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Abstract

In this thesis, we develop the basics of category theory, both abstractly and through the use of examples
from various fields in mathematics. We cover categories, functors, natural transformations, limits and
colimits, and adjunctions. Using these categorical notions, we prove an important result in commutative
algebra, called Watts’ Theorem. This theorem states that the tensor product is the unique additive
cocontinuous functor between module categories up to natural isomorphism. Finally we use a special
class of categories called abelian categories to construct derived functors, which seek to extend left and
right exact functors, and are used to generalize many (co)homological theories seen throughout topology.
We end this last Chapter with a result that states that these derived functors can be computed by taking
the homology of an acyclic resolution.
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0 Introduction

Throughout the twentieth century, it became clear that much of modern mathematics became reliant on
thinking about algebraic and topological objects in terms of the mappings that connect them. In their paper
General Theory of Natural Equivalences from 1945 [EM45], Samuel Eilenberg and Saunders Mac Lane first
define the notions of categories, functors, and natural transformations, which are used to accommodate this
modern view. The authors also apply this theory in the context of topology, namely for generalizing various
(co)homological theories. Since then, category theory has gained much popularity throughout many fields of
mathematics. Not just as a tool for generalizing numerous concepts from other mathematical fields, but also
as a discipline of its own.

A category consists of two parts: a collection of objects, and a collection of morphisms. Each morphism
has a domain and codomain object, and we can compose two morphisms if the codomain of the first matches
the domain of the second. Moreover, each object has a designated identity morphism which acts as an identity
under the composition operation. The standard examples of categories are the ones with structured sets as
objects, and structure preserving functions between these objects as morphisms. There are categories of
groups with group-homomorphisms, rings with ring-homomorphisms, vector spaces with linear maps, smooth
manifolds with smooth maps, and many more. There are also numerous examples of categories which do not
fit in this framework.

Category theory is not just useful for generalizing the properties that these categories have, it also provides
a way to compare different categories with one another using functors. An example of such a functor is the
fundamental group; this is a functor from the category of topological spaces and continuous maps (where we
give each space a designated basepoint, and require the morphisms to preserve this basepoint) to the category
of groups. What makes the fundamental group a functor is that a continuous map (X,x)→ (Y, y) induces a
homomorphism of groups π1(X,x)→ π1(Y, y) in a way that preserves composition of morphisms.

In the first Chapter of this thesis, we explore how categories and functors are used to define and generalize
many common constructions throughout different fields of mathematics. Key among these are limits, colimits,
and adjunctions. Limits and colimits are special objects in the codomain of specific functors that satisfy a
certain universal property. An adjunction is a pair of opposite pointing functors that encode a special duality
relation between the morphisms in both categories.

Chapter 2 is mostly done in the category of R-modules, where R is a commutative ring with identity.
We build the theory of R-modules up to prove a result called Watts’ Theorem, which first appeared in the
1950s papers Abstract Description of some Basic Functors and Intrinsic Characterizations of some Additive
Functors by Samuel Eilenberg and Charles Watts [Eil60, Wat60]. The theorem states that any functor
between module categories that is ‘nice enough’ is naturally isomorphic to the tensor product functor. We
also discuss how this result can be used in the theory of module-localization. Localizing a module looks like
introducing fractions, where the numerators are elements of the module, and the denominators are elements
of a certain subset of the underlying ring. As it turns out, the functor that takes a module to its localization
is indeed ‘nice enough’ and so can be described using a tensor product.

Specifically, a functor is ‘nice enough’ if it preserves the zero module, addition of module-homomorphisms,
direct sums of modules, and cokernels of module-homomorphisms. This last property is equivalent to the
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functor being right exact, meaning it takes a short exact sequence

0→ A→ B → C → 0

to an exact sequence
FA→ FB → FC → 0.

The final Chapter considers so-called abelian categories, which are categories that resemble the category
of abelian groups to such an extent that ideas like kernels, cokernels, exact sequences, the first isomorphism
theorem, and more actually make sense. The main goal of this Chapter is to construct derived functors.
These are functors that help us to extend exact sequences either on the left or the right, and can also be used
as a measure of how close a functor is to being exact (meaning it preserves a short exact sequence on both
sides).

This Chapter ends with an example from differential geometry: We show how the classical definition of
de Rham cohomology coincides with the derived functors of a functor from the category of sheaves to the
category of abelian groups. A full exploration of the underlying sheaf theory is out of the scope of this thesis,
but Appendix A gives a short outline of the necessary definitions and results.

A word on conventions: In this thesis, we assume the Axiom of Choice as described at the beginning
of the fifth chapter of [Jec07]. Unless stated otherwise, we assume all rings have an identity, and that
ring-homomorphisms preserve this identity (that is, we presume the conventions of [LOT17]). In Chapter 2,
we also assume all rings are commutative.
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1 Category Theory

The language of categories is affectionately known as ‘abstract
nonsense,’ so named by Norman Steenrod. This term is
essentially accurate and not necessarily derogatory: categories
refer to ‘nonsense’ in the sense that they are all about the
‘structure,’ and not about the ‘meaning,’ of what they
represent.

–Paolo Aluffi [Alu09]

This Chapter introduces the basic notions from category theory that we need for the rest of the thesis.
We start by defining what a category is in this Section, along with some basic constructions like subcategories,
isomorphisms and initial/terminal objects. The Section after this one defines functors, which are akin to
mappings between categories. After this we define natural transformations, which in some sense are mappings
between functors. The next Section covers limits and colimits, which are special objects that encompass
many constructions we see in mathematics like products, kernels, direct sums and more. Finally we cover
adjunctions, which consist of a pair of opposite pointing functors that have some special properties, most
notably is that of preserving (co)limits.

A large focus throughout this entire Chapter is on examples. Truly understanding category theory requires
understanding the numerous things it generalizes. Many of the examples are not necessary for the two
Chapters on Watts’ Theorem and derived functors, and are also taken from non-algebraic contexts like set
theory, topology, and even analysis. Any specific examples needed for the later Chapters are highlighted, and
redefined in more detail in those Chapters.

Most of the content of this first Chapter is adapted from Emily Riehl’s Category Theory in Context [Rie16],
which is a textbook that covers almost all the basics of category theory. The basic definitions, examples, and
most of the notation is originally from this book.

1.1 Beginnings

Definition 1.1.1. A category consists of a collection of objects, and a collection of morphisms between these
objects. Each morphism has a specified domain and codomain object. We typically denote a morphism f

with domain A and codomain B as f : A→ B.f : A → B

Along with this, every object A has an identity morphism 1A : A → A.1A Given morphisms f : A → B and
g : B → C, there is a composite morphism g ◦ f : A→ C.g ◦ f This composition law satisfies the following two
axioms:

• For any f : A→ B, the composites 1B ◦ f and f ◦ 1A are equal to f .

• If f : A→ B, g : B → C and h : C → D are morphisms, then the compositions h ◦ (g ◦ f) and (h ◦ g) ◦ f
are equal, and thus can be denoted h ◦ g ◦ f : A→ D ▼. We say composition is associative. ▼

Notation. In a category C, we denote the collection of objects as Ob(C),Ob(C) and the morphisms between
objects A and B as C(A,B)C(A,B) or Hom(A,B)Hom(A,B) (named that way after the homomorphisms which appear in many
algebraic categories). In the interest of clarity, we may denote the composition g ◦ f of morphisms as gf .

Often, it might be easier to display information about the composition of morphisms in a commutative
diagram. This is a directed graph where the vertices represent objects and the arrows individual morphisms.
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What makes a diagram commutative is that all paths with the same initial and terminal vertex through
the directed graph yield the same resulting composite morphism. As an example, saying that the following
diagram commutes is the same as saying the composition law in a category is associative: any path from A

to D should yield the same composite morphism, so (h ◦ g) ◦ f = h ◦ (g ◦ f).

A B C D
f g h

h◦g

g◦f

When drawing a commutative diagram, we often leave out identity morphisms and compositions that are
implicitly included. We use a dashed ‘99K99K’ arrow to draw the attention to a specific morphism, similar to
how one might italicize words to emphasize them in a text.

Remark. For set-theoretic reasons, the objects and morphisms of a category cannot always exist in a set,
otherwise we might encounter constructions like a ‘set of all sets’ which cannot exist. See [Shu08] for details.
We mostly ignore this technical hiccup in this thesis, and refer to vague ‘collections’ of objects and morphisms
instead. We call a category small if its morphisms actually do form a set, and locally small if, for all objects
A and B, the morphisms from A to B form a set. A category is said to be large if it is not locally small.

The following is a (non-exhaustive) list of categories. Not all of them are necessary to understand the later
sections, but many of them return to help aid other examples in this Chapter. Any examples are necessary to
know for Chapters 2 and 3 are denoted by a dagger (†).(†)

Example 1.1.2. Many categories fall in the class where the objects are sets with a certain structure, and the
morphisms are functions between these sets that preserve this structure. These are called concrete Categories.
There are also a lot of ‘exotic’ categories which do not fit this description, a few of which are also highlighted
here.

(i) (†) The category of sets, denoted Set,Set has sets as objects, and functions between sets as morphisms.
Identity morphisms are given by the identity maps, and composition of morphisms is just the composition
of functions.

(ii) TopTop has topological spaces as objects, and continuous maps as morphisms.

(iii) EuclEucl has open subsets of Euclidean spaces as objects, and continuously differentiable maps as morphisms.

(iv) ManMan has smooth real manifolds as objects, and smooth maps as morphisms.

(v) SetSet∗

∗,TopTop∗

∗,EuclEucl∗

∗,ManMan∗

∗ are the categories of pointed sets, topological spaces, Euclidean spaces and
smooth manifolds. The objects are the same as their non-pointed counterpart, but each object has a
designated basepoint. The morphisms are the same as well, with the stipulation that a morphism maps
the basepoint of its domain to the basepoint of its codomain. In all of these categories, we denote the
objects as (X,x)(X, x), where X is an object of the non-pointed category, and x is an element of X.

(vi) (†) The categories GroupGroup, Ring Ring, FieldField and MonoidMonoid have groups, rings, fields and monoids1 as objects
respectively. The morphisms are group–, ring–, field– and monoid-homomorphisms. This is where

1A monoid is a set equipped with a binary operation that is associative, and has an identity element. A monoid-homomorphism
is a map f : M → N that preserves the binary operation, as well as the identity element. The nonnegative integers Z⩾0 Z with the
addition operation form the prototypical example of a monoid.
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the name ‘morphism’ originally came from. In this thesis, we assume all rings are unitary and
ring-homomorphisms preserve this unit, unless otherwise stated.

(vii) (†) For a ring R, the category ModModR

R has left R-modules as objects, and R-module-homomorphisms
as morphisms. A special case of this is ModZ, which is ‘the same’2 as Ab,Ab the category of abelian
groups with group-homomorphisms. In a similar vein, ModK for a field K is the same as VectK ,VectK the
category of K-vector spaces with linear maps between them. We define RModR Mod to be the category of
right R-modules.

(viii) The category Quiver Quiver has quivers as objects. A quiver is a directed graph, but the vertices are allowed
to have more than one arrow between them. Specifically, a quiver consists of a set of vertices V and a
set of arrows E, along with two functions s : E → V and t : E → V which give the start and target
of an arrow respectively. A morphism m : (V,E, s, t)→ (V ′, E′, s′, t′) of quivers consists of two maps
mV : V → V ′ and mE : E → E′ that are compatible with the source and target maps. Compatibility
means that mV ◦ s = s′ ◦mE , and mV ◦ t = t′ ◦mE .

(ix) (†) For any category C, we can construct its opposite category CopCop . This category has the same objects
as C, but for every morphism f : A → B in C, the opposite category has an opposite morphism
fop : B → A instead. Composition of morphisms is defined via fop ◦ gop := (g ◦ f)op for morphisms f
and g in C:=.

(x) For a ring R, we can consider the category MatMatR

R where the objects are positive integers, and the set
of morphisms from n to m is the set of m × n matrices. The composition of morphisms is given by
matrix multiplication, and the identity and associativity axioms are satisfied using the identity matrix
and associativity of matrix multiplication. That is, if A is a matrix of size m× n, and B is one of size
k ×m, then we can form the matrix BA of size k × n. Displayed in a commutative diagram, we have

n m

k.

A

B
BA

The opposite category can be viewed as having n×m matrices from n to m instead.

(xi) Given a group (or more generally, a monoid) G, we can construct the small category BG.BG This category
has a single object, denoted •, and the set of morphisms BG(•, •) is just the set of elements of G.
Composition of morphisms is given by the multiplication of elements of G. The identity morphism is
the identity element of G, and associativity is guaranteed from the definition of a group. The opposite
category coincides with the idea of the opposite group Gop,Gop where the elements are the same as those of
G, but multiplication is defined by g ·op h := h · g.

(xii) A poset3 (P,⩽)(P,⩽) can be viewed as a small category, where the objects are elements of P . For p, q ∈ P ,
there is a single morphism p → q if p ⩽ q, and no morphism from p to q otherwise. Transitivity of

2Technically the two categories are not the same but isomorphic, as defined in Section 1.2, but the difference is so minute
that we may as well say they are equal.

3A poset is a set with a partial ordering ⩽, i.e. not all elements are comparable with one another. This ordering has to satisfy
p ⩽ p (reflexivity), p ⩽ q ⩽ r =⇒ p ⩽ r (transitivity), and p ⩽ q ⩽ p =⇒ p = q (antisymmetry) for all p, q, r in the poset. A
nice example of a poset is (O(X), ⊆), which is the set of open subsets of a topological space X with the subset-ordering.
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the ordering makes the composition of morphisms possible. The opposite category also has a tangible
meaning here, where now there is a morphism p→ q if and only if p ⩾ q.

(xiii) The category Htpy Htpy has topological spaces as objects, and homotopy classes of continuous maps as
morphisms. That is, given spaces X and Y , if two continuous maps f, g ∈ Top(X,Y ) have a homotopy
between them (as defined in e.g. [Arm83, definition 5.1, p.88]), then we consider f and g to be the
same morphism in Htpy.

This category also has a ‘pointed’ version Htpy∗,
Htpy∗ with homotopy classes of continuous maps which keep

the basepoint fixed.

(xiv) Any set can be turned into a category, where the objects of the category are elements of the set, and
the only morphisms are the identity morphisms. We call a category with only identity morphisms a
discrete category. A category is indiscrete if, for all its objects A and B, Hom(A,B) contains exactly
one morphism.

(xv) (†) There is an empty category, denoted 0,0 with no objects or morphisms. The category 11 has one object
and only an identity morphism. The category 22 has two objects (labelled 1 and 2) with identities, and a
single morphism 1→ 2. Generally, we define the category n n (for n ∈ N) to be the poset ({1, . . . , n},⩽),
viewed as a category.

Definition 1.1.3. Given two categories C and D, we can form their product category C× D.C × D Objects in this
category are pairs (A,B), where A is an object of C and B an object of D. A morphism (A1, B1)→ (A2, B2)
is given by a pair (f, g) where f : A1 → A2 is a morphism in C and g : B1 → B2 is a morphism in D.
Composition is done component-wise: (f1, g1) ◦ (f2, g2) := (f1 ◦ f2, g1 ◦ g2), and identities are defined by
1(A,B) := (1A, 1B).
The disjoint union of C and D, denoted C⨿DC ⨿ D, is a category where an object is either an object of C, or D. A
morphism in this category is a morphism of either C, or D. ▼

Another important class of categories are those generated by quivers. These categories are useful for the
construction of categories that have a specific ‘shape’, which we want to construct limits over, which we do in
Section 1.4.

Definition 1.1.4. Let Q be a quiver. The category generated by Q, denoted C(Q), has vertices of Q as
objects, and arrows of Q as morphisms. Along with this, every object gains an identity morphism, and all
possible compositions of arrows are added as morphisms as well. ▼

Example 1.1.5. Consider the following quiver Q with two vertices and two arrows:

• •.

The category C(Q) it generates has two objects, say, A and B, and at least two morphisms f : A→ B and
g : B → A:

A B.
f

g

This does not define a category yet though. Both objects still need an identity morphism, and we also need
each of the compositions fg, fgf, fgfg, . . . and gf, gfg, gfgf, . . . . With these morphisms included, C(Q) is
actually a category.
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It is often useful to consider the sub-structures that many mathematical structures contain. This is no
different for categories:

Definition 1.1.6. A category D is a subcategory of a category C if Ob(D) ⊆ Ob(C), and D(A,B) ⊆ C(A,B)
for all objects A and B in D.
We call D a full subcategory of C if, for all objects A and B in D, we have D(A,B) = C(A,B). That is, if A
and B are objects in the subcategory, then we require all morphisms between them in C to be included in
the subcategory. ▼

Example 1.1.7. Some examples of subcategories include:

(i) VectfdVectfd

K

K , the category of finite-dimensional K-vector spaces with linear maps between them is a full
subcategory of the category of K-vector spaces.

(ii) (†) Similarly, Ab is a full subcategory of Group, and SetfinSetfin , the category of finite sets, is a full subcategory
of Set.

(iii) The category of commutative rings CRing CRing is a full subcategory of Ring, which in itself is a non-full
subcategory of Rng Rng, the category of (not necessarily unitary) rings with (not necessarily unit-preserving)
ring-homomorphisms.

(iv) If G is a group and H a subgroup of G, then the one-object category BH is a (generally non-full)
subcategory of BG.

A common theme in mathematics, especially in algebra, is study objects in a category ‘up to isomorphism’.
We can define this concept with the use of a special class of morphisms:

Definition 1.1.8. A morphism f : A → B in a category is an isomorphism, or is invertible, if there is
another morphism g : B → A, such that gf = 1A and fg = 1B . In this case, we say the objects A and B are
isomorphic and write A ∼= B.A

∼

=

B The morphism g is called the inverse of f , and is often denoted by f−1,f−1 ▼

Proposition 1.1.9. The inverse of an isomorphism is an isomorphism itself and is unique as well. Moreover,
the identity morphism of any object is an isomorphism, as is the composition of isomorphisms.

Proof. Let g be an inverse of an isomorphism f . This inverse g is an isomorphism because f is an inverse of
it, which follows immediately from the definition. Regarding uniqueness, if g′ is also an inverse of f , then we
have gf = 1A = g′f . Composing with g on the right gives, by associativity,

g(fg) = g′(fg) =⇒ g1B = g′1B =⇒ g = g′,

so the inverse of f is unique.

For any object A, the identity 1A is an isomorphism because it is its own inverse. Namely 1A ◦ 1A = 1A
by definition of being an identity.

Now let h : A→ B and k : B → C be two isomorphisms. Note that, by way of associativity,

(kh)(h−1k−1) = k(hh−1)k−1 = kk−1 = 1C .

Similarly, we have (hk)(k−1h−1) = idA, showing that kh : A → C is an isomorphism, with inverse
(kh)−1 = h−1k−1.
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Example 1.1.10. Many examples of isomorphisms in the categorical sense coincide with those we are familiar
with.

(i) (†) Isomorphisms in Set are bijections, isomorphisms in Top are homeomorphisms, and isomorphisms in
Group,Ring,Field,ModR are the familiar bijective homomorphisms.

(ii) Every morphism in the one-object category BG of a group G is an isomorphism. We call a category a
groupoid if all of its morphisms are isomorphisms. With this terminology, one could define a group as a
groupoid with a single object.

(iii) For any category C, we can define Ciso
Ciso (sometimes called the maximal groupoid of C) to be the

subcategory consisting of all the objects of C, but only keeping the isomorphisms and dropping the
other morphisms. A consequence of the second part of Proposition 1.1.9 is that the maximal groupoid
is a well-defined subcategory, as it contains identities and composition of the isomorphisms.

(iv) Given a ring R, the isomorphisms in MatR are exactly the invertible matrices. Since invertible matrices
are square, this implies that any two distinct natural numbers are not isomorphic in this category.

(v) The isomorphisms in Htpy are exactly the classes of maps that define a homotopy equivalence between
two topological spaces.

This highlights an important point in category theory: though different categories may share certain
objects, their structure is defined by the morphisms between these objects. For example, in Set, the sets Z
and QQ are isomorphic, as they are both countable sets and thus have a bijection between them. While in
Group or Ring, these objects are not isomorphic at all.

A logical next step would be to generalize the concepts of injective and surjective functions, which we do
as follows:

Definition 1.1.11. We call a morphism f : A→ B in a category:

• a monomorphism (or simply a mono, or monic) if, for all morphisms g1, g2 : X ⇒ A, 4 we have that
fg1 = fg2 implies g1 = g2. In other words, a monomorphism is left-cancallable.

• an epimorphism (or simply an epi or epic) if, for all morphisms h1, h2 : B ⇒ Y , we have that h1f = h2f

implies h1 = h2. In other words, an epimorphism is right-dancallable.

Some more jargon for special kind of morphisms include endomorphisms, which are morphisms form an object
to itself, and automorphisms, which are isomorphisms from an object to itself. ▼

One can show that any isomorphism is both monic and epic; namely composing with the inverse
isomorphism proves the required implications. Monomorphisms in Set are exactly the injective functions,
while epimorphisms are exactly the surjective ones. This idea also holds in other categories: monomorphisms
and epimorphism in Top,Group and ModR are exactly the corresponding injective and surjective morphisms
repsectively. This comparison is not always accurate however. For example, the inclusion Z ↪→ QA ↪→ B in Ring
both monic and epic, but it is not surjective5.

4The notation g1, g2 : X ⇒ Y f, g : A ⇒ B means that the two morphisms are parallel, i.e. they have the same domain and codomain.
5The inclusion being monic follows from injectivity. As for it being epic, let f, g : Q ⇒ R be two ring-homomorphisms. The

image f(a/b) is equal to f(a · (1/b)) = f(a) · f(b)−1, so is completely determined by where it takes integers a and b, and the
same holds for g. Thus, denoting ι : Z ↪→ Q as the inclusion, we have that f ◦ ι = g ◦ ι implies f = g, making the inclusion epic.
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Some, but not all, monomorphisms f : A → B are left-cancellable because there is another morphism
k : B → A such that kf = 1A. These are called split monomorphisms. Similarly, we can define split
epimorphisms as those that are right-cancellable by way of a morphism h : B → A such that fh = 1B . In Set,
all monomorphisms are split, as are all epimorphisms (assuming the Axiom of Choice).

One more categorical notion to define generalizes the concept of the trivial group object in Group. Since
we usually cannot ‘look inside’ the objects like we can in concrete categories, we have to define this notion
through morphisms as well.

Definition 1.1.12. We call an object A in a category C:

• Initial if, for all objects Y in C, there is a unique morphism A→ Y (i.e. C(A, Y ) is a singleton set for
each Y );

• Terminal if, for all objects X in C, there is a unique morphism X → A (i.e. C(X,A) is a singleton set
for each X);

• A zero object if it is both initial and terminal. ▼

Example 1.1.13. The following are examples of initial and terminal objects in different categories.

(i) (†) The empty set is initial in Set, with the only function ∅ → S for a set S being the, admittedly
vacuous, empty function. Any singleton set is terminal, as the only function from a set S to a singleton
set is the one that maps all elements of S to the unique element in the singleton.

(ii) (†) The trivial group, denoted 0, is a terminal object in Group for the same reasons as in Set. Since
group homomorphisms preserve the group identity element, we also have that there is only a single
morphism from 0 to any other group. Therefore the trivial group is initial as well, and thus a zero
object. Similarly, the zero module is a zero object in ModR for any ring R.

(iii) The category Field has no initial or terminal objects, since there are no morphisms between fields
of different characteristic. However, if we consider the full subcategory Fieldp of fields with fixed
characteristic p ⩾ 0, then the prime field (which is isomorphic to Q if p = 0 and FFp

p
6 if p > 0) forms an

initial object.7

(iv) If a poset (P,⩽) has a minimal element, then that element is an initial object when we view the poset
as a category. If the poset has a maximal element, that element is terminal. If the category has a zero
object, then we necessarily have that P contains a single element (this follows from antisymmetry of
the ⩽ relation).

As we highlighted above, not every category has initial and/or terminal objects. However, if a category
does have these kind of objects, those objects are what we call ‘essentially unique’, meaning unique up to
isomorphism.

Proposition 1.1.14. The initial (resp. terminal, zero) object is unique up to isomorphism, if it exists
6The field Fp is the finite field with p elements. For a prime p, this field is usually seen as Z/pZ.
7In any characteristic, a homomorphism P → L from the prime field to another field is fully determined by the image of

1 ∈ P [LOT17, section VIII.1]. Thus since field-homomorphisms fix the multiplicative unit, we are locked into a single possible
homomorphism, making P initial. Existence is guaranteed by the field-homomorphism P → L defined by mapping P into the
prime subfield of L.
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Proof. Let I1 and I2 be two initial objects in C. By definition, there are unique morphisms f1 : I1 → I2 and
f2 : I2 → I1. Composing these morphisms leaves us with an endomorphism f1 ◦ f2 : I2 → I2. Now since I2 is
initial, there can only be a single morphism from it to another object, including itself. Because C is a category,
we require I2 to have an identity morphism, and so uniqueness of this endomorphism tells us f1 ◦ f2 = 1I2 .
Similarly, we also have f2 ◦ f1 = 1I1 . Therefore, as per Definition 1.1.8, I1 and I2 are isomorphic.

This argument can be dualized to show that terminal objects are unique up to isomorphism. This means
that the same proof strategy works, except we reverse the direction of the morphisms involved. Another way
to see it is that by replacing the category C above by Cop (see Example 1.1.2(ix)), we prove the statement
that initial objects in Cop are unique up to isomorphism. Since initial objects in Cop are terminal in C, this
shows that terminal objects are unique up to isomorphism.

Combining the two results shows that zero objects are unique up to isomorphism as well.

Remark. It should be noted that we have so far only scratched the surface of the concept of duality. Almost
every categorical definition or result has some kind of ‘dual’ variant, where everything is the same, except that
the ‘direction of the arrows have been reversed’. As we have seen, an object is initial/terminal in a category if
and only if it is terminal/initial in its opposite category. Similarly, if f : A→ B is a monomorphism, then its
opposite fop : B → A is an epimorphism in the dual category. This idea of duality returns more substantially
in the next section.

While it is interesting to generalize some of the notions of set theory and abstract algebra, the real power
of category theory is being able to connect these notions between different categories. We start on this
journey in the next section.

1.2 Functors and Variance

This Section covers functors, which can be seen as mappings between categories. These mappings allow
one to ‘change their perspective’ and look at a category through a different lens. Important mathematical
constructions like the fundamental group, Jacobian matrix, group actions, tensor products and more can be
described using functors. This often gives a deeper and more general connection between distinct categories
than if these concepts were discussed without the use of functors at all. These functors come in two flavours:
the ones that preserve the domains and codomains of morphisms, and those that swap the domains and
codomains. We call this distinction between the functors their variance.

Definition 1.2.1. Given categories C and D, a covariant functor F : C→ DF : C → D consists of the following data:

• A mapping Ob(C)→ Ob(D). We denote the image of an object A under F by F (A) or FA.

• For all objects A and B in C, F induces a mapping C(A,B) → D(F (A), F (B)). The image of a
morphism f is denoted F (f) or Ff .

These mappings are also required to preserve the composition law and identities. That is, given composable
morphisms f and g in C, we have F (f ◦ g) = F (f) ◦ F (g). Moreover, for any object A in C, we have
F (1A) = 1F (A). These two requirements are also often called functoriality, we say F maps objects in C to
objects in D functorially.
A contravariant functor F : C → D works the same on objects as a covariant one, but has a mapping
C(A,B)→ D(F (B), F (A)) that preserves identities but reverses compositions. Namely, for f and g composable
in C, we have F (f ◦ g) = F (g) ◦ F (f). ▼
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Remark. A contravariant functor C→ D corresponds exactly to a covariant functor Cop → D (or, equivalently,
a covariant functor C→ Dop). In the interest of brevity, we may write that F : Cop → D is a functor; the
variance is clear from the notation.

Just as how group-homomorphisms are functions that preserve the inner group structure (the group
operation), and continuous maps are functions that preserve the structure of topological spaces (the open
sets), functors can be seen as functions that preserve the structure of categories. What determines the
structure of categories are its morphisms: their domain/codomain, as well as compositions and identities.

Example 1.2.2. The following is a list of examples of functors. Again, most of these are not be used in
the later Chapters, but seeing more examples helps to make it more clear why one might find functoriality
important.

(i) The power set is a covariant functor P : Set → Set.P(A) It maps a set A to its power set P (A), and a
function f : A→ B to the ‘forward image’ function f∗ : P (A)→ P (B). This map takes a subset S ⊆ A
and sends it to the set f(S) = {b ∈ B | f(s) = b for some s ∈ S}.

We can also view the power set contravariantly, namely by sending a function f : A → B to the
‘pre-image’ function f−1 : P (B)→ P (A), which sends a subset T ⊆ B to f−1(T ) = {a ∈ A | f(a) ∈ T}.

(ii) The dual of a vector space can be viewed as a functor (−)∗ : Vectop
K → VectK (note the variance!)

which sends a K-vector space V to its dual space V ∗ := {f : V → K | f is linear}.V ∗ The functor sends
a linear map L : V → W to its dual (or transpose) L∗ : W ∗ → V ∗. Functoriality tells us that the
transpose of the identity map is again an identity, and that composable linear maps L1 and L2 satisfy
(L1 ◦ L2)∗ = L∗

2 ◦ L∗
1.

(iii) There is a functor O : Topop → Set that sends a topological space X to its set of open subsets O(X)O(X), C(X) (i.e.
its topology). A continuous function f : X → Y is sent to the pre-image function f−1 : O(Y )→ O(X).
This function indeed maps open subsets of Y to open subsets of X, precisely by the definition of
continuous maps.

A similar functor is C : Topop → Set, that sends a space X to its set of closed subsets. Continuity
guarantees that this is well-defined, by the fact that the pre-image of a closed set under a continuous
map is closed.

(iv) Given a topological space X, its set of open sets O(X) is a poset with respect to the ‘⊆’ relation, and
can thus be seen as a category (see Example 1.1.2 (xii)). A functor (O(X),⊆)op → Set is exactly a
presheaf of sets on X. The prototypical example of such a presheaf is C0(−,R),Ck (U, R)R which sends an open
subset U to the set of continuous functions U → R. The morphism that encodes the relation U ⊆ V is
sent to the restriction function C0(V,R)→ C0(U,R) that sends a continuous function f : V → R to
the restriction f |U : U → Rf|U .

Appendix A goes more into detail of the theory of (pre)sheaves, specifically where the codomain category
Set is replaced by Ab.

(v) The fundamental group is a covariant functor π1 : Top∗ → Group. Given a topological space X with a
specified basepoint x ∈ X, the fundamental group π1(X,x) is the group of homotopy classes of paths
α : [0, 1]→ X, such that α(0) = α(1) = x. The group operation is given by concatenating two loops, see
[Arm83, chapter 5] for details. A continuous and basepoint preserving map f : (X,x)→ (Y, y) induces
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a group homomorphism f∗ : π1(X,x)→ π1(Y, y) that sends a homotopy class of paths [α] to the class
[f ◦ α]. In fact, for any positive integer n, there is a functor πn : Top∗ → Groupπn (X, x) that sends a pointed
topological space to its n-th homotopy group.

(vi) The jacobian matrix is a covariant functor D : Eucl∗ → MatR from pointed Euclidean spaces to real
matrices. It sends a Euclidean space U ⊆ Rn to its dimension n, and a basepoint preserving C1 map
f : (U, p) → (V, q) to the Jacobian matrix Dfp,

Dfp evaluated at p. Functoriality is given by the Chain
Rule, which states that D(f ◦ g)p = Dfg(p)Dgp.

(vii) In a similar vein, the tangent space of a smooth manifold is a covariant functor T : Man∗ → VectR that
sends a pointed smooth manifold (M,p) to the tangent space TpM.Tp M A smooth map f : (M,p)→ (N, q) is
sent to the differential dfp : TpM → TqN.

dfp The cotangent space is also a funtor, though it is contravariant.

(viii) There is a covariant functorQ : Domaininj → Field from the category of integral domains(i.e. commutative
rings with no zero divisors) with injective ring-homomorphisms to the category of fields. It sends a domain
R to its field of fractions Q(R),Q(R) as defined in [LOT17, section I.3]. An injective ring-homomorphism
φ : R→ S is sent to a field homomorphism φ̄ : Q(R)→ Q(S), with φ̄(a/b) := φ(a)/φ(b). Because φ is
injective, the denominator of the image of φ̄ is never 0, which makes the functor well-defined.

(ix) (†) There is a family of forgetful functors from a concrete category to Set, which ‘forgets’ the additional
structure of the objects and just looks at them as sets. For example, the forgetful functor U : Group→ SetU

takes a group G and sends it to the underlying set, which we denote by UG. A group-homomorphism
is sent to the underlying set-function.

(x) The free group is a covariant functor F : Set → Group. It sends a set S to the free group ⟨S⟩,⟨S⟩

which consists of finite strings of elements of S, along with formal inverses of these elements, where
concatenation of strings is the group operation. A function f : S → T induces a group homomorphism
⟨S⟩ → ⟨T ⟩ that sends a string of elements of S to the string of the images of those elements. There is a
nice connection between this free functor F and the forgetful functor U , which we see in more detail in
Section 1.5.

(xi) Given groups G and H, a functor F : BG→ BH is exactly a group-homomorphism on morphisms, since
preserving composition of morphisms in these categories coincides with preserving the group operation.

More generally, a covariant functor X : BG→ Set maps the object of the domain to some set X, and
the group-homomorphisms to automorphisms of X.8 This is what we call a group action, as defined
in [DF04, section 1.7]. Functoriality tells us that, if we denote the action by · : G×X → X,· : G × X → X we have
(gh) · x = g · (h · x) and e · x = x for all elements g, h ∈ G, identity e ∈ G, and x in the set X that
G acts on. Similarly, a functor BG→ VectK is a representation of the group G as a subgroup of the
automorphism group of some K-vector space.

This can be generalized further: given a quiver Q, viewed as a category it generates as per Definition
1.1.4, a quiver representation is a covariant functor C(Q)→ VectK .

(xii) (†) The identity 1C : C→ C, which sends an object and morphism to itself, is a covariant functor. Given
an object D of D, the constant functor D : C→ D, which sends every object to D and every morphism

8This is a consequence of functors preserving isomorphisms. That is, if f is an isomorphism in C with inverse f−1, and
F : C → D is a functor, then F (f) is an isomorphism, with inverse F (f−1) This is immediate from the axioms of functoriality.
And indeed, the isomorphisms in C(X, X) for any object X form a group under composition.
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to the identity 1D, is a covariant functor as well. If C is a subcategory of D, there is a straightforward
inclusion functor I : C ↪→ D.

