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Abstract

Roughness length represents the height at which the wind flow becomes zero, under

neutral atmospheric conditions and in the absence of any obstacles. It is strongly related

to the height of the different elements in a heterogeneous terrain. In this thesis, we con-

sider two homogeneous regions, grassland and forest, under either a single- or multi-layer

model, following Klaassen (1992) and Luppes (1993). We interest ourselves in finding an av-

erage roughness length to represent the entire heterogeneous terrain when considering larger

scale meteorological simulations. Such an average length, also called the ‘effective rough-

ness length’ (ERL) is computed in four manners, as detailed by André and Blondin (1986),

Taylor (1989), de Vries et. al. (2003), and finally by simply averaging the logarithmic law.

We compare the four methods and relate these to the output wind profile for different

terrains, and conclude that de Vries et al.’s effective roughness length is the most accurate.

Keywords Surface roughness length, Effective roughness length (ERL), Two dimen-

sional atmospheric flow, Single and multi layer surface types.
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1 Introduction

Meteorology is a part of everyone’s daily life; we check the weather before leaving our house as to

not get surprised by rain. To this end, we would like meteorological calculations to be as precise

as possible. These models use atmospheric flow in their calculations, and such a flow depends on

the surface type considered. For instance, the temperature and the wind velocity are different

through a forest or over grassland. These two surfaces are the ones considered here, in three

different dispositions. We refer to the upper layer of a forest as the canopy height hc, where we

assume hc = 10m in this study.

Roughness length, denoted by z0, corresponds to the height at which wind flow becomes zero,

under neutral atmospheric conditions and in the absence of any obstacles. An atmospheric layer

is called neutral if it is not saturated, and if the rate at which the temperature changes is the

same as the dry-adiabatic rate. Saturation occurs when the atmosphere contains the maximum

quantity of water vapour possible at its given temperature. A process is called adiabatic if no

heat is transferred with the surrounding air. The dry adiabatic rate corresponds to the rate at

which air cools down, and is given by 9.8◦C per kilometer for the Earth’s atmosphere.

For simplicity, we here only consider a two dimensional plane, and assume that the atmo-

sphere does not change over the different surfaces of a heterogeneous terrain, allowing for the

wind velocity, the temperature, and the humidity to change as the air moves over each surface.

We consider the upper right quadrant of the real plane R2, where we suppose that atmospheric

flow moves from left to right.

Wind velocity, denoted by u is commonly given by:

u(z) =
u∗(z)

κ
ln

(
z

z0

)
, (1.1.1)

where u∗ is the friction velocity, which corresponds to the shear stress rewritten in velocity units,

and κ ≈ 0.4 is the von Kármán constant. Shear stress is the force per unit area acting parallel to

an infinitesimal surface element. Note that equation (1.1.1) is the most simple and basic formula

for atmospheric flow there is. Some authors may add a stability function, like Garratt & Pielke

(1989), or a displacement term as de Vries et al. (2003). Regardless, this equation is referred to

as the logarithmic law.

From the logarithmic law (1.1.1), one can see that roughness length z0 is a local value. In

fact, it is a constant value for a single homogeneous terrain. For instance, grassland typically

has roughness length of 0.03m, while for forest it is roughly 0.9m. When looking at larger scale

meteorological phenomena, one may not have interest for the local behaviour of the atmospheric

surface flow, but would rather study the global one. To this end, it is useful to define an effective

roughness length (ERL) zeff0 , which thus corresponds to the roughness length of an entire het-

erogeneous terrain. In this paper, we study four methods for computing an ERL, as detailed by

André & Blondin (1986), Taylor (1987), de Vries et al. (2003), and finally by simply averaging

the logarithmic law.

In order to determine which method yields the most accurate effective roughness length, we

must compare the output wind profile of the effective model, with some other heterogeneous

model. In this thesis, we consider two homogeneous regions, grassland and forest, under either

a single- or a multi-layer approach, following Klaassen (1992) and Luppes (1993).

We begin the paper by providing a description as well as the derivation for the various

equations which make up the models given by Klaassen and Luppes. Then, we look into three

of the methods used to compute the effective roughness lengths, following the papers by André

and Blondin, Taylor, and de Vries et al. After this, we run simulations for various disposition of

the regions we consider (grass and forest), and compare them to analyse the effect of vortices
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appearing after the rougher regions. Finally, we compare the four methods for the effective

roughness lengths, in order to conclude on the most effective and accurate one.

All simulations are done using the code written by Luppes (1993), under the grid-refinement

done by Slump (2021). Some background on fluid mechanics is provided in Appendix A, to allow

the reader a full understanding on the derivation of the equations which model atmospheric flow.

A table of notation is provided after the appendices, to which the reader is encouraged to refer

back to if needed.
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2 Theory of the models

In this section, we look at the theory behind two different surface layer models: single-layer

and multi-layer (Klaassen, 1992, Section 2). These models are described in general in the first

subsection, and in further detail in the second and third, respectively. The equations modelling

the atmospheric flow are given in the first subsection, and the boundary conditions are detailed

in the fourth. All variables used in this section are assumed to be Reynolds averaged, which is

explained in Appendix A.3.

2.1 General description of the surface-layer model

We look at the equations governing the two different surface models proposed by Klaassen (1992),

and used by Luppes (1993). We recall that we study regions of infinite length in the direction

perpendicular to the wind flow (here: y-axis), which leads us to only having a two-dimensional

model in x and z, where z represents the height. We also assume that the atmospheric flow is

incompressible and stationary, as we consider a small scale model and atmospheric properties

do not change over a sufficiently short time.

2.1.1 Equations for atmospheric flow

The Navier-Stokes equations together with the equation of continuity and the energy equation

completely model Newtonian fluid flow in hydro- and aerodynamics. The derivation and the

physical properties underlining these equations are given in Appendix A.1. Some terms can be

neglected in some parts of the domain, which allows us to simplify these equations (Veldman,

2009). For instance, the viscosity term is only of interest when considering the boundary layer. In

what follows, we look at the Navier-Stokes equations for steady, two-dimensional, incompressible

flow. We consider a Cartesian coordinate system (x, z), with respective velocity components

(u,w).

Steady, or stationary, flow means that the velocity does not change over time. In other

words, ∂tu = 0, where u = (u,w) is the velocity vector. Then, for a two-dimensional, stationary,

incompressible flow, we have,

∂u

∂x
+
∂w

∂z
= 0,

u
∂u

∂x
+ w

∂u

∂z
= Fx − 1

ϱ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂z2

)
,

u
∂w

∂x
+ w

∂w

∂z
= Fz −

1

ϱ

∂p

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂z2

)
,

(2.1.1)

where ν = µ/ϱ is the kinematic viscosity, p is the pressure, µ is the viscosity, ϱ is the density,

and Fx, Fz denote the x and z components of the body force, respectively. We note that for this

model Fz = 0, as the only vertical body force here is gravity, which one may combine with the

pressure into a single force. Furthermore, the horizontal body force is given by Fx = −Fd +Fcg,

where Fd is the drag force and Fcg is the countergradient force. These two forces are detailed in

the next sections, for each of the two model types studied.

We want to simplify the above equations further, to make the solution process easier. We

do this by looking at the boundary layer in greater detail. We can sketch it such as given

in Figure 1. To estimate the thickness of the boundary layer, we consider it for simplicity as

a straight boundary coinciding with the x-axis. We also require further assumptions, such as

(Veldman, 2009, Section 1.2):

1. the velocity at the outer edge of the velocity layer is of the order U ;
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u
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x, u

z, w

Figure 1. Sketch of the boundary layer.

2. the derivatives in the x direction can be estimated using a characteristic length L, inde-

pendent from ν;

3. the thickness of the boundary layer has a characteristic size δ, with δ ≪ L, and derivative

in the z direction can be based on this length scale;

4. there is no external influence (e.g. a shock wave) that would introduce a special scale for

the pressure gradient. In other words, the pressure gradient adapts to the other terms in

the equations.

Under these assumptions, we begin the estimation of the thickness of the boundary layer by

using the continuity equation,
∂u

∂x
+
∂w

∂z
= 0. (2.1.2)

This implies that the partial derivative ∂u/∂x can be estimation such as:

∂u

∂x
∼ U

L
, (2.1.3)

which should then also hold for the second term ∂w/∂z. Since at the surface of the boundary

layer the vertical component of the velocity is equal to zero, i.e. w = 0, and since the derivatives

with regards to z can be estimated by δ, we obtain

w ∼ δU

L
, (2.1.4)

inside the boundary layer. We then consider the x component of the momentum equation:

u
∂u

∂x
+ w

∂u

∂z
= Fcg − Fd −

1

ϱ

∂p

∂x
+ ν

∂2u

∂x2
+ ν

∂2u

∂z2
. (2.1.5)

We have, since ∂u/∂x ∼ U/L, and u ∼ U , that

u
∂u

∂x
∼ U2

L
. (2.1.6)

Similarly,

w ∼ δU

L
and

∂u

∂z
∼ U

δ
=⇒ w

∂u

∂z
∼ U2

L
. (2.1.7)

And, ∂2u/∂x2 ∼ U/L2, ∂2u/∂z2 ∼ U/δ2. Moreover, we note that the drag force and the coun-

tergradient force are either zero, or of the order U2 and U respectively. These forces are detailed

further in Sections 2.2 and 2.3 for both surface types. Combining these results yields

u
∂u

∂x
+ w

∂u

∂z︸ ︷︷ ︸
∼ U2/L

= Fcg︸︷︷︸
∼ U

− Fd︸︷︷︸
∼ U2

−1

ϱ

∂p

∂x
+ ν

∂2u

∂x2︸ ︷︷ ︸
∼ νU/L2

+ ν
∂2u

∂z2︸ ︷︷ ︸
∼ νU/δ2

. (2.1.8)

From this, we can conclude that

- both of the convective terms have the same order ∼ U2/L;
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- the diffusive term containing the x derivatives is much smaller than the diffusive term with z

derivatives, since δ ≪ L;

- the pressure is of the order p ∼ ϱU2.

In a similar way, looking at the z component of the equations of momentum, we obtain

u
∂w

∂x
+ w

∂w

∂z︸ ︷︷ ︸
∼ U2δ/L2

= −1

ϱ

∂p

∂z
+ ν

∂2w

∂x2︸ ︷︷ ︸
∼ νUδ/L3

+ ν
∂2w

∂z2︸ ︷︷ ︸
∼ νU/(δL)

. (2.1.9)

We see that the convective term and the diffusive term are of the same order, ∼ U2δ/L2, which

allows us to determine the order of magnitude of ∂p/∂z, which is ∼ ϱU2δ2/L2. This is much

smaller than ∂p/∂x above. Therefore, we may assume that the pressure is constant in the z

direction. Finally, this yields the following system of equations for a two dimensional boundary

layer flow:

∂u

∂x
+
∂w

∂z
= 0,

u
∂u

∂x
+ w

∂u

∂z
= −Fd + Fcg −

1

ϱ

∂p

∂x
+ ν

∂2u

∂z2
,

0 =
1

ϱ

∂p

∂z
.

(2.1.10)

This can be rewritten in terms of the shear stress tensor, which is given by the following equation,

for a 2-dimensional flow:

τij = 2µeij , eij =
1

2

(
∂ui
∂j

+
∂uj
∂i

)
. (2.1.11)

More details on the shear stress tensor are provided in Appendix A.1. We then see that

∂

∂z
τxz = µ

(
∂2u

∂z2
+

∂2w

∂z∂x

)
, (2.1.12)

where ∂2w/(∂z∂x) ∼ U/(Lδ) and ∂2u/∂z2 ∼ U/δ2. We note that δ2 ≪ δL, so we can rewrite

the above equation as
∂

∂z
τxz = µ

∂2u

∂z2
= ϱν

∂2u

∂z2
. (2.1.13)

Substituting into the previous system of equations (2.1.10) yields:

∂u

∂x
+
∂w

∂z
= 0,

u
∂u

∂x
+ w

∂u

∂z
+

1

ϱ

∂p

∂x
=

1

ϱ

∂τ

∂z
− Fd + Fcg,

∂p

∂z
= 0,

(2.1.14)

where τ = τxz is given as in equation (2.1.12). From this point onward, we refer to τ as the shear

stress, and we ignore the subscripts.

This model (2.1.14) is still incomplete, as atmospheric flow depends on heat, which does not

appear in the above system of equation. Namely, there is sensible heat H, which is the heat that

causes an object to change temperature, and latent heat E, which is the heat added to an object

in order for it to change state. These heats appear in the equations for potential temperature θ

and specific humidity q respectively.

