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Abstract

Non-Lorentzian geometries have resurfaced recently as a topic of interest in various
fields, including non-relativistic string theory [1, 2], cosmology [3, 4], and condensed
matter physics [5, 6]. Two specific non-Lorentzian geometries have been of particu-
lar interest: Galilean and Carrollian ones. Recently, the spacetimes whose structure
is dictated by these groups were classified for particles [7] and Strings [8]. Following
two approaches, inspired by the mathematics and physics literatures on the topic,
we will extend this classification to cover generic p -brane foliations, and provide
the geometric interpretation corresponding to the classification. Both methods will
employ an approach of finding the possible forms of intrinsic torsion that the space-
times may possess, as well as a mathematical tool called the Spencer differential.
We find five potential classes of intrinsic torsion and five corresponding constraints
on the geometry. Finally, we will derive the corresponding theories of gravity, and
demonstrate that it matters whether a limit to a theory is taken from a second or
first-order formulation of general relativity.
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Chapter 1

Introduction

Non-Lorentzian geometries have been brought up in recent work [7–10] as objects of
interest in both mathematics and physics. In physics, non-Lorentzian geometries typically
surface as various limits of general relativity (GR). Afterwards, applications have also
been found in unrelated sub-fields of physics, ranging from condensed matter physics to
gravitational waves research. Because some non-Lorentzian geometries are found as limits
of general relativity, they are also important for understanding the universe - they probe
various corners of a well-accepted theory. For an overview of non-Lorentzian geometry
in general, and some applications to non-relativistic and ultra-local gravity, the reader is
directed to a recent review article [11], and citations therein.

This work studies the Galilei and Carroll spacetimes in particular. Both of these space-
times arise as a limit of general relativity, with the former arising as the c → ∞ limit,
while the latter results from the c → 0 limit. Although both of these geometries are
exotic, many potential applications have been found for both, especially recently. Both
Galilean and Carrollian spacetimes have seen use as target spaces in string theory, for
non-relativistic strings [1] and for Carrollian strings [2] respectively. Applications of the
symmetries that generate these spacetimes have been studied in various contexts. A prime
example of this is the fact that black hole horizons have been shown to possess Carroll
symmetries [12, 13]. Interest in Carroll geometry has also surfaced in condensed matter
theory [5, 6], fluid dynamics [14], and conformal field theory [15].

Galilei spacetimes are of particular interest because they are, in some sense, a first step
towards Newton-Cartan (NC) gravity. NC gravity was originally studied by Cartan [16,
17], who wrote classical Newtonian gravity in terms of differential geometry instead of
forces. Galilei spacetimes are separated from NC spacetimes by the fact that the Galilean
structure group lacks a central extension that corresponds to the conservation of mass
in NC gravity. This relation will be further discussed in section 3. A large part of the
interest in NC gravity is driven by the goal of improving the understanding of post-
Newtonian corrections to conventional Newtonian gravity. This can then be used to
improve the modeling of gravitational wave sources, since NC gravity can be applied to
strong field regimes of the theory, unlike general relativity. However, in this work, no
additional geometric ingredients to the usual Galilei spacetime will be added. Although
this has been done in the literature for particles, strings [8], and in some cases for other
extended objects [18, 19]. In addition, applications of Galilean symmetry have surfaced
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Iisakki Rotko CHAPTER 1. INTRODUCTION

in hydrodynamics [14].

It is well-known that in general relativity it is possible to select a unique metric-compatible
and torsion-free connection - the Levi-Civita connection. In Newton-Cartan gravity, as
well as most other theories of gravity that arise through limiting procedures of GR, this
is no longer the case. In fact, some torsion always remains irrespective of the choice
of connection. This remaining torsion is called intrinsic. In the cases treated here, the
intrinsic torsion can take on various values, with each value enforcing a different constraint
on the geometry of the spacetime itself. Because of this relation between intrinsic torsion
and geometric constraints, different spacetime geometries can be classified based on the
values that the intrinsic torsion can take in those geometries, and the resulting geometric
constraints.

In [7] Galilean and Carrollian spacetimes, among others, were classified for particles by
their intrinsic torsion in a systematic manner. The extension of this method to string and
p-brane spacetimes is of physical interest for describing the non-relativistic theories of the
related extended objects, because a priori, different extended objects couple to fundamen-
tally different target geometries. Moreover, due to the analysis methodology employed in
[7], together with a formal duality that is introduced in this work, the consideration of
Galilean and Carrollian spacetimes can be simply incorporated into the same procedure.
The formal duality between the non-relativistic and ultra-local geometries can be realized
by exchanging the particle geometry of one for the domain-wall geometry of the other,
together with exchanging the time direction for spatial ones. The latter step corresponds
to changing the direction that boosts act - whether they send temporal directions to spa-
tial ones, or vice versa. For generic p-branes, this operation generalizes to exchanging a
p-brane with a (D − p− 2)-brane, together with the exchange of dimensions as outlined
previously.

In the end, we derive Galilean theories of gravity where each case of the classification
is realized. We discuss three interesting details of these theories. First, we show that
the second-order formalism of Galilean gravity, which is reached as a direct limit of the
second-order formalism of general relativity, is different to that found by solving for all
spin-connection components in the first-order formalism of Galilei gravity. Second, we
discuss different ways of dealing with a divergent term that is found in the limit of the
second-order formulation of GR. Finally, we show that electric Carroll gravity, a theory
characterized by arising in a particular limit of GR, is in fact not unique, and that this
specific limit can be taken in three different ways.

The goal of this work is to extend the classification of particle Galilean and Carrollian
spacetimes in [7] to also cover the cases of Galilean and Carrollian p -branes. Moreover,
this procedure will be done in a second way, inspired by [8]. The former method cor-
responds to using the language of Cartan, and the latter to using that of tensor fields.
Although throughout the work (and especially in the final section) we often refer explicitly
to only Galilean cases, through the aforementioned duality the results can be extended
to include Carrollian ones.

This work is structured as follows: section 2 recalls the theory of general relativity, and
introduces three different formalisms of the theory, the metric formalism, the formalism
of non-coordinate bases, and finally the Cartan formalism. The first one will serve to
introduce some basic concepts of GR, while the other two will be used throughout the
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text. In section 3 the Lie groups of relevance to non-relativistic gravity, their algebras,
and related curvatures are derived from the Poincaré group. Section 4 sets the physical
expectations for our results by discussing Galilean gravity as limits of general relativity
for particles. In section 5 the classification of p-brane Galilean spacetimes is carried
out in two different languages, and section 6 discusses the relevant realizations of these
spacetimes as theories of gravity. Finally, conclusions and outlook are presented.

1.1 On Notation

Before we begin, some general notes on the notation used throughout the paper are given.
Because we attempt to bridge the gap between the mathematics and physics perspectives
on the classification, notation may be varied. We make our best attempt to point out any
inconsistencies that might occur, as well as to link the two notations with each other.

Throughout the text, several different kinds of indices are used, with the type of index
generally related to the type of object in the following manner:

• Greek indices µ, ν, etc. correspond to objects that are “curved”, i.e. relate to the
base manifold M

• Capital Latin indices with “hats” Â, B̂, etc. are called “flat” or “internal” indices,
and refer to things that live on the tangent bundle (or in the tangent space). These
indices range over all dimensions of the tangent space A = {0, . . . , D − 1},, or
equivalently any space or bundle that can be reached via isomorphism from the
tangent one,

• Lower case Latin indices i, j, etc. correspond to the spatial (or “transversal”) com-
ponents of the flat indices, i.e. for particles Î = {0, i}, where i = {1, ..., D − 1},
while for general p-branes we have Î = {0, . . . , p, i}, with i = {p+ 1, . . . , D − 1},

• Capital Latin indices I, J, etc. correspond to the longitudinal components of the
tangent bundle, i.e. for particles only a single index, I = 0, or for p-branes Î =
{I, p, . . . , D − 1}, with I = {0, . . . , p}.

Capital E Â
µ is generally used for the vielbein in the general relativity case, while lower

case eaµ is used for the spatial vielbein in the non-relativistic case.
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Chapter 2

Formulations of General Relativity

Like most fundamental theories, general relativity can be described using multiple dif-
ferent, but equivalent formulations. This section will give a basic overview of the most
common formulation, the metric formulation, and then introduce two other formulations
that will be used extensively in this work, the formulation of non-coordinate bases, and
the Cartan Formulation. We will also discuss the difference between the usual metric
second-order formalism, and the Palatini, or first-order formalism of general relativity.

Why do we want to study different formulations of general relativity? Richard Feynman
said in his nobel lecture in 1965:

There is always another way to say the same thing that doesn’t look at all
like the way you said it before. I don’t know what the reason for this is. I
think it is somehow a representation of the simplicity of nature? Perhaps a
thing is simple if you can describe it fully in several different ways without
immediately knowing that you are describing the same thing.

Richard Feynman, 1965

Of course, Feynman was talking about electrodynamics, rather than general relativity. To
him, the fact that many different representations of the theory exist was a hint signifying
the fundamentality of the theory. We can make the same argument for GR. Of course,
the different formalisms can suggest different paths to further study - they’re essentially
different viewpoints, offering different tools to tackle problems. What might seem obvious
in one viewpoint might be completely hidden in another.

2.1 The Metric Formalism

The most common way to formulate general relativity is by starting with the metric
tensor gµν as the sole dynamical object of the theory. It is useful here to recall that the
Christoffel symbols are given in terms of the metric by

Γρ
µν =

1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (2.1)

To construct an action from the metric, we need to find a covariant scalar quantity that
can be interpreted as the Lagrangian density of the theory. This cannot be done using

4



Iisakki Rotko §2.1 The Metric Formalism

only the metric and it’s first derivatives (in the form of the Christoffel symbols), but
rather we have to introduce the Riemann curvature tensor

Rσ
ρµν = ∂[µΓ

σ
ρν] + Γλ

ρ[νΓ
σ
|λ|µ], (2.2)

where the square brackets denote anti-symmetrization, i.e.

Γλ
ρ[νΓ

σ
|λ|µ] = Γλ

ρνΓ
σ
λµ − Γλ

ρµΓ
σ
λν . (2.3)

The Riemann curvature is often contracted in two ways, corresponding to the Ricci tensor
and scalar

Rµν = Rλ
µλν , R = gµνRµν . (2.4)

The Ricci scalar turns out to be the simplest covariant scalar in Riemannian geometry,
and we can proceed to write down the (Einstein-)Hilbert action (presented here with zero
cosmological constant)

SEH =
1

2κ

∫
ddx
√−gR (2.5)

where κ = 8πGN , with GN Newton’s gravitational constant, and g is the metric determi-
nant. It should be noted that R ∼ ∂Γ ∼ ∂2g, and thus our action is written in terms of
up to second derivatives in the metric.

The variation of (2.5) yields

δS =
1

2κ

∫
ddx

(√−gδgµνRµν + δ(
√−g)R

)
(2.6)

=
1

2κ

∫
ddx

(√−gRµνδg
µν − 1

2

√−ggµνRδgµν
)

(2.7)

=
1

2κ

∫
ddx
√−g

(
Rµν −

1

2
gµνR

)
δgµν . (2.8)

Requiring that this variation equals zero yields the Einstein equation

Rµν −
1

2
gµνR = 0. (2.9)

In the case of non-zero cosmological constant, the same process can be repeated identically.

In order to couple matter to general relativity, we can introduce an arbitrary extra term
SM in the action (2.5). The variation of this term can then be considered separately from
the variation of the rest of the action, creating an additional term in the equations of the
motion (2.9)

δSM

δgµν
:= T µν , (2.10)

where T µν is called the stress-energy tensor.

Note that now the constant 1
2κ

√−g has to be retained in the equation of motion, but
we can move this to the right hand side as well, making the equation of motion in the
presence of matter

Rµν −
1

2
gµνR = − 2κ√−gT

µν . (2.11)

Often it is convenient to absorb the constant − 2κ√
−g

into the definition of T µν .
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2.2 The Palatini Formalism

In metric formalism, the metric is taken to be the only dynamical field. In the Palatini
(or sometimes first order) formalism this assumption is changed, and the metric gµν and
the affine connection Γρ

µν are taken to be independent of each other. Moreover, the
connection is assumed to be torsion free, meaning

Γρ
µν = Γρ

νµ. (2.12)

The action then remains the same as in (2.5), with the connection entering through the
Ricci scalar R(g,Γ) := gµνRµν(Γ).

SP =
1

2κ

∫
ddx
√−ggµνRµν(Γ). (2.13)

Varying this action with respect to gµν still yields the Einstein equation (2.9), while
varying with respect to Γρ

µν one finds

δS

δΓρ
µν

=
√−ggµν∇[ρΓ

ρ
ν]µ = 0. (2.14)

Integrating this by parts, we find that

0 = −∇[ρ

(√−ggµν)Γρ
ν]µ, (2.15)

which we can, in turn, write out and subsequently simplify the coefficient of Γρ
νµ by

contracting with gµν

0 = −gµν
[
(∇ρ

√−g)gµν +√−g(∇ρg
µν)

]
(2.16)

=
√−g

[
gµνg

λµgσν(∇ρgλσ)−
1

2
gµνg

µνgλσ(∇ρgλσ)

]
(2.17)

=
1

2

√−ggσλ(∇ρgσλ) (2.18)

= (∇ρ

√−g). (2.19)

Plugging this back in to equation (2.16), we find

√−g∇ρg
µν = 0, (2.20)

which is nothing but the statement that the connection Γ is metric compatible.

2.3 Non-Coordinate Bases

Although the metric formulation of GR is the most popular one, it has a glaring weakness
- spinors cannot be coupled to this formalism. Since spinors form much of the basis for
modern physics, the source of interest in formulations of general relativity that they can
couple to is evident. Among other things, coupling to spinor fields is one of the advantages
of formulating GR in terms of a non-coordinate basis. For a treatment of this formalism,
see for example [20, app. J].
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Even though the formalism of non-coordinate bases does not introduce much of the math-
ematical structure that the Cartan formalism does, it is still unequivocally powerful. In
fact, in order to work with non-coordinate bases, it is not necessary to introduce any
bundles in addition to the usual tangent and co-tangent bundles TM and T ∗M .

The conventional basis for the tangent bundle TM of a manifold M is given by the local
coordinate derivatives {

∂

∂xµ
:= ∂µ

}
. (2.21)

However, as is evident from some basic examples, this basis is usually not orthonormal.
However, since TM is a vector bundle, it is possible to select a different, orthonormal
basis

{EÂ} , (2.22)

where we require that EÂ are orthonormal in the sense that

g(EÂ, EB̂) = ηÂB̂. (2.23)

We can then write the original basis of coordinate derivatives in terms of the EÂ as

∂µ = E Â
µ EÂ. (2.24)

The coefficient EÂ
µ is called the vielbein1 or tetrad. We can relate the metric to the

vielbeine by

gµν = g(∂µ, ∂ν) = E Â
µ E B̂

ν g(EÂ, EB̂) = E Â
µ E B̂

ν ηÂB̂. (2.25)

Finally, we wish to introduce the spin connection. The derivative of a vector v in TM is
given by

∇v = ∇(vÂEÂ) (2.26)

= (dvÂ)EÂ + vÂ∇EÂ. (2.27)

Defining the connection coefficients Ω B̂
Â

by

∇EB̂ = ΩÂ
B̂
EÂ, (2.28)

and substituting into (2.27) we find

∇(vB̂EB̂) = (∂vB̂)EB̂ + vB̂ΩÂ
B̂
EÂ (2.29)

=⇒ ∇vÂ = dvÂ + ΩÂ
B̂
vB̂. (2.30)

Since a change of basis should not change any results, we can compare this expression
with that in terms of the coordinate basis, where the corresponding derivative is given by

∇ρ(v
µ∂µ) = (∂ρv

µ + Γ µ
νρ vν)∂µ (2.31)

= (∂ρv
µ + Γ µ

νρ vν)E Â
µ EÂ. (2.32)

1The name changes in different numbers of dimensions: in 4 dimensions EÂ
µ is called the vierbein, in

2 the zweibein, and so on.
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This should equal our previous expression

∇(vµE Â
µ EÂ) =

[
∂(vµE Â

µ ) + ΩÂ
B̂
vµE B̂

µ

]
EÂ. (2.33)

Comparing the two expressions gives us an expression for the Christoffel symbols in terms
of the connection coefficients ΩÂ

B̂
:

Γ µ
νρ E Â

µ = ∂ρE
Â

ν + Ω Â
ρ B̂

E B̂
ν , (2.34)

or using the inverse vielbein Eµ

Â
, defined by

Eµ

Â
E B̂

µ = δB̂
Â

and Eµ

Â
EÂ

ν = δµν , (2.35)

we can write the Christoffel symbols as

Γ µ
νρ = Eµ

Â
∂ρE

Â
ν + Eµ

Â
Ω Â

ρ B̂
E B̂

ν . (2.36)

To write the action (2.5) in terms of the frame fields E Â
µ , we take the conversion

gµν = E Â
µ E B̂

ν ηÂB̂ from equation (2.25). Then g becomes

det(gµν) = det(E Â
µ E B̂

ν ηÂB̂) = − det(E Â
µ E B̂

ν ) := −E2.

By substitution, (2.5) is then given by

S =
1

2κ

∫
ddxER (2.37)

=
1

2κ

∫
ddxEEµ

Â
E ν

B̂
R ÂB̂

µν , (2.38)

where R ÂB̂
µν is the Riemann curvature tensor, given in terms of the spin-connection Ω ÂB̂

µ

by

R ÂB̂
µν = 2∂[µΩ

ÂB̂
ν] − 2Ω B̂Ĉ

[µ Ω Â
ν] Ĉ

. (2.39)

The action (4.1) is invariant under general coordinate transformations, as well as local
Lorentz transformations [9].