(xiii) (†) Given an object A in a locally small category C, we can construct the covariant and contravariant
Hom-functors represented by A. The covariant functor Hom(A,−) : C → Set sends an object B
to the set of morphisms Hom(A,B). A morphism f : B → C is sent to the pushforward function
f∗ : Hom(A,B)→ Hom(A,C).f∗ , f∗ This pushforward takes a morphism g : A→ B, and left-composes it
with f to make f∗(g) := f ◦ g : A→ C.

The contravariant Hom-functor Hom(−, A) : Cop → Set takes an object B and sends it to Hom(B,A).
A morphism f : B → C is sent to the pullback f∗ : Hom(C,A)→ Hom(B,A) which takes a morphism
g : C → A and right-composes it with f to make f∗(g) := g ◦ f : B → A.

C Set Cop Set

B Hom(A,B) B Hom(B,A)

C Hom(A,C) C Hom(C,A)

Hom(A,−)

f f∗ (f∗(g)=f◦g)

Hom(−,A)

f f∗ (f∗(g)=g◦f)

More generally, the hom-bifunctor Hom(−,−) : Cop×C→ Set is a functor that takes two objects to the
set of morphisms between them. It is contravariant in the first argument and covariant in the second.

(xiv) (†) For any ring R, and R-module T , the tensor product T ⊗R (−) : ModR → ModM ⊗R N

R is a covariant
functor that sends an R-module N to the tensor product T ⊗R N . An R-module-homomorphism
φ : N → P is sent to the homomorphism 1T ⊗φ : T ⊗RN → T ⊗R P , which acts on elementary tensors
by (1T ⊗ φ)(t⊗ n) = t⊗ φ(n).m⊗ n We define the tensor product in more detail in 2.

Given functors F : C→ D and G : D→ E, we can form their composition GF : C→ E,GF which sends an
object A in C to G(F (A)), and a morphism f to G(F (f)). This composition has some interesting properties:

Proposition 1.2.3. Given functors F : A→ B and G : B→ C, the following hold:

(a). The composition GF : A→ C is a functor. It is covariant if and only if F and G have the same variance;

(b). The compositions 1BF and F1A are both equal to F ;

(c). Compostition of functors is associative.

Proof. (a). For GF to be a functor, it needs to preserve identities and composition. Let A be an object in A,
then note GF (1A) = G(F (1A)) = G(1F (A)) = 1GF (A). As for composition, first assume both F and G are
covariant, and let f : A→ A′ and g : A′ → A′′ be morphisms in A. Then, we have

GF (g ◦ f) = G(Fg ◦ Ff) = GFg ◦GFf (covariant).

If F and G are both contravariant, we have

GF (g ◦ f) = G(Ff ◦ Fg) = GFg ◦GFf (covariant).
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Now assume the functors have distinct variance, say F is covariant while G is contravariant. Then the
composition evaluates to

GF (g ◦ f) = G(Fg ◦ Ff) = GFf ◦GFg (contravariant).

The same also holds if F is contravariant and G is covariant.

(b). Let A be an object of A, then note 1BF (A) = 1B(F (A)) = F (A) and F1A(A) = F (1A(A)) = F (A).
For the same reason, the compositions take a morphism f to F (f). Thus indeed 1BF = F1A = F .

(c). Let A be an object of A, then we have

(H(GF ))(A) = H(GF (A)) = H(G(F (A))) = (HG)(F (A)) = ((HG)F )(A).

Replacing A above by some morphism f , we also find (H(GF ))(f) = ((HG)F )(f). Thus indeed it follows
that H(GF ) = (HG)F .

Example 1.2.4. This proposition implies that we can form some kind of ‘category of categories’, where the
objects are categories and the morphisms are functors between them. Defining it like this actually conflicts
with size issues, as we might say that this category includes the ‘category of categories that don’t contain
themselves’, which runs into Russel’s paradox. So instead, we define CatCat to be the category of small categories,
with functors between them. This category is large itself, so it is not an object of itself and thus avoids the
problematic paradox.

There is a functor Ob : Cat→ SetOb : Cat → Set that sends a small category to its set of objects, and a functor to the
underlying function between the sets of objects. The forgetful functor U : Cat→ Quiver sends a category to
its underlying quiver, where we forget the fact that morphisms (arrows in the quiver) can be composed with
one another. The empty category 0 is an initial object, with a single ‘empty functor’ to every other small
category. The singleton category 1 is terminal, with only the constant functor from another category to it.
Cat has a full subcategory GroupoidGroupoid with small groupoids as objects.

The isomorphisms in this category are exactly the functors that are invertible:

Definition 1.2.5. A functor F : C→ D is an isomorphism of categories if there is another functor G : D→ C
such that FG = 1D and GF = 1C. We say C and D are isomorphic, and write C ∼= D.C

∼

=

D ▼

This concept of isomorphism between categories is strong, and it is often useful to use a weaker notion of
‘equivalence’, which we define in Section 1.3.

There are two more properties of functors which correspond, in a certain sense, to the notion of ‘local
injectiveness’ and ‘local surjectiveness’.

Definition 1.2.6. Given a covariant (resp. contravariant) functor F : C→ D and objects A and B in C, we
call the functor

• faithful if the map C(A,B)→ D(F (A), F (B)) (resp. C(A,B)→ D(F (B), F (A))) is injective;

• full if the map C(A,B)→ D(F (A), F (B)) (resp. C(A,B)→ D(F (B), F (A))) is surjective. ▼

Example 1.2.7. Here we list some examples of full and faithful functors:

(i) The action of a group G on a set X is faithful (as defined in [DF04, section 4.1]) if and only if the
corresponding functor BG→ Set is faithful.

16



(ii) If C is a subcategory of D, then the corresponding inclusion functor C ↪→ D is faithful and injective on
objects. The inclusion is full if and only if C is a full subcategory of D.

(iii) We define a concrete category to be a category C with a faithful functor U : C→ Set. These are usually
the evident forgetful functors from Example 1.2.2(ix).

A functor that is full and faithful is called fully faithful. An important property of these functors is that
they reflect isomorphisms:

Proposition 1.2.8. Let F : C→ D be a fully faithful functor, and let X and Y be objects of C. If FX ∼= FY ,
then X ∼= Y .

Proof. Let g : FX → FY be the isomorphism and g−1 : FY → FX its inverse. F being fully faithful implies
that g and g−1 have unique corresponding maps f : X → Y and f ′ : Y → X such that Ff = g and Ff ′ = g−1.
To verify that f is invertible, with f ′ as its inverse, Note that the composition f ′f : X → X is mapped to
F (f ′f) = g−1g = 1FX . Similarly, the identity 1X is also mapped to 1FX . Faithfulness of F implies that
f ′f = 1X . The same argument can be used to show ff ′ = 1Y . Thus, f is an isomorphism between X and
Y .

1.3 Natural Transformations and Equivalence

One way to motivate the definition of a natural transformation is as a mapping between functors. Given a
pair of functors F,G : C ⇒ D, and a morphism f : A→ B in C, the functors F and G map this morphism to
the following two morphisms respectively:

FA GA

FB GB.

Ff Gf

There are many ways to define some a relation from F to G, but the way we displayed the images of the
functors above hints to a nice way to do so. ‘Completing’ the diagram above by adding morphisms FA→ GA

and FB → GB is exactly what a natural transformation is.

As it turns out, these natural transformations do not just give ways to compare functors, but also the
objects that they map to. As an example from finite-dimensional linear algebra, the vector spaces V , V ∗,
and V ∗∗ := (V ∗)∗ are all isomorphic because they have the same dimension. However the isomorphism
V ∼= V ∗∗ is ‘special’ in that the isomorphism v 7→ evv (with evv(f) := f(v) for f ∈ V ∗) feels more natural
than the basis-dependent isomorphism V ∼= V ∗. This Section defines this idea in more detail using natural
isomorphisms.

Definition 1.3.1. Let F,G : C→ D be functors of the same variance between categories C and D. A natural
transformation η : F ⇒ Gη : F ⇒ G consists of a collection of morphisms ηA : FA→ GA in D for every object A in C.
These morphisms are called the components of the natural transformation. We require that, for all morphisms
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f : A→ B in C, the components satisfy Gf ◦ ηA = ηB ◦ Ff , i.e. the naturality square

FA GA

FB GB

Ff Gf

ηA

ηB

commutes. If each ηA is an isomorphism in D, we call η a natural isomorphism and write F ∼= GF

∼

=

G. We say the
objects FA and GA are naturally isomorphic in this case. ▼

The main result from Chapter 2 is statement about a natural isomorphism, so it is important we have a
good grasp of this concept. As such, the following examples are given in more detail than we have done so far.

Example 1.3.2. As alluded before, the functors 1Vectfd
K

and (−)∗∗ from Vectfd
K to itself are naturally isomorphic

for any field K. The double dual sends a linear map L : V →W to the double transpose L∗∗ : V ∗∗ →W ∗∗.
This map takes a functional µ : V ∗ → K and sends it to L∗∗(µ) : W ∗ → K. This functional is defined on
functionals f ∈W ∗ by L∗∗(µ)(f) := µ(f ◦ L) ∈ K.

The natural isomorphism ev : 1Vectfd
K
⇒ (−)∗∗ev : 1VectK ⇒ (−)∗∗ is defined component-wise as evV : V → V ∗∗, by taking a

vector v and sending it to evV,v : V ∗ → K. This morphism takes a functional f : V → K and sends it to
f(v). Now, let V and W be finite-dimensional K-vector spaces, and L : V → W a linear map. To prove
naturality, we verify that the following diagram commutes:

V V ∗∗

W W ∗∗.

L L∗∗

evV

evW

To that end, let v be a vector in V and f a functional in W ∗∗. The top path of the square is given by
L∗∗(evV (v)) = L∗∗(evV,v), which acts on f by

L∗∗(evV,v)(f) = evV,v(f ◦ L) = f(L(v)).

The other path of the square is evW (L(v)) = evW,L(v), which acts on f by evW,L(v)(f) = f(L(v)), which
is exactly what we wanted. Since v and f were picked arbitrarily, we have L∗∗ ◦ evV = evW ◦ L, proving
naturality.

In the category of all K-vector spaces, these components give a natural transformation ev : 1VectK ⇒ (−)∗∗.
But in finite dimensions, it is an isomorphism as well. To see this, note that if evV,v = evV,v′ for some
v, v′ ∈ V , then f(v) = f(v′) for all f ∈ V ∗. Using linearity, we find that f(v − v′) = 0 for every functional
f : V → K, meaning that v − v′ = 0 necessarily.9 Thus v = v′ and the map evV is injective. Since we
are dealing with finite dimensional spaces, a consequence of the Rank-Nullity Theorem states that evV is
surjective too, thus an isomorphism. This argument holds for all finite-dimensional vector spaces V , and so
ev is a natural isomorphism between the identity and double dual functors.

All of the above arguments also follow for arbitrary vector spaces (including the basis part, a consequence
of the Axiom of Choice is that every vector space has a (potentially infinite) basis [Bar14, lemma 3.1, p.5].).

9If v − v′ were nonzero, then {v − v′, v2, . . . , vn} forms a basis of V given some vectors v2, . . . , vn. Now we can define a
functional g : V → K so that g(v − v′) = 1 and g(vi) = 0. But this is a functional on which v − v′ does not vanish, contradiction!
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The problem is that evV being injective does not imply it is surjective in infinite dimensions. Regardless,
for these spaces, there is still a natural transformation ev : 1VectK ⇒ (−)∗∗. The category of reflexive vector
spaces is a full subcategory containing exactly the vector spaces for which ev is a natural isomorphism.

Example 1.3.3. The topology of a space X can be described using its open sets, but can just as well
be described by its closed sets. The same holds true for many other topological properties. This can be
made more formal by the fact that the sets O(X) of open subsets and C(X) of closed subsets are not just
isomorphic as sets, but that this isomorphism is ‘natural in X’. What we mean by this is that the functors
O,C : Topop ⇒ Set as described in Example 1.2.2(iv) are naturally isomorphic.

Now by definition, a subset of X is closed if its complement is open. This suggests a natural choice of
function O(X) → C(X), namely we take the complement of an open set with respect to X. Thus, given
a continuous map f : X → Y , we wish to show the following square commutes (recall that O and C are
contravariant!):

O(Y ) C(Y )

O(X) C(X).

f−1 f−1

Y \−

X\−

To that end, let U be an open subset of Y . The top half of the square is evaluated to be

f−1(Y \ U) = {x ∈ X | f(x) ∈ Y \ U} = {x ∈ X | f(x) ̸∈ U} = {x ∈ X | x ̸∈ f(U)} = X \ f−1(U),

which is exactly what the bottom half of the square is equal to.
Every component is invertible, following from the fact that X \ (X \ U) = U . Thus the complement is a

natural isomorphism between O and C.

Example 1.3.4. There are two functors GLGLn (R)

n and (−)× : CRing ⇒ GroupR× from the category of commutative
rings to the category of groups. Given a positive integer n, GLn takes a ring R to the group of invertible n×n
matrices with entries in R, GLn(R). A ring-homomorphism φ : R→ S is sent to the group-homomorphism
φ̄ : GLn(R) → GLn(S) that takes a matrix A = (aij) and applies φ to each entry to obtain a matrix
φ̄(A) = (φ(aij)). Note that if A is invertible, φ̄(A) is invertible too, with inverse φ̄(A−1).

The functor (−)× takes a ring R and sends it to its group of units R×. A ring homomorphism φ : R→ S

is sent to the restriction φ|R× : R× → S×. Given a unit r with inverse r−1 in R×, φ(r) is invertible with
inverse φ(r−1) because φ is a ring-homomorphism. So φ|R× is a group-homomorphism from R× to S×.

As is shown in e.g. [DF04, theorem 11.4.30, p.440], a square matrix is invertible if and only if its
determinant is a unit in R. This suggests a relationship between invertible matrices and the group of units of a
ring via the determinant. Indeed, the determinant gives a natural transformation det : GLn ⇒ (−)×. For every
commutative ring R, the components of the transformation are given by the determinant-homomorphisms
detR : GLn(R)→ R×. The commutativity of the naturality square

GLn(R) R×

GLn(S) S×

φ̄

detR

φ|R×

detS
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is rather straightforward to verify. Given an invertible matrix A = (aij) ∈ GLn(R), the top path of the
square evaluates to φ(det(A)), while the bottom path evaluates to det(φ̄(A)). Now, the determinant of A is
a combination of the entries of A using the operations on R, all of which is preserved by φ. So φ(det(A)) is
the same as computing the determinant of the matrix (φ(aij)), which is exactly det(φ̄(A)).

The determinant is generally not a natural isomorphism (the determinant is usually not injective: different
matrices can have the same determinant), but it still highlights a connection between invertible matrices and
invertible elements of the underlying ring. One that feels rather canonical if we were to write

GLn(R) = {A ∈Mn(R) | det(A) ∈ R×}.

Now if n = 1, then GL1 and (−)× are naturally isomorphic. This corroborates the common notion that
(1× 1)-matrices over R are just elements of R.

Like functors, natural transformations can also be composed. This can be done both vertically and
horizontally:

Definition 1.3.5. • Given functors F,G,H : C→ D and natural transformations η : F ⇒ G and θ : G⇒ H,
we can form their vertical composition θ ◦ η : F ⇒ H θ ◦ η component-wise by defining (θ ◦ η)A := θA ◦ ηA for all
objects A in C. The term vertical composition comes from the following diagram, which displays the natural
transformations vertically.

C D

F

H

G

η

θ

• If F1, G1 : C ⇒ D and F2, G2 : D ⇒ E are functors, with natural transformations η : F1 ⇒ G1 and
θ : F2 ⇒ G2, their horizontal composition θ ∗ η : F2F1 ⇒ G2G

θ ∗ η

1 is constructed component-wise by defining
(θ ∗ η)A to be the diagonal composition of the following commutative square:

F2F1A G2F1A

F2G1A G2G1A.

θF1A

θG1A

F2(ηA) G2(ηA)

The square itself commutes by naturality of θ, applied to the morphism ηA : F1A→ G1A, which makes (θ ∗ η)
well-defined. The term horizontal composition becomes evident when we display the functors involved as
follows:

C D E
F1

G1

F2

G2

η θ

• Given categories C and D, we can form their functor category with functors C→ D as objects, natural
transformation as morphisms, and composition is given by the vertical composition described above. This
category is denoted as [C,D].[C, D] The identity natural transformation for a functor F : C → D is the natural
transformation 1F : F ⇒ F which is defined component-wise by (1F )X := 1FX for objects X in C. ▼
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Remark. Using natural transformations, the category Cat can be viewed as a so-called 2-category. Such a
category consists of objects, ‘1-morphisms’ between those objects and ‘2-morphisms’ between the 1-morphisms,
satisfying a few composition laws we do not cover here. Indeed, Cat has small categories as objects, functors
as 1-morphisms and natural transformations as 2-morphisms. For details, see [Mac98, section XII.3].

A common theme in category theory is that the best way to study an object is to study its relation to
other objects. Representable functors are special functors that follow this philosophy more closely.

Definition 1.3.6. A covariant (resp. contravariant) functor F : C→ Set is represented by an object X of C
if F is naturally isomorphic to the Hom-functor Hom(X,−) (resp. Hom(−, X)). ▼

Example 1.3.7. The following are examples of representable functors:

(i) The forgetful functor U : Group→ Set is represented by the group Z. Namely, given a group G, its set
of elements UG is in natural bijection with the set Hom(Z, G); any group-homomorphism Z→ G is
uniquely determined by the image of 1 ∈ Z, which can be sent to any element of G. Similarly, the
forgetful functors from Ring and ModR to Set are represented by the ring Z[x]R[x1 , . . . , xn ] and the R-module R
respectively.

(ii) The functor Ob : Cat → SetOb : Cat → Set that takes a small category to its set of objects is represented by the
category 1. Indeed, functors 1 → C are in natural correspondence with objects of C, because such
functors ‘choose’ an object of C. Similarly, the functor Mor : C→ Setmor : Cat → Set that sends a small category to its
set of morphisms is represented by 2.

(iii) The composition U(−)∗ : Vectop
K → Set that takes a vector space to its set of dual vectors is represented

by the vector space K. This follows by definition of the dual space: the elements of V ∗ are exactly
linear maps V → K, which gives an equality UV ∗ = Hom(V,K).

Though it is nice to know if a functor F is representable, it is also helpful to know how we might find a
natural isomorphism between F and the corresponding Hom-functor. Another question is that of uniqueness
of representing objects. That is, if F is represented by both X and X ′, can we guarentee that X and X ′ are
isomorphic? These questions, among others, can be answered by the famous Yoneda Lemma:

Proposition 1.3.8 (Yoneda Lemma). Let C be a small category, and let F : C→ Set be a covariant functor.
For every object X of C, there is an isomorphism

Nat(C(X,−), F ) ∼= F (X)Nat(F,G)

between the set of natural transformations between the Hom-functor C(X,−) and F , and the set F (X).
Moreover, this isomorphism is natural in both X and F . The contravariant Yoneda Lemma states that for
functors F : Cop → Set, and any object X of C, there is a natural isomorphism

Nat(C(−, X), F ) ∼= F (X).

A full proof of this result is given in [Rie16, theorem 2.2.4, p.57]. One of the most useful corollaries of the
Yoneda Lemma is the following:
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Corollary 1.3.9. Let C be as above. The functor よ : C → [Cop,Set]よ,よop that takes an object Y of C to the
functor C(−, Y ) is fully faithful. Dually, the functor よop : Cop → [C,Set] that takes an object X to the
functor C(X,−) is also fully faithful.10

The reason this is useful comes from Proposition 1.2.8, which combines with the previous corollary to state
that, if C(−, X) and C(−, X ′) are naturally isomorphic, then X and X ′ are isomorphic as objects. Dually, if
C(X,−) and C(X ′,−) are naturally isomorphic, then X and X ′ are isomorphic as well. This also implies
that the representing object of a representable functor is unique up to isomorphism. The Yoneda Lemma
and this corollary reflects a more general philosophy in the field of category theory: To study an object is to
study its relation (i.e. morphisms) to the objects around it.

As was mentioned in section 1.2, the idea of categories being isomorphic is very strict, and the following
weaker notion is more common:

Definition 1.3.10. A functor F : C→ D is an equivalence of categories if there is another functor G : D→ C,
and natural isomorphisms FG ∼= 1C and GF ∼= 1D. We say the categories C and D are equivalent, and write
C ≃ D.C ≃ D ▼

Any isomorphism of categories is an equivalence as well, namely by letting the natural isomorphisms just
be the identity transformations.

Example 1.3.11. Examples of equivalence of categories include:

(i) The category 1 with a single object and only an identity morphism and the category D with two objects
A and B, and two non-identity morphisms f : A→ B and g : B → A satisfying gf = 1A and fg = 1B
are equivalent. The equivalence 1→ D sends the one object of 1 to any of the two objects in D, while
the inverse equivalence D→ 1 is the constant functor.

1 ≃ D

• ≃ A

B

1• 1A

1B

fg

More generally, if a groupoid has at least one morphism between any two objects, it is equivalent to
the automorphism group of any of its objects, seen as a one-object category. We call such a groupoid
connected. To prove this, let C be a connected groupoid, and G := C(A,A) be the automorphism group
of an object A of C. The inclusion functor BG ↪→ C sending the only object of the domain to A in C,
and an element of G to itself, is an equivalence of categories as a consequence of Proposition 1.3.12
proven below.

(ii) Given a topological space X, we can construct its fundamental groupoid Π1(X).Π1 (X). The objects of this
category are points of X, and the morphisms between two points are endpoint-preserving homotopy
classes of paths between the two points. This also defines a functor from Top to Groupoid. If the space
X is path-connected, meaning there is a path between any pair of points, then Π1(X) is connected as a
groupoid. Thus it is equivalent to the automorphism group of any of its objects.

10The functors よ and よop are called the Yoneda embeddings. The symbol used is the Japanese hiragana for the mora ‘yo’
which appears in name Nobuo Yoneda, who the Yoneda Lemma is named after.
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For a point x ∈ X, the automorphism group in Π1(X) of this point is exactly the fundamental group
Bπ1(X,x) as a one-object category. These fundamental groups are equivalent to Π1(X) for any basepoint
in X, so we have that Bπ1(X,x) ≃ Bπ1(X, y) for all x, y ∈ X. An equivalence of one-object categories
is the same as an isomorphism (the relevant natural isomorphisms consist of a single component).
Therefore, if X is path-connected, then the fundamental group of X is independent of the basepoint, as
they all give isomorphic fundamental groups.

(iii) For any field K, the categories MatK and Vectfd
K are equivalent. The equivalences are given by functors

K(−) : MatK → Vectfd
K which sends a natural number n to the vector space Kn, and an n×m matrix

A : m → n to the linear map Km → Kn that it induces with respect to the standard bases of Km

and Kn. The functor G : Vectfd
K → MatK chooses a basis for each vector space V , and sends it to its

dimension dimV ∈ N. A linear map φ : V → W is sent to the matrix [φ] : dimV → dimW formed
with respect to the chosen bases of V and W . Note that the choice of bases is not canonical at all, so
the inverse of an equivalence of categories may not be unique.

The two categories are not isomorphic, as there are uncountably many more vector spaces than natural
numbers, but they are equivalent. This highlights the connection any undergraduate student comes
across between ‘concrete’ linear algebra with numbers and matrices, and ‘abstract’ linear algebra with
vector spaces and linear maps.

Despite being a weaker notion than isomorphism, two equivalent categories share many of the same
properties that isomorphic categories do. One way to think about it is that equivalent categories are
structurally the same, except in the ‘total number’ of objects that are in a single isomorphism class (i.e. a
collection of objects that are isomorphic to one another).

We call a functor F : C→ D essentially surjective on objects if, for any object X of C, there is an object
Y of D such that FX is isomorphic to Y . This notion is used to fully characterize equivalences, and is helpful
for proving certain properties are preserved under equivalent functors:

Proposition 1.3.12.

(a). A functor is an equivalence of categories if and only if it is fully faithful and essentially surjective on
objects.

(b). If F is an equivalence of categories, and f is a monomorphism (resp. epimorphism), then Ff is a
monomorphism (resp. epimorphism) too.

(c). If F is an equivalence of categories, and X is an initial (resp. terminal, zero) object, then FX is initial
(resp. terminal, zero) as well.

Proof. (a). The proof for the ‘if’ direction is quite long, so we do not write it here fully, see [Rie16, theorem
1.5.9, p.31] for the complete proof. The idea is to let F : C→ D be fully faithful and essentially surjective
on objects, and to use the axiom of choice to construct objects GY such that F (GY ) ∼= Y by essential
surjectivity, for any object Y of D. After this one proves that the assignment Y 7→ GY is actually functorial,
and that we can find a natural isomorphism GF ∼= 1C as well.

For the ‘only if’ direction, let F : C→ D be an equivalence of categories, with G the inverse equivalence.
Now, let f, g ∈ C(A,B) be two morphisms in C such that Ff = Fg. Both f and g are morphisms so that the
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naturality square
A GFA

B GFB

ηA

GFf=GFgf g

ηB

∼=

∼=

commutes. Here η : 1C ⇒ GF is the natural isomorphism that makes F an equivalence. Now, by commutativity
we have f = η−1

B ◦GFf ◦ ηA = g. So the mapping C(A,B)→ D(FA,FB) is injective, meaning F is faithful.
An analogous argument can be used to show that G is faithful as well.

Given a morphism h : FA→ FB in C, the morphism Gh : GFA→ GFB defines a morphism k : A→ B,
given by k := η−1

B ◦Gh ◦ ηA. Now by naturality, both Gh and GFk should make the diagram

A GFA

B GFB

k

ηA

Gh

ηB

∼=

∼=

GFk

commute. Using similar arguments as before, we can conclude that GFk = Gh. Because G is faithful, we
have that Fk = h. This proves that the mapping C(A,B)→ D(FA,FB) is surjective. Thus, F is full.

Now finally, let Y be an object of D, then the natural isomorphism FG ∼= 1D tells us that FGY ∼= Y ,
thus F is essentially surjective on objects. The proof for F being contravariant is completely dual: the order
and direction of the morphisms would change but other than that the proof is the same.

(b). Again, let G be the inverse equivalence to F , and η : 1C ⇒ GF the natural isomorphism. Let
f : A → B be a monomorphism in C. To show that Ff : FA → FB is a monomorphism in D, let
g, h : X ⇒ FA be two morphisms in D so that Ff ◦ g = Ff ◦ h. Left-composing both sides with G and
applying functoriality gives GFf ◦Gg = GFf ◦Gh. Now by naturality, we have GFf = ηB ◦ f ◦ η−1

A . So it
follow that

ηB ◦ f ◦ η−1
A ◦Gg = ηB ◦ f ◦ η−1

A ◦Gh.

Left-composing with η−1
B , using that f is monic, and left-composing with ηA gives Gg = Gh. Now G is an

equivalence, so it is faithful by (a), and we find g = h. Because Ff ◦ g = Ff ◦ h implies g = h for all such
morphisms g and h, we conclude that Ff is a monomorphism. The proof for epimorphisms is dual.

(c). Now let X be an initial object in C. We wish to show that FX is initial as well. To that end, let A
be any object in D. We wish to show D(FX,A) has a single element. As per (a), F is essentially surjective,
so there is an object Y of C so that FY ∼= A, by some isomorphism g : FY → A. Because F is fully faithful
by part (a), there is a bijection of sets C(X,Y ) ∼= D(FX,FY ). Note that both of these are actually sets,
because X is initial so there can only be one morphism from X to Y .

Denoting f : X → Y as the unique morphism from the initial object to Y , the morphism Ff : FX → FY

is unique between FX and FY because of the bijection. Composing with the isomorphism g gives a morphism
g ◦ Ff : FX → A. This morphism is also unique, because if there were another ḡ : FX → A, we could
left-compose with g−1 to obtain a new morphism FX → FY , which is impossible. Because there is a

24



unique morphism FX → A for any object A of D, we conclude that FX is an initial object of D. The proof
for terminal objects is dual, and can be combined with the proof above to prove the statement for zero
objects.

Remark. Not all properties are shared among equivalent categories. For example, a category being discrete
does not imply an equivalent one is discrete as well. A category being small also does not imply an equivalent
category is. Rather humorously, some category theorists call a categorical construction ‘evil’ if it is not shared
among equivalent categories.

1.4 Limits and Colimits

Many algebraic constructions can be defined as objects satisfying a certain universal property. Loosely stated,
an object in a category satisfies a universal property if there are some morphisms going into, or out of that
object, in such a way that if there is another object with those morphisms, there is a unique morphism
between this object and the object with the universal property. One can define universal properties more
carefully with the Yoneda Lemma (see [Rie16, definition 2.3.3, p.63] for details), but here we focus on a
special class of universal properties: Limits and colimits.

Definition 1.4.1. Let J be a small11 category, and C another category.

• A functor J : J → C is called a diagram of shape J. We call the diagram finite if J contains finitely
many objects and morphisms. This category J is often thought of as a quiver, indexing a collection of
objects and morphisms of C by the use of J .

• A cone over the diagram J , denoted (N,ψ),(N,ψ) consists of an object N (called the apex), and morphisms
ψA : N → JA (called the legs of the cone) for each object A in J. This satisfies the property that for
each f : A→ B in J, the following diagram commutes:

N

JA JB.
Jf

ψA ψB

Dually, a cocone under the diagram J , denoted (M,φ), consists of an object M (called the nadir), and
morphisms φA : JA→M for each object A in J. This satisfies the property that for each f : A→ B in
J, the following diagram commutes:

JA JB

M.

Jf

φA φB

• A limit of the diagram J is a cone (lim J, ψ)lim F over J such that if (N,ψ′) is another cone over J , there
11One could also define non-small diagrams, cones, and limits, but we do not consider these in this thesis.
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exists a unique universal morphism u : N → limF such that

N

limF

JA JB
Ff

ψA ψB

ψ′
A ψ′

B
∃!u∃!f

commutes. This is the universal property of the limit.

Dually, a colimit of J is a cocone (colim J, φ)colimF under J such that if (M,φ′) is another cocone under J ,
there exists a unique universal morphism u : colim J →M such that

JA JB

colim J

M ′

φA φB

φ′
A φ′

B∃!u

commutes. This is the universal property of the colimit. ▼

Limits and colimits are special kinds of universal properties, namely one where the ‘property’ is having
morphisms to or from each object in the image of J making each triangle commute. Before moving to
examples, we should first show that these limits are unique up to isomorphism:

Proposition 1.4.2. If the limit (resp. colimit) of a diagram J : J→ C exists, it is unique up to isomorphism.
That is, if (N,ψ) and (N ′, ψ′) are limits (resp. colimits) of J , then N and N ′ are isomorphic.

Proof. Since (N,ψ) and (N ′, ψ′) are both limits of J , they are also both cones over J . Thus by the universal
property of the limit, there are unique morphisms u : N → N ′ and u′ : N ′ → N . Now we can consider their
composition u′u : N → N . Since N is a cone over J , there is a unique morphism from N to N . By the
definition of a category, we know that this morphism is required to be the identity, so u′u = 1N . Similarly,
we find that uu′ = 1N ′ , making N and N ′ isomorphic. The proof for the colimit of J is completely dual.

Remark. Note that the isomorphism u : N → N ′ in the proof above is unique. We say the limits of J
are unique up to unique isomorphism. This is an inherently stronger notion than just being unique up to
isomorphism, because there is some canonical isomorphism between the two limits.

This proof can be nearly copied for any other universal property, showing that two objects satisfying the
same universal property have a unique isomorphism between them.

Example 1.4.3. The following is a list of examples of limits and colimits, as well as examples of specific
limits in certain categories. In all of these, J is the indexing category and J is a functor from J to some other
category.

(i) If J is empty, then the limit of J : J→ C is a terminal object in C. A cone over an empty diagram is
just an object, and universality says that for every object N , there is a unique morphism N → lim J .
This is the definition of lim J being a terminal object. Dually, the colimit of an empty diagram is an
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initial object. This is why the proof of Proposition 1.1.14 and that of Proposition 1.4.2 are so similar;
the former is a special case of the latter.

(ii) (†) If J is a discrete category, then a diagram J : J → C is a collection of objects Xi in C indexed
by J. The limit of this diagram is the product of the Xi, and is denoted

∏
iXi. The definition of the

limit gives, for every i, projection morphisms πi :
∏
iXi → Xi such that, for any other object Y with

morphism fi : Y → Xi, there is a unique morphism u : Y →
∏
iXi making ∏

i

Xi

∏
iXi Y

Xi

πi
fi

∃!u

commute. This limit appears in many concrete categories as the cartesian product, or something similar
to it:

• In Set, the product of two sets X1 and X2 is the set X1×X2 consisting of ordered pairs of elements
of X1 and X2. The projections are given by π1(x1, x2) = x1 and π2(x1, x2) = x2. Given another
set Y with functions f1 and f2 from Y to X1 and X2 respectively, there is a unique function
f : Y → X1 ×X2 defined by f(y) = (f1(y), f2(y)). This can of course be extended to the product
of arbitrarily many sets. Similarly, products and projection maps also appear in Top,Group,Ring,
and ModR, where the product of two objects gives an object consisting of ordered pairs of elements
from the two original objects. In these categories, infinite products may not be as well-behaved as
the finite ones.

• Given a poset (P,⩽), viewed as a category. The product of a collection of elements {pi}i in P is
the infimum of the elements pi, if it exists. This is because infi pi is smaller than or equal to every
pi, and any other element q ⩽ pi for all i is smaller than infi pi.

• The product of two small categories in Cat is exactly the product category, as defined in Definition
1.1.3.

• Products do not exist in every category, for example the product does not exist in Field. Say the
product Q × Fp is an object in Field. This has a field-homomorphism to Q, which implies the
characteristic of this field is 0. But it should also have a field homomorphism to Fp, which implies
it has characteristic p > 0. This is impossible of course, hence the product of fields does not exist,
at least not for fields of different characteristic.

The colimit of this diagram is called the coproduct of the objects Xi and is denoted
∐
iXi. This

coproduct comes with inclusion morphisms ιi : Xi →
∐
iXi.

∐
i

Xi

• The coproduct of sets is exactly their disjoint union. The inclusion maps are just inclusions. The
same is also true for topological spaces. The disjoint union of two sets or spaces is denoted X ⨿ Y.

• This is different for groups, in Group, the coproduct of two groups G and H is their free product
G ∗ H.G ∗H This group consists of elements of the form g1h1g2h2, . . . , gnhn where each gi ∈ G and
hi ∈ H. In Ab, the coproduct is given by the direct sum, which is also a product actually. Given
abelian groups A and B, the direct sum A ⊕ B A⊕ B has projection homomorphisms (a, b) 7→ a and
(a, b) 7→ b, and inclusion homomorphisms a 7→ (a, 0) and b 7→ (0, b). The same is also true in
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ModR, and part of defining additive categories in Chapter 3 assumes those categories have a similar
coinciding product and coproduct.

