then F is a coherent sheaf if
and only if F is of finite type, and every point in X has a neigbhourhood U and an exact
sequence of sheaves

On
X |U →Om

X |U →F |U → 0

This tells us that coherent sheaves locally look like the cokernels of morphisms be-
tween vector bundles. Coherent sheaves on X form an abelian category denoted by
Coh(X ).

Theorem B.1.13 (Serre). Let X be a projective algebraic variety over C, and let X an be its
analytification. Then there is an equivalence of categories

Coh(X ) ∼= Coh(X an)

Furthermore, the natural morphism H q (X ,F ) → H q (X an,Fan) is an isomorphism for
any coherent sheaf F .

The analytification of an algebraic variety is the locally ringed space (X an,Oan
X ) which

has maximal ideals as points, but with the usual Euclidean topology (obtained by tak-
ing affine opens an embedding them into Cn , from which the Euclidean topology is
inherited), and the sheaf of functions assigns to an open subset the complex analytic
functions on it, instead of the algebraic functions. We also recall the following theorem,
which mimmicks the finite dimensionality of (co)homology on a compact manifold. For
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example, the analytification of an algebraic curve is a Riemann surface, and the ana-
lytification of a smooth projective variety over C is a compact complex manifold more
generally.

Theorem B.1.14. For a projective Noetherian C-scheme X and a coherent sheaf F on X ,
the cohomology groups H q (X ,F ) are finite dimensional C-vector spaces.

B.2 Filtrations of Sheaves

We now define the Jordan-Hölder filtration for coherent sheaves, used to define S-equivalence,
as well as the Harder-Narasimhan filtration, which is relevant when considering sta-
bility conditions. First recall the polynomials P (E) defined by m 7→ χ(E ⊗O(m)) and
p(E) = P (E)/αdimE (E) = P (E)/〈[E],ωd 〉. By construction, p(E) is a monic polymomial,
allowing us to define partial ordering on the set {p(E) | E is a sheaf on X }. Then a sheaf E
is called semi-stable if p(F ) ≤ p(E) for all proper subsheaves 0 ̸=F ⊂ E , and stable if the
inequality is strict.

Definition B.2.1. Let E be a semi-stable sheaf. A Jordan-Hölder filtration of E is a se-
quence

0 = E0 ⊂ E1 ⊂ ·· · ⊂ El = E

such that the subquotients Grk (E) = Ek /Ek−1 are stable and p(Grk (E)) = p(E) for all k.

We may also require that µ(Grk (E)) =µ(E) for all k, depending on the kind of stability
we are considering.2 One can show that such a filtration always exists, and that Gr(E) =
⊕k Grk (E) is independent of the chosen filtration.

Definition B.2.2. Let E1 and E2 be semi-stable sheaves on X . Then we declare E1 ∼S E2

if Gr(E1) ∼= Gr(E2), and say that they are S-equivalent.

Clearly, if two sheaves are isomorphic then they are S-equivalent. However, the con-
verse is not necessarily true. The next type of filtration that we will use is called the
Harder-Narasimhan filtration, which is defined for pure sheaves (see 5.1.1).

Definition B.2.3. Let E be a pure sheaf of dimension d on X . A Harder-Narasimhan
filtration of E is a sequence

0 = E0 ⊂ E1 ⊂ ·· · ⊂ El = E

such that Grk (E) are semi-stable of dimension d , and p(Gr1(E)) > ·· · > p(Grl (E)).

The same definition can be made, requiring instead that µ(Gr1(E) > ·· · > µ(Grl (E)).
The version we refer to depends on the notion of stability that we are considering.

Theorem B.2.4. Every pure sheaf on X has a unique Harder-Narasimhan filtration.

2Recall that µ(E) = 1
rank(E)

∫
X c1(E)∧ωn−1
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Appendix C

Appendix: Floer Theory

C.1 Almost Complex Structures and Holomorphic Curves

First we recap almost complex structures.

Definition C.1.1. An almost complex structure on a vector bundle E → X is an auto-
morphism J : E → E such that J 2 = −id. If J is an almost complex structure on T X , we
call it an almost complex structure on X . An almost complex structure on a symplectic
manifold (X ,ω) is called compatible with ω if g (v, w) :=ω(v, J w) defines a Riemannian
metric on X .

If we look at an almost complex structure pointwise, we have J : Tx X :=V →V , which
extends to a complex linear map J : V ⊗C→V ⊗C. Since J 2 =−id, the eigenvalues of J are
±i . Consequently, we can split V ⊗C = V 1,0 ⊕V 0,1 into the corresponding eigenspaces,
which are of equal dimension. Observe that the almost complex structure J induces an
almost complex structure on T ∗

x X =V ∗ via pullback. Hence, we get a decomposition

V ∗⊗C= (V ∗)1,0 ⊕ (V ∗)0,1 = (V 1,0)∗⊕ (V 0,1)∗

In particular, (V ∗)1,0 is given by the space of complex linear maps L : V →Cw.r.t. J . This
decomposition of the cotangent space then gives

∧kV ∗⊗C=⊕p+q=k ∧p (V ∗)1,0 ⊗C∧q (V ∗)0,1

We then make the natural definition: ∧p,qV ∗ = ∧p (V ∗)1,0 ⊗C∧q (V ∗)0,1. We think of p
as the holomorphic index and of q as the anti-holomorphic index, although we note
that there is not necessarily a globally defined notion of holomorphicity. There is the
following existence result, which guarantees we can always find a (compatible) almost
complex structure on a given symplectic manifold.

Theorem C.1.2. Every symplectic manifold (X ,ω) admits a compatible almost complex
structure. The space of all compatible almost complex structures is contractible.

An important class of almost complex manifolds (and in fact complex manifolds, as
we shall see later) are orientable surfaces, i.e. orientable smooth manifolds of dimension
2.

Theorem C.1.3. Let (Σ, g ) be an orientable surface, with a Riemannian metric g . Then
the symplectic manifold (Σ,ω) admits a compatible almost complex structure, where ω is
the volume form of g .
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Proof. We recall that on an orientable Riemannian manifold, the metric defines the
Hodge star operator ⋆ : ∧k T X →∧dimR X−k T X . When dimR X = 2, we have ⋆ : ∧1T X →
∧1T X , and since ∧1V = V , we have a bundle automorphism of T X . Furthermore, ⋆2 =
(−1)k(dimR X−k), so that in our case ⋆2 =−id. Consequently, every orientable surface ad-
mits an almost complex structure, which is compatible with the volume form of g since
⋆ is an isometry.

Suppose we find ourselves with an almost complex manifold (X , J ). Then we can
consider smooth maps

u : (Σ, j ) → (X , J )

Because both manifolds have an almost complex structure, we can talk about J-holomorphic
maps, in the following sense.

Definition C.1.4. A smooth map u :Σ→ X is called J-holomorphic or pseudo-holomorphic
if du ◦ j = J ◦du. Equivalently, define ∂̄J u := du − J ◦du ◦ j . Then u is J-holomorphic if
and only if ∂̄J u = 0. The operator ∂̄J is called the Cauchy-Riemann operator.

When considering maps C→Cn , the operator above is precisely the familiar Cauchy-
Riemann operator, which vanishes if and only if the differential of the map intertwines
the complex multiplication on the respective tangent spaces.

Definition C.1.5. Let (X ,ω) be a symplectic manifold and let u : Σ→ X be a pseudo-
holomorphic curve. Then its energy is defined as

E(u) :=
∫
Σ

u∗ω=
∫
Σ
|du|2

C.2 The Maslov Index

We recall the basics of the Lagrangian-Grassmannian of a symplectic vector space, be-
cause it gives us the tools we need to define the gradings on the Floer chain complex.
By choosing an appropriate basis, we assume that our symplectic vector space is (Cn ,ω)
whereω is the standard symplectic form. Then we define the Lagrangian-Grassmannian

LGr(n) := {L ⊆Cn | L is Lagrangian w.r.t. ω}

A priori, this is merely a set. However, one readily verifies that the Lie group U(n) acts
transitively on LGr(n), with isotropy group O(n). As such, we can make the identifica-
tion LGr(n) = U(n)/O(n), which gives the Lagrangian-Grassmannian the structure of a
smooth manifold. Furthermore, we have a principal O(n)-bundle π : U(n) → U(n)/O(n),
which is in particular a fibre bundle over LGr(n) with fibre O(n). Hence, we get a long
exact sequence of homotopy groups

· · ·→π2(LGr(n)) →π1(O(n)) →π1(U(n)) →π1(LGr(n)) → 1
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As we know,π1(U(n)) ∼=Z andπ1(O(n)) ∼=Z/2. We conclude that the image ofπ1(O(n)) →
π1(U(n)) is trivial, and so exactness yields an isomorphism

π1(LGr(n)) ∼=Z
This also holds for the case n = 2, although one needs to adapt the argument, because
π1(O(2)) ∼=Z. It also holds for the case n = 1 because U(1)/O(1) = S1/{±1} ∼= S1. It can be
shown that the fundamental group has a canonical generator.

