university of faculty of science artificial intelligence
gﬁ,&“é / groningen / and engineering /

THE EFFECT OF DEPENDENCIES IN DATA ON THE
ACCELERATED ARGUMENTATION-BASED LEARNING
ALGORITHM

Bachelor’s Project Thesis

Jonas Scholz, s4287797, j.scholz.1@student.rug.nl,
Supervisor: Prof Dr H.B. Verheij

Abstract: With the increased usage of artificial intelligence(AI), there is an increase in the
misuse of Al, as users do not understand how Al comes to its decisions. This means that there
is a need for an Al that is explainable, meaning that humans can understand how the Al came
to its decision. There are some explainable Al systems that are able to both learn as well as stay
human-understandable, one such system is the accelerated argumentation-based learning(AABL)
algorithm. This is a new learning algorithm that uses argumentation to determine the correct
output. As the AABL algorithm is still new the limits of this algorithm are still unknown, as
this algorithm seems promising it is important to determine where the limits lie. In this regard,
this paper will explore the effects of dependencies in the data on the accuracy of the model in
comparison to a decision tree and neural network. The data shows that the AABL algorithm
outperforms the other machine learning algorithms eventually for higher dependencies, though
this trend does not seem to continue for 21 dependencies. Furthermore, the AABL algorithm
slows down considerably for higher dependencies compared to the other two algorithms. This,
therefore, highlights that while this approach towards explainable Al works also for other sce-
narios compared to the original scenario it was tested on, it also shows that the algorithm still

has some limitations that need to be addressed by derived algorithms.

1 Introduction

,,Texas professor misuses ChatGPT and fails most
of class for Al plagiarism”*, this is a headline from
the Independent on 18th of May 2023. It is about
a professor that uses ChatGTP, a large language
model created by OpenAlf, to determine whether
his students used ChatGTP or a similar language
model to write their assignment. This demonstrates
a problem in artificial intelligence (AI), as AT gets
more popular more and more people are coming
into contact with Al systems and are using it while
not understanding how these systems work. This is
made even more complicated due to the fact that
modern Al systems often make use of deep neural

*https://www.independent.co.uk/news/world/
americas/chatgpt-ai-plagiarism-texas-a-and-m
-b2341238.html, Last retrieved on 01.06.2023

Thttps://openai.com/blog/chatgpt, Last
01.06.2023

Retrieved

networks, which are hard to understand, as the sys-
tem does not inherently make it clear how it came
to the decision. This also extends to the designers
of the system, which makes it more problematic to
ensure that the system behaves as intended. This
can be problematic as can be seen by the exam-
ple above, but this also has consequences on other
parts of society where it is vital that there is a clear
reasoning behind a decision. One such sector is law,
where it is important that an Al system not only
gives the decision if a person is guilty or not, but
also gives a good foundation on which it based its
decision on in order for humans to be able to un-
derstand and make sure that the decision is correct
and in this case just.

This is a reason why there is an increasing move-
ment for the development of explainable artificial
intelligence (XAI), which is putting more emphasis
on the ability of Al systems to indicate how they

https://www.independent.co.uk/news/world/americas/chatgpt-ai-plagiarism-texas-a-and-m-b2341238.html
https://www.independent.co.uk/news/world/americas/chatgpt-ai-plagiarism-texas-a-and-m-b2341238.html
https://www.independent.co.uk/news/world/americas/chatgpt-ai-plagiarism-texas-a-and-m-b2341238.html

came to the result in a human-understandable man-
ner. According to Adadi & Berrada (2018) there are
four main reasons on why it is important to work
on XAI, the first being that an explanation is use-
ful to justify the decision was made. This then also
ties into the next reason, which is the ability to
understand the system better and therefore have
greater control over the system as it can be eas-
ier to identify flaws in the system. This then also
means that better explainability makes it easier to
improve such systems and lastly understanding the
reasoning of Al systems might allow us to discover
new insights, as Al is good at discovering patterns
in data, which if the AT is explainable could help
us understand why the data has these patterns.

Given all of these reasons, it is clear that it is
important to look into XAl systems. One approach
to make XAI is to an architecture for the Al that
is inherently explainable to humans, which means
that it is trivial to see how a decision was reached by
the AI. A possible type of architecture for that are
argumentation systems, which as the name implies
use arguments to determine the output. They could
be an effective approach for XAI, as humans are
prone to use argumentation in our daily life and are
therefore accustomed to using them (Baroni et al.,
2020), in fact, we often expect that other people can
provide us with arguments to support their opinion,
even kids use arguments to persuade their parents
to not do for example homework.