The potential temperature of a region of fluid at pressure p is defined to be the temperature

that an unsaturated parcel of dry air would have if brought adiabatically, i.e. without heat
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transfer, and reversibly from its initial state to a standard pressure p0. In mathematical terms,

this can be written as:

θ = T

(
p0
p

)R/cp

, (2.1.15)

where T is the temperature, p is the pressure, p0 is the standard pressure, R is the gas constant,

and cp is the specific heat at constant pressure. Using the equation for conservation of energy,

and in particular for conservation of temperature (Veldman, 2009, Section 1.1):

∂cvT

∂t
+
∂cvTui
∂j

=
1

ϱ

∂k∂iT

∂i
+ 2µeij

∂ui
∂j

, (2.1.16)

and the fact that cv and cp are related using the equations of state for ideal gases, we obtain the

heat transport equations for the potential temperature and specific humidity:

u
∂θ

∂x
+ w

∂θ

∂z
=

1

ϱcp

(
−∂H
∂z

+Hs

)
,

u
∂q

∂x
+ w

∂q

∂z
=

1

ϱ

(
−∂E
∂z

+ Es

)
.

(2.1.17)

Ideal gases and the gas law are given in greater detail in Appendix A.2. A more complete

derivation of the equations for potential temperature and specific humidity can be found in

Chapter 3 of the book by Stull (2013). This then leads to the complete model of a two dimensional

atmospheric boundary layer flow:

u
∂u

∂x
+ w

∂u

∂z
+

1

ϱ

∂p

∂x
=

1

ϱ

∂τ

∂z
− Fd + Fcg,

∂p

∂z
= 0,

∂u

∂x
+
∂w

∂z
= 0

u
∂θ

∂x
+ w

∂θ

∂z
=

1

ϱcp

(
−∂H
∂z

+Hs

)
,

u
∂q

∂x
+ w

∂q

∂z
=

1

ϱ

(
−∂E
∂z

+ Es

)
,

(2.1.18)

where Fd is the drag force, Fcg is the countergradient force, Hs and Es are the sensible and latent

heat at the surface, respectively. These equations are underlining to both models describing

atmospheric flow in heterogeneous vegetated terrains; single-layer and multi-layer, which are

studied in the later sections.

After having given the system of equations for the model, we need to detail a few more terms,

in order to have a precise description. Namely, to compute the pressure, we can use the first

two equations of (2.1.18), together with some boundary conditions. The boundary condition is

given when considering the upper edge of the boundary layer, for which ue and pe denote the

horizontal velocity component and pressure on that edge. Thus, since we are at the edge of the

boundary layer, we have ∂zue = 0, and no force is being applied to it.

This then leads, using the first equation of the above model (2.1.18), to

ue
due
dx

+
1

ϱ

dpe
dz

= 0. (2.1.19)

Furthermore, we can compute the density ϱ of the air using the equations of state for ideal

gases. Rewriting, this yields the density in terms of the measured initial values:

ϱ =
p0M

RT0
, (2.1.20)
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where p0 and T0 are the pressure and absolute temperature used in the calculations of the

initial profiles. To compute the momentum flux, we use the same reasoning as in Appendix B

on the derivation of the Obukhov length, together with the formula given by Garratt and Pielke

(Garratt & Pielke, 1989, Sections 3.1 and 3.2):

u∗ =
κu

ln(z/z0)− ψM (z/L∗)
, (2.1.21)

where κ is von Kármán constant, u(z) is the wind velocity function, L∗ is the Obukhov length,

and ψM is the integral form of the stability function ϕM for momentum. The stability functions

ψM,H and ϕM,H for momentum and heat are detailed in Section 2.1.2, and the derivation of

the Obukhov length is given in Appendix B. We can rewrite the above equation for the friction

velocity (2.1.21) by differentiating the right hand side:

u∗ =
ℓm

ϕM (ζ)

∂u

∂z
, (2.1.22)

where ℓm = κz is the mixing length and ζ = z/L∗ corresponds to a reparametrisation of the

height variable z. Similarly, we can write the sensible and latent heats in terms of the stability

functions for heat:

H = −ϱcp
u∗ℓm
ϕH(ζ)

∂θz, 3

E = −ϱ u∗ℓm
ϕH(ζ)

∂q

∂z
,

(2.1.23)

where the minus sign is used to counter the negativity of ∂θ/∂z and ∂q/∂z. Introducing the

eddy viscosities for momentum and heat, εM and εH , respectively as:

εM =
ℓ2m
ϕ2M

∣∣∣∣∂u∂z
∣∣∣∣ ,

εH = εM
ϕM
ϕH

,

(2.1.24)

yields the momentum flux, the sensible heat, and the latent heat respectively as

τ = ϱε
∂u

∂z
,

H = −ϱcpεH
∂θ

∂z
,

E = −ϱεH
∂q

∂z
.

(2.1.25)

It is important to note that, in order to obtain an accurate model of the fluxes, we require a

realistic formulation of the mixing length, which was so far defined as ℓm = κz, where κ ≈ 0.4

is the von Kármán constant. This is the simplest formulation of the mixing length, which is in

reality only accurate when close to the surface. Thus, it is only really used when computing the

first height level in the single-layer model, which is detailed in the following section. For higher

heights and in the presence of vegetation, Klaassen introduced the adjusted mixing length ℓma.

This adjusted length takes into account the fact that within vegetation the flow of air around

obstacles can create small-scale eddies. The length can be computed using the following equation

derived by Klaassen (Klaassen, 1992, Section 2.4):

u
∂ℓm
∂x

+ w
∂ℓm
∂z

= uCℓ

(
1− ℓm

ℓma

)
, (2.1.26)

where Cℓ is the rate of adjustment constant. Both the rate of adjustment and the adjusted mixing

length depend on the type of model used: single- or multi-layer, detailed in the next sections.
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For single-layer, the adjusted mixing length is computed using Blackadar’s formula (2.2.5).

2.1.2 Stability functions

As seen in the equations for sensible and latent heats, and for the eddy viscosities for momentum

and heat, we require some stability functions for our models. The integral form of those stability

functions for momentum and heat, ψM,H , used by Klaassen, are the ones given by Garratt &

Pielke (1989):

ψ(ζ) =

∫
(1− ϕ(ζ))d(ln ζ), (2.1.27)

where ζ = z/L∗ and ϕ is the differentiated form of the stability function. The stability functions

ϕM,H for momentum and heat are given respectively by

ϕM =

{
(1− γ1ζ)

−1/4, if ζ ≤ 0,

1 + γ3ζ, if ζ > 0,

ϕH =

{
Pr(1− γ2ζ)

−1/2, if ζ ≤ 0,

P r + γ4ζ, if ζ > 0,

(2.1.28)

where Pr is a neutral turbulent Prandtl’s number, and {γi}i=1,...,4, are constants. However,

one can note that these stability functions yield two major problems: the free convection limit

and the matching of the profiles at the top of the surface layers (Delage & Girard, 1991). In

their paper, Delage and Girard review these two problems, and offer solutions for the heat and

momentum stability functions. We do not extend further into the problems, nor the solutions in

this paper. The new stability functions ϕM,H are thus given by:

ϕM =

{
(1− γ1ζ)

−1/6, if ζ ≤ 0,

1 + γ3ζ, if ζ > 0,

ϕH =

{
Pr(1− γ2ζ)

−1/3, if ζ ≤ 0,

P r + γ4ζ, if ζ > 0,

(2.1.29)

where ζ = z/L∗, and L∗ is the Obukhov length. In the code by Luppes (1993), the stability

function for momentum ϕM for L∗ ≤ 0, is given by:

ϕM = exp

{
−1

6
ln

(
1− 40

z

L∗

)}
= exp

{
ln

(
1− 40

z

L∗

)−1/6
}

=

(
1− 40

z

L∗

)−1/6

,

(2.1.30)

where we can thus read that γ1 = 40. Similarly, for L∗ ≥ 0, the code gives the stability function

for momentum as:

ϕM = 1 + 5.2
z

L∗
, (2.1.31)

from which we obtain γ3 = 5.2. The stability function for heat is given in the code as

L∗ ≥ 0 : ϕH =

(
1− 40

z

L∗

)−1/3

,

L∗ ≤ 0 : ϕH = 1 + 5.2
z

L∗
.

(2.1.32)

Hence, γ2 = 40 and γ4 = 5.2. Therefore, the stability functions ϕM,H for momentum and

heat used for the simulations follow those given by Delage and Girard, with known constants
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for {γi}i=1,...,4, as presented above.

We have thus detailed the general equations underlining both approaches for heterogeneous

vegetated terrains. In the following two sections, we look at the specific equations, and the initial

profiles corresponding to each particular model.

2.2 Single-layer model

In this section, we interest ourselves to the single-layer model. In this model, we consider the

surfaces of both homogeneous vegetated zones to be represented by single layers, each with a

constant roughness length z0 and constant stomatal resistance rs. We also suppose that two

adjacent zones vary widely in roughness and/or in vegetation height. For instance, a zone of

grassland adjacent to a zone of forest. In the single-layer model, fluxes from the canopy can be

computed using the standard flux profile relations to the first height-level of the atmosphere z1.

The initial profiles are given by Klaassen (1992) and Luppes (1993):

τ0 = ϱu∗0sgn

(
∂u

∂z

)
,

u∗0 =

∣∣∣∣ u(z1)κ

ln(z1/z0) + ψm

∣∣∣∣ ,
H0 = ϱcp

Ts − Ta
ra

,

E0 = 0.622
ϱ

p

e∗s − ea
ra + rs

,

(2.2.1)

where z0 is the roughness length of the canopy, ψm is the integrated form of the stability func-

tion ϕm as in (2.1.28) or (2.1.29), T is the absolute temperature, e is the water vapour pressure,

e∗ denotes the saturated water vapour pressure, and r is the resistance. The subscripts s, a des-

ignate the surface and the air at height z1 respectively, and we call rs the stomatal resistance.

The absolute temperate and the water vapour pressure of the air at height z1 can be computed

using

Ta = θ1 − Γz1,

ea =
q(z1)p

0.622
,

(2.2.2)

where Γ is the adiabatic lapse rate, that is, the rate at which the temperature changes under

compression or expansion associated with elevation change, in an adiabatic process.

We consider the roughness length and the stomatal resistance to be constant in the horizontal

direction, and they serve as surface characteristics. The initial conditions τ0, H0, and E0 are used

as implicit boundary layer conditions on u, θ, and q, respectively. These surface fluxes are related

to each other by:

Aε0 = λE0 +H0,

Aε0 = (1− groco)Rn0 ,

Rn0
= (1− α)Rs + ε(Rℓ − σT 4

s ),

ra =
ln(z1/z0h) + ψH

κu∗0

,

(2.2.3)

where Aε0 is the available energy at the surface, λ is the latent heat of vaporisation, groco is

the ground heat constant, Rn0
is the net radiation of the surface, Rs (Rℓ) is the short (long)

wave radiation, α is the albedo, ε is the emissivity of the surface, σ is the Stephan-Boltzman

constant, ψH is the integrated form of the stability function ϕH (2.1.28), and z0h = z0e
−2 is the

roughness length for heat. The albedo is the fraction of light that is reflected by the surface. The
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emissivity is the ratio of the radiant energy emitted by a surface to that emitted by a ‘perfect

emitter’ at the same temperature.

We also consider the ground heat constant, the albedo, and the emissivity as constant surface

characteristics. Furthermore, in the single-layer model, the source terms from the model in

equation (2.1.18) are considered to be zero:

Fd = Fcg = Hs = Es = 0. (2.2.4)

The reason behind this is that we do not have leaf area in the single-layer model, hence we do

not have enough information to compute the drag force and the countergradient force. They are

thus implicitly included in the roughness length z0. Similarly, for the surface latent and sensible

heats, we only consider heights z ≥ 0, we thus have no heat ‘leaking’ into the ground.

The adjusted mixing length, which is found after an infinite fetch over a homogeneous single

layer canopy, is given by Blackadar’s formula:

ℓma =
κz

1 + (κz/ℓmm)
, (2.2.5)

where ℓmm is the maximum mixing length,

ℓmm = max
z

{ℓm} = max
z

{κz}. (2.2.6)

The above equations together with the equations given in Section 2.1 completely describe

single-layer models. In the next section, we look at the equations that are particular for multi-

layer models.

2.3 Multi-layer model

In multi-layer model, we consider the surface of the smoother zone to still be represented by

a single layer, but the rougher zone is instead represented by a multi-layer vegetation model

with horizontally constant leaf area density and stomatal resistance. This model describes the

exchange between a horizontal layer of the canopy and the surrounding air, which yields the

source terms Fd, Fcd, Hs, Es as in (2.1.18). For the lowest layer corresponding to the surface

level, the surface flux calculations from the previous section are still valid, since the first layer

can be modelled using a single-layer approach.

