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Abstract

.

With the increasing availability and accessibility of data, it has become crucial to
be able to appropriately interpret and analyze it. In this paper, we aimed to address
this need by creating and comparing different regression models on a benchmark life
expectancy data set. The models considered for comparison were linear regression,
stepwise regression, and mixed effects models. To assess their performance and select
the most suitable model, we evaluated them using criteria such as AIC, BIC, and cross-
validation.

Upon analyzing the results, we found that the regression models and mixed effects mod-
els exhibited similar performance in terms of explanatory power, goodness of fit, and
prediction accuracy. However, based on careful consideration and several important
factors, we advocate for the preference of the mixed effects model for this benchmark
data set as it is able to handle nested or hierarchical data structures better.
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1 Introduction

In the contemporary data-driven landscape, statistical literacy and the ability to effectively
interpret and analyze data have become indispensable skills. However, a substantial number
of individuals lack a profound understanding of statistics, including the limitations of data
collection and analysis. This knowledge gap often leads to misinterpretations of data and
the propagation of misinformation. [14]

Statistical analysis, particularly regression models, is widely used to predict or explain
the values of a given outcome variable with information from explanatory variables. The
first type of regression analysis which was rigorously studied was linear regression. The
initial conceptualization of linear regression can be traced back to Francis Galton in the
late nineteenth-century England. [25]. Linear regression is one of the simplest models as we
assume a linear dependency between the outcome variable and explanatory variables, and
as such, this model is easier to fit than a model where the parameters are related non-linearly.

Linear regression models can be categorized into fixed effects models, random effects models,
and mixed models, depending on whether the coefficients are fixed, random, or a combi-
nation of both. Random effects models were introduced in the early twentieth century by
Ronald Fisher [11]. Random effects models are considered a special case of mixed models
as they assume a fixed overall mean for the observations. [8]. Linear mixed effects models
have increased in popularity in the last few decades since including random effects gives us
several benefits as it allows us to model structured data with clusters of non-independent
hierarchical observations. [12]

In multiple linear regression, the standard approach is to enter all predictor variables at
once. An alternative, hierarchical approach is to add predictors in predetermined steps.
Stepwise regression is a specific type of hierarchical regression where statistical algorithms
determine the predictors included in the model. There are three variations of stepwise re-
gression: forward selection, backward elimination, and stepwise selection. While it is not
generally recommended to use stepwise regression as it has several limitations [14], it can
be a useful technique for automatic variable selection, reducing model complexity, and ex-
ploring potential predictors. [10]

To enhance the effectiveness of regression models, evaluating their performance on bench-
mark data sets has become crucial. Benchmark data sets are standardized references that
have gained wide acceptance within the research community. They provide a consistent and
objective basis for analyzing the strengths and weaknesses of different regression models,
offering insights into their predictive capabilities.

The assessment of regression models on benchmark data sets holds significant importance
for several reasons. Firstly, it enables comparative analysis, facilitating the selection of the
most suitable model for specific applications. By evaluating different models on a com-
mon benchmark, researchers and practitioners can objectively compare their performance
and make informed decisions. Secondly, benchmark data sets enable a fair comparisons
across studies, ensuring consistency and reliability in evaluating model performance. This
promotes knowledge building and allows for advancements in the field. Moreover, the eval-
uation process uncovers the factors that influence the performance of regression models,
shedding light on the strengths and weaknesses of different modeling approaches.

The World Health Organisations data set containing information about life expectancy will
be used in this paper as the benchmark data set. Various models with different regression
techniques will be created, and the performances of the models will be compared by means
of AIC, BIC, and cross-validation. The results of the models and the implications of them
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will be briefly discussed.

This paper holds potential implications and benefits for various domains. By evaluating
the performances of different regression models on a benchmark data set, the study can
enhance the accuracy and reliability of regression modeling in practical applications, such
as in healthcare. Furthermore, the research contributes to the existing knowledge in the
field by providing insights into the performance and suitability of different regression mod-
els. The findings can guide future studies and inspire the development of enhanced models
that address the challenges encountered in real-world data analysis and prediction tasks.
Ultimately, this paper aims to advance the understanding of linear regression models’ per-
formance on benchmark data set and foster improvements in regression modeling practices.
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2 Preliminary Theory

2.1 Linear Regression

The linear regression model function is used to statistically model the relationship between
a response variable y and k explanatory variables x1, . . . , xk. For observation i the linear
regression model can be written in the following form:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik. (1)

Linear regression is one of the oldest and most basic models in statistics, and as the results
are relatively easy to interpret, it is very commonly used [7]. However, the linear model can
only give us an approximation of the true relationship between x and y and as such, we also
need to include the error term in order to get more meaningful results. The model is the
following:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi (2)

where ϵi = yi − Ȳi is the error of prediction which represents the uncertainty in predicting
the outcome variable y with the explanatory variable x. We can also represent the model
in the following matrix form:

y = Xβ + ϵ (3)

where

y =


y1
y2
...
yn

 , X =


x′
1

x′
2
...
x′
n

 =


1 x11 . . . x1k

1 x21 . . . x2k

...
...

. . .
...

1 xn1 . . . xnk

 , β =


β0

β1

...
βk

 , ϵ =


ϵ1
ϵ2
...
ϵn

 (4)

The regression coefficients β0, β1, . . . , βk are in general estimated by the least squares method,
yielding the following estimator:

β̂ = (XTX)−1XTY. (5)

Assumptions of Linear Regression Models

The simple linear regression model where only one explanatory variable is considered rests
on several assumptions which determine how well it operates. The main assumptions for
SLR are the following:

1. Independence. We assume that the the errors of prediction are statistically inde-
pendent. This means that we assume the observations to be independent, and that
condition is often satisfied by using random sampling.