One of these argumentation systems is the
accelerated argumentation base-learning algo-
rithm(AABL) by Ayoobi et al. (2021), which is
capable of creating an attack graph in an online-
incremental manner, which means that the system
learns how to predict the output by using one data
point at a time, which allows it to smoothly inte-
grate new data. This algorithm outperformed other
similar online learning algorithms, for the decision
of the appropriate recovery behaviour for a robot.

As this algorithm is still new the limits of this
algorithm are not yet known, therefore it is prudent
to see how this algorithm will perform in other
conditions. As the algorithm is currently designed
to only take into account data dependencies of up
to two variables it is especially important to see
how a modified algorithm which allows for higher
dependencies will perform if the data contains
higher dependencies. This then leads to the re-
search question: Does the number of dependencies

in the data affect the accuracy or learning rate
of the accelerated argumentation-based learning
algorithm?

In order to answer this question, the paper
will explain the argumentation framework that the
learning algorithm uses in Section 1.1, which is then
followed by the explanation of the learning algo-
rithm in section 1.2, which is then followed by two
sections describing the other two machine learn-
ing approaches used to compare to the AABL algo-
rithm. After that section, a description on the prob-
lems of the original algorithm is given followed by a
description of how it was modified to fit the experi-
ment follows. This is then followed by a description
of the data generation and the experimental setup.
Section 3 holds the results of the experiment and
is followed by the last section, which discusses the
results and concludes this paper.

1.1 Argumentation

Argumentation is an integral part of human com-
munication (Baroni et al., 2020), as it allows to sup-
port opinions and therefore convince others of their
views, furthermore, it allows others to understand
why certain decisions were made and can therefore
better evaluate whether they agree with the rea-
soning.

An influential formalization of argumentation
was created by Dung (1995), in his paper he de-
fines the abstract argumentation framework which
allows for a formal description of acceptance for
sets of arguments. In order to achieve this he ab-
stracts from the actual content of the arguments to
attack relations between arguments which allows
for the evaluation of for example admissible sets
of arguments. This can then be visualized as a di-
rected graph where the individual nodes are argu-
ments and the connections are the attack relations,
between them. An admissible set of arguments is
a subset of all arguments that do not attack each
other and also defend each other from attacks from
arguments that do not belong to that set.

1.1.1 Bipolar Argumentation Frameworks

The bipolar argumentation framework is an ex-
tension of the abstract argumentation framework
and was formalized by Cayrol & Lagasquie-Schiex

Figure 1.1: A directed graph representing ar-
guments using the BAF, there are two attack
relations (crossed lines) and one support re-
lation.

(2005). The bipolar argumentation framework also
abstracts away from the actual argument to only
include the relation between the argument, but in
comparison to the abstract argumentation frame-
work, it allows for both attacking as well as sup-
porting relations between the arguments, which al-
lows for more complex relations. Similarly, to the
abstract argumentation framework, a set of argu-
ments with their relations can be displayed as a
directed graph were the nodes represent the ar-
guments and arrows represent the relationship be-
tween them. A connection with a line crossing indi-
cates an attack relation, while a connection without
the line indicates a support relation. An example
of an argumentation graph using the bipolar argu-
mentation framework can be seen in Figure 1.1.

To determine an admissible set in the bipolar
argumentation framework a set must, similarly to
an admissible set under the abstract argumentation
framework, be conflict-free and defend itself against
attacks from outside of the set. Though the addi-
tion of supporting relations complicates it a bit, as
a support relation to an argument outside of the set
which attacks an argument in the set means that
the set is not conflict-free, as there is a supported
attack on a member of the set. This definition of
admissibility is one of three different admissibilities
defined within the paper, this admissibility is the
closest to the definition for an admissible set in the
abstract argumentation framework and is the least
stringent one.

1.2 Argumentation-based
algorithm

learning

This understanding of the bipolar argumentation
framework allows us to go to a machine learn-
ing algorithm developed using this argumentation
framework as a basis. In his PhD thesis Ayoobi
et al. (2021) introduces two machine learning al-
gorithms that learn by constructing an argumen-
tation graph using the data that is provided to
them, they are called Argumentation-based learn-
ing (ABL) and Accelerated Argumentation-based
learning (AABL), which is an improvement on the
first algorithm, as it is faster than the ABL algo-
rithm and has higher accuracy.