We can vary the action (2.38) with respect to the two separate dynamical fields E Â
µ and

Ω ÂB̂
µ :

δS
δEµ

Â

=
E

κ

(
R ÂB̂

µB̂
− 1

2
E Â

µ R B̂Ĉ
B̂Ĉ

)
(2.40)

δS
δ
(
∂ρE

µ

Â

) = 0 (2.41)

δS
δΩ ÂB̂

µ

=
2E

κ

(
E

[µ

Â
E

ρ]

Ĉ
Ω Ĉ

ρ B̂

)
(2.42)

δS
δ
(
∂ρΩ ÂB̂

σ

) =
E

2κ
E

[ρ

Â
E

σ]

B̂
(2.43)

8
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From this we find the equations of motion to be

R ÂB̂
µB̂

− 1

2
E Â

µ R = 0 (2.44)

and

0 = 2

(
E

[ρ

Â
E

ν]

B̂
Eµ

Ĉ
+

1

2
Eν

Â
Eρ

Ĉ
Eµ

B̂

)
∂[µE

Ĉ
ν] −

− 2E
[µ

Ĉ
E

ρ]

[Â
Ω Ĉ

µ B̂]

(2.45)

We can write (2.45) as

R Ĉ
Ĉ[Â

Eµ

B̂]
+

1

2
Eµ

Ĉ
R Ĉ

ÂB̂
= 0. (2.46)

It is clear that (2.44) is the Einstein field equation in terms of the frame fields. The
interpretation of (2.46) is not immediately clear, but we can use it to find

R Â
µν = 0. (2.47)

This equation can be used to solve for the spin-connection Ω AB
µ in terms of the vielbein

E A
µ . The solution is given by

Ω ÂB̂
µ = −2Eρ[Â∂[µE

B̂]
ρ] + E

µĈ
EρÂEνB̂∂[ρE

Ĉ
ν] . (2.48)

If we introduce a matter term SM to the Lagrangian this changes since the right-hand
sides will gain a current term,

T Â
µ =

κ

E

δSM

δEµ

Â

(2.49)

for (2.44), and

Jµ

ÂB̂
=

κ

E

δSM

δΩ ÂB̂
µ

(2.50)

for (2.46). The solution for R Â
µν in equation (2.47) in this case will be proportional to

the current Jµ

ÂB̂
. The full details of this can be found in [9].

2.4 The Cartan Formalism

Over the course of the early 20th century, Cartan developed a new language for differential
geometry - that of principal bundles. While general relativity is often still taught using
the original notation that Einstein used to develop the theory, Cartan’s formulation allows
for the use of the powerful tools that differential geometry offers. In many contexts, these
tools can prove incredibly useful.

Physically speaking, why be interested in such a theory? Einstein gives us the answer
- he is quoted saying “There is much reason to be attracted to a theory with no space
and no time. But nobody has any idea how to build it up.”[21, p. 787] It could be said
that the Cartan formalism (or Einstein-Cartan theory) is precisely this theory, since it

9
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explains, using geometric tools, why a metric exists at all. When developing his formalism,
Cartan’s main innovation was to write general relativity in terms of a reduction of the
frame bundle, rather than in terms of tensor calculus.

This section introduces the concepts that will be employed in the ultimate classification
of Galilean and Carrollian spacetimes in section 5. We’d like to direct readers interested
only in the classification to that section, or [7], where G-structures are discussed in this
context for particle spacetimes.

The Cartan formalism of general relativity is partially formulated in terms of some of the
same objects as the formalism of non-coordinate bases discussed in the previous section.
However, while the previous section does discuss the vielbeine, it doesn’t introduce any
bundles beyond the “usual” tangent and cotangent ones. This section formalizes the
methods of the previous section by building extra mathematical structure on the base
manifold M . Let us then first relate the two formalisms by relating the two ways they
discuss frames.

Let M be a smooth manifold, with p ∈M some point in it. Since the tangent space to M
at p, TpM , is a vector space, we can then establish a basis on it by considering a frame

Definition 2.4.1. A frame u at p is an isomorphism

u : Rn → TpM. (2.51)

We can indeed use this to define a basis for TpM , by taking the image u(eI) of the
basis vectors eI of Rn under u. The set of all frames at a particular point is denoted
by FpM , and called the frame space at p. Since different bases in Rn are related by
GL(n,R)-transformations, the elements of FpM , because they are frames, are as well. In
the subsequent discussion (and indeed throughout much of this work) we will use V as
notation for Rn, rather than for an arbitrary vector space.

Analogously to the tangent bundle TM , we define the frame bundle FM as the disjoint
union of frame spaces over all points in M , i.e.

FM =
⊔
p∈M

TpM. (2.52)

We then define

Definition 2.4.2. Let s : M ⊃ U → FM be a local section of the frame bundle. Then a
local moving frame or inverse vielbein2 Eµ

Â
is given by

EÂ = Eµ

Â
∂µ = s(p)(eÂ). (2.53)

Note that for two overlapping coordinate charts U, V on M , the vielbeine on U and V
are related on their overlap by GL(n,R)-transformations. Let G be some subgroup of
GL(n,R). In fact, we usually take G to be the (defining) representation of some group
on V. Here it is possible to exploit Cartan’s idea - we restrict the frames we consider to
a subset of those in FM , specifically to those related on overlaps by G-transformations
instead of GL(n,R) ones.

2In [7] this is called the vielbein. However here we adopt the physics convention of calling Eµ

Â
the

inverse vielbein, and its dual E Â
µ the vielbein.
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Iisakki Rotko §2.4 The Cartan Formalism

Definition 2.4.3. Let G be a subgroup of GL(n,R). At a point p ∈ M , the restriction
of frames to those related by G-transformations gives a subset Pp ⊂ FpM . The disjoint
union P =

⊔
p∈M Pp is a subset of FM , and the original GL(n,R)-bundle is reduced to a

principal G-bundle P . This reduction is called a G-structure.

We can project down from the reduced frame bundle P to the base manifold M in a
canonical way, by defining the map

π : P →M

Pp ∋ u 7→ p.
(2.54)

We will denote the G-structure as the reduced frame bundle P , together with the projec-
tion π, and the base manifold M , or more concisely as P

π−→M .

In order to relate this discussion to that of the section on non-coordinate bases, we want
to express the vielbein in the Cartan formalism. This is possible by considering the
tangent space TuP to P at some particular frame u ∈ P (points in P being frames),
since elements of this tangent space describe the way that the frame changes as we move
around the manifold, which is precisely the purpose of the vielbein of the previous section.
Similarly to π, we can canonically project down from TuP to TpM by the push-forward
of π

dπ : TuP → TpM

Xu 7→ Yp,
(2.55)

where Yp is some tangent vector to M at p. From here, it is possible to find the vector in
Rn corresponding to Yp (relative to the frame u) by inverting u. The composition of u−1

and dπ then lets us send tangent vectors to P to vectors in Rn. This defines an Rn-valued
one-form θ on P which we call the solder form associated to the G-structure. Explicitly
θ is given by

θu(Xu) = u−1(dπXu). (2.56)

In terms of the components θÂ of θ, we can write the vielbein as

EÂ = EÂ
µ dx

µ (2.57)

= s∗(θÂ) (2.58)

= θÂs(p)(ds(p)(v)) (2.59)

where v ∈ TpM . In the previous expression, the local section s restricts our solder form to
some local coordinate chart U ⊂M . Thus the vielbein is precisely the local expression for
the solder form. Since it is typical in physics to always work within some local chart, it is
usual to only discuss this local expression, as in the previous section. Following this way
of thinking, in the Cartan formalism the vielbein is often introduced as an isomorphism

E : TxM → V. (2.60)

From this we simply recover the same object as before, but without worrying about global
properties as much. In fact this way of considering things is in thinking closer to that of
the subsection on non-coordinate frames.

11
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dπ

M
u Rn

FM

TuP

π

θu

TpM
p

P

u ∈ P

Figure 2.1: Relations between the spaces M , FM , Rn, via the maps u, π, and θu.

The way that the different spaces we have introduced are related is portrayed in figure
2.1.

Note that with respect to the basis eÂ of V, θÂ define the canonical dual basis, since

s∗(θÂ)(XB̂) = δÂ
B̂
for a local frame s = (X1, ..., Xn), or equivalently

Eµ

Â
E B̂

µ = δJI Eµ

Â
E Â

ν = δµν , (2.61)

which is precisely the same expression as in the formalism of non-coordinate bases.

2.4.1 The Spin-connection

So far, we have introduced the reduction of the frame bundle P . By definition, P is
a vector bundle over M , with each fibre V = Rn. We are free to split the dimension
n = p+ q, with p and q such that the signature of the space (and by extension the metric
⟨·, ·⟩η or ηÂB̂) match our purposes. Additionally, we defined the soldering form θ : P → V
which, in a sense, solders the additional bundle P to the tangent space TM , and by
extension to V.

Next, we want to introduce the spin-connection. A spin-connection ω, commonly referred
to as the Ehresmann connection in mathematical texts, is a one-form taking values in
the Lie algebra g associated to G. Because the groups of interest should be formulated
as a subgroup of GL(V), we will most often directly consider ω to take values in the
representation of g on Rn, dρ.

We can define the spin-connection as follows. We start with a local, one-form valued,
metric connection ω B̂

Â
on the bundle P . The covariant derivative with respect to the

12
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connection, ∇3 is given analogously to equation (2.30) by

∇vÂ = dvÂ + ωÂ
B̂
vB̂. (2.62)

Since the connection is metric,

∇ηÂB̂ = ωÂ
Ĉ
ηĈB̂ + ωB̂

Ĉ
ηÂĈ = 0. (2.63)

This, upon inspection, reveals that in fact the connection ωÂ
B̂

takes values in the Lie

algebra g. For example, in the case where ηÂB̂ is the Minkowski metric, g is the Lorentz
algebra, and since the Lorentz algebra is given by{

X ∈ GL(4,R) | ηX +XTη = 0
}
, (2.64)

which is precisely the condition we have recovered.

Equivalently (and more commonly in the physics literature), we can start with the knowl-
edge that the spin-connection should take values in the Lie algebra. We then introduce
the structure group connection Ω. Mathematically, we write this in terms of the pullback
of the vielbein E∗ and the spin-connection as

Ω := E∗ω. (2.65)

This can be expanded in terms of a local co-basis dxµ as

Ω = Ωµdx
µ, (2.66)

where Ωµ is the object that is usually called the structure group connection in physics
texts. We can write Ωµ down in terms of the generators of (which also form a basis for)
the Lie algebra. In the case of general relativity, we introduce a basis JÂB̂ = −JB̂Â for

the Poincaré algebra. We then define the spin-connection ω ÂB̂
µ as the coefficients that

yield the structure group connection, i.e.

Ωµ = ω ÂB̂
µ JÂB̂. (2.67)

Since the Lorentz generators JÂB̂ are anti-symmetric, i.e. JÂB̂ = −JB̂Â, the spin-
connection has to cancel this symmetry. Then, for any anti-symmetric generator we
have a corresponding anti-symmetric spin-connection ω ÂB̂

µ = −ω B̂Â
µ .

How does the Cartan formalism relate to the usual Metric one? In terms of the soldering
form, we can write the metric in the way introduced for non-coordinate bases in equation
(2.25). The other important (and possibly dynamic) variable in GR is the affine connec-
tion. We can relate it to the spin-connection in a simple way. First, we introduce the
torsion, given by

T Â := ∇θÂ = dθÂ + ωÂ
B̂
θB̂, (2.68)

or in index-free notation

Θ := dθ + ω ∧ θ. (2.69)

We may require that the torsion of our spin-connection ωÂ
B̂
be zero, which restricts our

chosen spin-connection. In fact this restriction is maximal, and the requirement T Â = 0
uniquely selects the spin-connection to equal the affine connection [22].

3Notation in differential geometry is famously varied. This is often denoted dω
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Chapter 3

Relevant Lie Groups and Their
Algebras

Having discussed general relativity, the natural group theoretical starting point is the
Poincaré group. Since we wish to develop theories that arise in various limits of GR, we
want to study the relationship between the Poincaré group and the groups of symmetries
of those theories. Some relationship should exist, since the symmetries themselves should
result through a limit of the symmetries of GR. However, a simple limiting procedure
does not accomplish this, and we need to do a little more work.

In the example of the Galilei group, it is well known that in Newtonian gravity time
is universal. In general relativity this is famously not the case. Therefore we need to
somehow separate symmetries related to time from the other symmetries of GR. The
desired effect can be accomplished by scaling some components of the generators of the
Poincaré group with a dimensionless contraction parameter and then performing a limit
with respect to that contraction parameter. Such a process is called an İnönü-Wigner
contraction. In a simple example, suppose we have a group with generators X1, X2, and
X3, and the commutation relations between them

[Xi, Xj] = Xk, i, j, k ∈ 1, 2, 3 (3.1)

We can take some contraction parameter λ, and redefine the generators with factors of λ.
For instance, let

Y1 = λX1, Y2 = λX2, Y3 = X3. (3.2)

The commutation relation with i = 1, j = 2, k = 3 becomes

[
1

λ
Y1,

1

λ
Y2] = Y3 (3.3)

=⇒ [Y1, Y2] = λ2Y3, (3.4)

while the commutation relations for any other combination remain the same. We can
then perform a limit, for instance with λ→ 0, to recover a different group structure.

Let us first discuss the Poincaré group, and then the Carroll and Galilei groups as con-
tractions. In the final part of this section, we will discuss the generalization of the Galilei
and Carroll groups for the extended objects of interest.

14



Iisakki Rotko §3.1 Poincaré Group and Algebra

3.1 Poincaré Group and Algebra

The Poincaré group and algebra are particularly well studied in theoretical physics, since
they form the backbone of Einstein’s special theory of relativity. Specifically, the Poincaré
group is the group of isometries of Minkowski spacetime, i.e. the Lorentz group, together
with spacetime translations. We can describe the Poincaré group via the basis of gener-
ators; PÂ and JÂB̂ for spacetime translations and Lorentz transformations respectively.
These generators obey the following non-zero commutation relations

[PÂ, JB̂Ĉ ] = 2ηÂ[ĈPB̂], (3.5)

[JÂB̂, JĈD̂] = 4η[Â[D̂JĈ]B̂], (3.6)

with all other commutators being zero. In the defining matrix representation, the group
of dimension n is given by matrices of the form

GP =

{(
A v
0 1

) ∣∣∣∣ A ∈ O(1, n− 2),v ∈ Rn−1

}
, (3.7)

with the corresponding algebra

p =

{(
A v
0 0

) ∣∣∣∣ A ∈ so(1, n− 2),v ∈ Rn−1

}
. (3.8)

Here, the matrices A form the Lorentz group, and the vectors v describe spacetime transla-
tions. As already seen in the previous section, we can write the structure group connection
Ωµ in terms of the generators PÂ and JÂB̂ as

Ωµ = Ω ÂB̂
µ JÂB̂, (3.9)

where the field Ω AB
µ is the gauge fields associated to the generators JÂB̂. When studying

general relativity, we already saw that the gauge fields are instrumental for describing the
theory. This pattern will repeat later when we are studying the gravitational theories in
sections 4 and 6. In addition, the corresponding gauge fields of the p -brane Galilei and
Carroll groups are a key ingredient for the classification in section 5. A decomposition
similar to that in equation (3.9) will be done for the case of every group.

Finally, we want to introduce the curvature associated to an algebra. The curvature is
described by a Lie algebra valued 2-form, usually denoted by R in physics texts, and
somewhat confusingly by Ω in some mathematics ones. Here we will stick to calling the
curvature R. It is given by

R = dω +
1

2
ω ∧ ω, (3.10)

where ω is the spin-connection. We can write the formula (3.10) in indices as the already
familiar quantity

R ÂB̂
µν = 2∂[µω

ÂB̂
ν] − 2ω B̂Ĉ

[µ ω Â
ν] Ĉ

. (3.11)

In cases where more than one generator is required to describe the algebra - like in
the following subsections - a different curvature can be associated with each generator.
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Readers with a keen eye might have already spotted that there is a curvature missing.
This would be that constructed from translations, given by

T Â
µν = 2∂[µE

Â
ν] − 2ω Â

[µ B̂
E B̂

ν] , (3.12)

where the vielbein E Â
µ has been interpreted as the gauge field associated to translations.

However, rather than looking like a curvature, equation (3.12) looks like a torsion 2-form,
defined by

Θ = dE + ω ∧ E. (3.13)

In the following sections on various groups and algebras, we will include these terms as
well, labeling them as torsion tensors1.