• In Top∗, the coproduct of two pointed spaces (X,x) and (Y, y) is their wedge sum X∨Y := X⨿Y/ ∼,X ∨ Y

where the equivalence relation is generated by defining x ∼ y. This space can be seen as gluing the
spaces X and Y along their basepoint, giving a new space with the basepoint being the identified
common point. Given basepoint-preserving continuous maps f1 : X → Z and f2 : Y → Z, the
universal morphism f : X ∨ Y → Z is defined as follows:

f(x) =


f1(x), if x ∈ X;

f2(x), if x ∈ Y ;

f1(x) = f2(x), if x is the basepoint of X ∨ Y .

• The coproduct of a collection of elements {pi}i in a poset (P,⩽) is the supremum of the elements
pi, if it exists.

• The coproduct of two small categories is their disjoint union, which is constructed by taking the
disjoint union of their sets of objects as objects, and the disjoint union of their sets of morphisms
as morphisms.

(iii) (†) Let J be the category generated by the quiver •⇒ •, with image under J in a category C denoted
as f, g : X ⇒ Y . The limit of this diagram is the so-called equalizer of f and g, denoted Eq(f, g).Eq(f, g) The
components of the cone (Eq(f, g), ψ) are maps ψX and ψY such that f ◦ ψX = ψY = g ◦ ψX . The leg
ψX is always a monomorphism, which follows immediately from the universal poperty of the equalizer.
Usually the morphism ψY is implied, and we only really care about what ψX is. Under this convention,
the universal property of the equalizer is usually displayed as follows:

Eq(f, g) X Y.

E′

f

g

ψX

ψ′
X

∃!u

• In Set, the equalizer of two functions f, g : X ⇒ Y is the set Eq(f, g) = {x ∈ X | f(x) = g(x)},
with ψX being the inclusion map into X. Universality tells us that if N is another set with a map
ψ′
X : N → X such that f ◦ ψ′

X = g ◦ ψ′
X , then there is a unique function u : N → Eq(f, g) so that

φX ◦ u = φ′
X . We can see the map ψX : Eq(f, g)→ X as identifying elements of N with elements

of Eq(f, g) as a subset.
• An important example of equalizers is the kernel. In ModR (as well as many other algebraic

categories), the kernel of a homomorphism f : M → N is defined as the equalizer of f and the zero
map.12 In this concrete category, we can interpret the map ψM : ker f →M kerf as the inclusion map,
as this gives f ◦ ψM = 0. More generally, the equalizer of two homomorphisms f, g is ker(f − g),
where f − g : x 7→ f(x)− g(x).

The colimit of F is called the coequalizer of f and g. The leg φY : Y → Coeq(f, g)Coeq(f,g) is always an
epimorphism.

12The zero map 0 : M → N 0 : M → N takes everything in M to the zero element of N . Equivalently, the zero map may be defined as
the composition M → 0 → N , which is unique because the zero module is both initial and terminal.
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• The coequalizer of two functions f, g : X ⇒ Y in Set is the set Y/ ∼, where ∼ is the smallest
equivalence relation on Y such that f(x1) ∼ f(x2) for all x1, x2 ∈ X. The leg of the cocone
φY : Y → Y/ ∼ is the quotient map.

• The coequalizer of two R-module-homomorphisms f, g : M ⇒ N is the cokernel of the map f − g.
In this category, the cokernel can be seen as Y/ im(f − g) and is denoted coker(f − g).coker f More
generally, we can construct the quotient module M/N for any submodule N of M as the cokernel
of the inclusion N ↪→M .

(iv) Let J be the category generated by the infinite quiver · · · → • → •. The limit and colimit of a diagram
J : J→ C is called the inverse limit and direct limit respectively of the objects in the image of J .

• Given a commutative ring R, the ring of formal power Series R[[x]]R[[x]] is the same as the inverse
limit of the diagram

· · · → R[x]/x3R[x]→ R[x]/x2R[x]→ R[x]/xR[x]

in Ring. The homomorphisms

R[x]/xiR[x]→ R[x]/xi−1R[x]

are given by the projection that maps a polynomial of degree at most i− 1 to one of degree at
most i− 2 by modding out the xi−1-term. Elements of R[[x]] are infinite polynomials, called power
series,

∑
i⩾0 aix

i with ai ∈ R, where we do not worry about convergence and only their algebraic
properties. The legs R[[x]] → R[x]/xiR[x] are given by projecting a power series

∑
k⩾0 akx

k to∑i−1
k=0 akx

k + (xi). If R = Z/pZZ/nZ, then R[[x]] is isomorphic to the ring Zp,Zp of p-adic integers. For
details on the ring structure of Zp, see [DF04, exercise 7.6.11, p.269]. A p-adic number in Zp is often
displayed with positional notation as the infinite string . . . a2a1a0, with each ai ∈ {0, . . . , p− 1}.
The isomorphism Z/pZ[[x]]→ Zp sends a power series

∑
i⩾0 aix

i to the p-adic number ...a2a1a0.

• We can index the category J with the natural numbers, making it isomorphic to the poset category
(N,⩾). In this case, the image of a covariant functor a : (N,⩾)→ (R,⩾) is exactly a non-decreasing
sequence of real numbers. This diagram has an inverse limit if and only if the corresponding
sequence of real numbers converges. Namely, a real number a∗ is a limit of a non-decreasing
sequence (an) if and only if that sequence is bounded. This is the monotone convergence theorem,
which is stated and proved in [Abb15, theorem 2.4.2, p.56]. If this is the case, we have that a∗ ⩾ an

for all n ∈ N, and that for any other b so that b ⩾ an, we have b ⩾ a∗ as well. This is exactly the
universality of the limit of the diagram in this category.
Dually, a functor a : (N,⩾) → (R,⩾)op corresponds to a non-increasing sequence, which as a
diagram has an inverse limit if and only if the sequence has a limit, which happens if and only if it
is bounded.

(v) The limit of a diagram of the form • → • ← • is called a pullback. Denoting πB and πC as the projection
morphisms from B × C to B and C respectively, the pullback of B f−→ A

g←− C can be formed as the
equalizer of fπB and gπC . The colimit of a diagram • ← • → • is called the pushout, and can be
formed as the coequalizer of two morphisms from the middle object to the coproduct of the two outer
objects.
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• In Set, the pullback of B f−→ A
g←− C is the set

B ×A C := {(b, c) ∈ B × C | f(b) = g(c)}.

The pushout of B f←− A g−→ C is B⨿C/ ∼, where the relation ∼ is generated by setting f(b) ∼ g(c)
for all b ∈ B and c ∈ C.

• The wedge sum of two pointed spaces (X,x) and (Y, y) can also be viewed as a pushout in Top.
Specifically, the pushout of the diagram X ← ∗ → Y , with ∗ a one-point space and the arrows
mapping its point to x ∈ X and y ∈ Y , is the wedge sum X ∨ Y .

As we have seen, not every diagram has a limit in every category. We define the categories that do as
follows:

Definition 1.4.4. We call a category C complete if every diagram in C has a limit. We call C cocomplete if
every diagram has a colimit.
A functor G : C→ D is called continuous if it preserves all limits. That is, if J : J→ C is a diagram with a
limit (lim J, ψ) in C, then the diagram GJ : J→ D has a limit (limGJ,Gψ) in D. We say G is cocontinuous
if (colimGJ,Gφ) is a colimit in D whenever (colim J, φ) is a colimit in C. ▼

An important example of (co)continuous functors are the Hom-functors (or any representable functor),
which are proven to preserve limits in [Mac98, theorem V.4.1, p.116]:

Proposition 1.4.5. If the limit of J : J → C exists in C, then, for every object X in C, there is an
isomorphism

Hom(X, lim J) ∼= lim Hom(X, J(−))

which is natural in X. Similarly, if the colimit of J exists, then

Hom(colim J,X) ∼= lim Hom(J(−), X)

is a natural isomorphism in X as well.

It can seem daunting to check whether or not a category is (co)complete or not, but this is not actually
the case! It turns out that (co)products and (co)equalizers are all we need to construct the (co)limit of a
diagram.

Proposition 1.4.6. If a category admits products and equalizers (resp. coproducts and coequalizers), it is
complete (resp. cocomplete). Moreover, if a functor preserves products and equalizers (resp. coproducts and
coequalizers), it is continuous (resp. cocontinuous).

Proof. (Adapted from [Mes07, theorem 5.4, p.8]) Let J : J→ C be a diagram. Our strategy is to form two
products of objects in the diagram with two canonical maps between them. Then the equalizer of these maps
is the limit of the diagram.

First define A :=
∏
j JXj to be the product of all objects in the diagram, and B :=

∏
β:∃Xβ→Xα

JXα to
be the product of all objects that are the codomain of some morphism in J (this may include repeats).13

Now let f : X → Y be any morphism in J. By the definition of the product, there is a projection morphism
13Note that, by assumption of J being small, it actually makes sense to index products over a condition like ‘an object is a

codomain’. If the category were large, this may not be a formally sound construction.
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πY : B → JY . Since Y is an object in J, there is also a projection morphism π′
Y : A→ JY , as well as the

composition A π′
X−−→ JX

Jf−−→ JY . These are both morphisms to objects in the product B, this can be done for
each object JXα in B, so by its universal property there are unique morphisms u, v : A⇒ B that make the
following triangle and square respectively commute:

JY

A B

JX JY,
Jf

π′
X

πY

πY

π′
Y

u

v

that is, π′
Y = πY ◦ u and Jf ◦ π′

X = πY ◦ v.

Now let E be the equalizer of u and v, which comes with a morphism e : E → A such that u◦e = v ◦e. We
claim that E is the limit of J , and the legs of the cone are given by the morphisms ψX := π′

X ◦ e : E → JX.

JY

E A B

JX JY
Jf

π′
X

πY

πY

π′
Y

u

v

e

ψX

ψY

To show (E,ψ) is a cone, we want to show that ψY = Jf ◦ ψX for any arbitrary f : X → Y in J.
Starting with the right-hand side, we can use the definition of ψX to write Jf ◦ ψX = Jf ◦ π′

X ◦ e. Using the
defining property of v, we can write this as Jf ◦ π′

X ◦ e = πY ◦ v ◦ e. Because e is an equalizer, this becomes
πY ◦ v ◦ e = πY ◦ u ◦ e. Now from how we defined u, we get that this is equal to πY ◦ u ◦ e = π′

Y ◦ e, which is
exactly ψY by definition. Thus we find ψY = Jf ◦ ψX , like we wanted. This shows that (E,ψ) is a cone over
J .

Finally, we want to show that if (Q,φ) is another cone over J , then there is a unique map Q→ E. Since
Q is a cone, there are maps φX : Q→ JX for each object X in J, thus by definition of the product there is a
unique morphism a : Q→ A, as well as a unique morphism b : Q→ B. These morphisms satisfy φX = π′

X ◦ a
for any object X and φY = πY ◦ b for any codomain object Y . The plan is to show that u ◦ a = v ◦ a, which
implies the existence of a morphism Q→ E by the universal property of the equalizer.

The relevant morphisms fit in the following diagram:
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JY

A B

Q

JX JY.
Jf

π′
X

π′
Y

u

v

πY

πY

φX φY

∃!a ∃!b

Note that this diagram is not guaranteed to be commutative! The morphisms a and b only satisfy the
compositions given above, and not (yet) necessarily that u ◦ a = b for example.

Regardless, note that b is the unique morphism so that φY = πY ◦ b. To show v ◦ a and u ◦ a are equal,
we show that they are both equal to b using this uniqueness. First, note that because πY ◦ v = Jf ◦ π′

X , we
have that πY ◦ v ◦ a = Jf ◦ π′

X ◦ a. Then by what we know about a, we have Jf ◦ π′
X ◦ a = Jf ◦ φX . Since

(Q,φ) is a cone over J , we have Jf ◦ φX = φY . So, the morphism v ◦ a satisfies φY = πY ◦ (v ◦ a). But b is
supposed to be unique with this property, which now implies v ◦ a = b.

Now, we can use the defining property of u to find πY ◦ u ◦ a = π′
Y ◦ a. The defining composition of a

holds for each object of J. In particular, π′
Y ◦ a = φY . Again, we find u ◦ a = b by uniqueness of b. But this,

combined with the previous part, shows that u ◦ a = v ◦ a. By the universal property of the equalizer, there
is a unique morphism s : Q→ E so that ψX ◦ s = φX for each object X of J. This is exactly what we wanted
to show to guarantee that E = lim J .

If a functor G from C to another category D preserves products and equalizers, it preserves the products
A, B, and the equalizer E. So now the equalizer GE of the morphisms Gu,Gv : GA⇒ GB is the same as
the limit of GJ . Thus G preserves all limits.

The idea of the proof that coproducts and coequalizers are enough to form colimits is the same, except
dualized. In this case we define the coproduct Â :=

∐
j JXj of all objects in the diagram, and we define

B̂ :=
∐
β:∃Xα→Xβ

JXα the coproduct of all domains. We again consider two morphisms B̂ ⇒ Â, and construct
their coequalizer. Using a dual argument to the one above, this coequalizer is the colimit of the diagram J .
Similarly, G preserving coproducts and coequalizers implies it preserves all colimits by the same argument as
before.

Example 1.4.7. Some examples of complete and cocomplete categories include:

(i) The category Set is both complete and cocomplete. We have already seen how we construct products,
coproducts, equalizers, and coequalizers in this category in Example 1.4.3. Similarly, Top is (co)complete
as well. The underlying sets of the product, disjoint union, equalizer and coequalizer are the same as in
Set, but with the topologies which make sure that the legs of the universal (co)cones are continuous
maps. The pointed categories Set∗ and Top∗ are also complete and cocomplete.

(ii) The category of small categories, Cat is (co)complete as well. The product and coproduct have already
been highlighted above. Given functors F,G : C ⇒ D, their equalizer is the subcategory E of C which
consists of all objects and morphisms of C on which F and G agree. As for the coequalizer, we note that
because D is small, we can impose an equivalence relation on Ob(D) and D(A,B) for all objects A and
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B in D generated by stating that two objects or morphisms are equivalent if their image under F and
G are the same. Taking the quotients of the set of objects, and of every Hom-set gives the coequalizer
category Q.

(iii) The category Setfin of finite sets is finitely complete and finitely cocomplete, meaning it admits (co)limits
of every finite diagram, but not complete or cocomplete. For example, the infinite product

∏
i∈N S of

any nonempty finite set S has infinitely many elements, and is thus not a product in the category.

Example 1.4.8. For any ring R, the category ModR is (co)complete as well. The product and coproduct are
given by the direct product and direct sum respectively. The equalizer and coequalizer of two homomorphisms
f, g : M ⇒ N are ker(f − g) and coker(f − g) := N/ im f respectively. Because this category has products,
coproducts, equalizers, and coequalizers, it is complete and cocomplete.

Before moving on to adjunctions, there is one more result we highlight, the fact that being (co)continuous
is not an evil property:

Proposition 1.4.9. Let F : C→ D be an equivalence of categories. If the limit (resp. colimit) of a diagram
J : J→ C exists, then F preserves this limit (resp. colimit).

Proof. Let (lim J, φ) be the limit of the diagram J in C. We want to show that (F lim J, Fφ) is a limit in D.

Note that (F lim J, Fφ) is actually a cone over the diagram FJ . This follows from functoriality: if
f : X → Y is a morphism in the image of J , then the legs of the cone (J, φ) satisfying f ◦ φX = φY implies
Ff ◦ FφX = FφY . We show that this cone is universal among all cones over FJ . To that end, let (C,ψ) be
a cone in D over FJ as follows:

C

F lim J

FX FY
Ff

FφX FφY

ψX ψY

By essential surjectivity of F (see Proposition 1.3.12), there is an object Z of C such that FZ ∼= C. Let
q : FZ → C be an isomorphism. Now (FZ,ψX ◦ q) is a cone over FJ . Fullness of F allows us to write
ψX ◦ q = FhX for some hX : Z → X in C. Now we have a new cone (FZ,Fh) over FJ .

We can go back to C, where now (Z, h) forms a cone over N . To see why this is true, note that
Ff ◦ FhX = FhY in D implies, by faithfulness of F , that f ◦ hX = hY , making (Z, h) a cone over J . Now by
the universality of lim J , there is a unique morphism u : Z → lim J making the following diagram commute:

Z

lim J

X Y
f

hX hY

φX φY

∃!u

Applying F again leaves us with a morphism Fu : FZ → F lim J commuting with the legs of the cone,
which is unique as well (this follows from the bijection C(Z, lim J) ∼= D(FZ,F lim J)). Composing with the
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inverse of q gives a unique morphism Fu ◦ q−1 : C → F lim J , which proves that F lim J is a limit over the
diagram FJ . The proof for F preserving colimits is dual.

1.5 Adjunctions and Limit Preservation

We have seen before how forgetful functors allow us to remove the inner structure of objects to only look at
the underlying sets. There are forgetful functors from Group,VectK ,Top (and more) to Set. An interesting
question may be if we can reverse this process? That is, given a set S, can we construct a group, vector
space, or topological space from S in some general way? For most cases the answer is yes, and is done using
a so-called adjoint functors. In this section we develop the tools necessary to define these kind of functors,
and also see more general examples that do not fit in this class of functors that mirror the forgetful ones.
Finally we discuss the most important property of adjoint functors: they always preserve limits or colimits.

Definition 1.5.1. Given functors F : C→ D and G : D→ C, if there is an isomorphism

D(FX, Y ) ∼= C(X,GY )

that is natural in both X and Y ,14 we say there is an adjunction between F and G. In this case, we say F is
a left adjoint (functor) to G, and G is a right adjoint (functor) to F . We write F ⊣ GF ⊣ G or G ⊢ F . Under the
natural bijection, we say corresponding morphisms

FX Y and X GY
f fT fT

are transposes of one another. ▼

Remark. There is no preference to the first morphism being the ‘original’ and the second the transposed
morphism. We may also denote the transpose of a morphism g : X → GY as gT : FX → Y . A consequence
of the bijection is that (fT )T = f.

As is detailed in [Rie16, section 4.1], expanding the definition of the natural isomorphism gives the fact
that, for any f : FX → Y , its transpose satisfies Gk ◦fT = (k ◦f)T and fT ◦h = (f ◦Fh)T for any morphism
k : GY → Z in D and h : W → X in C.

As with many categorical constructions we have seen thus far, adjunctions are unique up to natural
isomorphism:

Proposition 1.5.2. Adjoint functors are unique up to natural isomorphism.

Proof. Let F : C→ D be a functor, with two right adjoints G,G′ : D ⇒ C. By definition, for any objects X
of C and Y of D, there are natural isomorphisms

C(X,GY ) ∼= D(FX, Y ) ∼= C(X,G′Y ).

Because these isomorphisms are natural in X, there is a natural isomorphism C(−, GY ) ∼= C(−, G′Y ).
Proposition 1.2.8 and Corollary 1.3.9 imply thatGY andG′Y are isomorphic as objects, with some isomorphism
ηY : GY → G′Y . In [nLa23, proposition 3.1], it is shown that these isomorphisms are also natural in Y ,
making the functors G and G′ naturally isomorphic.

14Recall that this means that the bifunctors D(F −, −) and C(−, G−) from Cop × D to Set are naturally isomorphic, as defined
in Definition 1.3.1.
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Example 1.5.3. The following are examples of adjoint functors in poset-categories.

(i) There are functors ⌈−⌉, ⌊−⌋ : (R,⩽) ⇒ (Z,⩽) that take a real number to its ceiling and floor respectively.
The inclusion functor I : (Z,⩽) ↪→ (R,⩽) forms a trio of adjoint functors ⌈−⌉ ⊣ I ⊣ ⌊−⌋. For both
categories, we have that # Hom(x, y) = 1 if x ⩽ y, and zero otherwise. Thus in practical terms, the
first adjunction states that for a real number r and integer n, we have ⌈r⌉ ⩽ n if and only if r ⩽ n.
The other adjunction states that n ⩽ r if and only if n ⩽ ⌊r⌋.

(ii) A function f : A→ B of sets induces two functors between the poset categories (P (A),⊆) and (P (B),⊆).
The forward-image f∗ : (P (A),⊆) → (P (B),⊆) and pre-image f−1 : (P (B),⊆) → (P (A),⊆) send a
subset to their image and pre-image respectively. These functors form an adjunction. Namely, for
subsets A′ ⊆ A and B′ ⊆ B, we have that f∗(A′) ⊆ B′ if and only if A′ ⊆ f−1(B′).

The pre-image also has a right adjoint f! : (P (A),⊆)→ (P (B),⊆) that takes a subset A′ ⊆ A to the
set f!(A′) := {b ∈ B | f−1({b}) ⊆ A′} ⊆ B. The adjunction states that f−1(B′) ⊆ A′ if and only if
B′ ⊆ f!(A′).

Example 1.5.4. There is a large family of adjunctions of the form F ⊣ U , where U is a forgetful functor
and F is some kind of ‘free’ functor.

(i) The forgetful functor U : VectK → Set has a left adjoint K : Set → VectK that sends a set S to the
K-vector space K[S] which has the set S as a basis. In other words, elements of this vector space are
formal K-linear combinations of elements of S. The isomorphism

VectK(K[S], V ) ∼= Set(S,UV )

states that linear maps from K[S] to V are completely and uniquely determined by where they map
the basis of the domain. Specifically, the component

ηS,V : VectK(K[S], V )→ Set(S,UV )

sends a linear map L to the function s 7→ L(s). The inverse sends a function f to the linear map∑
s∈S

kss 7→
∑
s∈S

ksf(s).

The beginning of chapter IV of [Mac98] goes into more details of this adjunction, as well as the naturality
of the transformation η.

(ii) The forgetful functor U : Group→ Set has the free group as its left adjoint (see Example 1.2.2(x)). The
components of the natural isomorphism are maps

ηS,G : Set(S,UG)→ Group(FS,G)

that send a function f : S → UG to the group-homomorphism FS → G that sends a word w = a1 . . . an

to the product f(a1) · . . . · f(an) in G.

(iii) The forgetful functor U : Top→ Set has a left adjoint D : Set→ Top that equips a set with the discrete
topology. This forms an adjunction because any function DS → X is continuous, meaning the set of
continuous maps from DS → X is in a natural bijection with the set of function S → UX.
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Similarly, the forgetful functor U also has a right adjoint in the functor I : Set→ Top that equips a
set with the indiscrete topology. Indeed, continuous maps X → IS are in bijection with functions
UX → S.

(iv) The forgetful functor U : Ab → SetU has a left adjoint that takes a set S and sends it to the abelian
group generated by elements of S. That is, it is sent to the direct sum

⊕
s∈S Z.

(v) There is a forgetful functor U : Ring→ Mon that sends a ring to the underlying monoid with respect
to the multiplication operation. This functor has a left adjoint that sends a monoid M to the free
ring Z[M ]. This is the ring of formal sums

∑
m∈M rmm, where finitely many of the rm ∈ Z are

nonzero. Multiplication is done on monomials by (rm) · (r′m′) = (rr′)(mm′), and extended to guarantee
distributivity.

(vi) Any field-homomorphism is injective, so there is a forgetful functor Field → Domaininj, where the
codomain is the category of integral domains with injective ring-homomorphisms between them. This
functor has a left adjoint in the field of fractions from Example 1.2.2(viii).

(vii) No forgetful functor U from Field to (e.g.) Set, Ring, or Ab has a left adjoint. To see this, note
that for any fields K and L of different characteristic, there are morphisms in the aforementioned
categories from Z to UK and from Z to UL. Thus whatever field an adjoint F sends Z to, the Hom-sets
Field(FZ,K) and Field(FZ, L) both need to be nonempty. But this is impossible, since if the first set
is nonempty, then the characteristic of FZ is the characteristic of K, which means there can be no
field-homomorphisms from FZ to L. Therefore this adjoint F cannot exist.

Example 1.5.5. The following are examples related to Cat.

(i) The forgetful functor U : Cat → Quiver has a left adjoint. It takes a quiver Q and sends it to the
category C(Q)C(Q) generated by Q, as defined in Example 1.1.4.

(ii) The object functor Ob : Cat→ Set has both left and right adjoints. The left adjoint takes a set S and
sends it to the discrete category with elements of S as objects. The right adjoint takes a set S and
sends it to the indiscrete category with elements of S as objects.15

(iii) The opposite category forms a functor (−)op : Cat→ Cat that sends a small category to its opposite.
This functor is self-adjoint, in the sense that (−)op ⊣ (−)op forms an adjoint pair. This means that for
all small categories C and D, there is a natural correspondence between functors Cop → D and functors
C→ Dop. We have stated in Section 1.1 that a contravariant functor from C to D is ‘the same’ as a
covariant functor Cop → D or C→ Dop. This adjunction provides the necessary details to make this
precise.

Example 1.5.6. Given a commutative ring R and an R-module M , the tensor product functor M ⊗R − is
left adjoint to the covariant Hom-functor Hom(M,−). Note that in ModR, the set of homomorphisms between
two R-modules is also an R-module, with pointwise addition and scalar multiplication. Thus Hom(M,−) is
indeed a functor from ModR to itslef. This is also known as the tensor-hom adjunction. A full proof of this
fact is given in the next chapter, where we also define the tensor product in detail.

15Recall that an indiscrete category is one where each Hom-set has exactly one morphism in it.
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For most of the examples above, it should feel rather intuitive that the functors are adjoints, but rigorously
proving that they are can take a lot more effort. Thankfully there is an equivalent way that is computationally
more effective, though debatedly less intuitive:

Definition 1.5.7. Let F : C→ D and G : D→ C be functors. We say F and G form a unit-counit adjunction
if there exist natural transformations η : 1C ⇒ GF (called the unit) and ε : FG⇒ 1D (called the counit) that
make the following diagrams commute:

F FGF G GFG

F G.

Fη

εF
1F

ηG

Gε
1G

That is, 1F = εF ◦ Fη and 1G = Gε ◦ ηG. ▼

Notation. To be clear, the composition in the Proposition is vertical composition of natural transformations,
as in Definition 1.3.5. The functor-natural transformation compositions are defined component-wise by
(Fη)X := F (ηX) and (εF )X := εεF, Fη

F (X) for all objects X of C, and similarly for the compositions with G.

Proposition 1.5.8. Two functors form an adjunction if and only if they form a unit-counit adjunction.

The following Lemma turns out to be very useful in proving the above Proposition:

Lemma 1.5.9. Let F : C→ D and G : D→ C be functors, with F left adjoint to G. Let f : FX → Y and
g : FX ′ → Y ′ be morphisms in D. Then, for all h : X → X ′ and k : Y → Y ′, the left square below commutes
if and only if the right square does.

FX Y X GY

FX ′ Y ′ X ′ GY ′.

f

Fh

g

k

fT

h

gT

Gk

Proof. The proof consists of a straightforward diagram chase, making use of the remark after Definition 1.5.1.
Assuming the lef square commutes, we compute the composite Gk ◦ fT :

Gk ◦ fT = (k ◦ f)T = (g ◦ Fh)T = gT ◦ h,

which shows that the right square commutes as well.
For the other direction, we assume the right-hand square commutes and compute k ◦ f :

k ◦ f = ((k ◦ f)T )T

= (Gk ◦ fT )T

= (gT ◦ h)T

= ((g ◦ Fh)T )T

= g ◦ Fh,

which indeed shows that the left square commutes as well.
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With this Lemma in hand, we can prove Proposition 1.5.8:

Proof of Proposition 1.5.8. We start by proving that, given an adjunction F ⊣ G, we can construct the
unit and counit. We define the unit η : 1C ⇒ GF as the natural transformation whose components
ηX : X → GFX are the transposes of the identities 1FX : FX → FX. To prove these components form a
natural transformation, we are to prove that for any f : X → X ′ in C, the diagram

X GFX

Y GFY

GFff

ηX

ηY

commutes. This follows immediately from Lemma 1.5.9, seeing as the ‘transposed’ diagram

FX FX

FY FY

1FX

Ff Ff

1FY

definitively commutes.

Dually, we define the counit ε : FG ⇒ 1D whose components εY : FGY → Y are defined to be the
transposes of the identity 1GY : GY → GY . Next, we show that 1F = εF ◦ Fη and 1G = Gε ◦ ηG. We do
this component-wise, by letting X be an object of C and Y an object of D. Consider the following pairs of
transposed diagrams:

FX FX X GFX

FGFX FX GFX GFX

FGY FGY GY GFGY

FGY Y GY GY

1FX

1FXFηX

εFX

ηX

1GFXηX

1GFX

1FGY

1FGY

εY

εY 1GY

1GY

ηGY

GεY

Note that the top-right and bottom-left diagrams commute, thus by Lemma 1.5.9, so do the transposed
top-left and bottom-right respectively. Writing this out fully,

(1F )X = 1FX = εFX ◦ FηX = (εF ◦ Fη)X .

Since this holds for each object X of C, we have that 1F = εF ◦ Fη. Similarly, writing out the compositions
of the bottom-right diagram tells us 1G = Gε ◦ ηG. Thus indeed, if F and G are adjoints, they form a
unit-counit adjunction as well.

Now for the converse, assume that we have a unit η : 1C ⇒ GF and counit ε : FG⇒ 1D. To prove F is a
left adjoint of G, we find a natural isomorphism D(F−,−) ∼= C(−, G−). To that end, let X and Y be objects
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of C and D respectively, and define a function ΦX,Y : D(FX, Y )→ C(X,GY ) by

ΦX,Y (f) := Gf ◦ ηX .

For the other direction, define ΨX,Y : C(X,GY )→ D(FX, Y ) by

ΨX,Y (g) := εY ◦ Fg.

Now we compute the compositions ΦX,Y ◦ΨX,Y and ΨX,Y ◦ ΦX,Y . Given g ∈ C(X,GY ), we find:

(ΦX,Y ◦ΨX,Y )(g) = ΦX,Y (εY ◦ Fg)

= G(εY ◦ Fg) ◦ ηX
= GεY ◦GFg ◦ ηX
= GεY ◦ ηGY ◦ g

= (Gε ◦ ηG)Y ◦ g = 1Y ◦ g = g.

So indeed we have that ΦX,Y ◦ΨX,Y = 1C(X,GY ). From the third to the fourth line, we used the fact that η
is a natural transformation (see the diagram below), from the fifth to the sixth line, we used the defining
property of the unit and counit.

X GFX

GY GFGY

ηX

g GFg

ηGY

For the other composition, we take f ∈ D(FX, Y ) arbitrary and note:

(ΨX,Y ◦ ΦX,Y )(f) = ΨX,Y (Gf ◦ ηX)

= εY ◦ F (Gf ◦ ηX)

= εY ◦ FGf ◦ FηX
= f ◦ εFX ◦ FηX
= f ◦ (εF ◦ Fη)X = f ◦ 1X = f.

Here we again used naturality of ε, as well as the defining property of units and counits. Finally, we end up
with ΨX,Y ◦ ΦX,Y = 1D(FX,Y ), thus D(FX, Y ) and C(X,GY ) are isomorphic as objects in Set.

The last part to show is that Φ and Ψ as we have defined them are actually natural transformations. To
that end, we take (f, g) : (X ′, Y )→ (X,Y ′) an arbitrary morphism in Cop × D, with the goal to show that
the diagram

D(FX, Y ) C(X,GY )

D(FX ′, Y ′) C(X ′, GY ′)

ΦX,Y

(Ff∗,g∗)

ΦX′,Y ′

(f∗,Gg∗)

commutes. The morphism (Ff∗, g∗) is an abuse of notation, but to be precise it acts on morphisms
h ∈ D(FX, Y ) by (Ff∗, g∗)(h) = g ◦ h ◦ Ff , and similar for (f∗, Gg∗).
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Let h : FX → Y be an arbitrary morphism. The top half of the diagram evaluates to:

((f∗, Gg∗) ◦ ΦX,Y )(h) = (f∗, Gg∗)(Gh ◦ ηX)

= Gg ◦Gh ◦ ηX ◦ f

= Gg ◦Gh ◦GFf ◦ ηX′

= G(g ◦ h ◦ Ff) ◦ ηX′

= ΦX′,Y ′(g ◦ h ◦ Ff)

= (ΦX′,Y ′ ◦ (Ff∗, g∗))(h),

where we used the fact that η is a natural transformation from the second line to the third. What we
end up with is exactly the bottom half of the diagram evaluated at h. Since h was chosen arbitrarily, the
diagram indeed commutes, and thus Φ : D(F−,−)⇒ C(−, G−) is a natural transformation. It is actually a
natural isomorphism as well, because every component is invertable. Thus, there is a natural isomorphism
D(F−,−) ∼= C(−, G−), which proves that F ⊣ G forms an adjunction.

Example 1.5.10. Definition 1.5.1 is the most intuitive way to view adjunctions, but it is still worth it to see
the unit and counit in actual examples:

(i) The left adjoint to the forgetful U : VectK → Set is the functor K : Set → VectK that sends a set S
to the vector space K[S] with elements of S as a basis. The unit of the adjunction has components
ηS : S → UK[S] which map an element s to itself, which makes sense as s is an element of K[S]. The
counit has components εV : K[UV ]→ V that maps a finite linear combination

∑
vi∈UV λivi to itself as

an element of V .

(ii) The forgetful functor U : Group→ Set and the free functor F : Set→ Group form an adjunction. The
components of the unit are set functions ηS : S → UFS that map an element s ∈ S to the singleton
string s, as an element of UFS. The counit has components εG : FUG→ G that map a string g1 . . . gn

in the free group on UG to the product of the gi in G.

(iii) Consider the adjunction f∗ ⊣ f−1 of the forward-image and pre-image of a function of sets f : A→ B,
as functors between the poset categories formed by the power sets of A and B. The definition of a
unit-counit adjunction gives morphisms f∗(A′)→ f∗(f−1(f∗(A′)))→ f∗(A′) given by the components of
the units at the object A′. These morphisms imply, in this category, that f∗(A′) = f∗(f−1(f∗(A′))) for
any A′ ∈ P (A). Similarly, f−1(f∗(f−1(B′))) = f−1(B′) for any B′ ∈ P (B). This is rather surprising,
seeing as the inclusions A′ ⊆ f−1(f∗(A′)) and f∗(f−1(B′)) ⊆ B′ are not necessarily equalities in general.

One of the most important reasons we are interested in adjoint functors at all is their limit and colimit
preserving properties:

Proposition 1.5.11. Right adjoints preserve limits, and left adjoints preserve colimits.

Proof. Let F ⊣ G be an adjoint pair, with G : D → C the right adjoint. Given (lim J, phi) a limit of the
diagram J : J→ D, we show that (G lim J,Gφ) is a limit of the diagram GJ in C.