2. Constant Variance (homoscedastity). The variance of errors are assumed to be con-
stant over the distribution of X.

3. Normality. We assume that the errors are random variables and that they are nor-
mally distributed. Moreover, we assume that the mean is zero which is important for
computing the intercept: ϵi ∼ N(0, σ2)

4. Linearity. We assume that there is a linear relationship between Y and X.

The assumptions for multiple linear regression models are the same as for the simple models,
with an added assumption of collinearity which means that we assume that there is no
combination of the explanatory variables Xi which have a perfect association. [14]
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Simple Linear Regression

The simple linear regression model is the following:

yi = β0 + β1xi + ϵi (6)

where y is the response variable (life expectancy), x is the explanatory variable, β0 is the
intercept parameter, β1 is the slope parameter, and ϵ is the error term [7]. For j = 1, . . . , k+1
we have the following hypothesis:

H0 : βj = 0 versus H1 : βj ̸= 0

The slope and intercept coefficients are calculated using the ordinary least squares (OLS)
method, which is the most common method for fitting the regression line [7]. OLS aims to
minimize the sum of squared errors (SSE), which is obtained the following way:

SSE =
∑

(yi − ŷi)
2
=
∑

(yi − (β0 + β1xi))
2
. (7)

Since we have that ϵ̂i = yi − ŷi, we can also express SSE as the sum of squared residuals:

SSE =
∑

ϵ̂i
2. (8)

When the assumptions of simple linear regression are satisfied, the least squares equation
for the estimated slope coefficient has been shown [7] to be optimal for minimizing SSE:

β̂1 =

∑
(xi − x̄) (yi − ȳ)∑

(xi − x̄)
2 , (9)

and the standard error of the slope coefficient in a simple linear regression model is given
as:

se
(
β̂1

)
=

√∑
(yi − ŷi) /n− 2∑

(xi − x̄)
2 =

√
SSE/n− 2

SS(x)
, (10)

where n is the sample size, and SS(x) is the sum of squares of x. A larger SSE results
in a larger standard error as the sum of squared errors indicate the variation of the linear
regression. Once the standard error of the slope coefficient has been found we can use it to
calculate the t-value:

t− value =
β̂1

se(β̂1)
. (11)

We find the intercept using the slope:

β̂0 = ȳ −
(
β̂1x̄

)
. (12)

The coefficients for linear regression in this thesis are computed by R, however, as computing
these equations can be slow for larger data sets, programs rather employ matrix routines to
speed up the computing process. [14]

Multiple Linear Regression

Multiple linear regression can be regarded as an extension of simple linear regression as it
uses several explanatory variables, instead of one, to predict the response variable. Multiple
linear regression model also aims to determine which explanatory variable is strongest asso-
ciated with the response variable. The standard errors for multiple linear regression models
are the following:

se
(
β̂i

)
=

√ ∑
(yi − ŷi)

2∑
(xi − x̄)

2
(1−R2

i ) (n− k − 1)
, (13)
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where (1 − R2
i ) is the tolerance, and the R2 is called an auxiliary regression model, where

xi is taken to be the outcome variable while the other explanatory variables are taken as
predictor variables [14]. Alternatively, the standard errors can be found by taking the square
roots of the diagonal elements of the following matrix:

V =
(
XTX

)−1
σ̂2, where σ̂2 =

ϵ̂T ϵ̂

n− k
(14)

2.2 Stepwise Regression

Stepwise regression is a method for iteratively adding and/or removing variables based on
a specified criterion, such as p-value or information criterion of the model, resulting in
a simpler model which is easier to interpret. While stepwise regression can successfully
automate the variable selection procedure, it can also have its limitations as the method
can be sensitive to specific data sets and the chosen criterion which might lead to problems
such as overfitting, or biased coefficient estimates. [10]

Backward Selection

Backward selection is a variable selection method where we begin with a full model, that is,
a model which includes all explanatory variables, and selectively remove the variables which
have statistically insignificant slope coefficients. In the case of backward selection based on
p-values, the explanatory variable with the highest p-value is removed and the model gets
re-fitted without the removed variable until all variables left in the model are statistically
significant, or we reach a pre-defined threshold. For backward selection based on AIC we
start with the full model and compute the AIC score for it. Then, we reduce the model by
removing one variable, and calculate the AIC score for the reduced model. If it is less than
the AIC score for the full model, we replace the current model with the new reduced one,
and keep iteratively removing variables until we get the final model. Using the backward
selection is a reasonable method for finding the best predictive model while reducing the
risk of overfitting. Backward selection may however increase the risk of false negatives as
the method might fail to identify variables which have meaningful effects but do not reach
the predetermined significance levels. Backward selection also assumes that the full model is
appropriate, and if that is not the case the backward selection method can lead to a biased
model selection. [14]

Forward Selection

Forward selection is a variable selection method which starts with a model which contains no
explanatory variables and gradually adds variables which are determined to be statistically
significant for explaining the response variable by fitting separate models for each explana-
tory variable, and choosing the one which provides the best fit based on either p-values or
AIC score. The model is re-fitted after adding each explanatory variable. The stopping
criterion is typically a pre-determined significance level or a desired model complexity. As
a relatively straightforward variable selection method, forward selection can often provide a
clear understanding of how each variable affects the model. However, as variables are added
sequentially, we might end up with a suboptimal combination of explanatory variables as
some variables might contribute to the model’s performance collectively, but be insignifi-
cant individually. As the model adds variables constantly, it is biased towards larger models
which can create the problem of overfitting. [14]

2.3 Mixed Models

The mixed model is a linear model which contains both fixed effects and random effects.
They are designed to separate the variability which is due to differences across individual
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units from the variability due to differences across groups. The mixed model can be written
as

y = Xβ + Zγ + ϵ, (15)

where y is a known vector, with E(y) = Xβ, β is a vector of fixed effects, γ is a vector
of random effects with E(γ) = 0, Cov(γ) = D, and Cov(γ, ϵ) = 0. X and Z are known
matrices relating the observations to β and γ respectively, and ϵ represents the vector of
random errors, with E(ϵ) = 0 and Cov(ϵ) = R. Typically, D and R depend on different
subsets of some vector parameters. [8]

To improve the computational stability of the model, we can reformulate it by defining
a random effects variable U , which has the following distribution:

U ∼ N(0, σ2Iq). (16)

Given the random effects, the conditional distribution of the response variable is given as