AABL works by using a bipolar argumentation
graph that represents both the output as well the
input features and their relations with each other.
The graph starts out as an empty graph without
nodes or connections, then whenever a new output
value is encountered, then a bidirectional attack
relation between these output nodes is created in
order to encourage exclusivity between the differ-
ent output values. Other nodes representing input
features are then used to support different output
nodes based on the encountered data instances.

The prediction of the AABL algorithm works by
first extracting all the feature value combinations
of the input with a length of the current limit,
which starts as 1. Then all the non-output nodes
in the graph that match one of the combinations
created using the input are considered and the sup-
ported output node is stored in a list. Then after all
supporting nodes have been checked if exactly one
output node was supported then the value of that
node is the output of the model, if multiple output
nodes match, then a random output node among
the matching ones is used. If none match, then a
random output value from the known output values
is chosen.

To update the bipolar argumentation graph the
correct output needs to be known, as well as the
current bipolar argumentation graph and all com-
binations of feature values given the input of a
size given the current limit. As already mentioned
above whenever a new output value is encountered
when updating the argumentation graph a bidirec-
tional attack relation is added between all previ-
ously known output values and the new output
value. After potentially updating the output val-

ues, the supporting input nodes are updated using
the new data instance and the correct output value.
To achieve this all combinations of features and
values of the input are checked on whether a sup-
porting node exists that covers that combination,
if such a node exists and the supported output of
that node does not correspond to the correct out-
put, then the supporting node is removed and the
combination is marked as a non-unique combina-
tion and therefore irrelevant for the purpose of de-
termining the output. If the combination was not
already encountered, then a new supporting node
is added which supports the correct output value.
If all combinations were already encountered and
were not unique, then the limit for the number of
features in the combinations is increased by one.
Then the new combinations of feature values given
the input is computed and the new combinations
are used to update the graph until the limit is in-
creased to two or the update algorithm indicates
that the limit should not be increased anymore.

1.3 Decision Trees

A decision tree is a machine learning algorithm that
recursively divides the data points into subsets in
order to determine the correct output (Loh, 2011).
For this project, only classification decision trees
will be considered, though regression decision trees
also exist. As already shortly explained above clas-
sifying decision trees, from here on out called de-
cision trees(DT), split the data based on learned
rules in order to be able to classify the input. Then
each of the subsets can be split further according
to a newly learned rule if necessary, which allows
the decision tree to build a tree that can be tra-
versed to get to a classification label which should
correspond to the given input.

1.4 Multi-layer feed-forward neural
networks

A multi-layer feed-forward neural network is a ma-
chine learning algorithm that consists of artificial
neurons which are divided into layers, with the first
layer being the input layer and the last layer being
the output layer(Svozil et al., 1997). All other lay-
ers in between are called hidden layers. The layers
of a network are connected with each other with di-
rected connections which allows for the transfer of

values from one layer to the next, in a feed-forward
neural network all connections go forward meaning
that no connections are directed towards the same
or a previous layer. Each connection is between two
neurons of different layers and will transfer the out-
put of one neuron as the input of the next neu-
ron, though these connections are weighted which
means that the input will be the weighted output
of the previous node. Every neuron is connected to
all neurons in the previous layer.

Neurons can have multiple inputs which are
summed up and then the sum is used as an input
for the activation function of the neuron, the activa-
tion function will then transform the summed input
into the output value of the neuron (Svozil et al.,
1997). These activation functions are non-linear, as
this allows for a more flexible model compared to
a model using linear activation functions.

The multi-layer feed-forward neural network will
learn in a supervised manner, which means that it
knows the correct output and can use that with
the predicted output of the model as well as an
optimization function to modify the weights in the
network so that the model can learn to produce a
better output.

2 Methods

2.1 Modified AABL Algorithm

In order to test the influence of dependencies on the
accuracy of the Accelerated Argumentation Based
Learning algorithm by Ayoobi et al. (2021) I made
some modifications to the original algorithm, in or-
der to allow it to function in a broader set of cir-
cumstances.

2.1.1 Problems with the AABL Algorithm
Implementation

The original implementation of the AABL algo-
rithm suffers from three big problems, namely:

1. High coupling of data generation and the al-
gorithm.

2. Non-uniform representation of the data.

3. Hard-Limit of two dependencies.

The first issue is a problem as it significantly hin-
ders the usability of the algorithm. This is due to
the fact that each new dataset now needs to come
with the same helper functions in order for the al-
gorithm to work. This means that it is harder to
use the algorithm for other problems.