3.2 Carroll Group and Algebra

As mentioned previously, both the Carroll, and the Galilei algebras can be obtained as
İnönü-Wigner contractions of the Poincaré algebra. In particular, we want to scale the
relevant generators of the algebra with powers of a dimensionless contraction parameter2

c. It should be emphasized that the contraction parameter should be dimensionless. This
is reconciled with a limit in a physical sense by interpreting c as a ratio of the physical
speed of light to some other reference speed, in comparison to which the speed of light
becomes large. To match the future separation of the vielbein EA

µ into a time and space
components τµ and eAµ , we split, and then re-scale the generators of the Poincaré algebra
in the following way:

P0 = cH, Pa = Pa,

J0a = cGa, Jab = Jab,
(3.14)

where H generates time-translations, and Ga generate boosts. The brackets of the
Poincaré group, when the limit c→∞ is taken, become

[Pa, Gb] = δabH, [Pc, Jab] = −2δc[aPb] (3.15)

[Gc, Jab] = −2δc[aGb], [Jab, Jcd] = 4δ[a[d]Jc]b] (3.16)

Similarly to what was presented for the Poincaré group, we can write down the Carroll
in its defining matrix representation as

GC =

{(
1 vT

0 A

) ∣∣∣∣ v ∈ Rn−1, A ∈ O(n− 1)

}
, (3.17)

with the corresponding algebra

c =

{(
0 vT

0 A

) ∣∣∣∣ v ∈ Rn−1, A ∈ so(n− 1)

}
. (3.18)

1In super-gravity literature it is not uncommon for these to also be labeled as curvatures.
2In literature it is quite common to find the contraction parameter called ω instead, to separate it from

the physical speed of light. Here we elect to not do this since ω is also used to denote spin-connections.
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In equation (3.17), the matrices A are interpreted as the transversal rotations, while v
form the Carroll boost component of the group. The structure group connection for the
Carroll algebra can be written as

Ωµ = ω ab
µ Jab + ω a

µ Ga. (3.19)

Finally, the curvatures are given by

Tµν = 2∂[µτν] − 2ω a
[µ eν]a, (3.20)

T a
µν = 2∂[µe

a
ν] − 2ω ab

[µ eν]b, (3.21)

R a
µν (G) = 2∂[µω

a
ν] − 2ω ab

[µ ων]b, (3.22)

R ab
µν (J) = 2∂[µω

ab
ν] − 2ω bc

[µ ω a
ν] c, (3.23)

where the first two torsion tensors are those associated to time translations and spatial
translations respectively.

3.3 Galilei Group and Algebra

The appropriate rescalings of the Poincaré algebra for the Galilean case are

P0 = c−1H, Pa = Pa,

J0a = cGa, Jab = Jab.
(3.24)

Comparing with the corresponding scalings for the Carroll algebra (3.14), we see that the
factor c for the time-translations in the Carroll case has been exchanged to a factor c−1.
This is to be expected, since we tend to discuss the Galilei limit as the c → ∞ limit of
general relativity, and the Carroll limit the c→ 0 limit.

The exchange in the power of the scaling factor transforms the usual Lorentzian lightcone
in the opposite way to the Carroll case; instead of closing up to become a line, it opens
up to form a (hyper)plane of equal universal time. This difference is illustrated in figure
3.1. These hyperplanes foliate the entire manifold, as one would expect for a conventional
Newtonian view of the universe.

Performing the c→∞ limit, we find the following (usual) commutation relations

[Jbc, Pa] = 2δa[cPb], [Jab, Jcd] = 4δ[a[dJc]b], (3.25)

as well as

[Jab, Gc] = 2δc[aGb], [H,Ga] = Pa. (3.26)

The second commutation relation of equation (3.26) points to the fact that under Galilean
boosts, time is sent to space, but space does not get sent to time.

In the defining matrix representation, we can write the Galilei group GG as the matrices
that preserve the Euclidean metric on the spatial leaves of equal universal time, which
form O(n− 1), together with boosts from time to space, which can be represented either
as a vector in Rn−1, or a map

v : R→ Rn−1, (3.27)
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Figure 3.1: The effect of the limiting procedure leading to Carrollian and Galilean space-
times on the usual GR lightcones. For the Carrollian case, the lightcone closes up to a
“time-like” line, while for the Galilean case it opens up to a purely spacial hyperplane.

where R represents the 0-component of the spacetime, i.e. the time component.

Thus the representation of the Galilei group is given by

GG =

{(
1 0T

v A

) ∣∣∣∣ v ∈ Rn−1, A ∈ O(n− 1)

}
, (3.28)

with the corresponding algebra

g =

{(
0 0T

v A

) ∣∣∣∣ v ∈ Rn−1, A ∈ so(n− 1)

}
. (3.29)

The structure group connection Ωµ can be written as

Ωµ = ω ab
µ Jab + ω a

µ Ga. (3.30)

Finally, the curvatures associated to the Galilei group are

Tµν = 2∂[µτν], (3.31)

T a
µν = 2∂[µe

a
ν] − 2ω ab

[µ eν]b − 2ω a
[µ τν], (3.32)

R a
µν (G) = 2∂[µω

a
ν] − 2ω a

[µ bω
b

ν] , (3.33)

R ab
µν (J) = 2∂[µω

ab
ν] − 2ω a

[µ cω
cb

ν] . (3.34)

Upon comparison between the curvatures of the Galilei group and the Carroll group, it is
apparent that the boosts act a different way between the two groups.

Next, we will present the generalization of the last two groups for p -branes.
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3.4 p -Brane Galilei and Carroll Groups

The groups that were previously discussed are no longer sufficient when considering ex-
tended physical objects, such as strings or membranes. This is a result of the fact that the
additional dimensions to which these objects extend into carry different kinds of symme-
tries than the other “regular” spatial dimensions. Conventionally, we term the direction
of extension together with time “longitudinal”, while calling the usual spacial dimensions
“transversal”. Because of the inclusion of time as a longitudinal dimension, and the boosts
(in the Galilei case) take longitudinal dimensions to transversal ones.

Although the Galilei and Carroll groups are different, we will define them here in one
go by utilizing characteristic fields. In terms of these tensor fields, the two groups are
separated by signature, with the signature of one component being Minkowski, and the
other Euclidean. The groups are then separated by an exchange of which component has
which signature, together with a change in the direction that the boosts act. When left
signature agnostic, the characteristic tensor fields define both groups congruently, with
one assignment of signatures resulting in the Galilei group, and the other in the Carroll
group. This is in line with the rest of the work - we can characterize the geometries
generated by both of these groups at the same time precisely because in what follows, we
will choose to work without reference to signature.

The Galilei (and equivalently Carroll) group is the subgroup of the general linear group,
that leaves invariant the non-degenerate tensor fields δ and η, with

δ ∈ ⊙2W, η ∈ ⊙2 AnnW, (3.35)

where AnnW denotes the annihilator of W , and ⊙ is the symmetric product. We have
also associated the group to the vector space V := Rn that it is to act on. V can be
broken down to two components (this step will be elaborated on in section 5)

V = V ⊕W. (3.36)

In the case of the Galilei group, V would be the longitudinal, and W the transversal
component of V, however, since we wish to not fix our signature, for now we will leave
these subspaces arbitrary. The elements g ∈ GL(V) that preserve η and δ are those that
comprise SO(η) and SO(δ) respectively. In addition to these components, we want one-
way boosts that send, in the Galilei case, longitudinal components to transverse ones. In
the Carroll case, boosts should act the opposite way. Thus the remaining subgroup of
GL(V) is

G =

g =

(
A 0
B C

)
∈ GL(V)

∣∣∣∣∣∣
A ∈ SO(η)
C ∈ SO(δ)
B : V → W

 . (3.37)

Where, for the Galilei group, the tensor field η would carry signature (1, D − 1), while δ
would be of Euclidean signature. For the Carroll group, this is of course vice versa.

As is hinted by (3.37), we can also write the group as a semi-direct product

(SO(1, p− 1)× SO(D − p− 2))⋉R(p+1)(D−p−1). (3.38)
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For another possible description of the group, we can describe both groups by picking a
basis of generators. We pick a generator for each component of the group, that is

{Jab, LAB, GaA} , (3.39)

where, in the Galilean case, Jab = −Jba generates the transversal rotations, LAB = −LBA

the longitudinal Lorentz transformations, and GaA the Galilean boosts. The structure
group connection Ωµ can be written in terms of the generators and spin-connection pa-
rameters ω as

Ωµ = ω ab
µ Jab + ω AB

µ LAB + ω aA
µ GaA. (3.40)

The parameters ω are the spin-connections associated with the various types of transfor-
mations.

The curvatures in the Galilei and Carroll cases are simply generalized to p -branes from
those presented in the sections of the particle groups. For instance, in the Galilean case
we find

T A
µν = 2∂[µτ

A
ν] − 2ω A

[µ Bτ
B

ν] , (3.41)

T a
µν = 2∂[µe

a
ν] − 2ω a

[µ be
b

ν] − 2ω a
[µ Aτ

A
ν] , (3.42)

R aA
µν (G) = 2∂[µω

aA
ν] − 2ω a

[µ bω
bA

ν] , (3.43)

R ab
µν (J) = 2∂[µω

ab
ν] − 2ω a

[µ cω
cb

ν] . (3.44)

In sections 5 and 6, the torsion tensors T A
µν and T a

µν will rise to play a central role.
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Chapter 4

Non-relativistic Gravity

Non-relativistic gravity theories usually occur as different limits of general relativity, with
perhaps the most well-known one of these theories being Newton-Cartan (NC) gravity.
Many other examples exist, although most of them are exotic theories. Although NC
gravity won’t be discussed here, it is still relevant to mention, since it arises as the
resulting gravity from spacetimes with Bargmann symmetries, with the Bargmann group
being the centrally extended Galilei group. Therefore, although Galilei gravity is exotic,
we can move from it towards NC gravity, since the only missing component is the field
mµ that results from the central extension. In order to arrive at NC gravity from general
relativity, the mass conservation field mµ has to either be added “by hand”, or via central
extension, rather than organically appearing in the limit-taking process. Without this
extra ingredient, Galilei gravity is the massless representation of NC gravity, and in some
sense the pure theory resulting from the c→∞ limit of GR. The same caveat discussed in
the previous section regarding the dimensionality of c will apply throughout this section.

The non-relativistic limit of general relativity can be taken via a few different methods.
Namely, the limit can be taken at the level of the equations of motion, or at the level
of the action. Additionally, instead of a pure limit-taking approach, we can consider an
expansion of GR in powers of the dimensionless parameter c, where in the end lower-order
terms are neglected. Although the expansion approach is different from the others, it is
well known that it results in the same theory [23], and won’t be treated here.

4.1 Galilei Gravity For Particles

4.1.1 As a Limit

For the purpose of taking the non-relativistic limit, we wish to recall the action of general
relativity in the formalism of non-coordinate bases. As introduced in section 2 equation
(2.38), the action in vacuum is given by

S =
1

2κ

∫
ddxEEµ

Â
Eν

B̂
R ÂB̂

µν , (4.1)
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where we recall that R ÂB̂
µν is the Riemann curvature tensor, given in terms of the spin-

connection Ω ÂB̂
µ by

R ÂB̂
µν = 2∂[µΩ

ÂB̂
ν] − 2Ω B̂Ĉ

[µ Ω Â
ν] Ĉ

. (4.2)

4.1.2 Galilei Action

To pass onto an action for Galilean gravity, we need to scale the relativistic dynamical
fields of our theory by factors of the contraction parameter c. Physically, it is possible
to interpret c as the speed of light. More properly, c would be the ratio of the physical
speed of light with some reference speed, in comparison to which it grows large. After
the rescaling, we will then proceed to take the limit c→∞.

Since in GR space and time are unified, in order to reach a theory with a difference
between these dimensions we have to break up the vielbein E Â

µ into two parts. The zero
component of the vielbein becomes the time-like vielbein τµ := E 0

µ , while the rest of the
dimensions comprise the spatial vielbein eaµ := E a

µ , with a ranging from 1 to D − 1.

We then introduce the following scaling in terms of the contraction parameter c:

E 0
µ = cτµ, E a

µ = e a
µ ,

Ω 0a
µ =

1

c
ω a
µ , Ω ab

µ = ω ab
µ ,

(4.3)

with Ω ÂB̂
µ the spin-connection of the relativistic Poincaré transformations, and ω ab

µ and
ω a
µ those of the corresponding non-relativistic transformations (spatial rotations and

Galilean boosts respectively). Additionally, we perform a rescaling of the constant κ to

κ→ cκ̄, (4.4)

where the factor c is due to a rescaling of the Newtonian gravitational constant. Depending
on the approach we take to reach the non-relativistic theory, this scaling could be omitted
(it is just an overall scaling of the action after all). In particular, scaling κ is not necessary
in the expansion approach, as it only considers the leading terms, regardless of their power
of c.

In accordance with the Galilei group introduced in the previous section, the vielbeine
transform as

δτµ = λτµ δe a
µ = λa

be
b

µ + λaτµ. (4.5)

The inverse vielbeine τµ and eµa are defined by the relations

τµe
µ
a = 0, τµe a

µ = 0, (4.6)

τµτ
µ = 1, e a

µ eµb = δab , (4.7)

e a
µ eνa = δνµ − τ ντµ. (4.8)

At this point, in physics literature it is conventional to write down the so-called “vielbein
postulates”

0 = ∂µτν − Γ ρ
µν τρ

0 = ∂µe
a

ν + ω a
µ be

b
ν − ω a

µ τν − Γ ρ
µν e a

ρ .
(4.9)
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These can be anti-symmetrized to find

T 0
µν = 2∂[µτν] (4.10)

T a
µν = 2∂[µe

a
ν] + 2ω a

[µ be
b

ν] − 2ω a
[µ τν], (4.11)

where T 0
µν and T a

µν the longitudinal and transversal projections of the torsion

T ρ
µν = 2Γ ρ

[µν] . (4.12)

It should be noted that the statements (4.10) and (4.11) always hold - together they com-
prise the statement that the affine connection∇ with components Γ ρ

µν and the connection

∇̃ with components ω ÂB̂
µ coincide.

With the decompositions and scalings introduced in equation (4.3), the action (4.1) be-
comes

S =
1

2κ̄

∫
ddxe

[
eµae

ν
b

(
2∂[µω

ab
ν] − 2ω bc

[µ ω a
ν] c

)
+

2

c2
τµeνa

(
2∂[µω

a
ν] − 2ω c

[µ ω a
ν] c

)]
,

(4.13)

where e is the determinant over both vielbeine, i.e. e = det(τ, e). Taking the limit
c → ∞, and recognizing 2∂[µω

ab
ν] − 2ω bc

[µ ω a
ν] c as the curvature associated to spatial

rotations, R ab
µν (J), we have

lim
c→∞

S =
1

2κ̄

∫
ddxeeµae

ν
b

(
2∂[µω

ab
ν] − 2ω bc

[µ ω a
ν] c

)
(4.14)

=
1

2κ̄

∫
ddxeeµae

ν
bR

ab
µν (J). (4.15)

From this action, we can derive the dynamics of the system by the principle of least action.
For convenience, we define L = eeµae

ν
bR

ab
µν(J) := eR(J) . The variations of S with respect

to the different dynamical fields give:

δL
δτµ

= e
(
τµR(J) + 2eµaτ

ρR ab
ρb

)
,

δL
δ∂µτν

= 0; (4.16)

δL
δe a

µ

= e
(
eµcR(J) + 2eµae

ρ
cR

ab
ρb

)
,

δL
δ∂µe a

ν

= 0; (4.17)

δL
δω a

µ

= 0,
δL

δ∂µω a
ν

= 0; (4.18)

δL
δω ab

µ

= 4e
(
e
[ρ
[ae

µ]
cω

c
ρ b]

)
,

δL
δ∂µω ab

ν

= 2ee[µae
ν]
b. (4.19)

Using the Euler-Lagrange equation, we then find the equations of motion

τµR(J) + 2eµaτ
ρR ab

ρb = 0 (4.20)

eµcR(J) + 2eµae
ρ
cR

ab
ρb = 0 (4.21)

4ee
[µ

[a e ν]
c ω c

µ b] − 2∂µ

(
ee[µae

ν]
b

)
= 0 (4.22)
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Expanding out the second term of equation (4.22), we find

2∂µ

(
ee[µae

ν]
b

)
= 2 (∂µe) e

[µ
ae

ν]
b + 2e∂µ

(
e[µae

ν]
b

)
(4.23)

= 2e
(
τ ρ∂µτρ + e ρ

c ∂µe
c

ρ

)
e[µae

ν]
b + 2e∂µ

(
e[µae

ν]
b

)
, (4.24)

with the second term of (4.24) in turn being

2e∂µ

(
e[µae

ν]
b

)
= −2e

(
τ [µe

ν]
be

ρ
a(∂µτρ) + τ [νeµ]ae

ρ
b(∂µτρ) (4.25)

+e[µce
ν]
be

ρ
a(∂µe

c
ρ ) + e[νce

µ]
ae

ρ
b(∂µe

c
ρ )

)
(4.26)

Plugging this back in to equation (4.24), and regrouping terms, the final equation of
motion (4.22) is then

4e
[µ
[ae

ν]
cω

c
µ b] + 2τ νeµae

ρ
b∂[µτρ] + 4τµeν[ae

ρ
b]∂[µτρ]+

+ 2eνce
µ
be

ρ
a∂[ρe

c
µ] + 4eµce

ν
[ae

ρ
b]∂[µe

c
ρ] = 0.

(4.27)

The equations of motion (4.20), (4.21) and (4.27), can be refined slightly. Immediately,
combining the first two equations of motion, (4.20) and (4.21), we find

0 = τντ
µR + 2eµaτντ

ρR ab
ρb + e c

ν eµcR + 2e c
ν eµae

ρ
cR

ab
ρb (4.28)

= 3eµaR
ab

νb , (4.29)

from which we see that

R ab
νb = 0. (4.30)

Since this statement only concerns the curvature R ab
µb (J), we interpret this directly as

an equation of motion.

For D > 2 we can also derive other restrictions on the geometry by taking projections of
equation (4.27).