(Y |U = u) ∼ N(µY |U=u, σ
2W−1), (17)

where W is a diagonal matrix of known prior weights, σ is the scale parameter, and

µY |U=u = Xβ + ZΛθu+ ϵ (18)

where Λθ is a singular relative covariance factor depending on the covariance-component
parameter vector θ. In order to maximize the likelihood fitting of the model, we repeatedly
apply the penalized least-squares method. The goal is to minimize the penalized weighted
residual sum of squares, which is given by

r2(θ, β, u) = ρ2(θ, β, u) + ||u||2, (19)

where
ρ2(θ, β, u) = ||W 1/2[yi − µY |U=u]||2. (20)

We minimize the penalized weighted residual sum of squares over [uβ]T . It has been shown
[5] that we can rewrite the equation in the following way:

r2(θ, β, u) = r2(θ) + ||LT
θ (u− µU |Y=yi

) +RZX(β − β̂θ)||2 + ||RX(β − β̂θ)||2, (21)

where r2(θ) is used to replace r2(θ, β̂θ, µU |Y=yi
, and µU |Y=y is the conditional mean of U

given Y = yi. The derivations of the matrices Lθ, RZX , and RX can be found in [5]. This
is an important expression as it relates r2(θ, β, u) with the minimum value r2(θ), which is
useful for integration over the random effects to estimate the maximum likelihood function
[5]. Moreover, this expression is useful in the theory underlying the lme4 package in R,
which is used for fitting linear mixed-effects models.

We can express the log-likelihood which is to be maximized as

L(θ, β, σ2|yi) = logfY (yi), (22)

where

fY (yi) =
|W |1/2|Lθ|−1

(2πσ2)n/2
exp

[
−r2(θ)− ||RX(β − β̂θ)||2

2σ2

]
. (23)

The maximum likelihood (ML) criterion is given by

−2L(θ|yi) = log
|Lθ|2

|W |
+ n

(
1 + log

(
2πr2(θ)

n

))
. (24)

While the number of columns q in Z and the size of Σθ can be large, the expression depends
only on θ, which has a small dimension of frequently less than 10. [5]
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2.3.1 REML

The restricted maximum likelihood (REML) criterion is a method for estimating the covari-
ance parameters in a linear mixed effects model while taking into account the fixed effects.
It provides a way to separate the estimation of the fixed effects from the estimation of the
random effects, which can lead to more accurate parameter estimates. The REML criterion
can be expressed in the following way:∫

fY (yi)dβ =
|W |1/2|Lθ|−1

(2πσ2)n/2
exp

(
−r2(θ)

2σ2

)∫
exp

(
−||RX(β − β̂θ)||2

2σ2

)
dβ. (25)

We can use change of variables and the fact that the Jacobian determinant of the transfor-
mation from β to v = RX(β− β̂θ) is |RX | to simplify the integral to the following form (see
[5] for more details):∫

fY (yi)dβ =
|W |1/2|Lθ|−1|RX |−1

(2πσ2)(n−p)/2
exp

(
−r2(θ)

2σ2

)
. (26)

The unprofiled REML criterion involves maximizing the likelihood of the observed data with
respect to the random effects and the error term. This approach considers all the random
effects in the model simultaneously and estimates their covariance structure, and is obtained
by minus twice the log of the integral above:

−2LR(θ, σ
2|yi) = log

|Lθ|2|RX |2

|W |
+ (n− p)log(2πσ2) +

r2(θ

σ2
. (27)

The REML criterion cannot be used to estimate β as it gets integrated out and as such, we
rely on the maximum likelihood estimate β̂θ̂ at θ = θ̂. In order to find the profiled REML
criterion, which involves maximizing the likelihood of the observed data with respect to the
random effects while profiling out the fixed effects, consider the REML estimate of σ2:

σ̂2
θ =

r2(θ)

n− p
, (28)

From this we can find the profiled REML criterion:

−2LR(θ|yi) = log
|Lθ|2|RX |2

|W |
+ (n− p)

(
1 + log

(
2πr2(θ)

n− p

))
(29)

In the profiled REML the fixed effects are treated as known or fixed, and their estimated
values are used to condition the likelihood function. The profiled REML criterion focuses
on estimating the covariance structure of the random effects while removing the influence
of the fixed effects. [5]

2.4 Model selection

2.4.1 Information Criterion

Information criterion are designed as a means for model selection. Two of the most common
information criteria are Akaike Information Criterion (AIC), formulated by the Japanese
statistician Hirotsugu Akaike in 1974, and Bayesian Informarion Criterion (BIC), developed
by Gideon E. Schwarz in 1978. The AIC and BIC are defined as follows:

AIC = 2k − 2 ln(L̂) (30)

BIC = k ln(n)− 2 ln(L̂) (31)

where k is the number of estimated parameters in the model, n is the sample size, L̂ is the
maximized value of the likelihood function of model M: L̂ = p(x|θ̂,M), where θ̂ are the
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parameter values which maximize the likelihood function, and x is the observed data. [17]

The AIC estimates the prediction error in terms of MLE. It estimates the amount of infor-
mation lost by a given model, and the aim is to balance the goodness of fit of a model with
the number of parameters used. As such, AIC deals with the risk of overfitting and under-
fitting. In general, the highest quality models are those which lose the least information,
and the models with lower AIC scores are preferred. [17]

The BIC is closely related to AIC as both penalise the number of parameters used in a
model, however, for sample sizes greater than 7, the penalty term in BIC is larger than in
AIC meaning that it prefers simpler models and aims to avoid overfitting. The models with
lower BIC scores are preferred over models with a higher BIC score.

2.4.2 Cross-Validation

Cross-validation is a resampling technique used to evaluate the performance of a model. It
is primarily used to assess how well the model generalizes to new, unseen data. The basic
idea behind cross-validation is to partition the data set into multiple subsets or ”folds.”
The model is trained on a subset of the data called the training set and then evaluated
on the remaining subset, which is called the validation set. This process is then repeated
several times, with different subsets of the data used for training and validation as using only
one testing set can give us varied results depending on how the data set was partitioned.
The performance metrics, such as accuracy or mean squared error, are averaged across all
iterations to obtain an overall assessment of the model’s performance [22]. There are several
metrics which are used to evaluate the accuracy of a given model. The statistical metrics
are the following:

1. Root Mean Squared Error (RMSE) is the square root of the averaged squared difference
between the actual and predicted target variable value. The formula to compute the
RMSE is the following:

RMSE =

√∑n
i

(
yi − ŷi)2n. (32)

As RMSE gives us the average prediction error, the model with the lowest RMSE
score is preferred.