The second issue further contributes to the prob-
lem by requiring that the data has to both have
a string and a numeric representation, as the al-
gorithm does not only use one representation but
both, which makes it harder to adapt the algorithm
for other problems.

Lastly, the third issue means that the algorithm
can only be applied to data with low dependencies.
This also reduces the applicability of the algorithm.

2.1.2 Changes

In order to fix the first problem of the high coupling
of the AABL algorithm and the data generation,
necessary helper functions from the data genera-
tion were moved to the algorithm. These functions
transform the array into different forms in order
for the algorithm to be able to find proper com-
binations. Some of these functions were removed
when fixing the second problem. This reduced but
not completely eliminated the high-coupling of the
classes.

In order to completely eliminate the coupling be-
tween data generation and the learning algorithm
the second problem about the non-uniform repre-
sentation needs to be addressed. This is due to the
fact that functions of the data generation class were
used to associate the string representation of the
data to a numeric representation. Therefore I de-
cided to only use numbers to represent the feature
values, as it is more in line with other machine
learning algorithm implementations and therefore
allows for easier usage with them.

This switch to a purely numeric representation
for the modified algorithm means that there are
some new restrictions on how the numerical repre-
sentation works, as the original AABL algorithm
used strings to differentiate between feature values
as they were completely unique both within a sin-
gle feature and also between features. This is not
the case for the number representation of the orig-
inal AABL is only unique within a feature. As the
modified AABL algorithm does not use a string rep-
resentation, but only a numeric representation of

the data, the feature values need to have a unique
numerical number not only within the feature but
also between different features to be able to dif-
ferentiate between them. To illustrate this assume
that there are four features such that each feature
has a binary value, so 0 or 1. Then this could be a
potential input vector: [0,1,0,1]. The problem with
that vector is that the numbers aren’t unique and
therefore such an input vector is illegal. A way to
transform such an array such that it fulfils the re-
quirements is to take the index position of the fea-
ture into account. This means that in the previous
example, each feature is binary then we can take
the index number of the feature and multiply it by
two and finally add the feature value to obtain a
unique number. This means that the array [0,1,0,1]
would be transformed into the array [0,3,4,7], which
makes the new array guaranteed to comply with the
unique feature requirement.

The third problem in the original implementa-
tion is that it only considers a combination with a
maximum size of two features, which means that
it will at most only consider 2 dependencies in the
data, which severely limits the usability of the code,
as well as making this project trivial to answer, so
this limit was removed which theoretically should
allow for an unlimited amount of features being
taken into account if the algorithm has unlimited
time and memory. The fixing of the problem was
aided by switching to a numerical approach, as this
allowed for simpler looping over the features and
therefore allowed the algorithm to more easily han-
dle a variety of feature lengths. To facilitate more
than two features the modified AABL algorithm
needs to be initialized with an array which has the
size of the number of features and in each position
has the number of possible feature values at that
location. For example, the array [3, 4, 2] indicates
that the algorithm will receive scenarios with three
different features, with the first feature having 3
possible values, the second feature having 4 possi-
ble features and the last feature having 2 possible
values.

The modified code can be accessed on GitHubt.

thttps://github.com/jojoscholzgmailcom/
Accelerated ABL

https://github.com/jojoscholzgmailcom/Accelerated_ABL
https://github.com/jojoscholzgmailcom/Accelerated_ABL

—— ABL (old)

069 — ABL (modified)

0.5 1

0.4

0.3 1

0.2 1

0.19

0.0 1

T T T T T
o] 25 50 75 100 125 150 175 200

Figure 2.1: The blue line indicates the ac-
curacy of the original algorithm, while the
green line indicates the accuracy of the mod-
ified algorithm.

2.1.3 Testing

After these changes were added to the algorithm,
the newly modified algorithm was tested in order
to verify that the changes to the implementation
did not modify the behaviour of the algorithm. In
order to facilitate this test both the old implemen-
tation and the new implementation were given the
same inputs, with the only adjustment being made
to fit the input into the correct format for both
algorithms, given that the learning algorithm does
not rely on random chance both the modified and
unmodified version should have the exact same ac-
curacy the whole time. When tested this was the
result, as can be seen in Figure 2.1, where the two
lines overlap perfectly, further inspection of the un-
derlying values confirmed the graph.