Definition C.2.1. Let γ : S1 → LGr(n) be a loop. Then its Maslov index µ(γ) is the image
of the canonical generator 1 ∈π1(S1) under the pushforward γ∗ :π1(S1) →π1(LGr(n)).

We denote by L̃Gr(n) the universal cover of the Lagrangian-Grassmannian. Obvi-
ously, these result holds for an arbitrary symplectic vector space LGr(V ,ω). As such, we
have a natural fibre bundle L→ X , with fibre Lx = LGr(Tx X ,ωx). Every Lagrangian sub-
manifold L ⊆ X defines a natural section sL : L →L|L , which is also a map f : L → LGr(n).
That is, T L is obtained as the pullback of the tautological bundle over LGr(n), via the
map f , because LGr(n) is the classifying space for Lagrangian sub-bundles of a sym-
plectic vector bundle of rank 2n.

Definition C.2.2. The Maslov class of a Lagrangian submanifold L ⊆ X is the cohomol-
ogy class µL := f ∗µ ∈ H 1(L,Z), where µ ∈ H 1(LGr(n),Z) is the canonical generator.

For the purposes of defining graded Lagrangian submanifolds, we would like to lift
L → X to a bundle L̃ → X whose fibre is L̃Gr(Tx X ,ωx). The Maslov class is the ob-
struction to lifting the section sL of L|L to a section of L̃|L . We refer to L̃ as a Maslov
covering. Not every symplectic manifold admits a Maslov cover, in the same way that
not every manifold admits a spin structure. This is because we need to lift a principal
Sp(2n,R)-bundle to a Sp∞(2n,R)-bundle, where the latter denotes the group whose el-
ements consist of pairs (A,ϕ) with A ∈ Sp(2n,R) and ϕ a Z-equivariant diffeomorphism
of L̃Gr(n), which lifts the action of A. Therefore, this group is isomorhic to an infinite
cyclic cover of Sp(2n,R). In the way that the second Stiefel-Whitney class is the ob-
struction to the existence of a lift from a principal SO(n)-bundle to a Spin(n)-bundle,
the class 2c1(X ) ∈ H 1(X ,Z) (viewing T X as a complex vector bundle via a compati-
ble almost complex structure) is the obstruction to the existence of a Maslov covering.
To see this, choose a compatible almost complex structure J , which turns T X into a
complex vector bundle. Because U(n) is a deformation retract of Sp(2n,R), the group
Sp∞(2n,R) deformation retracts onto the universal cover of U(n). As such, there is a
canonical bijection between trivialisations of (∧nT X )⊗(∧nT X ), viewed as complex line
bundles, and Sp∞(2n,R)-principal bundles. The obstruction to a trivialisation of the lat-
ter is, as we described previously, its first Chern class, which is just 2c1(X ). The bundle
(∧nT X )⊗2 = detC(T X )⊗2 arises because the universal cover of U(n) can be described as

{(A, t ) ∈ U(n)×R | det(A)2 = exp(2πi t )}

Let us takeΩ ∈Ωn(X ) which is nowhere vanishing, and such that (Ω⊗Ω)x has unit length
in (∧nT ∗

x X )⊗2 at each point x ∈ X , with respect to the metric induced by the compatible
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almost complex structure. Then we get a map det2 :L→ S1, locally defined by

{ei } 7→Ω(e1, . . . ,en)⊗Ω(e1, . . . ,en)

for an orthonormal frame {ei } of the Lagrangian sub-bundle of T X .

Definition C.2.3. A graded Lagrangian submanifold (L, f ) is a Lagrangian submanifold,
together with a function f : L → R, such that f lifts det2 ◦sL : L → S1. Equivalently, it is a
choice of lift of sL : L →L|L to s̃L : L → L̃|L .

If the Maslov class µL vanishes, we can always choose such a lift. The equivalence
between these two definitions comes from the fact that, under the assumption 2c1(X ) =
0, we have

L̃= {(l , t ) ∈L×R | det(l )2 = exp(2πi t )}

Definition C.2.4. A special Lagrangian submanifold L ⊆ X is a Lagrangian submanifold
such that det2 ◦sL = c ∈ S1 is constant.

Evidently, every special Lagrangian submanifold admits a grading.

Next we discuss the Maslov index. This will be an integer associated to l0, l1 ∈ LGr(n)
such that l0∩ l1 = {0} in Cn , which corresponds to a point p ∈ X at which two Lagrangian
submanifolds L0 and L1 intersect transversally (take li = TxLi ). We assume that 2c1(X ) =
0, and l0 =Rn , and l1 = exp(iπc1)R×·· ·×exp(iπcn)R⊆Cn for some constants c j ∈ (−1,0].
Consider the path lt in LGr given by lt = exp(iπtc1)R× ·· · × exp(iπtcn)R. Fix a form
Ω ∈ Ωn(X ) such that Ω⊗Ω is nowhere vanishing and has unit length at each point, as
before. We also denote by Ωt ∈ ∧n

C
T ∗

x X ∼= C its restriction to the subspace lt ⊆ Tx X , so
we get a function det2 : [0,1] → S1 via

t 7→ (Ωt )2 ∈ S1

Choose a lift g : [0,1] → R of det2, which is always possible since the interval is con-
tractible.

Definition C.2.5. Let (L0, f0) and (L1, f1) be transversally intersecting graded Lagrangian
submanifolds, and take p ∈ L0 ∩L1. Let g be as above. The absolute Maslov index of
p ∈ L0 ∩L1 is defined as

I (p) := ( f1(p)− g (1))− ( f0(p)− g (0)) ∈Z

In [28], it is shown that this number is the Maslov index of a loop in LGr(n). We have
a path lt connecting l0 to l1 in LGr(n). Furthermore, since the Lagrangians are graded,
we choose a path in L̃Gr(n) which connects the graded lift l̃0 to l̃1. This projects to a
path in LGr(n) connecting l0 and l1, let us denote it by π◦γ. Then the path l−1

t ∗ (π◦γ) :
S1 → LGr(n) is canonically associated to the intersection l0∩ l1 in Tx X , up to homotopy.
Then one can equivalently define I (p) :=µ(l−1

t ∗(π◦γ)), and verify that these definitions
coincide.
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One last incarnation of the Maslov index needs to be constructed, and this time, for
homotopy classes of maps [u] ∈ π2(X ,L). Suppose u : D2 → X represents such a class.
Then we can consider the pullback bundle u∗T X , which is a symplectic vector bundle
over D2. Since D2 is contractible, we can give a symplectic trivialisation for u∗T X . Since
u(∂D2) ⊆ L, where L is some Lagrangian submanifold, we have the sub-bundle

u|∗
∂D2 T L ⊆ u∗T X |∂D2

which is a Lagrangian sub-bundle. The trivialisation of u∗T X then gives us a loop γ :
S1 → LGr(n), by taking t 7→ (u|∗

∂D2 T L)t .

Definition C.2.6. The Maslov index ind([u]) of a homotopy class [u] ∈ π2(X ,L) is the
Maslov index of the loop γ. Equivalently, it is the degree of the map det2 ◦γ : S1 → S1.

C.3 Lagrangian-Floer Cohomology

We are now going to outline a cohomology theory, called Lagrangian-Floer cohomology,
which describes the intersection theory of Lagrangian submanifolds on a given sym-
plectic manifold (X ,ω). When constructing this cohomology theory, we run into some
technical problems. As such, we will always assume that the intersection L0 ∩L1 of La-
grangian submanifolds is transversal. In this case, we have that L0 ∩ L1 consists of a
(finite, if X is compact) set of points, since both L0 and L1 have codimension 1

2 dim X .
Then we set C F •(L0,L1) :=Λ〈L0 ∩L1〉 the Λ-vector space generated by the intersection
points, where Λ denotes the Novikov field:

Λ := {
∑

ai T λi | ai ∈C, lim
i→∞

λi =∞}

We wish to turn the vector space C F •(L0,L1) into a chain complex, and so we need to
endow it with a grading, and with a differential.