First note that (G lim J,Gφ) indeed forms a cone over GJ by functoriality, what remains is to show that
it is actually a limit. To that end, let (Z,ψ) be another cone over GJ . Given any morphism f : X → Y in
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the image of J , there is a diagram

Z

G lim J

GX GY.

GφX GφY

Gf

ψX ψY

We want to show there is a unique morphism Z → G lim J . To that end, we apply the transpose to all
morphisms in the diagram to obtain a commutative diagram (as per Lemma 1.5.9)

FZ

lim J

X Y.

φX φY

f

ψTX ψTY

The universal property of the limit of J implies there is a unique morphism u : FZ → lim J commuting with
the legs of the cone. Now applying the transpose again, we obtain

Z

G lim J

GX GY.

GφX GφY

Gf

ψX ψY
∃!uT

The morphism u : FZ → lim J is unique, and the bijection D(FZ, lim J) ∼= C(Z,G lim J) implies that uT

is unique too. This proves that G lim J is a limit over the diagram GJ : J → C. Because a limit over this
diagram exists, it is canonically isomorphic to limGJ as a consequence of Proposition 1.4.2. The proof of the
statement that left adjoints preserve colimits is completely dual.

Example 1.5.12. This proposition leads to plenty of interesting corollaries, these include (but are not
limited to):

(i) The forgetful functor U : Group→ Set is a right adjoint, thus preserves products. Indeed, the product
of groups

∏
iGi has, as an underlying set, the cartesian product of the underlying sets of the groups.

On the other hand, the free functor F : Set→ Group preserves coproducts (which are disjoint unions
in Set and free products in Group). Thus, for sets S and T , we have that the free group F (S ⨿ T )
is isomorphic to the free product F (S) ∗ F (T ). This same idea holds for the other ‘free ⊣ forgetful’
adjunctions from Example 1.5.4.

(ii) The free functor K : Set→ VectK is a left adjoint, and thus preserves colimits. In particular, given sets
S and T , the vector space K[S ⨿ T ] is isomorphic to K[S] ⊕K[T ]. This generalizes the result from
linear algebra that states Span{v1, . . . , vn} ⊕ Span{w1, . . . wm} ∼= Span{v1, . . . , vn, w1, . . . , wm}.

(iii) The forgetful functor U : Top→ Set is both a left and right adjoint, and thus preserves all limits and
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colimits. Therefore any topological space formed as a limit has, as an underlying set, the same elements
as the corresponding limit object in Set.

(iv) The ceiling function ⌈−⌉ : (R,⩽)→ (Z,⩽) is a left adjoint, and thus preserves colimits. The coproduct
of real numbers {xi}i is their supremum, if it exists. Thus we obtain the fact that supi⌈xi⌉ = ⌈supi xi⌉.
The ceiling does not preserve infima however. As an example, consider the sequence {xi}i∈N defined by
xi = 1/i. Then infi⌈xi⌉ = infi 1 = 1, but ⌈infi xi⌉ = ⌈0⌉ = 0.

(v) (†) Let M , A, and B be R-modules. Recall that the direct sum A⊕B is both a product and coproduct
in ModR. Thus, using the Tensor-Hom adjunction M ⊗R − ⊣ Hom(M,−), we obtain the natural
isomorphism

M ⊗R (A⊕B) ∼= (M ⊗R A)⊕ (M ⊗R B).

The fact that adjoint functors are (co)continuous invites the opposite question: when is a continuous
functor G : D→ C a right adjoint of some other functor? One of the most well-known conditions is the Freyd
Adjoint Functor Theorem, which first appeared as exercise 3.J (p.84) in [Fre64], with a proof given in [Mac98,
theorem IV.6.2, p.121]. In modern categorical language, it states:

Theorem 1.5.13 (Freyd Adjoint Functor Theorem). Let G : D→ C be a continuous functor, whose domain
is complete and locally small. The functor G admits a left adjoint if and only if for every object X of C, there
is a set of morphisms {fi : X → GAi}i such that, for any morphism f : X → GA, there is an i and some
morphism t : Ai → A such that f = Gt ◦ fi.

This ends this Chapter on category theory. We have seen how categories allow us to generalize concepts
from many different fields of mathematics. In the next Chapter, we see how we can apply some of these
categorical notions to prove a theorem regarding functors between categories of modules over commutative
rings.
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2 Watts’ Theorem
Perhaps the purpose of categorical algebra is to show that
which is trivial is trivially trivial.

–Peter Freyd [Fre66]

This Chapter is focused on the Eilenberg-Watts’ Theorem, first proved by Eilenberg and Watts independently
in 1960 [Eil60, Wat60]. Despite this, the name of the theorem often simply goes by Watts’ Theorem. The
theorem states that any F : ModR → ModModR

R that preserves colimits is naturally isomorphic to the tensor
product functor FR⊗R −. This Chapter builds up the necessary background to understand the proof of the
theorem. This includes a review of the basic theory of modules, which we do in the first Section. The second
Section formally defines the tensor product, and proves some useful facts about it, including its adjunction to
the Hom-functor. Following this, we define exact sequences and so-called module presentations in the third
Section. In the penultimate Section we state and prove Watts’ Theorem, and also discuss a few consequences,
reformulations, and generalizations. The final Section takes a detour to cover localization of rings and modules,
which function as a nice application of Watts’ Theorem.

2.1 Modules and Direct Sums

This Section begins with a review of the basics of module theory. We define modules, module-homomorphisms,
submodules, quotient modules, direct sums, and free modules. The Section is only meant as review, so most
of the statements are not proven here. The theory itself is mostly adapted from [vGLOT17]. As before,
we assume all rings are unitary, and all ring-homomorphisms preserve the multiplicative identity. For this
Chapter, we also assume all rings are commutative, which we need for the Tensor-Hom adjunction in the
second Section.

Definition 2.1.1. Let R be a ring. A left R-module M is an abelian group (M,+, 0), along with an action
of scalar multiplication, defined as a function R×M →M , by (r,m) 7→ rm. This multiplication satisfies the
following axioms for all a, b ∈ R and m,n ∈M :

• a(m+ n) = am+ an;

• (a+ b)m = am+ bm;

• a(bm) = (ab)m;

• 1m = m (here 1 denotes the multiplicative unit in R).

A right R-module is defined similarly, but with scalar multiplication as a function M × R → M , by
(m, r) 7→ mr satisfying similar properties to that of left scalar multiplication. ▼

Remark. Left R-modules and right R-modules are quite similar, in the sense that the categories ModR of
left R-modules is equivalent to RopMod of right Rop-modules.16 Because we assume rings to be commutative
in this Chapter, R and Rop are isomorphic, making the two categories isomorphic as well. As such, when
talking about R-modules, we only consider left R-modules, unless otherwise stated. In the same way we
denote ModR to be the category of R-modules, both the left and right variations.

16Recall that the ring Rop has the same elements and addition operation as R, but multiplication changes order, so a ·op b := b ·a
for a, b ∈ Rop.
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Definition 2.1.2. A function f : M →M ′ between R-modules is an R-module-homomorphism if

f(am+ bn) = af(m) + bf(n)

for all a, b ∈ R and m,n ∈M . ▼

Put differently, an R-module-homomorphism is a homomorphism of the underlying abelian groups that
commutes with scalar multiplication. A consequence of this definition is that

f(0) = f(0− 0) = f(0)− f(0) = 0.

We call such an R-module-homomorphism an isomorphism if there is another R-module-homomorphism
g : M ′ →M such that fg = 1M ′ and gf = 1M . In ModR, isomorphisms are exactly bijective homomorphisms.

Definition 2.1.3. Let M be an R-module, and N a subset of M . We say N is a submodule of M if:

• 0 ∈ N ;

• am+ bn ∈ N for all a, b ∈ R and m,n ∈ N .

In this case, there is an inclusion homomorphism N ↪→M A ↪→ B that sends an element to itself in M .

A submodule N ⊆M is also a subgroup of the underlying abelian group M . So it makes sense to talk
about the quotient module M/N. M/N Its elements are equivalence classes m+N and inherits the additive structure
from the quotient abelian group. Scalar multiplication is defined as a(m + N) = am + N for a ∈ R and
m ∈M . There is a canonical projection homomorphism M ↠M/N A ↠ B that sends an element to its equivalence
class. ▼

Example 2.1.4. The following are examples of R-modules for various rings R.

(i) If R is a field, then an R-module is the same as a vector space over R. Homomorphisms of these
modules are the same as linear maps between vector spaces. In this sense modules serve to generalize
the concept of vector spaces.

(ii) A Z-module is the same as an abelian group. The obvious Z-action is Z × M → M by defining
zm := sign(z)(m+ · · ·+m︸ ︷︷ ︸

|z| times

). A Z-module-homomorphism is the same as a homomorphism of abelian

groups. From this perspective, modules generalize the concept of abelian groups.

(iii) Any ring R is an R-module over itself. Scalar multiplication is done with the multiplication operation
of the ring. And if a is an ideal of R, then a is a submodule of R. The quotient ring R/a is also a
quotient module over R. This is another way in which modules generalize some algebraic concepts,
namely rings and ideals.

(iv) For a ring R, we define R[x1, . . . , xn]R[x1 , . . . , xn ] to be the R-module of polynomials in n variables with coefficients
in R. Addition and scalar multiplication is done term-by-term.

(v) For any smooth manifold M , the set of smooth real functions C∞(M,R) is a ring, where addition and
multiplication is done pointwise. The set of smooth vector fields X(M)X(M) on M forms a module over this
ring. See [Ser23, section 4.1] for details.
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(vi) If φ : R → S is a ring-homomorphism, then any S-module M can be redefined as an R-module, by
setting rm := φ(r)m for r ∈ R and m ∈ M . This is called restriction of scalars, and gathers into a
functor ModS → ModR, mapping an S-module to the corresponding R-module as above. As an example,
if R is a subring of S, and φ the inclusion map, then we can ‘restrict’ the scalers of an S-module to
only use scalars of R.

(vii) Over any ring R, the zero module, denoted 0,0 contains a single element. For any other R-module
M , there are unique homomorphisms M → 0 and 0→M , making 0 a zero object in the category of
R-modules. Between two modules M and M ′, there is a unique zero map 00 : M → N : M → M ′ that maps
everything to the zero element of M ′. This map may also be defined as the unique composition
M → 0→M ′.

(viii) (†) The set of R-module-homomorphism Hom(M,N), or HomR(M,N), is an R-module as well. Addition
and scalar multiplication is done pointwise. Thus for homomorphisms f, g ∈ HomR(M,N), scalars
a ∈ R, and elements m ∈M , we have (af + g)(m) := af(m) + g(m).

We have already defined the kernel and cokernel in general categories, but it is worth it to go over the
definitions in this specific case, as we do not use the categorical definition in this Chapter for the most part.

Definition 2.1.5. Let f : M →M ′ be an R-module-homomorphism.

• The kernel of f , denoted ker f := {x ∈ M | f(x) = 0},ker f is a submodule of M . It is governed by the
following universal property:17 there is a homomorphism k : ker f →M with f ◦ k = 0, such that for
any other homomorphism k′ : K ′ → M with f ◦ k′ = 0, there is a unique u : K ′ → ker f making the
following diagram commute:

M

ker f M ′.

K ′

f
k

0

k′

0
∃!u

The map k is usually the inclusion homomorphism. The map f is injective if and only if ker f = 0.

• The image of f , denoted im f := {y ∈M ′ | f(x) = y for some x ∈M}im f is a submodule of M ′.

• The cokernel of f , denoted coker f := M ′/ im f,coker f is governed by the following universal property, which
is dual to that of the kernel: there is a homomorphism q : M ′ → coker f with q ◦ f = 0, such that for
any other homomorphism q′ : M ′ → Q′ with q′ ◦ f = 0, there is a unique u : coker f → Q′ making the
following diagram commute:

M

coker f M ′

Q′

f
0

q

0

q′
∃!u

17This universal property is the same as the universal definition of the equalizer of f and 0, as defined in Section 1.4.
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The map q is usually the canonical projection. The map f is surjective if and only if coker f = 0. ▼

Remark. With the same notation as above, note that the image of f is exactly ker q. Moreover, by the first
isomorphism theorem, we have that the image of f is isomorphic to coker k = M/ im k = M/ ker f [vGLOT17,
theorem VII.1.4 (a), p.60]. This is how we define the image in Chapter 3, as the kernel of the cokernel, or
equivalently as the cokernel of the kernel.

One of the most common ways to create new modules out of smaller ones is by the direct sum, which we
define now:

Definition 2.1.6. Let {Mi}i∈I be a set of modules for some indexing set I. We define their

• direct product
∏
i∈IMi := {(mi) | mi ∈Mi} as the R-module of I-indexed sequences of elements of the

modules. Addition and scalar multiplication is done component-wise.∏
i

Xi

• direct sum
⊕

i∈IM
A⊕ B

i to have the same elements as the direct product, but we stipulate that only finitely
many of the entries in a sequence are nonzero. If I is finite, then the direct product and direct sum are
one and the same.18 ▼

As mentioned in Example 1.4.3(ii), for finite I, the direct sum is both a product and coproduct in ModR.
Meaning that for all j, k ∈ I, there are maps

Mj

⊕
i∈IMi Mk.

ιj πk

Here the inclusion maps an element mj to the sequence with only zeroes, except the j-th entry having mj .
The projection maps a sequence to its k-th element. Note that these satisfy πk ◦ ιj = 0 unless k = j, in which
case the composition is the identity map on Mj .

If the modules Mi are all submodules of some larger module M , with Mi ∩Mj = {0} for all distinct
i, j ∈ I, then we may define the inner direct sum as the R-module

⊕
i∈IMi, containing finite sums of elements

of each Mi. The fact that all modules intersect trivially implies that each element of the direct sum can be
written in a unique way. As the notation may suggest, the inner direct sum is isomorphic to the direct sum
as defined in Definition 2.1.6.

One helpful fact of linear algebra is that any vector space has a basis. This is not true in general of
modules however. We call modules with a basis free:

Definition 2.1.7. Let M be an R-module, and S ⊆M some subset of elements. We call S a generating set
of M if every element in M can be written as a finite linear combination of elements of S, with scalars in R.
We say S generates M and write M = ⟨S⟩.⟨S⟩

We say S is a basis of M if it generates M , and the elements of S are linearly independent. That is, given
some finite subset {s1, . . . , sn} ⊆ S, we have that

∑n
i=1 risi = 0 if and only if each ri is zero. If M admits a

basis, we call it free. The rank of a free module is the cardinality of the basis set S. ▼

Example 2.1.8. Some examples of free modules include:

(i) The direct sum
⊕

s∈S R is free, with rank equal to the cardinality of S. In fact, every free R-module is
isomorphic to a direct sum of copies of R. We often denote this repeated direct sum as R⊕S R⊕I .

18If I is empty, we define both the direct product and direct sum to be the zero module.
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(ii) If R is a commutative ring, then the R-module of polynomials R[x] is free. Its basis is the set of
monomials {1, x, x2, . . . }. If f is a monic polynomial over R, then R[x]/(f) is a free R-module, with
rank equal to the degree of f .

(iii) Every vector space is free, with rank equal to its dimension. This is a consequence of the Axiom of
Choice, which shows that every vector space can be given a basis [Bar14, lemma 3.1, p.5].

(iv) (†) We define the torsion submodule of an R-module M as the R-module

TorM := {m ∈M | rm = 0 for some r ∈ R \ Z ZR

R},TorM

where ZR is the set of zero divisors of R. If M is finitely generated and R is a principal ideal domain,
then by [DF04, theorem 12.1.5, p.462],

M ∼= Rn ⊕R/(a1)⊕ · · · ⊕R/(at).

Here (ai) is the ideal of the ring R generated by ai, and these ideals satisfy (ai) ⊆ (ai+1) for all i. The
module M is free if and only if TorM ∼= R/(a1)⊕ · · ·⊕R/(at) = 0. If R = Z, we obtain the well-known
structure theorem for abelian groups, as given in [DF04, theorem 5.2.3, p.158].

Every free module satisfies the following universal property, which allows us to construct free modules
over any ring, given any set of initial basis elements.

Proposition 2.1.9. Let R be a ring, and S a set. The inclusion set-function ι : S ↪→ R⊕S is universal in
the sense that given some other set-function f : S → N , where N is any other R-module, there is a unique
R-module-homomorphism φ : R⊕S → N that makes the following diagram commute:

S R⊕S

N.

ι

f
∃!φ

As with any universal property, this defines free modules up to unique isomorphism. The homomorphism
φ extends f linearly, that is, it acts on finite linear combinations by

φ

(∑
i

risi

)
=
∑
i

rif(si).

2.2 Tensor Products and the Hom-Functor

This section is focused on the tensor product. The tensor product allows us to put two modules together
while preserving linearity in both modules. One might suspect that the direct sum already does this, but
this is not quite true. For example, we may want the element (rm, n) to be the same as (m, rn) in M ⊕N ,
but this is simply not true. We define the tensor product of M and N to be a module preserving exactly
these relations. This is a bit of a hassle though, and we may prefer to utilize a certain universal property
that defines the tensor product up to a canonical isomorphism. This is done with bilinear maps, which are
functions b : M ⊕N → S such that that, for any m ∈ M and n ∈ N , the functions b(m,−) : N → S and
b(−, n) : M → S are R-module-homomorphisms.
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Definition 2.2.1. Let M and N be R-modules. The tensor product of M and N consists of an R-module
T and a bilinear map β : M ⊕ N → T such that, for bilinear map f : M ⊕ N → S, there is a unique
R-module-homomorphism φ : T → S such that the diagram

M ⊕N S

T

β

f

∃!φ

commutes. This only defines the tensor product up to isomorphism, but there is a ‘natural’ way to define it
as follows:
The tensor product M ⊗R N M ⊗R N contains finite sums of elements of the form m ⊗ nm⊗ n for m ∈ M and n ∈ N .
These elements are called elementary tensors and satisfy the following relations:

• m⊗ n+m′ ⊗ n = (m+m′)⊗ n;

• m⊗ n+m⊗ n′ = m⊗ (n+ n′);

• rm⊗ n = r(m⊗ n) = m⊗ rn.

A priori, the elements of M ⊗R N do not satisfy any other relations. The bilinear map corresponding to the
universal property is ⊗ : M ⊕N →M ⊗R N that sends a pair (m,n) to the elementary tensor m⊗ n. For a
detailed construction and a proof of this module satisfying the universal property, see [DF04, section 10.1]. ▼

The universal property is great for proving certain facts about the tensor product. The following
proposition gives some of these properties:

Proposition 2.2.2. Let R be a ring and M and N be R-modules. Then the following hold:

(a). M ⊗R N ∼= N ⊗RM .

(b). R⊗RM ∼= M .

(c). If f : M →M ′ and g : N → N ′ are R-module-homomorphisms, then these maps induce a homomorphism
f ⊗ g : M ⊗R N →M ′ ⊗R N ′.

Proof. (a). We could write down an isomorphism and check if these modules are in fact isomorphic, but
it is good to see how one might prove it using the universal property. We show that N ⊗RM satisfies the
universal property that M ⊗R N satisfies. Universality implies that these two are isomorphic. To that end,
we need a bilinear map β : M ⊕N → N ⊗RM , which we define here as β(m,n) := n⊗m.

Let f : M ⊕N → S be another bilinear map. We want to show there is a unique map φ : N ⊗RM → S

making
M ⊕N S

N ⊗RM

β

f

φ

commute. To that end, we define φ by φ(n⊗m) := f(m,n), and extending linearly. Because f is bilinear,
this is indeed an R-module-homomorphism. Moreover, note that for (m,n) ∈M ⊕N ,

φ(β(m,n)) = φ(n⊗m) = f(m,n),
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which makes the diagram commute. Last is to show that φ is unique. To that end, assume there is some other
homomorphism φ′ : N⊗RM → S such that φ′◦β = f . Now note that for any finite sum

∑
i ni⊗ni ∈ N⊗RM ,

φ′

(∑
i

ni ⊗mi

)
=
∑
i

φ′(ni ⊗mi)

=
∑
i

f(mi, ni)

=
∑
i

φ(ni ⊗mi) = φ

(∑
i

ni ⊗mi

)
.

Thus, φ′ = φ, making φ unique. Therefore, since N ⊗RM satisfies the universal property of M ⊗R N , these
tensor products are isomorphic. The map β suggests an explicit isomorphism M ⊗R N → N ⊗RM , namely
the one defined on elementary tensors as by m⊗ n 7→ n⊗m, which is extended linearly.

(b). We show that M satisfies the universal property of R⊗RM . First define a bilinear map β : R⊕M →M

by β(r,m) := rm. Distributivity implies that β is indeed bilinear. Now let f : R⊕M → S be another bilinear
map. First of all, we show that the diagram

R⊕M S

M

β

f

φ

commutes for some homomorphism φ. We define this as φ(m) := f(1,m), which is a homomorphism by the
bilinearity of f . Now let (r,m) ∈ R⊕M and notice that

φ(β(r,m)) = φ(rm) = f(1, rm) = f(r,m),

where the last equality follows from bilinearity of f . Now that we have shown that the diagram commutes,
we show this map φ is unique. Let φ′ : M → S be another homomorphism such that φ′ ◦ β = f , and notice
for all m ∈M :

φ′(m) = φ′(β(1,m)) = f(1,m) = φ(m).

Therefore, φ′ = φ, which means that M indeed satisfies the universal property of R⊗RM , making the two
modules isomorphic. We can also write down the explicit isomorphism R⊗RM →M , defined on elementary
tensors as r ⊗m 7→ rm and extended linearly.

(c). We use the universal property to construct a homomorphism f ⊗ g : M ⊗R N → M ′ ⊗R N ′. Let
b : M ⊕N → M ′ ⊗R N ′ be defined by b(m,n) := f(m) ⊗ g(n). This map is bilinear, because f and g are
homomorphisms, and −⊗− is bilinear. Thus, there is a unique map φ : M ⊗R N →M ′ ⊗R N ′ such that
φ ◦ (−⊗−) = b. By construction, this map is defined on elementary tensors by φ(m⊗ n) = f(m)⊗ g(n),
and extended linearly. We denote this map by f ⊗ g : M ⊗R N →M ′ ⊗R N ′.

The last part helps us to formally define the tensor product as a functor. Given an R-module M , the
functor M ⊗R − : ModR → ModR is a functor that sends an R-module N to M ⊗R N . A homomorphism
f : N → P is sent to the tensor product 1M ⊗ f : M ⊗R N →M ⊗R P .
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Before moving on to the Hom-functor, it is helpful to see examples of the tensor product in action.

Example 2.2.3.

(i) For any finite abelian group A, the tensor product Q⊗Z A is isomorphic to the zero module. This can
be seen by taking an arbitrary elementary tensor q ⊗ a, and noticing we can rewrite this to

ord(a)( q
ord(a) ⊗ a) = q

ord(a) ⊗ ord(a)a = q
ord(a) ⊗ 0.

By bilinearity, tensoring anything with zero gives the zero element of the module, so every elementary
tensor in Q⊗Z A is zero, and so Q⊗Z A = 0.19

(ii) More generally, if R is a domain with field of fractions Q(R), then for any R-module M , it follows that
Q(R)⊗R TorM = 0 by a similar argument as before.

(iii) Let R be a commutative ring. If M is a free R-module with basis S and N a free R-module with basis
T , then M ⊗R N is free as well, with basis {s⊗ t | s ∈ S, t ∈ T}. If M and N both have finite rank,
then the tensor product has rank equal to the product of the ranks of M and N . For a proof of this
fact, see [vGLOT17, proposition VII.3.11, p.69]. A consequence of this is that the tensor product of
polynomial modules R[x]⊗R R[y] is isomorphic to R[x, y].

(iv) Let K be a field, and f : V → V ′ and g : W → W ′ linear maps between K-vector spaces of finite
dimension. If we equip V , V ′, W , and W ′ with some basis, then the matrix corresponding to the linear
map f ⊗ g : V ⊗K W → V ′ ⊗K W ′ is the kronecker product of the matrices corresponding to f and g.
For information on applications of the Kronecker product, see [Loa00].

(v) Let R be a subring of a ring S. An R-module M can be extended to an S-module by way of the tensor
product S ⊗RM . It has a canonical S-action by s(x⊗m) := sx⊗m for s, x ∈ S and m ∈M . This is
called extension of scalars and is a sort of dual to the restriction of scalars we saw in 2.1.4(vi). This
duality is actually an adjunction! In the sense that the functor S ⊗R − : ModR → ModS is the left
adjoint of the functor ModS → ModR that takes an S-module to its restricted R-module. The proof
relies on the Tensor-Hom adjunction, and details are given in [Tae18, corollary 6.25, p.74].

We now move our attention to the Hom-functor. We have already seen its definition, but it is helpful to
see it again in the context of R-modules.

Definition 2.2.4. Let R be a ring and M an R-module. The Hom-functor

HomR(M,−) : ModR → ModR
N 7→ HomR(M,N)

(f : N → P ) 7→ (f∗ : HomR(M,N)→ HomR(M,P ))

takes a module N to the R-module of homomorphisms HomR(M,N).Hom(A,B) A homomorphism f : N → P is sent
to the pushforward f∗,

f∗ , f∗ which acts on homomorphisms g ∈ HomR(M,N) by f∗(g) := f ◦ g ∈ HomR(M,P ). ▼

As stated before, HomR(M,N) has the structure of an R-module by pointwise addition and scalar
multiplication. In some cases, the structure of this Hom-module can be explicitly computed, the following
proposition gives a nice example of this:

19If an object of a category is isomorphic to the zero object, we often write it as an equality.
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Proposition 2.2.5. Let R be a ring and M an R-module. The Hom-module HomR(R,M) is isomorphic to
M . Moreover, this isomorphism is natural in M .

Proof. For an R-module M , define ηM : HomR(R,M) → M by ηM (f) = f(1). To show this is a
homomorphism, take f, g ∈ HomR(R,M) and r, s ∈ R, and note:

ηM (rf + sg) = (rf + sg)(1) = rf(1) + sg(1) = rηM (f) + sηM (g),

by the R-module structure on HomR(R,M). Thus ηM is an R-module-homomorphism.
To show injectivity, note that ηM (f) = 0 if and only if f(1) = 0. Now because f is anR-module-homomorphism,

for each r in R, it follows f(r) = rf(1) = r0 = 0. Thus, f = 0 and so ηM is injective.
For surjectivity, let m ∈ M be arbitrary. We can define an R-module-homomorphism f by setting

f(1) = m, and extending linearly. Indeed, ηM (f) = m, which shows that ηM is surjective. Together with
injectivity, it follows that ηM defines an isomorphism HomR(R,M) ∼= M .

To show that the components form a natural isomorphism η : HomR(R,−)⇒ 1ModR , we show that for all
R-modules M,M ′, and any homomorphism g : M →M ′, the following diagram commutes:

HomR(R,M) M

HomR(R,M ′) M ′.

g∗

ηM

g

ηM′

To that end, let f ∈ HomR(R,M) and note:

g(ηM (f)) = g(f(1)) = (g ◦ f)(1) = ηM ′(g ◦ f) = ηM ′(g∗(f)),

which shows that g ◦ ηM = ηM ′ ◦ g∗, thus the diagram commutes. As each component ηM is an isomorphism,
the functors HomR(R,−) and 1ModR are naturally isomorphic.20

We are now ready to prove the Tensor-Hom adjunction, which is a useful result for the rest of the Chapter
as well:

Proposition 2.2.6. Let R be a ring and T be an R-module. The functor T ⊗R− is left adjoint to the functor
HomR(T,−).

Proof. We prove this using a unit-counit adjunction, as defined in Definition 1.5.7.. For clarity, write
F := T ⊗R − and G := HomR(T,−). We define the unit of the adjunction as the natural transformation
ε : FG⇒ 1ModR with components

εZ : FGZ = T ⊗R HomR(T,Z)→ Z, εZ(t⊗ φ) := φ(t)

for any t ∈ T and φ ∈ HomR(T,Z). This definition is extended to non-elementary tensors linearly. The
counit is defined as the natural transformation η : 1ModR ⇒ GF with components

ηZ : Z → GFZ = HomR(T, T ⊗R Z), ηZ(z) : t 7→ t⊗ z
20A similar argument to this proof can be used to show that the isomorphism R ⊗R M ∼= M from Proposition 2.2.2(b) is

natural, with components ηM (r ⊗ m) := rm.
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for any z ∈ Z and t ∈ T . Note that bilinearity of the tensor product implies that ηZ(z) is indeed a
homomorphism from T to T ⊗R Z, and also that ηZ is a homomorphism from Z to HomR(T, T ⊗R Z).

The next step is to show that both ε and η are actually natural transformations. Starting with ε, let
g : Z → Z ′ be an R-module-homomorphism, with the goal of showing that the diagram

T ⊗R HomR(T,Z) Z

T ⊗R HomR(T,Z ′) Z ′

1T⊗g∗

εZ

εZ′

g

commutes. To that end, let
∑
i ti ⊗ φi be an arbitrary tensor in T ⊗R HomR(T,Z). The top path of the

diagram evaluates to:

g

(
εZ

(∑
i

ti ⊗ φi

))
=
∑
i

g (εZ(ti ⊗ φi)) =
∑
i

g (φi(ti)) .

Here we used the linearity of both εZ and g. The other path of the diagram evaluates to:

εZ′

(
(1T ⊗ g∗)

(∑
i

ti ⊗ φi

))
=
∑
i

εZ′((1T ⊗ g∗)(ti ⊗ φi))

=
∑
i

εZ′(ti ⊗ g ◦ φi)

=
∑
i

g(φi(ti)).

So indeed, g ◦ εZ = εZ′ ◦ (1T ⊗ g∗), which makes ε a natural transformation.

To show η is natural, we show that for any homomorphism g : Z → Z ′, the following diagram commutes:

Z HomR(T, T ⊗R Z)

Z ′ HomR(T, T ⊗R Z ′).

g

ηZ

ηZ′

(1T⊗g)∗

To that end, let z ∈ Z. The image of z under both compositions is a homomorphism T → T ⊗R Z ′, so to
show they are equal, we take an arbitrary t in T . Now, evaluating the top path of the diagram at t, we find

(
((1T ⊗ g)∗ ◦ ηZ)(z)

)
(t) = (1T ⊗ g)(ηZ(z)(t))

= (1T ⊗ g)(t⊗ z)

= t⊗ g(z).

Now for the bottom path, again with arbitrary t in T :

(
ηZ′(g(z))

)
(t) = t⊗ g(z),

which follows immediately from the definition of ηZ′ . Now for both compositions, we took t arbitrary, meaning
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that the maps ((1T ⊗ g)∗ ◦ ηZ)(z) and ηZ′(g(z)) are equal. And thus, the diagram commutes, making η

natural.

The last part of proving that ε and η form a unit-counit adjunction is to show that the following diagrams
in the category [ModR,ModR] commute:

F FGF G GFG

F G.

Fη

εF
1F 1G

ηG

Gε

Starting with the left one, we show that (εF ◦ Fη)Z = 1FZ for any R-module Z. These are homomorphisms
from T ⊗R Z to itself, so let

∑
i ti ⊗ zi be an arbitrary tensor, and note that the left-hand side expands to21

(εF ◦ Fη)Z

(∑
i

ti ⊗ zi

)
= εT⊗RZ

(
1T ⊗ ηZ

(∑
i

ti ⊗ zi

))

= εT⊗RZ

(∑
i

(1T ⊗ ηZ)(ti ⊗ zi)
)

=
∑
i

εT⊗RZ(ti ⊗ ηZ(zi))

=
∑
i

(ηZ(zi))(ti)

=
∑
i

ti ⊗ zi = 1FZ

(∑
i

ti ⊗ zi

)
.

Indeed, (εF ◦ Fη)Z = 1FZ . Thus, because natural transformations are defined by their components, we have
shown that εF ◦ Fη = 1F .

For the second diagram, we show (Gε ◦ ηG)Z = 1GZ for any R-module Z. These are homomorphisms
from HomR(T,Z) to itself, so let φ be a homomorphism in HomR(T,Z). Taking a t in T and expanding the
left-hand side gives

(
(Gε ◦ ηG)Z(φ)

)
(t) = (εZ)∗

(
(ηHomR(T,Z)(φ))

)
(t)

= εZ
(
ηHomR(T,Z)(φ)(t)

)
= εZ(t⊗ φ)

= φ(t).

Therefore, because t was arbitrary, we conclude that (Gε ◦ ηG)Z(φ) = 1GZ(φ). This proves that F and G

form a unit-counit adjunction, and thus, by Proposition 1.5.8, also an adjoint pair F ⊣ G.

Corollary 2.2.7. For a collection of R-modules {Mi}i∈I , there is an isomorphism

T ⊗R
⊕
i∈I

Mi
∼=
⊕
i∈I

(T ⊗RMi).

21Recall that this is vertical composition of natural transformations, so (εF ◦ F η)Z = εF Z ◦ F ηZ .
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In particular,
T ⊗R R⊕I ∼= T⊕I

as a consequence of Proposition 2.2.2(b). Also, for any R-module homomorphism φ : M → N , it follows that

T ⊗R cokerφ ∼= coker(1T ⊗ φ).

Proof. This follows immediately from the fact that the direct sum and cokernel are colimits in ModR, and
Proposition 1.5.11.

This corollary is very useful for proving Watts’ Theorem. Before we move on to that, we need one more
topic, which is that of exact sequences. These are also important for Chapter 3.

2.3 Exact Sequences and Module Presentations

An exact sequence is a sequence of R-modules with R-module-homomorphisms between them, such that
the image of every map is equal to the kernel of the subsequent one. These sequences allow us to specify
injective and surjective homomorphisms, without relying on elements of the relevant domains and codomains.
Another use of exact sequences is they help to define free module presentations, which in some way generalize
presentations of groups.

Definition 2.3.1. Let R be a ring, and

· · · Mi−1 Mi Mi+1 · · ·fi−1 fi

be a (potentially infinite) sequence of R-modules with R-module-homomorphisms between them. We say this
sequence is exact in Mi if im fi−1 = ker fi. We call the sequence exact if it is exact in every module in the
sequence. We call an exact sequence of the form

0 M N P 0

a short exact sequence. ▼

Remark. Note that in an exact sequence as above, fi ◦ fi−1 = 0 for any i. This is a necessary condition for
the sequence being exact, but it is not sufficient. We call a sequence with this property a chain complex,
which play a central role in Chapter 3.

To get a grasp on the relevance of exact sequences, it may be helpful to see examples:

Example 2.3.2.

(i) The sequence of Z-modules

0 Z Z Z/nZZ/nZ 0,·n π

where we multiply an integer by n and then send an integer to its equivalence class modulo n, is exact.
Exactness in the middle module follows from the fact that the image of ·n is the set of integer multiples
of n, which is exactly the kernel of the projection π. Exactness in the other two modules follows from
the following two more general statements:
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(ii) A sequence of the form
0 M N

f

is exact if and only if f is injective, as then the kernel of f is the same as the image of the zero map
0→M , namely {0} ⊂M . Dually, a sequence of the form

M N 0f

is exact if and only if f is surjective. Putting the two together, we see that

0 M N 0f

is exact if and only if f is an isomorphism.