Above the lower layer, the multi-layer model comes into importance. The drag force and

the counter gradient force are respectively given by (Klaassen, 1992, Section 2.3),(Luppes, 1993,

Section 2.4):

Fd = 0.08Aℓ |u(z)|u(z),

Fcg =
0.04 (u(hc)− u(z)) z

1 + 0.8Aℓrhc
,

(2.3.1)

where

Aℓr =

{
max{Aℓ}, if z ≤ hmax,

Aℓ, if z > hmax,
(2.3.2)

and where Aℓ is the leaf area density of the layer, Aℓr is a reference value for Aℓ, hc is the

canopy height, and hmax is the height at which the maximum value of Aℓ is attained. Klaassen

introduced the factor of 0.08 instead of 0.16, which was the factor that was initially used, because

the leaf area perpendicular to the flow is only half of the total leaf area. The original factor 0.16

is present to take into account the shelter effect of clustered leaves (Klaassen, 1992, Section 2.3).
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The net radiation of the layer, which corresponds to the balance between incoming and

outcoming radiant energy, is given by

Rn(z) = Rn(z +∆z) exp {−KRAℓ∆z} , (2.3.3)

where Rn(z +∆z) is the net radiation of the layer that is above the one considered, KR is the

extinction coefficient for net radiation, and ∆z is the thickness of the layer. The term Aℓ∆z may

be sometimes referred to as the leaf area index.

For the top layer, the net radiation is computed using the radiation balance given in the

third equation of (2.2.3), with the potential temperature θ of the second highest layer (i.e. the

layer below) instead of Ts. In other words, the net radiation for the highest level is given by

Rn(hc) = (1− α)Rs + ε
(
Rℓ − σθ4

)
, (2.3.4)

where Rs (Rℓ) is the short (long) wave radiation, α is the albedo, ε is the emissivity, σ is the

Stephan-Boltzmann constant, and θ is the potential temperature at the layer hc −∆z.

The available energy in a layer is computed by

Aε(z) = Rn(z)−Rn(z −∆z), (2.3.5)

where Rn(z −∆z) is the net radiation of the layer below the one considered. In the multi-layer

model, the atmospheric resistance is defined to be the resistance between the leaves and the

surrounding air, and is given by:

ra =
90

Aℓ∆z

(
ℓw
u(z)

)0.5

, (2.3.6)

where ℓw is the leaf width. The factor of 90 takes into account leaf shading. The stomatal

resistance in multi-layer model increases with the depth of the canopy, and is considered to be

inversely proportional to the net radiation at that level, that is:

rs =
rtoRn(hc)

Aℓ∆zRn(z)
, (2.3.7)

where rto is the free parameter corresponding to the overall level of transpiration. To compute

the source terms Hs and Es, we can use the Penman equation (which estimates the evaporation)

and the energy balance (Luppes, 1993, Section 2.4):

λEs =
sAε + ϱcp

(
e∗a−ea

ra

)
s+ ν

(
ra+rs
ra

) ,

Aε = Hs + λEs,

(2.3.8)

where s is the slope of the saturated vapour pressure function, e∗a is the saturated vapour pressure

at the temperature of the layer, ea is the vapour pressure in the layer given by

ea =
qap

0.622
, (2.3.9)

with qa the specific humidity of the layer, and ν is the psychrometer constant defined by

ν =
pcp

0.622λ
, (2.3.10)
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where λ is the latent heat of vaporisation. The surface resistance is calculated using

rs0 = rto exp

Kr

∑
layers

Aℓ∆z

 . (2.3.11)

This equation is derived using equations (2.3.3) and (2.3.7) as follows:

rs0 =
rtoRn(hc)

Aℓ0∆zRn(z0)

=
rtoRn(hc)

Aℓ0∆z

exp {KRAℓ0∆z}
Rn(z1)

=
rtoRn(hc)

Aℓ0∆z
exp {KRAℓ0∆z}

exp {KRAℓ1∆z}
Rn(z2)

...

=
rtoRn(hc)

Aℓ0∆z
exp {KRAℓ0∆z} exp {KRAℓ1∆z} . . .

exp {KRAℓhc−∆z∆z}
Rn(hc)

=
rto

Aℓ0∆z
exp

KR

∑
layers

Aℓ∆z


= rto exp

Kr

∑
layers

Aℓ∆z

 ,

(2.3.12)

where we set Aℓ0∆z = 1, so that it doesn’t block radiations coming down from the first height

level to the surface level, as the surface level behaves in similar way to the single-layer model.

Similarly to the single-layer model, the available energy at the surface is given by

Aε0 = (1− groco)Rn0 , (2.3.13)

where Rn0
is net radiation at the lowest level, and groco is the ground heat constant of the

ground surface. The adjusted mixing length for multi-layer model is given by (Klaassen, 1992,

Section 2.4):

ℓma(z) = ℓma(z −∆z) exp {−KℓAℓ∆z} , (2.3.14)

where ℓma(z −∆z) is the adjusted mixing length of the layer below the one considered, and Kℓ

is the reduction coefficient for mixing length by leaves, estimated from the roughness length and

the zero-plane displacement. Kℓ determines the adjusted mixing length within and just above

tall vegetation. For the surface level, we use ℓma = κz as a boundary condition for the adjusted

mixing length.

All the equations detailed in this section, together with the equations from Section 2.2 for

the first layer, and from Section 2.1 for the general atmospheric flow, completely describe the

multi-layer model. In the next section, we look at the boundary conditions that hold for both

single-layer and multi-layer models.

2.4 Boundary conditions

In this section, we look at the boundary conditions needed to solve the atmospheric flow equations

given in (2.1.18). For the velocity, the lower boundary conditions are

u = 0, at z = z0,

w = 0, at z = z0,
(2.4.1)
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where z0 denotes the roughness length which varies for each homogeneous vegetated zone. The

value of τ0 is used in the discretised momentum equation, which appears in the simulation code.

The upper boundary condition for the horizontal velocity is given by the interaction law

(Veldman, 2009, Section 7.1 and 7.2). We divide the flow field into two parts, the boundary

layer and the external flow. Then, the velocity along the edge of the boundary layer ue and the

displacement thickness δ∗ are related by

external flow ue = E[δ∗],

boundary-layer flow ue = B[δ∗],
(2.4.2)

where E and B denote ‘external’ and ‘boundary-layer’ flow respectively. We assume that after

discretisation, both equations of (2.4.2) have a unique solution. The form in which the second

equation, for the boundary-layer flow, is written allows that for any δ∗, we can find a ue. However,

the reverse does not necessarily hold. To solve the above equation (2.4.2), one can use the

following iteration method: {
u
(n)
e = E[δ∗(n−1)],

δ∗(n) = B−1[u
(n)
e ].

(2.4.3)

This is called the classical or direct method. However, problems may arise since B−1 may not

always exist. To counter that we can reverse the iteration process, yielding the inverse method,{
δ∗(n) = E−1[u

(n−1)
e ],

u
(n)
e = B[δ∗(n)].

(2.4.4)

In practice, the operator E−1 does not create further problems. However, we also want to avoid

an iterative treatment as much as possible, and we do this by introducing an approximation I of

the external operator E, which is so simple that it can be used as a boundary condition for the

boundary-layer equation. I is then called the interaction law, as it describes an approximation

of the interaction between the boundary-layer and the external flows. This creates the following

iterative process, called quasi-simultaneous:{
u
(n)
e − I[δ∗(n)] = E[δ∗(n−1)]− I[δ∗(n−1)],

u
(n)
e −B[δ∗(n)] = 0.

(2.4.5)

In this method, the approximation I of E is solved simultaneously with B. In what follows, we

consider the x-axis, between some x0 and xN+1, as presented in Figure 2.

x0 xN+1

Figure 2. Sketch of the x-axis and the vertical velocity on [x0, xN+1].

Consider the vertical velocity between x0 and xN+1 to be given by w(x, 0), and suppose that

for x < x0 and x > XN+1, we have w(x, 0) ≡ 0. A potential flow satisfying these boundary

conditions has (along the x-axis) a velocity given by, up to a constant,

u(x, 0) =
1

π

∫ xN+1

x0

w(ξ, 0)

x− ξ
dξ. (2.4.6)

We can write the value ue of the external flow as

ue(x) = ue0(x) + ueδ∗ (x), (2.4.7)
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where ue0 is the solution past the ‘clean’ profile, i.e. outside of [x0, xN+1], and ueδ∗ represents

the effect of the boundary layer. We then obtain the model given by:

ue(x) = ue0(x) +
1

π

∫ xN+1

x0

w(ξ, 0)

x− ξ
dξ. (2.4.8)

Since we want the boundary-layer flow to match smoothly with the external flow, we can write:

w(ξ, 0) =
d

dξ
(ueδ

∗). (2.4.9)

For convenience, we introduce δ̂ := ueδ
∗. Plugging this into (2.4.8) yields

ue(x) = ue0(x) +
1

π

∫
dδ̂

dξ

dξ

x− ξ
. (2.4.10)

This integral has to be evaluated over the entire region where we simulate the atmospheric flow.

Another way to write δ̂ = ueδ
∗ is as:

δ̂ = yeue −
∫ ye

0

u dy, (2.4.11)

where ye is the height of the upper edge (Luppes, 1993, Section 2.5).

An alternative upper boundary condition on u is by considering the friction velocity. This

upper boundary condition is called the matched load, and is used by Klaassen (Klaassen, 1992,

Section 3.1). It is described by

u∗(x+∆x, ye) =
u∗(x, ye) + u∗(x, ye −∆z)

2
. (2.4.12)

In other words, the upper friction velocity u∗ at the next horizontal point of calculation (x+∆x)

is equal to the mean of the two upper values of u∗ of the current layer. This mathematical

description in equation (2.4.12) is difficult to rewrite in terms of u, rather than keeping it as a

formulation of the friction velocity u∗.

We may note that it is more advantageous to use the interaction law instead of the matched

load. That is because the calculations of the velocity and pressure will react to downstream

values. On the other hand, under the matched load condition, calculations will only react to

upstream values, as if the atmospheric flow was unable to ‘see’ its direction. Therefore, when using

the interaction law, the effect of vegetation ahead is already witnessed, which is not accounted for

in the matched load condition. Furthermore, the interaction law takes into account the inviscid

outer flow that is above the viscous boundary layer when producing the horizontal velocity.

The matched load condition only uses the boundary layer itself, and hence acts as if there was

no atmosphere above it.

With all of that in mind, we therefore use the interaction law as our upper boundary layer

condition for the horizontal velocity.

The lower boundary conditions for the potential temperature and the specific humidity are

given by, respectively,

at z = 0, θ = Ts,

at z = 0, q =
0.622e∗s

p
,

(2.4.13)

where Ts is the absolute temperature at the surface, e∗s is the saturated vapour pressure at

temperature Ts, and p is the pressure of the air. These conditions are coherent with the initial

profiles for the singe-layer model given in equation (2.2.1).
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The values of H0 and E0 are used in the discretised forms of the heat and humidity equations

at height z1, as seen in the simulation code. The upper boundary conditions for the potential

temperature and specific humidity are given by the matched load condition, in terms of the

atmospheric fluxes H and E, respectively sensible and latent heat,

H(x+∆x, ye) =
H(x, ye) +H(x, ye −∆z)

2
,

E(x+∆x, ye) =
E(x, ye) + E(x, ye −∆z)

2
.

(2.4.14)

For the mixing length equation, we only require one boundary condition, given by

ℓm = κz, at z = y0, (2.4.15)

where y0 is the lowest intermediate height level, which then lays above z0. The lower boundary

condition on the adjusted mixing length ℓma is the same as the one given above, for both the

single-layer and the multi-layer models.

The final conditions necessary to solve the atmospheric flow equations (2.1.18) are the initial

conditions. We require initial profiles for u, θ, q, and ℓm since these variables occur in the flow

equations with derivatives along the horizontal direction. The pressure is assumed to be constant

with regard to height, so it is thus treated differently. Under the assumption that the atmospheric

flow is ‘adjusted’ at x = 0, and with vertically constant atmospheric fluxes in the surface layer,

the initial profiles can be computed from the following system of equations:

at x = 0,

ℓm = ℓma,

w = 0,

u∗ = u∗0
,

H = H0,

E = E0,

(2.4.16)

where ℓma is given by Blackadar’s formula (2.2.5), and u∗0, H0, and E0 follow from calculations

under the single-layer model. The flow is called adjusted at x = 0, if we suppose an infinitely

long smooth surface to the left of the z-axis, in order to have a standard logarithmic profile at

the start of the terrain considered.

