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Abstract

The phenomenon of electromagnetically induced transparency (EIT) with divacancies in silicon
carbide (SiC), is a suitable candidate to provide optical control for a quantum memory in
quantum repeaters. The maturity of the SiC industry allows for the construction of complex
electronic and photonic circuits, which can be used to improve EIT performance. Previous
research focused on the application of a monolithic SiC slab waveguide, for increased optical
confinement. This thesis is a continuation, where monolithic 4H-SiC strip-loaded waveguides
are considered for a future platform for improved EIT measurements, due to the ability of
confining light in two dimensions instead of one. To create a contrast in the index of refraction
we used doping. However, the contrast that was realized was too low, resulting in a low
confinement along the horizontal direction. The coupling of light into the waveguide was done
using an optical fiber cable. Therefore, several optical fiber alignment methods were created,
in order to increase the coupling efficiency. In addition, this allows for future attachment of the
optical fiber to the waveguide, such that during EIT measurements no further alignment has to
be performed. These alignment methods can be completed in minutes and allow for micrometer
separation between the optical fiber and waveguide. For future research, monolithic 4H-SiC
rib waveguides are proposed for their increased horizontal confinement. This work provides an
improved understanding of waveguide mechanics and various complications that might occur.
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1 Introduction

The advancements in telecommunication, which allows for almost instantaneous communication
to anyone on the globe, has shaped the modern society. The next evolution is the inclusion of
quantum properties like superposition and entanglement in computing and telecommunication
[1]. One sought after application is that of quantum encryption, which allows for safe data
transmission, due to the collapse of the quantum state when observed. However, this requires
the transmission of entangled particles over long distances without the loss of coherence [2].
For this, the quantum repeater was proposed and investigated [3][4]. The phenomenon of elec-
tromagnetically induced transparency (EIT), has been used as a basis for the quantum memory
inside these repeaters [5][6]. In addition, EIT has many applications in the field of sensing [7]
and slowing down light [8]. The usage of silicon carbide (SiC) is an interesting platform for
future quantum repeaters, due to the advanced semiconductor industry allowing for advanced
electronic- and photonic-based circuits. In addition, divacancies in SiC have long spin coher-
ence times [9], which are addressable in the telecom waveband [10]. This allows for easier and
faster integration into the current telecommunication network, since no wavelength conversion
has to take place.

Figure 1: Schematic of crystalline
structure of the polytype 4H-SiC
with two atomic vacancies de-
noted by VSi and VC, resulting
in a divacancy defect along the c-
axis.

The application of EIT in bulk crystals remains difficult,
because of inhomogeneities due to strain. This causes an in-
crease in the line-width of atomic transitions, also known
as inhomogeneous broadening. To minimize this effect
extremely pure crystals are required, which can only be
achieved by growing SiC on an identical substrate. We work
with the particular 4H-SiC polytype, which has a hexagonal
crystal structure that repeats every four layers. The crys-
tal structure of 4H-SiC, including a divacancy defect along
the c-axis is shown in Figure 1. The defect is created by
removing two neighbouring atoms, one carbon and one sil-
icon, from the crystal structure. In order to increase the
optical control of these defects, our group has experimented
on monolithic 4H-SiC waveguides to confine light in one di-
mension [11]. The monolithic waveguide was doped in order
to provide a contrast in the refractive index. Furthermore,
doping allows for the creation of p-i-n diodes which have a
wide range of applications, like optical sensing [12] and wave-
length conversion [13]. This thesis is a direct continuation of
the previous example, where a series of monolithic 4H-SiC
strip-loaded waveguides on a single crystal have been manu-
factured. Strip-loaded waveguides allow for optical confine-
ment into two dimension, which results in an even higher
EIT performance by keeping the electromagnetic fields ho-
mogeneous over long distances. In our case, we want to
keep the light confined over several millimeters to address
as many defects as possible, before losses due to free-carrier
absorption become too large (more information in sections
2.3.3 and 4.3). Furthermore, micrometer precision is required to couple light into the waveg-
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uide, which is difficult to obtain when the sample is located inside a cryostat for EIT measure-
ments. Therefore, we want to permanently attach an optical fiber to the waveguide such that
future alignments are not required. To attach an optical fiber to the waveguide, the optical
fiber has to be aligned perpendicular to the waveguide facet. Therefore, we will develop several
alignment methods that can be used to achieve this.

To summarize, this thesis focuses on the following problems:

Q1. Are monolithic SiC strip-loaded waveguides a suitable platform for future enhanced
EIT control?

Q2. How to optimize the translational and angular alignment of an optical fiber for
maximum coupling into a waveguide?

We will begin by looking at the basics behind the mechanics of EIT and how waveguides can be
used to maintain complete transparency over long distances. Based on this, waveguiding me-
chanics in dielectric materials are explored. We look at how light propagate due to the principles
of total internal reflection and in the form of optical modes, due to the self-consistency condi-
tion. Furthermore, we will discuss how we changed the index of refraction in our monolithic
4H-SiC crystal via the addition of dopants in the cladding and substrate layers. Depending
on these refractive indices, the electromagnetic (EM) field distribution in a waveguide can be
determined. For this we developed our own solver and compared it to the results of the effective
index and wave-matching methods from SiIO, in order to better understand the physics behind
(strip-loaded) waveguides.

In addition, the effects of different types of losses in waveguides are characterised. The most
important of these losses will be due to free-carrier absorption, caused by doping the cladding
and substrate layer. The magnitude of the free-carrier losses will be theoretically determined
using a (new) developed equation and compared to different solvers from SiIO, Lumerical and
previous experimental results. IFurthermore, we will also look at radiative losses when light
travels through bends. This is important because our sample contains serpentine style bends
and it is known that due to the low horizontal confinement in strip-loaded waveguides, these
radiative losses become significant [14].

Finally, we will look at the optical coupling between an optical fiber and waveguide. For efficient
coupling, the modes between the optical fiber and waveguide have to match, which is described
by the butt-coupling method. The optical fiber has to be perpendicular to the waveguide
surface and the separation between the optical fiber and waveguide should be minimal. To
achieve this, two alignment protocols will be developed, one to align the angle and one to
minimise the distance between the optical fiber and waveguide.
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2 Theory

The following sections present a theoretical basis for EIT characteristics for divacancy defects
in 4H-SiC. To maintain proper EIT, conditions regarding the optical excitation intensity, decay
and dephasing rates of the system have to be considered. To satisfy these conditions over
distances of a couple of millimeters to centimeters, optical waveguides are used. Therefore,
the general dynamics of waveguiding in dielectric materials like SiC are explained, which will
result in propagating optical modes. To create a contrast in the index of refraction, between
layers in our monolithic 4H-SiC crystal, doping is used. Since the index of refraction is different
for all layers, also known as an asymmetric waveguide, there are stricter requirements for the
self-consistency condition which will be discussed. These general waveguide dynamics are used
to describe the electromagnetic field distribution inside our strip-loaded waveguide and provide
predictions on the confinement and shape of the propagating optical modes. Thirdly, we focus
on the mode matching and coupling of light from an optical fiber to the waveguide, as described
by the butt-coupling model. In addition, the effect of Fabry-Pérot interference on the total
transmission, due to an etalon being formed between the optical fiber tip and waveguide, will
be explored. Finally, different types of losses in waveguides are characterized to aid in future
waveguide design.

2.1 Electromagnetically Induced Transparency for Divacancies in
4H-SiC

Figure 2: Divacancy energy levels, where
two ground state levels g1 and g2 are cou-
pled to one exited state e2 via a control and
probe laser with Ωc and Ωp Rabi frequen-
cies. ∆ and δ denote single and two-laser
detuning respectively.

Similarly to NV centers in diamond, c-axis diva-
cancy in 4H-SiC can be described as a local quan-
tum system with spin S = 1. In this system,
six energy levels are relevant for our description.
These levels consist out of three ground states:
|g1⟩, |g2⟩, |g3⟩ and three excited states:|e1⟩, |e2⟩,
|e3⟩ [15]. The population in theses states can be
controlled via optical pumping. In Figure 2 a sim-
plified 3-level Λ scheme is shown, where the states
|g1⟩ and |g2⟩ are optical excited by a probe and
control beam to the state |e2⟩. In reality, tran-
sitions into other states also occur, for instance
the state |g3⟩ is kept empty with optical pumping
via a state that is not |e2⟩, however for simplicity
these are neglected [15]. The physics of the sys-
tem in Figure 2 is described by the Hamiltonian
H = H0+Hint, where H0 is the bare defect Hamil-
tonian and Hint is the interaction with the driving
fields. This interaction is given by the dipole ap-
proximation and is in general expressed using the
Rabi frequency Ω = µ⃗ · E⃗0/ℏ, where µ⃗ is the elec-

tric dipole transistion and E⃗0 the amplitude of the
electric-field [16], resulting in the following Hamiltonian,
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H = −ℏ
2

 0 0 Ωp

0 −2δ Ωc

Ωp Ωc −2∆p

 . (1)

In this Hamiltonian, Ωp and Ωc are the Rabi frequencies of the probe an control beam, ∆p is
the probe detuning from the |g1⟩ to |e2⟩ transition frequency and δ = (∆p−∆c) is the two-laser
detuning [16]. For two-photon resonance, where δ = 0, there exists an eigenstate that does not
contain the excited state |e2⟩ and is given by |Ψ0⟩ ∝ Ωc|g1⟩ − Ωp|g2⟩. When the system is in
this state, there is no possibility of spontaneous decay to another state, which is also known
coherent population trapping (CPT). For a weak probe beam and strong control beam, i.e.
Ωp/Ωc ≪ 1, the absorption spectrum of the probe beam splits in two. The amount of splitting
is related to the control beam Rabi frequency and causes increased transmission at the point of
two laser resonance (δ = 0). Therefore, this phenomenon has been named electronically induced
transparency (EIT), as the transparency is controlled by the control beam. To determine the
exact shape of the absorption spectra of the probe beam, the density matrix of the system has
to be determined, which is generally done using the Lidbladian master equation. The specific
element Im(ρ13) of the density matrix will then be proportional to the amount of absorption
of the probe beam [16]. In Figure 3 the theoretical probe absorption is plotted for different
control Rabi frequencies.