2. Mean Absolute Error (MAE) gives us the absolute difference between the actual values
and the predicted values. It is calculated as follows:

MAE =
1

n

n∑
i

|yi − ŷi|. (33)

We can use MAE to evaluate the performance of a model, where we prefer the model
with the lowest MAE score.

3. R2 Error represents the proportion of the variance in the dependent variable that can
be explained by the independent variable(s). The formula for calculating the R2 error
is the following:

R2 = 1−
∑n

i (yi − ŷi)
2∑n

i (yi −
1
n

∑n
i yi)

2
(34)

The R2 value tells us how well the model fits the data points on a scale of 0% −
100%, meaning that the higher the R2 score, the better the model is at explaining the
variability in the dependent variable.
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3 Methodology

3.1 Data Description

The data set used for this thesis is the Life Expectancy (WHO) data set, which contains life
expectancy[19], health, immunization, and economic and demographic information about
179 countries over the span of 16 years, from 2000-2015. The data set has 21 variables and
2864 rows[18]. From figure 1 we can see the average life expectancy across 9 regions.

The data set originally had some missing values and inaccurate data. The updated data
about the population, GDP, and Life Expectancy was updated according to World Bank
data. The data about vaccinations for Measles, Hepatitis B, Polio, and Diphtheria was
collected from the public data sets of the World Health Organization. Information about
alcohol consumption, BMI, HIV incidents, mortality rates, and thinness for children aged
5-9 and 10-19 was also collected from the WHO public data sets. Data about schooling was
gathered from the Our World in Data, which is a University of Oxford project.[18]

For the missing values in the data set, a few strategies were applied. If a country was
missing a value in any year, the gap was filled with the closest average over a three-year
period. If, however, a country had missing values for all the years, then the data was filled
using the average of the region. If a country was missing more than 4 data columns, which
was the case for countries such as Sudan, South Sudan, and North Korea, then the country
was omitted from the database.[18]

The values in the data set represent the following:

• Life Expectancy is defined as the average number a years a newborn could expect to
live for a specific year and in a given country. It is based on sex- and age specific
death rates and is derived from life tables.[1]

• Infant deaths are calculated per 1000 live births, where an infant is considered between
birth and 11 months.[16]

• The values for under five deaths represents the probability of dying by age 5 per 1000
deaths.[26]

• Adult mortality - probability of dying between 15 and 60 years per 1000 population.[2]

Figure 1: The average life expectancy
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Figure 2: Mortality rates for three age groups: infants, under five years old, and adults

• Alcohol consumption is recorded in liters of pure alcohol per capita (15+) consump-
tion.[3]

• Hepatitis B [13], measles [21], polio [23], and diphtheria [9] - immunization coverage
among 1-year olds.

• BMI shows the mean body mass index (kg/m2) age-standardized estimate.[20]

• HIV - incidents of HIV per 1000 population, aged 15 to 49.[15]

• Thinness shows the percentage of defined population with a BMI < 2 standard devi-
ations below the median for age groups 5-9 and 10-19.[24]

• Schooling shows the average number of years people over the age of 25 participated in
formal education.[4]

• Since each country defines itself as developed or developing, categorising the countries
can be challenging. This categorisation of the countries has been done according to a
2014 list by UN, where countries are classified as developed, developing, or in transition
for analytical purposes. The countries whose economic status is in transition have
similar characteristics to the developed, or developing countries. Countries have been
divided into four income groups according to their gross national income per capita:
high-income, higher-middle-income, lower-middle-income, and low-income. In order
to ensure comparability, the levels of gross domestic income are set by the world bank.
[6]

Plotting the data

In order to get a better understanding of the data set, we begin by plotting how a single ex-
planatory variable1 globally affects the life expectation as plotting the data early and often is
seen as a good statistical practice[14]. The plots for simple linear regression were generated
using RStudio package ggplot2. From figure 2 we can see that for each explanatory variable,
the relationship is indeed linear and therefore it makes sense to use this model. Furthermore,
we get the expected results that a higher mortality rate over various age groups lowers the
average life expectancy.

The plots for Hepatitis-B, Polio, and Diphtheria are all similar as we can see from fig-
ure 3. This can be explained by the fact that vaccinations for all these diseases were given
to newborns at the same time frame. From the plots we can see that a higher vaccination
rate for the three diseases results in a higher life expectancy, however, the linear dependency
between vaccinations and life expectancy is not immediately clear from the figure.

1country, region, year, infant deaths, under five deaths, adult mortality, alcohol consumption, hepatitis
B, measles, BMI, polio, diphtheria, HIV, GDP per capita, population size, thinness, schooling, and economy
status
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Figure 3: Vaccination for hepatitis B, polio, and diphtheria

Figure 4: GDP per Capita

From figure 4 we can see that GDP (gross domestic product) per capita and life expectancy
do not seem to have a linear dependency, and as such, the fourth assumption of linearity
potentially fails. In this case, a different model should be considered in order to get more
accurate approximations of the relation between GDP and life expectancy.

It seems from figure 5 that both alcohol consumption and a higher BMI (body mass in-
dex) positively affect the life expectancy. That is, according to a simple linear regression,
the more alcohol one consumes and the higher one’s BMI, the longer they live. The normal
range for the BMI is considered to be between 18.5 − 24.9, BMI of 25 − 29.9 is considered
overweight, and individuals with a BMI of 30 − 34.9 are considered obese. On the plot
representing the BMI values we also notice groups or clusters of data points forming. Those
represent the BMI values for a country over the time period when the data was collected
(2000-2015).

With the data set, various models are created and compared. All the models will be com-
pared by their information criteria scores, and by the means of cross-validation. We assume
that the assumptions for linear regression are met.