We have thus detailed all equations underlining both the single-layer and the multi-layer

model, as well as the system of equations describing the atmospheric flow, and the boundary

conditions needed to solve (2.1.18). In the following section, we focus on the roughness length z0,

and particularly on the effective roughness length zeff0 .

15



3 Theoretical effective roughness length

The equations given for the above model types, single- and multi-layer, describe the wind profile

rather accurately under the assumption that the local conditions are spatially homogeneous or

if we only consider surfaces sufficiently close to the bottom boundary layer. When the surface

becomes inhomogeneous or we attempt to apply the theory to higher levels, i.e. outside of the

surface layer, the roughness length that was used thus far needs to be increased from its local

value to the effective roughness length (ERL) zeff0 . The ERL then represents the inhomogeneous

terrain when looking at larger-scale meteorological simulations, where we may not know the

individual properties of each terrain. In this section, we look at three different ways of computing

this effective roughness length, and the different properties that the formulas yield, following the

papers written by André & Blondin (1986), Taylor (1987), and de Vries et al. (2003).

3.1 André and Blondin (1986)

In their 1986 paper, André & Blondin (1986) derive an equation for the effective roughness

length, under a few important assumptions. Furthermore, they show the dependence of this

ERL on the first height level z1. In this section, we detail the motivations and the computations

made. However, our model is only considered for two dimensions, so the equations given here

are thus slightly different from the ones they give, adapted to our model.

For simplicity, we assume that the atmosphere, or at least the boundary layer, is neutrally

stratified. This means that the Richardson number satisfies Ri = 0, and that the existence or

formation of distinct layers in the atmosphere does not influence the development of turbulence.

This also implies that the distribution of temperature with height is adiabatic: there is no transfer

of heat and the change in internal energy is only due to work. More on the Richardson number

and the stratification of the atmosphere can be found in Appendix B.

We also assume that the roughness length and the logarithmic wind profile are of physical

significance at the local or micro-meteorological scale, i.e. at a scale that is smaller than the grid

size of the two-dimensional simulations. In other words, we suppose that z0 and u are continuous

functions on the grid. Finally, we assume that the grid of such a model consists of a patchwork

of individual elements, each with a local roughness length z0(x), dependent on the horizontal

coordinate x, at height z = 0.

In the two-dimensional model, only some kind of averaged wind over the grid is known, e.g.

its value U1 at the lowest available level z1. For parametrisation purposes, we suppose that below

z1, the wind profile behaves according to the universal law of the wall :

U1 =
ueff∗
κ

ln

(
z1
zeff0

)
, (3.1.1)

where κ is the von Kármán constant, ueff∗ is the effective friction velocity, which is proportional

to the square root of the momentum flux averaged over the grid square, and zeff0 is the effective

roughness length one would like to find in order to parametrise the surface fluxes. Under our

above hypothesis, along the x-axis and for altitudes lower than z1, the wind profile follows the

logarithmic law :

ũ(x, z) =
ũ∗(x)

κ
ln

(
z

z0(x)

)
. (3.1.2)

In order to make the two above equations (3.1.1) and (3.1.2) compatible, we may require

that all local profiles described in (3.1.2) give the same value for z = z1. Namely, we want that

at height z = z1, the logarithmic law yields U1. In other words, we require that the following

relationship

U1 =
ũ∗(x)

κ
ln

(
z1

z0(x)

)
(3.1.3)
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between the small-scale friction velocity ũ∗ and the roughness length z0(x) exists. Using the

local relation (3.1.3), we can get rid of the local friction velocity ũ∗(x) in order to rewrite the

logarithmic law (3.1.2) into

ũ∗(x) =
U1κ

ln(z1)− ln(z0(x))

=⇒ ũ(x, z) = U1
ln(z)− ln(z0(x))

ln(z1)− ln(z0(x))
.

(3.1.4)

Since we want to compute the effective roughness length, we interest ourselves at values of z ≤ z1.

We can thus average out the above equation over the grid size, denoted by ∆, which gives the

‘numerical integral average’:

u(z) =
1

µ(∆)

∫
∆

ũ(x, z)dx

=
U1

µ(∆)

∫
∆

ln(z)− ln(z0(x))

ln(z1)− ln(z0(x))
dx,

(3.1.5)

where µ(∆) corresponds to the Lebesgue measure of ∆, which is the volume if ∆ is three-

dimensional, the area if ∆ is two-dimensional, and the length if ∆ is one-dimensional. Here, ∆ is

one-dimensional, so we divide by its length. U1 is given by the universal law of the wall (3.1.1),

so it is independent of x and hence can be taken out of the integral.

From this equation, we see that the average wind profile u(z) follows a logarithmic law.

Furthermore, since we consider the average wind profile, we can extract the effective friction

velocity ueff∗ , by considering equation (3.1.2), and taking the grid-square average, where we

set ũ∗(x) = ueff∗ , which is thus independent of x and can be moved out of the integral. This

yields:

u(z) =
ueff∗
κ

∫
∆

ln

(
z

z0(x)

)
dx

=⇒ ueff∗ = κu(z)

∫
∆

dx

ln(z)− ln(z0(x))

=
κU1

µ(∆)

∫
∆

dx

ln(z1)− ln(z0(x))
.

(3.1.6)

Comparing with the local relationship between the small-scale friction velocity and the roughness

length given in (3.1.3), we obtain the following equation for the effective friction velocity

ueff∗ =
1

µ(∆)

∫
∆

ũ∗(x)dx. (3.1.7)

This result allows us to write the effective roughness length by looking at the universal law of

the wall (3.1.1), which states that

ln

(
zeff0
z1

)
= −U1κ

ueff∗

= − µ(∆)∫
∆

dx

ln(z1)− ln(z0(x))

=
1

1

µ(∆)

∫
∆

dx

ln(z0(x))− ln(z1)

.

(3.1.8)

We have thus found an equation for the effective roughness length zeff0 . It is clear that the

height z1 of the lowest level in the large-scale model influences the ERL. Adding ln(z1) on both
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sides yields:

ln(zeff0 ) =
1

1

µ(∆)

∫
∆

dx

ln(z0(x))− ln(z1)

+ ln(z1).
(3.1.9)

Before detailing more of the properties of this ERL, we need to note that under the simplified

assumptions given above, we obtain an effective friction velocity that corresponds to the grid-

square average of the local friction velocity ũ∗, as written in equation (3.1.7). However, physically,

we would expect the effective friction velocity to be the square root of the local kinematic

momentum flux, that is, we would instead expect

ueff∗ =

√
τ̃

ϱ
, (3.1.10)

where ϱ is the density of the air and τ̃ is the local momentum flux. This difference needs to be

kept in mind when computing the effective roughness length using the formula given above, as

it may lead to approximation errors.

Looking at the formula for the ERL, (3.1.9), we see that it depends more on large values

of z0(x) than on smaller values, which is as expected from a physical point of view. To see this

more clearly, consider the following example, where the local roughness is given by:

z0(x) =


δ/a, if x ∈ a

1 + a
∆,

aδ, if x ∈ 1

1 + a
∆,

(3.1.11)

where a > 0 is some parameter and ∆ is the interval on the x-axis of the heterogeneous vegetated

terrain considered. We then have that the arithmetic for z0(x) is given by:

z0(x) =
δ

a

a

1 + a
∆+ aδ

1

1 + a
∆ = δ, (3.1.12)

which is thus independent on the parameter a. However, on the other hand, as a increases, the

rougher zone becomes rougher and decreases in size compared to the smoother (i.e. less rough)

one. As a decreases, the rougher zone becomes smoother. To compute the effective roughness

length, we apply equation (3.1.8) to the above distribution (3.1.11), where we suppose that the

interval ∆ = [∆0,∆1],

ln

(
zeff0
z1

)
=

µ(∆)∫
a

1+a∆

dx

ln(δ/a)− ln(z1)
+

∫
1

1+a∆

dx

ln(aδ)− ln(z1)

=
∆1 −∆0

1

ln(δ/a)− ln(z1)

∫ a
1+a∆1

a
1+a∆0

dx+
1

ln(aδ)− ln(z1)

∫ 1
1+a∆1

1
1+a∆0

dx

=
∆1 −∆0

1

ln(δ/a)− ln(z1)

a

1 + a
(∆1 −∆0) +

1

ln(aδ)− ln(z1)

1

1 + a
(∆1 −∆0)

=

(
a

1 + a

1

ln(δ/a)− ln(z1)
+

1

1 + a

1

ln(aδ)− ln(z1)

)−1

=
(1 + a)(ln(δ/a)− ln(z1))(ln(aδ)− ln(z1)

a(ln(aδ)− ln(z1)) + ln(δ/a)− ln(z1)

=
(1 + a)

(
ln2(δ/z1)− ln2(a)

)
(1 + a) ln(δ/z1)− (1− a) ln(a)

.

(3.1.13)
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This function is plotted in Figure 3 for different values of a, and where the ratio δ/z1 ≤ 1. This

ratio must remain large enough such that the lowest level z1 still lies in the logarithmic surface

layer. On the other hand, it must also not become too large. z1 should not approach a value close

to the largest roughness length aδ present in our example model, since then equation (3.1.13)

would diverge.

Figure 3. Plot of the effective roughness length zeff0 as a function of the first level z1, as given
in equation (3.1.13), for the roughness distribution example (3.1.11).

As shown in Figure 3, the effective roughness length increases with a for a given value δ/z1.

This illustrates the initial guess that the effective roughness length depends on the largest local

roughness length. Furthermore, we can note from this figure that for given a and δ, the effective

roughness length increases when the height of the lowest level z1 approaches the ground level.

To see this more clearly, we can differentiate equation (3.1.8) with respect to z1:

∂

∂z1
ln

(
zeff0
z1

)
=

∂

∂z1

(
1

µ(∆)

∫
∆

dx

ln(z0(x))− ln(z1)

)−1

=⇒ ∂

∂z1
ln(zeff0 )− ∂

∂z1
ln(z1) = µ(∆)

− ∂
∂z1

∫
∆

dx
ln(z0(x))−ln(z1)(∫

∆
dx

ln(z0(x))−ln(z1)

)2
=⇒ ∂zeff0

∂z1

1

zeff0
− 1

z1
= −µ(∆)

∫
∆

∂
∂z1

dx
ln(z0(x))−ln(z1)(∫

∆
dx

ln(z0(x))−ln(z1)

)2
=⇒ ∂zeff0

∂z1

1

zeff0
− 1

z1
= −µ(∆)

∫
∆

1
z1

dx
ln2(z0(x)/z1)(∫

∆
dx

ln(z0(x)/z1)

)2
=⇒ ∂zeff0

∂z1

1

zeff0
=

1

z1
− 1

z1

µ(∆)
∫
∆

dx
ln2(z0(x)/z1)(∫

∆
dx

ln(z0(x)/z1)

)2

=⇒ ∂zeff0
∂z1

=
zeff0
z1

1−
µ(∆)

∫
∆

dx

ln2(z0(x)/z1)(∫
∆

dx

ln(z0(x)/z1)

)2

 .

(3.1.14)
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Using Schwarz’s inequality, which says
(∫
f(x)dx

)2 ≤
∫
f2(x)dx, we obtain:

µ(∆)
∫
∆

dx
ln2(z0(x)/z1)(∫

∆
dx

ln(z0(x)/z1)

)2 ≥
µ(∆)

∫
∆

dx
ln2(z0(x)/z1)∫

∆
dx

ln2(z0(x)/z1)

≥ 1 =⇒ ∂zeff0
∂z1

≤ 0, (3.1.15)

which in other words tells us that the effective roughness length in a two-dimensional model

becomes larger as the lowest height level approaches the ground. This effect results in an increase

of the effective drag coefficient, which is defined as

Cd =

(
κ

ln(z1/zeff0 )

)2

. (3.1.16)

To conclude, we have found one formula for the effective roughness length, namely

ln

(
zeff0
z1

)
=

1

1

µ(∆)

∫
∆

dx

ln(z0(x))− ln(z1)

. (3.1.17)

This ERL is dependent on the first height level z1, and requires an effective friction velocity

to be equal to the grid-square average of the local friction velocity, which does not necessarily

correspond to reality. In the next section, we analyse the problems that may occur using such

an ERL, before finding an alternative formula.