(iii) More generally, a sequence of the form

0 M N P
f g

is exact if and only if f is injective, and M is canonically isomorphic to the kernel of g. So not only
is M isomorphic to ker g as R-modules, but the homomorphism f is exactly the one satisfying the
universal property from Definition 2.1.5. The dual statement is that a sequence of the form

M N P 0f g

is exact if and only if g is surjective, and P is canonically isomorphic to the cokernel of f .

(iv) For any submodule N of M , the sequence

0 N M M/N 0

is exact, where the first nonzero homomorphism is the inclusion, and the second is the projection onto
the quotient module.

(v) A short exact sequence
0 M N P 0

is called split if N is isomorphic to the direct sum M ⊕ P , in such a way that the following diagram
with exact rows

0 M N P 0

0 M M ⊕ P P 0ιM πP

1M 1P∼=

commutes. Here ιM and πP are the inclusion and projection maps from M and onto P respectively.
Not every short exact sequence is split, example (i) from before is not split for example, because Z and
Z⊕ Z/nZ are not isomorphic as Z-modules.

A useful result regarding exact sequences is the five lemma:
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Lemma 2.3.3 (Five Lemma). For a ring R, consider the following commutative diagram of R-modules:

M1 M2 M3 M4 M5

N1 N2 N3 N4 N5.

f1 f2 f3 f4

g1 g2 g3 g4

α1 α2 α3 α4 α5

If both rows are exact sequences, α2 and α4 are isomorphisms, α1 is surjective and α5 is injective, then α3 is
an isomorphism.

Proof. To show α3 is injective, take some x in kerα3, with the goal of showing x = 0. Because α3(x) = 0, we
have g3(α3(x)) = 0. Applying commutativity gives α4(f3(x)) = 0. The homomorphism α4 is an isomorphism,
so in particular it is injective, meaning that f3(x) = 0, and so x ∈ ker f3.

By exactness, x is in the image of f2, so there is some m2 ∈ M2 such that f2(m2) = x. Note that, by
commutativity,

g2(α2(m2)) = α3(f2(m2)) = α3(x) = 0,

so α2(m2) ∈ ker g2 = im g1 by exactness. As such there is some n1 ∈ N1 such that g1(n1) = α2(m2).

Now because α1 is surjective, there is some m1 ∈M1 such that α1(m1) = n1. Using commutativity, we
find

α2(f1(m1)) = g1(α1(m1)) = g1(n1) = α2(m2).

Because α2 is an isomorphism, and thus injective, f1(m1) = m2. By applying f2 on both sides, we obtain

x = f2(m2) = f2(f1(m1)) = 0,

by exactness. Therefore, α3 is injective.

Next up is to show that α3 is surjective. To that end, let y ∈ N3, with the goal of showing that y is in the
image of α3. First of all, note that because α4 is an isomorphism, and thus surjective, there is some m4 ∈M4

such that α4(m4) = g3(y). Applying g4 on both sides, exactness, and commutativity implies

0 = g4(g3(y)) = g4(α4(m4)) = α5(f4(m4)).

Injectivity of α5 implies that f4(m4) = 0, so m4 ∈ ker f4 = im f3. So there is some m3 ∈ M3 such that
f3(m3) = m4.

Note that, by commutativity,

g3(α3(m3)) = α4(f3(m3)) = α4(m4) = g3(y).

As g3 is an R-module-homomorphism, g3(α3(m3)− y) = 0. Because ker g3 = im g2, we can find an n2 ∈ N2

such that g2(n2) = α3(m3)− y. The map α2 is surjective, so there is some m2 in M2 such that α2(m2) = n2.
Using commutativity, we can compute

α3(f2(m2)) = g2(α2(m2)) = g2(n2) = α3(m3)− y.
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Notice that y is in the image of α3, namely because

α3(m3 − f2(m2)) = α3(m3)− α3(f2(m2)) = α3(m3)− α3(m3) + y = y.

Since we have found an element of M3 such that α3 evaluated at that element is y, it follows α3 is surjective.
Combined with the previous part, this completes the proof.

A natural question is whether an exact sequence is preserved when a functor is applied to it. The general
answer to this is no, but there is a special class of functors for which this is true:

Definition 2.3.4. Let R and S be rings and F : ModR → ModS a covariant functor. We call F additive if it
preserves finite direct sums and the zero module.22

Let F be additive. Given a short exact sequence 0→M → N → P → 0 of R-modules, we call F :

• left exact if the induced sequence 0→ FM → FN → FP is exact;

• right exact if the induced sequence FM → FN → FP → 0 is exact;

• exact if it is both left and right exact, meaning that the sequence 0→ FM → FN → FP → 0 is exact.

If F is contravariant, we say it is left exact if the induced sequence 0→ FP → FN → FM is exact, and it is
right exact if FP → FN → FM → 0 is exact. ▼

Remark. As is proven in [Mac98, proposition 4, p. 197], a functor is additive if and only if it preserves
addition of homomorphisms: so F (f + g) = Ff + Fg for parallel homomorphisms f and g. Mac Lane proves
this in more general categories where additivity and summation of morphisms makes sense, which include
ModR. We define these categories in Chapter 3.

A helpful criterion to characterize left and right exactness uses Example 2.3.2(iii):

Proposition 2.3.5. An additive covariant functor F : ModR → ModS is left exact (resp. right exact) if and
only if it preserves kernels (resp. cokernels).

Proof. Assume F is left exact and consider the exact sequence 0→ ker f →M → N for any homomorphism
f : M → N . Applying F , we obtain the exact sequence 0→ F ker f → FM → FN . By exactness, there has
to be some canonical isomorphism F ker f ∼= kerFf , by Example 2.3.2(iii) thus F preserves kernels.

Conversely, suppose that F preserves kernels and let 0 → M → N → P → 0 be an exact sequence.
Consider the induced sequence 0→ FM → FN → FP . The map M → N is injective and thus has trivial
kernel, meaning that the induced map FM → FN has trivial kernel as well. Therefore FM → FN is
injective too. Moreover, because M ∼= ker(N → P ), there are isomorphims

FM ∼= F ker(N → P ) ∼= ker(FN → FP ).

Thus, the induced sequence is exact, making F a left exact functor.
The proof for right exactness being equivalent to cokernel-preservation is dual.

Example 2.3.6. The following are examples of additive functors and their exactness:
22To be specific, because direct sums and the zero modules are limits and colimits of certain diagrams (see Examples 1.4.3(i)

and (ii)), F preserves these if they preserve the corresponding limit cones in the sense of Definition 1.4.4.
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(i) For any R-module T , the Hom-functor HomR(T,−) is left exact. To see this, note that for a
homomorphism g : M → N , the collection of homomorphisms HomR(T, ker g) is the same as ker(g∗),
where g∗ : HomR(T,M)→ HomR(T,N) is the pushforward. Moreover, Proposition 1.4.5 implies that
the Hom-functor preserves direct sums, and thus is additive. Therefore, it is left exact.

(ii) Corollary 2.2.7 immediately implies that T ⊗R − is right exact. In particular, if g : M → N is a
surjective homomorphism, then 1⊗ g : T ⊗RM → T ⊗R N is surjective as well. If T ⊗R − is an exact
functor, we call T a flat module. For example, any free module is flat, as is shown in [DF04, corollary
10.5.42, p.400].

(iii) The contravariant Hom-functor HomR(−, T ) : Modop
R → ModR is left exact. This is a direct consequence

of the second part of Proposition 1.4.5; the functor takes cokernels to kernels, which makes it left exact.

We now shift our focus to module presentations, which allows one to view a module as a free module, with
some relations restricting it. This is a certain generalization of group presentations, as will become apparent.

Definition 2.3.7. Let R be a ring and M be an R-module. A (free) presentation of M is an exact sequence

R⊕J R⊕I M 0R⊕I

of two free modules and M . If the indexing sets I and J are finite, we call M finitely presented. ▼

Proposition 2.3.8. Any module over any ring R admits a presentation.

Proof. Let M be an R-module. Though it is not generally free, we can still form a generating set of M . In
the most extreme case, this generating set may be M itself, but this has a lot of unnecessary repeats. For
example if m is part of the generating set then we do not need to have 2m in that generating set.

Regardless, take some generating set S of M and consider the R-module-homomorphism g : R⊕S →M

that sends a sequence (rs)s∈S to the linear combination
∑
s rss. Because S generates M , this map is surjective.

We can include the kernel of g to obtain the following exact sequence:

ker g R⊕S M 0.ι g

As ker g is another R-module, we can construct a surjective homomorphism f : R⊕J → ker g in the same way
as we did before. The claim is that the sequence

R⊕J R⊕S M 0ι◦f g

is exact. By Example 2.3.2(iii), together with the fact that g is surjective, we just need to show that M is
the cokernel of the map ι ◦ f . To that end, note that

coker(ι ◦ f) = R⊕S/ im(ι ◦ f) = R⊕S/ ker g ∼= im g = M.

Here the second equality followed from the fact that f is surjective, and that the image of ι is the kernel of g
by exactness. The last equality holds because g is surjective. So M is the cokernel of ι ◦ f , which makes the
above sequence exact, and we see that M has a presentation.

Example 2.3.9. As eluded to before, module presentations give an alternative way to view group presentations.
To recall, given an abelian group A, its group presentation, which we denote by A = ⟨gi | rj⟩ consists of a
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collection of generators gi, and a collection of relations rj . Any relation looks like some Z-linear combination
of the generators, and the implication is that any such combination is set to be zero in a quotient. For example,
the abelian group A = Z⊕ Z/2Z has presentation ⟨g1, g2 | g2 + g2⟩. We can view this as a presentation of
Z-modules with an exact sequence

Z Z2 Z⊕ Z/2Z 0.r g

The map g sends a pair (n,m) to (n,m mod 2), which encodes the generators of A. The map r sends the
integer 1 to the pair (0, 2) and extends linearly. The above sequence being exact means that g is surjective,
so the geneators indeed generate A. Exactness also implies that A is the cokernel of r, so the relation
2 = 0 mod 2 is satisfied in the quotient.

2.4 Watts’ Theorem and Variations

In this section, we state and prove Watts’ Theorem. There have been many different formulations of this result
over the last six decades, not the least of which are the original formulations in the two papers [Eil60, Wat60].
We state and prove the original formulation, and also discuss some related statements. Before that, we discuss
some of the theory of bimodules, which are essentially modules over two rings.

Definition 2.4.1. Let R and S be rings. An (S,R)-bimodule is an abelian group M that is a left S-module,
a right R-module, and

s(mr) = (sm)r

for any s in S, r in R, and m in M . ▼

This extra ‘associativity’ requirement really just states that the two module structures on M are compatible.
There is one more lemma we need before we get to Watts’ Theorem:

Lemma 2.4.2. Let F : ModR → ModS be a covariant additive functor. For any left R-module M , the left
S-module FM also exhibits the structure of a right R-module, turning it into an (S,R)-bimodule.

Proof. For r in R and n in FM , define nr := F (µr)(n), where µr : M → M µr : M → M is the multiplication
homomorphism defined by m 7→ rm. To show this action turns FM into a right R-module, note that
for n, n′ in FM and r, r′ in R, we have

(n+ n′)r = F (µr)(n+ n′) = F (µr)(n) + F (µr)(n′) = nr + n′r,

and
n(r + r′) = F (µr+r′)(n) = F (µr + µr′)(n) = F (µr)(n) + F (µr′)(n) = nr + nr′,

by additivity of F . Moreover, note that because µrr′ = µr ◦ µr′ , functoriality of F implies that

n(rr′) = F (µrr′)(n) = F (µr)(F (µr′)(n)) = (nr)r′.

Finally, µ1 is just the identity on M , so n1 is equal to n by functoriality. Thus, FM is a right R-module.

Finally note that for s in S, r in R, and n in FM , it follows

s(nr) = sF (µr)(n) = F (µr)(sn) = (sn)r,
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since F (µr) is an S-module-homomorphism. Because of this, FM is an (S,R)-bimodule.

We are now ready for Watts’ Theorem, which, loosely stated, says that any additive right exact functor
that preserves direct sums is some form of tensor product.

Theorem 2.4.3 (Watts’ Theorem). Let R and S be rings, and let F : ModR → ModS be a covariant additive
functor. There is a natural transformation

θ : FR⊗R − ⇒ F

which is a natural isomorphism if and only if F preserves direct sums and is right exact.

Remark. The statement that θ is a natural isomorphism if and only if F preserves direct sums and is right
exact can be replaced by stating that θ is a natural isomorphism if and only if F is cocontinuous. This is a
consequence of Proposition 1.4.6, Proposition 2.3.5, and the fact that direct sums and cokernels are colimits
in ModR. In [Hov09], the author phrases Watts’ Theorem as stating that if F is additive and a left adjoint,
then it is naturally isomorphic to the tensor product. Under this view, Watts’ Theorem may be interpreted
that, up to natural isomorphism, the tensor product is the only additive and left adjoint functor between
module categories.

Proof. We first construct the transformation θ and prove it is natural. Let M be an R-module, and consider
the mapping

θ̂M : FR⊕M → FM

defined by (n,m) 7→ F (ρm)(n), where ρm : R→M ρm : R → M is the R-module-homomorphism defined by ρm(r) = rm.23

It is clear that θ̂M preserves sums in both arguments, what is less clear is that it is also linear in R. We use
the right R-structure from Lemma 2.4.2 to show this. Namely, for any r in R, we have

θ̂M (nr,m) = F (ρm)(nr)

= F (ρm)(F (µr)(n))

= F (ρrm)(n)

= θ̂M (n, rm).

Here µr is the multiplication homomorphism from R to R. We can also rewrite F (ρrm)(n) to

F (ρrm)(n) = F (µ′
r ◦ ρm)(n) = F (µ′

r)(θ̂M (n,m)) = θ̂M (n,m)r,

where µ′
r is the multiplication map from M to M . Thus, θ̂M is bilinear in R, and extends to an

R-module-homorphism
θM : FR⊗RM → FM

by the universal property of the tensor product. This map is defined as θM (n ⊗ m) = F (ρm)(n) on
elementary tensors. Note that FR⊗RM is also a left S-module, by s(n⊗m) := sn⊗m, which makes θM
an S-module-homomorphism as well. What we show next is that the components θM assemble into a natural
transformation from FR⊗R − to F .

23Note that ρm is a sort of ‘dual’ to the multiplication homomorphism in Lemma 2.4.2, in the sense that ρm(r) = rm = µr(m).

60



To that end, let g : M →M ′ be an R-module-homomorphism. We show that the naturality square

FR⊗RM FM

FR⊗RM ′ FM ′

1FR⊗g

θM

θM′

Fg

commutes, so let
∑
i ni ⊗mi be a finite sum in FR⊗RM . The top path of the square evaluates to

Fg

(
θM

(∑
i

ni ⊗mi

))
=
∑
i

Fg(θM (ni ⊗mi))

=
∑
i

(Fg ◦ Fρmi)(ni)

=
∑
i

F (g ◦ ρmi)(ni)

=
∑
i

F (ρg(mi))(ni).

The bottom path of the square evaluates to

θM ′

(
(1FR ⊗ g)

(∑
i

ni ⊗mi

))
=
∑
i

θM ′((1FR ⊗ g)(ni ⊗mi))

=
∑
i

θM ′(ni ⊗ g(mi))

=
∑
i

F (ρg(mi))(ni).

Thus, because both compositions through the square evaluate to the same homomorphism, θ is a natural
transformation.

Now we are ready to prove the second part of the theorem. If θ is a natural isomorphism, then F preserves
direct sums and is right exact, because FR ⊗R − is as well by Corollary 2.2.7 and Example 2.3.6(ii). For
the converse, assume F preserves direct sums is right exact. We have already shown that θ is a natural
transformation, so all we need to show now are that the components θM are isomorphisms for all M .

Before that though, it is useful to see how θ acts on free modules. If M = R, we find that the component
θR : FR⊗R R→ FR acts on elementary tensors as

θR(n⊗ r) = θR(nr ⊗ 1) = F (ρ1)(nr) = nr.

Note that this map θR acts as the isomorphism FR ⊗R R ∼= FR discussed in the proof of Proposition
2.2.2(a,b), but in the context of right R-modules. For arbitrary free modules, let I be a set, and note that we
have the following commutative diagram, as a consequence of the tensor product and F preserving direct
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sunms, as well as naturality of θ:

FR⊗R R FR

FR⊗R R⊕I F (R⊕I)

⊕
I(FR⊗R R)

⊕
I FR.

θR

1FR⊗ιi Fιi

θR⊕I

∼=

⊕θR

∼=

The homomorphism ⊕θR is defined as applying θR to each entry of a sequence in the direct sum, which
indeed makes the outer rectangle of the diagram commute. Because θR is an isomorphism, so is ⊕θR. Using
commutativity of the bottom square, we can write θR⊕I as the composition of three isomorphisms, meaning
it is an isomorphism itself.

Now let M be an arbitrary R-module. By Proposition 2.3.8, there are sets I and J , and an exact sequence
of free R-modules that present M :

R⊕J R⊕I M 0.

Applying FR⊗R − and F on this sequence, we obtain a commutative diagram (extended with zero modules)

FR⊗R R⊕J FR⊗R R⊕I FR⊗RM 0 0

F (R⊕J) F (R⊕I) FM 0 0.

θR⊕J θR⊕I θM 0 0

Commutativity follows from the naturality of θ. Note that because both the tensor product and F are right
exact, both of the rows above are exact sequences. The maps θR⊕J and θR⊕I are isomorphisms, as are the
zero maps between the zero modules. The Fve Lemma implies that θM is an isomorphism, which completes
the proof.

Remark. If F were additive and right exact, but not preserve arbitrary direct sums, the theorem would
still hold in the subcategory containing only finitely presented modules. This is because additive functors
preserve finite direct sums.

In [AK17, theorem 8.13, p.62], authors Altman and Kleiman prove a less general version of Watts’
Theorem, where the rings R and S are the same. The proof of Theorem 2.4.3 could be copied directly,
but the authors give a different proof, requiring the functor F to preserve scalar multiplication as well, so
F (rf) = rF (f) for r ∈ R and any homomorphism f . In this setting, the component θM is defined using the
homomorphism HomR(R,M)→ HomR(FR,FM), which is an element of

HomR(HomR(R,M),HomR(FR,FM)) ∼= HomR(M,HomR(FR,FM)) ∼= HomR(FR⊗RM,FM).

Unravelling the isomorphisms above gives the same map as we defined in the proof of Theorem 2.4.3.

The following is an example of an additive functor that does not satisfy the criteria for Watts’ Theorem,
and so is not naturally isomorphic to the tensor product with some module.

62



Example 2.4.4. Let R be an integral domain, and let Tor : ModR → ModR be the functor that sends an
R-module M to its torsion submodule

TorM := {m ∈M | rm = 0 for some r ∈ R \ {0}},TorM .

An R-module-homomorphism f : M →M ′ is sent to the restriction f |TorM : TorM → TorM ′ f|U (note that if
t ∈ TorM , then f(t) ∈ TorM ′, because if rt = 0, then rf(t) = f(rt) = 0 as well). This functor is indeed
additive, and it preserves direct sums. To see this, let M and N be R-modules, and note that the modules
Tor(M ⊕N) and TorM ⊕ TorN are not just isomorphic, but actually equal. Indeed, if (t, s) ∈ Tor(M ⊕N),
then r(t, s) = 0 for some r ̸= 0, so t and s are torsion elements, which implies (s, t) ∈ TorM ⊕ TorN .
Conversely, if (t, s) ∈ TorM ⊕TorN , then rt = 0 and r′s = 0 for r, r′ ̸= 0. Now note that rr′(t, s) = (0, 0) as
well, thus we find (t, s) ∈ Tor(M ⊕N).

The torsion functor is not right exact however. As an example, consider the exact sequence of Z-modules
seen in Example 2.3.2(i):

0 Z Z Z/nZ 0.

Note that as Z-modules, the torsion of Z is zero, and the torsion of Z/nZ is itself. Thus, applying the torsion
functor gives the sequence

0 0 0 Z/nZ 0.

This sequence is not exact however, since that would imply Z/nZ is isomorphic to the zero module, which is
not true at all if n > 1. More generally, the torsion fails to be right exact because if f : M →M ′ is surjective,
that does not always imply f |TorM : TorM → TorM ′ is.

Because the torsion is an additive functor that preserves direct sums, but is not right exact, it does not
satisfy the hypotheses of Watts’ Theorem. Thus, the natural transformation

θ : TorR⊗R − ⇒ Tor

is not an isomorphism. This can be seen more directly as well: The component θM of the natural transformation
sends an elementary tensor t⊗m in TorR⊗RM to the element tm in TorM (note that t ∈ TorR, so rt = 0.
This implies rtm = 0, making tm an element of the torsion of M). An inverse of θM would necessarily map
an element m of the torsion of M to 1⊗m, but the multiplicative unit of R is not torsion at all, so 1⊗m is
not an element in TorR⊗RM , so the inverse homomorphism cannot exist.

The original papers by Eilenberg and Watts [Eil60, Wat60] also discuss a dual theorem regarding
contravariant additive functors:

Theorem 2.4.5 (Contravariant Watts’ Theorem). Let R be a ring, and let F : Modop
R → ModS be an additive

functor. There is a natural transformation

θ : F ⇒ HomR(−, FR)

which is a natural isomorphism if and only if F takes direct sums to direct products and is left exact.

In other words, an additive functor F : Modop
R → ModS is representable, as in Definition 1.3.6, if and

only if it takes direct sums to direct products and is left exact. The proof is in essence the same as the
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covariant theorem. The components of the relevant natural transformation are given by homomorphisms
θM : FM → HomR(M,FR), where n ∈ FM is sent to θM (n), which is defined as a map M → FR by
θM (n)(m) = F (ρm)(n). Here ρm is the same as in the proof for the covariant Watts’ Theorem.

In essence, what Watts’ Theorem is really saying is that there is a correspondence between applying a
linear cocontinuous functor, and tensoring with a bimodule. This connection between bimodules and these
functors goes deeper than this actually:

Proposition 2.4.6. Let R and S be rings. Let D denote the subcategory of [ModR,ModS ][C, D] of functors that
are additive, preserve direct sums, and are right exact. The functor ψ : B 7→ B ⊗R − is an equivalence of
categories

SModS ModR

R ≃C ≃ D D,

where the domain is the category of (R,S)-bimodules.
Dually, the functor ψ : B 7→ HomR(−, B) is an equivalence of categories

SModR ≃ D′,

where D′ denotes the category of additive contravariant functors that take direct sums to direct products and
are left exact.

Proof. To be clear, the functor ψ sends an (R,S)-bimodule B to the tensor product functor B ⊗R −, which
is indeed additive, preserves direct sums and is right exact. An (R,S)-bimodule-homomorphism f : B → B′

is sent to the natural transformation

f ⊗ 1(−) : B ⊗R − ⇒ B′ ⊗R −,

defined on components by (f ⊗ 1(−))M := f ⊗ 1M for a bimodule M .

To show that ψ is an equivalence of categories, we find an inverse equivalence φ : D→ SModR such that
φψ and ψφ are naturally isomorphic to the corresponding identity functors, following Definition 1.3.10. We
define φ to send a functor F : ModR → ModS in D to the (R,S)-bimodule FR. A natural transformation
η : F ⇒ G is sent to the component ηR : FR→ GR.

First, let B be an (R,S)-bimodule, and note

φψ(B) = φ(B ⊗R −) = B ⊗R R ∼= B.

The isomorphism B ⊗R R ∼= B is actually natural in B, so the functors φψ and 1
SModR are naturally

isomorphic.

For the other composition, let F be a functor in D, and note that

ψφ(F ) = ψ(FR) = FR⊗R − ∼= F.

The natural isomorphism FR ⊗R − ∼= F follows from Watts’ Theorem. Thus, ψφ ∼= 1D is a natural
isomorphism.

The proof of the dual statement is similar. The inverse equivalence also sends a functor F to the bimodule
FR. The fact that the compositions of these equivalences are naturally isomorphic to identity functors follows
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from Proposition 2.2.5 and Theorem 2.4.5.

2.5 Localization: An Application of Watts’ Theorem

The classical construction of the rational numbers is done by a quotient (Z×Z\{0})/ ∼, where (n, r) ∼ (n′, r′)
if nr′ = n′r. A class [n, r] corresponds to the rational number n/r. This construction can be generalized to
the field of fractions Q(R)Q(R) of a domain R, as is done in e.g. [LOT17, section I.3]. This idea can be generalized
further to the localization of rings. Loosely stated, the localization of a ring R by a so-called multiplicative
subset A contains of fractions of the form r/a, with r ∈ R and a ∈ A. This section also covers localizations of
modules, and proves a theorem stating that localizing an R-module is is the same as localizing R and taking
the tensor product.

Intuitively, the idea of localization is to take some non-invertible elements of a ring, and declare them to
be invertible. To make this process well-defined however, we require the non-invertible elements to be part of
a specific type of subset:

Definition 2.5.1. We call a subset A of a ring R multiplicative if it contains 1, and the product aa′ is in A

for a, a′ ∈ A.
The localization of R by A, denoted A−1R A−1 R, is the ring (R×A)/ ∼, where (r, a) ∼ (r′, a′) if there exists an
x ∈ A such that xa′r = xar′. We denote the class of (r, a) by r/a or r

a
r/a,

r

a . Addition and multiplication are
done by

r

a
+ r′

a′ := ra′ + r′a

aa′ ;

r

a
· r

′

a′ := rr′

aa′ .

The additive unit is 0/1, and the multiplicative unit is 1/1.

The localization A−1R is governed by the following universal property, which defines it up to unique
isomorphism. There is a ring-homomorphism β : R→ L such that β(s) is a unit in L for all a ∈ A. Moreover,
for any other f : R → Y that sends elements of A to units in Y , there is a unique ring-homomorphism
φ : L→ Y such that the following diagram commutes:

R Y

L.

β

f

∃!φ

For L = A−1R, the map β sends an element r ∈ R to r/1 in the localization. Indeed, the image of an element
a ∈ A is a/1, which is a unit with inverse 1/a. The map φ is defined as φ(r/a) := f(r)f(a)−1 (note that f
sends elements of A to units in Y , so f(a)−1 actually makes sense). ▼

Remark. If c is a nonzero zero divisor of R, with cd = 0 for some d ∈ A ⊆ R, then in A−1R, we have

c

1 = cd

d
= 0
d

= 0
1 .

Following the definition of the equivalence ∼, there is some x ∈ A such that cx = 0. This is why we require
the element x in the definition of the equivalence relation. If we used the equivalence relation used to define
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the field of fractions, then we would have c = 0, which is a contradiction.
If R is an integral domain and A a multiplicative subset, then indeed r/a = r′/a′ if and only if ra′ = r′a.

In this case, the localization A−1R is a subring of the field of fractions Q(R). In fact, the field of fractions of
a domain is the localization of itself by the set of its nonzero elements.

Example 2.5.2. The following are examples of localizations of rings:

(i) If A = {1, a, a2, a3, . . . } for some a ∈ R, then A−1R contains elements of the form r/an. This ring is
isomorphic to the quotient ring

R[x]/(xa− 1).

The isomorphism follows from the universal property, the map β : R→ R[x]/(xa− 1) sends r to the
class r + (xa− 1). See the proof of [AK17, proposition 11.7, p.82] for details.

(ii) If pp is a prime ideal24 of a ring R, then the set R \ p is multiplicative. The localization of R by this set,
denoted R Rp

p is the local ring at p.

(iii) The ring A−1R is the zero ring if and only if 0 is an element of A. Indeed, if 0 is an element of A, then
1/1 = 0/1 by the equivalence relation defining ring localizations. Now for any other r/a ∈ A−1R, it
follows that

r

a
= r

a
· 1

1 = r

a
· 0

1 = 0
1 ,

meaning every element is the zero element. Thus, A−1R is the zero ring. On the other hand, if A−1R is
the zero ring, then 1/1 = 0/1, implying there is some x ∈ A such that x(1 · 1) = x(1 · 0), so 0 = x ∈ A.

(iv) If A only contains units of R, then the canonical map provided by the universal property R→ A−1R is
an isomorphism, with inverse r/a 7→ ra−1.

Just like rings, we can also localize modules:

Definition 2.5.3. Let A be a multiplicative subset of a ring R. Given an R-module M , we define its
localization by A to be the A−1R-module A−1M A−1 M. Its elements are equivalence classes m/a for m ∈M and
a ∈ A. Addition and scalar multiplication are done by

m

a
+ m′

a′ := ma′ +m′a

aa′ ;
r

a
· m
a′ := rm

aa′ .

Equality is defined via a similar equivalence relation as for localizing rings. That is, m/a = m′/a′ if and only
if there is some x in A such that xa′m = xam′. ▼

What we are about to prove, using Watts’ Theorem, is that localizing a module is the same as taking a
tensor product. Before that however, we need some more details about this localization:

Proposition 2.5.4. Given a multiplicative subset A of a ring R, there is an additive, exact, and direct sum
preserving functor A−1− : ModR → ModA−1R that sends a module M to the localization A−1M .

Proof. Under A−1−, an R-module-homomorphism f : M → N is sent to f̂ : A−1M → A−1N f̂ : A−1 M → A−1 N, defined by
f̂(m/a) := f(m)/a. This is an A−1R-module-homomorphism, because f is an R-module-homomorphism. To

24Recall that an ideal p ⊴a ⊴ R R is prime if p is not equal to R, and ab ∈ p implies either a or b is in p.
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show functoriality, let 1M : M →M be an identity homomorphism. Its image under S−1− acts on elements
m/a ∈ A−1M by

1̂M (m/a) = 1M (m)/a = m/a,

and thus, it is the identity on A−1M . Now, if f : M → N and g : N → P are R-module-homomorphisms, we
want to show ĝf̂ = ĝf . To that end, let m/a ∈ A−1M , and note

ĝf(m/a) = (gf)(m)/a = g(f(m))/a = ĝf̂(m/a).

Therefore, A−1− is indeed a functor.

Now to show A−1− is additive, let f, f ′ : M ⇒ N be R-module-homomorphisms. Applying A−1− to their
sum, applied to an element m/a ∈ A−1M evaluates to

(f̂ + f ′)(m/a) = (f(m) + f ′(m))/a = f̂(m/a) + f̂ ′(m/a).

Indeed, A−1− preserves sums of homomorphisms, and is thus additive.

By Proposition 2.3.5, A−1− is right exact if and only if there is a canonical isomorphism A−1 coker f ∼=
coker f̂ for some R-module-homomorphism f : M → N . In this case, we can send a class (c + im f)/a in
A−1 coker f to (c/a) + im f̂ . It is clear that this is a well-defined homomorphism, and has an inverse that
sends (c/a) + im f̂ to (c+ im f)/a.

For left exactness, we want to show that if

0 M N P 0f g

is a short exact sequence, then

0 A−1M A−1N A−1P
f̂ ĝ

is exact. By exactness of the original sequence, ĝ ◦ f̂ = 0, so the image of f̂ is contained in the kernel of ĝ.
For the other direction, let n/a be an element of ker ĝ. This implies that g(n)/a = 0, so xg(n) = g(xn) = 0
for some x in A. Now we have xm ∈ ker g, which is the image of f , so there is some m ∈ M such that
f(m) = xn. Now, note that

f̂
(m
xa

)
= f(m)

xa
= xm

xa
= n

a
,

so n/a is in the image of f . Thus, since im f̂ = ker ĝ, we see that the above sequence is exact, making A−1−
an exact functor.

Finally, A−1− also preserves direct sums. To prove this we show that, for some indexed collection {Mi}i
of R-modules, A−1⊕

iMi satisfies the universal property of coproducts that
⊕

iA
−1Mi does (see Example

1.4.3(ii)). First we let ιi : A−1Mi → A−1⊕
iMi be defined by

ιi(mi/a) := (0, . . . ,mi, . . . , 0)
a

,

where the mi is in the i-th entry. Now, for any other collection of homomorphisms fi : A−1Mi → N , there is
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a unique f : A−1⊕
iMi → N such that the diagram

A−1Mi A−1⊕
iMi

N

ιi

fi
f

commutes for all i. We can define f by setting

f

(
(mi)i
a

)
:=
∑
i

fi(mi/a).

Note that this is indeed an A−1R-module-homomorphism and satisfies f ◦ ιi = fi. Finally to prove uniqueness,
let g : A−1⊕

iMi → N be another homomorphism such that gιi = fi for all i. Now note that

g

(
(mi)i
a

)
= g

(∑
i

ιi(mi/a)
)

=
∑
i

g(ιi(mi/a)) =
∑
i

fi(mi/a) = f

(
(mi)i
a

)
.

Therefore g = f , making f unique. Because A−1 ⊕iMi satisfies the same universal property as
⊕

iA
−1Mi

does, it follows that A−1− preserves direct sums.

Corollary 2.5.5. For an R-module M , there is a natural isomorphism A−1R⊗RM ∼= A−1M .

Proof. This is immediate from Proposition 2.5.4 and Watts’ Theorem 2.4.3.

We call a property that an R-module M could satisfy local if M satisfies it if and only if M Mp

p := (R\p)−1M

satisfies it for all prime ideals p of R. An important example of a local property is flatness. Recall that a
module M is flat if M ⊗R − is an exact functor. As is proven in [DF04, proposition 10.5.40, p.400], M is flat
if and only if, whenever f : A→ B is injective, so is 1M ⊗ f : M ⊗R A→M ⊗R B.

Proving that flatness is a local property requires multiple steps, which consitute the following Proposition:

Proposition 2.5.6. Let R be a ring. The following hold:

(a). Being the zero module is a local property.

(b). A homomorphism between two R-modules being injective and/or surjective is a local property.

(c). For R-modules M and N , and a prime ideal p of R, there is a natural isomorphism of Rp-modules
Mp ⊗Rp

Np
∼= (M ⊗R N)p.

(d). Flatness is a local property.

Proof. (a). To reiterate, the goal is to show that M is the zero module if and only if Mp is zero for any prime
ideal p of R. If M is zero, then any element m/a ∈Mp is equal to 0/a = 0/1, thus Mp is the zero module.

Conversely, if Mp is zero for all prime ideals p of R, we consider some a ∈M and assume it is nonzero.
Define

Ann(a) := {r ∈ R | ra = 0}Ann(a)
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to be the annihilator of a, which is an ideal of R. This ideal is contained in some maximal ideal25 a of R,
because it is not the whole ring (e.g. 1 ∈ R is not in the annihilator since a is nonzero). By assumption, Mm

is zero, so a/1 = 0/1 in Mm, meaning there is some x ∈ R \m such that xa = 0. But this implies x ∈ Ann(a),
which contradicts x not being in m. Therefore a is indeed zero, making M the zero module.