Figure 3: The effect of the control beam intensity on the EIT signature. In the center, the
distinctive EIT dip can be seen at zero detuning. On the left the Rabi frequency of the control
beam is lowered by a factor of ten, causing the absorption dip to vanish. On the right image
the intensity is increased by a factor of ten and Autler–Townes splitting is observed. The
strength of the probe beam is set to Ωp = 104 Hz and the decay and dephasing rates are given
by: Γe = 107 Hz, Γg = 104 Hz, γe = 0 Hz and γg = 105 Hz, as determined from previous
experiments and where g and e denote ground and excited state [15].

As can be seen, the important absorption dip feature of EIT is highly depended on the Rabi
frequency of the control beam. Since the Rabi frequency depends on the electric-field via the
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dipole interaction, the relation between Rabi frequency (Ω) and optical intensity (I) is given
by, Ω ∝

√
I. To maintain the narrow transmission window as shown in the center of Figure 3,

the control beam has to satisfy the condition |Ωc|2 ≫ (Γe+γe)γg. But, to prevent wide Autler-
Townes splitting, which is similar but not the same as EIT and is shown in the right image of
Figure 3, the condition |Ωc| < (Γe+γe) has to be satisfied. [16]. To satisfy these conditions, it is
required for the control beam intensity to be homogeneous over distances on the order of several
millimeters, such that a sufficient amount of divacancy defects are addressed. A problem with
a standard lens and bulk- crystal based setup, is that the intensity of the light is only high near
the focal point of the lens, but quickly diminishes as the beam diverges inside the bulk crystal.
In a particular case it might be that at the focal point there is wide Autler-Townes splitting,
followed a tiny region of narrow transmission and at the edges of the crystal a complete loss of
the signal due to high absorption. Therefore, optical waveguides are being considered and used
for enhanced control of EIT [17]. Waveguides allow for optical confinement inside a crystal over
long distances, such that the intensity profile remains largely constant.

2.2 Dielectric Waveguide Mechanics

SiC is a dielectric for light at telecom wavelengths. Therefore, we look at the mechanics behind
waveguiding in dielectric materials. In these waveguides, the phenomenon of total internal
reflection is used to keep the light contained in a small region. When light is inside a region of
higher refractive index than its surrounding, if the angle of incidence is smaller than some critical
angle θc = arcsin(ns/n), where ns and n are the respective refractive indices of the surrounding
and guiding layer, then all of the light will be reflected. The light inside a waveguide is guided
in the form of optical modes. For these modes to exist, the self-consistency condition has to be
satisfied, which states that after two successive reflections the phase of the original wave should
match that of the twice reflected wave (see Figure 4).

2.2.1 Optical Modes in Waveguides

Following the ray-optics description, it is assumed that light is a transverse electro-magnetic
(TEM) plane wave. According to the self-consistency condition, these waves propagate at a
specific angle called the mode angle θm and are called optical modes of the waveguide. In Figure
4 such a plane wave is depicted. For the phase fronts of the original and twice reflected beam
to align, the phase shift induced by reflecting from the top surface, traveling from A to C and
reflecting from the bottom surface should equal or be a 2π multiple of the phase of the original
wave, while traveling from A to B [18]. This condition is described by the following equation,

2dk sin(θ)− φr12 − φr13 = 2πm, m = 0, 1, 2, ... (2)

where the first term is the phase difference acquired from the difference in travel distance be-
tween the original wave (AB) and the reflected wave (AC). This difference in travel distance
depends on the thickness of the guiding layer d, the wavenumber inside the guiding medium
k and the angle of incidence θ. The other terms φr12 and φr13 are the phase shifts due to
reflecting with the first and second layer respectively. The phase shift due to reflection can
be determined from the Fresnel equations by taking the argument of the reflection coefficients.
For transverse electric (TE) and transverse magnetic (TM) polarised waves this results in the
following two equations [18],
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tan
(φTE

2

)
=

√
sin2(θ̄c)

sin2(θ)
− 1 (3)

tan
(φTM

2

)
= −tan

(φTE

2

) 1

cos2(θ̄c)
, (4)

where θ is the incident angle with respect to the surface and θ̄c = π/2−θc is the complementary
critical angle. Inserting these phase shifts into equation (2) and solving for sin(θ) numerically
or graphically, the mode angle of the propagating wave can be determined. Depending on the
mode angle the wave propagates with the following propagation constant β along the optical
axis,

βm = n1k0 cos(θm) = neff,m k0 (5)

where n1 is the index of refraction of the guiding layer, as shown in Figure 4, which can
be combined with the cosine term to give an effective index of refraction neff and k0 is the
wavenumber in vacuum. The effective index of refraction decreases with the incident mode
angle. This can be understood in the sense that the wave travels in a triangular way, bouncing
around via reflecting with the interfaces. The effective index of refraction is a property of
the guided mode and not the waveguiding material. This is an important distinction to make,
because certain laws do not work with effective refractive indices like Snell’s law, due to the light
being an optical mode and not a plane wave. The notion of an effective index of refraction, for
specific guided modes, will be used extensively for describing the horizontal confining properties
of a strip-loaded waveguide.

Figure 4: Schematic of the self-consistency condition in a dielectric waveguide with a guiding
layer thickness d, where after two successive reflections at points A and C, the phase front
of the original beam and twice reflected beam have to be equal or differ by a multiple of 2π.
When the index of refraction n1 is larger than both n2 and n3, then total internal reflection
occurs when the incident angle θ is smaller than the complimentary critical angle, θ̄c = π/2−θc
of both interfaces. The mathematical description of the self-consistency condition is given in
equation (2)

2.2.2 Changing the Refractive Index via Carrier Concentration

For a waveguide to guide waves, it is required that the refractive index of the mediums around
the waveguide core to be lower. But, in our case we use monolithic SiC, which has a singular
index of refraction. To create a contrast in refractive index between different layers, carrier
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concentration from doping can be used. At high enough doping concentration, the inclusion of
negative (n) and positive (p) type dopants leads to a plasma of free electrons or holes. Upon
excitation by an electromagnetic wave, with frequency ω, these free-carries are displaced and
induce a polarisation in the material, which results in a relative permittivity ϵr as described by
the Drude-Lorentz model [19].

ϵr(ω) = ϵopt −
Ne2

ϵ0m∗
1

ω2 + iγω
(6)

In this equation ϵopt is determined from the refractive index of the undoped material ϵopt = n2
0.

N is the doping concentration, m∗ is the effective mass and γ is a damping rate related to
free-carrier absorption. It is customary to split equation (6) into a real and imaginary part
ϵr = ϵ1 + iϵ2, resulting in the following two equations,

ϵ1 = ϵopt

(
1−

ω2
pτ

2

1 + ω2τ 2

)
(7)

ϵ2 =
ϵoptω

2
pτ

ω(1 + ω2τ 2)
(8)

Figure 5: Schematic of the monolithic 4H-SiC
strip-loaded waveguide. Each layer consisting
out of a substrate, core and cladding/air layer,
has a different refractive index due to carrier
concentration induced via doping. The core
layer is partitioned into two regions (I and II),
as to denote the different optical properties gen-
erated by the loaded strip.

where ωp is known as the plasma frequency
ω2
p ≡ Ne2/ϵoptϵ0m

∗ and τ = γ−1 is the damp-
ing time. In the regime of the infra red, where
ωτ ≫ 1 and ω ≫ ωp, the change in the refrac-
tive index ∆n, following from the binomial
approximation is given by,

∆n ≡
√
ϵ1 − n0 ≈ −

n0 ω
2
p

2ω2
. (9)

With this equation the change in refrac-
tive index can be calculated, depending on
the doping concentration and type.Figure 5
shows the general structure of the strip-loaded
waveguide. The inclusion of n-type doping
in the substrate layer and p-type doping in
the cladding layer changes the refractive in-
dex slightly to nsub and nclad respectively.
The doping concentration in the core layer is
around four orders of magnitude smaller than
the cladding and substrate. Therefore, the in-
dex of refraction in the core (nc) is almost identical to that of undoped 4H-SiC. Furthermore,
the refractive index of the core layer is divided into two effective refractive indices, nI and nII

given by equation (5), because each region is able to maintain a separate optical mode, as can
be derived from the self-consistency condition according to equation (2). Since the substrate
and cladding layers have different refractive indices, there are additional requirements for opti-
cal modes to exists. These asymmetric waveguide requirements are discussed in the following
section.
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2.2.3 Self-consistency Condition Requirements for Asymmetric Waveguide

In asymmetric waveguides, where the substrate and cladding layer do not have identical refrac-
tive indices, there exists the possibility that the self-consistency condition cannot be satisfied.
This would result in a waveguide, that is not able to maintain any optical modes, or simply
a waveguide that cannot guide waves. The fact that the self-consistency condition cannot be
satisfied can simply be understood by the fact that at one of the interfaces, for instance the
substrate-core interface, total internal reflection does not occur and a portion of the light is
transmitted. When looking at equation (3), the phase φTE becomes imaginary when the inci-
dent angle exceeds the critical angle, i.e. there is no total internal reflection. Once the phase
becomes imaginary, then no real solutions to the self-consistency condition given by equation
(2) exists. In Figure 6, a graphical solution to equation (2) is given for both an asymmetric
and symmetric waveguide. The graphical solution consists of finding the intersection of the
first term in equation (2), with the combined phase terms for the zero order mode (m = 0). In
the case there is no intersection, then there exists no solution to the self-consistency condition,
resulting in a waveguide that cannot guide waves.

In total there are two contributions to the size of the gap in Figure 6(a). First of all, the greater
the difference between the index of refraction between the cladding and substrate layer, the
earlier one of the interfaces does not support total internal reflection. Secondly, the smaller
the ratio in refractive index between the cladding/substrate and core (nclad/nc or nsub/nc), the
smaller the (complimentary) critical angle. This reduces the allowed mode angles, because
θm < θ̄c and thus stricter requirements for optical guiding. In short, we want to minimize
the difference in refractive index between the cladding and substrate and maximize the ratio
between the cladding/substrate and the core refractive index.