3.2 Taylor (1987)

In his paper, Taylor (1987) reviews the effective length given by André and Blondin, and explains

why this formula is not correct. He also gives two formulas for an an effective length that are

supposedly more accurate. In this section, we explore the reasons given by Taylor on why the

formula for the ERL (3.1.17) is incorrect, and we detail the derivation for the ERL proposed.

One can first note that the effective roughness length given by André and Blondin depends on

the first height level z1. Moreover, it is significantly different from the value obtained by simply

taking a spatial average of (the logarithm of) the local micrometeorological roughness lengths.

Indeed, Taylor suggests that the effective roughness length of a terrain can simply be found by

the grid-square average:

zeff0 ≈ zm0 , where ln(zm0 ) = ⟨ln(z0)⟩ , (3.2.1)

where zeff0 denotes Taylor’s effective roughness length, and z0 is the local roughness length.

Considering a terrain with length ∆ on the x-axis, we obtain the grid-square average as:

⟨ln(z0)⟩ =
1

µ(∆)

∫
∆

ln(z0(x))dx, (3.2.2)

where µ(∆) is the measure of ∆. Since our model is two-dimensional and thus ∆ is one-

dimensional, µ(∆) corresponds to the length of the interval over which we integrate. Clearly

Taylor suggests that the effective roughness length does not depend upon the first height level z1.

Taylor begins his paper by assuming the same profile as André and Blondin. In other words,

we only consider neutral stratifications, and we suppose that z1 is sufficiently close to the ground,

in order for the local velocity profiles to be of the logarithmic form

u =
u∗
κ
(ln(z)− ln(z0)). (3.2.3)

Furthermore, we assume that the heterogeneous grid consists of patchwork areas of different

roughness lengths. Then, although the local roughness length z0 depends on x (i.e. z0 = z0(x)),
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the local profiles will indeed be of the form (3.2.3) except in the narrow transition areas between

the different regions. According to Taylor, these areas should only have a small contribution to

the average. Alternatively, one may want to assume slow spatial variation in z0 (i.e. we consider z0
to be a continuous function), so that the profiles are always in approximate local equilibrium.

Then, averaging equation (3.2.3) over the grid square yields

⟨u(z)⟩ = 1

κ
(⟨u∗⟩ ln z − ⟨u∗ ln z0⟩) , (3.2.4)

where the notation ⟨·⟩ corresponds to the numerical integral average, as in equation (3.2.2). This

average profile is indeed logarithmic in z, but we find ourselves with two main problems:

i. the apparent friction velocity ⟨u∗⟩ is not necessarily equal to the square root of the average

stress
〈
u2∗
〉
(which was an issue pointed out in the previous section);

ii. the apparent roughness length is not only related to the local roughness length distribution,

but it also depends on the distribution of the friction velocity. In other words, denoting the

apparent roughness length za0 , we would need to obtain

ln(za0 ) =
⟨u∗ ln z0⟩

⟨u∗⟩
, (3.2.5)

in order for the following to hold:

⟨u(z)⟩ = ⟨u∗⟩
κ

ln

(
z

za0

)
, (3.2.6)

which would then be in a more similar form to (3.2.3) than (3.2.4) is.

Taylor suggests to set zeff0 = za0 . We however need to distinguish between the two in order to

properly establish Taylor’s reasoning. To this end, let us consider a simple case: a ‘half and half’

grid square, where the first half corresponds to a smooth zone with z0(x) = z0s, and the second

half is a rougher zone, with z0(x) = z0r.

u

ln(z)

z1

z0r

z0s

u1r u1s

ur(z)

⟨u(z)⟩
us(z)

Figure 4. Schematic diagram of velocity profiles for a ‘half and half’ grid square, where u1 cor-
responds to the velocity at height z1. The subscripts r, s denote the rougher and the smoother
regions, respectively.,

Figure 4 shows a schematic diagram of the velocity profiles against ln(z). In this sketch, we

do not know the relationship between the smooth and rougher wind profiles us and ur, but we

do know that since they are generated by the same driving force, we would expect us(z) > ur(z)

for all z. Two key questions that one may ask are
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1. What should be considered as the driving force?

2. Is it uniform over the grid?

To answer these questions, Taylor looks at the assumptions made by André and Blondin. Namely,

they assume that u is fixed, and it is equal to U1 at z = z1, as given by equation (3.1.1). In

the ‘half and half’ grid square, this assumption would mean that u1s = u1r. This is a correct

approximation for large values of z1, say of the order O(200m), where hence the first height level

is much higher than the canopy height. However, for smaller values of z1, say of order O(10m),

this is not an appropriate approximation. Indeed, at heights below or sufficiently close to the

canopy level in a forest, we know that wind is slowed down. In general, over rougher surfaces,

we have that for heights z1 ∼ 10m, the wind flow is significantly reduced.

Hence, in the example considered here, is is inappropriate to consider the wind speed at

some height within the surface layer as being the driving mechanism for the boundary-layer

flow near the surface, since it will not be uniform over the grid square. This shows that the

effective roughness length should not depend on the first height level z1, contradicting André

and Blondin’s reasoning.

For surface boundary-layer flow above a heterogeneous vegetated terrain, where the upstream

or unperturbed flow is a constant stress layer, the appropriate driving force corresponds to a

constantly applied shear stress. Taylor points out that this force is not strictly appropriate here,

but it does lead to equilibrium profiles above different terrains with different roughness lengths,

over which the value of friction velocity u∗ is constant. Hence, in this case, the apparent roughness

length za0 is given by

ln(za0 ) =
⟨u∗ ln z0⟩

⟨u∗⟩
= ⟨ln(z0)⟩ = ln(zm0 ). (3.2.7)

Therefore, under this driving force and for this model, we have za0 = zm0 . Thus, this yields the

effective roughness length ln(zeff0 ) = ⟨ln(z0)⟩.

For global climate models (GCMs) and regional scale numerical weather prediction (NWP)

models, the horizontal pressure gradients will vary only slowly across a grid square and will be

relatively unaffected by sub-grid scale variations in surface properties. The sub-grid scale problem

consists of representing the average planetary boundary layer (PBL) over a heterogeneous terrain.

The driving force becomes the pressure gradient. In this model, we assume that the transition

zones of the PBL (e.g. the transition in the topography of the boundary layer) is small compared

to the size of individual areas in our grid square. Under the assumption that the surface stress

adjusts rather rapidly to changes in z0, we can estimate the relationship between u∗ and ln(z0)

needed in equation (3.2.5) from models for the planetary boundary layer over homogeneous

terrain.

We define ug to be the geostrophic flow, that is the theoretical wind resulting from an exact

balance between the Coriolis force and the pressure gradient force. The Coriolis force is an

inertial force which acts on objects in motion, within a reference frame rotating with respect to

some inertial frame. We also denote Vg = |ug| the length of the geostrophic wind. The Rossby

number is defined by:

Ro =
Vg
fz0

, (3.2.8)

where f is the Coriolis parameter, corresponding to twice the component of the Earth’s angular

velocity about the local vertical. In other words,

f = 2ω sinφ, (3.2.9)

where ω is the angular speed of the Earth, and φ is the latitude. Then, planetary boundary layer

similarity tells us that the relationship between surface friction velocity u∗ and the roughness

22



Rossby number is

ln

(
u∗
Vg
Ro

)
= B +

(
κ2

(u∗/Vg)2
−A2

)1/2

, (3.2.10)

where κ is the von Kármán constant, and A and B are constants for neutral stratification.

They can also be considered functions of the stability parameter (κu∗)/(fL∗), where L∗ is the

Obukhov length, for non-neutral stratification. Taylor uses in his paper A = 4 and B = 2 as

‘typical’ values for all computations.

Differentiating the left hand side of (3.2.10) with respect to ln(z0) yields:

d

d ln(z0)
ln

(
u∗
Vg
Ro

)
=

d

d ln(z0)
ln

(
u∗
fz0

)
=

1

u∗

du∗
d ln(z0)

− 1

z0

d(z0)

d ln(z0)

=
1

u∗

du∗
d ln(z0)

− 1

z0

deln(z0)

d ln(z0)

=
1

u∗

du∗
d ln(z0)

− 1.

(3.2.11)

Similarly, differentiating the right hand side with respect to ln(z0) yields, for neutral stratification

where we thus consider A and B constant:

d

d ln(z0)

(
B +

√
κ2

(u∗/Vg)2
−A2

)
=

d
d ln(z0)

(
κ2V 2

g /u
2
∗
)

2
√
κ2V 2

g /u
2
∗ −A2

=
−κ2V 2

g
du∗

d ln(z0)

u3∗

√
κ2V 2

g /u
2
∗ −A2

(3.2.12)

Setting

F = ln

(
u∗
Vg

)
−B + ln

(
Vg
fz0

)
(3.2.13)

yields:

d

d ln(z0)

(
B +

√
κ2

(u∗/Vg)2
−A2

)
= − 1

u∗

du∗
d ln(z0)

κ2

(u∗/Vg)2F

.

(3.2.14)

Putting the left hand side and the right hand side together gives

1

u∗

du∗
d ln(z0)

− 1 = − 1

u∗

du∗
d ln(z0)

κ2

(u∗/Vg)2F

=⇒ u∗

(
du∗

d ln(z0)

)−1

=
κ2 + (u∗/Vg)

2F

(u∗/Vg)2F

=⇒ 1

u∗

du∗
d ln(z0)

=
(u∗/Vg)

2F

κ2 + (u∗/Vg)2F

=
F

κ2V 2
g /u

2
∗ + F

=: a1.

(3.2.15)

The above equation only holds for neutral stratification, i.e. when A and B are constant. If

the stability parameter depends on ln(z0) there would be additional terms involving dA/d ln(z0)

and dB/d ln(z0),

Continuing with establishing a relationship between u∗ and ln(z0), we first need to note

that u∗ varies relatively slowly with z0. When reasonably restricting the ranges of the model, u∗
can be approximated as varying linearly with ln(z0), as can be seen by equation (3.2.15). Con-

sidering Vg and f to be fixed, i.e. we consider a fixed latitude for the model, we obtain an
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approximation of u∗ using zm0 as given in (3.2.1), where ln(zm0 ) corresponds to the grid square

average of ln(z0(x)),

u∗ = um∗ [1 + a1 (ln(z0)− ln(zm0 ))] . (3.2.16)

Here, a1 is as given above in (3.2.15), and um∗ is the value of u∗ corresponding to ln(z0) = ln(zm0 ).

Since we have a linear relationship between u∗ and ln(z0), we see that um∗ corresponds to the

grid square average ⟨u∗⟩. Substituting (3.2.16) into (3.2.5), assuming that um∗ = ⟨u∗⟩ yields

ln(za0 ) =
⟨u∗ ln(z0)⟩

⟨u∗⟩
= ⟨[1 + a1 (ln(z0)− ln(zm0 ))] ln(z0)⟩

= ⟨ln(z0)⟩+ a1

(〈
ln2(z0)

〉
− ⟨ln(z0)⟩2

)
.

(3.2.17)

Since a1 > 0, we will always have ln(za0 ) ≥ ⟨ln(z0)⟩, and in many cases they will be close to each

other. The second ERL given by Taylor is thus ln(zeff0 ) = ln(za0 ), as in equation (3.2.17). In the

analysis done here, we do not have any dependency on the first height level z1, which is the main

difference with André and Blondin André & Blondin (1986).

3.3 De Vries et al. (2003)

In their 2003 paper, de Vries et al. (2003) look at estimating the effective roughness length (as

well as the displacement height, which we look into further in Section 5.5.). For bluff-rough

surfaces, where only sparse objects (e.g. trees) influence the roughness, they review an equation

proposed by Lettau (1969):

z0 = CHλ, (3.3.1)

where H is the average obstacle height and λ is the density of the roughness elements, which can

be approximated by A/S, where A is the average silhouette area of the roughness elements in a

horizontal area S. Note that the silhouette area is similar to the leaf area Aℓ. For two dimensional

models, and thus two dimensional obstacles, the calculation of A/S can be simplified to H/L,

where L is the distance between two obstacles. C is supposed to be a constant, taken by Lettau

as C = 0.5 for A/S < 0.1.