(b). Note that f : M → N is injective if and only if

0 M N
f

is exact. It follows that
0 Mp Np

f̂

is exact by Proposition 2.5.4. Exactness of the above sequence is equivalent to f̂ : Mp → Np being injective.

Conversely, assume f̂ : Mp → Np is injective for all prime ideals p of R. Now consider the exact sequence

0 ker f M N,
f

which becomes
0 (ker f)p Mp Np

f̂

after localizing by any prime ideal p. Since localization is exact, it preserves kernels, so we have a canonical
isomorphism (ker f)p ∼= ker f̂ , which is zero by assumption of f̂ being injective. So because (ker f)p is zero
for all prime ideals p of R, so is ker f by part (a). Thus, it follows that f is injective, which proves that
injectiveness is a local property. The proof of the fact that surjectivity is a local property is dual.

(c). For this part we use the fact that the tensor product is associative. That is, there is a natural
isomorphism

M ⊗R (M ′ ⊗RM ′′) ∼= (M ⊗RM ′)⊗RM ′′

for R-modules M , M ′ and M ′′. This is proven in [AK17, theorem 8.8, p.61] using the universal property of
the tensor product.

Now let M and N be R-modules, and p some prime ideal of R, and note

Mp ⊗Rp
Np
∼= (M ⊗R Rp)⊗Rp

Np

∼= M ⊗R (Rp ⊗Rp
Np)

∼= M ⊗R (Rp ⊗R N)
∼= Rp ⊗R (M ⊗R N) ∼= (M ⊗R N)p.

The first isomorphism follows from Corollary 2.5.5, the second from associativity of the tensor product, the
third from Proposition 2.2.2(a) and the previously mentioned Corollary. The last two isomorphisms are a
consequence of associativity and commutativity (see Proposition 2.2.2(b)) of the tensor product, and the
same corollary again. All these isomorphisms are natural in M and N , which completes the proof.

(d). Let M be a flat R-module, and p a prime ideal of R. Note that the functor Mp ⊗Rp
− is naturally

25Recall that an ideal m ⊴ R m is maximal if it is not equal to R, and m ⊆ a ⊆ R for some ideal a implies a = m or a = R. As is
shown in [DF04, corollary 7.4.14, p.256], any maximal ideal is prime.
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isomorphic to (M ⊗R −)p by part (c) as functors from ModRp
to itself. It makes sense to have the same

input variable for both functors, as an Rp-module N can also be seen as an R-module, where we restrict the
scalar multiplication to elements of the form r/1. Localization by p, as well as M ⊗R − are exact functors by
assumption, thus Mp ⊗Rp

− is as well, which implies Mp is a flat Rp-module.

Conversely, if Mp is flat for all prime ideals p of R, then so is M . To prove this, we show that M ⊗R −
preserves injective homomorphisms. Let f : N → N ′ be an injective R-module-homomorphism. By part (b),
the induced map f̂ : Np → N ′

p is also injective, making

1Mp
⊗ f̂ : Mp ⊗Rp

Np →Mp ⊗Rp
N ′

p

injective as well by assumption of Mp being flat. By part (c), this corresponds naturally to an injective
homomorphism (M ⊗R N)p → (M ⊗R N ′)p. Since this holds for all prime ideals of R, it follows that the
corresponding map M ⊗R N →M ⊗R N ′ is injective, which proves that M is flat.

On this note, we conclude the Chapter on Watts’ Theorem. We have seen how the basic notions of
category theory can help to formalize certain concepts from commutative algebra. Including Watts’ Theorem
itself, which allows us to view a large and important class of functors in terms of a tensor product. In the
next Chapter, we see how we can use the theory of homological algebra to extend a right or left exact functor
to the left or right, respectively, to measure how far off it is to being exact. In the context of the tensor
product functor, we can use this theory to measure how far off a module is from being flat.
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3 Derived Functors
Je me borne à des cas simples, qui ne nécessitent aucune
conjecture . . .
(Translation: I confine myself to simple cases, which require
no conjecture . . .)

–Jean-Pierre Serre [Ser91]

This Chapter is focused on derived functors, which seek to answer the following question: Given an exact
sequence 0→ A→ B → C → 0 in some ‘nice’ category (like AbAb), after applying a right exact functor to obtain
the exact sequence FA→ FB → FC → 0, is there a canonical way to extend this on the left to a long exact
sequence? This is indeed possible, and is done using derived functors. This Chapter covers the background
necessary to define these concepts. The first Section defines abelian categories, which are categories that
resemble Ab to the extent to allow the definitions of concepts like exact sequences and homology to make
sense. The second Section is about chain complexes, which are the basic building blocks for defining and
proving certain properties of derived functors. In the third Section, we define derived functors using special
chain complexes called resolutions. Finally, we look at an easier way to compute these derived functors
through so-called acyclic resolutions. The theory in this Chapter is mainly adapted from [Fre64] with regard
to abelian categories, and [HS97] and [Rot09] for the theory behind derived functors.

3.1 Additive and Abelian Categories

Loosely stated, an abelian category is a category in which each Hom-set is an abelian group. Along with
this, the category has a zero object and zero morphisms, finite products and coproducts which coincide, and
well-behaved kernels and cokernels. These are a lot of properties to consider however, so in this section we
build up to abelian categories in two stages, and exhibit examples and properties along the way.

In the second half of this Section, we introduce exact sequences in general abelian categories. In principle
they behave the same as exact sequences in ModR, except that the hypothesis of one morphism’s image being
equal to another’s kernel needs to be weakened to a certain isomorphism.

Definition 3.1.1. A category A is called additive if:

• It has a zero object 00. The unique composition A→ 0→ B is the zero morphism, denoted 0 or 00 : M → N

BA.

• Each Hom-set Hom(A,B)Hom(A,B) is an abelian group under an operation +. Moreover, we require,

(f + g) ◦ h = fh+ gh, and k ◦ (f + g) = kf + kg

for all morphisms where this composition makes sense.26

• For all pairs of objects A1 and A2, there is an object A1 ⊕AA⊕ B

2, called the biproduct of A1 and A2. This
object has morphisms ιi : Ai → A1 ⊕A2 and πi : A1 ⊕A2 → Ai for i = 1, 2. These morphisms satisfy
the following properties for i ̸= j:

πi ◦ ιj = 0, πi ◦ ιi = 1Ai , ι1 ◦ π1 + ι2 ◦ π2 = 1A1⊕A2 . ▼
26We say that A is enriched over Ab, meaning that every Hom-set is an object in the category of abelian groups. For more

information on the enrichment of categories, see chapter 3 of [Rie14].
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As one might suspect, adding the zero morphism to another morphism does not change anything. This is
indeed the case:

Proposition 3.1.2. In an additive category, the zero morphism 0BA : A→ B is the identity element of the
abelian group Hom(A,B).

Proof. The morphism 0BA is defined as the composition 0B0 ◦00A. Note that we can write the sum 0BA+0BA
as follows:

0BA + 0BA = 0B0 ◦ 00A + 0B0 ◦ 00A

= (0B0 + 0B0) ◦ 00A

= 0B0 ◦ 00A = 0BA

Here we used the fact that 0 is initial, so the morphisms 0B0 and 0B0 + 0B0 are the same. Subtracting 0BA
on both sides tells us that, 0BA is the identity element of the group Hom(A,B).

Remark. It is important to note the difference between the identity morphism 1A : A→ A, and the identity
0AA of the abelian group Hom(A,A). Composing any morphism with a zero morphism leaves us with a zero
morphism again, which is vastly different from how the identity morphism works.

If 1A = 0AA, then A is a zero object. To see this, let f be any morphism to or from A. Composing this
with 1A leaves us with f again, but also the zero morphism, since 1A = 0AA. Thus f is the zero morphism,
which is unique. This makes A the zero object.

The name biproduct, along with the notation for its morphisms πi and ιi seem to hint at the following
proposition:

Proposition 3.1.3. In an additive category, the biproduct of a finite set of objects is a product and a
coproduct.

Proof. Let A1 and A2 be objects of an additive category. The definition of a biproduct already ensures the
existence of morphisms πi : A1 ⊕A2 → Ai, so we only need to show that A1 ⊕A2 is universal among objects
with morphisms to both Ai, which proves A1 ⊕A2 is a product. To that end, let C be another object with
morphisms fi : C → Ai for i = 1, 2. We construct a map h : C → A1 ⊕A2 by defining h := ι1f1 + ι2f2.

C

A1 A1 ⊕A2 A2

h
f1 f2

π1 π2

Note that this diagram indeed commutes, because

π1h = π1(ι1f1 + ι2f2) = 1A1f1 + 0f2 = f1,

and similarly π2h = f2. Finally, we show that this h is unique. Let h′ : C → A1 ⊕A2 be another morphism
satisfying πi ◦ h′ = fi for i = 1, 2. Then, we find

h′ = 1A1⊕A2 ◦ h′ = (ι1π1 + ι2π2)h′ = ι1f1 + ι2f2 = h.

72



So indeed, this h is unique among morphisms C → A1⊕A2 making the product diagram commute. Therefore
A1 ⊕A2 is a product of objects A1 and A2.

This proof can be extended by induction to prove that the biproduct of any finite amount of objects is
also the product of those objects. The proof that the biproduct is a coproduct is dual.

Example 3.1.4. The following are examples of additive categories:

(i) The category Ab of abelian groups is additive. The zero object is the trivial group 0, and the zero
morphism A→ B sends every element of A to 0 ∈ B. Addition of morphisms is done pointwise, and
finite biproducts are given by direct sums (or equivalently, direct products).

(ii) More generally, ModModR

R is additive for any ring R, as is VectVectK

K for a field K.

(iii) For a ring R, the category of matrices MatMatR

R can be turned into an additive category by adding a zero
object and zero morphisms. The abelian group structure of morphisms is given by addition of matrices,
and the biproduct of two natural numbers (the objects of the category) is given by their sum.

(iv) The category CRing CRing of commutative rings is not additive. Not only are the Hom-sets not abelian groups
(the sum of two ring-homomorphisms does not preserve the multiplicative identity), this category also
does not have a zero object. Though the zero ring is terminal, the ring of integers Z is initial. We
require these two to be isomorphic in an additive category, which is not the case in CRing.

An abelian category is an additive category that has well-behaved kernels and cokernels. For clarity, we
repeat the definition of those here:

Definition 3.1.5. For a morphism f : A→ B in an additive category, we define its

• kernel as an object K, along with a morphism k : K → A such that fk = 0. Moreover, for any object
K ′ with a morphism k′ : K ′ → A with fk′ = 0, there is a unique morphism u : K ′ → K such that the
diagram

A

K B.

K ′

f
k

0

k′

0

∃!u

commutes. This is the universal property of the kernel. We denote the kernel as ker f ker f.27

• cokernel as an object Q, along with a morphism q : B → Q such that qf = 0. Moreover, for any object
Q′ with a morphism q′ : B → Q′ with q′f = 0, there is a unique morphism u : Q→ Q′ such that the

27We invoke the Axiom of Choice to pick a specific object and morphism to denote k : ker f → A as ‘the’ kernel of f . Though
it should be noted that there is not a canonical choice for this in general. Any two choices of kernels are unique up to unique
isomorphism however, because they are categorical limits.
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diagram
A

Q B

Q′

f
0

q

0

q′

∃!u

commutes. This is the universal property of the cokernel. We denote the cokernel as coker f coker f.

• image as the kernel of the morphism q as above, which we denote by im f im f.

• coimage as the cokernel of the morphism k as above, which we denote by coim f coim f. ▼

Remark. The kernel and cokernel of a morphism f (if they exist) do not just consist of the object K and Q,
but the morphisms k and q as well. These morphisms play such a central role that we may call k and q the
kernel and cokernel respectively, rather than the objects. With this convention, the image of f is the kernel
of the cokernel of f , and the coimage is the cokernel of the kernel.

Any kernel k : K → A is a monomorphism, this follows from universality: If kg = kh for morphisms
g, h : K ′ ⇒ K, then kg is a morphism from K ′ to A such that composing it with f gives the zero morphism.
Thus there is a unique morphism from K ′ to K that, when composed with k, is equal to the morphism
kg = kh. Both g and h have this property, and thus are necessarily equal. Dually, any cokernel q : B → Q is
an epimorphism. We define abelian categories to be categories where the converse is always true:

Definition 3.1.6. An additive category A is called abelian if:

• Every morphism has a kernel and a cokernel.

• Every monomorphism A→ B is the kernel of some morphism B → C. And every epimorphism B → C

is the cokernel of some morphism A→ B. ▼

Abelian categories are, as the name suggests, generalizations of Ab. Many properties of this category are
also present in abelian categories. One such property is that an abelian category admits all finite categorical
limits and colimits. This follows from Proposition 1.4.6, whose proof can be modified to show that admitting
finite products and equalizers is equivalent to admitting all finite limits. Just as in Ab, the equalizer of two
morphisms f and g is simply the kernel of their difference. Dually, the same Proposition can be used to show
that abelian categories admit all finite colimits, with the coequalizer of f and g being the cokernel of their
difference.

More common properties from Ab include, but are not limited to:

Proposition 3.1.7. In an abelian category, the following hold:

(a). A morphism is monic (resp. epic) if and only if its kernel (resp. cokernel) is the zero object.

(b). A morphism is an isomorphism if and only if it is monic and epic.

(c). The image and coimage of a morphism are the isomorphic.
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Proof. (a). Let f : A → B be a monomorphism, and consider its kernel k : K → A. By definition of the
kernel, we have that fk = 0, which itself is equal to f ◦ 0. Since f is monic, it follows that k is the zero
morphism. Composing with 1K gives k ◦ 1K = 0 = k ◦ 0, now we apply the fact that k is monic which implies
1K = 0KK , which means K is the zero object.

For the converse, assume the kernel K of a morphism f : A→ B is the zero object. By definition of zero
objects, there is a single morphism K → A, which is the zero morphism. Now let g and h be two morphisms
from another object C to A such that fg = fh. Subtracting fh on both sides, we find f(g − h) = 0. Now
because there is a morphism g − h : C → A that composes with f to the zero morphism, there is a unique
morphism u : C → K such that ku = g − h. Now k is the zero morphism, so we get 0 = g − h, which implies
g = h. Thus f is monic.

The proof that a morphism is epic if and only if it has zero cokernel is dual.

(b). If f : A→ B is an isomorphism, and g, h : X ⇒ A are morphisms such that fg = fh, then g = h by
composing with the inverse of f . Thus f is monic. The proof for f being epic is dual.

Let f : A → B be a mono and epimorphism. Because it is monic, it is the kernel of some morphism
g : B → Y . By definition of kerels, we have gf = 0, but because f is epic, this implies g = 0.

B

A = ker g Y

f
g=0

0

Now note that the identity 1B : B → B also composes with g to make g1B = 0, so there is a unique u : B → A

such that fu = 1B . On the other hand, the composition uf : A→ A is necessarily the identity, since that is
the unique morphism v : A→ A such that fv = f , by universality of the kernel. Since there is a morphism u

such that fu and uf are the relevant identity morphisms, f is an isomorphism.

(c). Let f : A → B be a morphism. The plan is to construct a morphism f̄ : coim f → im f and show
it is an isomorphism. Let k : ker f → A be the kernel of f and c : A → coim f = coker k its cokernel, and
let q : B → coker f be the cokernel of f and i : im f = ker q → B its kernel. Thus there is a commutative
diagram:

ker f A B coker f.

coim f im f

f qk

c i
0 0

Note that, by definition of the kernel, fk is the zero morphism. Thus by definition of the coimage (as the
cokernel of k), there is a unique morphism u : coim f → B such that uc = f . Similarly, because qf = 0, there
is a unique v : A→ im f such that iv = f .

ker f A B coker f

coim f im f

f qk

c i
0 0

uv
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Note that because uc = f , it follows that quc = qf = 0. Because c is a cokernel, it is an epimorphism, which
implies qu = 0. Now because im f is the kernel of q, there is a unique morphism f̄ : coim f → im f such that
if̄ = u. Note that this implies

if̄c = uc = f = iv.

Applying the fact that i is a kernel, and thus a monomorphism, it follows that f̄ c = v. Thus, the following
diagram commutes:

ker f A B coker f.

coim f im f

f qk

c i
0 0

uv

f̄

To show f̄ is an isomorphism, we show it is monic and epic, and apply part (b). Before that, we first need
to show that u is a monomorphism and v is an epimorphism.

To show u is monic, it suffices to take some x : X → coim f such that ux = 0, and show that this implies
x = 0.28 Let z : coim f → cokerx be the cokernel of x. Because ux is zero, there is a unique morphism
j : cokerx→ B such that jz = u.

ker f A B

coim f

X cokerx

f

c u

x
z

j

k

0

The morphisms c and z are both cokernels, and thus both epimorphisms. It follows that their composition zc
is also an epimorphism. Therefore, it is the cokernel of some morphism h : H → A. Note that the composition
fh can be rewritten to

fh = uch = jzch = j0 = 0,

where we used that zch = 0 by zc being the cokerenel of h. Thus, by definition of the kernel of f , there is a
unique h′ : H → ker f such that kh′ = h. This gives the following commutative diagram:

H

ker f A B

coim f

X cokerx.

f

c u

x
z

j

k

0

h
h′

28If ue1 = ue2 for morphisms ei : X → coim f , then we rewrite this to u(e1 − e2) = 0. The equality e1 = e2 is equivalent to
e1 − e2 = 0, thus setting x := e1 − e2, and showing ux = 0 implies x = 0 proves that u is monic.
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The composition ch can now be written as ckh′, which is zero, since c is the cokernel of k. Now because zc is
the cokernel of h, there is a unique morphism c′ : cokerx→ coim f such that c = c′(zc). Applying the fact
that c is epic, it follows that c′z is the identity on coim f .

H

ker f A B

coim f

X cokerx

f

c u

x
z

j

k

0

h
h′

c′

Now, since z is the cokernel of x, we have zx = 0. Composing with c′, we find x = 0, which proves that u is
monic. The proof that v is epic is dual to the above proof.29

Now we can finally show that f̄ : coim f → im f is an isomorphism. To that end, assume f̄g = 0 for some
g : G→ coim f . Composing with i gives if̄g = 0, which implies ug = 0 by definition of f̄ . Using the fact that
u is monic, we obtain g = 0, thus making f̄ a monomorphism as well. Similarly, using the fact that v is epic,
it follows that f̄ is an epimorphism. Part (b) of this proof implies that f̄ is actually an isomorphism, which
completes the proof.

Remark. We can use part (c) to write a morphism f : A→ B as the composition of an epimorphism and
monomorphism. Namely, because the image and coimage are isomorphic, we consider them to be the same
object denoted im f , with morphisms c : A→ im f and i : im f → B. The proof above implies that f is equal
to the composition ic. This is the epi-mono-factorization of f , which always exists in abelian categories.

Example 3.1.8. The following are examples of abelian categories:

(i) The category Ab of abelian groups is abelian. The kernel and cokernel correspond to the usual kernel
and cokernel of group-homomorphisms. If m : A→ B is a group-monomorphism, then it is the kernel of
the projection B → B/ imm. So in essence, the fact that monomorphisms are kernels says that, in Ab,
one can take the quotient of any subgroup of an abelian group. That is, every subgroup of an abelian
group is normal. Dually, the fact that epimorphisms are cokernels is a reformulation of the fact that any
quotient group is formed by taking the quotient of A with some normal subgroup. Part (c) of the above
proposition states that, for any f : A → B in Ab, there is an isomorphism A/ ker f = coim f ∼= im f ,
which is the first isomorphism theorem.

(ii) Similarly, ModR and VectK are abelian for any ring R and any field K.

(iii) If A is an abelian category, then its opposite Aop
Cop is too. The zero object in A is also zero in Aop. The

biproduct of two objects in Aop is the same as in A, except now the projection is the opposite of the
inclusion, and vice versa. Given a morphism f : A → B in A, its opposite fop : B → A in Aop has
kernel equal to the opposite of the cokernel of f , and vice versa for the cokernel.

29It is not surprising that v is an epimorphism. In Ab, for example, the map v : A → im f is the same as the morphism f
itself, but with codomain restricted to just the image of f , which is definitively surjective.
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(iv) The category Abtor-freeAbtor-free of torsion-free abelian groups is not abelian. For example, consider the
homomorphism m : Z → Z given by m(1) = 2. The cokernel of this homomorphism would be a
map g : Z→ B such that gm = 0. However, this implies that

0 = g(m(1)) = g(2) = 2g(1),

which means that g(1) is a torsion element of B, or g is the zero homomorphism. If g is zero, then
the cokernel of m is zero, meaning m should be surjective which it is not the case. Therefore g(1) is a
nonzero torsion element of B, but that means the cokernel of m is not in Abtor-free, making the category
non-abelian.

Another concept from Ab and ModR we can generalize in abelian categories is exact sequences. Before
that however, we need an important lemma:

Lemma 3.1.9. Let f : A→ B and g : B → C be morphisms in an abelian category. If the composition gf is
the zero morphism, then there is a natural monomorphism t : im f → ker g.

Proof. Using the epi-mono-factorization of f , we can write the equality gf = 0 as gic = 0, where c : A→ im f

and i : im f → B are the morphisms described in the remark above. The morphism c is epic, so this implies
gi = 0. The definition of the kernel of g ensures there is a unique morphism t : im f → ker g such that i = kt.

To show t is monic, we let x : X → im f be another morphism such that tx = 0. Composing with the
kernel k : ker g → B gives 0 = ktx = ix. The morphism i is monic, so this implies x = 0. Therefore, t is
monic as well.

In a concrete category like ModR, this map t : im f → ker g is the inclusion map. This follows from gf = 0:
the image of f is fully contained in the kernel of g. We can now define exact sequences for general abelian
categories:

Definition 3.1.10. In an abelian category, we say a (potentially infinite) sequence of objects

. . . Ai−1 Ai Ai+1 . . .
fi−1 fi

is exact in Ai if fifi−1 = 0, and the natural morphism im fi−1 → ker fi from Lemma 3.1.9 is an isomorphism.
We say the sequence is exact if it is exact in every object in the sequence. We call an exact sequence of the
form

0 A B C 0

a short exact sequence. ▼

Example 3.1.11. Many examples and properties of exact sequences in ModR carry over to general abelian
categories. For example, a sequence of the form

0 A B C
f g

is exact if and only if f : A→ B is a kernel of of g. Dually, a sequence of the form

A B C 0f g
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is exact if and only if g : B → C is a cokernel of f .

The following is a useful result that is readily proved in ModR, but may not be so immediate in general
abelian categories.

Proposition 3.1.12. In an abelian category, any sequence of the form

0 A A⊕B B 0ιA πB

is exact. Such a sequence is called a split exact sequence.

Proof. Following Example 3.1.11, exactness of the above sequence is equivalent to ιA : A→ A⊕B being the
kernel of πB , and πB : A⊕B → B being the cokernel of ιA.

Note that πBιA is already the zero morphism by definition of the biproduct. So all we need to show is
that for any other k′ : K ′ → A⊕B with πBk

′ = 0, there is a unique u : K ′ → A making

A⊕B

A B

K ′

πBιA

0

k′

0
u

commute. Let u := πAk
′, which indeed satisfies ιAu = k′, by

ιAu = ιAπAk
′ = (ιAπA + ιBπB)k′ = k′.

Finally, let v : K ′ → A be another morphism such that ιAv = k′. It follows that

v = πAιAv = πAk
′ = u,

and thus this u is unique. We conclude that ιA : A→ A⊕B satisfies the universal property of the kernel
of πB. A dual argument can be used to show that πB : A ⊕ B → B is the cokernel of ιA. Therefore, the
sequence

0 A A⊕B B 0ιA πB

is exact.

Just like in ModR, there is an interest in functors that preserve the additive structure of abelian categories:

Definition 3.1.13. We call a functor F : A→ B between abelian categories:

• additive if it preserves finite biproducts and zero objects.

• left exact (resp. right exact) if it is additive, and given a short exact sequence 0→ A→ A′ → A′′ → 0
in A, the sequence

0→ FA→ FA′ → FA′′ (resp. FA→ FA′ → FA′′ → 0)

is exact. We say F is exact if it is both left and right exact. ▼
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Remark. As noted before, [Mac98, proposition 4, p. 197] proves that a functor between additive (and in
particular abelian) categories is additive if and only if it preserves the abelian group structure on Hom-sets.
I.e., F (f + g) = Ff + Fg for parallel morphisms f and g.

Example 3.1.14. Given an object A of an abelian category A, both Hom-functors Hom(A,−) : A→ Ab and
Hom(−, A) : Aop → Ab are additive and left exact.

There are more properties of ModR that also hold in general abelian categories, some of which are covered
throughout this Chapter. What may be surprising is that, in a certain sense, any abelian category is a
subcategory of ModR for some ring R. This is the celebrated Freyd-Mitchell Embedding Theorem:

Theorem 3.1.15 (Freyd-Mitchell Embedding Theorem). Let A be a small abelian category. There exists a
(not necessarily commutative) ring R and a fully faithful exact functor F : A→ ModR.

The functor F defines an equivalence between A and a full subcategory of ModR. Exactness of F implies
that kernels, cokernels, images, exact sequences, and biproducts in A can be seen as the corresponding
concepts in ModR. Thus, a result like Proposition 3.1.7 can be proven by taking smallest abelian subcategory
containing the relevant morphisms, and looking at it in terms of modules over a certain ring. This allows the
convoluted diagram chase from part (c) of 3.1.7 for example to be proven as how one would prove the first
isomorphism theorem in ModR. Proposition 1.2.8 implies that F reflects isomorphisms, so after proving the
isomorphism in ModR, it can be taken back to A to conclude the proof.

Another example of this is the Snake Lemma, which can be proven in any arbitrary abelian category, as
is done in e.g. [Wei94, lemma 1.3.2, p.12], using a proof in ModR, like the one in [AK17, lemma 5.10, p.33].

Lemma 3.1.16 (Snake Lemma). Consider the following commutative diagram with exact rows in an abelian
category:

M N P 0

0 M ′ N ′ P ′.

f g

f ′ g′

α β γ

This induces an exact sequence

kerα kerβ ker γ cokerα cokerβ coker γ.δ

The proof for the embedding theorem itself is quite complicated, and outside the scope of this thesis. The
seventh chapter of [Fre64] builds up to a proof of the theorem, which is theorem 7.34 (p.150) in the book.
Note that Freyd uses much outdated language throughout his book, for example the embedding theorem is
stated as saying any abelian category is ‘fully abelian’.

3.2 Chain Complexes and Resolutions

This Section covers the theory of chain complexes. These are generalizations of exact sequences, where we do
not require the image and kernel of two consecutive morphisms to be equal (or canonically isomorphic), but
we still require consecutive morphisms to compose to zero. An important concept that we also define here is
that of homology, which is a measure of how close a chain complex is to being exact. Finally we cover the
theory of resolutions, which are special exact sequences that are used to define derived functors later on.
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Definition 3.2.1. Let A be an abelian category.

• A chain complex is an infinite sequence, indexed by integers,

· · · Ai+1 Ai Ai−1 · · ·di+2 di+1 di di−1

of objects and morphisms in A such that di+1di = 0 for all i ∈ Z. We denote the complex as (A•, d•)(A• , d• ),
or just as A•. The morphisms di are often called boundary morphisms.

• A chain map f : (A•, d•)→ (B•, d
′
•) between chain complexes is a collection of morphisms fi : Ai → Bi

such that the following diagram commutes:

· · · Ai+1 Ai Ai−1 · · ·

· · · Bi+1 Bi Ai−1 · · · .

di+2 di+1 di di−1

d′
i+2 d′

i+1 d′
i d′

i−1

fi+1 fi fi−1

• Given a chain complex A, we define its i-th homology object as Hi(A•) := coker tHi (A• )

i, where ti is the
morphism from im di+1 to ker di, as defined in Lemma 3.1.9.

• Two chain maps f, g : (A•, d•) ⇒ (B•, d
′
•) are homotopic if there exists a collection of morphisms (called

a homotopy) σi : Ai → Bi+1 such that

fi − gi = d′
i+1σi + σi−1di

for all i ∈ Z. These may be portrayed in the following (non-commutative!) diagram:

· · · Ai+1 Ai Ai−1 · · ·

· · · Bi+1 Bi Bi−1 · · ·

di+1 di di−1di+2

d′
i+2 d′

i+1 d′
i d′

i−1

fi+1 gi+1 fi gi fi−1 gi−1σi−1σi

▼

Proposition 3.2.2. Given an abelian category A, its chain complexes form an abelian category, denoted
Ch(A)Ch(A), with chain complexes as objects, and chain maps as morphisms.

Sketch of proof. (See [Wei94, theorem 1.2.3, p.7] for details) All constructions on a complex (A•, d•) are
done index-wise. Composition of chain maps is defined by (fg)i = figi for all i ∈ Z. The zero object is the
zero complex · · · → 0→ 0→ · · · . Addition is defined by (f + f ′)i = fi + f ′

i . The biproduct of two complexes
A• ⊕B• is defined by (A• ⊕B•)i = Ai ⊕Bi. Given a chain map f : A• → B•, its kernel is the chain map
k : (ker f)• → A•, where (ker f)i = ker fi, and similar for the cokernel. Finally, a chain map f is monic (resp.
epic) if and only if each fi is monic (resp. epic).

Remark. In the definition above, the boundary morphisms have their index going down. But in some
contexts, it may be clearer to have the boundary morphisms going up, i.e. the morphisms go from Ai to
Ai+1. These kind of complexes are cochain complexes, and their homology is instead called cohomology. The
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objects, boundary morphisms and chain maps usually have their index in a superscript. The distinction
between chain and cochain complexes is only semantic, as the category of chain complexes is isomorphic to
the category of cochain complexes. For completeness, both chain and cochain complexes are called chain
complexes from here on out. In the general case, we assume the indices of the boundary maps go down, but
they may go up in some specific cases (e.g. in defining injective resolutions in Definition 3.2.7)

The following are useful properties of homology. Importantly, it states that the n-th homology object
defines a functor.

Proposition 3.2.3. Let A be an abelian category. The following hold:

(a). For each n in Z, the n-th homology defines an additive functor Hn : Ch(A)→ A.

(b). If two chain maps f and g are homotopic, then the morphisms Hn(f) and Hn(g) are equal.

(c). A short exact sequence
0• A• B• C• 0•

f g

of complexes in Ch(A) induces a long exact sequence in A:

· · · Hn(A•) Hn(B•) Hn(C•)

Hn+1(A•) Hn+1(B•) Hn+1(C•) · · ·

δn+1 Hn(f) Hn(g)

δn

Hn−1(f) Hn−1(g) δn−1

Proof. (a). It is clear how Hn acts on objects of Ch(A), but we still need to define Hn(f) for a chain map
f : (A•, d•)→ (B•, d

′
•). First note that, for each n, there is a commutative diagram

ker dn An An−1 coker dn

ker d′
n Bn Bn−1 coker d′

n.

k dn q

k′ d′
n q′

fn fn−1

The morphism ker dn → ker d′
n exists by the universal property of the kernel of d′

n, because

0 = fn−1dnk = d′
nfnk,

which implies there is a unique morphism ker dn → ker d′
n making the diagram commute. The morphism

coker dn → coker d′
n is constructed dually. By the same argument, there is a morphism im dn → im dn+1

making the diagram
im dn An−1 coker dn

im d′
n Bn−1 coker d′

n

q

q′

fn−1

commute. Because Hn(A•) and Hn(B•) are cokernels of tn : im dn → ker dn−1 and t′n : im d′
n → ker d′

n−1

respectively, there is a unique morphism Hn(A•) → Hn(B•), which we define to be Hn(f), making the
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following diagram commute:

im dn+1 ker dn Hn(A•)

An+1 An An−1

Bn+1 Bn Bn−1

im d′
n+1 ker d′

n Hn(B•)

tn

dndn+1

d′
n+1 d′

n

fn+1 fn fn−1

t′n

Hn(f)

More concisely, Hn(f) is defined to be the unique morphism such that

im dn+1 ker dn Hi(A•)

im d′
n+1 ker d′

n Hn(B•)
t′n

tn qn

q′
n

Hn(f)

commutes.
Note that Hn(1A•) is just the identity of Hn(A•). This is because both of these morphisms make the

relevant diagram commute, so uniqueness implies they are equal. Composition of morphisms is also preserved.
If f : A• → B• and g : B• → C• are chain maps, then both Hn(gf) and Hn(g)Hn(f) make the diagram like
the one above with chain map gf commute, thus they are equal.

Finally, additivity follows similarly. Let qn : ker dn → Hn(A•) and q′
n : ker d′

i → Hi(B•) be the horizontal
morphisms displayed above. To show that Hn(f +g) = Hn(f) +Hn(g) for parallel chain maps f, g : A• ⇒ B•,
denote the corresponding morphisms ker dn ⇒ ker d′

n by f̂ and ĝ respectively. Note that

p′(f̂ + ĝ) = p′f̂ + p′ĝ = Hn(f)p+Hn(g)p = (Hn(f) +Hn(g))p.

So by uniqueness, Hn(f + g) is equal to Hn(f) +Hn(g). So Hn is indeed an additive functor.

(b). Because each Hn is additive, it suffices to show that if f is homotopic to the zero morphism, then
Hn(f) = 0. To start, there is a collection of morphisms σn such that

fn = d′
n+1σn + σn−1dn.

Composing with k : ker dn → An gives

fnk = d′
n+1σnk + σn−1dnk = d′

n+1σnk.

Using the epi-mono factorization of d′
n+1 = jc, there is a morphism cσnk : ker dn → im d′

n+1, which we denote
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by v, making the following diagram commute:

ker dn Hn(A•)

An+1 An An−1

Bn+1 Bn Bn−1

im d′
n+1 ker d′

n Hn(B•)

dn+1 dn

qn

Hn(f)

d′
n+1 d′

n

k

σn
fn

c
j

t′n q′
n

v

The composition q′
nt

′
nv is zero, and by commutativity, so is Hn(f)qn. Using the fact that qn is an epimorphism

(it is a cokernel), it follows that Hn(f) is the zero morphism. This completes the proof.

(c). A proof is given in [Rot09, theorem 6.10, p.333], using the Freyd-Mitchell embedding theorem. The
connecting morphism δn is obtained through a diagram chase in [Rot09, proposition 6.9, p.332], but can also
be derived using the Snake Lemma.