First, taking a longitudinal projection, we find that only the second term contributes,
giving us the geometric constraint

0 = eµ[be
ρ
a]∂µτρ (4.31)

= eρbe
µ
aTρµ (4.32)

= Tba(H), (4.33)

where we interpret the condition Tab = 0 as a constraint on the geometry instead of an
equation of motion, due to the presence of a torsion tensor T instead of a curvature.

The transversal projection along e a
ν yields

0 = −2(D − 3)
(
eµcω

c
µ b + eµbe

ρ
c(∂[µe

c
ρ] )

)
+ 2(D − 2)

(
τµeρb(∂[µτρ])

)
(4.34)

= −2(D − 3)T c
bc + 2(D − 2)T0b, (4.35)

which we can simply rearrange to the form

T0b =
D − 3

D − 2
T c
bc . (4.36)
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Finally, we can project along e d
ν to find

0 = 2eµ[aω
d

µ b] − 2eµae
ρ
b∂[µe

d
ρ] − δd[b

(
eµcω

c
µ a] − 4eρa]e

µ
c∂[µe

c
ρ]

)
− 4δd[be

ρ
a]τ

µ∂[µτρ] (4.37)

= T d
ba + 2δd[bT

c
a]c − 2δd[bT|0|a], (4.38)

which, using equation (4.36), can be written as

=⇒ T d
ba = − 2

D − 2
δd[bT

c
a]c (4.39)

Therefore, the equations of motion (4.20)-(4.21) can equivalently be written as

R ab
νb = 0 (4.40)

Tab = 0 (4.41)

T0b =
D − 3

D − 2
T c
bc (4.42)

T d
ab = − 2

D − 2
δd[aT

c
b]c (4.43)

What are the interpretations of these equations? Equations (4.42) and (4.43) both involve
the spin connection ω ab

µ and can be used to find an expression for the spin connection in
terms of the vielbeine. However, since in both equations the longitudinal components of
the spin connection are projected away, they cannot be solved for, and only the component
ω ab
c can be determined. The expression for this component, with all indices written down,

is

ωcab = eρ[ae
µ
b]∂ρeνc + eρ[ae

ν
c]∂ρeνb + eρ[ce

ν
b]∂ρeνa +

4

D − 3
δc[be

ρ
a]τ

ν∂[ρτν], (4.44)

where ωcab is explicitly anti-symmetric in the last two indices a and b. In (super-)gravity
literature, equations that are used to solve for spin connection (components) are referred
to as conventional constraints [24, 25]. This will also be the language used throughout
section 5.

On the other hand, equations (4.40) and (4.41) are purely constraints on the geometry.
In fact, we can identify (4.41) as the twistless torsion constraint that has been found in
relation to Galilei and Newton-Cartan gravity [9, 26]. We can write the constraint in two
different ways

T 0
ab = 0 ⇐⇒ τ ∧ dτ = 0. (4.45)

From the second formulation it is more clear that this is in fact a condition on integrability.
Namely, the base manifold is foliated by hyperplanes of equal universal time. This means
that all observers can agree on the ordering of events, and in particular on what events
are simultaneous, thus generating slices of simultaneous events on the manifold. Note
that since the totality of time-like torsion T 0

µν has not been set to zero, it is still possible
for there to remain some effects that do not usually appear in non-relativistic theories,
such as time dilation, regardless of the aforementioned foliation.
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Chapter 5

p -brane Galilei Geometry

In this section, it is our desire to classify the different p-brane spacetimes that result from
Galilei and Carrol G-structures. Because this classification can be done in terms of the
torsion of the space, in order to complete the classification we need to simply determine
the different possible torsions that the geometry can have. Since we are free to pick, or
change our connection, the specific interest lies in those parts of the torsion that do not
depend on the choice of connection. This type of torsion we call intrinsic. There are
two similar approaches to classifying the intrinsic torsion - it can be done in the Cartan
language of principal bundles, or in what resembles the formalism of non-coordinate bases.
Although these two “languages” describe largely the same objects, the former approach
allows for a more generalizable, systematic classification, while the latter is faster, and
more convenient for concrete computations. We will refer to the former approach as the
“mathematical perspective”, and the latter as the “physics perspective”, based on the
literature that inspired each approach.

Let us first make some general remarks, and recall some concepts from section 2. First,
as a tensor, we write the torsion as T A

ab , with anti-symmetry in the indices a and b. This
hints at the space that the torsion (when expressed on the manifold) is an element of,

T∇ ∈ hom(∧2TM, TM) ∼= hom(∧2V,V). (5.1)

Where we would like to remind the reader that we are using V as notation for Rn. Here,
we will proceed to break V down to two components

V = V ⊕W. (5.2)

In the case of Galilei spacetimes, V would be termed the “longitudinal” component of V,
and W as the “transverse” one. Note that here we do not yet fix the interpretation of V
or W at all; this is to enable everything that follows to work for both Galilei and Carroll
G-structures. It is important to emphasize that in (5.2) we are making an implicit choice
of V , which is not “natural”, i.e. our choice is made arbitrarily. This choice can be avoided
altogether, and this is the approach adopted in the mathematics part of a paper that is
to appear on Arxiv. However, since we are interested in the physical characterization of
spacetimes, we will proceed with a choice of longitudinal subspace V . Note that we then
work in an explicitly basis dependent way.

With remarks out of the way, let us proceed with the classification, first from the per-
spective of mathematics, and then in that of physics.
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5.1 From the Perspective of Mathematics

Let us establish bases for the two components of V; V = ⟨πA⟩, and W = ⟨πa⟩, where
by ⟨π⟩ we denote the span of π. In what follows, we will adopt the physics convention
and have lowercase Latin indices a, b range over the transversal component of V, and
uppercase ones A,B to range over the longitudinal one.

5.1.1 Torsion and the Spencer Differential

Recall (see section 2.4) that the torsion of a manifold can be described in two different
ways, as a two-form on the sub-bundle P of the frame bundle, with values in the Lie
algebra g, given by

Θ = dθ + ω ∧ θ, (5.3)

or as a tensor on the manifold M

T∇(X, Y ) = ∇XY −∇YX − [X, Y ]. (5.4)

Not much attention was paid to the torsion in section 2, because in GR it is always to
pick a connection with no torsion. However, this is no longer the case for other kinds of
gravitational theories, in particular in the theories of interest here.

Let us define the contorsion κ to be a difference between two connections ω and ω′,

κ = ω′ − ω. (5.5)

Looking at the corresponding difference in torsion, we find that the first term drops out,
giving the difference between the torsions of the connections

Θ−Θ′ = κ ∧ θ. (5.6)

Since this object should be of the same kind as Θ, we can conclude that Θ−Θ′ ∈ Ω2(P,V).
Plugging in two vector fields X and Y on P , Θ−Θ′ reads

(Θ−Θ′)(X, Y ) = κ(X)θ(Y )− κ(Y )θ(X) (5.7)

= (∂κ)(X, Y ). (5.8)

In order to pass from κ to Θ−Θ′, we have defined a map ∂,

∂ : Ω1(P, g)→ Ω2(P,V) (5.9)

κ 7→ ∂κ = κ ∧ θ. (5.10)

The map ∂ in fact descents from a linear map, to which we will interchangeably refer to
as ∂ as well. This map is a special case of a Spencer differential, and is defined by

∂ : Hom(V, g)→ Hom(∧2V,V)
(∂κ)(v, w) = κ(v)w − κ(w)v,

(5.11)

which now sends a map κ : V→ g to ∂κ : ∧2V→ V. In other words, ∂ sends a contorsion
κ to the associated difference in torsion. Since the contorsion is defined by κ = ω−ω′, we
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can describe the Spencer differential as sending a difference in connections to a difference
in their torsions

“∂ : ∇−∇′ → T∇ − T∇′
”. (5.12)

The Spencer differential (5.11) can also be understood as a composite map

V∗ ⊗ g
idV∗⊗ρ−−−−→ V∗ ⊗ V∗ ⊗ V ∧⊗idV−−−→ ∧2V∗ ⊗ V. (5.13)

In the above, the first step assigns to the Lie algebra a representation

ρ : g→ V∗ ⊗ V, (5.14)

and the second on anti-symmetrizes the result in the two copies of V∗. Employing an
isomorphism Hom(V, g) ∼= g⊗ V∗, we can associate to the Spencer differential the exact
sequence

0 −→ ker ∂ −→ g⊗ V∗ ∂−→ V⊗ ∧2V∗ −→ coker ∂ −→ 0 (5.15)

Figure 5.1 equivalently illustrates this exact sequence, with the leftmost space the domain
of the map ∂, highlighting the kernel of the map. The middle space is the codomain,
together with the image of ∂. Finally, the rightmost space presents the cokernel of ∂,
and seeks to highlight the fact that the cokernel is a coset space, with elements being
equivalence classes up to the image of the Spencer differential. Elements of the spaces
involved in the sequence have the following significances:

1. ker ∂: the difference in connection does not result in a difference in torsion.

2. im ∂: torsions which result purely from a difference in connection. In physics (espe-
cially in the field of super-gravity), torsions of this type are referred to as conven-
tional tensors, which can be turned into constraints by enforcing these torsions to
become zero. The equations resulting from the definition of the torsions when this
constraint is enforced can then be used to solve for spin-connections in terms of the
vielbeine.

3. coker ∂: the torsions which cannot result from differences in connection. The tor-
sions that make up the cokernel are termed intrinsic, and can be used to classify
spacetimes associated to G, due to their independence of the choice of connection.

Here it is good to point out that by a pure coincidence in the Galilean (and Carrollian)
case the spaces ker ∂ and coker ∂ are isomorphic.

Let us now proceed to find the structure of the cokernel of ∂. We can begin by inspecting
the transformations of each element of V∗ ⊗ g under the Spencer map. Since the Galilei
and Carroll Lie algebras can be described in terms of the generators Lab, Lαβ, and Baα,
of SO(V ), SO(W ), and the appropriate boosts, respectively, we can focus our attention
on these basis elements to study the structure of the spacetimes the algebras generate.
First, under the aforementioned representation ρ, the basis elements of g are given by

ρ(Lab) = π[b ⊗ Pa] (5.16)

ρ(LAB) = π[B ⊗ PA] (5.17)

ρ(BaA) = −πA ⊗ Pb. (5.18)
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∂

coker ∂ = Hom(∧2V, V )/im(∂)

ker∂

Hom(V, g) Hom(∧2V, V )

Figure 5.1: Spaces under ∂. The final step seeks to illustrate the fact that the cokernel is
a coset space.

We can then find the transformations of elements in V∗ ⊗ g under ∂. These are

∂(πc ⊗ Lab) = πc ∧ π[b ⊗ Pa]

∂(πc ⊗ LAB) = πc ∧ π[B ⊗ PA]

∂(πc ⊗BaA) = −πc ∧ πA ⊗ Pa,

(5.19)

as well as the same ones, but with the transverse index c replaced by a longitudinal one,
C:

∂(πC ⊗ Lab) = πC ∧ π[b ⊗ Pa]

∂(πC ⊗ LAB) = πC ∧ π[B ⊗ PA]

∂(πC ⊗BaA) = −πC ∧ πA ⊗ Pa.

(5.20)

The kernel of ∂ can then be systematically determined

Theorem 5.1.1. The kernel of ∂ is given by ⟨π(B ⊗B|a|A), π[a ⊗Bb]A + πA ⊗ Lab⟩

Proof. The kernel of ∂ is given by those combinations of elements of equations (5.19) and
(5.20) that are sent to zero under the map ∂. We already examined the image of the basis
elements of V∗ ⊗ g under this map. We can then write a generic vector v in V∗ ⊗ g in
terms of the basis as1

v =
1

2
vcab(πc ⊗ Lab) +

1

2
vcAB(πc ⊗ LAB) + vcaA(πc ⊗BaA)+

+
1

2
vCab(πC ⊗ Lab) +

1

2
vCAB(πCLAB) + vCaA(πC ⊗BaA),

(5.21)

where all the coefficients vÂbc and vÂBC of the Lab and LAB terms are anti-symmetric in
the last two indices.

1Here, for clarity we write all indices down. The proper positioning of the indices on the basis would

be of the form πÂ ⊗ TB̂Ĉ and correspondingly πÂ ∧ πĈ ⊗ PB̂ . The index positioning of the coefficients v
should be the opposite.
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In order to find the composition of the kernel, we examine the image of the vector (5.21)
under ∂, and then set it to zero. We then wish to solve the equation

∂v = vcab(πc ∧ πb ⊗ Pa) + vcAB(πc ∧ πB ⊗ PA)− vcaA(πc ∧ πA ⊗ Pa)+

+ vCab(πC ∧ πb ⊗ Pa) + vCAB(πC ∧ πB ⊗ PA)− vCaA(πC ∧ πA ⊗ Pa) = 0,
(5.22)

where we have exploited the aforementioned anti-symmetry of the coefficients to get rid
of the anti-symmetrizations present in equations (5.19) and (5.20).

The above terms can be grouped to reduce the number of terms by one. The remaining
terms are

1. vcab(πc ∧ πb ⊗ Pa),

2. vcAB(πc ∧ πB ⊗ PA),

3. (vCab + vbaC)πC ∧ πb ⊗ Pa,

4. vCAB(πC ∧ πB ⊗ PA),

5. vCaA(πC ∧ πA ⊗ Pa).

We can then set each term to zero separately.

1. vcab(πc∧πb⊗Pa) = 0 implies, by the anti-symmetry of πc∧πb, that v
cab = vbac. How-

ever, using the anti-symmetry of vcab in the last two indices, this sets all components
of vcab to zero,

2. vcAB(πc ∧ πB ⊗ PA) = 0 implies vcAB = 0,

3. (vCab + vbaC)πC ∧ πb ⊗ Pa = 0 implies −vCab = vbaC =⇒ vCba = vbaC ,

4. vCAB(πC ∧ πB ⊗ PA) = 0 implies vCAB = 0 by the same argument as in case 1,

5. vCaA(πC ∧ πA ⊗ Pa) = 0 implies vCaA = vAaC due to the anti-symmetry in πC ∧ πA.

Thus the components in cases 1, 2, and 4 are trivially zero. The kernel is then given by
the two remaining cases. In fact, we can be slightly more strict - the condition of case 3
can be broken down due to the anti-symmetry of vCba

vC(ba) = 0 =⇒ v(ba)C = 0 (5.23)

trivially. Thus the non-trivial solution is given by

v[ba]C = vCba. (5.24)

We can translate this to a condition on the basis, instead of the coefficients. The resulting
structure of the kernel is given by

v =
1

2
vCaA(π(C| ⊗Ba|A)) +

1

2
vCab(πC ⊗ Lab + π[b ⊗Ba]C), (5.25)

which, as required, shows that the kernel is given by

ker ∂ = ⟨π(C| ⊗Ba|A), πC ⊗ Lab + π[b ⊗Ba]C⟩. (5.26)

■
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We can now move on to find the cokernel. It is given by

Theorem 5.1.2. The cokernel of ∂ is given by ⟨[πa ∧ πb ⊗ PC ], [π
a ∧ π(B ⊗ PC)]⟩, where

[π] denotes the equivalence class of π

Proof. We know from equation (5.22) and the subsequent analysis that the image of V∗⊗g
under ∂ is given by

∂v = vcab(πc ∧ πb ⊗ Pa) + vcAB(πc ∧ πB ⊗ PA) + (vCab + vbaC)πC ∧ πb ⊗ Pa+ (5.27)

+ vCAB(πC ∧ πB ⊗ PA)− vCaA(πC ∧ πA ⊗ Pa) = 0. (5.28)

We then want to inspect which components of the space ∧2V∗ ⊗ V are not included in
the above expression. We can write a generic vector ξ in the space ∧2V∗ ⊗ V in terms of
a basis as

ξ =
1

2
ξabc(πa ∧ πb ⊗ Pc) +

1

2
ξabC(πa ∧ πb ⊗ PC) +

1

2
ξABc(πA ∧ πB ⊗ Pc)+ (5.29)

+
1

2
ξABC(πA ∧ πB ⊗ PC) + ξaBc(πa ∧ πB ⊗ Pc) + ξaBC(πa ∧ πB ⊗ PC).

(5.30)

We now wish to find which components form the quotient space ∧2V∗⊗V
im ∂

. We can consider
this quotient by basis element to see which quotients remain nontrivial.

1. 1
2
ξabc(πa ∧ πb ⊗ Pc)/v

abc(πa ∧ πb ⊗ Pc). This component is trivial.

2. 1
2
ξabC(πa ∧ πb ⊗ PC). We see that there is no corresponding term in the vector ∂v.

Thus this term as a whole lands in coker ∂.

3. 1
2
ξABc(πA ∧ πB ⊗ Pc)/v

AcB(πA ∧ πB ⊗ Pc). Neither of the coefficients has any (anti-
)symmetry, and thus this component of the quotient is trivial.

4. 1
2
ξABC(πA ∧ πB ⊗PC)/v

ABC(πA ∧ πB ⊗PC). The coefficient vABC is anti-symmetric
in the last two indices, but we can simply set ξA(BC) = 0, and equate the rest of the
coefficient components. This implies that the component is trivial.

5. ξaBc(πa ∧ πB ⊗ Pc)/(v
Cab + vbaC)πC ∧ πb ⊗ Pa. Since vbaC has no symmetries, this

coefficient can be used to account for the non-symmetric components of ξaBc, and
thus this component is also trivial.

6. ξaBC(πa ∧ πB ⊗ PC)/v
aBC(πa ∧ πB ⊗ PC). Since vaBC = −vaCB, the symmetric

component of ξaBC , ξa(BC) remains independent and is thus in the cokernel.