On the other hand, Wooding et al. (1973) suggest that C is a factor of shape, based on wind

tunnel data:

C = 2.05

(
H

S

)κ

, (3.3.2)

where κ ≈ 0.40 is the von Kármán constant. An alternative to Lettau’s equation to compute the

roughness length is given by Kustas & Brutsaert (1986):

z0
H

= λ

(
H

S

)κ

, (3.3.3)

where S is the average horizontal dimension of the roughness element. In this equation, we do

not take into account the shape of the individual obstacle. All above equations do account for

the form drag, which is caused by large scale roughness elements, but neglect the shear stress

contributed by the small scale elements like vegetation. By definition, the total drag Ft consists

of both the form drag Ff and the shear stress Fs,

Ft = Ff + Fs. (3.3.4)

Form drag is the drag created by the roughness elements per unit horizontal area, and depends

more upon the larger obstacles than the smaller ones. Shear stress represents the friction stress

due to the smaller scale elements, and depends on the surface area. De Vries et al. give the
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following equation for the form drag:

Ff = 0.5ϱCdAu
2(H/2), (3.3.5)

where Cd is the drag coefficient, ϱ is the density of air, A is the average silhouette area of

the roughness element, and u(H/2) is the horizontal wind speed at height H/2, where H is

the average obstacle height. In their study, de Vries et al. use a constant Cd = 0.3. Using the

roughness length attributed to flat terrain, denoted by z01 and estimated to being z01 = 0.01m,

the contribution from the shear stress is computed by:

Fs =
κ2

ln2(H/2z01)
ϱu2(H/2)S. (3.3.6)

Since shear stress is due to the surface area, de Vries et al. argue that the total drag is related

to the effective roughness length, using the above equation for shear stress,

Ft =
κ2

ln2(H/2zeff0 )
ϱu2(H/2)S. (3.3.7)

Then, extracting the effective roughness length from (3.3.7), and using the above equations, yields

(
ln(H)− ln(2zeff0 )

)2
=
κ2ϱu2(H/2)S

Ft

=⇒ ln(2zeff0 ) = ln(H)−

√
κ2ϱu2(H/2)S

Ft

=⇒ 2zeff0 = exp

ln(H)−

√
κ2ϱu2(H/2)S

Ft


=⇒ zeff0 =

H

2
exp

−

√
κ2ϱu2(H/2)S

Ft


=
H

2
exp

−

[
κ2S

0.5CdA+ κ2

ln2(H/2z01)
S

]1/2
=
H

2
exp

− κ[
0.5Cdλ+ κ2

ln2(H/2z01)

]1/2
 .

(3.3.8)

In this model, as de Vries et al. point out, the shadowing effects of the roughness elements are

ignored, and it is a valid model for obstacle slopes satisfying tan θ > 0.2. On the other hand,

for slopes satisfying tan θ < 0.1, the effect of the obstacle drag on the roughness length can be

neglected, and for slopes with 0.1 < tan θ < 0.2, it is suggested that the effective roughness

length is parametrised based on linear theory, i.e.

ln

(
z0
z01

)
=

1

κ2
ln(1 + 63× 6.4 tan θ2). (3.3.9)

Note that, in this thesis, we only interest ourselves to models consisting of trees and grass. Trees

are generally perpendicular to the ground, hence the obstacle slope is θ = π/2, but then tan θ

is not defined. To this end, let us consider the obstacle slope to be θ = π/2− ε, for some ε > 0

sufficiently small. This then allows us to check that indeed tan θ > 0.2, and hence the equation

given by de Vries et al. can be used for our models. In conclusion, we have a third equation for
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the effective roughness length, namely:

zeff0 =
H

2
exp

− κ[
0.5Cdλ+ κ2

ln2(H/2z01)

]1/2
 , (3.3.10)

where H is the average obstacle height, Cd is the drag coefficient, here set to be Cd = 0.3,

and λ ≈ H/L is the density of the roughness elements, for L the distance between two obstacles.

Here, z01 is the is the roughness length attributed to flat terrain (z01 = 0.03m in our case), and κ

is the von Kármám constant, κ ≈ 0.40.

We have thus found three different methods of computing the effective roughness length for

a heterogeneous vegetated terrain. These methods are compared in Section 5.
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4 Simulations

Throughout this section, we consider two distinct homogeneous terrains: grass and forest. The

properties and conditions for each zone are taken from (Klaassen, 1992, Table 1). All simulations

are done using the final code by Slump (2021), which is a grid-refined version of the code by

Luppes (1993).

We first run the simulation for a 900 m long terrain, with three distinct homogeneous zones:

grass, forest, grass, as given in Figure 5a. Then, we suppose that instead of having a single region

of 300m of forest, we have two regions, one of 100m and another of 200m. For this model, we

still suppose that the entire terrain has a length of 900 m. For example, we may suppose that

the terrain is given by Figure 5b. We also interchange the two forest regions to see the effect it

has on the final wind profile, as in Figure 5c.

300 600 9000

z (m)

x (m)

(a) Sketch of three homogeneous regions, model 3.

200 300 400 600 9000

z (m)

x (m)

(b) Sketch of five homogeneous regions, model 5.1.

200 500400 600 9000

z (m)

x (m)

(c) Sketch of five homogeneous regions, model 5.2.

Figure 5. Sketches of the three types of models considered in this paper.

In what follows, the 3 regions terrain is referred to as model 3, while the 5 regions terrains are

called model 5.1 and model 5.2. For all simulations, we first run the single-layer model, then the

multi-layer model. In the next section, we compare all models together, but first we analyse them

separately. To distinguish between the three models, under single- and multi-layer approach, we

denote by s and m the surface type considered for each simulation.
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4.1 Three regions, single-layer model (3s)

In this section, we run simulations for three homogeneous zones, as illustrated in Figure 5a. We

consider all regions to be of equal length (300m each), and all regions are modelled by a single-

layer profile. Furthermore, since we want to look at the effect of the vortices on the velocity, we se-

lect a few x locations to compare the velocity at those points. We choose x ∈ {900, 800, 700, 650},
since the forest region stops at 600m, and we should avoid values too close to that boundary.

Otherwise, we would directly be under the influence of the vortices which may yield a biased

result. After running the simulations, we obtain the velocity profiles as given in Figure 6.

Figure 6. Plot of the velocity against the
height for model 3s.

Figure 7. Zoomed plot of the velocity
against the height for model 3s, to indi-
cate the canopy layer hc = 10m.

Note that all Figure 6 tells us is that the curves are indeed logarithmic, without providing

further information regarding the difference in velocity for various locations of x. Hence, from

this point onward, we only look at the zoomed-in version of those plots, as in Figure 7. The

canopy height is given by hc = 10m, so we only consider height values of z ≤ 20m. From this,

we conclude that for three homogeneous single-layer regions, the vortices probably slow down the

atmospheric flow when closer to the boundary of the rougher zone. This result is coherent with

what we know from real-life observations. More precisely, when plotting the difference between

x = 900m and x = 650m as given in Figure 8, we see that at the canopy height of 10m, the

difference is 0.493m/s, which corresponds to 7.8% of the wind flow at the end of the model (i.e.

at 900m) for the same height.

Figure 8. Difference in velocity between x = 900m and x = 650m for model 3s.

Hence, for a simulation with three homogeneous single-layer regions, the vortices slow down

the wind flow at the canopy height by 7.8%. We note that in reality, we do not have a ‘block’ of

trees, but rather different layers with different characteristics.
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4.2 Three regions, multi-layer model (3m)

In this section, we still consider three regions as illustrated in Figure 5a, but the forest is now

modelled using a multi-layer approach. To make the model more accurate, we suppose that at

the bottom of the forest there is a layer of grass, which means that the first layer of the multi-

layer model has properties corresponding to grass. Similar to the single-layer model above, we

find that the wind profile is logarithmic, as given in Figure 9. Furthermore, by zooming in, we

again see that the velocity for x = 650m is smaller than the velocity at x = 900m.

Plotting the difference in velocity between x = 650m and x = 900m, as in Figure 10, shows

us that the vortices slow down the atmospheric flow at the canopy height by 9.2% of the speed

at x = 900m.

Figure 9. Zoomed plot of the velocity
against the height for model 3m.

Figure 10. Difference in velocity be-
tween x = 900m and x = 650m for
model 3m.

We note that in the multi-layer model, the effect of the vortices is stronger than for the single-

layer model, since in the multi-layer model the wind flow is slowed down by 9.2%, compared

to only 7.8% for the single-layer. Moreover, as plotted in Figure 11, we read that the velocity

for x = 650m in the multi-layer model is less than that in the single-layer, for heights z ≤ 10m,

which corresponds to the canopy level.

Figure 11. Comparison of single- and
multi-layer models for three regions.

Figure 12. Comparison of the differ-
ences in velocity (between x = 900
and x = 650) between models 3s and 3m.

On the other hand, for x = 900m, the curve for the single-layer model is similar to that

for the multi-layer model. This can be explained by the fact that at this distance we are far

enough from the boundary between the rougher and the smoother regions, and hence the effect

of the vortices is diminished. Furthermore, we must note that as seen in Section 2.3, the multi-

layer approach takes into account some extra parameters, which are not present in single-layer.
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Namely, we note the presence of two forces, the drag force Fd and the countergradient force Fcg.

These forces act on the wind velocity directly, which explains why the wind is slowed down more

in multi-layer than in the single-layer approach. In other words, it is not only the effect of the

vortices that influence the wind velocity.

Plotting the difference in velocity between x = 900 and x = 650 for single-layer and multi-

layer in Figure 12 shows us that the difference in velocity in the multi-layer model is greater than

for the single-layer. Hence, the effect of vortices (and the presence of the drag and countergradient

forces) for the multi-layer model is greater than that for the single-layer model. In the single-layer

model we consider the forest region to be equivalent to a single ‘block’ with constant roughness

length. Thus, as we do not consider the leaf area density in this model, and the wind does not

flow in between the trees and the leaves, the single-layer model yields less vortices than the

multi-layer approach. Therefore, the velocity is slowed down more in the latter.

Since the multi-layer model is a more accurate description of reality, we conclude that the

vortices slow down the atmospheric flow by 9.2%, rather than by 7.8%, at the canopy height.

We then may ask ourselves what happens when considering two separate rough zones instead of

a single one. This is discussed in the following subsections.

4.3 Five regions, single-layer model (5.1s)

In this section, we consider a terrain of total length of 900m consisting of five distinct homo-

geneous regions, as illustrated in Figure 5b. We suppose that the first forest-type region has

length 100m and the second has length 200m. Starting with the first model, we obtain that the

wind flow for the same x locations as above is also following a logarithmic profile, as shown in

Figure 13.

Figure 13. Zoomed plot of the velocity
against the height for model 5.1s.

Figure 14. Comparison of the veloc-
ity for three and five regions, models 3s
and 5.1s.

Looking at Figure 13 and comparing it with the plot for model 3s in Figure 7, we notice that

they are very similar. The plot showing the difference between the two is given in Figure 14, and

we see that the difference is less than 0.025m/s. This corresponds to about 0.4% of the velocity

for three terrains in single-layer model at distance x = 650m.

Hence, we can conclude that for model 5.1s, the vortices that appear at the end of the

first rough zone do not influence the output wind profile. The final wind flow is however still

impacted by the vortices of the second rough zone. Furthermore, we can compute that the

velocity at x = 650 is 7.6% slower than at x = 900, which is close to the 7.8% we obtained

for the three regions in single-layer model, at the canopy height hc. However, this result is not

coherent with real-life expectations. Indeed, we would expect that the vortices apeparing at the

end of the first rough region propagate and slow the wind down after the second region.
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4.4 Five regions, multi-layer model (5.1m)

Under the first model and using multi-layer modelling of the rough zones, we obtain a logarithmic

wind profile for certain x locations, as given in Figure 15.

Figure 15. Zoomed plot of the velocity
against the height for model 5.1m.

Figure 16. Comparison of the veloc-
ity for three and five regions, models 3m
and 5.1m.

Comparing Figure 15 with the plot of the velocity against height for three multi-layer regions

as in Figure 9, we obtain an error of 0.09m/s, which corresponds to about 1% of the velocity

in model 3m at the canopy height height for x = 650. Hence, for the first model, the vortices of

the first rough zone reduce the velocity at the end of the terrain by 1%.

4.5 Five regions, single-layer model (5.2s)

The second model is similar to the model described above, with the exception that the first

and second rougher zones are interchanged. In other words, instead of having a terrain that

is divided as in Figure 5b, it is now divided as presented in Figure 5c, with the first rough

region being 200m long, and the second 100m, with 100m of smoother zone in between. Using

this model, the output wind flow is once again logarithmic, as can be seen from Figure 17.

Furthermore, comparing Figure 17 with Figure 7, corresponding to the velocity versus height for

three single-layer regions, yields Figure 18.

Figure 17. Zoomed plot of the velocity
against the height for model 5.2s.