2.2 Data Generation

To generate data with a variety of dependencies a
Bayesian network is used. A Bayesian network con-
sists of nodes that are possibly connected using a di-
rectional connection which indicates a dependency.
This means that if for example there is a connec-
tion from Node A to Node B then this means that
the probability of Node B having a specific value is
dependent on the value of Node A. This example
shows clearly why a Bayesian network is an ap-
propriate choice to generate data with a variety of

O O O O

Decision Node

Figure 2.2: A Bayesian Network with one de-
cision node and four other nodes one of which
is a parent of the decision node.

different dependencies. The implementation of the
Bayesian networks used for data generation can be
found in the Github repository?®.

2.2.1 General Structure

For the data generation of this project, there are
some facets of the structure of the Bayesian Net-
work that are constant. Namely, each Bayesian net-
work will consist of two types of nodes first normal
nodes and second decision nodes which are the out-
put nodes and are as such hidden from the learning
algorithms as the value of that node is what the
learning algorithms will have to predict.

For the experiment, there are two different types
of Bayesian Networks that will be used for the ex-
periment. The first type of Bayesian network only
increases the number of nodes in the network but
keeps the number of dependencies to one, which
means that only one node influences the value of
another node, furthermore, the dependent node is
the decision node an example of such a Bayesian
Network can be seen in Figure 2.2.

The second type of Bayesian network has the
number of dependencies which is the number of
nodes minus 1 meaning that the decision node de-
pends on all other nodes. An example of such a
network can be seen in Figure 2.3.

2.2.2 Normal Node

In order to reduce the number of possible combina-
tions that can be generated every node is a boolean
node, which means that it can only be either 0 or
1. Upon the creation of a new node the parents of

Shttps://github.com/jojoscholzgmailcom/
Accelerated ABL

https://github.com/jojoscholzgmailcom/Accelerated_ABL
https://github.com/jojoscholzgmailcom/Accelerated_ABL

Decision Node

Figure 2.3: A Bayesian Network with one de-
cision node and four parents.

that node need to be provided, which allows the de-
termining of conditional probabilities for the value
of this node. For this, every possible value combi-
nation of the parents is calculated. Then for each
combination, a random number between 0 and 1
is chosen which indicates the conditional probabil-
ity that this node will have a value of 1 given that
combination of values of the parent nodes.

2.2.3 Decision Node

The decision node is in essence like any other node
with the only exception being that depending on
the combination of parent values there is either a
0% or 100% chance that the value of this node is
1, which means that this node behaves determinis-
tically given the combination of values from parent
nodes. This was done in order to allow for better
comparability of different runs as this ensures that
hypothetically the algorithm has 100% accuracy if
it learns the correct rule.

The first approach of only having one value com-
bination that gives this node a value of 1 does not
work out due to the exponential nature of how
many combinations arise when the number of par-
ents increases. For example, with two parents there
exist 22 = 4 combinations which means that if the
parents have a probability of 0.5 there is a one
in four chance that the combination occurs, while
for 20 parents there are 22° = 1,048,576 combina-
tions which means that the is less than 1 in a mil-
lion chance to sample a combination that results
in a 1 for this node. This leads to very unbalanced
datasets which reward the classification of every-
thing as zero, because if 99% of the combinations
result in a zero for the decision node then a model
that always predicts zero will have an accuracy of
99%.

In order to prevent this, the solution is to make

more combinations that result in the decision node
having a value of one. It is important to make sure
that when deciding on these combinations that they
will not lead to them making one of the parents ir-
relevant by making the decision node independent
from the value of that parent. This could happen if,
for example, only combinations where the last par-
ent has a value of one will make the decision node
one. In order to circumvent this issue the parity of
the sum of parents is used to determine the value
of the decision if the sum of parents is even then
the decision node will have a value of one.

2.2.4 Sampling

To generate data for the AABL algorithm the
Bayesian network will first start randomly assign-
ing a value to nodes without any parents according
to the probability of each node. Then the values
of these nodes can be used to assign a value to
nodes that are dependent on these nodes. As the
value of their parent is known and therefore the
probabilities for that node can be easily resolved, a
value for that node can be randomly selected. All
these values together then make up one sample of
the Bayesian network. As the values are assigned
pseudo-randomly using Pythons random generator
multiple sampling of the Bayesian Network can re-
sult in different samples.

2.3 Experimental Setup

In order to test the effect of dependencies on the
accuracy of machine-learning approaches the two
types of Bayesian networks will be used in order
to sample data that contains a variety of depen-
dencies. To thoroughly test the effect of dependen-
cies in data on the AABL algorithm two different
hyperparameters will be manipulated, namely the
Bayesian network type and the number of nodes
in the Bayesian network. There are two different
types of Bayesian networks as described in Section
2.2.1. For the number of nodes the values 3 and ev-
ery even value up to and including 22 were tested,
which means that there are 11 different values for
that parameter. This means that there are a total of
22 configurations of the two hyperparameters that
will be tested.