Then the components of ξ which remain in the quotient are

1

2
ξabC(πa ∧ πb ⊗ PC) +

1

2
ξa(BC)(πa ∧ πB ⊗ PC). (5.31)

Transferring the symmetrization onto the basis element, we find that the cokernel of the
Spencer differential is given by the span of the equivalence classes (mod im ∂)

⟨[πa ∧ πb ⊗ PC ], [π
a ∧ π(B ⊗ PC)]⟩, (5.32)

as required. ■
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Thus, in the case where G is the p-brane Galilei group, we find that coker ∂ breaks down
to the following components

coker ∂ = ⟨[πa ∧ πb ⊗ PC ], [π
a ∧ π(B ⊗ PC)]⟩, (5.33)

where the intrinsic torsion could reside in either the entirety of the cokernel, the symmetric
G-submodule T1 = [πa∧π(b⊗Pγ)], the traceless part T 0

1 of T1, in the trace T tr
1 , or be zero.

It is not possible for the intrinsic torsion to be only in the component T2, since under
boosts

T2 = [πa ∧ πb ⊗ PC ]
BAa−−→ T1, (5.34)

meaning that T2 is not a G-submodule. The remaining G-submodules form a chain

0 ⊂ ⟨T tr
1 ⟩, ⟨T 0

1 ⟩ ⊂ ⟨T1⟩ ⊂ coker ∂, (5.35)

of spaces which the intrinsic torsion can be an element of. This corresponds to the Hasse
diagram portrayed in figure 5.2. In the figure, the arrows indicate the action of the boosts
BAa on the submodules.

coker ∂ ⟨T1⟩
⟨T 0

1 ⟩

⟨T tr
1 ⟩

0

Figure 5.2: A Hasse diagram portraying the relations between the different G-submodules
of coker ∂. The arrows indicate the action of boosts on the submodules.

In terms of constraints on the torsion tensor T Â
µν , as is typical in physics, we can also

write the above options as the following2

1. For T∇ ∈ coker ∂ the intrinsic torsion is not constrained.

2. For T∇ ∈ ⟨T1⟩, T A
ab = 0.

3. For T∇ ∈ ⟨T tr
1 ⟩, the constraint of 2 holds, together with T

(AB)
a − 1

2
ηABT C

aC = 0,
i.e. T A

ab has only a trace component

4. For T∇ ∈ ⟨T 0
1 ⟩, the constraint of 2 also holds, together with T A

aA = 0 and T AB
a =

T BA
a , i.e. T A

ab is symmetric and traceless.

5. For T∇ = 0, we find T Â
µν = 0.

In summary, we find the following

Theorem 5.1.3. The intrinsic torsion T∇ of a p-brane Galilean geometry can reside in
either coker ∂, T1, T 0

1 , T tr
1 , or be 0. These options have the following interpretations

1. T∇ ∈ coker ∂. The intrinsic torsion is generic. For Y ∈ Γ(E), and X ∈ X (M),
we have ∇XY ∈ Γ(E),

2. T∇ ∈ ⟨T1⟩. The underlying manifold M is foliated by integrable submanifolds of E,

2Here we fully adopt the physics conventions on indices: greek indices range over all curved values,
capital indices with hats range over all tangent-space values, while the others remain the same.

32



Iisakki Rotko §5.1 From the Perspective of Mathematics

3. T∇ ∈ ⟨T tr
1 ⟩. LXη = c(X)η for any X ∈ Γ(E), with c(X) = 1

2
h(ξ,X) i.e. transversal

vectors are η-homothetic,

4. T∇ ∈ ⟨T 0
1 ⟩. The top form Ω is closed,

5. T∇ = 0. Then for all X ∈ Γ(E), LXη = 0, i.e. any transversal X is η-killing.

Proof. 1. Since ∇ is adapted, ∇η = 0, and

0 = (∇Xη)(Y, Z) = Xη(Y, Z)− η(∇XY, Z)− η(Y,∇XZ) (5.36)

for any vector fields X, Y, Z ∈ X (M). By letting Y ∈ Γ(E) and letting X and Z be
arbitrary vector fields, we obtain the desired relation.

2. First, note that if [X, Y ] ∈ Γ(E) for all X, Y ∈ Γ(E), then Frobenius’ theorem implies
that M is foliated by integrable submanifolds of E. It then remains to be shown that
[X, Y ] ∈ Γ(E).

Let X, Y ∈ Γ(E). Then

0 = T∇(X, Y ) = ∇XY −∇YX − [X, Y ]. (5.37)

Note that the first two terms of the right-most expression are in Γ(E) by part 1. of
theorem 5.1.3, and that then [X, Y ] has to be in Γ(E) as well.

3. We compute

(LXη)(Y, Z) = Xη(Y, Z)− η([X, Y ], Z)− η(Y, [X,Z]) (5.38)

= η(T∇(X, Y ), Z) + η(Y, T∇(X,Z)), (5.39)

where we can, for both terms, write

η(Y, T∇(X,Z)) = η(Y, T∇(X,Z))− 1

2
η(εC , T

∇(X, εC))η(Y, Z)

+
1

2
η(εC , T

∇(X, εC))η(Y, Z).
(5.40)

Since TAB
a = η(εA, T∇(Xa, ε

B)), and for T∇ ∈ ⟨T tr
1 ⟩

T (AB)
a − 1

2
ηABT C

aC = 0, (5.41)

we conclude that the first two terms of equation (5.40) equal to zero, and thus

(LXη)(Y, Z) = η(εC , T
∇(X, εC))η(Y, Z) (5.42)

= c(X)η(Y, Z). (5.43)

To find the form of c(X), we note that the map h♭ : Γ(E)→ Γ(E∗), given by h♭(X1)(X2) =
h(X1, X2) is an isomorphism, and since c(X) is linear, it is an element of Γ(E∗). Then by
the non-degeneracy of h, c(X) = 1

2
h(ξ,X), for some unique ξ ∈ Γ(E).

4. Note that we can write Θα in two different ways, namely

ΘA = dθA + ωA
B ∧ θB, (5.44)
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and

ΘA = T A
aB θa ∧ θB +

1

2
T A
BC θB ∧ θC . (5.45)

This allows us to write dθA as

dθA = T A
aB θa ∧ θB − ωA

B ∧ θB +
1

2
T A
BC θB ∧ θC (5.46)

= (T A
aB θa − ωA

B −
1

2
T A
BC θC) ∧ θB. (5.47)

Now, taking the differential of the top form Ω, defined by

Ω =
1

(p+ 1)!
θA0 ∧ · · · ∧ θAp . (5.48)

Using the form found for dθA in equation (5.47), we find

dΩ =
1

(p+ 1)!
(p+ 1)dθA0 ∧ · · · ∧ θAp (5.49)

=
1

p!
(T A0

aB θa − ωA0
B −

1

2
T A0
BC θC) ∧ θB ∧ · · · ∧ θAp . (5.50)

Recognizing the final factor as δBA0
Ω gives

dΩ =
1

p!
δBA0

(T A0
aB θa − ωA0

B −
1

2
T A0
BC θC) ∧ Ω (5.51)

= (T B
aB θa − ωB

B) ∧ Ω, (5.52)

which is zero, since ωA
B is anti-symmetric, and T A

aA = 0.

5. ( =⇒ ) Let X ∈ Γ(E). Then

(LXη)(Y, Z) = Xη(Y, Z)− η([X, Y ], Z)− η(Y, [X,Z]) (5.53)

= η(∇XY − [X, Y ], Z) + η(Y,∇XZ − [X,Z]) (5.54)

= η(T∇(X, Y ), Z) + η(Y, T∇(X,Z)), (5.55)

which is clearly zero when T∇ is zero.

( ⇐= ) Let LXη = 0 for any X ∈ Γ(E). Then T∇(X,−) ∈ SO(V ) ⊕W , both of which
are in the image of ∂, and thus there exists a connection ∇′ such that T∇′

= 0. ■

5.2 From the Perspective of Physics

In the “physics language”, the main focus is on determining constraints on the torsion, in
contrast to determining the sub-representations in which the torsion could reside. In the
end the procedure ends up being very analogous to that of the last part, although this
similarity is well disguised by the fundamental difference in thinking, and as a result in
approach. The procedure of this section will be very closely mirror that used in section
4, i.e.
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1. Find an expression for the torsion in terms of the vielbeine and spin-connections.

2. Determine what happens to which components of the spin-connections as we apply
the Spencer map to them. This provides us with the components that constitute
ker ∂, and those that are completely dependent on torsion, in other words, im ∂.

3. Pick out those components of the torsion that do not contain any spin-connection
components. These constitute coker ∂.

4. Derive the geometric constraints that result from constraining each components
occurring in coker ∂ to be zero.

So, we begin by breaking the relativistic vielbein into p + 1 longitudinal and D − p − 1
transverse components by

E A
µ = cτ A

µ , E a
µ = e a

µ , (5.56)

where we have broken down the relativistic flat index Â into Â = (A, a), with A =
0, . . . , p − 1, and a = p, . . . , D − 1. Under the Galilei group, the new non-relativistic
vielbeine transform in the expected way as

δτ A
µ = λA

Bτ
B

µ δe a
µ = λa

be
b

µ + λa
Bτ

B
µ , (5.57)

with λAB, λab, and λaA the transformation parameters of the longitudinal Lorentz trans-
formations, transversal rotations, and Galilean boosts respectively.

It is good to again emphasize that although we will usually explicitly refer only to the
Galilei case, any results can be formally related to the Carrollian one by an exchange of
the signatures of the conserned metrics, as well as exchanging p-branes for (D − p − 2)-
branes. The exchange of metrics can be seen as a way of reinterpreting “where the time
resides” in the final spacetime. This is in an exact correspondence to an exchange of the
longitudinal and transversal directions. Formally we could write an exchange(

τ A
µ , e a

µ

)
←→

(
e b
µ , τ B

µ

)
. (5.58)

A corresponding exchange of longitudinal and transversal directions can be seen in the
exchange of the capital indices with new lowercase ones. The ranges of the dimensions
have also been switched, i.e. range A = range b, and range a = range B.

The inverses of the vielbeine can be introduced through the equations

τµA τ
B

µ = δBA e a
µ eµb = δab (5.59)

τµA e
a

µ = 0 eµaτ
A

µ = 0 (5.60)

τ A
µ τ νA + e a

µ eνa = δνµ. (5.61)

The transformations of these inverses are given by

δτµA = λ B
A τµB + λa

Ae
µ
a δeµa = λ b

a eµb. (5.62)

It may be noted that the inverses transform, similarly to the particle case, the “opposite”
way to the vielbeine in terms of Galilean boosts.
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Recalling from section 2 that the connection Ωµ takes values in the lie algebra g of the
structure group G, we can write it in terms of the generators of g as

Ωµ = ω AB
µ JAB + ω ab

µ Jab + ω aA
µ JaA, (5.63)

where JAB, Jab, and JaA generate longitudinal Lorentz transformations, transversal rota-
tions, and p -brane Galilean boosts, respectively. The “vielbein postulates” now take the
form

0 = ∂µτ
A

ν − ω A
µ Bτ

B
ν − Γ ρ

µν τ A
ρ , (5.64)

0 = ∂µe
a

ν − ω a
µ be

b
ν − ω a

µ Aτ
A

ν − Γ ρ
µν e a

ρ . (5.65)

These postulates are, again, nothing but a statement of the equality of the connections
associated to ω and Γ. As before, we anti-symmetrize the equations to find two expressions
in terms of the longitudinal component T A

µν and transversal component T a
µν of the

torsion tensor T Â
µν

T A
µν = 2∂[µτ

A
ν] − 2ω A

[µ Bτ
B

ν] ,

T a
µν = 2∂[µe

a
ν] − 2ω a

[µ be
b

ν] − 2ω a
[µ Aτ

A
ν] .

(5.66)

It is possible to connect this to the discussion in the previous section by absorbing the
curl terms into the definitions of the torsion components, i.e.

T̃ A
µν := T A

µν − 2∂[µτ
A

ν] (5.67)

T̃ a
µν := T a

µν − 2∂[µe
a

ν] . (5.68)

The equations (5.66) then become

T̃ A
µν = −2ω A

[µ Bτ
B

ν] , (5.69)

T̃ a
µν = −2ω a

[µ be
b

ν] − 2ω a
[µ Aτ

A
ν] . (5.70)

Despite the difference in notation, it is easy to make the identifications

2ω A
[µ Bτ

B
ν] ←→ (πC + πc) ∧ π[B ⊗ PA], (5.71)

2ω a
[µ be

b
ν] ←→ (πC + πc) ∧ π[b ⊗ P a], (5.72)

2ω a
[µ Aτ

A
ν] ←→ −(πC + πc) ∧ πA ⊗ P b. (5.73)

In the above statements, the opposite positioning of the indices reflects the difference
between objects in discussion being elements of the basis, versus the corresponding coeffi-
cients. The right-hand side terms correspond to the images of the connection components
under the Spencer map ∂. As is evident from examining equations (5.19) and (5.20) in
the more mathematical notation, the Spencer map anti-symmetrizes a spin-connection ω
with respect to its first and last index. Schematically

∂ : ω B
A C 7→ 2ω B

[A C]. (5.74)

It should be noted that the anti-symmetry in the two Lie algebra-valued indices remains.
Now, we know that the image of a spin-connection ∂ω under the Spencer map corresponds
to a particular component of the torsion T̃ , and we can begin classifying the different
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components depending on whether they fall into the image, kernel, or cokernel of ∂. As
a reminder, we wish to find those components that are in the cokernel of ∂, since these
constitute the intrinsic torsion of the geometry. The place to start the classification is
exactly the same as in the previous subsection - we want to find the image of each spin-
connection component under ∂. The simplest way to accomplish this is to convert all
indices of ω to flat ones and inspect where they are sent by ∂. We find

ω C
AB → 2ω C

[A B], ω c
AB → 2ω c

[A B],

ω C
Ab → −ω C

b A, ω c
Ab → ω c

[A b],

ω C
ab → 0, ω c

ab → 2ω c
[a b]

ω c
aB → ω c

[a B], ω C
aB → ω C

a B

(5.75)

The elements of ker ∂ can then be found by setting the right-hand side of (5.75) to zero
and considering only those components for which this gives a non-trivial solution, much
like was done in the previous part. Writing all indices down for clarity of the ω structure,
the left column yields only the two trivial solutions

ω[A|C |B] = ωbCA = 0. (5.76)

Note that ω[A|C |B] = 0 does not yield any non-trivial solutions since it implies that the
symmetric part ω(A|C |B) also goes to zero by

ω(A|C |B) = −ω(AB)C (5.77)

= −ωC(BA) = 0. (5.78)

where we have used the fact that

ω[A|B |C] = 0 =⇒ ωABC = ωCBA (5.79)

Using the same argument, the right column yields only one trivial solution,

ω[a| c |b] = 0 (5.80)

and two non-trivial ones

ω[A| c |B] = 0, (5.81)

ωAcb = ωbcA. (5.82)

Since only the anti-symmetric component ω[A| c |B] of ωAcB is set to zero in (5.81), and
because ωAcB is not anti-symmetric in the last two indices, the symmetric part ω(A| c |B)

cannot be set to zero.

Moreover, equation (5.82) can be broken down to two components. By symmetrizing in
b and c on the right-hand side, we find

ω(bc)A = ωAcb + ωAbc = 0, (5.83)

thus implying that the anti-symmetric components ω[bc]A constitute the entirety of the
left-hand side of (5.82),

ω[bc]A = ωAcb. (5.84)
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Note that the last two equations of (5.75) do not yield any new solutions, and can therefore
be neglected in this part of the analysis.

We have then found the independent spin-connections to be

ω a
{A B}, ω

aA
A , and ωC

ab − ω[ab]
C , (5.85)

where we have broken down the symmetric part ω c
(A B) into a symmetric traceless part

ω c
{A B}, and the trace ω aA

A . These independent spin-connections are precisely those that
constitute ker ∂. This result can also be compared to that in the previous part, found in
theorem (5.1.1).

The remaining spin-connections can be solved for by using the expressions for the torsions
T̃ Â
µν , and are therefore labeled dependent. These are

ω c
[A B], ω

(bc)
A, ω

AB
µ , and ωC

ab + ω[ab]
C . (5.86)

Of special interest in the last section was the cokernel of the Spencer map. This is also
what we are working towards here. The cokernel can be found by considering those
components of T̃ Â

µν that do not contain any spin-connection, while the intrinsic torsion

itself is the corresponding torsion T Â
µν . The obvious first component is T A

ab , since the
spin-connection ω A

ab drops out under the Spencer map. The second option is the only
symmetric component ω a

(A B), since this is also not present in the equations (5.75). The

corresponding torsion component is T
(AB)

a , which can again be broken down to the sym-
metric traceless part T

{AB}
a , and the trace T A

a A . In conclusion, the intrinsic torsion
components (or the G-submodules of coker ∂) are

T {AB}
a , T A

a A , and T A
ab . (5.87)

From comparing the structure of the intrinsic torsion components (5.87) with the kernel
components (5.85), it is manifest that the cokernel of ∂ is isomorphic to its kernel.

The remaining components of T̃ Â
µν - those still present in the expressions (5.69) and (5.70)

- constitute the image im ∂ of the Spencer map. As stated earlier, in the physics litera-
ture, the image of ∂ constitutes torsion components that are referred to as conventional
constraints. These components are

T̃ [AB]
a , T̃ C

AB , and T̃ a
µν (5.88)

As will be important in some special cases of Galilean p -brane gravity, the spin-connections
in (5.86) are only dependent if we enforce the maximum number of conventional con-
straints. If some conventional constraints are not applied, these can become an obstruc-
tion to solving for some of the spin-connection components (5.86).