Definition C.3.1. The grading on C F •(L0,L1) is defined by specifying the degrees of the
generators p ∈ L0 ∩L1 to be

deg(p) := I (p)

where I (p) is the Maslov index of p from the previous subsection.

Next, we want to define the differential. In order to do this, we use a compatible
almost complex structure on X (see C.1.1). We let (X , J ,ω) denote the symplectic man-
ifold together with a regular almost complex structure J which is compatible with the
symplectic form. We say that a pseudo-holomorphic disk u : D2 → (X , J ) connects p
to q if u(−1) = p and u(1) = q . By the Riemann mapping theorem, we can also take
D2 \{−1,1} ∼=R×[0,1]. Then we are interested in maps u(s, t ) :R×[0,1] → (X , J ) such that

1. ∂̄J u = 0

2. lims→−∞ u(s, t ) = p and lims→∞(s, t ) = q for all t ∈ [0,1]
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3. u(R× {0}) ⊆ L0 and u(R× {1}) ⊆ L1

4.
∫

D2 u∗ω<∞
We denote by M(p, q,L0,L1, [u]) the space of maps which satisfy these conditions and
which represent a homotopy class [u] ∈π2(X ,L0 ∪L1), and

M(p, q,L0,L1, [u]) := M(p, q,L0,L1, [u])/R

where the action of R is given by reparameterisation of the s-coordinate. The space
M(p, q,L0,L1, [u]) is the solution space to a Fredholm problem, i.e. the kernel of the lin-
earisation of ∂̄J , and this operator is Fredholm. It follows that the dimension of M(p, q,L0,L1, [u])
is given by the index of the operator, which is the Maslov index (see [28]).

Lemma C.3.2. Let [u] be a peudo-holomorphic disk connecting p and q as above. Then

ind([u]) = I (q)− I (p)

It follows that

dimM(p, q,L0,L1, [u]) = ind([u])−1 = I (q)− I (p)−1

Assume that the Lagrangians come with spin structures on them, giving the moduli
space an orientation. We will assume that the moduli space can be compactified. This
requires some technical issues to be addressed, which we will omit. Let us denote by
M(p, q,L0,L1, [u]) its compactification. Then we can count its points with orientations.
In this way, one defines the Floer differential ∂ on generators p ∈ L0 ∩L1 by setting

∂(p) := ∑
q∈L0∩L1,

[u]∈π2(X ,L0∪L1):
ind([u])=1

#M(p, q, [u], J )T 〈ω,[u]〉 ·q

where # denotes the signed count (i.e. with orientations), and 〈ω, [u]〉 := ∫
D2 u∗ω is the

energy of u. Evidently, summing over homotopy classes [u] with ind([u]) has two im-
portant implications: the moduli spaces are 0-dimensional, and the Floer differential
indeed has degree 1.

Theorem C.3.3. The Floer differential satisfies ∂2 = 0, i.e. turns (C F •(L0,L1),∂) into a
chain complex

. . .
∂−→C F k−1(L0,L1)

∂−→C F k (L0,L1)
∂−→ . . .

The cohomology of the chain complex is independent of the choice of almost complex
structure.

We refer to [28] for the proof, as well as the technical conditions that have to be satis-
fied for the theorem to hold. In this text, we will simply assume that the theorem above
holds whenever we talk about the Floer chain complex (or its cohomology).
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Definition C.3.4. Let L0 and L1 be two transversally intersecting Lagrangian submani-
folds. Then their Floer cohomology is defined as HF •(L0,L1) := H•(C F •(L0,L1),∂).

One observes that the Floer cohomology is invariant under Hamiltonian isotopies.
Thus, if an intersection L0 ∩L1 is not transversal, we can use a time-dependent Hamil-
tonian to perturb L1, sayϕ(L1), such that the intersection L0∩ϕ(L1) is transversal. Then
we define HF •(L0,L1) := HF •(L0,ϕ(L1)). An important special case of this occurs when
L0 = L1. Under suitable conditions (i.e. when L is aspherical), one finds that HF •(L,L) ∼=
H•(L,Λ), the ordinary cohomology with coefficients in the Novikov field.
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Appendix D

Homological Algebra Preliminaries

This appendix contains the preliminary notions from homological algebra that we need,
to rigorously formulate the homological mirror symmetry conjecture. Before we begin,
recall the following definitions.

Definition D.0.1. A functor L : A → A′ is called an equivalence of categories if there
exists a functor L′ :A′ →A such that L◦L′ and L′◦L are both naturally isomorphic to the
identity functor on the respective categories.

Notice that we do not require L ◦L′ = idA′ and L′ ◦L = idA. Put differently, we only re-
quire that each object inA′ is isomorphic to some object F (A) (meaning that the functor
is essentially surjective), and that L : HomA(A,B) → HomA′(L(A),L(B)) is an isomor-
phism. This is a subtle difference, but an important one.

D.1 Abelian categories and cohomology

The starting point for all of homological algebra is the notion of an abelian category,
which is an additive category with some extra convenient properties.

Definition D.1.1. An additive category is a category A such that

1. For all A,B ∈ Ob(A), HomA(A,B) is an abelian group

2. Composition of morphisms distributes over the addition:

f ◦ (g1 + g2) = f ◦ g1 + f ◦ g2 ( f1 + f2)◦ g = f1 ◦ g + f2 ◦ g

3. Ahas an object Z called the zero object: for every A ∈ Ob(A), the groups HomA(Z , A)
and HomA(A, Z ) are trivial.

4. For every pair A,B ∈ Ob(A), there exists a C ∈ Ob(A) which is both the sum and
the product of A and B .

We also simply write A ∈A instead of A ∈ Ob(A).

Of course, as with anything that is presented to us in terms of category theory, it is
important to keep in mind examples which inspire the definitions that are made.
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Example 36.

1. The category of abelian groups.

2. The category of vector spaces over a given field.

3. The category of modules over a ring

4. The category of (holomorphic) vector bundles over a (complex) manifold.

The final category we listed lacks a crucial property, which is one of the main rea-
sons why we consider coherent sheaves, rather than only holomorphic vector bundles.
Namely, the kernel of a morphism between holomorphic vector bundles need not be a
vector bundle. Instead, it is a coherent sheaf. This is why we would like more structure
than just that of an additive category. We want abelian categories, so that taking kernels
and cokernels does not take us outside of the category. This will be important, if we wish
to do homological algebra.

Definition D.1.2. An abelian category A is an additive category such that

1. Every morphism has a kernel and a cokernel

2. Every monomorphism is the kernel of some morphism

3. Every epimorphism is the cokernel of some morphism

The first condition is clear: it states precisely what we wanted, that out category is
closed under taking kernels and cokernels of morphisms. The second condition requires
that, given a monomorphism A → B , there exists a morphism f : B →C which makes

0 → A → B
f−→C

an exact sequence. In fact, we need the existence of kernels of morphisms, to be able
to talk about exact sequences in the first place. Of course, the third condition is just
the dual implication to the second. As alluded to, this is a crucial difference between
the category of vector bundles over a projective complex manifold or scheme, and the
category of coherent sheaves over it. They are both additive categories, but in positive
dimensions, only the category of coherent sheaves is an abelian category. Besides the
category of holomorphic vector bundles, the other three additive categories we listed
above are also abelian categories.

Given any abelian category A, we define Ch(A) to be the category whose objects are
complexes (i.e. di+1 ◦di = 0) indexed by integers

. . .
di−1−−−→ Ei

di−→ Ei+1
di+1−−−→ . . .
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with Ei ∈A and di ∈ HomA(Ei ,Ei+1). Objects in this category will be denoted E• and we
will usually omit the index from the differential d . A morphism f : E• → F• in the cate-
gory of chain complexes is called a chain map, and it consists of a family of morphisms
fi : Ei → Fi such that dF ◦ fi = fi+1 ◦dE . We say that E• ∈ Ch(A) is bounded if there exists
k ∈N such that Ei = 0 for all |i | ≥ k. This category of chain complexes comes equipped
with a natural shift functor, denoted [n] : Ch(A) → Ch(A). Rather than [n]E•, we write
E•[n]. The name already defines the operation: it shifts the degrees of the complex by n,
so that E [n]i = Ei+n and d [n]i = (−1)ndi+n . The use of this operation may not by imme-
diately obvious, but it will be of crucial importance later on. Observe that the original
category A embeds into Ch(A) via

E 7→ E [0] := ·· ·→ 0 → E → 0 → . . .