For each of the configurations, a random
Bayesian network will be generated based on the

configuration. From the Bayesian network then in-
dividual samples can be sampled as described in
Section 2.2.4. A single run consists of 200 samples
that were sampled one at a time and were used
to train the algorithm. Each of these training runs
was repeated 25 times each time with an untrained
model to reduce the effect of chance of for example
the sampling on the accuracy of the model.

To be able to determine the performance of
the AABL algorithm compared to other machine-
learning approaches the same experimental setup
will be used to train the decision tree and the neu-
ral network. For both machine learning approaches
the implementation of the Python library scikit-
learn with version 1.2.2 was used.

2.3.1 Decision Tree

The decision tree used for this experiment uses Gini
impurity in order to determine which split of the
data is the best and then the rule that produced
the best split is used to build the decision tree. This
is repeated until only two samples are unaccounted
for, after which the tree is completed. Contrary to
the AABL algorithm which stays the same per run,
a new decision tree is generated and trained on all
available data after a new sample is created, this is
done as a decision tree is not an online-incremental
learning algorithm.

2.3.2 Neural network

The neural network used in this experiment is a
multi-layer feed-forward neural network with three
layers. As described for the decision tree a new neu-
ral network is trained at each timestep with the
data from the previous timestep and then after-
wards the trained model is used to predict the an-
swer, which can then be used to determine the ac-
curacy of the model as the number of timesteps and
therefore data increase.

The first layer of the neural network is the input
layer and therefore corresponds to the number of
features that the scenarios have. The second layer
is a hidden layer and has 8 nodes and finally, the
third layer is the output layer and therefore has
two nodes, one for each of the possible answer val-
ues. The update function for the neural network
is Limited-memory BFGS, which was chosen due
to its ability to converge faster and perform bet-

ter with fewer data compared to other algorithms.
As an activation function for the nodes in the hid-
den layer, the RELU function was chosen, as it is
a non-linear function.

The neural network uses the Average Cross-
Entropy Loss function as well as the L2 regulariza-
tion with a factor of 0.0001 to calculate the loss of
the neural network. The model was trained for 200
timesteps or until convergence whichever condition
occurred sooner.

Lastly, similar to the decision tree a new neural
network is trained after a new sample was gener-
ated using all generated data, as this kind of neural
network is not an online-incremental learning algo-
rithm.

3 Results

In Figure 3.1 it can be seen that the mean accuracy
of the AABL algorithm decreases when the number
of nodes in the Bayesian network that was used to
generate the data increases, as this also increases
the number of dependencies. The figure shows that
at the 199th attempt with 3 nodes, the algorithm
has an accuracy of 97.42%, while it only has an
accuracy of 45.84% at the 199th attempt with 22
nodes. Furthermore, it can be seen that a higher
number of dependencies leads to a less steep learn-
ing curve.

In Figure 3.2 it can be seen that the mean ac-
curacy of the AABL algorithm does not decrease
drastically with an increase in the number of nodes
used in the Bayesian network, this is due to the
fact that these Bayesian networks only have a sin-
gle dependency. The figure, therefore, shows that
the mean accuracy for the three nodes is 98.44%,
while the mean accuracy for the 22 nodes is 97.82%.

In Figures 3.3 to 3.6 the mean accuracy of the
AABL algorithm is compared to the mean accura-
cies of the neural network (NN) and the decision
tree (DT) algorithm for a variety of dependencies
in the data. These figures were selected from the
11 different figures, as they were the most interest-
ing the other figures can be found in the Github
repository¥.

In Figure 3.3, the mean accuracies of the algo-
rithms are shown for two dependencies. In this Fig-

Yhttps://github.com/jojoscholzgmailcom/
Accelerated ABL

https://github.com/jojoscholzgmailcom/Accelerated_ABL
https://github.com/jojoscholzgmailcom/Accelerated_ABL

Number of Nodes

accuracy

100
attempt

Figure 3.1: The mean accuracy of the AABL
algorithm when the data has dependencies
equal to the number of nodes minus 1.

100-

ML algorithm type

accuracy

AfBL
— o1
NN

100 150
attempt

Figure 3.3: The mean accuracy of the AABL
algorithm, neural network and decision tree
when the data has 2 dependencies.