Linear Regression

The first model we consider is the linear regression model, with life expectancy as the
response variable. The covariates used can be found in Table 1. Two of the variables are
categorical, country and region, and 17 are numerical. For numerical variables we can fit the
multiple linear regression model in a straightforward way, however, for categorical variables
we need a different approach. To include the variables country and region in the model
in a meaningful way, we need to transform them into factors. This is done in RStudio using
the following command:

dataset$Country <- as.factor(dataset$Country)
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Figure 5: Alcohol consumption and BMI

dataset$Region <- as.factor(dataset$Region)

This R code assigns a unique integer value to each distinct category in the variable, which
allows us to treat the variable as a discrete categorical variable rather than a continuous
numeric variable. We call each category of a variable a level, and as we have 179 countries,
there are 179 levels where each level represents a country. For the variable region, we have 9
levels. Now that the categorical values have been factored, we can use the following function
to create the linear regression model:

lm(response variable ∼ covariate1 + covariate2 + ..., data = dataset)

Where the variables are as discussed in the beginning of this section.

Variable Selection

In the model discussed in the previous section we included all the covariates, however, if we
are interested in which variables affect life expectancy, we need to perform variable selection.
This has been done in three ways: via backward selection, forward selection, and both. The

Variable Class Min Max
Country character NA NA
Region character NA NA
Year numeric 2000 2015
Infant Deaths numeric 1.8 138.1
Under five Deaths numeric 2.3 224.9
Adult Mortality numeric 49.4 719.4
Alcohol Consumption numeric 0 17.9
Hepatitis B numeric 12 99
Measles numeric 10 99
BMI numeric 19.8 32.1
Polio numeric 8 99
Diphtheria numeric 16 99
Incidents of HIV numeric 0 21.9
GDP per Capita numeric 148 112418
Population numeric 0.1 1379.9
Thinness 5-9 year olds numeric 0.1 28.6
Thinness 10-19 year olds numeric 0.1 27.7
Schooling numeric 1.1 14.1
Economy Status numeric 0 1

Table 1: Variables used in the models and their class, minimum value, and maximum value
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function used to compute the stepwise regression model was part of the olsrr package in
RStudio. The functions used for backward selection were the following:

ols step backward p(model) ols step backward aic(model)

The functions used for forward selection were:

ols step forward p(model) ols step forward aic(model)

And the functions which include both backward and forward selection were the following:

ols step both p(model) ols step both aic(model)

These functions use different methods to choose which variables are significant for predicting
life expectancy. The argument model corresponds with the linear regression model, which
was discussed in the previous section.

Mixed Effects Model

In the mixed effects model we include the numerical variables as fixed, and the categorical
variables as random. Three mixed effects models were created using the following function
in R:

MixedModel <- lme(response variable ∼ covariate1 + covariate2 + ... , data

= dataset, random=∼1|RandomEff1/RandomEff2, method="REML")

Where the response variable is life expectancy, the covariates are the fixed effects and random
effects are defined separately. We use the restricted maximum likelihood (REML) method.
With this function, three mixed effects models were created: the first had only country as
random effect, the second model had only region as random effect, and the third model
included both country and region as random effects. The fixed effects remained the same
for all three cases.

3.2 Comparison

The models will first be compared based on information criteria. We will be comparing both
the AIC and BIC scores for each of the models presented, namely, for the linear regression
model, the models obtained via stepwise regression, and the mixed effects models. The AIC
and BIC scores of the mixed effects models will be compared independently of the other
regression models. This is because the AIC and BIC are calculated based on the maximum
likelihood function, and since the likelihood functions differ, the information criteria values
are not comparable.

We will also assess the performances of the models by means of cross-validation. More
specifically, the leave-one-out cross validation technique will be used. The R code used for
this can be found in Appendix B.
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Variable Simple LR Multiple LR
Year 0.356 (0.038) 0.143 (0.007)
Infant Deaths -0.314 (0.003) -0.009 (0.007)
Under five Deaths -0.194 (0.002) -0.044 (0.004)
Adult Mortality -0.077 (0.000) -0.042 (0.001)
Alcohol Consumption 0.943 (0.405) -0.027 (0.012)
Hepatitis B 0.24568 (0.010) 0.002 (0.000)
Measles 0.247 (0.008) 0.002 (0.001)
BMI 2.566 (0.064) -0.415 (0.064)
Polio 0.340 (0.009) 0.001 (0.003)
Diphtheria 0.380 (0.009) 0.009 (0.003)
Incidents of HIV -2.184 (0.615) 0.155 (0.025)
GDP per Capita 0.000 (0.000) 0.000 (0.000)
Population 0.002 (0.001) 0.002 (0.001)
Thinness among 5-9 year olds -0.952 (0.035) -0.013 (0.007)
Thinness among 10-19 year olds -0.991 (0.035) -0.014 (0.007)
Schooling 2.172 (0.038) -0.098 (0.029)
Economy Status 12.164 (0.370) 8.232 (0.725)

Table 2: Comparison of SLR and MLR variable coefficients, statistically significant variables
are in bold

4 Results

4.1 Model Performance

The results for the multiple linear regression can be found in appendix A, table 4. Note
that the variables country and region were included in the model, but have been left out
of the results table due to the large size of it. We can see the difference in the coefficients
between simple and multiple linear regression in table 2. When including all the explana-
tory variables in the model, the coefficients change drastically, and several variables which
were significant in the simple model are no longer significant. In general, the multiple linear
regression model is preferred over simple linear regression as it gives a better overview of
the relation the explanatory variables have with the response variable. The AIC score for
the linear regression model was 4184.9, and the BIC score was 5353.1. The leave-one-out
cross-validation scores for the linear regression model were the following: R2 was 0.979,
RMSE was 1.362, and MAE was 1.081.

The next models were created using the backward selection method, the results for the
backward selection based on p-values are shown in Table 6 and the results for the backward
selection based on AIC can be found in Table 5. The AIC score for the backward selec-
tion model based on p-values was 4199.1 and the BIC score was 5337.3. The R2 score was
0.979, RMSE score was 1.361, and MAE score was 1.078. The backward selection based
on AIC scores performed slightly better: the AIC score for that model was 4180.7 and the
BIC score was 5331.0. The R2 score was 0.997, RMSE score was 0.508, and MAE score was
0.340 which indicates that backward selection based on AIC would be preferred to backward
selection based on p-values.