Now that the elements of the intrinsic torsion have been derived, we can proceed to classify
p -brane Galilean geometries by the geometric constraints that result from constraining the
intrinsic torsion. However, since we are discussing the matter in terms of constraints, it is
important to consider the way boosts act; if we set a components of the intrinsic torsion
to zero, then any components into which it transforms under boosts must also be set to
zero. Of course, the action of the boosts should correspond to that presented in figure
5.2 in the last section. Moreover, there are two specific cases that need to be considered
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Ta
{AB} = 0 Ta

A
A = 0

Tab
A = 0

Figure 5.4: This Figure indicates the non-vanishing intrinsic torsion components for p ̸= 0
and p ̸= D − 2. The arrow indicates the direction in which the p-brane Galilean boost
transformations act. For instance, the boost transformation of Ta

{AB} gives Tab
A but not

the other way around. Note that the zero intrinsic torsion constraint T Â
µν = 0, and the

case with no constraint are omitted. A diagram that includes these cases can be found in
figure 5.3.

separately - that of Galilean particles (p = 0), and Galilean domain-walls (p = D − 2).
The second case corresponds to that of the Carrollian particle under the formal duality
discussed earlier. These special cases arise from the fact that for the respective values of p,
only one longitudinal (resp. transversal) direction remains, and thus any intrinsic torsion
components with two different components of that type of direction drop out, while any
possible trace components will remain.

Tµν
A = 0

Ta
{AB} = 0 Ta

A
A = 0

Tab
A = 0

No constraint

Figure 5.3: The different possi-
ble intrinsic torsion constraints
for p -brane Galilei spacetimes.
Note that here the arrows do
not (strictly) denote the action
of boosts, but simply which
constraints are automatically
satisfied by requiring those
higher up the chain.

It is again important to emphasize two differences be-
tween the languages with and without indices. Firstly,
while in the previous section we restricted the intrin-
sic torsion to be an element of a certain submodule of
coker ∂, here we make statements about constraints on
the intrinsic torsion. Therefore the classifications are
each the opposites of each other, i.e.

T∇ ∈ T tr
1 ⇐⇒ T A

ab = 0 and T {AB}
a = 0, (5.89)

in words, if the intrinsic torsion is in the trace-
submodule of coker ∂, then the traceless part of T AB

a

is zero.

Secondly, it can be noted by comparing figure 5.2 with
figure 5.3 that the action of the boosts is labeled in the
opposite direction. This is due to the aforementioned
difference in discussing action on the elements of the
basis, versus on coefficients. An additional implica-
tion of this is that in the language without indices,
the submodules T tr

1 and T 0
1 are considered to include

in themselves the condition of T1, whereas when using
physics conventions this isn’t necessary - it is guaran-
teed by the boosts.

With these remarks out of the way, we can proceed to
discuss the implications of the different intrinsic tor-
sion constraints.
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T A
ab = 0. This intrinsic torsion constraint implies that the Lie bracket of any two trans-

verse vector fields Xµ and Y µ is transverse. We can write this as

τ A
µ (Xν(∂νY

µ)− (∂νX
µ)Y ν) = 0. (5.90)

By Frobenius’ theorem, this condition further implies that the overall manifold is foliated
by transverse submanifolds that are involutive.

To prove (5.90) holds, write the derivatives in terms of the connection ∇ as

τ A
µ (Xν(∂νY

µ)− (∂νX
µ)Y ν) = τ A

µ

(
Xν(∇νY

µ)− (∇νX
µ)Y ν + 2XρY σΓ µ

[ρσ]

)
. (5.91)

Using integration by parts, as well as the vielbein postulate (5.64) (or the fact that the
connection ∇ is metric compatible), we find that the above becomes

τ A
µ

(
Xν(∇νY

µ)− (∇νX
µ)Y ν + 2XρY σΓ µ

[ρσ]

)
= 2XρY στ A

µ Γ µ
[ρσ] (5.92)

= 2eρaX
aeσbY

bτ A
µ Γ µ

[ρσ] (5.93)

= 2XaY bT A
ab , (5.94)

which is zero because of the given intrinsic torsion constraint.

T
{AB}

a = T A
ab = 0. In order to make progress toward both of the remaining constraints,

we can first consider the overall constraint T
(AB)

a = 0. This translates to

T (AB)
a = eµaτ

ν(A
(
∂µτ

B)
ν − ∂ντ

B)
µ

)
= 0. (5.95)

Using the orthogonality relations

τ νB τ D
ν = δDB and eµaτµν = 0 (5.96)

(5.95) becomes

τµA τ
ν
B

(
eλa(∂λτµν) + 2(∂(µe

λ
aτλ|ν)

)
= τµA τ

ν
BKµνa := KABa, (5.97)

where we have recognized

Kµνa = eλa∂λτµν + 2(∂(µe
λ
a)τλν) (5.98)

as the Lie derivative Leτµν of the longitudinal metric τµν along transverse directions eλa.
It can be seen that the constraint (5.97) is not invariant under boosts. Acting on the
constraint with the boosts, we find the whole Galilei invariant set of constraints to be

KABa = KAba = Kabc = 0. (5.99)

One way to see this is to notice that since Galilean boosts send longitudinal inverse
vielbeine to transverse ones each boost will send a capital index to a lowercase one. With
all the components of Kµνa covered in equation (5.99), thus the overall constraint can be
written as

Kµνa = 0. (5.100)
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Now, to consider the traceless constraint that we are interested in. We can generalize
(5.95) by subtracting the trace

T {AB}
a = eµaτ

ν(A
(
∂µτ

B)
ν − ∂ντ

B)
µ

)
− 1

p+ 1
ηABηCDT

(CD)
a = 0. (5.101)

In terms of the Lie derivative, this yields an additional term

Kµνa =
1

p+ 1
(τ ρσKρσa)τµν , (5.102)

which, since the Lie derivative of τµν is proportional to τµν , is equivalent to the statement
that all transversal covectors, i.e. those that can be written in terms of components in
the eµa directions, are conformal killing vectors of the metric τµν .

T A
a A = T A

ab = 0. To preface the results of this constraint, let us define the worldvolume
(p+ 1)-form. The worldvolume is the volume swept out by the longitudinal directions of
the extended object (for example, the worldsheet in the string (p = 1) case). This is a
generalization of proper time - the total proper time experienced by a particle is given by
the length of it’s worldline, and the worldvolume is the analogous quantity for extended
objects. The worldvolume form Ω can be defined as in equation (5.48). Adapting this to
the conventions used in this section, we find

Ωµ0...µp = ϵA0... Apτ
A0

µ0
. . . τ Ap

µp
, (5.103)

where ϵA0... Ap is the fully anti-symmetric Levi-Civita epsilon symbol. As we know from the
treatment of the classification without indices, the implication of this constraint should
be that the worldvolume is absolute. This can be proven by showing that the form Ω is
closed,

dΩ = 0, (5.104)

with dΩ denoting the exterior derivative of Ω. We can evaluate the external derivative to
be

dΩ = (p+ 1)ϵA0... Ap

(
∂[ρτ

A0

µ0]

)
τ A1
µ1

. . . τ Ap
µp

, (5.105)

where we can interpret ∂[ρτ
A0

µ0]
as some components of the torsion tensor, where the

spin-connection term drops out. There are a couple of options for which torsion tensor
components ∂[ρτ

A0

µ0]
could be generically, but since the component T A

ab is zero by one of

the constraints of this case, and T C
AB is set to zero in order to solve for spin-connection

components, the only remaining one is T B
aA . We then write

∂[ρτ
A0

µ0]
= e a

ρ τ A
µ0

T A0
aA , (5.106)

making the total expression

dΩ = (p+ 1)ϵA0... Ape
a

ρ T A0
aA τ A

µ0
τ A1
µ1

. . . τ Ap
µp

(5.107)

= (p+ 1)ϵA0... Ape
a

ρ T A0
aA ϵAA1...ApΩ (5.108)

= (p+ 1)e a
ρ δAA0

T A0
aA Ω, (5.109)

where the delta function selects the trace component of the torsion tensor, T A
aA , which

by the initial constraint is zero, and thus dΩ is zero.

In conclusion, the different options for intrinsic torsion constraints imply the following
geometric constraints:
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Theorem 5.2.1.

1. The intrinsic torsion is unconstrained. No additional geometric constraints
enforced;

2. T A
ab = 0. M is foliated by transverse submanifolds, which are involutive;

3. T
{AB}

a = T A
ab = 0. In addition to the geometric constraint of part 2., transversal

vectors eµa are conformal Killing vectors with respect to the longitudinal metric τµν ;

4. T A
a A = T A

ab = 0. In addition to part 2., the worldvolume is absolute;

5. T A
µν = . The foliation by transversal submanifolds is involutive, transversal vectors

are conformal Killing with respect to τµν , and the worldvolume is absolute.

In comparison to theorem 5.1.3, it is clear that despite the difference in notation and
conventions, the classification is the same.

As discussed before, p -branes with p = 0, and p = D − 2 are special cases. Although
the classification depends only on the group under consideration, these cases are special
because for the special dimensions the representation of either the SO(1, p) or SO(D −
P − 1) component of the Galilei group becomes reducible.

p = 0. This is the case of the Galilean particle (or equivalently Carrollian domain-wall)
geometry. In this case, there is only one choice of longitudinal direction, and as such, only
the constraints T A=0

ab = Tab = 0 and Tµν = 0 remain. The classification is then

Theorem 5.2.2.

1. The intrinsic torsion is unconstrained. No additional geometric constraints
enforced;

2. Tab = 0. M is foliated by transverse submanifolds, which are involutive. In physics
literature, this is often referred to as the twistless torsional constraint, or a hyper-
space orthogonal foliation [9];

3. Tµν = 0. M is foliated by transverse submanifolds, where the submanifolds are
slices of equal absolute time.

Ta

Tab

Figure 5.5: This figure indicates the non-zero intrinsic torsion components for p = 0
where, with A = 0, we have written Ta

0
0 = Ta and Tab

0 = Tab

p = D − 2. This case is the opposite of the previous one - the Galilean domain-wall, or
Carrollian particle. Only one transverse direction exists, which we can label by a = z, or
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just omit the label altogether. The remaining constraints are T
{AB}

z = 0, T A
z A = 0, and

T
(AB)

z = 0, with the geometric consequences of each being

Theorem 5.2.3.

1. The intrinsic torsion is unconstrained. No additional geometric constraints
enforced;

2. T{AB} = 0. Transverse vectors (those with components only in the unique direction
eµz = eµ), are conformal Killing vectors with respect to the longitudinal metric τµν ;

3. TA
A = 0. The worldvolume is absolute;

4. T(AB) = 0. Both of the above geometric constraints are satisfied.

T {AB} TA
A

Figure 5.6: This figure indicates the non-zero intrinsic torsion components for p = D − 2
where, with a = z, we have written Tz

{AB} = T {AB} and Tz
A
A = TA

A.

As an interesting note for future work, there are additional cases where the classifications
in theorem 5.2.1 can be refined - in fact any dimension where the representations of either
SO(1, p), SO(D − P − 1), or both become reducible is such a case. In the string case,
where p = 1, we can apply the well-known fact that the representation of SO(1, 1) is
reducible, and refine the classification in terms of light-cone coordinates.

To illustrate the physical relevance of the classification presented here, in the next section
we will proceed to show how each case of the classification arises as a limit of general
relativity, and thus as a theory of gravity.
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Chapter 6

p -brane Galilei Gravity

This section will generalize the discussion of section 4, and therefore that of [9], to the
case of p -branes. This procedure gives rise to gravity theories with underlying spacetimes
described by p -brane Galilei geometries, as introduced in the last section. For p = 0,
the discussion of this section and section 4 coincide, while for p = 1, the discussion here
reduces to that presented in [8].

It is again important to emphasize the applicability of the work to both Galilei and
Carroll gravity. The duality is the same as discussed in the beginning of section 5.2,
i.e. exchanging a p -brane for a (D − p − 2) -brane, together with the exchange of which
spacetime component is considered longitudinal, and which transverse. In other words,
we exchange the roles of the two kinds of vielbeine, e and τ ,(

τ A
µ , e a

µ

)
←→

(
e b
µ , τ B

µ

)
. (6.1)

Again, there are two special cases, which we will call the domain-wall, and the defect-
brane gravity. These occur for the cases where p = D − 2 and p = D − 3 respectively.
First, we discuss the generic p -brane case, with p ≤ D − 4.

We again start with the Einstein-Hilbert action

SEH = − 1

16πGN

∫
EEµ

Â
Eν

B̂
R ÂB̂

µν (Ω), (6.2)

where we have explicitly indicated that the curvature R ÂB̂
µν is a function of the relativistic

spin-connection Ω. Although this already implies it, for clarity let us state that we are
working in the first-order formulation, where Ω is a priori independent of the vielbein.
In (6.2), Eµ

Â
is the relativistic vielbein, E is its determinant, and GN is the Newton

constant. In the relativistic case, we define the inverse vielbein the usual way,

E Â
µ Eµ

B̂
= δÂ

B̂
, E Â

µ Eν
B̂
= δ ν

µ . (6.3)

We can write out the curvature R ÂB̂
µν out in terms of the spin-connection Ω as

R ÂB̂
µν = 2∂[µΩ

ÂB̂
ν] − 2Ω B̂Ĉ

[µ Ω Â
ν] Ĉ

. (6.4)
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Following the previously introduced method, we decompose the relativistic index Â into
two parts, A and a, where A index the p+1 longitudinal components, and a the remaining
transverse ones. We then perform the rescalings

E A
µ = cτ A

µ , E a
µ = e a

µ ,

Ω AB
µ = ω AB

µ , Ω Aa
µ =

1

c
ω Aa
µ ,

Ω ab
µ = ω ab

µ ,

(6.5)

where c is a dimensionless scaling parameter. After substituting the rescaled definitions
into the action (6.2), and exploiting our freedom to perform an overall scaling by some
factor of c to make the leading power c0, we find

SG = − 1

16πG

∫
e
{
c0
(
eµae

ν
bR

ab
µν (J)

)
+ c−2

(
τµA e

ν
aR

Aa
µν (G) + τµA τ

ν
BR AB

µν (L)
)}

,

(6.6)

where GN = cp+1G is the rescaled Newton constant, R Aa
µν (G) is the curvature of the

Galilean boosts, and R AB
µν is the curvature of the longitudinal Lorentz transformations.

The leading term is the usual one. Unlike in section 4, the next-to-leading order terms
have not been omitted, since the two first subleading terms of order c−2 contribute to
the two special cases of p -brane Galilean gravity. In the case of domain-walls, only one
transverse direction remains, and thus the curvature R ab

µν (J) goes to zero. This makes
the usually subleading curvature terms dominant, thus resulting in the special case. For
defect-branes, the special case is a result of the SO(D− P − 1)-component of the Galilei
group becoming Abelian, which results in the anti-symmetrized terms of the associated
connections dropping out.

p -branes. In the generic case, we can directly consider the leading order behavior of
(6.6). This yields the action

Sp -brane = −
1

16πG

∫
eeµae

ν
bR

ab
µν (J), (6.7)

where R ab
µν (J) is the curvature associated to the transverse rotations,

R ab
µν (J) = 2∂[µω

ab
ν] − 2ω bc

[µ ω a
ν] c. (6.8)

The geometric constraint that results from this action can be determined by finding the
spin-connection components that do not occur in the quadratic term of the curvature (6.8),
since these are the only terms that can feature a torsion tensor. These spin-connection
components instead occur linearly as Lagrange multipliers enforcing a constraint on a
particular (corresponding) component of the torsion tensor. These components can be
easily determined by performing the suitable decomposition of the spin-connection,

ω ab
µ = τ A

µ ω ab
A + e d

µ ω ab
d . (6.9)

When this is inserted into the action (6.7), any terms resulting from expanding the ex-
pression

2ω bc
[µ ω a

ν] c = 2(τ A
µ ω bc

A + e d
µ ω bc

d )(τ A
µ ω b

A c + e d
µ ω b

d c) (6.10)

45



Iisakki Rotko CHAPTER 6. p -BRANE GALILEI GRAVITY

that have a factor τ A
µ are cancelled by the transverse vielbeine in front of the curvature in

the action (6.7). Thus the only remaining term is ω bc
[a ω a

b] c. Since ω ab
A no longer occurs

in a quadratic term in the action, but only linearly through the first term,

2eµae
ν
b(∂[µω

ab
ν] ) = 2eµae

ν
b

{
(∂[µτ

A
ν] )ω ab

A + τ A
[ν (∂µ] ω

ab
A )

}
+ 2e2∂(eω) (6.11)

= 2T A
ab ω ab

A + 2e2∂(eω), (6.12)

where we have omitted the indices on the “irrelevant” term and only kept them for the
sake of completeness. We have also used the definition

T A
ab = eµae

ν
bT

A
µν (6.13)

= 2eµae
ν
b∂[µτ

A
ν] . (6.14)

From equation (6.12) it is apparent that ω ab
A has become a Lagrange multiplier that

enforces the geometric constraint

T A
ab = 0, (6.15)

which corresponds to case 2 in theorem 5.2.1.