Figure 18. Comparison of the veloc-
ity for three and five regions, model 3s
and 5.2s.
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We then see that the curves are similar, and their difference is of about 1% of the velocity

at x = 900m at the canopy height hc = 10m. Moreover, the velocity at x = 650 is 7% slower

at the canopy height than the velocity at x = 900, which is smaller than the 7.6% we obtained

previously. Therefore, we have a stronger effect of the vortices that appear after the first rough

region on the final output in the first model of five regions than in the second, under single-layer

models. This can be explained by the fact that in the first model, there is a smaller region of

rougher terrain to begin with than in the second model.

4.6 Five regions, multi-layer model (5.2m)

Using this model, we obtain a logarithmic wind profile for certain x locations as plotted in

Figure 19.

Figure 19. Zoomed plot of the velocity
against the height for model 5.2m.

Figure 20. Comparison of the veloc-
ity for three and five regions, models 3m
and 5.2m

Comparing Figure 19 with the plot for three multi-layer regions in Figure 9, as given in

Figure 20, tells us that at the canopy level for x = 650m, the error is of 0.14m/s, which

corresponds to about 2% of the velocity in model 3m at x = 900m, at that height hc. Hence, for

a multi-layer model of the terrain considered in model 5.2, the vortices appearing after the first

rough zone influence the final velocity by 2% of the velocity at the canopy height at x = 650m.

4.7 Comparison of all models

Plotting all the curves together at location x = 650m, we obtain Figure 21a. We choose this

location since we then find ourselves sufficiently close to the boundary between the rougher and

smoother zone (at 600m) to analyse and compare the effect of the vortices. At the same time,

this location is sufficiently far to not directly be in the zone in which the vortices appear, as that

may yield biased results.

Figure 21a shows us that for all three heterogeneous vegetated terrains considered, the multi-

layer model always yields lower velocity at x = 650m for heights z ≤ 10m, compared to the

single-layer approach for the same values of x and z. Figure 21b shows the percentage at which

the velocity decreases per model. This tells us that in the multi-layer models, the velocity is

decreased by a much higher factor than for single-layer models. Furthermore, when comparing

models 5.1 and 5.2 with the terrain of three regions, model 3, we see that for single layer models

the velocity is increased, whereas for multi-layer models it is decreased. The fact that the velocity

is lower for five regions than for three under multi-layer can be explained by noting that in five

regions we have two rough regions, which both produce vortices. Hence, the vortices accumulate

and thus the velocity is decreased more in this case.
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(a) Comparison of the velocity at x = 650. (b) Percentage of decrease in velocity.

Figure 21. Comparison of the velocity at x = 650m and of the decrease in velocity due to
the vortices between all the regions. The decrease in velocity due to the vortices is given as a
percentage of the velocity at x = 900m.

This allows us to conclude two things, namely that the vortices render the terrain ‘rougher’,

since the velocity is slowed down, and that when considering five regions the velocity is slower

than for three. However, this difference is rather small. Indeed, by looking at Table 1, which

presents the maximum difference in velocity between three and five regions at distance x = 650m,

we see that this difference is not big enough to be of significance.

Models 3, 5.1 single 3, 5.1 multi 3, 5.2 single 3, 5.2 multi
Difference (m/s) 0.025 0.093 0.082 0.146

Table 1. Maximum difference in m/s of the output velocity at distance x = 650m between
three and five regions. This table is obtained by taking the absolute difference between the
curves in Figure 21a, for single- and multi-layer simulations respectively, and extracting the
maximum value over height.

We can see from Table 1 that for both of the 5 regions model, the single-layer approach yields

a velocity that is closer to the 3 regions model. In other words, under multi-layer simulations,

the vortices and the presence of the drag and countergradient forces (Fd, Fcg) propagate from

the first rough region to the second. This then slows the wind flow more than in single-layer,

where Fd = Fcg = 0.
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5 Measured effective roughness length

In this section, we apply the methods for computing the effective roughness length, detailed in

Section 3, in chronological order. For each method, we compare the output wind profile with

that of the original heterogeneous terrain. We do so by considering a 1100m long terrain with

roughness length corresponding to the ERL computed with the method in question.

The reason behind this extension of the terrain is that if we were to compare the output

velocity of the effective terrain with the output of the original 900m long terrain, as sketched in

Figure 22, we would find ourselves in a tricky situation. Indeed, the ERL is meant to be used

in larger scale meteorological situations, and hence, at 900m we are ‘too close’ to the effective

model (i.e. the model consisting of a single region with z0 = zeff0 ) to properly compare it with the

corresponding original simulation. Too close at the end of the heterogeneous vegetated terrain

may yield biased results, since at x = 900m the effective model is assumed to be rougher than

the original one.

300 600 9000

z (m)

x (m)

Figure 22. Sketch of the three region model and the corresponding effective model in red.

A sketch of the terrain with effective roughness length under extension is given in Figure 23,

where the red block corresponds to the effective region, and the blue blocks correspond to the

extensions. The extension must have a roughness length as low as possible, so as to not disturb

the result. Note that the extension at the start of the terrain is for computational purposes, in

order to allow the wind to properly flow over the region with roughness length corresponding to

the ERL.

100 1000 11000

z (m)

x (m)

Figure 23. Sketch of the extended effective model.

We proceed similarly for the ‘original’ models, i.e. we extend the terrains by adding 100m at

the start and at the end, each with roughness length z0 = 0.01m. In all the figures presented

in the following sections, we measure the output velocity at location x = 1100m for both the

original and the effective models.
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5.1 André and Blondin’s method

As detailed in Section 3.1, André and Blondin suggest that the effective roughness length depends

on the first height level considered, and is given by:

ln(zeff0 ) =
µ(∆)∫

∆
dx

ln(z0(x))−ln(z1)

+ ln(z1), (5.1.1)

where ∆ is the terrain considered, and µ(∆) is its length, z1 is the first height level, and z0
is the roughness length corresponding to each region. Recall that all our different models have

the same proportion of grass and forest, namely 600m of grass and 300m of forest. Furthermore,

by looking at the code, we see that the first height level is z1 = 1m. This yields the effective

roughness for all models:

ln(zeff0 ) =
900

600
ln(0.03) +

300
ln(0.9)

=⇒ zeff0 = 0.742m. (5.1.2)

However, as seen in Section 3.2, the dependency of the ERL on z1 is not appropriate. Upon grid

refinement, we would obtain different values of the first height level. Grid-refinement is further

explained in Section 5.6.

z1 (m) 1 1/2 1/4 1/8
zeff0 (m) 0.742 10.339 2.427 · 10−9 0.004

Table 2. Effective roughness length per height level, following André and Blondin (5.1.1).

Table 2 shows different values of zeff0 per height level z1. From this table, we can first confirm

that the dependencyof the effective roughness length on the first height level can yield inaccurate

results, namely for z1 = 1/2 and z1 = 1/4, the effective roughness length resulting is either too

big, or too small to be an accurate representation for any of our models. The results obtained

at height levels z1 = 1 and z1 = 1/8 are in the range of what is expected, and hence these are

the ones that we will focus on for verifying the accuracy of this ERL.

Comparing the original heterogeneous terrains with the two extended averaged models cor-

responding to the André-Blondin’s formulas, taking z1 = 1 or z1 = 1/8, yields the plots in

Figure 24.

(a) Comparison between original and André-
Blondin, for the first height level z1 = 1m.

(b) Comparison between original and
André-Blondin for the first height
level z1 = 1/8m.

Figure 24. Comparison of the output velocity, at x = 1100m, using the ERL of André and
Blondin methods, with the velocity of each of the other models.

We see from this figure that for z1 = 1 and for z1 = 1/8, there is quite a large difference

between the velocity output of the effective model, and that of the original model. To see this

more clearly, we can plot the difference between the effective model and the original, as in

Figure 25. The maximum error per method and per model is provided in Table 3.

35



(a) Absolute difference between André-
Blondin 1 and the original models.

(b) Absolute difference between André-
Blondin 1/8 and the original models.

Figure 25. Difference in velocity (in absolute value) between André-Blondin’s formulas for
the first height level z1 = {1, 1/8}, and the original models, when considering the extended
terrain, at x = 1100m.

Method
Model

3 single 3 multi 5.1 single 5.1 multi 5.2 single 5.2 multi

AB 1 0.689 0.679 0.697 0.615 0.713 0.607
AB 1/8 0.703 0.712 0.694 0.777 0.678 0.786

Table 3. Maximum error in m/s of the output velocity between the effective and the original
models, using André and Blondin’s method, for two values of grid-refinement: 1 and 1/8.

5.2 Taylor’s two methods

As detailed in Section 3.2, Taylor first suggests that the effective roughness length satisfies:

zeff0 ≈ zm0 , where ln(zm0 ) = ⟨ln(z0)⟩ . (5.2.1)

Hence, according to Taylor, this would mean that for all the different models studied here, we

obtain the same effective roughness length, namely,

ln(zeff0 ) = −2.37 =⇒ zeff0 = 0.093m. (5.2.2)

This result then corresponds to Taylor’s first method for the effective roughness length. Taylor’s

second suggestion is that the ERL satisfies: zeff0 ≈ za0 , where

ln(za0 ) = ⟨ln(z0)⟩+ a1

(〈
ln2(z0)

〉
− ⟨ln(z0)⟩2

)
, (5.2.3)

and

a1 =
F

κ2V 2
g /u

2
∗ + F

, F = ln

(
u∗
Vg

)
−B + ln

(
Vg
fz0

)
. (5.2.4)

In his paper, Taylor uses constant values for B, Vg and f given by:

Vg = 10m/s, f = 10−4s−1, B = 2. (5.2.5)

We shall use the same values for our computations, and furthermore, κ ≈ 0.4 is the von Kármán

constant. Then, for model 3m we obtain the plot for the apparent roughness length za0 from

equation (5.2.3) as given in Figure 26a. However, this figure is rather difficult to read. We note

that all the different coloured lines correspond to different heights z and to different correspond-

ing values of friction velocity u∗. In order to obtain a more readable graph, we take the ‘running

vertical average’ of za0 from Figure 26a. This is plotted in Figure 26b. The running average is

computed by summing all vertical over height and dividing by the number of vertical values.
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(a) Plot of za0 against x. (b) Plot of the vertical average of Figure 3.

Figure 26. Plot of za0 and its vertical average over the length of the terrain, for model 3m.

Looking at Figure 26b, we see that after x = 200m, the apparent roughness length is approx-

imatively constant, and equals za0 = 0.104. Proceeding similarly for all models, we obtain the

values given in Table 4, where we note that the values given are rounded to 3 digits.

Model 3 single 3 multi 5.1 single 5.1 multi 5.2 single 5.2 multi
za0 (m) 0.104 0.104 0.104 0.104 0.104 0.104

Table 4. Values for the apparent roughness length za0 per model, rounded to three digits. This
corresponds to Taylor’s second method for the ERL, since zeff0 ≈ za0 .

Similarly as to what is done in the previous section, we verify the accuracy of Taylor’s effective

roughness length. This is shown in Figure 27.

(a) Comparison between original models and
Taylor 1st.

(b) Comparison between original models
and Taylor 2nd.

Figure 27. Comparison of the output velocity of Taylor’s 1st and 2nd methods with the
velocity of each of the other models, at x = 1100m.

As can be seen from Figure 27, the effective model corresponding to Taylor 1st and 2nd

methods yields an output velocity that is very close to the output velocity corresponding to our

original models (with 100m extension). The plots representing the difference between Taylor’s

models and each original model are given in Figure 28. The maximum error in the plots are

given in Table 5.

Comparing with Table 3, which displays the maximum error using André and Blondin’s

methods, we see that Taylor’s effective roughness lengths always yield a smaller error. Hence,

Taylor’s ERL is indeed more accurate than the ERL of André and Blondin. To further check the

quality of Taylor’s effective roughness length, we study the ERL derived by de Vries et al in the

next section.
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(a) Absolute difference between Taylor 1st

and the original models.
(b) Absolute difference between Taylor 2nd

and the original models.

Figure 28. Difference in absolute value between Taylor’s 1st and 2nd methods and each
original models, when considering the extended terrain, at x = 1100m.

Method
Model

3 single 3 multi 5.1 single 5.1 multi 5.2 single 5.2 multi

Taylor 1st 0.144 0.140 0.137 0.206 0.126 0.213
Taylor 2nd 0.124 0.118 0.118 0.184 0.108 0.190

Table 5. Maximum error in m/s of the output velocity between the effective and the original
models, using Taylor’s methods.