The results for the forward selection model based on p-values are shown in Table 8, and the
results for the forward selection based on AIC can be found in Table 7. The AIC score of the
model based on p-values was 4199.0, and the BIC score was 5350.1. The R2 score was 0.997,
the RMSE was 0.514, and the MAE was 0.343. The results for the model based on AIC were
the following: the AIC score was 4181.0, the BIC was 5331.3, and the R2 score was 0.997,
the RMSE was 0.510, and the MAE was 0.341. While there is a significant difference in the
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Model df AIC BIC
rndeffc 1 20 5271.228 5390.301
rndeffr 2 20 9387.785 9506.859
rndeffcr 3 21 5273.228 5398.255
model.fixed 4 19 10068.486 10181.606

Table 3: Mixed Effects Models Scores

information criteria scores of these two models, the results from cross-validation indicate
that the two models have a similar error in predicting the data.

In the last stepwise regression model which includes both forward and backward selec-
tion, we have omitted the categorical variables from the selection based on p-values as the
function cannot distinguish between the individual effects of two or more predictor variables
if they are highly correlated. The results for the stepwise regression based on p-values can
be found in Table 10 and the results for the regression based on AIC are shown in Table 9.
Without the categorical variables, we get much higher AIC score of 9888.6 and BIC score of
10012.4. The R2 score for the model was 0.979, RMSE was 1.374, and MAE was 1.095. For
the stepwise regression based on AIC scores we include all the explanatory variables (table
1), and the resulting model was the same as the one obtained via backward selection based
on AIC. As such the results for the two models were identical: the AIC score was 4180.7,
the BIC score was 5331.0, R2 was 0.997, RMSE was 0.508, and MAE was 0.340.

The last model considered was the mixed effects model. We tested three models, model
a with only country as a random effect, model b with only region, and model c with both
included. We compared these models against the linear regression model which contained
the same fixed effects as the three mixed models (model d). The summaries of the infor-
mation criteria scores for these models can be found in Table 3. The summary of model a
can be found in Table 11, of model b in Table 12, and of model c in Table 13. The results
from the cross-validation for model a were the following: R2 was 0.997, RMSE was 0.515,
and MAE was 0.344. model b had a lower R2 value at 0.984, and a higher RMSE and MAE
values, which were 1.202 and 0.954 respectively. The third model, which included both
country and region as random variables had an R2 value of 0.997, RMSE was 0.513, and
MAE was 0.342. This means that as models 1 and 3 gave more accurate predictions and
should thus be preferred over model b, while models 1 and 3 produced similar results.

4.2 Interpretation of the Results

When analysing the relationship between a response variable and a single explanatory vari-
able, we found that all but one explanatory variables have a significant effect on the response
variable, life expectancy. The only coefficient which had a p-value of greater than 0.05 was
population. However, interpreting these results requires caution and consideration of addi-
tional factors as the observed association between the explanatory variable and the response
variable could be influenced by confounding variables. For instance, access to healthcare
might have an impact on both the explanatory variable (such as BMI or incidents of HIV)
and the response variable life expectancy.

Most of the coefficients obtained from the multiple linear regression differ from the sim-
ple linear regression results. This is due to the fact that multiple linear regression accounts
for the influence of the other variables as well while the simple linear regression does not.
Moreover, some of the variables have a high correlation (for example, thinness among 5-9
year olds and thinness among 10-19 year olds), which means that when we include both of
them in the model, only one will appear as significant while an individual analysis of such
variables would give us the result that both are significant.
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All the models we obtained via the stepwise selection method based on AIC outperformed
the models which were based on the p-values. There are several reasons why this might be
the case. One explanation could be that since we are dealing with multicollinearity, p-values
can be unreliable for variable selection. Stepwise regression with AIC considers the overall
improvement in model fit when deciding which variables to include or exclude. It can help
identify the most important predictors while accounting for their interrelationships, leading
to models which are more robust and better interpretable.

The mixed effects model is the most appropriate when our data includes groupings such
as repeated measurements on the same subjects or observations clustered within certain
categories, such as by country or region. By accounting for the clustering structure, we can
estimate the effects of the categorical variables on the outcome variable and thus reduce
potential bias and provide more accurate and reliable results. The mixed effects model with
both country and region performed as well as the model which only included country as a
random effect, while both of these models were significantly better than mixed effects model
with region as random effect. Therefore we can conclude that the variability explained by
the random effect region does not contribute significantly to the model’s performance be-
yond the random effect of country. The higher AIC and BIC, MAE and RMSE and lower
R2 for the model with region as a random effect indicate that the additional complexity of
including region does not justify the improvement in model fit.
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5 Discussion and Conclusion

5.1 Discussion

We have found that when evaluating the regression models, there were six linear regression
models with similar R-squared, root mean squared error, and mean absolute error metrics.
The backward selection based on AIC, forward selection based on p-values and on AIC,
stepwise regression based on AIC, mixed effects model with country as random effect, and
the mixed effects model with country and region as random effects. This shows that using
hierarchical regression produces models with better predictive qualities.

One possible explanation for the absence of differences in the evaluation metrics could be
attributed to the specific type of cross-validation employed in this study. In this research, we
utilised leave-one-out cross-validation (LOOCV), which is a common technique. However,
considering the clustered nature of our data, this choice of cross-validation may have led to
inflated results, suggesting very strong predictive capabilities of the models.

A possible solution to this is to employ an alternative cross-validation technique, such as
leaving out one country at a time or utilising a cross-validation strategy that accounts for the
clustering structure. With this method, we might have obtained a more accurate assessment
of the true performance of the models. This alternative approach could provide a better
understanding of the models’ generalizability and predictive power beyond the specific data
set used for training and evaluation.