Given Ch(A), we can define the cohomology functors

H i : Ch(A) →A E• 7→ ker(di : Ei → Ei+1)

im (di−1 : Ei−1 → Ei )

Definition D.1.3. A complex E• is said to be concentrated in degree i if H j (E•,dE ) = 0
whenever j ̸= i .

Example 37. For any smooth manifold X , we take (X ×R,d) to get the de Rham
complex

0 →Ω0(X )
d−→Ω1(X )

d−→ . . .
d−→Ωn(X ) → 0

This is an object in the category of chain complexes of (infinite dimensional) real
vector spaces, and its cohomology objects are the de Rham cohomology groups of
the manifold. The Dolbeault complex also arises in this way, yielding the Dolbeault
cohomology groups. However, the way in which we arrive at these complexes is not
quite so straightforward. It is merely the final step in the process of sheaf cohomol-
ogy, as we will outline below.

Another example is given by the notion of a cohomology sheaf. Suppose we have
a complex manifold X and a complex of coherent sheaves E• over X . Then the i -th
cohomology sheaf is defined as

H i (E•) = ker(di : Ei → Ei+1)

im (di−1 : Ei−1 → Ei )
∈ Coh(X )

That is, the cohomology object is itself a sheaf. This idea will be rather important
when we discuss the derived category of coherent sheaves later.
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D.2 Injective Objects and Sheaf Cohomology

Just as we want the morphisms within a category to preserve certain structures on the
objects of that category, so too do we want functors between additive or abelian cate-
gories to respect the extra structure on them, which leads us to the following definition.

Definition D.2.1. Let L : A1 →A2 be a functor between additive categories. Then L is
called additive if, for all A,B ∈A1, the map

L : HomA1 (A,B) → HomA2 (L(A),L(B))

is a homomorphism of abelian groups.

If the Hom-spaces of an additive category are C-vector spaces, the category is called
C-linear. In this case, a functor is called linear when the same map is a linear map be-
tween vector spaces. When we consider abelian categories, the main objects of interests
are short exact sequences

0 → A → B →C → 0

This is because they simultaneously capture the notions of kernels and cokernels, as
well as direct sums. Indeed, we recall that a short exact sequence is called split if it is
isomorphic to

0 → A → A⊕B → B → 0

where the maps are the natural maps, i.e. inclusion and projection. So what is the kind
of functor that preserves the structure of an abelian category? It would have to be an
additive functor which takes exact sequences to exact sequences. If a functor L has this
property, we say that L is an exact functor. However, we will often be interested in a
functor which only exact from one side, in the following sense: if we have a short exact
sequence as above, then the functor L will only guarantee that

0 → L(A) → L(B) → L(C )

is exact, in which case L is called left exact. Likewise, if it can only guarantee that

L(A) → L(B) → L(C ) → 0

is exact, then L is called right exact. An important case of a (contravariant) left exact
functor on an abelian category is the left Hom-functor. Fix I ∈A and define

HomA(·, I ) :A→ Ab A 7→ HomA(A, I )

We know from algebraic considerations that this is a left exact functor. However, if I is
such that HomA(·, I ) is an exact functor, then I is called an injective object.
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Example 38. Not all objects in an abelian category are exact: taking A= Ab, let
I =Z. Consider the short exact sequence

0 →Z
·2−→Z→Z/2 → 0

Applying the functor Hom(·,Z), we get

0 ←−Z ·2←−Z←− 0 ←− 0

This obviously cannot be exact, because multiplication by 2 is not surjective.

Definition D.2.2. An injective resolution of an object A ∈A is an exact sequence

0 → A → F1 → F2 → . . .

such that all the Fi ∈A are injective. When every object of A admits an injective resolu-
tion, the category is said to have enough injectives.

It is proved e.g. in [116] that the category of sheaves of abelian groups has enough
injectives.

We can now define sheaf cohomology, which is a special case of the notion of a de-
rived functor. The construction is as follows. Given a sheaf F , we find an injective reso-
lution

0 →F →F1 → . . .

which we write as 0 → F → F•. Then, we apply a left exact functor L (we will use the
global sections functor) to get a chain complex (not necessarily an exact sequence)

0 → Γ(X ,F ) → Γ(X ,F1) →··· = 0 → Γ(X ,F ) → Γ(X ,F•)

Subsequently, we can apply the cohomology functors, and we make the following defi-
nition.

Definition D.2.3. The group H i (X ,F ) := H i (Γ(X ,F•)) is called the i -th sheaf cohomol-
ogy of F .

More generally, if L :A1 →A2 is a left exact exact functor between abelian categories
with enough injectives, then we define its right derived functors R i L as follows. Let 0 →
A → F1 → . . . be an injective resolution so that 0 → L(A) → L(F1) → . . . is a chain complex.
Then R i L : A1 →A2 is defined by R i F (A) := H i (L(F•)). The name derived functor will
make more sense in the context of derived categories, to be discussed later. A basic
result from sheaf theory is that this definition is independent of the chosen injective
resolution. A proof of this fact, as well as the following proposition, can be found in
[116].
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Proposition D.2.4. Let R be a sheaf of rings on a smooth manifold X , such that R admits
a partition of unity subordinate to any open cover. Then any sheaf ofR-modules is acyclic,
i.e. H i (X ,F ) = 0 for i > 0.

In particular, any sheaf of C∞-modules on a smooth manifold, such as the sheaf of
smooth sections of a vector bundle, is an acyclic sheaf. For computations, one often
uses acyclic resolutions, rather than injective resolutions. The resulting cohomology is
the same (which is proved in the same reference).

Example 39. In very rough terms, sheaf cohomology is the answer to the fol-
lowing question: given an exact sequence of sheaves on X

0 →F1 →F2 →F3 → 0

what is the obstruction to the map Γ(X ,F2) → Γ(X ,F3) being surjective? We recall
that the exactness of a sequence of sheaves can be checked locally. For example,
consider the sequence of sheaves on S1, which is an acyclic resolution of the constant
sheaf R:

0 →R→C∞ d−→Ω1 → 0

This sequence is exact, because that is the statement of the Poincaré lemma in di-
mension 1. However, the map d : C∞(S1) = Γ(S1,C∞) → Γ(S1,Ω1) = Ω1(S1) is evi-
dently not surjective. Indeed, if we view S1 = R/Z, then d x ∈ Ω1(S1) is not the dif-
ferential of a periodic function. This follows immediately from Stokes’s theorem. In
fact, d x is a generator for H 1(S1) ∼= R, so we can already see how the language of
sheaves, abelian categories and cohomology functors let us connect these more ab-
stract notions to the de Rham cohomology of a manifold. As we know, the cohomol-
ogy (integer or real coefficients) of a manifold is an important invariant. In fact, the
sheaf cohomology of the constant sheaf G for some abelian group G is just H k (X ,G)
in the ordinary sense of algebraic topology. The de Rham complex is an acyclic res-
olution of the constant sheaf R, since we have an exact sequence of sheaves:

0 →R ,−→C∞ d−→Ω1 d−→Ω2 d−→ . . .

Each sheaf in this resolution is a sheaf of C∞-modules, meaning the resolution is
indeed acyclic. As such, we see that the sheaf cohomology of R can be computed via
de Rham cohomology. Suppose that E → X is a holomorphic vector bundle. Then
we have a an acyclic resolution of sheaves

0 →Ω
p
X ⊗E ,−→Ωp,0 ⊗E

∂̄−→Ωp,1 ⊗E
∂̄−→Ωp,2 ⊗E

∂̄−→ . . .

So we see that the Dolbeault cohomology groups from 2.2.5 just compute the sheaf
cohomology of the sheaf of holomorphic p-forms with values in E . This is known as
the Dolbeault theorem, which states H p,q (X ,E) = H q (X ,Ωp

X ⊗E).
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So morally, we think of an exact sequence of sheaves 0 →F1 →F2 →F3 → 0 as fol-
lows: the morphism F2 → F3 asks us to solve a certain equation. Exactness of the se-
quence implies that this equation can be solved around a point, if we restrict our at-
tention to a sufficiently small neighbourhood of each point. Whether global solutions
exist, is the question of sheaf cohomology, which we might think of as the obstruction
to existence of global solutions.