Example 3.2.4. Let X be a topological space. An n-simplex is a continuous (and not necessarily injective)
map σ : ∆n → X, where ∆n∆n is the standard n-dimensional simplex in Rn (e.g. ∆1 is the line segment [0, e1],
∆2 is a triangle formed by the convex polygon [0, e1, e2] and so on). We denote the image of an n-simplex as
the set [p0, . . . , pn][p0 , . . . , pn ] := [σ(0), . . . , σ(en)] ⊆ X. The boundary of an n-simplex is defined as

∂n[p0, . . . , pn] =
n∑
k=0

(−1)k[p0, . . . , pk−1, pk+1, . . . , pn],

where these sums are formal.30 The collection of n-simplices on X generate a free abelian group Cn(X)C• (X),
whose elements are called n-chains. If we stipulate that the boundary of an n-chain is the sum of the
boundaries of the constituent simplices, then this forms a chain complex

· · · Cn(X) Cn−1(X) · · · C2(X) C1(X) C0(X) 0.∂n ∂2 ∂1

A continuous function between topological spaces f : X → Y induces a chain map C•(X)→ C•(Y ), which
sends n-chains

∑
i σi to

∑
i f ◦ σi. Its homology groups Hn(X) are called the singular homology groups of X.

In this context, they can be computed as

Hn(X) = ker ∂n/ im ∂n+1,

and are free abelian groups as well. Informally, the rank of these homology groups give a sense of the number
30The sum of two simplices could be seen in the context of differential forms. That is, if X is a smooth n-manifold, then the sum

of two n-simplices σ+τ may be interpreted as a simplex satisfying, for all smooth n-forms ω,
∫

(σ+τ)(∆n) ω =
∫

σ(∆n) ω+
∫

τ(∆n) ω.
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of ‘holes’ X has. For example, if we consider the torus T := S1 × S S1 T1, then its homology groups are

Hk(T ) ∼=


Z if k = 0, 2

Z2 if k = 1

0 if k > 2.

This signifies that the torus consists of one path-connected component, and that it has two 1-dimensional
holes which are enclosed by 1-simplices, as depicted below. It also has one 2-dimensional hole which is
enclosed by the surface of the torus itself.

Figure 1: Two 1-simplices enclosing holes in a torus. Source: [Use14]

Chapter 2 of [Hat01] gives more details on the theory of singular homology. The proof of theorem 2.10
(p.112) of the book also gives an insight for why we define chain homotopy the way we do in Definition 3.2.1;
homotopic continuous maps between topological spaces induce homotopic chain maps between their simplicial
chain complexes.

Next we define a class of objects that are crucial for constructing derived functors: projective and injective
objects.

Definition 3.2.5. Let A be an abelian category. An object P of A is projective if, for any epimorphism
e : A→ B, and any morphism f : P → B, there is a (not necessarily unique) lift f̄ : P → A such that the
following diagram with an exact row

P

A B 0e

f
∃f̄

commutes.
Dually, an object I of A is injective if, for any monomorphism m : B → A, and any morphism g : B → P ,
there is a lift ḡ : A→ I such that the following diagram with an exact row

I

0 B Am

g
∃ḡ

commutes. ▼
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Example 3.2.6. For clarity, it is helpful to see which objects are projective and injective in ModR:

• An R-module P is projective if and only if one of the following equivalent statements hold (for a proof,
see [DF04, proposition 10.5.30, p.389]):

– Every exact sequence 0→M → N → P → 0 splits (see Example 2.3.2(v) for the definition of a
split exact sequence);

– There is an R-module Q such that the direct sum P ⊕QA ⊕ B is a free module;

– The Hom-functor HomR(P,−) is exact (not just left exact).

Some simple examples include the zero module, any free module, and any vector space. Finally if R is a
PID (principal ideal domain), then a module is free if and only if it is projective. The Z-module Z/nZZ/nZ

is not projective for n > 1. The reason for this is that the exact sequence 0 → Z → Z → Z/nZ → 0
does not split.

• An R-module I is injective if and only if one of the following equivalent statements hold (for a proof,
see [DF04, proposition 10.5.34, p.394]):

– Every exact sequence 0→ I →M → N → 0 splits;

– For any R-module M containing I as a submodule, there is another submodule Q of M such that
Q⊕ I = M .

– The contravariant Hom-functor HomR(−, I) is exact.

The zero module, any free module, and any vector space is injective. An abelian group is injective if
and only it is divisible, meaning nA = A for any nonzero integer n. For n > 1, it again follows that
Z/nZ is not injective. To see this, note that n(Z/nZ) is the trivial group, meaning the group is not
divisible, and thus also not injective.

Now we move to defining resolutions, which are the building blocks to define derived functors.

Definition 3.2.7. Let A be an object in an abelian category. A projective resolution of A is a chain complex
P•, with Pn = 0 for n < 0, and every Pi projective, together with a morphism P0 → A such that

· · · P2 P1 P0 A 0

is an exact sequence. We denote such a resolution as P• → A→ 0P• → A → 0.
Dually, an injective resolution of A is a chain complex I• (with increasing indices for notational convenience),
with In = 0 for n < 0, and every Ii injective, together with a morphism A→ I0 such that

0 A I0 I1 I2 · · ·

is an exact sequence. We denote such a resolution as 0→ A→ I 0 → A → I•

•.
We say an abelian category A has enough projectives (resp. enough injectives) if, for each object A, there is
an epimorphism P → A (resp. monomorphism A→ I), where P is projective (resp. where I is injective). ▼

Remark. As is shown in e.g. [Rot09, corollary 6.3 and 6.5, p.326,327], if an abelian category has enough
projectives (resp. enough injectives), then every object admits a projective (resp. injective) resolution. The
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idea of the proof for the projective case is to start with an epimorphism d0 : P0 → A, then extend it by its
kernel to obtain the exact sequence

ker d0 P0 A 0.d0k0

Now we repeat the process to obtain an epimorphism P1 → ker d0, and defining d1 to be the composition of
this morphism and k0. By induction we obtain a projective resolution for A.

Before constructing derived functors in the next Section, the following result turns out to be quite helpful
to make sure they are well-defined:

Proposition 3.2.8 (Comparison Theorem). Let A and B be objects in an abelian category, with projective
resolutions P• → A → 0 and Q• → B → 0 respectively. A morphism f : A → B induces a chain map
f ′ : P• → Q• such that the following diagram with exact rows commutes:

· · · P2 P1 P0 A 0

· · · Q2 Q1 Q0 B 0.

ff ′
0f ′

1f ′
2

Moreover, this chain map is unique up to homotopy.
Dually, if A and B admit injective resolutions 0 → A → I• and 0 → B → J•, then the morphism

f : A→ B induces a chain map f ′ : I• → J• such that the following diagram with exact rows commutes:

0 A I0 I1 I2 · · ·

0 B J0 J1 J2 · · · .

f f ′
0 f ′

1 f ′
2

Moreover, this chain map is unique up to homotopy.

Proof. For i ⩾ 0, let di : Pi → Pi−1 and d′
i : Qi → Qi−1 denote the boundary morphisms of the projective

resolutions, where P−1 = A and Q−1 = B. We prove the statement by induction. The composition
fd0 : P0 → B lifts to a morphism f ′

0 : P0 → Q0, because P0 is projective, and d′
0 : Q0 → B is an epimorphism

by exactness of the projective resolution of B. By definition of this lift, it follows that d′
0f

′
0 = fd0.

Now assume, for all 0 ⩽ i ⩽ n, there is a morphism fi : Pi → Qi such that the diagram built so far

· · · Pn+1 Pn Pn−1 · · ·

· · · Qn+1 Qn Qn−1 · · ·

f ′
n f ′

n−1

commutes. Note that
d′
nf

′
ndn+1 = fn−1dndn+1 = fn−10 = 0,

so there is a unique map u : Pn+1 → ker d′
n such that ku = f ′

ndn+1, where k is the kernel of d′
n. By exactness

of the projective resolution of B, the morphism t : im d′
n+1 → ker d′

n is invertible, so the composition t−1u is a
morphism from Pn+1 to im d′

n+1. By the epi-mono-factorization d′
n+1 = ic, the morphism c : Qn+1 → im d′

n+1
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is an epimorphism, so by projectiveness of Pn+1, there is a lift f ′
n+1 : Pn+1 → Qn+1 such that cf ′

n+1 = t−1u.
Note that

d′
n+1f

′
n+1 = icf ′

n+1 = it−1u = ku = f ′
ndn+1.

Note that, by Lemma 3.1.9, t is defined such that i = kt, which implies it−1 = k. Therefore, the morphism
f ′
n+1 makes the diagram

· · · Pn+1 Pn Pn−1 · · ·

· · · Qn+1 Qn Qn−1 · · ·

f ′
n+1 f ′

n f ′
n−1

commute. By induction, this process extends to any f ′
i : Pi → Qi for i > 0.

Now for uniqueness up to homotopy, let g′ : P• → Q• be another chain map extending f like f ′ did. We
construct a homotopy by induction as well. First let s−1 be the zero morphism from A to Q0. Note that

d′
0(f ′

0 − g′
0) = d′

0f
′
0 − d′

0g
′
0 = d0f − d0f = 0,

so there is a u : P0 → ker d′
0 such that ku = f ′

0 − g′
0. Like before, exactness implies that a morphism

t−1u : P0 → im d′
1 exists, which lifts to a morphism s0 : P0 → Q1 such that cs0 = t−1u, where c is the

epimorphism such that d′
1 = ic. Note that

d′
1s0 + d0s−1 = d′

1s0 = ics0 = it−1u = ku = f ′
0 − g′

0,

so s−1 and s0 already satisfy the requirements of being a homotopy.

Suppose, for all 0 ⩽ i ⩽ n, there is a morphism si : Pi → Pi+1 satisfying the definition of a homotopy
between the chain maps f ′ and g′. Note that

d′
n+1(f ′

n+1 − g′
n+1 − sndn+1) = d′

n+1(f ′
n+1 − g′

n+1)− d′
n+1sndn+1

= (f ′
n − g′

n)dn+1 − d′
n+1sndn+1

= (f ′
n − g′

n − d′
n+1sn)dn+1

= (sn−1dn)dn+1 = sn−10 = 0.

So there is a morphism u : Pn+1 → ker d′
n+1 such that ku = f ′

n+1 − g′
n+1 − sndn+1, where k is the kernel

of d′
n+1. Again, using exactness this forms a morphism t−1u : Pn+1 → im d′

n+2, which lifts to a morphism
sn+1 : Pn+1 → Qn+2 such that csn+1 = t−1u, where d′

n+2 = ic. The morphism sn+1 indeed satisfies the
definition of a homotopy, because

d′
n+2sn+1 + sndn+1 = icsn+1 + (f ′

n+1 − g′
n+1 − ku)

= it−1u+ (f ′
n+1 − g′

n+1 − ku)

= ku+ f ′
n+1 − g′

n+1 − ku = f ′
n+1 − g′

n+1.

By induction, we can repeat this process to obtain morphisms si : Pi → Qi+1 for all i > 0, which forms a
homotopy between f ′ and g′. This concludes the proof. The proof for injective resolutions is dual.
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Remark. Note that it suffices for the sequences Q• → B → 0 and 0→ B → J• to be exact for the theorem
to hold. However, we mainly use the comparison theorem in the case where it actually is a projective and
injective resolution, respectively.

3.3 Derived Functors and Tor

In this chapter we define derived functors, which aim to extend right exact (resp. left exact) functors to the
left (resp. right) to turn short exact sequences into long exact ones. For clarity, the main body of this section
only covers definitions and results for left derived functors. All constructions for right derived functors are
dual, and are stated at the end of the section.

Definition 3.3.1. Let A and B be abelian categories, with A having enough projectives, and let F : A→ B
be an additive functor. Given an object A of A, let P• → A→ 0 be a projective resolution and consider the
deleted resolution P

AP A

•

• , where A is removed:

· · · P2 P1 P0 0.

The n-th left derived functor of F at A is defined as

LP•
n F (A) := Hn(FPA• ),

where n is s nonnegative integer. ▼

Remark. Here FPA• denotes the chain complex obtained by applying F to each object in PA• . Additivity of
F guarentees that this is still a chain complex.

Given a morphism f : A→ B in A, with projective resolutions P• → A→ 0 and Q• → B → 0, for each
n ⩾ 0 there is a morphism fn : Pn → Qn by the comparison theorem. Uniqueness up to homotopy and
Proposition 3.2.3(ii) implies that the fn extend to a unique morphism Hn(Ffn) : Hn(FPA• )→ Hn(FQB• )31,
which we denote by LP•,Q•

n F (f) : LP•
n F (A) → LQ•

n F (B). Because both F and Hn are additive functors,
LP•,Q•
n F is also an additive functor from A to B.

As one may hope, the construction of the left derived functor is independent of the choice of projective
resolution, up to natural isomorphism:

Proposition 3.3.2. Let F : A→ B be as above. Given an object A of A and projective resolutions P• → A→ 0
and Q• → A→ 0, there is a canonical natural isomorphism LP•

n F (A) ∼= LQ•
n F (A).

Proof. Consider the identity morphism 1A : A→ A. By the comparison theorem, this morphism lifts to chain
maps f : P• → Q• and g : Q• → P•. These fit in the following commutative diagram with exact rows:

· · · P2 P1 P0 A 0

· · · Q2 Q1 Q0 A 0.

d2 d1 d0

d′
2 d′

1 d′
0

1Af0 g0f1 g1g2f2

31Note that because F is an additive functor, it preserves homotopies. So if fn and gn are homotopic morphisms, then
Hn(F fn) and Hn(F gn) are equal.
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Note that, for all n ⩾ 0,
dngnfn = gn−1d

′
nfn = gn−1fn−1dn,

so the composition of chain maps gf lifts 1A : A→ A to form the commutative diagram

· · · P2 P1 P0 A 0

· · · P2 P1 P0 A 0.

d2 d1 d0

d2 d1 d0

1Ag0f0g1f1g2f2

But the chain identity 1P• : P• → P• also lifts 1A, so by the comparison theorem, gf and 1P• are homotopic.
A similar argument can be used to show that fg and 1Q• are homotopic.

Now deleting A from the resolutions, applying F , and taking homology, we get the LP•
n F (gf) = 1Pn and

LQ•
n F (fg) = 1Qn , making LP•

n F (A) and LQ•
n F (A) isomorphic. Naturality of these isomorphisms is proved in

[Rot09, proposition 6.20, p.346].

Notation. Because the choice of resolution ultimately does not matter, we omit the superscripts from the
notation of left derived functors from here on out, and just write LnF Ln F as the left derived functor.

Proposition 3.3.3. Let F : A→ B be an additive functor between abelian categories, with A having enough
projectives. The following hold:

(a). If F is right exact, then L0F and F are naturally isomorphic.

(b). If F is exact, then LnFA = 0 for all n > 0 and all objects A of A.

(c). If P is a projective object of A, then LnFP = 0 for all n > 0.

(d). If G : A→ B is a functor that is naturally isomorphic to F , then LnF and LnG are naturally isomorphic.

Proof. (a). Let
· · · P1 P0 A 0d2 d1 d0

be a projective resolution of A. By definition, L0FA is the zeroth homology of the deleted complex

· · · FP1 FP0 0,Fd2 Fd1 0

which is the cokernel of the morphism t0 : imFd1 → ker 0 = FP0. However, F is right exact, so the sequence

· · · FP1 FP0 FA 0Fd2 Fd1 Fd0

is exact. By exactness, there is an isomorphism imFd1 ∼= kerFd0, and so L0FA is isomorphic to the cokernel
of kerFd0 → FP0, which is the coimage of Fd0 by definition. This is itself isomorphic to the image of Fd0,
which is FA. Thus, it follows that L0FA is isomorphic to FA.

As for naturality, let ηA : FA→ L0FA be the isomorphisms from above. The goal is to show that the
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following diagram commutes for any morphism f : A→ B in A:

FA L0FA

FB L0FB.

Ff

ηA

L0Ff

ηB

Let Q• → B → 0 be a projective resolution of B with boundary morphisms d′
n : Qn → Qn−1. These fit into

the following diagram where the rows are chain complexes (recall that L0FA is the cokernel of the morphism
t0 : imFd1 → FP0, and similar for L0FB):

coker t0

imFd1 FP0 FA

imFd′
1 FQ0 FB

coker t′0.

t0 Fd0

t′0 Fd′
0

FfFf0

q
ηA

q′

ηB

F̃ f

The morphism Ff0 is the lift of Ff obtained from the comparison theorem, and F̃ f is the morphism
constructed at the beginning of the proof of Proposition 3.2.3. By construction, the whole diagram above
commutes if the morphisms ηA and ηB were left out. We compute the composition F̃ f ◦ ηA ◦ Fd0 as

F̃ f ◦ ηA ◦ Fd0 = F̃ f ◦ c

= c′ ◦ Ff0

= ηB ◦ Fd′
0 ◦ Ff0

= ηB ◦ Ff ◦ Fd0.

Note that, because F is right exact, Fd0 is an epimorphism, so we obtain F̃ f ◦ ηA = ηB ◦ Ff . Now by
definition, F̃ f = L0Ff , so we indeed find that the above diagram, and thus the naturality square, commutes.
Which proves that η : F ⇒ L0F is a natural isomorphism.

(b). If F is exact, then a projective resolution P• → A→ 0 yields an exact sequence

· · · FPn+1 FPn FPn−1 · · · FA 0Fdn+1 Fdn Fd0

For all n > 0, we compute LnFA as

LnFA = Hn(FPA• ) = coker(imFdn+1 → kerFdn) = 0,

since the morphism imFdn+1 → kerFdn is an isomorphism by exactness, hence an epimorphism, and thus
has zero cokernel by proposition 3.1.7.
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(c). If P is projective, then

· · · 0 P P 01P

is a projective resolution for P . The deleted resolution is given by

· · · 0 FP 0.

Note that for n > 0, we compute LnFP as

LnFP = coker(im 0→ ker 0) = coker(0→ 0) = 0,

which proves the statement.

(d). Let η : F ⇒ G be the natural isomorphism relating F and G. Let A be an object of A with projective
resolution P• → A → 0. We define a chain map ηP• : FP• → GP• by (ηP•)n = ηPn . Now for every n ⩾ 0,
define the natural transformation Lnη : LnF ⇒ LnG defined on components by

(Lnη)A := Hn(ηP•).

Because η is a natural isomorphism, each ηPn is an isomorphism, and thus so is (Lnη)A. Therefore, LnF and
LnG are naturally isomorphic.

Before moving on, there is one more result we need to cover:

Lemma 3.3.4 (Horseshoe Lemma). Let 0 → A → B → C → 0 be a short exact sequence in an abelian
category A with enough projectives, and let P• → A→ 0 and Q• → C → 0 be projective resolutions. There
exists a projective resolution X• → B → 0 such that the diagram

...
...

...

0 P1 X1 Q1 0

0 P0 X0 Q0 0

0 A B C 0

0 0 0

commutes, and has short exact rows.

Sketch of proof. A full proof is given in [Rot09, proposition 6.24, p.349]. The projective resolution of B is
defined as the biproduct Xn = Pn ⊕Qn. The morphism X0 → B is formed using the universal property of
the coproduct, applied to the composite morphism P0 → A→ B, and the morphism Q0 → B given by the
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definition of Q0 being projective. The morphisms Xn → Xn−1 are constructed by induction. Exactness of
each row follows from Lemma 3.1.12.

Remark. It should be noted that, with the notation above, defining Xn as Pn ⊕Qn, this does not imply
that X• = P• ⊕Q• as chain complexes. This is because the morphisms Xn → Xn−1 may not be the same as
the canonical morphisms Pn ⊕Qn → Pn−1 ⊕Qn−1, provided by the boundary morphisms of P• and Q• and
the universal properties of the biproduct.

Now we state and prove the most important property of derived functors, which answer the question
stated at the beginning of this Chapter: left derived functors extend the image of a short exact sequence
under a right exact functor to a long exact sequence:

Theorem 3.3.5. Let 0→ A→ B → C → 0 be a short exact sequence in an abelian category A with enough
projectives, and let F : A→ B be an additive functor. There is a long exact sequence

· · · LnFA LnFB LnFC

Ln−1FA Ln−1FB Ln−1FC

L0FA L0FB L0FC 0.

δn+1

δn

δn−1

δ1

If F is right exact, then the sequence ends in

· · · L1FC FA FB FC 0.δ1

Proof. Let P• → A → 0 and Q• → C → 0 be projective resolutions. By the Horseshoe Lemma, there is a
projective resolution X• → B → 0 such that 0 → Pn → Xn → Qn → 0 is an exact sequence for all n ⩾ 0.
Because we defined Xn to be the direct sum of Pn and Qn, we find that F preserves the exactness. I.e.
0 → FPn → FXn → FQn → 0 is exact. This follows from the fact that F is additive, so it preserves the
biproduct and inclusion/projection morphisms into and out of each Xn. Lemma 3.1.12 implies that the
resulting sequence is indeed exact.

Now, deleting the objects A, B, and C, we obtain an exact sequence of complexes

0 FPA• FXB
• FQC• 0,

which, by Proposition 3.2.3(c), induces a long exact sequence in homology:

· · · Hn(FPA• ) Hn(FXB
• ) Hn(FQC• )

Hn−1(FPA• ) Hn−1(FXB
• ) Hn−1(FQC• )

H0(FPA• ) H0(FXB
• ) H0(FQC• ) 0.

δn+1

δn

δn−1

δ1
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By definition of left derived functors, Hn(FPA• ) is equal to LnFA, and similar for B and C.32 Therefore we
obtain a long exact sequence

· · · LnFA LnFB LnFC

Ln−1FA Ln−1FB Ln−1FC

L0FA L0FB L0FC 0.

δn+1

δn

δn−1

δ1

Note that the sequence terminates in 0, because any negative terms of a (deleted) projective resolution are
defined to be zero objects and zero morphisms, which have zero homology.

If F is right exact, then there are natural isomorphisms L0FA ∼= FA, and L0FB ∼= FB, and L0FC ∼= FC

by Proposition 3.3.3(a). In this case, the long exact sequence indeed ends in

· · · L1FC FA FB FC 0,δ1

which completes the proof.

Left derived functors act as a measure of how close a right exact functor is to being exact. Indeed, by
Proposition 3.3.3, the functor F is exact if and only if LnF is the constant zero functor for every n > 0.

The prototypical example of a right exact functor is the tensor product. We now showcase some properties
of the left derived functors of the tensor product.

Definition 3.3.6. Let R be a commutative ring with unity, and let T be an R-module. The left derived
functors of T ⊗R− : ModR → ModM ⊗R N

R are called the Tor functors, and are denoted TorRn (T,−) := Ln(T ⊗R−)TorR

n

(M,N)

for integers n ⩾ 0. ▼

Remark. Existence of the Tor functors relies on the fact that ModR is a category with enough projectives.
This follows from the fact that every module has a free presentation, proven in Proposition 2.3.8. In particular,
for any R-module M , the morphism R⊕I →M given in the proposition is a surjective homomorphism from a
free module to M . Since free modules are projective, this proves that ModR has enough projectives.

Theorem 2.7.2 (p.58) of [Wei94] proves that, for all n, there is an isomorphism TorRn (M,N) ∼= TorRn (N,M)
which is natural in M and N . This means that TorRn (M,N) can be computed by a projective resolution of
N , or a projective resolution of M .

Recall that we call the R-module T flat if T ⊗R − is an exact functor. Thus it follows that TorRn (T,−) is
zero for any n > 0 in this case. The following are more properties of the Tor functors, which also relate it to
the torsion submodule:

Proposition 3.3.7.
32Note that the projective resolution X• → B → 0 may not be the same one used to define LnB. However by Proposition

3.3.2, the derived functors are naturally isomorphic, so the distinction is not pertinent.
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(a). If R is a nonzero domain, and p is a nonzero element of R, then TorR1 (M,R/pR) is isomorphic to the
p-Torsion Submodule defined as

M [p] := {m ∈M | pm = 0}M [p],

and TorRn (M,R/pR) is zero for n > 1. If R is a PID, this can be used to compute TorRn (M,N) for any
finitely generated N .

(b). If R is a nonzero domain with field of fractions Q, then TorR1 (Q/R,M) is isomorphic to the torsion
submodule of M (see Example 2.4.4 for details on the torsion submodule).

(c). If R is a PID, then TorRn (M,N) is zero for all n > 1 and all R-modules M and N .

Proof. (a). To compute TorR1 (M,R/pR), consider the exact sequence

0 R R R/pR 0·p

of R-modules where R→ R/pR is the projection onto the quotient module. Because R is free, it is projective,
making this a projective resolution of R/pR. To compute the Tor functors, we delete R/pR, apply M ⊗R −
and compute the homology of the resulting chain complex. Note that M ⊗R R is naturally isomorphic to M ,
where m⊗ r 7→ rm is the isomorphism (see Proposition 2.2.2). The relevant complex is thus given by

0 M M 0,µp

where µp is the homomorphism sending m to pm. The first Tor functor, which is the first homology of the
complex, is given by

TorR1 (M,R/pR) = kerµp/ im(0→M) ∼= kerµp = {m ∈M | pm = 0},

which proves the statement. Because the other terms of the chain complex are zero, the higher Tor functors
are zero as well.

If N is finitely generated, then there is an isomorphism

N ∼= Rr ⊕R/a1R⊕ . . . R/atR,

as is proven in [DF04, theorem 12.1.5, p.462], for ai ∈ R \ {0}, and r and t nonnegative integers. Because the
derived functors of an additive functor are additive as well, it follows that for all n > 0:

TorRn (M,N) ∼= TorRn (M,Rr)⊕ TorRn (M,R/a1R)⊕ · · · ⊕ TorRn (M,R/atR) ∼= M [a1]⊕ · · · ⊕M [at].

Note that TorRn (M,Rr) is zero because Rr is free.

(b). Consider the short exact sequence of R-modules

0 R Q Q/R 0

where the first map is the inclusion, and the second one the projection onto the quotient module. Theorem
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3.3.5 implies there is a long exact sequence

· · · TorR1 (M,Q) TorR1 (M,Q/R) M ⊗R R M ⊗R Q M ⊗R Q/R 0.δ1

The R-module R is free, and thus flat. By Proposition 2.5.6, it follows that Q, which is the localization R Rp

(0),
is flat too.33 Therefore TorR1 (M,Q) is zero. Using the fact that M ⊗R R is naturally isomorphic to M by
Proposition 2.2.2, there is now an exact sequence (with removed final terms)

0 TorR1 (M,Q/R) M M ⊗R Q.

Exactness of the sequence is equivalent to TorR1 (M,Q/R) → M being the kernel of M → M ⊗R Q. Now
because Q = R(0), we have that M ⊗RQ is naturally isomorphic to M Mp

(0) by Corollary 2.5.5. The isomorphism
sends an elementary tensor m⊗ r/a to (rm)/a.

Thus, finding the kernel of M →M ⊗R Q is equivalent to finding the kernel of M →M(0), which is the
composition

m 7→ m⊗ 1/1 7→ m/1.

If the image m/1 is zero in M(0), there is an x ∈ R \ (0) such that xm = 0. In other words, m is an element
of the torsion submodule of M . Conversely, if m is a torsion element with xm = 0, then m is in the relevant
kernel because m/1 = (xm)/x = 0/x = 0.

So indeed, we conclude that TorR1 (M,Q/R) is the torsion submodule of M .

(c). Let M and N be modules over a PID R. As in the proof of Proposition 2.3.8, there is a surjective
R-module-homomorphism f : F → N with F a free R-module. By including the kernel of this homomorphism,
there is an exact sequence

0 ker f F N 0.f

The kernel of f is a subgroup of F , and because F is free, so is ker f . This follows from the fact that
submodules of free modules are free over a PID, as is proven in detail in [AK17, theorem 4.12, p.29] (the
proof in the case where the larger module is not finitely generated requires the Well-Ordering Theorem, which
is equivalent to the Axiom of Choice, as is proven in [Bar14, theorem 2.11, p.2]).

The above sequence is, by freeness of the relevant terms, a projective resolution of N . Note that for any
n > 1, the n-th term of the resolution is zero. So TorRn (M,N) is zero for these values of n.

Historically, the Tor functors were introduced for abelian groups specifically. Given a free presentation
0→ F1 → F0 → A→ 0 of an abelian group A (see part (c) above), the abelian group Tor(A,B)Tor(A,B) is defined as
the kernel of F1 ⊗Z B → F0 ⊗Z B. The name ‘Tor’ comes from ‘torsion’, which makes sense, as Tor(Z/pZ, A)
is a subgroup of the torsion group of A. The original name for Tor(A,B) is in fact the torsion product of A
and B. See [CE56] for more historical context on the Tor functors.

The third part of the above proposition suggests that the Tor functors are a measure of ‘how close’ a
module is to being flat. Over a PID, not every module is flat, but since the Tor functors only go up to degree
1, modules over PID’s are not far off from being flat. This can be quantified by a ring’s Tor dimension, which

33(0) is a prime ideal of R in this case. Indeed, if ab = 0, then either a or b must be zero by definition of R being a domain.
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is defined as

Tor dimR := sup{n ⩾ 0 | TorRn (M,N) ̸= 0, for some M,N ∈ Ob(ModR)}.Tor dimR

(If there are modules over which none of the Tor functors vanish, we say the Tor dimension is infinity) With
this terminology, part (c) of the above proposition states that the Tor dimension of a PID is at most 1.

To end this section, we run through the dual definitions and results, which regard right derived functors.
These results are not proven, as the proofs are all dual to the corresponding results for left derived functors.

Definition 3.3.8. Let A and B be abelian categories, with A having enough injectives, and let F : A→ B
be an additive functor. Given an object A of A, let 0→ A→ I• be an injective resolution and consider the
deleted resolution I

AIA

•

• , where A is removed:

0 I1 I2 · · · .

The n-th right derived functor of F at A is defined as

RI•
n F (A) := Hn(FIA• ),Rn F

where n is a nonnegative integer. ▼

Just like for left derived functors, right derived functors are independent of the chosen injective resolution,
up to natural isomorphism:

Proposition 3.3.9. Let F : A→ B be as above. Given an object A of A and injective resolutions 0→ A→ I•

and 0→ A→ J•, there is a canonical natural isomorphism

RI•
n F (A) ∼= RJ•

n F (A).

Proposition 3.3.10. Let F : A→ B be an additive functor between abelian categories, with A having enough
injectives. The following hold:

(a). If F is left exact, then R0F and F are naturally isomorphic.

(b). If F is exact, then RnFA = 0 for all n > 0 and all objects A of A.

(c). If I is an injective object of A, then RnFI = 0 for all n > 0.

(d). If G : A → B is a functor that is naturally isomorphic to F , then RnF and RnG are naturally
isomorphic.

The following is the result for which derived functors are the original motivation.

Theorem 3.3.11. Let 0→ A→ B → C → 0 be a short exact sequence in an abelian category A with enough
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injectives, and let F : A→ B be an additive functor. There is a long exact sequence

0 R0FA R0FB R0FC

Rn−1FA Rn−1FB Rn−1FC

RnFA RnFB RnFC · · · .

δn−1

δn

δ0

δn−2

If F is left exact, then the sequence starts with

0 FA FB FC R1FA · · · .δ0

It follows that the functor F is exact if and only if RnF is the constant zero functor for every n > 0.

Definition 3.3.12. Let R be a commutative ring with unity, and let T be an R-module. The right derived
functors of HomR(T,−) : ModR → ModR are called the Ext functors, and are denoted ExtRn (T,−)ExtR

n

(M,N).
Alternatively, ExtRn (−, T ) are defined as the right derived functors of the contravariant Hom-functor,
HomR(−, T ). ▼

As highlighted in Example 3.2.6, a module P is projective if and only if HomR(P,−) is exact, which
happens if and only if ExtRn (P,−) is zero for all n > 0 by Proposition 3.3.10(b). So where the Tor functors
measure how close a module is to being flat, the Ext functors measure how close a module is to being
projective.

Dually, a module I is injective if and only if HomR(−, I) is exact, which happens if and only if ExtRn (−, I)
is zero for all n > 0. So the Ext functors can also be used to measure how close a module is to being injective.

There are many more derived functors between module categories to consider, but by Watts’ Theorem
(2.4.3 and 2.4.5), a large class of these are naturally isomorphic to the tensor product or Hom-functor.
Proposition 3.3.3(d) implies that their derived functors can be computed using Tor and Ext.

3.4 Acyclic Resolutions and De Rham Cohomology

In many applications, finding projective and injective resolutions to compute derived functors can be quite a
hassle. Thankfully there is an easier way to do so, namely through acyclic resolutions, which are resolutions
where the objects vanish on derived functors. The main Theorem of this Section states that derived functors
can be computed by the homology of a deleted acyclic resolution, after applying the functor. For this Section,
we state and prove everything in the context of right derived functors, but as per usual, every definition and
statement can be dualized for the context of left derived functors. At the end of this Section, we cover an
example where this result is used in the field of sheaf cohomology, namely that the de Rham cohomology of a
smooth manifold can be computed as the cohomology of a certain sheaf.

Definition 3.4.1. Let F : A→ B be an additive functor between abelian categories, with A having enough
injectives. An object J in A is right F -acyclic or just acyclic if RnFJ = 0 for all n > 0.
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An exact sequence of the form

0 A J0 J1 J2 · · · ,

where each Ji is right F -acyclic is a right F -acyclic resolution of A, or just an acyclic resolution of A. ▼

Note that any injective object is right F -acyclic by Proposition 3.3.10(c). Before we can prove that derived
functors can be proven using acyclic resolutions, we need a lemma that allows us to split an exact sequence
apart along a cokernel:

Lemma 3.4.2. Let 0→ A→ X0 → X1 → · · · be an exact sequence in an abelian category. There is a short
exact sequence 0→ A→ X0 → C → 0 and a long exact sequence 0→ C → X1 → X2 → · · · , where C is the
cokernel of A→ X0.

Proof. Let f : A→ X0 and di : Xi → Xi+1 for i ⩾ 0 denote the above morphisms. Because f is monic, there
is an exact sequence 0→ A

f−→ X0
q−→ coker f → 0.

Similarly, the other part of the exact sequence can be written as 0 → ker d1
k−→ X1 → X2 → · · · . By

exactness, ker d1 is naturally isomorphic to im d0. Now im d0 is naturally isomorphic to

coker(ker d0) ∼= coker(im f) ∼= coker f,

where the last natural isomorphism follows from theorem 2.11 (p.36) of [Fre64], which says that the kernel of
a cokernel of a morphism is the original morphism again. In particular, the cokernel of the image of f is just
the cokernel of f . Therefore, there is an exact sequence 0→ coker f → X1 → X2 → · · · .

We are now ready to state and prove the main result of this Section:

Theorem 3.4.3. Let F : A→ B be an additive left exact functor between abelian categories, with A having
enough injections. Given an object A in A and a right F -acyclic resolution

0 A J0 J1 J2 · · · ,f d0 d1 d2

there is an isomorphism RnFA ∼= Hn(FJA• ), where FJA• is the chain complex obtained by deleting A from
the resolution, and applying F .