Defect-branes. For this case, we let p = D − 3. As mentioned previously, the group
SO(D−P − 1) of transverse rotations becomes the abelian group SO(2). Thus the term
quadratic in spin-connections drops out from the curvature (6.8), leaving us with an action

Sdefect-brane =
1

16πG

∫
eeµae

ν
b∂[µω

ab
ν] . (6.16)

Using the familiar decomposition of the spin-connection ω ab
µ , as well as integration by

parts, we find a total derivative, which we drop since it is only a boundary term, as well
as the terms

L̃ = eeµae
ν
b(∂[µτ

A
ν] )ω ab

A + 2eeµae
ν
b(∂[µe

c
ν] )ω

ab
c + 2eeµae

ν
be[ν(∂µ]ω

ab
c ), (6.17)

where we can recognize that in the first term eρbe
µ
a(∂[µτ

A
ρ] ) is the intrinsic torsion ten-

sor component T A
ab . In the second term, we similarly recognize eµae

ν
b(∂[µe

c
ν] ) as the

transversal, conventional torsion tensor T c
ab , which we can ignore using the conventional

constraint T c
µν = 0. The third term becomes

2eeµae
ν
be[ν(∂µ]∂µ]ω

ab
c = 2eeµa∂µω

ab
b (6.18)

= −2∂µ(eeµa)ω ab
b (6.19)

= −2e
[
T A
aA + T c

ac

]
ω ab
b , (6.20)

where, since T c
ab has already been set to zero, the latter term disappears. In the above

we have used, again, the fact that the derivatives of the inverse vielbeine become

∂µe
ν
a = −τ νC (∂µτ C

ρ )eρa − eνc(∂µe
c

ρ )eρa, (6.21)

∂µτ
ν
A = −τ νC (∂µτ C

ρ )τ ρA − eνc(∂µe
c

ρ )τ ρA , (6.22)
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and the fact that the derivative of the determinant e is

∂µe = e
(
τ ρA∂µτ

A
ρ + eρa∂µe

a
ρ

)
. (6.23)

Equation (6.20) means ω ab
b has also become a Lagrange multiplier, with this component

of the spin-connection enforcing the constraint T A
aA = 0. The full set of geometric

constraints resulting from this theory is then

T A
ab = T A

aA = 0, (6.24)

corresponding to case 4 of the classification in theorem 5.2.1.

Domain-walls. We now let p = D − 2. This means that there is only one transverse
direction, which we will denote by z, or omit completely where this causes no ambiguity,
i.e. e a

µ = eµ, but ω
aA

µ = ω zA
µ to preserve the distinction between ω zA

µ and ω Az
µ . Only

having one choice of a transverse direction means that ω ab
µ = ω zz

µ = 0. Since this is
the only spin-connection that is present in the leading term of the action (6.7), the entire
leading term disappears. We then consider the action

Sdomain-wall = −
1

16πG

∫
e
(
eµτ νAR

zA
µν (G) + τµA τ

ν
BR AB

µν (M)
)
, (6.25)

where we have performed an overall scaling to bring the previously subleading terms to
order c0. The curvatures are defined by

R zA
µν (G) = 2∂[µω

zA
ν] − 2ω A

[µ Bω
Bz

ν] , (6.26)

R AB
µν (L) = 2∂[µω

AB
ν] − 2ω A

[µ Cω
CB

ν] . (6.27)

We again decompose the spin-connections to transversal and longitudinal components by

ω AB
µ = τ C

µ ω AB
C + eµω

AB, (6.28)

ω A
µ = τ C

µ ω̃ A
C + eµω

A, (6.29)

where we have chosen to distinguish between the spatial component of ω AB
µ and the

longitudinal component of ω zA
µ := ω A

µ , by labeling the latter with a tilde, i.e. letting
ω zA
C := ω̃ A

C .

Proceeding with the classification of the resulting geometry, we can use integration by
parts on the first term of R Az

µν (G) in (6.26). We find that it can be written as

2τµA e
ν∂[µω

zA
ν] = 2eeµτ νA∂[µ

(
τ C
ν] ω̃ A

C + eν]ω
A
)

(6.30)

= eτ̄ C
zA ω̃ A

C + eēzAω
A + eτ̄ B

Bz ω̃ A
A + e

[
ēAz + τ̄ B

AB

]
ωA (6.31)

= eτ̄ C
zA ω̃ A

C + eτ̄ B
Bz ω̃ A

A + eτ̄ B
AB ωA, (6.32)

where we have introduced a short-hand notation for the curls of e and τ

τ̄ A
µν := 2∂[µτ

A
ν] , (6.33)

ēµν := 2∂[µeν], (6.34)
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and turning curved indices into flat ones works the usual way, for instance

τ̄ B
zA := eµτ νA τ̄

B
µν . (6.35)

By itself, (6.32) does not yet result in intrinsic torsion constraints. Therefore, we proceed
to consider the omega squared term of (6.26). This term results in the following two
terms

2τµA e
νω A

[µ Bω
zB

ν] = −ωA
B ω̃

B
A + ω B

B Aω
A. (6.36)

Writing the two terms (6.32) and (6.36) together, the portion of the action (here expressed
in the Lagrangian density) resulting purely from the R zA

µν (G)-term is

Ldomain-wall

∣∣∣
R(L)=0

= eτ̄ A
zB ω̃ B

A + eτ̄ B
Bz ω̃ A

A + eτ̄ B
AB ωA − ωA

B ω̃
B

A + ω B
B Aω

A (6.37)

= e
[(
τ̄ A
zB − ωA

B

)
ω̃ B
A + τ̄ B

Bz ω̃ A
A +

(
τ̄ B
AB + ω B

B A

)
ωA

]
(6.38)

= e
[
T A
B ω̃ B

A + T B
B ω̃ A

A + T B
AB ωA

]
, (6.39)

where TAB := T AB
z .

From (6.39), it seems as if ω̃AB is already a Lagrange multiplier. However, there is
one more subtlety to take care of. You may recall from the last section that not every
component of TAB can be intrinsic. Namely, only the symmetric part, T (AB) can be
intrinsic. In fact, we can already see a glimpse of this in (6.38) - we absorb the spin-
connection ωAB into the torsion tensor. Since only those spin-connection components that
don’t include any spin-connection may be intrinsic, we need to exclude ωAB somehow.

We can phrase this as a condition - the sum ωABω̃AB has to be zero. Since ωAB is anti-
symmetric in A and B, this condition simply selects the anti-symmetric part of ω̃AB,
ω̃[AB]. The remaining components of ω̃ can still take on the role of Lagrange multiplier.
These components are

ω̃(AB) = ω̃{AB} +
1

p+ 1
ηABω̃, (6.40)

where we have broken down the symmetric portion of ω̃AB to the symmetric traceless
ω̃{AB} and the trace ω̃ := ω̃ A

A . The two components ω̃{AB} and ω̃ enforce the geometric
constraints

T {AB} = T A
A = 0, (6.41)

which amounts to the total symmetric component of T
(AB)

z being zero

T (AB) = 0, (6.42)

corresponding to case 4 of the classification presented in theorem 5.2.3.

The second terms in (6.32) and (6.36) remain, but can simply be used to solve for ω A
A B .

The R AB
µν (L)-term of the action (6.25) does not result in any intrinsic torsion constraints,

so we will not discuss it further here. This has been somewhat of a trend across the current
section - any terms in the action that do not contribute to the classification have been
paid no attention to. In the following section we will move through the same process in
the second-order formalism of the gravitational theory. This means that the full actions,
as written in terms of intrinsic torsion tensors, spin-connections, and conventional torsion
tensors are to be found there.
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GR 1st-order GR 2nd-order

Galilei 1st-order Galilei 2nd-order

Figure 6.1: Relations between general relativity and galilean gravity theories in their
different formalisms. In the first-order formalism the spin-connections Ω or ω are inde-
pendent dynamical objects, while in the second-order formalism they are assumed to be
functions of the vielbeine τ A

µ and e a
µ .

6.1 In the Second-Order Formalism

For the sake of comparison, we now wish to repeat the same process in the second-order
formalism of Galilei gravity. Naively it would be expected that the square in figure 6.1
“closes”, i.e. that it would not matter whether the c→∞ limit is taken from the first or
second-order formalism of GR.

It turns out that our Naive expectation is shattered upon further consideration - in the
second-order formulation of GR, we can solve for all spin-connection components. How-
ever, we already saw in section 5 that in Galilean gravity some spin-connection components
become independent, and we cannot solve for them. This is, at a fairly fundamental level
an obstruction to 6.1 closing.

In order to verify that this is the case, as well as to better understand how the break
occurs, we wish to compute the resulting Galilean gravity theories in the second-order
formalism through the two paths - solving for all spin connections from the Galilean first-
order formalism, and taking the c → ∞ limit of the second-order formalism of general
relativity directly.

We first begin by solving for all spin-connections that we can solve for in the first-order
formalism of Galilean gravity presented in the previous section. To this end, we will
assume the spin-connections, which previously were independent geometric objects, to
have some expressions in terms of the vielbeine τ A

µ and e a
µ .

6.1.1 From First to Second Order Formalism of Galilei gravity

p -branes. In order to solve for all spin-connections that we can, we proceed from equa-
tion (6.12), and expand the remaining term 2e2∂(eω). Restoring the indices, the term
becomes

2eeµae
ν
b∂[µ

(
e c
ν] ω

ab
c

)
= 2eeµae

ν
b

{(
∂[µe

c
ν]

)
ω ab
c + e c

[ν

(
∂µ]ω

ab
c

)}
(6.43)

= 2eeµae
ν
b

(
∂[µe

c
ν]

)
ω ab
c + 2eeµae

ν
be

c
[ν

(
∂µ]ω

ab
c

)
. (6.44)
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Integrating by parts in the second term, we find

2eeµae
ν
b∂[µ

(
e c
ν] ω

ab
c

)
= 2∂[µ (ee

µ
ae

ν
b) e

c
ν] ω

ab
c (6.45)

= 2e
{
−
[
2τ ρA e

µ
a

(
∂[ρτ

A
µ]

)
+ 2eµae

ρ
c

(
∂[µe

c
ρ]

)]
ω ab
b − (6.46)

− 2eµae
ρ
b

(
∂[µe

c
ρ]

)
ω ab
c

}
(6.47)

= −2e
{[

T A
aA + ē c

ac

]
ω ab
b + ē c

ab ω
ab

c

}
, (6.48)

where we have omitted the constants (D − p − 2) and (D − p − 3) that should occur in
front of the T A

aA and ē c
ac term respectively throughout the calculation for clarity.

We can now also find the terms of the action resulting from the ω-squared term. This
term is

2eeµae
ν
bω

ac
[µ ω b

ν]c . (6.49)

Upon applying the usual decomposition of the spin-connection ω ab
µ , we find that this

term becomes

2eµae
ν
bω

ac
[µ ω b

ν]c = ω ac
a ω b

bc − ω ac
b ω b

ac (6.50)

= −ω c
ca ω ab

b + ω c
a bω

ab
c , (6.51)

where we have omitted the determinant e, since it does not contribute to the equation,
as well as relabeled indices to reach the final expression.

The overall action, before enforcing any constraints is then given by

S = − 1

16πG

∫
e
[
ω c
ca ω ab

b − ω c
a bω

ab
c + T A

ab ω ab
A − 2

(
T A
aA + ē c

ac

)
ω ab
b + ē c

ab ω
ab

c

]
.

(6.52)
Grouping terms by spin-connection, we find

S = − 1

16πG

∫
e
[(
ω c
ca − 2ē c

ac − 2T A
aA

)
ω ab
b + (ē c

ab − ω c
a b)ω

ab
c + T A

ab ω ab
A

]
, (6.53)

where we can identify

T b
ab = ē b

ab − ωb
ab (6.54)

and

T c
ab = ē c

ab − 2δd[aω
c

d b]. (6.55)

You may notice that the terms as written in (6.53) cannot be directly identified with the
torsion tensors (6.54) and (6.55). However, once the equations of motion are taken, we
can make the identification.

Upon taking the equations of motion, the equation of motion corresponding to ω ab
b makes

the coefficient of ω ab
b become a conventional constraint in the form of

T b
ab +

D − p− 2

D − p− 3
T A
aA = 0, (6.56)
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where the dimensions result from the trace. Note that the trace ē c
ac is not included in the

second term of (6.48), since it has been separated to the component occurring in front of
ω ab
b . The equation of motion for ω ab

c then becomes another conventional constraint,

T c
ab − Trace = 0. (6.57)

The remaining spin-connection terms in the constraints we have derived form precisely the
components of ω ab

c , and as all other terms in the equations are in terms of the vielbeine,
we can write down an expression for ω ab

c (e, τ). This is given by

ω ab
c (e, τ) = ω ab

c (e)− 2

D − p− 3
δ[ac T

b] A
A , (6.58)

where we have separated out the component ω ab
c (e) for reasons that will become clear in

the next sub-section. The full expression for ω ab
c (e) is

ωcab(e) = ēab,c − ēc[a,b]. (6.59)

Here we have adopted, for clarity, a notation where a comma denotes the separation
between two anti-symmetric indices and the remaining distinguished one, for instance, for
the spin-connections ω ab

c = −ω ba
c , when all indices are brought down, we write

ωc,ab. (6.60)

Enforcing the constraints as per the equations of motion, we arrive at the full action

S2nd order
p-brane = − 1

16πG

∫
e
[
−ω c

ca (e, τ)ω ab
b (e, τ) + ω c

a b(e, τ)ω
ab

c (e, τ) + T A
ab ω ab

A

]
,

(6.61)
where the dependences of any spin-connections has been explicitly indicated, i.e. ω ab

A is
the only independent one present. The switch in the signs between the first two terms
of (6.61) and (6.52) is due to the fact that through adding and subtracting these spin-
connections we can apply the conventional constraints to set the rest of the coefficients of
ω ab
b and ω ab

c to zero.

Defect-branes. In the case of defect-branes, we can collect the terms discussed in the
previous section and write the action as

S2nd-order
defect-brane = −

1

16πG

∫
e
[
T A
ab ω ab

A − 2T A
aA ω ab

b

]
. (6.62)

However, we see that both of the spin-connections in the action (6.62) occur as Lagrange
multipliers of the two constraints of the theory. No spin-connections remain for us to solve
for, and therefore the second-order formalism is the same as the first-order one1 Note that
since we do not have the extra terms from the ω2-term unlike in the last case, we do not
find constraints from the ω ab

b -term, but rather that it has now become an independent
Lagrange multiplier.

1In fact, it does not make sense to call the second-order formalism such - we haven’t solved for any
spin-connections, and therefore the second-order formalism isn’t really even second-order.
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Domain-walls. In the previous section, we already derived the terms of the domain-wall
action resulting from the R Az

µν (G)-term of the initial action (6.25). These were

Sdomain-wall

∣∣∣
R(L)=0

= − 1

16πG

∫
e
[
T A
B ω̃ B

A + T B
B ω̃ A

A + T B
AB ωA

]
. (6.63)

Therefore, we will now focus our attention on the second term, resulting from R AB
µν (L),

the definition of which has been written out in (6.27). Since the corresponding term
in the action (6.25) is preceded by two longitudinal vielbeine, any terms that feature a
transverse vielbein can be dropped. What remains is

eτµA τ
ν
BR AB

µν (L) = e
[
2τ̄ C

BA ω AB
C + ēABω

AB +
(
2ēzA − 2τ̄ C

AC

)
ω AB
B (6.64)

−ω A
A Cω

CB
B + ω B

A Cω
CA

B

]
. (6.65)

Grouping everything by the corresponding spin-connections, we write the above as

eτµA τ
ν
BR AB

µν (L) = e
[(
ω A
BC + 2τ̄ A

BC

)
ω BC
A + ēABω

AB +
(
2ēzA − 2τ̄ C

AC − ω C
C A

)
ω AB
B

]
.

(6.66)

Thus the overall action, prior to enforcing any constraints is

S2nd-order
domain-wall = −

1

16πG

∫
e
[
2T A

B ω̃ B
A + 2T B

B ω̃ A
A + 2T B

AB ωA+ (6.67)

+
(
ω A
BC + 2τ̄ A

BC

)
ω BC
A + ēABω

AB+ (6.68)

+
(
2ēzA − 2τ̄ C

AC − ω C
C A

)
ω AB
B

]
. (6.69)

Similarly to the case of general p -branes, upon taking the equations of motion, we find
conventional constraints which we can use to solve for spin-connection components. The
equations of motion are

2τ̄ A
BC − 2ω A

[B C] = T A
BC = 0, (6.70)

−τ̄ C
AC − ω C

C A + ēzA − ωA = −T B
AB + T z

zA = 0, (6.71)

T B
AB = 0, (6.72)

T[AB] = 0, (6.73)

ēAB − 2ω̃[AB] = T z
AB = 0 (6.74)

for ω BC
A , ω AB

B , ωA, ω̃[AB], and ωAB respectively. Summarizing this in the form of
conventional constraints on torsion, we have found

T C
AB = T z

µν = T[AB] = 0. (6.75)

Applying the constraints to finding expressions for spin-connection components, we simply
write out the corresponding torsion tensor in terms of the curl of τ or e and the spin-
connection components that are included in the definition of torsion. Then we rearrange
the equation to express the corresponding spin-connection component. We find, from
T[AB] = 0

ωAB(τ, e) = −eµτ̄µ[A,B] , (6.76)
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where we have again used a comma to indicate anti-symmetry in the two indices preceding
the comma. T C

AB = 0 can be used to solve for ω BC
A , yielding

ω BC
A (τ) = −τ̄ [B,C]

A +
1

2
τ̄BC,

A . (6.77)

Next, we can use the fact that

T z
µν = 0 =⇒ T z

zA = 0 (6.78)

to write

ωA(τ, e) = ē z
zA = eµē z

µA . (6.79)

Finally, using

T z
µν = 0 =⇒ T z

AB = 0, (6.80)

we find

ω̃[AB](τ, e) =
1

2
ēAB. (6.81)

So, in conclusion the solutions for conventional spin-connection components in the domain-
wall case are

ω BC
A (τ) = −τ̄ [B,C]

A +
1

2
τ̄BC,

A , (6.82)

ωAB(τ, e) = −eµτ̄µ[A,B] , (6.83)

ω̃[AB](τ, e) =
1

2
ēAB, (6.84)

ωA(τ, e) = eµē z
µA . (6.85)

Before proceeding to take the limit directly from the second-order formalism of GR, we
wish to write down the action (6.67) after enforcing the constraints we have found. The
final action is

S2nd-order
domain-wall = −

1

16πG

∫
e
[
ω C
C Aω

AB
B + 2ωAω

AB
B + ω A

C Bω
CB

A +

+2T(BA) ω̃
AB + 2ωABω̃

[AB]
] (6.86)

6.1.2 Limit in the second order formalism of GR

In the previous subsection, we proceeded from the first-order formalism of Galilean gravity
to the second-order formulation. We can reach the same final theory, Galilean gravity
in the second-order formalism, by starting directly from the second-order formalism of
general relativity. This is what we will do here. Let us first introduce the second-order
formulation of GR briefly.