While the stepwise regression models and the mixed effect model produced similar metrics,
we may still prefer the latter over the former because mixed effects models are specifically
designed to handle nested or hierarchical data structures. Using a mixed effects model
allows us to explicitly model the within-group correlations and account for the variability
across different levels. This model is also often preferred over stepwise regression because
the mixed effects models can provide more stable estimates. Stepwise regression can result
in unstable variable selection, where the inclusion or exclusion of variables may change with
minor variations in the data or model assumptions.

There are several other possible modelling approaches we could consider for the life ex-
pectancy data set. For example, as the data is collected over time, we could use time series
analysis techniques to capture temporal dependencies. That method is particularly useful
for identifying patterns or trends.

5.2 Conclusion

With increasing amounts of data becoming easily accessible and available, it is important to
know how to analyse it in a meaningful way. In this paper we considered and compared sev-
eral linear regression models for the life expectancy data set and examined the relationships
between several explanatory variables, and life expectancy. We created linear regression,
stepwise regression, and mixed effects models and evaluated the predictive qualities of these
models via information criterion, and cross-validation.

It was found that when employing stepwise selection, the models which were based on
AIC values performed better than the stepwise selection models based on p-values. Due
to the nature of our data, the regression models based on p-values can be unreliable for
variable selection as we are dealing with multicollinearity.

The initial results from the cross-validation indicate that the stepwise regression models
based on AIC and the forward selection based on p-values have very similar predictive qual-
ities to the mixed effects models with country or country and region as random effects.
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However, we might still prefer the mixed effects models over stepwise regression since the
former is designed specifically for clustered data as we had in our data set. Moreover, due
to the leave-one-out cross-validation, we might be dealing with inflated results.

The analysis revealed the impact of collinearity, the influence of categorical variables, and the
significance of model selection criteria. Additionally, the use of appropriate cross-validation
techniques to account for data clustering is crucial. We also identified limitations, such as
the potential for inflated results due to specific cross-validation methods.
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Dependent variable:

Life expectancy

Year 0.143∗∗∗(0.007)
BMI −0.415∗∗∗(0.064)
Schooling −0.098∗∗∗(0.029)
Alcohol Consumption −0.027∗∗(0.012)
Diphtheria 0.009∗∗∗(0.003)
Adult Mortality −0.042∗∗∗(0.001)
GDP per Capita 0.00003∗∗∗(0.00001)
Hepatitis B 0.002(0.00)
Incidents HIV 0.155∗∗∗(0.025)
Measles 0.002(0.001)
Polio 0.001(0.003)
Thinness 5-9 years −0.013∗(0.007)
Thinness 10-19 years −0.014∗∗(0.007)
Under five Deaths −0.044∗∗∗(0.004)
Infant Deaths −0.009(0.007)
Population 0.0002(0.001)
Economy Status Developed 8.232∗∗∗(0.725)
Constant −203.009∗∗∗(12.483)

Observations 2,864
R2 0.979
Adjusted R2 0.979
Residual Std. Error 1.357 (df = 2846)
F Statistic 7,925.419∗∗∗ (df = 17; 2846)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: Multiple Linear Regression Results

Variable AIC R-Sq
Full Model 4202.942 0.99751
Region 4186.942 0.99751
Economy Status Developed 4184.942 0.99751
Population 4182.964 0.99751
Polio 4181.051 0.99751
Infant Deaths 4180.699 0.99751

Table 5: Backward Elimination based on AIC Summary

Step Removed Variable R-Square AIC RMSE
1 Population 0.9975 4200.9637 0.4859
2 Polio 0.9975 4199.0514 0.4858

Table 6: Backward Elimination based on p-value Summary
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Variable AIC R-Sq
Country 12671.486 0.95127
Adult Mortality 7489.688 0.99202
Infant Deaths 5499.942 0.99602
Year 4529.547 0.99717
Under five Deaths 4379.524 0.99731
BMI 4316.007 0.99737
Diphtheria 4264.558 0.99742
Incidents HIV 4230.155 0.99746
GDP per Capita 4213.686 0.99747
Thinness 10-19 years 4197.700 0.99749
Schooling 4187.495 0.99750
Alcohol Consumption 4183.930 0.99750
Thinness 5-9 years 4182.361 0.99751
Measles 4181.013 0.99751

Table 7: Forward Selection based on AIC Summary

Step Entered Variable R-Square AIC RMSE
1 Country 0.9966 5038.8079 0.5636
2 Region 0.9974 4359.2492 0.5005
3 Schooling 0.9974 4292.7048 0.4946
4 Adult Mortality 0.9974 4258.6169 0.4916
5 Polio 0.9975 4239.7138 0.4899
6 Under five Deaths 0.9975 4219.9406 0.4881
7 Infant Deaths 0.9975 4205.4328 0.4868
8 Year 0.9975 4201.8184 0.4864
9 BMI 0.9975 4200.2373 0.4862
10 Incidents HIV 0.9975 4198.9360 0.4860
11 Thinness 10-19 years 0.9975 4198.9637 0.4859

Table 8: Forward Selection based on p-value Summary

Variable Method AIC R-Sq
Country addition 12671.486 0.95127
Adult Mortality addition 7489.688 0.99202
Infant Deaths addition 5499.942 0.99602
Year addition 4529.547 0.99717
Under five Deaths addition 4379.524 0.99731
BMI addition 4316.007 0.99737
Diphtheria addition 4264.558 0.99742
Incidents HIV addition 4230.155 0.99746
Infant Deaths removal 4229.915 0.99745
GDP per Capita addition 4213.519 0.99747
Thinness 5-9 years addition 4197.466 0.99749
Schooling addition 4187.670 0.99750
Alcohol Consumption addition 4184.553 0.99750
Thinness 10-19 years addition 4182.803 0.99750
Hepatitis B addition 4181.163 0.99751
Measles addition 4180.699 0.99751