100~

{ ML algorithm type
\/‘W\ ABL
— ot
NN

accuracy

Figure 3.5: The mean accuracy of the AABL
algorithm, neural network and decision tree
when the data has 15 dependencies.

ure, it can be seen that all algorithms converge to a
high accuracy of over 95%. Furthermore, it can be
seen that both the decision tree and AABL algo-
rithm have a similar learning curve, with initially
a low accuracy and then a major improvement be-
fore slowly approaching 100% accuracy. The neu-
ral network mean accuracy meanwhile starts high

100-

Number of Nodes

accuracy

100
attempt

Figure 3.2: The mean accuracy of the AABL
algorithm when the data has only one de-
pendency.

100-

/ ML algorithm type
P

0 B

— o7
NN

accuracy

100 150
attempt

Figure 3.4: The mean accuracy of the AABL
algorithm, neural network and decision tree
when the data has 7 dependencies.

100-

ML algorithm type
ABL

— o1
NN

?{
|
|
|
|

Figure 3.6: The mean accuracy of the AABL

algorithm, neural network and decision tree
when the data has 21 dependencies.

at around 90% accuracy and then first drops a
bit down to around 85% before recovering and
then slowly approaching the 100% as more data
instances become available.

In Figure 3.4, the mean accuracies of the algo-
rithms are shown for seven dependencies. In this
Figure, it can be seen that the AABL which has

initially the lowest accuracy of the algorithms out-
performs the other two algorithms after 200 data
samples. The mean accuracy for both the DT and
AABL algorithm has not levelled of after 200 data
samples. The neural network has levelled of at a
mean accuracy of below 60%.

In Figure 3.5, the mean accuracies of the algo-
rithms are shown for 15 dependencies. In this Fig-
ure, it can be seen that the AABL which has ini-
tially the lowest accuracy of the algorithms outper-
forms the other two algorithms after 200 data sam-
ples, furthermore, it can be seen that the accuracy
of the AABL has not levelled off after 200 samples.
Both the decision tree and the neural network have
stabilized at around 50%.

In Figure 3.6, the mean accuracies of the algo-
rithms are shown for 21 dependencies. In this Fig-
ure, it can be seen that similar to Figure 3.5 both
the DT and the NN algorithm stabilize at an ac-
curacy of around 50%, while the AABL algorithm
seems to stabilize at an accuracy of around 45%.

Lastly, in figure 3.7 the mean runtime of all three
algorithms in seconds given the number of depen-
dencies in the data can be seen. It can be seen
that both the neural network, as well as the de-
cision tree, have a relatively stable runtime as the
number of dependencies in the data increases. The
runtime of the AABL algorithm on the other hand
does increase significantly when the number of de-
pendencies in the data increases.

4 Discussion

In conclusion, it can be seen in Figure 3.1 that
the number of dependencies in the data does have

ML Type
A%BL

- oT
NN

Runtime in seconds

10
Dependencies

Figure 3.7: The mean runtime of the AABL
algorithm given the number of dependencies.

an effect on the accuracy of the AABL algorithm,
as the mean accuracy of the algorithm decreases
as the number of dependencies in the number in-
creases, furthermore this effect does not appear in
Figure 3.2, as that one only increases the number
of nodes without increasing the number of depen-
dencies. This seems to indicate that the effect on
the accuracy is due to the increased number of de-
pendencies in the data and not due to the increased
number of features.

Furthermore, it can be seen in Figures 3.4 and 3.5
that the AABL algorithm while initially having a
lower accuracy seems to be able to increase faster
than the other two machine learning algorithms,
which could indicate that the AABL algorithm
might outperform the other two approaches given
more data also for higher dependencies. Though
this is not completely in line with what can be
seen in Figure 3.6, which seems to indicate that the
AABL algorithm levels off at around 45%, though it
is possible that the learning rate is relatively small
and given more the data that the mean accuracy for
the AABL algorithm will still increase such that it
outperforms the other two approaches.

In Figure 3.1 it can be further seen that espe-
cially for the lines representing data generated by
a Bayesian network with 6 to 18 nodes they are still
having a positive growth rate, which could indicate
that the mean accuracy of the AABL algorithm
for these Bayesian networks might still drastically
increase given more samples. This, in turn, could
suggest that the AABL algorithm is able to per-
fectly track statistics produced by a Bayesian Net-
work given enough data samples. Though this does
not seem likely given that the algorithm is pruning
all non-unique supporting nodes, which will mean
that for example if a decision node in a Bayesian
Network given a specific parent node value combi-
nation will have a 70% chance of having a value
of 1, then if the same parent combination is sam-
pled multiple times it is possible that the decision
node has different values. This would mean that
the parent combination supports multiple values,
which would lead to the incorrect pruning of this
combination from the argumentation graph. This
then shows one of the limitations of the AABL
algorithm, as the algorithm is likely only able to
learn deterministic dependencies, where the same
parent value combination will always result in the
same value and will perform worse for dependencies

10

where the same parent value combination can lead
to different values.