D.3 Triangulated Categories

Recall that we constructed the category Ch(A) of chain complexes of an abelian category
A. We noted that there exists a shift functor [n] : Ch(A) → Ch(A) which is an equivalence
of categories. This is going to play an important role in the definition of a triangulated
category (although Ch(A) will not turn out to be a triangulated category). Observe that
[n] = [1]◦ · · ·◦ [1] if n > 0, and [n] = [1]−1 ◦ · · ·◦ [1]−1 if n < 0. Thus, the shift functor which
gives us the most important information is [1].

Definition D.3.1. Suppose a category C has a shift functor [1]. Then a triangle in C is a
diagram

A → B →C → A[1]

Alternatively, such a diagram is denoted by a triangle

A B

C

The dashed line indicates the morphism has its degree shifted. Note: there is no notion
of exactness in this diagram, which is important. We are now going to introduce distin-
guished triangles, which will be a weaker substitute for short exact sequences in certain
categories which are not abelian. Let us note in passing that a morphism between tri-
angles is a collection of morphisms between the objects in C which make the obvious
diagram commute.

Definition D.3.2. A triangulated category is an additive category C together with a shift
functor [1] and a set of distinguished triangles, which are subject to the TR axioms, out-
lined below.

The intuition for why we might want to consider such categories will be provided
after we have discussed the defining properties of distinguished triangles.

TR1 The first axiom states that:
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1. For every A ∈ C, there exists a distinguished triangle

A A

0

id

2. If two triangles are isomorphic, then either they are both distinguished, or neither
is distinguished.

3. For every f ∈ HomC(A,B), there exists an object C ( f ) called the mapping cone of
f , and a distinguished triangle

A B

C ( f )

f

TR2 The second axiom states that, given a distinguished triangle

A B

C

f

gh

then the following triangle is also distinguished:

B C

A[1]

g

h− f [1]

The converse statement should also hold.

TR3 The third axiom states that, if two distinguished triangles fit into a commutative
diagram

A B C A[1]

A′ B ′ C ′ A′[1]
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then there should exist a morphism h ∈ HomC(C ,C ′), which is not necessarily unique,
which completes the diagram:

A B C A[1]

A′ B ′ C ′ A′[1]

h

TR4 So far, the axioms have seen quite reasonable. The final axiom may seem a bit less
reasonable. It states the following. Let f ∈ HomC(A,B) and g ∈ HomC(B ,C ), which also
results in g ◦ f ∈ HomC(A,C ). Each of these morphisms can be made into a distinguished
triangle using the mapping cone from TR1. The final axiom requires the existence of a
distinguished triangle

C ( f ) C (g ◦ f )

C (g )

which makes the following diagram commute (which is why this axiom is called the oc-
tahedral axiom):

C (g ◦ f )

C ( f ) C (g )

A C

B

This concludes the list of axioms which a triangulated category needs to satisfy. Next, let
us try to shed some light on them, as is done in [38].

Example 40. Given a continuous map between topological spaces f : X → Y ,
the mapping cone is defined via

C ( f ) := (X × I )⊔Y / ∼ (x,0) ∼ (x ′,0), (x,1) ∼ f (x)

We can view C ( f ) as providing a "(co)kernel up to homotopy equivalence", in the
following sense. Let us say that for an inclusion map i : X ,−→ Y , the quotient Y /X
is the cokernel. Then C (i ) ≃ coker i , so up to homotopy equivalence, C (i ) plays the
role of the cokernel in topology. In a moment, we will see how this can be made more
precise at the level of chain complexes. We can fit C (i ) into the following sequence

X
i−→ Y

ι−→C (i )
κ−→C (ι) → . . .
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which is, up to homotopy equivalence,

X → Y → Y /X →ΣX → . . .

The suspension isomorphism from algebraic topology yields Hi (ΣX ) ∼= Hi−1(X ).
Therefore, applying the homology functor to the above sequence, one obtain the
long exact sequence of the pair (Y , X ):

Hn(X ) → Hn(Y ) → Hn(Y , X )
δ−→ Hn−1(X ) → . . .

A similar heuristic argument reveals that, if X → Y is a fibration, then C ( f ) can be
thought of as ker f , up to homotopy equivalence, in some topological sense. In par-
ticular (when restricting attention to triangulations and CW complexes), we note
that C ( f ) is homotopy equivalent to a point if and only if f is a homotopy equiva-
lence. From this, we can see a relation with short exact sequences and their induced
long exact sequences in (co)homology. But how does it relate to distinguished trian-
gles?

It can be shown that the chain complex of singular (co)chains of C ( f ) is homotopy
equivalent to the mapping cone of homological algebra, which is defined as follows.

Definition D.3.3. Let f ∈ HomCh(A)(E•,F•). The mapping cone C ( f ) of f is defined
as C ( f ) := E•[1]⊕F•, and the differential is given by

d i (a,b) = (−d i+1
E (a), f i+1(a)+d i

F (b))

Clearly, the mapping cone of homological algebra naturally fits into a sequence

E•
f−→ F•

ι−→C ( f )
π−→ E•[1]

Proposition D.3.4. [117] For any short exact sequence of chain complexes 0 → A• →
B• →C• → 0, the natural maps Bi ⊕Ai−1 → Bi →Ci define a chain map h : C ( f ) →C•.
This map induces an isomorphism Hi (h) : Hi (C ( f )) → Hi (C•).

Using this, one may prove the following result.

Theorem D.3.5. [117] Let 0 → A• → B• → C• → 0 be a short exact sequence of chain
complexes. Then up to isomorphism, the homology functor takes the distinguished
triangle

A• → B• →C ( f ) → A•[1]

to the long exact sequence

Hn(A•) → Hn(B•) → Hn(C•) → Hn−1(A•) → . . .

177



D.4. DERIVED CATEGORIES

There are two main points in the above example. The first is that the mapping cone
generalises the notion of kernels and cokernels, in the sense that we can think about
this construction as providing (co)kernels up to homotopy equivalence (whenever such
a notion exists). Let f ∈ HomA(E ,F ), which we also consider as a morphism between
the complexes E [0] → F [0]. If f is injective, then there is an isomorphism H i (C ( f )) ∼=
H i (coker f ) for all i , and if f is surjective, then there exists an isomorphism H i (C ( f )) ∼=
H i (ker f [1]) for all i . The second point is that distuinguished triangles in a triangulated
category are the avatars of long exact sequences at the level of cohomology.

D.4 Derived Categories

In the appendix, we define the cohomology functors H i : Ch(A) →A for abelian cate-
goriesA. In what is to follow, we would like to say that two morphisms f , g ∈ HomCh(A)(E•,F•)
are equivalent if the induced maps on cohomology H i ( f ) : H i (E•) → H i (F•) coincide.

Definition D.4.1. A morphism f ∈ HomCh(A)(E•,F•) is called a quasi-isomorphism if
H i ( f ) : H i (E•) → H i (F•) is an isomorphism for all i .

The basic idea of the derived category, is to apply the notion of localisation (as in
ring theory) to the category of chain complexes, so that quasi-isomorphisms become
invertible.

Theorem D.4.2. [30] There exists a category D(A) together with a functor Q : Ch(A) →
D(A), so that whenever f ∈ HomCh(A)(E•,F•) is a quasi-isomorphism, its image Q( f ) ∈
HomD(A)(E•,F•) is an isomorphism.

Of course, the bounded derived category Db(A) appearing in homological mirror
symmetry is defined as

Ob(Db(A)) := {A ∈ D(A) | ∃n ∈N : H i (A) = 0 ∀|i | > n}

Remark D.4.3. Note that the cohomology functors H i : Ch(A) → A descend to give
functors H i : D(A) →A. This is trivial, but also important.