(a) Asymmetric cladding (n2 ̸= n3) (b) Symmetric cladding (n2 = n3)

Figure 6: Graphical solution to the self-consistency condition for modes of a waveguide. (a)
In an asymmetric waveguide, at a certain point one of the layers is not able to perform total
internal reflection. This causes a gap in the combined phase terms, where there might not be
a solution to the self-consistency condition. (b) In a symmetric waveguide there is always a
solution to the self-consistency condition.
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2.2.4 Electromagnetic Field Distribution in Strip-Loaded Waveguides

Finally, it is of interest to know the EM-field distribution inside waveguides. With said dis-
tributions we are able to predict properties such as the optical confinement and losses in the
waveguide. To do this, we will use the full-mode description instead of the ray-optic method.
This allows for the use of only one incident angle (instead of all incident angles smaller than the
critical angle, for the ray-optic method). This angle is the mode angle θm as determined from
the self-consistency condition described in equation 2. The full-mode description will not be
able to take into account any pertubations in the incident angle due to surface roughness. But,
because a majority of the light will be confined inside the core layer and the crystal is mono-
lithic, the effect of surface roughness on the propagation of light is limited. There are many
ways to solve the EM-field distribution by using mode solvers such as: finite element, finite
difference, effective index, wave matching, etc. All mode solvers solve for Maxwell’s equations,
but each method uses different assumptions and/or complexities describing the optical modes
[20][21]. Depending on the exact geometry certain solvers are more applicable than others. For
instance, when a waveguide cannot be sliced into a set of slab waveguides, as was done in Figure
5, then the effective index method cannot be used. To improve our understanding of the physics
and working principles of waveguides, an in-house solver is developed. By comparing the results
to other more complex solvers, we can asses the accuracy/validity of our model/assumptions
and understand the results of other simulations to a higher degree.

The solver that is used in this work, separates the waveguide according to the substrate, core,
cladding and sliced regions I and II, as show in Figure 5. Depending on the optical properties of
each region, the EM-field is either described by a sinusoidal function in a confining region (like
the core layer) or described by exponential decay in non-confining regions (like the cladding
and substrate layers). The exact solution is determined by ensuring continuity of the EM-field
between each layer [14]. This relative simple method of describing the one-dimensional optical
confinement of a slab waveguide is extended to describe the more complicated strip-loaded
waveguide, which confines the light in two dimensions, by thinking of a strip-loaded waveguide
as a set of slab waveguides. For instance, region I and II can be thought of as a substrate-
core-cladding and substrate-core-air slab waveguide along the z-axis. Each region has their own
optical mode, propagation constant βI and βII and effective index of refraction as determined
from the previous section 2.2.1. Since there is less penetration of the EM-field into the air
layer than the cladding layer (Goos–Hänchen effect) [22], the effective index of refraction in
the region under the loaded-strip is higher than the propagation constant in the surrounding
region. This contrast between regions I and II then forms an effective symmetric slab waveguide
in the horizontal (y-axis) direction. In addition, the air-cladding-air interface in the horizontal
direction can also be described and modeled by a symmetric slab waveguide. Finally, the dif-
ferent vertical and horizontal regions are stitched together to form a two dimensional structure
as shown in Appendix A. To complete the EM-field distribution these independent vertical and
horizontal distributions are multiplied with each other according to the following equation,

E(y, z) = Fi(z) ∗Gj(y) (10)

where Fi(z) and Gj(y) are the solutions of the EM-field distributions of a slab waveguide along
the the vertical and horizontal direction in different regions. The subscripts indicate region I /
II for i and crystal / air-cladding-air for j.
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This method is compared to two other mode solvers, namely the effective index method solver
(EIMS) and the wave matching mode solver (WMMS) from SiIO [23][24]. The working princi-
ples of these solvers and why they were chosen as a comparison is supplemented in the Appendix
section A. In Table 1 the relative intensity in each layer for different solvers is shown. As can
be seen, our solver is agrees well with EIMS and WMMS. Our solver over estimates the relative
intensity in the cladding layer by only around 1% with respect to EIMS. However, the relative
intensity in the substrate layer is basically identical. With respect to WMMS, our solver under-
estimates the intensity in the substrate layer by around 3.4%. However, in this case the relative
intensity in the cladding layer are nearly identical. The only significant difference between our
solver and EIMS, is that the EIMS solution is much more horizontally confined. The electric-
field is nearly completely located under the loaded strip, whereas for our solver and WMMS the
optical mode also extends outside the loaded strip region, as shown in Figure 7. Furthermore,
the shape of the electric-field distribution between our solver and WMMS is nearly identical,
which shows that describing the strip-loaded waveguide as a set of slab waveguides is a valid
approximation to make.

Table 1: Relative optical intensity distribution per layer for our solver and SiIO online solver.

Waveguide Layer Our solver SiIO (EIMS / WMMS) [23][24]

Cladding 1.29 % (2.47/1.41) %

Core 82.5 % (81.3/78.9) %

Substrate 16.3 % (16.2/19.7) %

(a) Our solver (b) SiIO WMMS

Figure 7: Intensity distribution (|E|2) of the zeroth order TE mode inside the strip loaded
waveguide, with a core and cladding thickness of 4 µm and 2 µm respectively. a) Own solver
describing the strip-loaded waveguide as a set of slab waveguides. b) Solution of the WMMS
solver.

The advantage of our method with respect to EIM, is that it is able to more accurately describe
the EM-field profile. In addition, our method is almost identical to the WMM result, while being
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significantly faster. Our solver is able to determine the EM-field profile within a second, while
WMM takes around a minute (depending on the parameters set). Furthermore, our method is
the closest to being an analytic solution, since it does not use a finite difference method to solve
the Helmholtz equation. Instead, only the (effective) refractive indices are used to determine
the shape of the EM-field profile. Therefore, it allows a greater understanding of the physics
at play. Finally, this method can be extended to any waveguide which is constant along the
optical axis and can be described as a set of slab waveguides.

2.3 Types of Losses in Doped Semiconductor Waveguides

The intensity of the EM-wave guided through the waveguide reduces exponentially according
to Beer’s law, which is also known as attenuation. As was shown before, the distinctive EIT
transmission peak at zero detuning is highly dependent on the intensity of the control beam.
Therefore, depending on the amount of attenuation, there exists a distance where the intensity
of the control beam is too low to effectively drive the system, resulting in the loss of the EIT
signal. By categorising all possible types of attenuation and the magnitude of the losses they
inflict, we will be able to determine the optimal length of our waveguides. Such that there is
still a detectable transmission signal while maintaining as many addressable defects/impurities
as possible.

2.3.1 Scattering

In total there are two types of scattering for waveguides. There is volume scattering, which is
caused by imperfections like crystalline defects and/or impurities and there is surface scattering,
which occurs when the propagating light-wave interacts with the surface. In doped SiC, volume
scattering is negligible compared to surface scattering, because the size of the imperfections are
small compared to the wavelength [14]. Surface scattering can be described using the ray-
optics method. The light-wave reflects from the interfaces and depending on the thickness of
the guiding layer the light-wave undergoes NR amount of reflections over a distance L. For
every reflection there is a loss due to surface scattering, depending on the surface roughness.
Higher order modes have a larger incident angles and undergo more reflections, resulting in a
higher loss than lower order modes. However, in our case absorption losses are much higher,
therefore losses due to surface scattering are negligible [14].

2.3.2 Interband Absorption

Via the absorption of a photon, transitions from the valence to the conduction band can occur
for semiconductors like SiC. This process is known as interband absorption and has the ability
to result in a large attenuation coefficient, on the order of 104 cm−1 [14]. For these transition
to occur it is required that the photon energy is greater than the bandgap energy, which is
around 3.26 eV or 380 nm for undoped 4H-SiC [25][26][27]. The wavelengths we use are in
the telecom waveband, which are much longer than the wavelengths required for interband
absorption. Therefore, in our case the effect of interband absorption is negligible. This also
holds true in the case that impurities or dopants are added to the sample, because it shifts the
bandgap energy on the order of meV [28][29].
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2.3.3 Free-Carrier Absorption

Previously, the effect of carrier concentration, induced via doping, on the real refractive index
was discussed. Following from equation (8), these free-carriers also have an influence on the
imaginary refractive index κ ≡ √

ϵ2, which is associated with optical absorption. Similarly, in
the infra-red regime, where ωτ ≫ 1 and ω ≫ ωp, the attenuation constant αfc is given by [19][14]

αfc =
2κω

c
=

Ne3

nc ϵ0(m∗)2µω2
, (11)

where we multiply with a factor of two because the intensity of light is proportional to the square
of the electric-field, and µ = e/γ m∗ is the low-field mobility of the free-carriers in the material.
The most important parameter in the attenuation constant is the doping concentration N . This
is because the other parameters are either constants of nature or are inherent to the material
in question, like the index of refraction and the effective mass. In our case the excitation
frequency (ω) is also fixed by the range of the telecom waveband. Therefore, the only parameter
left to discuss is the mobility of the free-charges. However, the mobility also heavily depends
on the doping concentration and doping type. In 4H-SiC the mobility is on the order of
50 to 100 cm2/Vs for doping concentrations ranging from 1018 to 1019 cm−3 [27][30][31]. On
average the mobility of holes is on the order of ten times lower than that of electrons, thus
resulting in an approximate ten fold increase in the attenuation constant.

2.3.4 Radiation

Radiative modes are EM-field oscillations outside the guiding layer, which do not exponen-
tially decay like evanescent modes and occur when neff I ≤ neff II. For normal guided modes
neff II < neff I < nc, but because neff II and neff I only differ by a few ten-thousands, any slight
disturbance in the EM-field will cause the order to flip and thus result in the radiative modes.
The application of curves in waveguides causes such deformation to the EM-field of the guided
wave and therefore create radiative modes [14]. Therefore, losses due to radiation become sig-
nificant in the case of waveguide bends. A way to quantify this effect is the velocity method
developed by Marcatili and Miller [32]. For the wave to remain guided it has to maintain
a constant phase-front. Since the distance needed to traverse is longer for larger radii, the
tangential phase velocity has to be proportional to the distance from the center of the bend
to maintain the constant phase-front. Then there exists a radius R + Xr where the phase
velocity has to exceed the velocity allowed by the index of refraction in the surrounding region.
Beyond this region the phase-front cannot be maintained and the EM-field will split off from
the guided mode and converted in radiation. Assuming that the length Xr is larger than half
the waveguide width (so that the EM-field only splits off outside the guiding layer) and that
the angular velocity has to be equal for all waves along the phase front, the length Xr can be
described in the following way

Xr =
βI − βII

βII

R. (12)

R is the radius of the bend and βI and βII are the propagation constants in the confining and
surrounding layer respectively [14]. The splitting of the guiding and radiative modes is not
immediate. An estimation was given that the radiative mode remains connected to the guiding
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mode within the distance Zc measured along the guided path by,

Zc =
d2

2λII

(13)

where d is the thickness of the waveguide and λII is the wavelength inside the medium sur-
rounding the confining region [14]. Thus, the optical power located further than Xr away from
the center of the waveguide bend is lost after a distance Zc and if P (z) is the power transmitted
at a distance z along the optical axis; then the attenuation coefficient related to radiative losses
is given by,

αrad = − 1

P (z)

dP (z)

dz
≃ 1

Ptot

Pz>Xr

Zc

(14)

where Ptot is the total optical power and Pz>Xr the optical power beyond Xr which is lost as
radiation. If one knows the EM-field distribution one can determine these powers via integration
over the region of said fields. In general, if one assumes that inside the confining layer the field
has a sinusoidal form and decays exponentially outside the confining layer, then the attenuation
coefficient will decrease exponentially with increasing Xr [14]. From equation (12) it becomes
clear that to limit radiative losses one requires a large radius of curvature or a high contrast
in index of refraction between the confining and surrounding layer. In our case, because of
the low contrast in refractive index along the horizontal y-axis, between the confining (I) and
surrounding (II) regions, the losses due to radiation are determined to be on the order of 50
dB/mm in section 4.1.