Another limitation of the algorithm can be seen
in Figure 3.7, which shows the time it takes for the
algorithms to run for 200 data samples given the
number of actual dependencies in the data. As it
can be seen there is a major increase in the runtime
with higher dependencies for the AABL algorithm,
but not for the other two algorithms. This shows
that the AABL algorithm does not scale that well
with the number of dependencies when the consid-
ered dependencies are not capped as they were in
the original AABL algorithm. This is likely due to
the fact that with an increase in the length of the
feature value combinations, the number of possible
combinations increases exponentially, which then
contributes to the exponential runtime increase.

4.1 Conclusion

All in all, it can be said that the initial research
question on whether the number of dependencies in
the data has an effect on the accuracy and learn-
ing rate of the AABL algorithm can be answered,
as there was a decrease in the learning rate as well
as the mean accuracy of the AABL algorithm, fur-
thermore a few other limitations of the algorithm
were outlined such as the poor time scaling. This
then suggests that while this is a good step towards
an explainable machine learning algorithm, there
are still issues with this algorithm that prevent it
from being able to be used in more varied environ-
ments, as it is limited to deterministic relations.
Though this algorithm could be a possible start-
ing point from which other argumentation-based
learning algorithms could be developed, those could
then potentially take into account probabilistic re-
lations, which could vastly improve the applicabil-
ity of such an algorithm, furthermore, revisions of
the code and potential parallelization of the code
could potentially reduce the time needed to run the
algorithm and might improve the time scaling of
the algorithm. This or maybe other argumentation-
based learning algorithms might then possibly lead
to more explainable Al in a variety of fields. This
could be especially useful for end-user that in that
scenario interact with Al which gives proper rea-
soning for its decision, which could reduce the
chances that people would accidentally misuse that
Al as they would understand it better.

References

Adadi, A., & Berrada, M. (2018). Peeking Inside
the Black-Box: A Survey on Explainable Artifi-
cial Intelligence (XAI). IEEE Access, 6, 52138—
52160. doi: 10.1109/ACCESS.2018.2870052

Ayoobi, H., Cao, M., Verbrugge, R., & Ver-
heij, B. (2021). Argue to Learn: Acceler-
ated Argumentation-Based Learning. In 2021
20th IEEE International Conference on Machine
Learning and Applications (ICMLA) (pp. 1118
1123). doi: 10.1109/ICMLA52953.2021.00183

Baroni, P., Toni, F., & Verheij, B. (2020). On
the acceptability of arguments and its fundamen-
tal role in nonmonotonic reasoning, logic pro-
gramming and n-person games: 25 years later.
Argument & Computation, 11(1-2), 1-14. doi:
10.3233 /A AC-200901

Cayrol, C., & Lagasquie-Schiex, M. C. (2005). On
the Acceptability of Arguments in Bipolar Argu-
mentation Frameworks. In L. Godo (Ed.), Sym-
bolic and Quantitative Approaches to Reasoning
with Uncertainty (pp. 378-389). Berlin, Heidel-
berg: Springer. doi: 10.1007/11518655-33

Dung, P. M. (1995). On the acceptability of ar-
guments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person
games. Artificial Intelligence, 77(2), 321-357.
doi: 10.1016/0004-3702(94)00041-X

Loh, W.-Y. (2011). Classification and regres-
sion trees. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 1(1), 14-23.
doi: 10.1002/widm.8

Svozil, D., Kvasnicka, V., & Pospichal, J. (1997).
Introduction to multi-layer feed-forward neural
networks. Chemometrics and Intelligent Lab-
oratory Systems, 39(1), 43-62. doi: 10.1016/
S0169-7439(97)00061-0

11

	Introduction
	Argumentation
	Bipolar Argumentation Frameworks

	Argumentation-based learning algorithm
	Decision Trees
	Multi-layer feed-forward neural networks

	Methods
	Modified AABL Algorithm
	Problems with the AABL Algorithm Implementation
	Changes
	Testing

	Data Generation
	General Structure
	Normal Node
	Decision Node
	Sampling

	Experimental Setup
	Decision Tree
	Neural network

	Results
	Discussion
	Conclusion