Starting from the relativistic case, we write the Einstein-Hilbert action as a function of
the spin-connection Ω ÂB̂

µ as

SEH = − 1

16πGN

∫
E
(
Ω B̂Ĉ

Â
Ω Â

B̂ Ĉ
− Ω ÂĈ

Â
Ω B̂

B̂ Ĉ

)
, (6.87)
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where the spin-connection is dependent on the vielbein E Â
µ , and is given by

2∂[µE
Â

ν] − Ω Â
[µ B̂

E B̂
ν] = 0. (6.88)

The equation (6.88) can be solved by

Ω B̂Ĉ
Â

=
1

2
ĒB̂Ĉ

Â
− Ē

[B̂Ĉ]

Â
, (6.89)

where we have defined Ē Â
µν as the curl of the relativistic vielbein

Ē Â
µν := 2∂[µE

Â
ν] . (6.90)

Note that even when indices are raised or lowered, Ē Â
µν is anti-symmetric in its first two

indices, as indicated by a comma in what follows.

We can find expressions for the components of the relativistic spin-connections in terms
of the non-relativistic ones by simply fixing the spin-connection component in terms of
non-relativistic indices a,A, . . . , and then replacing the relativistic vielbeine in Ē Â

µν by
the appropriate non-relativistic ones. We find the expressions

ΩC,AB =
1

c
ωC,AB(τ), (6.91)

ΩC,Ab = −Tb(A,C) −
1

c2
ω[C,|b|A](τ, e), (6.92)

ΩC,ab =
c

2
Tab,C +

1

c
(ωC,ab + ω[a,b]C)(τ, e) , (6.93)

Ωc,AB = ωc,AB(τ, e) +
1

c2
ω[B|,c|C](τ, e), (6.94)

Ωc,Ab =
c

2
Tcb,A −

1

c
ω(c,b)A(τ, e), (6.95)

Ωc,ab = ωc,ab(τ, e) . (6.96)

We can express the spin-connections present in these equations in terms of the vielbeine
- the expression for ωc,ab is the same as in equation (6.58), while (ωC,ab + ω[a,b]C) is given
by

(ωC,ab + ω[a,b]C)(τ, e) = −ēC[a,b]. (6.97)

Switching to the special case of domain-walls (p = D− 2), we find that (6.89) reduces to
the following expressions

Ω AB
C =

1

ω
ωC

AB(τ) , (6.98)

Ω AB
z = ω AB

z (τ, e) +
1

ω2
ω[A B]

z (τ, e) , (6.99)

ΩAB = T (AB) +
1

ω2
ω̃[AB](τ, e) , (6.100)

ΩA =
1

ω
ωA , (6.101)
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where we should recall that

ω̃ B
A = ω zB

A . (6.102)

The solutions for the spin-connection components ω AB
C (τ), ω AB

z (τ, e), ω
[A B]

z (τ, e), ω̃[AB](τ, e),
and ωA(τ, e) are the same ones that were found in the previous section, see equation (6.86).
Now we can proceed to consider the different cases, similarly to previous sections.

p -branes. To find the p -brane Galilean action, we find the highest-order combination
that could arise when the expansions in equations (6.91) - (6.96) are plugged into (6.87),
and then take the c → ∞ limit. The highest-order action that arises from this is the
one resulting from the square of (6.93), since no other terms of order c2 occur via the
combinations available from (6.87). The action, at leading order, is then given by

Sp -brane = −
1

16πG

∫
ec2

4
T A
ab T ab

A , (6.103)

which presents us with a dilemma, since this term is divergent. In general, there are three
options, which we can consider:

1. Accept the divergence as the leading term. We may perform an overall scaling of
the action to bring this term to order c0, and then take the limit. In literature, the
resulting theories are called “electric” Galilean theories. What is interesting about
these theories is that they’re independent of the spin-connection, i.e. a first-order
formalism does not exist for these theories.

2. Use a Hubbard-Stratonovich transformation. In this case, we pacify the divergence
by introducing an auxiliary field λ. We can then write a divergence of the form
c2X2 equivalently as

− 1

c2
λ2 − 2λX. (6.104)

We can recover the original form by solving for λ and substituting the solution in.
λ also inherits its transformation rule from the field X in the form of the solution

λ = c2X. (6.105)

Once the c→∞ limit is taken, λ becomes a Lagrange multiplier that enforces the
constraint X = 0. This will result in different term(s) becoming leading in the
action and thus yields a different gravitational theory.

3. Cancel the divergence. It is possible to introduce a new (p + 1)-form field into
the theory and tune this field critically such that it precisely cancels the divergent
term. Due to transformation rules, the extra field then also contributes at lower
orders. This approach, for the p = 0 particle and p = 1 string cases results in the
corresponding Newton-Cartan theory of gravity. This would also be expected for
the generic p -brane. However, we will not discuss this scenario further in this work.

For generic p -branes, the first approach results in the following action

Selectric p -brane = −
1

16πG

∫
e

4
T A
ab T ab

A , (6.106)
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where we have performed a rescaling of GN to cp+3G. As mentioned earlier, this action is
clearly independent of any spin-connection. The equations of motion yield as a solution
any manifold for which T A

ab is zero. Per the previous section, this is equivalent to the
manifold possessing an integrable foliation by transverse submanifolds.

In contrast, the second approach yields the action

Smagnetic p -brane = −
1

16πG

∫
e

[
ωa,bc(e)ωb,ac(e)− ωb

ba(e)ωc
c
a(e) + 2T a

A
Aωb

b
a

− T a
A
ATaB

B + T a(A,B)Ta(A,B)

+
(
λA,ab − (ωA,[bc] + ω[b,c]A)(τ, e)

)
Tab,A

]
.

(6.107)

Upon comparison with the second-order p -brane action found in the previous section
(6.61), we find that the actions are indeed not the same, with the difference given by

Smagnetic p -brane = S2nd-order
p -brane

− 1

16πG

∫
e

[
Ta

{BC}T a
{BC} +

(D − 2)

(p+ 1)(D − p− 3)
T a

A
ATaB

B

]
,
(6.108)

with the additional difference that the T A
ab ω ab

A -term of S2nd-order
p -brane has been replaced by a

rescaled version

T A
ab

(
ω ab
A (τ, e) + λ ab

A

)
. (6.109)

This presents the remedy to the issue discussed at the start of the section - how is it
possible that there are independent spin-connections in the second-order formulation of
Galilei gravity, even though clearly all spin-connections were already solved for before
the limit was taken? The spin-connection that still occurs in the limit from the first-
order formulation of the theory ω ab

A , can be absorbed via redefinition into the Lagrange
multiplier λ ab

A .

It should be noted that the situation resulting from the difference between the magnetic p -
brane and plain second-order p -brane actions is quite dire - the original action S2nd-order

p -brane

has an emergent symmetry under an-isotropic dilatations, which the additional terms
break. The emergent symmetry can be related to the fact that there is a field, and
thus an equation of motion missing from the original p -brane action with respect to
the relativistic case. This means that the action found in (6.61) should be considered a
pseudo-action, rather than a full action of the non-relativistic theory.

Defect-branes. Yet again, we note that in the case of defect-branes there are only
independent spin-connections occur. This means that in the case of the limit from the
second-order formalism, all spin-connections should drop out, since all spin-connection
components have already become dependent. Similarly, all torsion tensors that occur
have become intrinsic. This means that all terms quadratic in spin-connections drop out
from the corresponding actions. For the first method of dealing with the divergence, we
recover exactly the same action as in the case of the electric generic p -brane, found in
equation (6.106). Similarly to the generic case, choosing the second way of dealing with
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the divergent term, yields an action similar to (6.107), but with all the quadratic terms
removed, i.e.

Smagnetic defect-brane = −
1

16πG

∫
e
[
T A
ab

(
ω ab
A (e) + λ ab

A

)
+ T (AB)

a T a
(AB) (6.110)

+ 2T a
A
Aωb

b
a − T a

A
ATaB

B
]
. (6.111)

Since there are only independent spin-connections, no comparison can be made here.

Domain-walls. Finally, in the case of domain-walls, identically to our previous treat-
ments of this case, T A

ab goes to zero identically. This makes the electric theory easy to
treat - the divergent T A

ab -term goes to zero, and what remains is

S
(1)
electric domain-wall = −

1

16πG

∫
e
[
T (AB)T(AB) − T A

A T B
B

]
, (6.112)

where we have again omitted the singular transverse index a = z. The solutions to the
equations of motion arising from this action are any geometries where T (AB) = 0. Recalling
the geometric implications of the classification, we know that those are precisely the
geometries where eµ is a conformal Killing vector with respect to the longitudinal metric
τµν , and where worldvolume is absolute. Finally, we remark that under the duality (6.1),
this theory becomes what is known in the literature as “electric Carroll gravity” [27].

We should note that this electric limit is not unique, since we can apply the Hubbard-
Stratonovich transformation to either T -squared term separately, i.e.

−TA
ATB

B → −2ω−2λTA
A + ω−4λ2, (6.113)

or

T (AB)T(AB) → 2ω−2λ(AB)T(AB) − ω−4λ(AB)λ(AB). (6.114)

These two procedures result in two additional electric domain-wall actions,

S
(2)
electric domain-wall = −

1

16πGNL

∫
eT (AB)T(AB), (6.115)

and

S
(3)
electric domain-wall = −

1

16πGNL

∫
−eTA

ATB
B, (6.116)

respectively.

Taking the second option for taming the divergence, we tame, this time, T (AB). Thus
λ(AB) becomes a Lagrange multiplier enforcing the constraint T (AB) = 0. The action, in
this case, becomes

Smagnetic domain-wall = −
1

16πG

∫
e
[
ω C
C Aω

AB
B + 2ωAω

AB
B + ω A

C Bω
CB

A +

+2T(BA) ω̃
AB + 2ωABω̃

[AB]
]
,

(6.117)

which is identical to the previous action we found for second-order domain-walls after
solving for spin-connections in the first-order Galilean theory.
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Conclusion

In this work, we presented a classification of Galilean spacetimes for p -branes. Addi-
tionally, we discussed a duality between Carroll and Galilei spacetimes that allows for
this classification to be extended to include Carroll spacetimes. The classification was
reached through determining the different types values that can be taken by the intrinsic
torsion, and subsequently finding the geometric consequences of each possible intrinsic
torsion type. In addition we discussed two special cases that were found in literature
previously [7, 9], the Galilean particle and domain-wall. The latter corresponds, via the
aforementioned duality, to the classification of the Carrollian particle.

Finally, we derived the gravitational theories that realize the classifications presented in
section 5. It was found that every case found in the classification was also realized in
a theory of gravity. These theories were discussed in both their first and second-order
formulations. Galilean gravity in it’s second-order form was reached both as a direct
limit of the second-order formalism of general relativity, and through solving for all spin-
connections from the first-order Galilean theory. Through this procedure we found that
the approach that was taken makes a difference, and may result in a different action being
recovered in some cases.

In taking the limit from the second-order formulation of general relativity, we discovered
that the leading term was divergent. We then discussed different methods of dealing with
this divergent term. The options presented to us were

1. Accept the divergent term, and bring it to order c0 by an overall scaling of the action

2. Eliminate the divergence by applying a Hubbard-Stratonovich transformation. This
brings the divergent term from order c2 to c0 via the introduction of an auxiliary
field.

3. Introducing an extra field to the theory, and tuning this to a critical value such that
it cancels the divergent term. This option is left for future work.

Depending on the approach that was chosen, actions were presented for the different
options, termed electric and magnetic limits in the literature.

Finally, we discuss the fact that the electric limit in the domain-wall (p = D − 2) is
not unique - we can apply a Hubbard-Stratonovich transformation to either of the two
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resulting quadratic terms, or to both at the same time, yielding three distinct electric
limits in this case.

Outlook Of course, a lot of work still remains to be done. Here we will highlight some of
the most immediate and promising directions for future inquiries to be directed towards.

As we found in section 5, the classification of spacetimes intimately depends on the rep-
resentation theory of the group under consideration. This provides ample potential for
further research since not all special cases are discussed in this work. Some interest-
ing cases that can immediately be thought of are those of non-relativistic strings, where
the representations of the longitudinal Lorentz group, SO(1, 1) becomes reducible. It is
well known that in this case you can express the system in terms of so-called lightcone
coordinates [28, 29]. Another interesting special case is that of supermembranes in 11
dimensional supergravity, where the representation of the transversal rotations SO(8) be-
come reducible. Of course, any case where a representation of one of the groups forming
the structure group (or indeed the entirety of the structure group) is reducible becomes
a special case of the classification. With the tools discussed in this work, these special
cases can be explored systematically.

Another further path that is open to explore is that of other structure groups G. For
instance, the spacetimes resulting from the Aristotelian group for extended objects have
thus far not been classified. Some exploration of the geometries resulting from different
kinematical Lie groups can be found in [11]. Some groups of interest would be the already
mentioned Aristotelian group, with applications to be found in condensed matter physics
[6], as well as fluid dynamics [30]. Another Lie algebra of interest is the Bargmann algebra,
the centrally extended Galilei algebra. This is significant because the central extension
component of the algebra corresponds directly to the additional geometric component
that is added in the third option of our approaches to taming a divergence.

Extending the classification presented here is possible also through the third option we
presented towards the taming of divergences. Introducing the additional geometric ingre-
dient of a (p + 1)-form field has been done in some cases in the supergravity literature
[31], but the most general p -brane case still remains to be done. An additional point
of interest in this regard is the fact that using the mathematical framework to this end
proves unsuccessful for extended objects. The reason for this is the following: mathemat-
ically speaking, the additional geometric field arises as a central extension to the Galilei
algebra. This is fine for particles, since in this cases the central extension generator of the
algebra is a vector. However, already for strings the generator would need to be a 2-form,
which cannot be used to generate a central extension of a group.

Recently, increasing attention has also been directed toward studying Carrollian quantum
field theories (CQFTs). Although potentially tangental, employing the concept of duality
between Carrollian and Galilean spacetimes introduced here might prove to be of interest
in making further progress in this area.
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(première partie)”, Ann. École Norm. Sup. 40, 325 (1923).

61

https://doi.org/10.1063/1.1372697
https://doi.org/10.1063/1.1372697
https://arxiv.org/abs/0009181
https://doi.org/10.1007/JHEP07(2016)050/METRICS
https://doi.org/10.1007/JHEP07(2016)050/METRICS
https://doi.org/10.1007/JHEP09(2022)243
https://doi.org/10.1016/j.physletb.2021.136735
https://doi.org/10.1016/j.physletb.2021.136735
http://arxiv.org/abs/2305.06730
https://arxiv.org/abs/2305.06730
https://doi.org/10.21468/SCIPOSTPHYS.12.6.205/PDF
https://arxiv.org/abs/2111.03668
https://arxiv.org/abs/2111.03668
https://doi.org/10.48550/arxiv.2009.01948
https://doi.org/10.48550/arxiv.2009.01948
https://doi.org/10.48550/arxiv.2009.01948
https://doi.org/10.48550/arxiv.2009.01948
https://doi.org/10.1088/1361-6382/acbe8c
https://doi.org/10.1088/1361-6382/acbe8c
https://doi.org/10.1007/JHEP03(2017)165
https://doi.org/10.1088/0264-9381/28/10/105011
https://doi.org/10.48550/arxiv.2206.12177
https://doi.org/10.48550/arxiv.2206.12177
https://doi.org/10.48550/arxiv.2206.12177
https://doi.org/10.48550/arxiv.2206.12177
https://doi.org/10.1088/1361-6382/ab2fd5
https://doi.org/10.1088/1361-6382/ab2fd5
https://arxiv.org/abs/1903.09654
https://doi.org/10.1103/physrevd.107.064009
https://doi.org/10.1088/1361-6382/aacf1a
https://doi.org/10.1088/1361-6382/aacf1a
https://arxiv.org/abs/1802.05286
https://doi.org/10.1007/JHEP03(2021)194/METRICS
https://doi.org/10.1007/JHEP03(2021)194/METRICS
https://arxiv.org/abs/2001.03056


Iisakki Rotko REFERENCES
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