We have written HomD(A)(E•,F•) because the functor Q does nothing to the objects,
they are still chain complexes of objects in A. As for the category Ch(A), the original cat-
egory A embeds as a full subcategory into D(A). Namely as the full subcategory of com-
plexes with cohomology concentrated in degree 0. This is going to be important later
on, for the following reason. Whenever we have an equivalence between two derived
categories D(A1) ∼= D(A2), this does not typically arise from an equivalence between A1

and A2. However, we can view both A1 and A2 as sitting inside of the same triangulated
category, and giving us a different way to "generate" this triangulated category. Putting
this into more formal terms, for a full subcategory A⊂B we define the right-orthogonal
of A to be the full subcategory A⊥ via

Ob(A⊥) := {B ∈B | HomB(A,B) = 0 ∀A ∈A}
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Definition D.4.4. Let B be a triangulated category. A t-structure on B is a full subcat-
egory A ⊂ B such that A[1] ⊂ A, and such that every B ∈ B fits into a distinguished
triangle

A → B →C → A[1]

where A ∈A and C ∈A⊥. The heart of the t-structure is defined by A♥ :=A∩A⊥[1].

In our case, we would like to define a t-structure on D(A) for which the heart is A.
This is not difficult to do. We define T := {A ∈ D(A) | H i (A) = 0 ∀i > 0}. One readily
verifies that T ⊥ = {A ∈ D(A) | H i (A) = 0 ∀i < 0}. Hence, we find that T ♥ consists of
the complexes which are concentrated in degree 0, which is equivalent to A, as desired.
Since we will be mostly interested in the bounded derived category Db(A), the notion
of a bounded t-structure is also useful. A t-structure T on B is said to be bounded if
B = ∪i , j (T [i ]∩T ⊥[ j ]). The t-structure we gave above for D(A) is evidently a bounded
t-structure for Db(A).

Theorem D.4.5. [30] A bounded t-structure T is determined by its heart T ♥.

Now that we know this, we can at least philosophically understand what it means
to say that Db(A1) ∼= Db(A2). It means that we have a triangulated category which is,
in some sense, determined in two different ways, by two different abelian categories.
Studying how these these two t-structures interact might lead to interesting insights
into the respective abelian categories, which are (as we said) typically not equivalent
themselves. Having given this motivation, let us carry out the traditional method of
constructing the derived category via the homotopy category K (A).

The basic picture to keep in mind throughout this construction, is the singular coho-
mology of topological spaces. Suppose that two continuous maps : X → Y are homo-
topic. Then the induced maps on cohomology are equivalent, f ∗ = g∗ : H i (Y ) → H i (X ).
This can be seen at the level of chain complexes because the induced maps are chain
homotopic, in the sense of the following definition:

Definition D.4.6. Two morphisms between chain complexes f , g : E• → F• are called
chain homotopic if there exists a morphism h : E• → F•[−1] such that, for all i ,

fi − gi = di−1 ◦hi +hi+1di

For example, the typical proof that the de Rham cohomology is homotopy invariant
involves the construction of a chain homotopy operator. In the homotopy category of an
abelian category, we want to declare that chain homotopic morphisms are equivalent. If
two morphisms of chain complexes are chain homotopic, we denote this by f ∼ g . One
easily verifies that this is indeed an equivalence relation.

Definition D.4.7. Let A be an abelian category. Then the homotopy category K (A) has
Ob(K (A)) = Ob(Ch(A)), and the morphisms are

HomK (A)(E•,F•) = HomCh(A)(E•,F•)/ ∼
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Thus, if we have two morphisms

f ∈ HomCh(A)(E•,F•) g ∈ HomCh(A)(F•,E•)

and f ◦g ∼ idF• as well as g ◦ f ∼ idE• , then the equivalence class of f in HomK (A)(E•,F•)
is the inverse of the equivalence class of g in HomK (A)(F•,E•). The construction inverts
homotopy equivalences. Of course, homotopy equivalences induce isomorphisms on
the respective cohomologies, so these would also be inverted in the derived category.

Definition D.4.8. In D(A) or K (A), we define a distinguished triangle to be a triangle
isomorphic to one of the form

E• F•

C ( f )

f

The important result, which can be found in [30], states that this turns both cate-
gories into triangulated categories. With this result in hand, we can construct the de-
rived category from K (A) as follows. Morphisms in the derived category can be pre-
sented as equivalence classes of diagrams:

C•

A• B•

≃

We have denoted a quasi-isomorphism by writing ≃ over the arrow. Two such diagrams
are equivalent if there exists a commutative diagram in K (A) of the form

D•

C 1• C 2•

A• B•

≃

≃

It remains to define a composition of morphisms in D(A). In other words, given two
diagrams

D1• D2•

A• B• B• C•

≃ ≃
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We want the existence of a commutative diagram

E•

D1• D2•

A• B• C•

≃ ≃

≃

This composition is well-defined and unique in D(A), by the following result.

Lemma D.4.9. [30] Let f : A•
≃−→ B•, and g : C• → B•. Then there exists a commutative

diagram in K (A) of the form

D• C•

A• B•

≃

g

f

The proof uses TR3 of the triangulated category axioms. As a corollary, the composi-
tion of morphisms is uniquely defined up to quasi-isomorphism in K (A), and is hence
defined uniquely in D(A), as can be verified by applying the lemma iteratively. Because
we have defined distinguished triangles in D(A) to be isomorphic to the distinguished
triangles coming from mapping cones, we immediately get the following result:

Proposition D.4.10. Every distinguished triangle A• → B• →C• → A•[1] results in a long
exact sequence in cohomology

· · ·→ H i (A•) → H i (B•) → H i (C•) → H i+1(A•) → . . .

Let us contemplate why we want to work with these categories in the first place. In
the words of R.P. Thomas [38]:

"Chain complexes good, (co)homology bad."

What is meant by this? Cohomology is clearly an incredibly useful tool in all kinds of
topology, geometry and algebra. The point is that the cohomology is obtained from
some chain complex, and the chain complex itself contains more information than its
(co)homology. This is obvious since the cohomology is obtained as the quotient of sub-
spaces of terms in the chain complex.

Example 41. Let us look at some smooth manifold X . Then a triangulation
T (X ) of X yields a chain complex of simplicial (co)chains C•(T (X ),Z). The chain
complex contains more information than its (co)homology, but it is not canonically
associated to X , because we had to make a choice of triangulation T (X ). However,
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different choices of triangulations lead to isomorphic (co)homologies. Let us sup-
pose that X is simply connected. Then there is the following theorem by Whitehead.

Theorem D.4.11. Let X1 and X2 be simply connected simplicial complexes. Then X1 ≃
X2 if and only if there is a simplicial complex Y and simplicial maps fi : Y → Xi which
induce quasi-isomorphisms on on the simplicial chain complexes.

As such, if we are concerned with studying objects up to homotopy equivalence,
it appears that the right notion to consider at the level of homological algebra is ac-
tually that of a quasi-isomorphism. If we then consider different triangulations of
the (simply connected) manifold, we get quasi-isomorphic chain complexes. Thus,
we can make the chain complex into a topological invariant by inverting quasi-
isomorphisms, and this is a reason for us to be interested in the derived category.

We summarise this by thinking about derived categories through the following heuris-
tics:

1. The derived category is the right setting in which to do homological algebra, re-
taining more information and yielding the right notion of isomorphism.

2. Short exact sequences of chain complexes give long exact sequences in (co)homology,
which lift to distinguished triangles in the derived category (using TR2 D.3). Every
distinguished triangle comes from a short exact sequence.

3. In particular, if 0 → A• → B• → C• → 0 is a short exact sequence in Ch(A), then
this corresponds to a distinguished triangle A• → B• → C• → A•[1] in D(A). If
A• → B• → C ( f ) → A•[1] is a distinguished triangle in D(A), there is a short exact
sequence 0 → B• → C ( f ) → A•[−1] → 0 in Ch(A). Their long exact sequences in
(co)homology are isomorphic.

D.5 A∞-Categories

We are not going to give any sort of geometric intuition for A∞-structures as we did
for derived categories, referring instead to our discussion on the derived category of
coherent sheaves, and the Fukaya category. The highly abstract theory presented in this
section should fall into place, as there is a very concrete geometric interpretation for
what we discuss here.

Definition D.5.1. An A∞-category A is a class of objects Ob(A), together with Z-graded
vector spaces HomA(A,B) for all A,B ∈ Ob(A) and for all k ≥ 1 and A0, . . . , Ak ∈ Ob(A) a
graded morphism of degree 2−k

mk : HomA(Ak−1, Ak )⊗·· ·⊗HomA(A0, A1) → HomA(A0, Ak )
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which is subject to the A∞-relations∑
k=r+s+t

(−1)r+st mr+1+t ◦ (id⊗r ⊗ms ⊗ id⊗t ) (D.1)

Remark D.5.2. We are using the so-called Koszul sign convention for graded vector
spaces. This means that if f ⊗ g is a bilinear map for some graded vector spaces V ,W ,
then

( f ⊗ g )(v ⊗w) = (−1)|v |·|g | f (v)⊗ g (w)

As such, if we were to evaluate the maps mk on elements of the Hom-spaces, we would
pick up additional signs.