2.4 Optical Coupling between Optical Fiber and Waveguide

For light to enter the waveguide, an outside optical source has to be coupled to the waveguide.
Previously this was done via the direct focusing of a mounted lens for a slab waveguide [11].
However, to perform future EIT measurements, the sample must be cooled down in a cryostat
at around 4K. When the sample is inside the cryostat, optical alignment is extremely difficult.
The tolerances to couple light into and out of a waveguide are on the order of micrometers
and therefore we wish to align the optical source and waveguide before it enters the cryostat.
Therefore, it was decided to use an optical fiber which is aligned to the waveguide using a
six-axis stage. Then, in the future, there is the possibility of permanently attaching an optical
fiber to the waveguide at both the in- and out-facet of the waveguide such that the waveguide
can be put in another environment without having to align the system again.

2.4.1 Butt-coupling

Highly efficient coupling between a parallel optical fiber and waveguide is possible, due to the
ability of making the guiding layer thickness around the same size of the optical fiber core.
In addition, the optical mode of the optical fiber is closely matched to the TE00 mode of a
waveguide. As long as the optical fiber is perfectly perpendicularly cleaved, then the optical
fiber and waveguide facet can be brought within a few micrometers of each other. Causing
further improvements to the mode overlap. In general, the coupling efficiency η between the
optical fiber and the waveguide is given by,

η =

∣∣∫ E∗
oEc dA

∣∣2∫
|Eo|2 dA

∫
|Ec|2 dA

(15)
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where Eo and Ec are the respective complex electromagnetic fields in the optical fiber and
waveguide, integrated over an area A [33]. For simplicity, we will only consider one dimension
in the following example. The coupling between an optical fiber and our waveguide along the
z-axis is shown in Figure 8. When the separation between the optical fiber and waveguide is
zero, then the coupling efficiency to a TE0 mode is as follows,

η = B
nonc

(no + nc)2
dc
do

cos2
(
πdc
2do

)
1[

1−
(

dc
do

)]2 . (16)

Here B is a normalisation constant and no and nc are the indices of refraction of the optical fiber
and the waveguide core. The second term in equation (16), related to these refractive indices,
describes the reflection between the optical fiber and waveguide facet [33]. Furthermore, do
and dc are the thickness of the optical fiber core and waveguide core respectively. Their ratio
determines the area mismatch and the final term in the equation represents the mode overlap.
A similar description can be made for optical coupling along the y-axis, where the core thickness
dc is replaced by the width of the loaded strip. Equation (16) implies that maximum coupling
occurs when the thickness of the optical fiber core and waveguide core layer are the same do = dc.
Furthermore, the facets of the optical fiber and waveguide act as a semi-transparent mirror.
Based on the refractive index of the optical fiber no and the waveguide nc, a portion of the light
is reflected. This reduces the transmission of the initial beam, but also the total transmission,
due to Fabry-Pérot interference depending on the separation L between the optical fiber and
waveguide. This Fabry-Pérot interference is discussed in the next section. These conditions
should be taken into account when choosing which optical fiber to couple to the waveguide or
what the waveguide dimensions should be during the design process. For instance, our optical
fiber has an emitting layer thickness of around 9 µm [34] and our waveguides have widths
ranging from 6 to 9 µm. Therefore, it is expected that the loaded strips with a width of 6 µm
will have a lower transmission than those with a width of 9 µm, because of the reduced mode
overlap.

Figure 8: Schematic of butt-coupling between the optical fiber and our strip loaded waveguide,
along the z-axis. For maximum coupling efficiency, the optical mode between the fiber and
waveguide have to match. For a TE0 mode, this mode matching mainly depends on the ratio
between the thickness of the optical fiber emitting layer do and the waveguide core dc.
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2.4.2 Fabry-Pérot Interference

Coupling light from an optical fiber to the waveguide results in the formation of a Fabry-
Pérot etalon, as shown in Figure 8. Depending on the separation between the optical fiber
and the waveguide (L), successive reflections will interfere constructively or destructively. This
can change the total transmission with sub-micron changes in the separation. If one tries to
determine the best working waveguide from an array of samples, then this change in total
transmission can become a problem. Because, if the gain in transmission between different
waveguides is smaller than the effect of Fabry-Pérot interference, then no valid conclusion can
be made. Since the change in intensity could also be attributed to the aforementioned ef-
fect. The impact of Fabry-Pérot interference can be reduced by including an index matching
fluid [35]. However, this reduces the freedom of the optical fiber position, since the fluid will
act as weak adhesive between the optical fiber and waveguide. By moving the optical fiber
this connection is broken and will cause residue to be left behind on the fiber tip and waveg-
uide facet, which in turn can influence the coupling efficiency and reduce the total transmission.

The total transmission for a parallel-plane Fabry-Pérot etalon is given by,

T =
(1−R1)(1−R2)

1− 2
√
R1R2 cos(ϕ) +R1R2

(17)

where R1 and R2 are the reflectance of the two surfaces and ϕ is the phase difference between
each successive transmitted pair [19]. The difference in maximum and minimum transmission
can be calculated by taking the absolute difference of equation (17) for the maximum and
minimum value of the cosine term,

∆T =

∣∣∣∣ 4(1−R1)(1−R2)

(1 +R1R2)2 − 4
√
R1R2

∣∣∣∣ . (18)

In our case the optical fiber is assumed to be made of fused silica with a reflectance of 3.3%
and the SiC waveguide has a reflectance of around 19%, which results in a total transmission
difference of ∆T ≈ 25%, as shown in Figure 9.

Figure 9: Theoretically expected total transmission oscillations due to Fabry-Pérot interference
between the optical fiber tip and waveguide.

The frequency of the oscillations between the maximum and minimum transmission is deter-
mined by the phase difference ϕ. This phase difference depends on the length L of the etalon,
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the incident angle θ with respect to the surface normal, the vacuum wavelength λ0 and the
index of refraction n of the etalon medium in the following way,

ϕ =

(
2π

λ0

)
2nL cos(θ) (19)

which can be derived as the difference in pathlength between two successive transmission pairs
multiplied by the wavenumber. For maximum transmission to occur the cosine term in equation
(17) has to be maximized, which combined with equation (19) states that 2nL cos(θ) must be
an integer multiple of the wavelength. In our case we are able to further simplify by setting
the index of refraction n = 1 and perform the small angle approximation cos(θ) ≈ 1, because
the Fabry-Pérot interface medium consists of air and the normal incident angle is small (on the
order of a degree). It is therefore expected that in our case the spatial frequency of this Fabry-
Pérot interference is approximately 1/L = 2/λ0 = 1.54 (µm)−1, for λ0 = 1.3µm. However,
slight deviations are expected from this value due to the ‘walk-off’ effect, which is caused by
our optical fiber and waveguide not being infinite parallel-planes. Therefore, after a couple
of reflection the light will leave the etalon. Furthermore, reflections from the optical fiber
cladding will influence the interference differently, because this layer does not emit light and
has a different refractive index.
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3 Experimental Setup

In order to couple light from a optical fiber into the waveguide, a setup as described by Figure
10 is used. A laser with a wavelength of 1.3 µm is coupled into a polarization maintaining fiber
patch cable which carries the light to the setup. The fiber patch cable is then coupled to a
bare polarization maintaining optical fiber which is situated on a six-axis stage. The waveguide
is attached to a holder, which stabilizes the waveguide position and can be used as a future
platform to permanently attach the optical fiber to the waveguide. With the assistance of
a long working distance objective camera, which is positioned at the side of the sample, the
optical fiber is brought to around ten micrometers of the waveguide by the six-axis stage. The
transmitted light is collected by an aspheric lens. The collimated light is then directed to a
beamsplitter (BS), which directs the light to a photodiode (PD), with a diaphragm in front to
block unwanted light, and a CMOS camera. The camera allows us to look at the signal at the
end-facet and therefore compare the experimental results to the theoretical field distribution
of the waveguide. In addition it is used in combination with the PD to verify the transmission
results.

Figure 10: Schematic top view of the experimental setup. Light from a laser is coupled into
an optical fiber, which is aligned to the waveguide by a six-axis stage. The transmitted light
is collimated and directed to a beamsplitter (BS) which directs the light to a photodiode and
CMOS camera. The position of the collimator, BS and camera is changed using a manual
micrometer stage in order to focus the transmitted signal.

The six-axis stage allows for sub-micrometer movement in the translational x,y and z-directions
and angular rotations around each axis labeled as yaw for the y-axis, pitch for the z-axis and
roll for the x-axis. The six-axis stage is driven by a set of stepper motor actuators, which are
able to be digitally controlled allowing for higher precision and repeatability of measurements.
A limitation that has to be taken into account, is that the six-axis stage is only able to be
positioned in steps of 1 µm in the translational directions. Measurements can be taken while
the stage is moving, however this is only possible for one direction. Thus, if we scan over two
or more dimensions then one will have sub-micrometer resolution, whereas the others will have
micrometer resolution. Since the waveguide structures are on the order of a few micrometers,
the resolution of the six-axis stage is starting to become a limiting factor for optimal coupling.
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3.1 Waveguide structure

The original sample is a square monolithic 4H-SiC wafer piece of around 1 by 1 cm, with multi-
ple loaded strips in the shape of serpentine bends, as shown in Figure 11(a). These bends have
four different radii, resulting in length variations of: 0, 1, 2 and 2.5 mm (in addition to a base
length of 17.665 mm between the last marker midpoints). The motivation for these different
lengths was to more easily determine the losses in the waveguide, by comparing the optical
transmission intensity for the different length variations. In addition each bend consisted of
seven individual loaded strips with different widths, ranging from 6 to 9 µm with 0.5 µm in-
terval as shown in Figure 11(b). This was done to ensure that in at least one case there would
be waveguiding, as there was some uncertainty from previous simulations which width would
properly support a zeroth order mode at a wavelength of 1.3 µm. Lastly, the core and cladding
layer have a thickness of 4 and 2 µm, respectively.