Table 9: Stepwise Selection based on AIC Summary
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Step Variable Added/Removed R-Square AIC RMSE
1 Schooling addition 0.974 10494.5551 1.5096
2 Adult Mortality addition 0.977 10162.8106 1.4244
3 Polio removal 0.977 10160.8133 1.4241
4 Under five Deaths addition 0.978 10024.7851 1.3905
5 Infant Deaths addition 0.979 9979.7702 1.3793
6 Economy Status Developed addition 0.979 9945.0098 1.3707
7 Polio addition 0.979 9926.7270 1.3661
8 GDP per Capita addition 0.979 9911.6000 1.3623
9 Alcohol Consumption addition 0.979 9898.4616 1.3589
10 BMI addition 0.979 9888.5692 1.3564

Table 10: Stepwise Selection based on p-values Summary

Variable Value Std.Error DF t-value p-value
(Intercept) -117.66227 9.790430 2669 -12.01809 0.0000
Diphtheria 0.00746 0.002765 2669 2.69928 0.0070
Year 0.09817 0.005268 2669 18.63514 0.0000
BMI -0.09504 0.051490 2669 -1.84575 0.0650
Schooling 0.00733 0.026807 2669 0.27356 0.7844
Alcohol Consumption -0.03307 0.011778 2669 -2.80763 0.0050
Adult Mortality -0.04277 0.000645 2669 -66.35252 0.0000
GDP per Capita 0.00004 0.000006 2669 7.40718 0.0000
Hepatitis B 0.00211 0.001383 2669 1.52352 0.1277
Incidents HIV 0.15942 0.024131 2669 6.60652 0.0000
Measles 0.00322 0.001374 2669 2.34625 0.0190
Polio 0.00140 0.002757 2669 0.50664 0.6124
Thinness 5-9 years -0.01386 0.007191 2669 -1.92796 0.0540
Thinness 10-19 years -0.01566 0.007275 2669 -2.15242 0.0315
Under five Deaths -0.04376 0.003775 2669 -11.59376 0.0000
Infant Deaths -0.01236 0.006964 2669 -1.77523 0.0760
Population 0.00019 0.000918 2669 0.21188 0.8322
Economy Status Developed 3.54127 0.463950 177 7.63288 0.0000

Table 11: Mixed Effects model a Summary
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Variable Value Std.Error DF t-value p-value
(Intercept) 15.756785 10.366067 2838 1.52003 0.1286
Diphtheria -0.008575 0.005232 2838 -1.63909 0.1013
Year 0.033991 0.005176 2838 6.56772 0.0000
BMI -0.134440 0.020081 2838 -6.69495 0.0000
Schooling 0.101453 0.016555 2838 6.12829 0.0000
Alcohol Consumption -0.004769 0.010307 2838 -0.46272 0.6436
Adult Mortality -0.046678 0.000554 2838 -84.28878 0.0000
GDP per Capita 0.000020 0.000002 2838 9.40045 0.0000
Hepatitis B -0.007625 0.002312 2838 -3.29733 0.0010
Incidents HIV 0.093929 0.016334 2838 5.75052 0.0000
Measles 0.002031 0.001544 2838 1.31598 0.1883
Polio 0.009701 0.005171 2838 1.87589 0.0608
Thinness 5-9 years 0.025189 0.014989 2838 1.68052 0.0930
Thinness 10-19 years -0.037680 0.015102 2838 -2.49501 0.0127
Under five Deaths -0.051146 0.003546 2838 -14.42292 0.0000
Infant Deaths -0.052484 0.005632 2838 -9.31850 0.0000
Population -0.000226 0.000180 2838 -1.25527 0.2095
Economy Status Developed 2.479128 0.148047 2838 16.74556 0.0000

Table 12: Mixed Effects model b Summary

Variable Value Std.Error t-value p-value
(Intercept) −117.66228 9.790430 −12.01809 0.0000
Diphtheria 0.00746 0.002765 2.69928 0.0070
Year 0.09817 0.005268 18.63514 0.0000
BMI −0.09504 0.051490 −1.84576 0.0650
Schooling 0.00733 0.026807 0.27356 0.7844
Alcohol Consumption −0.03307 0.011778 −2.80763 0.0050
Adult Mortality −0.04277 0.000645 −66.35252 0.0000
GDP per Capita 0.00004 0.000006 7.40718 0.0000
Hepatitis B 0.00211 0.001383 1.52352 0.1277
Incidents HIV 0.15942 0.024131 6.60652 0.0000
Measles 0.00322 0.001374 2.34625 0.0190
Polio 0.00140 0.002757 0.50664 0.6124
Thinness five nine years −0.01386 0.007191 −1.92796 0.0540
Thinness ten nineteen years −0.01566 0.007275 −2.15242 0.0315
Under five Deaths −0.04376 0.003775 −11.59376 0.0000
Infant Deaths −0.01236 0.006964 −1.77523 0.0760
Population mln 0.00019 0.000918 0.21188 0.8322
Economy Status Developed 3.54127 0.463950 7.63288 0.0000

Table 13: Mixed Effects model c Summary
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B R code

library(lme4)

# Convert categorical variables to factors to use as fixed effects

dataset$Country <- as.factor(dataset$Country)

dataset$Region <- as.factor(dataset$Region)

# Define your regression model formula

formula <- Life_expectancy ~ (1|random_effect) + covariate1 + ...

# Perform LOOCV

loocv <- lapply(1:nrow(dataset), function(i) {

# Remove the i-th observation from the dataset

training_data <- dataset[-i, ]

testing_data <- dataset[i, ]

# Fit the model using training data

model <- lmer(formula, data = training_data)

# Predict on the left-out observation

prediction <- predict(model, newdata = testing_data)

# Return the prediction

return(prediction)

})

# Combine the LOOCV predictions into a single vector

loocv_predictions <- unlist(loocv)

# Calculate LOOCV performance metrics (e.g., R-squared, RMSE, MAE)

actual_values <- dataset$Life_expectancy

r_sq <- 1 - sum((actual_values - loocv_predictions)^2) / sum((actual_values

- mean(actual_values))^2)

rmse <- sqrt(mean((actual_values - loocv_predictions)^2))

mae <- mean(abs(actual_values - loocv_predictions))

# Print the performance metrics

cat("LOOCV R-squared:", r_sq, "\n")

cat("LOOCV RMSE:", rmse, "\n")

cat("LOOCV MAE:", mae, "\n")
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