Remark D.5.3. There exists a "natural" interpretation of A∞-algebras in terms of coal-
gebras and codifferentials, which is generally used in the work of Kontsevich and Soibel-
man [118]. We are not going to be using that interpretation here, but this language does
make it more evident that these objects do not come completely out of the blue.

Example 42. The A∞-relations are best understood when looking at A∞-
algebras, which are A∞-categories with a single object. In this case, we obtain a
single Hom-space which we denote A. It is a Z-graded vector space, and the mk

become graded morphisms
mk : A⊗k → A

which satisfy the A∞-relations, that we now investigate for small k, i.e. k = 1,2,3. We
need to look at possible non-negative integers r, s, t which sum to k, subject to the
constraint s ≥ 1.

Case k = 1 Clearly, there is but one option: s = 1, r = t = 0. Thus, the first A∞-
relation dictates that m1◦m1 = 0. In other words, if A =⊕i∈ZAi is the decomposition
of A into its homogeneous degree parts, then m1 yields a chain complex

. . .
m1−−→ Ai−1

m1−−→ Ai
m1−−→ Ai+1

m1−−→ . . .

This follows immediately from the fact that m1 is a degree 2−k = 1 map.

Case k = 2 Keeping the same constraint in mind, there are now a few more options:

1. r = 0, s = 2, t = 0

2. r = 0, s = 1, t = 1

3. r = 1, s = 1, t = 0
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The A∞-relation becomes

(−1)0+2·0m1 ◦m2 + (−1)0+1·1m2 ◦ (m1 ⊗ id)+ (−1)1+1·0m2 ◦ (id⊗m1) = 0 ⇐⇒
m1 ◦m2 −m2 ◦ (m1 ⊗ id)−m2 ◦ (id⊗m1) = 0 ⇐⇒

m1 ◦m2 = m2 ◦ (m1 ⊗ id+ id⊗m1)

If we view m2 as defining a multiplication operation m2 : A⊗A → A, then this tells us
that the differential m1 satisfies the (graded) Leibniz rule. However, the multiplica-
tion defined by m2 does not turn A into an algebra, because it may not be associative,
and the existence of an identity is not guaranteed; see the case k = 3.

Case k = 3 We again investigate the possible choices:

1. r = 0, s = 3, t = 0

2. r = 0, s = 2, t = 1

3. r = 0, s = 1, t = 2

4. r = 1, s = 2, t = 0

5. r = 1, s = 1, t = 1

6. r = 2, s = 1, t = 0

The A∞-relation becomes

(−1)0+3·0m1 ◦m3 + (−1)0+2·1m2 ◦ (m2 ⊗ id)+ (−1)0+1·2m3 ◦ (m1 ⊗ id⊗ id)+
(−1)1+2·0m2 ◦ (id⊗m2)+ (−1)1+1·1m3 ◦ (id⊗m1 ⊗ id)+ (−1)2+1·0m3 ◦ (id⊗ id⊗m1) ⇐⇒

m1 ◦m3 +m3 ◦ (m1 ⊗ id⊗ id+ id⊗m1 ⊗ id+ id⊗ id⊗m1) =
m2 ◦ (id⊗m2 −m2 ⊗ id)

What does this say? If we are given a vector space A and a linear map ∗ : A ⊗ A → A,
then we define the associator Ass : A⊗3 → A as

Ass(a ⊗b ⊗ c) = a ∗ (b ∗ c)− (a ∗b)∗ c

Evidently, ∗ defines an associative multiplication map on A if and only if Ass ≡ 0. For
us, the operation ∗ is given by a ∗b = m2(a ⊗b), so the associator is

Ass = m2 ◦ (id⊗m2 −m2 ⊗ id)

This is one side of the third A∞-relation. The other side of the equation is not nec-
essarily zero, which is why m2 does not turn A into a genuine algebra. However, it
contains two terms, one of which is a boundary in the chain complex defined by m1.
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Furthermore, if we take cycles of the chain complex (A,m1) as arguments (i.e. ele-
ments such that m1(a) = 0), then we see that at the level of cohomology, m2 actually
gives us a well-defined, associative product

m2 : H•(A)⊗H•(A) → H•(A) [a]⊗ [b] 7→ [m2(a ⊗b)]

The higher A∞-relations are interpreted similarly, as associativity up to higher ho-
motopy. This is also how we view the A∞-relations on a category, but in a more
general setting.

In general, it is easier to think about A∞-categories at the level of algebras, and try to
extrapolate relevant results to the more general setting. Let us apply this to the notion
of a morphism between A∞-algebras, which should be generalised to an A∞-functor.
It stands to reason that such a morphism f : A → B should consist of a family of linear
maps

fk : A⊗k → B

The correct grading to impose, is that fk has degree 1−k. Each fk should satisfy the k-th
A∞-relation on the respective A∞-algebras, so we require that∑

r+s+t=k
(−1)r+st fr+1+t ◦ (id⊗r ⊗m A

s ⊗ id⊗t ) = ∑
1≤r≤k=i1+···+ir

(−1)umB
r ◦ ( fi1 ⊗·· ·⊗ fir )

where u = (r − 1)(i1 − 1)+ (r − 2)(i2 − 1)+ ·· · + (ir−1 − 1). If we were looking for beauty
and elegance, this is probably not the right place. A morphism f : A → B is called strict
if fk = 0 for k ≥ 2, because in this case, the equations above reduce to

mB
k ◦ ( f1 ⊗ . . . f1) = f1 ◦m A

k ◦ (id⊗·· ·⊗ id)

for all k. The fk for k ≥ 2 could be interpreted as measuring the failure of the above
equality. On the other hand, the relation on f1 just stipulates that f1 : (A,m A

1 ) → (B ,mB
1 )

should be a morphism of chain complexes. Using the A∞-morphisms for A∞-algebra,
we can define A∞-functors.

Definition D.5.4. An A∞-functor F : A1 → A2 is a map φ : Ob(A1) → Ob(A2), and for
any finite sequence of objects A0, . . . , Ak ∈ Ob(A1), a morphism of graded vector spaces
of degree 1−k

fk : HomA∞(A0, A1)⊗·· ·⊗HomA1 (Ak−1, Ak ) → HomA2 (φ(A0),φ(Ak ))

such that for any sequence A1, . . . , AN ∈A1, the sequence fk defines an A∞-morphism

f : ⊕i , j HomA1 (Ai , A j ) →⊕i , j HomA2 (φ(Ai ),φ(A j ))

185



D.5. A∞-CATEGORIES

Such functors can be composed. Let F : A1 →A2 and G : A2 →A3. We set H :=G ◦F
and take

hk = ∑
r≥1

∑
s1+···+sr =k

g r ◦ ( f s1 ⊗·· ·⊗ f sr )

The map on objects should be clear. In this way, we obtain the category of A∞-categories,
which is in fact a genuine category.

The statement of homological mirror symmetry involves an A∞-quasi-equivalence
between A∞-categories. To state what this is, we note that, just as the cohomology of
an A∞-algebra becomes a (not necessarily unital) non-commutative algebra, so too can
we recover a category from an A∞-category (with the exceptions that there may be no
identity morphisms). In particular, given an A∞-category A, we define H•(A) to be the
category whose objects are those of A, and whose morphisms are given by

HomH•(A)(A0, A1) := H•(HomA(A0, A1))

Because we have passed to cohomology, the composition of morphisms is now associa-
tive, as it was for the A∞-algebra case. We similarly define H 0(A), except by taking

HomH 0(A)(A0, A1) := H 0(HomA(A0, A1))

Clearly, an A∞-functor F :A1 →A2 induces a functor

H•(F ) : H•(A1) → H•(A2)

by taking a morphism [a] ∈ H•(HomA1 (A0, A1)) to [F1(a)]. For us, the categories H•(Ai )
will be genuine categories, i.e. each object will have an identity morphism. We make the
following definition with this understanding in mind.