4H-SiC has a base refractive index of n = 2.517 for TE polarization at a wavelength of 1.3
µm [36]. In order to provide a contrast in the index of refraction between the different layers,
the substrate and cladding layer are heavily n- and p-type doped respectively. The doping
concentrations in question are: 5 · 1018, 5 · 1014 and 2 · 1019 per cubic centimeter for the
respective substrate, core and cladding layers. This results in the refractive indices of each
layer: nsub = 2.5668, ncore = 2.5703 and nclad = 2.5613, as calculated from the change in real
refractive index given by equation 9.

(a) (b)

Figure 11: Structure of monolithic 4H-SiC strip-loaded waveguide. a) Illustration of original
sample with serpentine bends of different lengths, where the green square is around 1 by 1
cm b) Scanning electron microscope overview of an array of loaded strip, taken at 40 degrees
viewing angle.



3 EXPERIMENTAL SETUP 19

3.2 Alignment Protocol

Figure 12: Image taken with camera 1
of the optical fiber (on the left) and the
waveguide (on the right) at the in-facet.
The total width of the optical fiber is
around 130 µm, whereas the emitting
layer is only around 9 µm, which makes it
difficult to align the optical fiber by eye.

To roughly couple light from the bare optical fiber
into the waveguide the following steps are taken.
First, the optical fiber is brought to around ten mi-
crometers of the waveguide with the help of a long
working distance objective NIR camera located at
the side of the sample. Secondly, the position of
the collimator, BS and camera is changed using a
manual micrometer stage, such that the end facet is
brought into focus, as can be seen in Figure 13. Once
the end facet is in focus, the optical fiber is moved
up along the z-axis such that the light shines over
the surface and creates a diffraction pattern. A de-
piction of this effect is provided in Figure 23 in the
appendix section B. When the diffraction pattern
becomes visible the direction of travel of the opti-
cal fiber is slowly reversed, such that higher order
diffraction modes vanish. At the moment the final
diffraction peak disappears a small optical aberra-
tion above the waveguide surface is visible on the
camera. This is the transmitted signal, but due to
chromatic aberration between IR and optical wave-
lengths the focus of the transmission signal is not the
same as the waveguide end-facet. Therefore the col-
limator, beamsplitter and camera are realigned with
the manual micrometer stage to bring the transmis-
sion spot into focus.

Figure 13: Image taken from the end-facet of the waveguide with camera 2, illuminated using
a high intensity fiber optic LED. The array of loaded strips are visible as small rectangles on
top of the surface, i.e. at the black to gray interface in the image.

To maximise the coupling efficiency, the translational and angular mismatch between the op-
tical fiber and the waveguide has to be minimised. In order accomplish this we developed a
protocol, which should be able to determine the angular mismatch on the order of minutes. In
Figure 14 the operating mechanism of the protocol is shown. If there exists an angular
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Figure 14: Schematic of the angular misalign-
ment of the optical fiber with respect to the
waveguide. Movement of the optical fiber along
the optical x-axis changes the coupling location
in the y-axis, depending on the angle α.

mismatch (α) along the yaw-axis, then by
moving the optical fiber along the optical-axis
the location of the optical coupling along the
y-axis also changes. For small angles the ratio
of change in the coupling location along the y-
axis (∆y) and the optical-axis (∆x) is equal to
the mismatch angle α. Thus, by keeping track
of an easily distinguishable point in the signal
(for example the point of maximum transmis-
sion), one can plot ∆y versus ∆x and perform
a linear fit to determine α. Then by adding or
subtracting α to the yaw-axis, depending on
the chosen basis, the optical fiber should be
perpendicularly aligned to the sample. How-
ever, in practice this might prove to be an
iterative process, because of non-linearity at
larger angles (tan(α) ̸= α) and errors/uncertainty during measurement. The process is identi-
cally for the pitch-axis, where the displacement along the z-axis is used.

Finally, for the best optical coupling between the optical fiber and waveguide the separation
along the optical axis between the two components has to be as small as possible. With the
camera on the side of the waveguide we are able to achieve a separation on the order of ten
micrometers. This is due to the fact that the waveguide and optical fiber cannot be in focus
at the same time and due to the resolution of the camera. In order to reduce the separation
between the optical fiber and the waveguide, the Gaussian beam characteristics of the light
leaving the optical fiber is utilized. Namely the optical intensity at a distance x away from the
optical fiber tip is given by [37],

I =
2P

πw2(x)
= I0

x2
R

x2
R + (x− x0)2

(20)

where P is the total power of the light coming out of the optical fiber and w(x) is the radius
of the Gaussian beam waist. Then by using the definition of the Rayleigh length xR, the
final expression on the right is determined. Therefore by retracting the optical fiber along the
optical axis, as described in the previous paragraph, the intensity measured by the PD should
follow equation 20. By performing a best fit the distance between the optical fiber and the
waveguide, in terms of the six-axis stage settings, can be determined from the parameter x0.
Care should be taken with regards to Fabry-Pérot interference when performing alignment by
moving the optical fiber along the optical axis. As discussed in section 2.4.2, the optical fiber
and waveguide form a Fabry-Pérot etalon which influences the transmission. The period of
the oscillations in total transmission is less than 1 µm, while the six-axis stage can only be
positioned in 1 µm intervals. In practise we can measure the transmission during the motion
from one position to another, which allows for sub-micrometer resolution. However, in the end
only 1 µm changes in position can be made. Therefore, the point of maximum transmission
cannot be determined exactly. After the alignment protocols have been completed, the coupling
of the optical modes between the optical fiber and waveguide should be at a maximum, resulting
in the highest transmission intensity at the end-facet of the waveguide.
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4 Results and Discussion

The following sections we will present the transmission signal of our waveguide and compare it
to the theoretical predictions. Based on the results, it will be argued whether the monolithic
SiC strip-loaded waveguide is a suitable platform for future EIT measurements or another
design has to be considered. Secondly, the results of the optical alignment protocols will be
investigated and we will discuss if they are applicable in future research. Finally, in order
to determine the maximum allowed length for a doped waveguide, such that sufficient light is
transmitted to perform EIT measurements, the contribution of free-carrier absorption to optical
attenuation will be discussed.

4.1 Serpentine Bends and Radiation Losses

At the start of the measurements we wanted to couple light into the waveguide and look at the
transmission signal and compare it to the theoretical predictions, to ensure that the waveguide
is working properly. However, in our original sample with serpentine style bends there was
no detectable transmission signal when looking at the camera image of the end-facet of the
waveguide. In addition, the data recorded by the photodiode consisted mainly out of scattering
and edge diffraction from the loaded strips. To exclude any problems regarding optical fiber
coupling, the optical fiber was briefly replaced by a lens which focused the light on the in-facet,
as was done in a previous experiment [11]. However, this did not result in any noticeable change
in the transmission measured at the out-facet and we therefore immediately switched back to
the optical fiber setup. Upon further investigation we noticed that there was light scattering
out of the end-facet but not at the location of the loaded strips. Instead the scattered light
was located at the opposite side, at approximately the same height as the loaded strips in the
in-facet, which signified the possibility that the light might not have been properly confined
and guided through the bends. It is generally known that losses due to radiation might be
significant in strip-loaded waveguides with bends due to their relatively low horizontal contrast
in index of refraction [14]. Although it was expected that the bends had sufficiently large radii
for proper waveguiding, these results prompted for a deeper investigation.

First of all, by using equation (12) from section 2.4.4, the distance from the center of the waveg-
uide strip where the guided wave couples to radiative modes was determined. According to the
effective refractive index method, at a wavelength of 1.3 µm the effective index of refraction
is nI = 2.5685 under the loaded strip and nII = 2.5679 in the regions without a strip. Lead-
ing to the respective propagation constants βI = 12.4140 (µm)−1 and βII = 12.4114 (µm)−1.
Combined with the approximate bend radius of around 2 mm this resulted in the distance
Xr ≈ 0.4 µm, which is an order of magnitude smaller than the width of the loaded strips.
Therefore, even the light guided in the confined layer will leak away as radiation. This results
in enormous losses (on the order of a couple of hundred dB/cm). Technically equation (12)
only holds if Xr is large enough to not be in the confining region, however this does not affect
the conclusion. Because, if Xr is within the confining layer then βI = βII, resulting in Xr = 0
for any radius. Thus, also in this case the light would not be guided through the bends.
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Figure 15: Electric-field and intensity distribu-
tion along the y-axis of the waveguide in a bend
of radius 2000 µm according to the SiIO online
solver BendS [38]. The gray shaded area signi-
fies the region under the loaded strip and pos-
itive y-axis values denote the outside region of
the bend. The plot is generated by adding the
electric-fields throughout the bend. This causes
the exponential increase for y > 0, because at
every step more light escapes as radiation.

This result is also visualised by using a mode
solver for waveguide bends. In Figure 15
the electric-field and intensity distribution are
plotted for an optical mode traveling through
a bend of radius 2 mm. To have a valid so-
lution the index of refraction in the regions
without a loaded strip has been slightly low-
ered slightly from 2.5679 to 2.5660, because
otherwise the SiIO BendS solver would return
“No guided modes found” [38]. In Figure 15
the coupling to the radiative modes is visible
via the increasing in amplitude oscillations of
the electric-field outside the loaded-strip re-
gion. This results in an exponential increase
of the intensity outside the confining region.
In the case of Figure 15 the calculated losses
are on the order of 54 dB/mm, but in reality
this value is even higher; because the contrast
in index of refraction between the confining
and surrounding layer is even lower than in
the simulation. Therefore we can conclude
that in our case almost all of the light coupled
inside the waveguide leaks away at the bends
and thus explains why there was no observed
transmission at the end-facet of the waveguide. To remedy this problem, the waveguide sample
was diced along the center, creating two straight pieces of waveguides of length roughly 4 and
6 mm as seen in Figure16. After dicing, the facets of both pieces where polished to optical
quality. With these new samples optical waveguide transmission at the end-facet was observed
almost instantaneously and all following results will be from these diced waveguides.