Proof. The case n = 0 is straightforward enough to verify. It follows from Proposition 3.3.10(a) that
R0FA ∼= FA. On the other hand, the zeroth homology of FJA• is coker(0→ kerFd0). By left exactness of
F applied to the original resolution, this is the same as coker(0 → FA), which is just FA. Thus, we find
R0FA ∼= FA ∼= H0(FJA• ).

By Lemma 3.4.2, there are exact sequences

0 A J0 C 0,

0 C J1 J2 · · · ,

f q

m d1 d2

where C is the cokernel of f . Note that the second exact sequence is an acyclic resolution of C. By Theorem
3.3.5, there is a long exact sequence
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0 FA FJ0 FC

R1FA R1FJ0 R1FC

R2FA R2FJ0 R2FC

· · · .

By acyclicity of J0, each RnFJ0 is zero for n > 0. The exact sub-sequences 0 → RnFC → Rn+1FA → 0
imply that RnFC and Rn+1FA are isomorphic for all n > 1.

We prove that RnFA ∼= Hn(FJA• ) for n > 0 using (strong) induction. Assume that, for any object B
with acyclic resolution 0→ B → X•, there is an isomorphism RnFB ∼= Hn(FXB

• ), where n ∈ {1, . . . , N − 1}
for some integer N > 1. It follows that

RNFA ∼= RN−1FC ∼= HN−1(FXC
• ) = HN (FJA• ),

where 0 → C → X• is the acyclic resolution of C, defined by Xi = Ji+1. So by induction, we obtain
RnFA ∼= Hn(FJA• ) for all n > 0, assuming R1FA ∼= H1(FJA• ), which we now show.

To prove R1FA ∼= H1(FJA• ), note that we have an exact sequence 0→ FA→ FJ0 → FC → R1FA→ 0
by acyclicity of J0, so R1FA is naturally isomorphic to the cokernel of Fq : FJ0 → FC. The image of Fq is
naturally isomorphic the image of Fd0. This follows from

imFq ∼= coker(kerFq) ∼= cokerFf ∼= coker kerFd0 = imFd0,

where the second isomorphism follows from exactness of 0→ FA→ FJ0 → FC by F being left exact, and
the third isomorphism follows from exactness of 0→ FA→ FJ0 → FJ1.

Using this, we can compute H1(FJA• ) as:

H1(FJA• ) = coker(imFd0 → kerFd1)
∼= coker(imFq → FC)
∼= coker(Fq) ∼= R1FA.

The isomorphism kerFd1 ∼= FC follows from exactness of 0→ FC → FJ0 → FJ1. Now that we have shown
R1FA ∼= H1(FJA• ), the above induction argument implies that RnFA ∼= Hn(FJA• ) for all n ⩾ 0.

Now we discuss an example of where this Theorem may be useful, namely in the context of sheaf
cohomology. We show that the de Rham cohomology of a smooth manifold can be computed as the cohomology
of a certain sheaf over this manifold. See Appendix A for a brief summary of necessary concepts of sheaves
and sheaf cohomology.

Example 3.4.4. Throughout this example, we follow the notation and conventions of elementary differential
geometry from [Ser23]. This includes the definitions of smooth manifolds, coordinate charts, pullbacks,
differential forms, and the exterior derivative. Let M be a (C∞-)smooth real manifold of finite dimension n.
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For any k ⩾ 0 and any open set U of M , we define Ωk(U)Ωk as the abelian group (or C∞(M,R)-module) of
smooth differential k-forms on U under addition. Note that Ω0(U) is the same as the group C∞(U,R)Ck (U, R) of
smooth real functions on U .

For any k, the abelian groups Ωk(U) assemble into a presheaf Ωk : Top
M → AbTX , where the restriction

homomorphism Ωk(V )→ Ωk(U) is the restriction of forms onto a smaller domain. Equivalently, if we denote
ι : U ↪→ V as the inclusion, then the restriction of a k-form ω on V is equal to the pullback ι∗ω. Differential
forms are locally defined, in that two k-forms on U are equal if and only if they agree on all points of U .
This immediately implies the locality condition for Ωk to be a sheaf. As for gluing, if we have a collection of
forms {ωi ∈ Ωk(Ui)}i for an open cover {Ui}i of U such that all ωi and ωj agree on the intersection of Ui
and Uj , then we can glue these together by defining the form ω by

ω(p) := ωi(p)

where Ui contains p. This is well-defined by assumption, and ω is actually smooth because we can restrict to
a small subset fully contained in Ui where ωi is smooth, making ω smooth at p. Thus, Ωk is actually a sheaf
on M .

The exterior derivative defines a sheaf morphism dk : Ωk ⇒ Ωk+1, where the component dkU is the exterior
derivative on Ωk(U). A local computation on charts shows that ι∗(dω) = d(ι∗ω)f∗ ω for ω ∈ Ωk(V ), where
ι : U ↪→ V is the inclusion. Because the exterior derivative commutes with the restriction, it follows that
each dk is actually a sheaf morphism.

One of the most important properties of the exterior derivative is that ddω = 0 for any form ω. Thus, for
all open U there is a chain complex

Ω0(U) · · · Ωk−1(U) Ωk(U) Ωk+1(U) · · · Ωm(U).d0
U

dk−2
U

dk−1
U dkU dk+1

U
dn−1
U

Classically, the k-th De Rham cohomology group of M is defined as Hk
dR(M)Hn

dR

(M) := ker dkM/ im dk−1
M . What we

show now is that these groups can also be computed as the cohomology of a certain sheaf. This starts by first
showing that

Ω0 · · · Ωk−1 Ωk Ωk+1 · · · Ωnd0 dk−2 dk−1 dk dk+1 dn−1

is an exact sequence of sheaves. To that end, the sequence is exact at Ωk if and only if it is exact at the stalk
Ωk Fp

p for all p ∈M . I.e. for any p ∈M , we consider the homomorphisms

Ωk−1
p Ωkp Ωk+1

p

dk−1
p dkp

and we show that im dk−1
p = ker dkp. This follows from Poincaré’s Lemma (see [Ser23, corollary 10.0.17, p.

134]), which states that any k-form ω on M such that dω = 0, there is a (k− 1)-form ψ such that dψ|C = ω|C ,
where C is a chart on M . Specifically, let (U, ω) be an element of ker dkp. By how we defined stalks, this
element is equal to (C,ω), where C is a chart of M containing p. By assumption,

dkp(C,ω) = (C, dω) = (C, 0).

By Poincaré’s Lemma, there is a (k − 1)-form ψ such that (C,ω) = (C, dψ), which is in the image of dk−1
p .
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Thus im dk−1
p = ker dkp, as the other inclusion follows immediately from ddω = 0, and so

Ω0 · · · Ωk−1 Ωk Ωk+1 · · · Ωnd0 dk−2 dk−1 dk dk+1 dn−1

is an exact sequence of sheaves.

We would like to compute the kernel of d0. This is equal to the sheaf that sends an open subset U to
ker(d0

U ), which consists of all 0-forms (i.e. smooth maps U → R) whose exterior derivatives vanish on U . If
C ⊆ U is a chart of M with coordinate maps xi : C → R, then the exterior derivative of f on C is equal to
df dfp =

∑
i
∂f
∂xi

∂f

∂x

dxi. If df vanishes on U , then every partial derivative of f must vanish on any chart C in U .
Smooth functions with this property are the locally constant ones, which are functions that are constant on
each connected component of M . We denote the sheaf of locally constant smooth maps as RR, which fits into
the exact sequence as

0 R Ω0 · · · Ωk−1 Ωk Ωk+1 · · · Ωn.d0 dk−2 dk−1 dk dk+1 dn−1

Extending on the right by the cokernel of dn−1 and an infinite amount of zero sheaves, the above becomes a
resolution of R.

Each sheaf Ωk is fine as well. This follows from theorem 1.4.6 (p.24) of [Ser23], which states that for any
open cover {Ui}i of an open set U , there is a family of smooth maps ρi : M → R satisfying the properties of
a partition of unity, as defined in definition 1.4.4 of the same book. We can now define a family of sheaf
morphisms {ηi : Ωk ⇒ Ωk}i by (ηi)U : ω 7→ ρiω. This makes the ηi a sheaf partition of unity subordinate to
the open cover {Ui}i of U , turning Ωk into a fine sheaf.

Now finally, since fine sheaves are acyclic, 0 ⇒ R ⇒ Ω• is an acyclic resolution of R Thus, the sheaf
cohomology of R satisfies, for all integers k ⩾ 0,

Hk(M,R)Hn (X,F) := RkΓM ∼= Hk(Ω•(M)) =: Hk
dR(M),

where ΓΓX : Sheaf(X) → Ab

M is the global sections functor. This shows that the classical de Rham cohomology groups can be
computed as the cohomology of a specific sheaf.

The example above is adapted from [Mik20]. The same thesis also provides other examples where
sheaf cohomology can be used to construct other cohomological theories. One such example is singular
cohomology, which acts as a ‘dual’ theory to that of singular homology, as described in Example 3.2.4. In
particular, it states the k-th singular cohomology group of a topological space X is isomorphic to the k-th
sheaf cohomology group of the sheaf that assigns the abelian group Z to each open subset, and where each
restriction homomorphism is the identity.
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4 Discussion and Generalizations

In this thesis we have summarized the basic theory of categories. We have seen how categories generalize
various other fields of mathematics, by studying the way objects relate to one another in terms of morphisms.
Functors and natural transformations are the ‘higher-level’ analogues of this idea, allowing us to compare
categories and functors respectively. In modern category theory, much of current research is spent trying
to understand such higher-level structures. Namely, given a positive integer n, a n-category consists of a
collection of objects, a collection of 1-morphisms between objects, and for every j ∈ {2, . . . , n}, a collection
of j-morphisms between (j − 1)-morphisms. All these morphisms have various composition rules that keep
everything well-defined (at least up to equivalence, where we say two j-morphisms are equivalent if they
are equal up to a (j + 1)-morphism). The paper [Bae05] gives a more detailed introduction to n-categories,
including some applications to homotopy theory and topological quantum field theory.

In a limiting sense, one can define an ∞-category as a category with j-morphisms for any positive integer
j, not just those with indices bounded by some n. The book [RV22] by Riehl and Verity developes the main
concepts of ∞-category theory in much more detail than is possible here. The book also includes an appendix
on 2-categories and 2-functors, which serves as a good summary of the topic.

The main result of Chapter 2, Watts’ Theorem, can also be generalized in various ways. The paper [NS16]
discuss a generalization of this theorem. Namely, given a commutative ring R, a cocomplete abelian category
A enriched over ModR (see the footnote in Definition 3.1.1), we define an R-module in A as a pair (M,ρ),
where M is an object of A and ρ : R→ A(M,M) is a homomorphism of R-algebras. In this setting, one can
define the tensor product −⊗RM as the unique (up to natural isomorphism) functor from ModR to A such
that R⊗RM ∼= M and −⊗RM is right exact and preserves direct sums. The fact that this is unique up to
natural isomorphism is the general Watts’ Theorem, but the main point of the paper cited above is to prove
a result analogous to Proposition 2.4.6 in these more general categories.

Another generalization is done in [Hov09], where the author proves a version of Watts’ Theorem for more
general categories in which some form of homotopy can be done. These include, but are not limited to, (a
subcategory of) Top, Ch(Ab), and ModR. Specifically, the paper works in certain classes of closed symmetric
monoidal categories, which are categories M with a symmetric bifunctor −⊗− : M×M→ M satisfying a
number of axioms (see, e.g., epilogue E2 of [Rie16] for detials). What makes a symmetric monoidal category
closed is that the functor M ⊗− has a specific right adjoint for every object M of M.

We have only scratched the surface of the theory of homological algebra, so there is much more to research
and generalize. One concept not covered in the main text is that of δ-Functors. Given abelian categories A
and B, a δ-functor is a collection of functors {Ti : A→ B}i∈Z⩾0 , together with morphisms δn : TnC → Tn−1A

for each short exact sequence 0→ A→ B → C → 0 in A. Along with this, we require that, given an exact
sequence as above, there is a long exact sequence

· · · → Tn+1C
δn+1−−−→ TnA→ TnB → TnC

δn−→ Tn−1A→ · · · ,

and a chain map between short exact sequences induces a chain map between the above long exact sequences.
A nice result regarding these derived functors is that if F : A→ B is an additive right exact functor, with A
having enough projections, then the derived functors LiF form a ‘universal’ δ-functor, as defined in chapter
III.1 of [Har77]. Moreover, if {Ti} is a universal δ-functor, and T0 is right exact, then Ti is naturally isomorphic
to LiT0 for all i. Of course, this entire construction can be dualized to define δ-functors generalizing RiF .
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See [Wei94, chapter 2.1] for more details regarding δ-functors.

Another way to compute certain (co)homological theories on topological spaces is through Čech cohomology.
This is another collection of cohomology groups that use the local data of a sheaf to give invariants of the
topological space. See [Har77, chapter III.4] for details. The upshot is that Čech cohomology and sheaf
cohomology coincide under certain conditions. This is helpful because, by its very nature, Čech cohomology
lends itself to easier computations than sheaf cohomology does.
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A Sheaves and their Cohomology

This appendix summarizes the basic concepts of sheaf theory and sheaf cohomology required for Example
3.4.4. Loosely stated, a sheaf is a collection of abelian groups corresponding to some local data of a topological
space. Sheaves are useful because they allow us to make precise statements about certian local properties of a
space. We do not prove any of the statements here, but we do provide citations to proofs whenever necessary.
The definitions are adapted from [Har77] and [Rot09]. Throughout this appendix, X is a topological space,
and TTX

X := (O(X),⊆)(P,⩽) is its poset category of open subsets.

Definition A.1. A presheaf of abelian groups on X is a functor F : Top
X → AbAb.34 The relation U ⊆ V is

mapped to the restriction homomorphism rV,U : FV → FU rV,U : FV → FU. The elements of the abelian group FV are called
sections of F over V , and we denote the image of a section s ∈ FV under the restriction as s|U := rV,U (s)f|U .
A sheaf is a presheaf F satisfying the following two conditions, where {Ui}i∈I is any open cover of an open
subset U of X:

• (locality) Given sections s and t in FU , if s|Ui = t|Ui for all i, then s = t.

• (gluing) Given a collection of sections {si ∈ FUi}i∈I , if si|Ui∩Uj = sj |Ui∩Uj for all i, j ∈ I, then there is
a section s ∈ FU such that s|Ui = si.

A morphism between sheaves F and G is a natural transformation η : F ⇒ G. We denote Sheaf(X)Sheaf(X) as the
category of sheaves on X, which is a subcategory of [Top

X ,Ab][C, D]. ▼

The main motivating examples of sheaves are ones that assign a set of functions to each open subset.
For example, there is a sheaf C0(−,R) that assigns, to each open subset U , the abelian group of continuous
functions U → R with pointwise addition. The restriction homomorphism from C0(V,R)→ C0(U,R) sends a
function f : V → R to the restriction f |U : U → R. Other examples include the sheaf C∞(−,R) of smooth
real-valued functions if X is a smooth manifold, and the sheaf O of holomorphic functions if X is a complex
manifold.

Note that the locality condition implies that the section s from the gluing condition is unique. The two
sheaf conditions are equivalent to saying that the following is an exact sequence in Ab:

0 FU
∏
i FUi

∏
i,j F (Ui ∩ Uj),

where FU →
∏
i FUi sends a section s to the i-indexed sequence (s|Ui)i, and

∏
i FUi →

∏
i,j F (Ui ∩ Uj)

sends a sequence (si)i to (si|Ui∩Uj − sj |Ui∩Uj )i,j .

Definition A.2. Let p be a point in X. The stalk of a sheaf F at p, denoted F Fp

p, is the colimit of the diagram
F ◦ I : Top

X,p → Ab, where TX,p is the full subcategory of TX containing only the open sets that contain p,
and I : Top

X,p → Top
X is the inclusion functor.

More concretely, elements of Fp are pairs (U, s), with s ∈ U , subject to the relation that (U, s) = (U ′, s′)
if and only if there is an open subset W ⊆ U ∩U ′ such that s|W = s′|W . The legs of the cocone of the colimit
are homomorphisms FU → Fp that send a section s to the pair (U, s). ▼

A morphism η : F ⇒ G of sheaves induces a homomorphism ηp : Fp → Gp on the stalks, defined by
taking a pair (U, s) to (U, ηU (s)). An important property of these induced maps is that the morphism η is an

34One could also consider functors from Top
X to any category C. For example a functor Top

X → Ring Ring is a presheaf of rings.
However, here we only consider presheaves of abelian groups.
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isomorphism of sheaves if and only if every ηp is an isomorphism of abelian groups for all p ∈ X, which is
proven in [Har77, proposition II.1.1, p.63].

Definition A.3.

• The zero sheaf on X, denoted 00, associates the trivial group to every open subset of X, and rV,U is the
zero homomorphism for all open set U and V .

• Given sheaves F and G on X, and morphisms η and ε from F to G, their sum η + ε is defined on
components as (η + ε)U := ηU + εU , where the latter is the sum of homomorphisms in Ab. This turns
Sheaf(X)(F,G) into an abelian group.

• Given sheaves F and G on X, their direct sum, denoted F ⊕G, is defined on open subsets U of X by
the direct sum of abelian group (F ⊕G)(U) := FU ⊕GU A⊕ B.

• Given a morphism η : F ⇒ G of sheaves on X, we define its kernel as the sheaf ker η : U 7→ kerφker f

U . ▼

Remark. In general, the presheaf U 7→ coker η coker f

U is not a sheaf, so instead we define the cokernel of a
morphism of sheaves η as the sheaf associated with the presheaf, as defined and proven to exist in [Har77,
definition-proposition II.1.2, p.64].

The definitions above are enough to show the following, which is proven in [Rot09, theorem 5.91, p.309].

Proposition A.4. Sheaf(X) is an abelian category.

As an abelian category, definitions of images, coimages, exact sequences, chain complexes, injective and
projective sheaves carry over from arbitrary abelian categories. A useful result is that exactness of sheaves is
a very local property, as is proven in [Rot09, theorem 5.85, p.300]:

Proposition A.5. The sequence

· · · Fn−1 Fn Fn+1 · · ·

in Sheaf(X) is exact if and only if the induced sequence on stalks

· · · (Fn−1)p (Fn)p (Fn+1)p · · ·

is exact in Ab for all points p ∈ X.

The functor we use to define sheaf cohomology is the following:

Definition A.6. Given an open subset U ⊆ X, the global sections functor is a functor ΓX : Sheaf(X)→ AbΓX : Sheaf(X) → Ab

that sends a sheaf F to ΓX(F ) := FX, and a morphism of sheaves η : F ⇒ G to the group-homomorphism
ηX : FX → GX. ▼

This global sections functor is left exact, as is shown in [Rot09, lemma 6.68, p.378]. Proposition 5.97
(p.314) of the same book shows that Sheaf(X) has enough injections, meaning we can nicely define the right
derived functors of ΓX :

Definition A.7. We define the n-th sheaf cohomology functor Hn(X,−)Hn (X,F ) to be the n-th right derived functor
of ΓX . ▼
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We would like to compute this sheaf cohomology using Theorem 3.4.3, which means we need a characterization
of acyclic objects in Sheaf(X). One particularly nice class of acyclic sheaves are the following:

Definition A.8. A sheaf F is fine if, for any locally finite35 open cover {Ui}i∈I of an open set U , there is a
family of sheaf morphisms {ηi : F ⇒ F}i∈I such that:

• For all i ∈ I, the set {p ∈ X | (ηi)p ̸= 0}, called the support of ηi, is contained in Ui (here (ηi)p denotes
the homomorphism of stalks Fp → Fp);

• For all p ∈ X, the sum of homomorphisms
∑
i∈I(ηi)p is the identity homomorphism on the stalk Fp.

Such a family of sheaf morphisms is called a sheaf partition of unity subordinate to {Ui}i. ▼

As is shown in [Wel07, propositions 3.5, 3.11, p.53, 56], any fine sheaf is also a so-called soft sheaf, and
any soft sheaf is acyclic. Thus, if F is fine, then Hn(X,F ) = 0 for all n > 0.

Remark. Usually, fine sheaves are only defined if X is a paracompact space, which are spaces for which
every open cover can be refined to a locally finite cover. In Example 3.4.4, we consider the case where X is a
smooth manifold, which is always paracompact by the requirement of a manifold being second-countable.

35An open cover is locally finite if for all points p ∈ X, there is an open neighbourhood Ũ of p such that Ũ only intersects finitely
many of the covering sets. The requirement of such a covering being locally finite guarentees that the sum of homomorphisms in
the definition is well-defined.
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Glossary of Notation
f : A→ B Morphism between two objects. 5
1A Identity morphism. 5
g ◦ f Composite morphism. 5
▼ Marker for the end of a definition. 5
Ob(C) Collection of objects. 5
C(A,B) Collection of morphisms between two objects. 5
Hom(A,B) Collection of morphisms between two objects. 5, 50, 71
99K Emphasized arrow. 6
(†) Marker for an important example. 6
Set Category of sets. 6
Top Category of topological spaces. 6
Eucl Category of Euclidean spaces. 6
Man Category of smooth manifolds. 6
Set∗ Category of pointed sets. 6
Top∗ Category of pointed topological spaces. 6
Eucl∗ Category of pointed Euclidean spaces. 6
Man∗ Category of pointed smooth manifolds. 6
(X,x) Object of a category with pointed objects. 6
Group Category of groups. 6
Ring Category of rings. 6, 105
Field Category of fields. 6
Monoid Category of monoids. 6
Z Set of integers. 6
ModR Category of left R-modules. 7, 43, 73
Ab Category of abelian groups. 7, 71, 105
VectK Category of K-vector spaces. 7, 73
RMod Category of right R-modules. 7
Quiver Category of quivers. 7
Cop Opposite category. 7, 77
:= Is defined as. 7
MatR Category of matrices over R. 7, 73
BG One-object group category. 7
Gop Opposite group. 7
(P,⩽) Poset category. 7, 105
Htpy Category of topological spaces and homotopy classes. 8
Htpy∗ Category of pointed Category of pointed topological spaces and homotopy classes. 8
0 Empty category. 8
1 Category with one object and one morphism. 8
2 Category with two objects and one non-identity morphism. 8
n Poset category ({1, . . . , n},⩽). 8
C× D Product category. 8
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C⨿ D Disjoint union category. 8
Vectfd

K Category of finite-dimensional K-vector spaces. 9
Setfin Category of finite sets. 9
CRing Category of commutative rings. 9, 73
Rng Category of non-unitary rings. 9
A ∼= B Isomorphic objects. 9
f−1 Inverse morphism. 9

Marker for the end of a proof. 9
Ciso Maximal groupoid. 10
Q Set of rational numbers. 10
f, g : A⇒ B Parallel morphisms. 10
A ↪→ B Inclusion morphism. 10, 44
Fp Finite field of order p. 11
F : C→ D Functor between two categories. 12
P (A) Power set of a set. 13
V ∗ Dual of a vector space. 13
O(X), C(X) Open and closed sets of a topological space. 13
Ck(U,R) Real functions of smoothness class k on U . 13, 101
R Set of real numbers. 13
f |U Restriction of a morphism. 13, 63, 105
πn(X,x) n-th homotopy group of a pointed topological space. 14
Dfp Jacobian matrix of a smooth function, evaluated at a basepoint. 14
TpM Tangent space of a pointed smooth manifold. 14
dfp Differential of a smooth function, evaluated at a basepoint. 14, 102
Q(R) Field of fractions of an integral domain. 14, 65
U Forgetful functor. 14, 36
⟨S⟩ Free group on a set. 14
· : G×X → X Group action on a set. 14
f∗, f

∗ Pushforward and pullback of a morphism. 15, 50
M ⊗R N Tensor product of two R-modules. 15, 48, 94
m⊗ n Elementary tensor. 15, 48
GF Composite functor. 15
Cat Category of small categories. 16
Ob : Cat→ Set Object functor. 16, 21
Groupoid Category of groupoids. 16
C ∼= D Isomorphic categories. 16
η : F ⇒ G Natural transformation between two functors. 17
F ∼= G Naturally isomorphic functors. 18
ev : 1VectK ⇒ (−)∗∗ Evaluation natural transformation. 18
GLn(R) Invertible n× n matrices over a ring. 19
R× Group of units of a ring. 19
θ ◦ η Vertical composition of natural transformations. 20
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θ ∗ η Horizontal composition of natural transformations. 20
[C,D] Category of functors between two categories. 20, 64, 105
R[x1, . . . , xn] Polynomial ring. 21, 44
mor : Cat→ Set Morphism functor. 21
Nat(F,G) Collection of natural transformation between two functors. 21
よ,よ

op Yoneda embeddings. 22
C ≃ D Equivalent categories. 22, 64
Π1(X) Fundamental groupoid of a topological space. 22
(N,ψ) Cone or cocone over a diagram. 25
limF Limit of a diagram. 25
∃!f There exists a unique morphism. 26
colimF Colimit of a diagram. 26∏
iXi Product of objects. 27, 46∐
iXi Coproduct of objects. 27

G ∗H Free product of two groups. 27
A⊕B Direct sum, or biproduct, of objects. 27, 46, 71, 86, 106
X ∨ Y Wedge sum of two topological spaces. 28
Eq(f, g) Equalizer of two morphisms. 28
0 : M → N Zero morphism. 28, 45, 71
ker f Kernel of a morphism. 28, 45, 73, 106
Coeq(f,g) Coequalizer of two morphisms. 28
coker f Cokernel of a morphism. 29, 45, 74, 106
R[[x]] Ring of formal power series. 29
Z/nZ Ring of integers modulo n. 29, 54, 86
Zp Ring of p-adic integers. 29
F ⊣ G Adjoint pair of functors. 34
fT Transpose of a morphism. 34
C(Q) Category generated by a quiver. 36
εF, Fη Functor-natural transformation compositions. 37
M/N Quotient module. 44
A↠ B Projection morphism. 44
X(M) Module of smooth vector fields on a smooth manifold. 44
0 Zero object. 45, 71, 106
im f Image of a morphism. 45, 74
⟨S⟩ Module generated by a set. 46
R⊕I Repeated direct sum of a module, indexed by a set. 46, 58
ZR Set of zero divisors of a ring. 47
TorM Torsion submodule of a module. 47, 63
µr : M →M Homomorphism from a module to itself, sending m to rm. 59
ρm : R→M Homomorphism from a ring to a module, sending 1 to m. 60
SModR Category of (S,R)-bimodules. 64
A−1R Localization of a ring by a multiplicative set. 65
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r/a, ra Element of the localization. 65
p Prime ideal of a ring. 66
a ⊴ R Ideal of a ring. 66
Rp Localization at a prime ideal. 66, 96
A−1M Localization of a module by a multiplicative set. 66
f̂ : A−1M → A−1N Homomorphism induced by the localization functor. 66
Mp Localization of a module at a prime ideal. 68, 96
Ann(a) Annihilator of an element of a ring. 68
m Maximal ideal of a ring. 69
coim f Coimage of a morphism. 74
Abtor-free Category of torsion-free abelian groups. 78
(A•, d•) Chain complex with boundary morphisms. 81
Hi(A•) i-th homology object of a chain complex. 81
Ch(A) Category of chain complexes. 81
∆n Standard n-simplex. 84
[p0, . . . , pn] n-simplex defined by n+ 1 points. 84
C•(X) Simplicial chain complex of a topological space. 84
S1 Circle space. 85
T Torus space. 85
P• → A→ 0 Projective resolution of an object. 86
0→ A→ I• Injective resolution of an object. 86
PA• Deleted projective resolution. 89
LnF n-th left derived functor of an additive functor. 90
TorRn (M,N) n-th Tor functor of two R-modules. 94
M [p] p-torsion submodule. 95
Tor(A,B) Torsion product of two abelian groups. 96
Tor dimR Tor dimension of a ring. 97
IA• Deleted injective resolution. 97
RnF n-th right derived funtor of an additive functor. 97
ExtRn (M,N) n-th Ext functors of two R-modules. 98
Ωk Sheaf of smooth differential k-forms. 101
TX Poset of open subsets of a topological space. 101, 105
f∗ω Pullback of a smooth map, applied to a differential form. 101
Hn

dR(M) n-th de Rham cohomology group of a smooth manifold. 101
Fp Stalk of a sheaf at a point. 101, 105
∂f
∂x Partial derivative of a smooth map with respect to the coordinate x. 102
R Sheaf of locally constant real functions. 102
Hn(X,F ) n-th sheaf cohomology object. 102, 106
ΓX : Sheaf(X)→ Ab Global sections functor. 102, 106
rV,U : FV → FU Restriction homomorphism. 105
Sheaf(X) Category of sheaves of abelian groups on a topological space. 105
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Index

Adjoint functor theorem, 42
Adjunction, 34

unit-counit -, 37
Associative, 5

Bilinear map, 47
Biproduct, 71

Category, 5
∞-, 103
n-, 103
2-, 21
of sets, 6
abelian -, 74
additive -, 28, 71
closed symmetric monoidal -, 103
cocomplete -, 30
complete -, 30
concrete -, 6, 17
discrete -, 8
disjoint union -, 8
empty -, 8
indiscrete -, 8
large -, 6
locally small -, 6
of R-modules, 7, 43
of abelian groups, 7
of commutative rings, 9
of fields, 6
of functors, 20
of groupoids, 16
of groups, 6
of integral domains, 14
of matrices, 7, 73
of monoids, 6
of pointed objects, 6, 8
of quivers, 7
of rings, 6
of sheaves, 105
of small categories, 16
of smooth manifolds, 6
of spaces with homotopy, 8

of topological spaces, 6
of torsion-free abelian groups, 78
of vector spaces, 7
one-object -, 7
opposite -, 7
product -, 8
small -, 6

Chain complex, 54, 81
Chain map, 81
Chains, 84
Characteristic, 11
Cocone, 25

legs of a -, 25
nadir of a -, 25

Codomain, 5
Coequalizer, 28
Coimage, 74
Cokernel, 29, 45, 73
Colimit, 26
Commutative diagram, 5
Comparison Theorem, 87
Components of a natural transformation, 17
Cone, 25

apex of a -, 25
legs of a -, 25

Coproduct, 27
Cotangent space, 14

De Rham cohomology, 101
Determinant, 19
Diagram, 25

finite -, 25
Differential, 14
Direct

product, 46
sum, 46

inner -, 46
Divisible abelian group, 86
Domain, 5
Duality, 12

Empty set, 11
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Enough
injectives, 86
projectives, 86

Epi-Mono-Factorization, 77
Equalizer, 28
Equivalence of categories, 22
Essentially surjective on objects, 23
Essentially unique, 11
Evil, 25
Exact

in an object, 54
long - sequence, 82
row, 55
sequence, 54, 78

split -, 55, 79
short - sequence, 54, 78

Extension of scalars, 50
Exterior derivative, 101

Field of fractions, 14, 65, 95
Five lemma, 55
Formal power series, 29
Forward image, 13
Free

group, 14
product, 27

Freyd-Mitchell Embedding Theorem, 80
Fully faithful, 17
Functor

δ-, 103
additive, 57, 79
bi-, 15, 103
cocontinuous -, 30
constant -, 14
continuous -, 30
contravariant -, 12
covariant -, 12
derived -

left -, 89
right -, 97

exact -, 57, 79
left -, 57, 79
right -, 57, 79

Ext -, 98

faithful -, 16
forgetful -, 14, 35
free -, 35
full -, 16
Hom-, 15, 50
identity -, 14
inclusion -, 15
left adjoint -, 34
representable -, 21
right adjoint -, 34
Tor -, 94

functoriality, 12
Fundamental group, 13

Generating set, 46
Global sections functor, 102, 106
Group action, 14
Group presentation, 58
Groupoid, 10

connected -, 22
fundamental -, 22
maximal -, 10

Hom-set, 5
Homeomorphism, 10
Homomorphism, 6

multiplication -, 59
restriction -, 105

Homotopy
equivalence, 10
group, 14
of chain maps, 81
of continuous maps, 8

Horizontal composition, 20
Horseshoe Lemma, 92

Ideal
maximal -, 69
prime -, 66

Image, 45, 74
Isomorphism

of categories, 16

Jacobian matrix, 14

Kernel, 28, 45, 73
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Kronecker product, 50

Limit, 25
direct -, 29
inverse -, 29

Linear independence, 46
Local property, 68
Localization

of a module, 66
of a ring, 65

Locally finite open cover, 107

Module, 43
bi-, 59
finitely generated -, 47, 95
finitely presented -, 58
flat -, 58, 68, 94
free -, 46
injective -, 86
presentation, 58
projective -, 86
quotient -, 44
sub-, 44
zero -, 11, 45

Monoid, 6
Morphism, 5

auto-, 10
boundary -, 81
composite -, 5
connecting -, 84
endo-, 10
epi-, 10, 74

split -, 11
identity -, 5
inclusion -, 27
inverse -, 9
iso-, 9, 44
mono-, 10, 74

split -, 11
of quivers, 7
opposite -, 7
projection -, 27
pullback -, 15
pushforward -, 15

transposed -, 34
universal -, 26
zero, 28
zero -, 71

Multiplicative subset, 65

Natural
isomorphism, 18
transformation, 17

Naturality square, 18

Object, 5
acyclic -, 98
homology -, 81
initial -, 11, 27
injective -, 85
projective -, 85
terminal -, 11, 26
zero -, 11, 71

p-adic integers, 29
Paracompact space, 107
PID, 47, 86
Polynomial ring, 21
Poset, 7
Power set, 13
Pre-image, 13
Prime field, 11
Product, 27
Pullback, 29
Pushout, 29

Quiver, 7

Rank, 46
Representation

of a group, 14
of a quiver, 14

Resolution
acyclic -, 99
deleted -, 89, 97
injective -, 86
projective -, 86

Restriction of scalars, 45

Scalar multiplication, 43
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Section of a sheaf, 105
Self-adjoint, 36
Sheaf, 105

cohomology functor, 106
fine -, 102, 107
morphism of -, 105
of continuous functions, 105
of holomorphic functions, 105
of locally constant real functions, 102
of smooth differential k-forms, 101
of smooth functions, 105
partition of unity, 107
pre-

of abelian groups, 105
of sets, 13

soft -, 107
stalk of a -, 105
zero -, 106

Simplex, 84
standard -, 84

Singular homology, 84
Snake Lemma, 80
Subcategory, 9

full -, 9
Support, 107

Tangent space, 14
Tensor

elementary -, 15, 48
product, 15, 48, 94

Tor dimension, 96
Torsion product, 96
Torsion submodule, 47, 95

p-, 95
Torus, 85
Trivial group, 11

Universal property, 25, 48

Variance, 12
Vertical composition, 20

Watts’ Theorem, 60
Wedge sum, 28

Yoneda
embeddings, 22
lemma, 21

Zero divisor, 47

Čech cohomology, 104
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