Definition D.5.5. Let A1 and A2 be A∞-categories, and suppose that H•(Ai ) are both
categories. Let F : A1 →A2 be an A∞-functor. Then F is called a quasi-equivalence of
A∞ categories if

H•(F ) : H•(A1) → H•(A2)

is an equivalence of categories.

In some sense, we only care about A∞-structures up to quasi-equivalence. As such,
we want a good model for a certain A∞-structure, i.e. the most convenient representa-
tive of a quasi-isomorphism class of A∞-categories. This leads to the notion of a mini-
mal model.

Theorem D.5.6 (Kontsevich-Soibelman [118]). Let A be an A∞-category. Then there ex-
ists an A∞-structure on H•(A) such that the differential vanishes, and a quasi-isomorphism
H•(A) ≃A.

There is one final ingredient that we need. Namely, we need to construct Db(A) for
an A∞-category, or something which plays the role of the bounded derived category.
This is done via twisted complexes, for which we need to define the A∞ version of the
Yoneda embedding, for which we need some additional machinery.
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Definition D.5.7. Let A be an A∞-category. Then a (right) A∞-module M over A con-
sists of a graded vector space M(A) for each A ∈A, together with multiplication maps
of degree 2−k for k ≥ 1

mM
k :M(Ak−1)⊗HomA(Ak−2, Ak−1)⊗·· ·⊗HomA(A0, A1) →M(A0)

which satisfy the relations D.1. However, the term

mr+1+t ◦ (id⊗r ⊗ms ⊗ id⊗t

is to be interpreted as
mM

r+1+t ◦ (mM
s ⊗ id⊗t )

when r = 0 and as
mM

r+1+t ◦ (id⊗r ⊗ms ⊗ id⊗t )

when r > 0. Of course, m j are the multiplication maps of the A∞-category.

Once again, the relation for k = 1 makes each M(A) into a chain complex with dif-
ferential mM

2 , the second one tells us that the graded Leibniz rule is satisfies, and the
third one measures the failure of the associativity of the map mM

2 . We want to produce
an A∞-category of A∞-modules, denoted Mod(A). To do this, we need to specify what
a morphism between A∞-modules looks like. Let M1 and M2 be A-modules. A pre-
morphism of degree d between them is a sequence of maps of degree d −k +1 for k ≥ 1

fk :M1(Ak−1)⊗HomA(Ak−2, Ak−1)⊗·· ·⊗HomA(A0, A1) →M2(A0)

Let HomMod(A)(M1,M2) be the graded vector space of pre-morphisms between M1

and M2. We will define a differential on this vector space, and a multiplication map. All
higher mk will vanish. We define m1 on the degree d homogeneous part by

m1( f )d :=∑
n

(−1)⋆mM2
n+1 ◦ ( fd−n ⊗ id⊗n)+∑

n
(−1)⋆ fn+1 ◦ (mM1

d−n ⊗ id⊗n)

+ ∑
m,n

(−1)⋆ fd−m+1(id⊗(d−m−n) ⊗mA
n ⊗ id⊗n)

where ⋆= n +1−d . Given f , g ∈ HomMod(A)(M1,M2), we define their composition as

m2( f , g )d :=∑
n

(−1)⋆gn+1 ◦ ( fd−n ⊗ id⊗n)

We cite [5] for the fact that this yields a differential graded category. That is, we indeed
have mk = 0 for k ≥ 3, while m1 is a differential which satisfies the graded Leibniz rule
w.r.t. m2.

Definition D.5.8. An element f ∈ HomMod(A)(M1,M2) is called a homomorphism if
m1( f ) = 0. It is called an isomorphism if it is a homomorphism such that [ f ] is an iso-
morphism in H•(Mod(A)).
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Now, given any B ∈A, we can define an A∞-moduleMB by takingMB (A) := HomA(A,B),
and setting mMB

k := mA
k . This gives us a functor

Y :A→ Mod(A) B 7→ (A 7→ HomA(A,B))

which is called the A∞-Yoneda embedding. To make this into a functor, we need to
define

Yk : HomA(Ak−1, Ak )⊗·· ·⊗HomA(A0, A1) → HomMod(A)(Y (A0),Y (Ak ))

of degree 1−k. We do this by setting

(Yk (ak , . . . , a1))d (b,bd−1, . . . ,b1) := mA
k+d (ad , . . . , a1,b,bd−1, . . . ,b1)

An object A ∈ A is said to quasi-represent an A∞-module M when there is an iso-
morphism of A∞-functors Y (A) ∼= M. Technically, this definition requires us to de-
fine natural transformations between A∞-functors, but we leave this to the imagina-
tion of the reader. We prefer to work with the category Mod(A) because it allows us
to use more algebraic constructions, such as the shift functor. Define an endofunctor
Σ : Mod(A) → Mod(A) by

(ΣM)(A) :=M(A)[1]

If we suppose that, for any A ∈ A, the functor ΣY (A) is quasi-representable by some
ΣA ∈A, then we in fact get a shift functor Σ : A→A, taking A to ΣA. This is going to
be important when we discuss the Fukaya category, because it will allow us to define a
shift functor in an easy way. However, our present goal is to make A into a triangulated
category, so we need an analogue of the mapping cone construction as well. Again, we
construct a sensible A-module, which is in this case defined for f ∈ Hom0

A(B1,B2) by
setting

C ( f )(A) := HomA(A,B1)[1]⊕HomA(A,B2)

The morphisms are defined by

mC ( f )
k ((b0,b1), ak−1, . . . , a1) = (mA

k (b0, ak−1, . . . , a1,mA
k (b1, ak−1, . . . , a1)+mA

k+1( f ,b0, ak−1, . . . , a1))

As for the chain complex version of the mapping cone, we get canonical (pre-)morphisms

ι ∈ Hom0
Mod(A)(Y (B2),C ( f )) π ∈ Hom1

Mod(A)(C ( f ),Y (B1))

We do not distinguish between the A-module C ( f ) and an object which represents it.
Then the above morphisms give us a triangle in H•(Mod(A)).

Y (B1) Y (B2)

C ( f )

[Y1( f )]

[ι][π]

This finally allows us to define the notion of a triangulated A∞-category.
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Definition D.5.9. A distinguished triangle in an A∞-category A is a diagram in H•(A)
which is isomorphic to the triangle above under the Yoneda embedding. An A∞-category
is said to be triangulated if

1. There is a shift functor Σ :A→A.

2. Every [ f ] ∈ HomH 0(A)(A,B) can be extended to a distinguished triangle.

3. For every A ∈A, there exists A′ ∈A such that ΣA′ ∼= A ∈ H 0(A).

Not all A∞-categories are triangulated, and in particular, the Fukaya category is not
(or at least, is not known to be). There is a way to modify the category A to produce a
triangulated category, by using twisted complexes.

Definition D.5.10. A twisted complex in an A∞-category is a sequence of objects A1, . . . , An

together with a strictly lower diagonal matrix µ of morphisms µi j ∈ Hom1(A j , Ai ) satis-
fying

∑
k mk (µ, . . . ,µ) = 0.

A twisted object is thus a pair (A,µA). The category Tw(A) has these as objects, and
the Hom-spaces are defined by

HomTw(A)((A,µA), (B ,µB )) :=⊕i , j HomA(Ai ,B j )

which makes Tw(A) into an A∞-category. We assume that A has a shift functor Σ, which
(as mentioned) the Fukaya category does. Then given f ∈ Hom0

Tw(A)((A1,µA1 ), (A2,µA2 )),
we define

C ( f ) := ((ΣA1, A2),

(
Σ(µA1 ) 0
−Σ( f ) µA2

)
)

This gives us an abstract mapping cone of f , which turns Tw(A) into a triangulated cat-
egory. We assume that H 0(Tw(A)) has identity morphisms, which turns it into a genuine
category.

Definition D.5.11. Let A be an A∞-category with a shift functor Σ : A→A. Then the
mapping cone constructed above turns Tw(A) into a triangulated A∞-category. We de-
fine Db(A) := H 0(Tw(A)) and say that it is the bounded derived category of A.

At this point, we have established the theory of A∞-categories that we need for the
statement of homological mirror symmetry, so we will discuss derived category of coher-
ent sheaves, as well as the twisted Fukaya category. Hopefully, these concrete examples
will provide the reader with an idea as to why these constructions were worthwhile, in
spite of their rather inelegant (at times) formulations.
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