Figure 16: Illustration of the dicing of the waveguide, where the waveguide is split into two
parts along the center.
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4.2 Observation of Multi-modes and Weak Confinement

After the removal of the bends via dicing a transmission signal was quickly observed. However,
the observed signal did not match our theoretical predictions. Namely, optical guided modes
were also observed in between the loaded strips, which according to the effective refractive
index method should not be possible. In addition, the maximum intensity of the transmitted
light in between the loaded strips is around double than that of the intensity under the loaded
strips. If only a photodiode was used to detect the transmitted signal, then there would exists
a serious possibility of wrongly assigning these higher transmissions to waveguiding under the
loaded strip, as this would be expected from theory. Therefore, the inclusion of a camera image
of the end-facet of the waveguide is paramount, because it clearly shows where the light is
transmitted in the waveguide. In Figure 17 the transmission at the end-facet of the waveguide,
when coupling in light at different positions, as seen from the camera, is shown. To properly
see the results, the intensity of Figure 17(a) and Figure 17(b) have been amplified by around a
factor of ten. Therefore, the results should not be taken as exact but more as an indication of
how the optical modes look like.

Figure 17: Aligned transmission images at the end-facet of the waveguide as captured by camera
2. Dashed white lines are drawn over the image, to indicate the approximate location of the
waveguide structures. (a) Optical mode under a loaded strip. (b) Optical mode under loaded
strip neighbouring the strip from (a). (c) Wide optical mode visible in between two loaded
strips. Intensity of images (a) and (b) are amplified by around a factor of ten with respect to
(c), for clearer graphical comparison.

In Figure 17(a) the light is coupled in, under a loaded strip and has a shape similar as predicted
in Figure 7. A small difference is that in reality we measure the intensity while in the theory
the electric-field is given, but this only impacts the size and not the shape of the mode. A more
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important observation is that there exists leakage, with regular structure, into the neighbouring
regions and the light is not completely confided under the loaded strip. The same leakage also
occurs for a neighbouring strip as depicted in Figure 17(b), therefore it is not related to a spe-
cific defect for one of the strips. Finally, in Figure 17(c) the unexpected mode in between the
waveguides can be seen. This mode is relatively well contained and does not enter the region
under the loaded strips, as visible from the dark bands, which coincide with the transmission
in Figure 17(b) and 17(c).

Due to the discrepancies between the theoretical models and experimental observations, the
EigenMode Expansion (EME) solver of Ansys Lumerical was used in order to better understand
the observations. The EME method solves Maxwell’s equation in the frequency domain and is
designed for solving the optical propagation over long distances, because of better scaling than
Finite-Difference Time-Domain methods. The method of EME splits the propagation direction
into several layers. At the boundary between two layers a mode solution is found using the
Finite Difference Eigenmode (FDE) solver. By stitching all the solutions together, along the
propagation direction, the propagation of the light is simulated [39]. In Figure 18 the simulated
logarithmic intensity of an optical mode propagating through a strip-loaded waveguide with
our sample characteristics is shown.

When the optical fiber is perfectly aligned in the center of the loaded strip, as shown in Figure
18(a), most of the light remains confined under the strip. However, there is also a significant
amount of divergence visible, which causes some of the light to exists in between the region
of loaded strips. This result is most similar to the experimental observation shown in Figure
17(a) and Figure 17(b). In case of a slight misalignment, where the coupling does not occur in
the center of the loaded strip, major divergences as depicted in Figure 18(b) occur. This result
signifies the importance of aligning the optical fiber as small deviations can significantly reduce
the performance of waveguiding. Finally, in Figure 18(c), light is coupled in between the waveg-
uides. In these cases, the light remains largely in confined to this region and does not enter
under the loaded strip, as signified by the blue color. This solution represents the observations
in Figure 17(c), where the two dark bands coincide with the location of the loaded strips. Yet,
there is still one major discrepancy between the experimental results and simulation. Namely,
that the predicted intensity, under the loaded strip, is ten times higher than observed. So far,
a complete explanation for this still eludes us. But one possible explanation could be that the
lower observed intensity is due to the influence of coupling losses. The simulation does not take
into account any coupling mechanism or losses attributed to them. Whereas in the experiment
the optical fiber is most likely not perfectly aligned and does not couple 100% of the intensity
in the waveguide.

Based on these results it becomes clear that the Lumerical EME solver is better at explaining
the experimental observations than our solver or WMMS. This is most likely due to the fact
that the contrast in refractive indices is too small, such that the assumptions made in the
effective refractive index method no longer hold. Another important remark to make is that
the boundary conditions of a waveguide simulation are extremely important. Namely, without
periodic boundary conditions, Lumerical would not predict the existence of modes outside the
strip region. However, when period boundary conditions are selected, or in this case three
loaded strips are simulated, then these modes would be predicted. Therefore, the interaction
between two loaded strips plays an important role in the experimental observations.
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Thus, we conclude that monolithic strip-loaded waveguides with dopants are not a suitable
option for confining light over a distance of a few millimeters, as required for enhanced EIT
control. The contrast in refractive index from doping is not significant enough to contain the
light under the loaded strip in the horizontal direction, resulting in leakage to the surrounding
regions. In addition, the inclusion of bends are a requirement for complex photonic integrated
circuits [40], which we have also shown to be unfeasible with our strip-loaded waveguide.

(a) Input source at y = 0 µm (b) Input source at y = 3 µm

(c) Input source at y = 19 µm

Figure 18: Logarithmic electric-field squared |E|2, as the mode propagates in our strip-loaded
waveguide, for different input source locations according to Ansys-Lumerical EME solver. (a)
Coupling light exactly in the center of the strip causes the majority of the light to be guided.
(b) Slight misalignments in the coupling location, on the order of a few micrometers, can cause
major divergences and leakages into other regions. (c) Coupling in between the loaded strips
causes the light to be confined and propagate in the region in between two loaded strips.
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4.3 Model to Determine Losses due to Free-Carrier Absorption

The inclusion of doping in the cladding and substrate layers lowers the real part of refractive
index, allowing for optical guiding in the core layer of our monolithic SiC waveguide. However,
it also induces significant free-carrier absorption as discussed in section 2.3.3, due to the high
doping concentrations. Following equation (11) the attenuation constant can be determined
for each layer depending on the doping concentration and doping type (positive or negative).
In Table 2, the attenuation coefficient is given for a p-i-n and n-i-n (cladding-core-substrate)
doping structure, with the concentrations as discussed before in section 3.1. It becomes clear
that the highest attenuation occurs at the layers with the highest doping concentration. Fur-
thermore, in this case n-type doping results in a slightly higher attenuation than p-type doping,
even though the mobility of of holes with respect to electrons is lower in 4H-SiC [27]. This is
due to the fact that the effective mass of holes is smaller than that of electrons, which according
to equation (11) results in a lower attenuation coefficient.

Table 2: Free-carrier absorption in different layers of the strip-loaded 4H-SiC waveguide, at an
excitation wavelength of 1.3 µm.

Waveguide Layer αfc (cm
−1)

Cladding p/n 45.6 / 56.6

Core 0.001

Substrate 8.66

Even though the attenuation per layer has been determined, the question still remains how
the system as a whole will act. In experiments the light is simply coupled into the waveguide
and the total transmission at the end-facet of the waveguide is being detected. Therefore a
system where one converts the attenuation per layer to a type of total loss had to be created.
The relatively simple method developed involved multiplying the attenuation constant in each
layer by the relative optical intensity in said layer. This method relies on the assumption that
regions of high optical intensity will have more interactions with the free-carriers than regions
with low optical intensity and will therefore have a higher impact on the system as a whole.
By summing over all different layers, an equation for the total loss associated with free-carrier
absorption was constructed,

Loss (dB/cm) =
10

ln(10)

all layers∑
i

αi · Ireli (21)

where αi and Ireli are the respective attenuation constant and the relative optical intensity in a
specific layer. Finally, the sum is multiplied by the constant 10/ ln(10) ≈ 4.343 to convert the
attenuation to decibels. To check the validity of this equation, it was compared to the PlasS
solver from SiIO [41]. This solver determines the losses in a waveguide according to the real
and imaginary refractive index. However, PlasS is only able to do this in one dimension. It can
therefore not be used for our strip-loaded waveguide. Instead, the losses in a slab waveguide
were calculated using equation (21) with the relative intensities from our solver and WMMS.
These results are then compared to the results from the PlasS solver and shown in Table 4 in
the appendix C.1 The results that use equation (21) are nearly identical to the result from the
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PlasS solver. Therefore, we conclude that this equation is a valid method to calculate the losses
in a slab waveguide. Assuming that this method can also be extended to other waveguides that
are constant along the optical-axis, equation (21) is used to calculate the free-carrier absorption
in our strip-loaded waveguide. The attenuation coefficients per layer are known from Table 2
and the relative optical intensity per layer are in Table 1 from section 2.2.4. By inserting these
values in equation (21), the losses due to free-carriers in a strip-loaded waveguide are shown in
Table 3.

Table 3: Free-carrier absorption losses in a (p-i-n / n-i-n) strip-loaded waveguide for the TE00

mode, following from equation (21).

Method Loss (dB/cm) p-i-n Loss (dB/cm) n-i-n

Our solver 8.7 9.3

EIMS/WMMS 11.0 / 10.2 12.2 / 10.9

For both cases, the expected free-carrier losses are on the order of 10 dB/cm. These losses are
large compared to other photonic based circuits using SiC, which can have losses on the order
of 0.15 dB/cm [42]. In the case of photonic circuits using silicon nitride, the losses can be as low
as 1 dB/m [43]. The reduction in intensity influences the EIT signal, as shown prior in Figure
3, preventing EIT to reach full transparency. Thus, our waveguide should not be longer than a
few millimeters (1 to 3 mm). Our solver returns slightly lower losses than EIMS and WMMS,
due to underestimating the relative intensity in the substrate layer by around 3%. However,
the order of magnitude is still around 10 dB/cm. This is also the same order of magnitude
given by a simulation using Ansys Lumerical and agrees with the range of losses observed
experimentally [11]. Therefore equation (21) is a valid way to determine the magnitude of
free-carrier absorption.

4.4 Future Waveguide Design

For future endeavours a new waveguide type, with a higher horizontal confinement has to be
developed. The waveguide can still be made from monolithic SiC, to minimise stresses in the
crystal to limit the effects of inhomogeneous broadening. Therefore, doping will still be the
method of creating a contrast in the index of refraction of the different substrate, core and
cladding layers. To improve the horizontal confinement, the strip-loaded waveguide can be
replaced by a rib waveguide, as depicted in Figure 19(a). The core region originally under the
cladding layer (I) is raised and the core layer as a whole is made thinner, such that no optical
modes are allowed in the core layer of the regions beside the raised edge (II). Due to the raised
core layer, the electric-field is located higher in the core layer and the air boundary is used
to confine the optical mode in the horizontal direction. This simple modification allows for a
significantly higher horizontal confinement, because of to the high contrast in refractive index
between the core layer and air. In addition, a small cladding layer can be grown on top of the
raised core region, similarly to the strip-loaded waveguide, in order to facilitate a p-i-n style
junction for future applications. Furthermore, the losses due to free-carriers are almost identical
to that of the strip-loaded waveguide. This is because the horizontal confinement in the core
layer does not contribute as much as the cladding layers, due to the doping concentration in
the core being four orders of magnitude lower. On the other hand, the increased height of
the rib structure (compared to the loaded strip) will increase scattering losses, due to surface
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imperfections. However, since free-carrier losses are already around 10 dB/cm, the addition of
scattering losses on the order of 1 to 2 dB/cm are not a big factor.

(a) (b)

Figure 19: Future rib waveguide design. (a) Schematic of the rib waveguide structure, where
in region (I) the core layer has been raised with respect to the strip-loaded waveguide. (b)
Intensity distribution |E|2 of the rib waveguide.

4.5 Optical Fiber Alignment to Waveguide

Although the strip-loaded waveguide is not a suitable platform for enhanced EIT control,
due to the low confinement of the optical modes, there still is a visible transmission signal
under various loaded strips. This transmission signal can still be used to maximise the mode
overlap between the optical fiber and the waveguide. Alignment along the transverse y- and
z-axis is relatively simple. Once a rough alignment has been achieved, such that there is some
transmission underneath the strip of the waveguide, the optical fiber is scanned along the y-
and z-axis until a point of maximum transmission has been found. The angular alignment
of the yaw and pitch axis are more difficult to perform, because changing the yaw and pitch
angles also changes the transverse alignment. A brute force method would be to simply scan
over all possible yaw, pitch, y and z directions, but this would take several hours. Instead, the
angular alignment method as described in section 3.2, where one simply retracts the optical
fiber along the x-axis and measures the change in maximum intensity in the y- and z-axis, is
tested. Finally, a similar method of retracting the optical fiber along the x-axis, will be used
to determine the separation between the optical fiber and waveguide. To maximise the mode
overlap and therefore the transmission, the separation between the optical fiber and waveguide
has to be minimal. However, care should be taken as to not crash the optical fiber tip into the
waveguide sample, as it could damage the optical fiber and/or the waveguide. Based on the
results, these methods can be further optimized and be applied to future research, for example
the proposed rib waveguide.

4.5.1 Angular Alignment Method

To start off, the optical fiber was brought in alignment along the y- and z-axis, after which the
angular alignment method was used to reduce the misalignment along the pitch-axis. (It must
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be said that for the following data the sample was mounted differently than shown in Figure
10, in a way that the yaw axis is connected to the z direction and not the pitch. However, for
sake of simplicity this change will be omitted and we will keep the basis as defined in section
3). In Figure 20(a) the result after a single iteration is shown.
From this figure we see that the initial pitch offset is around 2.8◦. For optimal coupling we

(a) Angular pitch offset of 2.8118◦ (b) Angular pitch offset of −1.4202◦

(c) Angular pitch offset of 0.1472◦ (d) Change in pitch offset angle per iteration

Figure 20: Three iterations of the angular alignment protocol for the pitch axis, as described
in section 3.2, where the slope value is the offset angle. Each data point is the maximum
transmission of a z,x scan, as measured from the photodiode. The raw data of one such
measurement is shown in Figure 25 in the appendix section C.3. The oscillations between
successive data points are caused by the six-axis stage, because the motion between the up-
down and/or left-right direction differ by around 1 µm. To show the reduction in the slope
between iterations, all the y-axis length are constant at 8 µm. (a) Original starting offset, where
the method has not yet been applied. (b) First application of the angular alignment method,
which reduces the absolute offset by around 1.4 degrees. (c) Second iteration, resulting in a
nearly perfect alignment. (d) Change of the pitch offset angle over six iterations.

wish to bring this down to 0◦. By subtracting this value from the initial pitch value, the results
in Figure 20(b) is obtained. This time the misalignment is in the opposite direction, but the
absolute value of the misalignment has reduced. By adding the pitch offset value to the pitch
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and performing one more iteration of the alignment method, we got the result in Figure 20(c).
As can be seen we have successfully reduced the pitch misalignment to almost 0◦. However,
further improvements cannot be made due to the uncertainty of the results. When performing
several more iterations, the pitch offset keeps changing on the order of ±0.5◦. In this case each
iteration took around 3 minutes, therefore it took less than 10 minutes to align the pitch axis,
whereas a brute force method can take up to an hour.

Unfortunately, the angular alignment method did not work for the in-plane (yaw) axis. At
every point in the iteration the offset angle would remain constant, even when moving the yaw
along its complete range of motion of 6◦. This problem could arise from the weak confinement
in the y-axis of the waveguide, but at this moment this is not certain. Future investigations are
required to better understand this problem. However, the angular alignment method did work
for the combination of the pitch- and z-axis, based on the data in Figure 20 and observation
by eye. Therefore, the angular alignment method has some validity behind it.

4.5.2 Optical-axis Alignment and Observed Fabry-Pérot Interference

After the optical fiber was as good as possible aligned, in the transverse and angular direc-
tions, only the longitudinal alignment was left to be optimised. To achieve the highest mode
overlap and thus maximum coupling, the optical fiber has to be brought as close as possible
to the waveguide facet. With the help of the camera at the side of the waveguide, this can
be done for a separation of around 10 µm. However, since the optical fiber and waveguide
cannot be in focus at the same time, it is impossible to improve this further with just the
camera image. According to the method laid out in section 3.2, the optical fiber was retracted
along the x-axis, which caused the transmission to oscillate and decrease as can be seen in
Figure 21. In this figure the transmission is plotted versus the relative optical-axis separation,
where the zero point of the relative separation is chosen to be the starting point of the mea-
surement as the exact separation can not be known. For the envelope of the data a best fit
is made according to equation (20), which gives a Rayleigh length of xR = (19.7 ± 0.3) µm
and absolute zero-point of x0 = (−2.3 ± 0.4) µm. This absolute zero-point basically states
that the optical fiber could have been brought 2.3 µm closer to the waveguide. Furthermore,
the Raylegh length tells something about how light diverges as it is emitted from the optical
fiber. From the divergence angle the numerical aperture (NA) can be determined and compared
to manufacturer specification. In the par-axial case, the half divergence angle (θ) is given by [44]

θ = lim
x→∞

w(x)

x
=

w0

xR

=

√
λ0

πnxR

. (22)

The NA of the optical fiber is then NA = n sin(θ) ≈ n θ. In our case, the measured NA is
determined to be 0.145, whereas the expected NA from the manufacturer is 0.12. These values
are nearly identical and the small increase in NA is most likely due to the fact that we measure
the signal through the interaction with a waveguide and not directly from the optical fiber.
In the case that the NA was significantly different, like an order of magnitude, then it might
indicate non-perfect cleaving, damage and/or dust on the optical fiber tip.

The second observation from Figure 21 are oscillations in transmission intensity as the sep-
aration between the optical fiber and waveguide changes. This is indicative of Fabry-Pérot
interference as the space between the optical fiber and waveguide mimics that of an etalon.
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Figure 21: The effect of Fabry-Pérot interference when changing the separation along the
optical axis between the waveguide and optical fiber, with its Fourier transform (top right).
The fitted Lorentzian function, given by equation (20), describes the envelope of the data. The
Rayleigh length determined from the fit is xR = 19.7 µm and the absolute zero-point is located
at x0 = −2.3 µm.

However, the exact frequency and transmission difference have to be determined, to exclude
the possibility that the oscillations are simply vibrations from the six-axis stage. The frequency
of the oscillations are determined by first removing the envelope, via dividing the data by the
previous best fit, followed by a Fourier transform. The Fourier spectrum is plotted in the top
right of Figure 21 and shows a maximum at 1.73 (µm)−1, with a standard deviation of around
0.2 (µm)−1. From theory we expected the oscillation frequency to be 1.54 (µm)−1, which is not
the exact value measured but it is within one standard deviation. Furthermore, the expected
change in transmission intensity was determined to be around 25%, which is significantly higher
than the measured difference of around (15± 1)% for separations smaller than 5 µm. However,
this can be explained by the fact that our setup is not an ideal etalon. The optical fiber core
only has a diameter of less than (9.3± 0.5) µm [34] and the surrounding layers are stripped to
around 60 µm (or sometimes 125 µm). Therefore, the amount of reflections are limited due to
walk-off, especially if the optical fiber is not cleaved completely straight. Furthermore, at larger
separations not all of the light is efficiently coupled to the waveguide, because the divergence
is larger than the waveguide structures and optical modes. We should therefore model this as
light passing through an aperture. For a circular aperture with radius R, the intensity passing
through the aperture is given by [44],

I(x) ∝
∫ R

0

re−2r2/w2(x)dr ∝ (1− e−2R2/w2(x)). (23)

This effect becomes important to consider when the beam radius at location x becomes larger
than the aperture radius w(x) > R. As an example, if R = 3µm (which is comparable to
half the width of a loaded strip), then w(x) > R occurs when the separation (x) is larger than
6.5 µm. This is a small distance, compared to the total distance of 30 µm used in Figure 21.
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Therefore, in the future, we should investigate this effect further and look at how it influences
the fitting of equation (20) and the calculation of the Rayleigh length.

However, the measured 15% change in transmission over a distance smaller than 1 µm is still
significant. If one were to measure different types of waveguides, in order to determine which
type would yield the highest transmission, if the difference in transmission is less than 15%,
then no valid conclusion can be made. This is because it would be impossible to distinguish
between actual data or the effect of Fabry-Pérot interference.
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5 Conclusion

The application of EIT in SiC is a serious candidate for use in quantum memory for quantum re-
peaters, because of long coherence times and emission close to telecom wavelengths. In addition,
the mature SiC manufacturing industry allows for the construction of photonic circuits, which
allow for greater optical control. However, maintaining sufficient EIT in bulk materials remains
difficult due to inhomogeneous broadening due to stresses and inhomogeneities. Previous exper-
iments regarding monolithic SiC slab waveguides showed promise in the enhanced confinement
of light. This thesis is a continuation, as monolithic 4H-SiC strip-loaded were analysed as future
platforms for enhanced EIT control, because of their ability to confine light in two dimensions
instead of one. However, as shown, the strip-loaded waveguides lacked horizontal confinement
due to the low contrast in effective refractive index. For the same reason, bends are not sup-
ported for this type of waveguide, which severely limits the application of complex photonic
circuits. Furthermore, free-carrier absorption plays a significant role in the losses of waveguides
where the cladding relies on adding dopants. These losses have been theoretically determined
to be around 10 dB/cm and agree with previous experimental results. This means that the use
of these waveguides is limited to chip based applications. Therefore, we have concluded that
monolithic strip-loaded waveguides are not a suitable platform for future enhanced EIT control.

Finally, several optical fiber alignment methods were discussed. The alignment of optical fibers
are an important subject, because it allows for future attachment of the optical fiber to the
waveguide, such that the system does not need to be aligned in a cryostat. It was shown that
the pitch offset can be reduced to within 1◦, but not in case of the yaw-axis. This is most likely
due to the low confinement in the y-axis of the waveguide, but more investigation has to be
done. We were also able to determine the separation between the optical fiber and waveguide
to a few micrometers, which allows for improved coupling due to improved mode overlap. In
addition, the Fabry-Pérot interference was observed. This interference resulted in oscillations in
the transmission observed, with an amplitude of around (15±1)%, when the separation between
the optical fiber waveguide was less than 5 µm. The period of these oscillations are smaller than
the final position step-size of the six-axis stage. We have circumvent this problem by measuring
while the six-axis stage was moving. However, it does mean that we have to be careful when
experimenting on multiple types of waveguides. As an example, for multiple waveguides with
different widths it will be difficult to know if changes in the observed transmission are due to
Fabry-Pérot interference or due to the different geometries of the waveguides.

5.1 Summary of Main Contributions and Future Outlook

The main contributions provided in this thesis are the discovery that doped monolithic strip-
loaded waveguides are not a suitable platform for future EIT research, due to their low hori-
zontal confinement. Furthermore, the waveguide solver developed in our group has been im-
proved from being able to solve one dimensional systems into two dimensions, as required for
a strip-loaded waveguide. With this addition, losses due to free-carrier absorption have been
theoretically determined to be around 10 dB/cm. This value has been found to be similar for
the slab, strip-loaded and rib waveguides. Finally, several methods have been developed to aid
in the alignment of an optical fiber for future attachment to the waveguide.
In the near future attempts will be made to attach an optical fiber to the waveguide, with the
help of the developed alignment methods. Once the optical fiber is attached to the waveguide,
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it should be put in a bath of liquid nitrogen. Such that the rough bond strength and ther-
mal displacement between the optical fiber and waveguide can be determined. Furthermore,
the rib waveguide proposed for future research is in development and should improve many
of the problems associated with the low confinement in the strip-loaded waveguide. If these
rib waveguides prove to be successful in confining the light in two dimension, then EIT type
measurements can be performed on the divacancies located inside the waveguide.
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Appendix

In the following sections we present some additional information about the methods and results
used in this thesis. First of all, we are going to look at the electric-field distribution, as predicted
by our solver, which is used to solve equation (10). Secondly, an image from the diffraction
pattern, used to roughly align the optical fiber to the sample, as captured from camera 2 will be
shown. Thirdly, we will look at some addition results, which are subdivided into three sections.
At first, we compare the free-carrier losses in a slab waveguide according to three solvers. We
show that 21 is a valid equation for calculating theses losses. Afterwards, we will look at how
changing the doping concentration for the cladding and substrate layer impacts these losses.
Finally, a raw data image, which is used for the angular alignment protocol and Figure 20 is
shown and explained.

A Electric-field distribution of our solver

In Figure 22 the vertical and horizontal component of the electric-field, as predicted by our
solver, is shown. By multiplying these two solution and squaring the result one find the intensity
distribution shown in Figure 7(a) in section 2.2.4. It is important to note that y and z do
not denote any form of polarisation, as they are both TE0 modes. Instead y and z denote the
electric/intensity distribution over a geometric space.

(a) Electric-field distribution along z-axis (b) Electric-field distribution along y-axis

Figure 22: One dimensional independent vertical and horizontal TE0 solutions to the strip-
loaded waveguide electric-field distributions. By multiplying theses solutions, as given by equa-
tion (10), one finds the two dimensional electric-field distribution. By squaring this two di-
mensional distribution one find the intensity of the TE00 mode as depicted in Figure 7(a). (a)
Electric-field distribution along z-axis, also known as F(z) in equation (10). (b) Electric-field
distribution along y-axis, also known as G(y) in equation (10).
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B Experimental Setup

In Figure 23 a diffraction pattern at the waveguide end-facet is visible from camera 2. The (two)
white lobes above the waveguide surface (black to gray transition) is used for rough alignment
of the optical fiber. Namely, when these patterns disappears we know that we have crossed the
surface of the waveguide.

Figure 23: Diffraction pattern visible (white lobes) above the waveguide (black to gray transi-
tion), which is used to roughly align the optical fiber to get an initial signal. The total width
of the image is around 300 µm.

C Results

In the following section a few additional results are presented. First we will compare the free-
carrier losses for a slab waveguide as predicted by three different methods/solvers. Secondly, we
will look at how changing the doping concentration in the cladding and substrate can change
the free-carrier losses. Finally, we will show a plot of the raw data we used during for the
angular alignment method, which will explain how we got the plots in Figure 20.

C.1 Comparing different solvers free-carrier losses

In Table 4 the free-carrier losses calculated in a slab waveguide, by our solver and WMMS using
equation (21) and PlasS, is shown. This was done to check the validity of the equation, because
PlasS only works in one dimension. Therefore, there was no direct way to compare the results
for a strip-loaded waveguide. Since the losses between all methods are almost identical, it was
concluded that equation (21) can be used to calculate the free-carrier losses.

Table 4: Free carrier absorption losses in a p-i-n slab waveguide, according to three different
methods of calculation.

Method Loss (dB/cm) p-i-n Loss (dB/cm) n-i-n

Our solver + eq. (21) 11.3 10.3

WMMS + eq. (21) 11.0 10.4

PlasS 11.0 10.3
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C.2 Effect of doping concentration on losses

It was shown that our waveguide has losses on the order of 10 dB/cm, which limits the waveg-
uide to on chip applications. If for some reason the required length of this type of waveguide
has to be longer than 1 cm, then free-carrier absorption has to be reduced. According to equa-
tion (11) the attenuation constant depends linearly on the doping concentration N . However,
for doping concentrations between 1016 and 1019 cm−3 there is also a ten times reduction in
the free-carrier mobility (µ) [27][30][31]. The doping concentration has therefore a significant
impact on the amount of free-carrier absorption. In addition, it is relatively simple to influence
during manufacturing. To calculate the free-carrier losses for different doping concentrations
also includes calculating all the different EM-field distributions, because the doping concentra-
tion also affects the real refractive index. We do not consider the divergence or changes in the
beam profile as it propagates through the waveguide. In reality this does happen, but we have
shown in section 4.3 that we can simply take the static beam profile according to Figure 7(a)
and apply equation (21) to get an accurate description of the losses. The results are identical
to PlasS, which does solve for the beam divergence as it travels through the waveguide. This
simplifies the problem greatly, as we do not have to solve for the beam propagation. However,
still due to the large amount of computational power required, it was decided to only solve for
a slab waveguide and not for a strip-loaded waveguide. But, with a few more weeks of work
this method can also be extended to the strip-loaded waveguide.

In Figure 24 the losses of said slab waveguide for n- and p-type doping concentrations ranging
from (1 to 250) ·1017 cm−3 in the cladding layer and (1 to 100) ·1017 cm−3 in the substrate layer
are shown. The doping concentration for our samples are marked with a black cross. The white
regions near the axes show the combination of doping concentration where no modes exists. The
white cone area in the top-middle are combinations of doping concentration, where higher order
modes exist. We are only interested in zero-order modes and this region is therefore excluded.
We have also drawn contours of constant loss values at intervals of 2 dB/cm. We see that if the
doping concentrations in both the cladding and substrate are halved, then the amount of losses
also reduce by a factor of a half. However, it is difficult to reach values lower than 4 dB/cm
by reducing the doping concentration. Because, as we lower the doping concentrations, the
contrast in the real refractive index reduces. This results in less confinement in the core layer
and more light will be in the substrate/cladding layer, which in turn will increase the losses due
to the higher attenuation in these layers. For our applications we want to maximise the con-
finement and therefore it is not in our interest to lower the doping concentration to reduce losses.
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(a) n-type doped cladding layer

(b) p-type doped cladding layer.

Figure 24: Losses (dB/cm) due to free-carrier absorption for different doping types and concen-
trations in the substrate and cladding layers, where the black cross marks the doping levels in
our samples. The white areas near the axis have no waveguiding solutions, whereas the white
area located in the top center allows for higher order modes.
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C.3 Angular Alignment Method

In Figure 25 a 3D-plot of the raw data used for the angular alignment protocol is shown. Here
we have scanned over a range of y and x values, by first moving along the y-axis and measuring
the photodiode (PD) signal. This results in a Gaussian shape of the PD voltage as a function
of y-axis location. The maximum value of this Gaussian is determined and saved. Afterwards,
the optical fiber is retracted along the x-axis by 1 µm and the previous steps are repeated. The
red trace in Figure 25 shows the location of maximum transmission for all x values. This trace
is then plotted versus the x-axis and what results are the plots in Figure 20. The slope of this
red trace is approximately the offset angle and this is therefore how we are able to align the
optical fiber.

Figure 25: Raw photodiode (PD) signal in volts of a x, y scan, used for the angular alignment
method. Red line traces the maximum transmission for every x-axis value. This red trace is
plotted in 2D, as shown in Figure 20. The slope of this trace is approximately the offset angle
α.