5.3 De Vries et al.’s method

From Section 3.3, we have a formula for the effective roughness length given by de Vries et al.:

zeff0 =
H

2
exp

− κ[
0.5Cdλ+ κ2

ln2(H/2z01)

]1/2
 . (5.3.1)

To find the average obstacle height, we recall that the canopy height was given to be hc = 10m,

and thus,

H = 10m. (5.3.2)

We use the same value for the drag coefficient as de Vries et al., which is Cd = 0.3. However,

for the roughness length of the smoothest region, z01, we do not use the same value. In fact,

we use z01 = 0.03m, which corresponds to the roughness length for the smoothest region in our

models. λ corresponds to the density of the roughness elements, and for two dimensional models

it can be approximated via λ ≈ H/L, and κ ≈ 0.4 is the von Kármán constant.

In their paper, de Vries et al. consider the distance L between the middle of two obstacles.

Note that, for the three regions model, we only have a single obstacle, which would yield L = 0.

To overcome this, we write L as a function of δ, where δ denotes the space in between the two

forests in the five regions model. Then, for the three regions model, we can take the limit δ → 0

to find L. Looking at how the five regions model is defined, we see that setting δ as the distance

between the to forests gives:

L(δ) = 150 + δ, (5.3.3)

and so, for δ = 100m, we obtain L(100) = 250m, which thus corresponds to the distance between

the two obstacles for both of the five regions models. For the tree regions model, we take the

limit δ → 0, which yields L(0) = 150m.

Using all of this, we can compute the effective roughness length for the various heterogeneous

vegetated terrains we have. The results per model are given in Table 6.

We see that this method yields the same effective roughness length for both of the five regions

models, while slightly different for the three regions one. This is due to the fact that in the five
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Model model 3 model 5.1 model 5.2
zeff0 (m) 0.214 0.132 0.132

Table 6. Effective roughness length per model, following de Vries et al.’s method.

region model we have a larger distance between the two obstacles than in the three region model.

Comparing the effective model resulting from this ERL with the original models yields Fig-

ure 29.

(a) Comparison between original models and
de Vries, for 3 regions.

(b) Comparison between original models
and de Vries, for 5 regions.

Figure 29. Comparison of the output velocity of de Vries et al.’s method with each of the
original models, for three and five regions, at x = 1100m.

From these plots, we notice that the effective model from de Vries et. al yields an output

velocity that is very similar to that of our original models. To see this more clearly, the error is

plotted in Figure 30, and the maximum error per model is given in Table 7.

(a) Absolute difference between original
models and de Vries, for 3 regions.

(b) Absolute difference between original
models and de Vries, for 5 regions.

Figure 30. Plots of the difference in absolute value between de Vries et al.’s method and each
original model, when considering the extended terrain, at x = 1100m.

Comparing the errors for the ERL of de Vries et al. with that of André and Blondin and

Taylor, we can conclude that the former yields the best results for five regions, and rather good

results for three regions. The fact that this method is less accurate for three regions could be

expected, since their research was more focused on the influence of multiple rough regions on

the effective roughness length. This also follows from the fact that the distance L between two

obstacles is not well defined for 3 regions.

We have computed the output velocity for three methods of effective roughness length, and

compared them with each of the original model. The ERLs used thus far were given in existing

papers and relied, one way or another, on the logarithmic wind profile. However, none of the

methods extracted the roughness length from this logarithmic equation directly. Therefore, this

is the approach considered in the following section.
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Model 3 single 3 multi 5.1 single 5. multi 5.2 single 5.2 multi
Error (m/s) 0.199 0.189 0.079 0.137 0.072 0.142

Table 7. Maximum error in m · s−1 of the output velocity between the effective and the
original models, using de Vries et al.’s method.

5.4 ‘Averaged’ ERL using the logarithmic law

To compute the average roughness length by taking into account the effect of the vortices, we

turn to the logarithmic law (given in equation (1.1.1)). This law relies on the horizontal velocity u

and the friction velocity u∗, which both depend on vortices. Using the logarithmic law, we can

extract the roughness length z0. Namely,

u =
u∗
κ
(ln z − ln z0) =⇒ z0 = exp

{
ln z − uκ

u∗

}
. (5.4.1)

In particular, when considering height values z = 2 and z = 15, we obtain the plots given in

Figure 31.

(a) When considering z = 2m. (b) When considering z = 15m.

Figure 31. Plot of z0 against the location in the terrain for the different models, considering
heights z = 2m and z = 15m in the logarithmic law (5.4.1).

In both cases, for z = 2 and z = 15, all the single-layer models display roughness lengths

corresponding to the initial z0 that was set, i.e. 0.03 for smoother regions and 0.9 for the rougher

ones. This can be explained by recalling that in single-layer modelling we simply suppose that

both the rough and the smooth regions are modeled by a single layer, and that, as seen above

in Figure 21b, the influence of the vortices on the velocity was much lower for single-layer than

for multi-layer models. Thus, using the logarithmic law to extract z0 yields values that are close

to those that were the initial input of the code.

Furthermore, we can see spikes in the values of z0 in particular at x = 600 for all the multi-

layer models (the blue line is ‘hidden’ by the green and the yellow ones in the plot for z = 2, but

it is indeed there), and at x = 300 for the first model of 5 multi-layer regions, and at x = 400

for the second ones. Those spikes can probably be explained by the presence of the vortices that

appear after the rougher regions, as the above values of x correspond to the end of the forest.

The bumps can be explained by the fact that the wind enters the forest, leading to a decrease

in velocity and thus an increase in surface roughness.

In the results for z = 15, we note the presence of ‘bumps’, which correspond do the start of

the rougher zones. These bumps can be explained by the fact that the wind enters the forest,

leading to a decrease in velocity and thus an increase in surface roughness. The spikes mentioned

previously are still present, at the positions at which the forest ends. This is consistent with real-

life observations.
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We also have a spike for the 3 multi-layer regions model at x = 369, which seems to appear

in the middle of a forest region. This may be due to the grid size. To check this, we apply grid

refinement to our simulations, for model 3m, which is further detailed in Section 5.6. Figure 32

shows an example of grid refinement for three regions, for height values of z = 2m and z = 15m.

(a) Refining the grid-square by a half, a
quarter, and an eighth, at z = 2.

(b) Refining the grid-square by a half, a
quarter, and an eighth, at z = 15.

Figure 32. Grid refinement done by dividing the grid size by 2,4, and 8, for the model 3m
case, also discussed in Figure 31.

Using the grid-refinement for model 3m, we can compute the average roughness length per

model, by summing all the values and dividing by the number of them, which is given in Table

8. For the other models, we simply use the original grid, without refinement, to save computa-

tion time.

z (m)
Model

3 single 3 multi 5.1 single 5.1 multi 5.2 single 5.2 multi

z = 2 0.340 0.079 0.343 0.120 0.343 0.120
z = 3 0.346 0.082 0.349 0.132 0.349 0.133
z = 4 0.348 0.107 0.352 0.169 0.352 0.171
z = 5 0.349 0.338 0.352 0.367 0.352 0.369
z = 6 0.348 0.618 0.350 0.621 0.351 0.624
z = 7 0.346 0.857 0.348 0.906 0.348 0.908
z = 8 0.343 1.018 0.344 1.137 0.344 1.139
z = 9 0.340 0.661 0.338 0.800 0.339 0.802
z = 10 0.336 0.472 0.333 0.594 0.334 0.596
z = 11 0.332 0.492 0.327 0.593 0.329 0.595
z = 12 0.327 0.510 0.321 0.589 0.323 0.592
z = 13 0.322 0.525 0.315 0.585 0.317 0.587
z = 14 0.317 0.538 0.309 0.579 0.311 0.581
z = 15 0.312 0.545 0.303 0.571 0.305 0.574
z = 16 0.306 0.560 0.296 0.563 0.298 0.566
z = 17 0.301 0.569 0.290 0.554 0.292 0.557
z = 18 0.295 0.576 0.284 0.544 0.286 0547
z = 19 0.290 0.582 0.278 0.534 0.280 0.537
z = 20 0.284 0.587 0.272 0.523 0.274 0.526
Average 0.325 0.511 0.322 0.504 0.323 0.534

Table 8. Average roughness length per model, using the logarithmic law, for different height
values z, where the averaged value for model 3m is computed under grid refinement. Computing
the average of each column yields the last row of the table.

Note that for height values above z = 10, we find ourselves above the canopy height hc. At

the top of the trees, there is still friction present, and the vortices still have influence on the wind
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flow. Looking at Figure 21b, we see that the velocity decreases due to the presence of vortices

(and of forces Fd, Fcg for the multi-layer approach) for heights up to about z = 20m. Hence, in

Table 8, we only interest ourselves to values of 2 ≤ z ≤ 20. Note that we do not consider the

first height level, i.e. z1 or z = 1, since this level is directly dependent on the lower boundary

conditions, which themselves depend on a system of seven equations in seven unknowns. This

would yield inaccurate results, as we obtain a peak for the first height level, as detailed in Section

5.6 on grid refinement.

The comparison between the effective model obtained using the last row of Table 8 and

the original models is given in Figure 33. We notice a rather considerable difference between

the velocity output for the effective model and that of the corresponding original model. The

error corresponding to each graph is plotted in Figure 34, and the maximum error per model is

provided in Table 9.

(a) Comparison between averaged model
and model 3s.

(b) Comparison between averaged model
and model 3m.

(c) Comparison between averaged model
and model 5.1s.

(d) Comparison between averaged model
and model 5.1m.

(e) Comparison between averaged model
and model 5.2s.

(f) Comparison between averaged model and
model 5.2m.

Figure 33. Comparison between the averaged model and each corresponding model, for the
extended terrains, at x = 1100m, zoomed to match the canopy height hc = 10m.

42



(a) Absolute difference between averaged
model and model 3s.

(b) Absolute difference between averaged
model and model 3m.

(c) Absolute difference between averaged
model and model 5.1s.

(d) Absolute difference between averaged
model and model 5.1m.

(e) Absolute difference between averaged
model and model 5.2s.

(f) Absolute difference between averaged
model and model 5.2m.

Figure 34. Plots of the difference in absolute value between the averaged model and each
corresponding model, for the extended terrains, at x = 1100m.

Model 3 single 3 multi 5.1 single 5.1 multi 5.2 single 5.2 multi
Error (m/s) 0.351 0.519 0.355 0.451 0.372 0.467

Table 9. Maximum error in m/s of the output velocity between the effective and the original
models, using the ‘averaged’ method.

From this, we note that the averaged method also yields rather inaccurate results, since the

error is still much greater than for Taylor’s method. To this end, we may ask ourselves if this

method can be improved. And the answer to that question is yes; one can indeed improve the

accuracy of the effective roughness length extracted from the logarithmic law. This is further

explained below.
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5.5 Improvement of the ‘averaged’ ERL

In the previous section, we extract an ‘averaged’ roughness length from the logarithmic law, i.e.,

u(z) =
u∗
κ

ln

(
z

z0

)
, (5.5.1)

where u∗ is the friction velocity, κ is the von Kármán constant. We computed the average for

various height levels z, where 2 ≤ z ≤ 20. Through the years, there have been quite a few

different equations for the logarithmic wind profile, e.g. (5.5.1), or

u(z) =
u∗
κ

ln

(
z − d0
z0

)
, (5.5.2)

where d0 is the displacement height. This formula is used by de Vries et al. (2003) when com-

puting the ERL. The displacement height is the height at which the wind begins to behave in a

logarithmic manner. It can be related to the density of the roughness obstacles via the following:

d0 = dλeH, (5.5.3)

where H is the average obstacle height and λ is the density of the roughness elements. We can

approximate λ ≈ A/S, where A is the average silhouette area of the roughness elements in a

horizontal area S. For two-dimensional obstacles, A/S can be simplified to H/L, where L is

the distance between obstacles. d and e are constants, given by d = 1.09 and e = 0.29, and we

require λ to be in the range 0.09 < λ < 0.18.

Recall from Section 5.3, the average obstacle height for our models is H = 5m, and the

distance between two obstacles is given by:

L =

{
150m, for three regions,

250m, for five regions.
(5.5.4)

Then, for three regions we obtain the displacement height of d0 = 2.033m. Similarly, for five

regions we obtain: d0 = 1.753m. Extracting the roughness length from the logarithmic law by

de Vries et al. (5.5.2) yields

ln(z0) = ln(z − d0)−
u(z)κ

u∗
. (5.5.5)

The plots of z0 against the location in the terrain are given in Figure 35 for heights z = {3, 15}.
Note that, due to the presence of the displacement height, we cannot consider heights z ≤ 2.

(a) When considering z = 3m. (b) When considering z = 15m.

Figure 35. Plot of z0 against the location in the terrain for the different models, considering
heights z = 3m and z = 15m in the logarithmic law (5.5.5).

Again, similar to the roughness length extracted from the logarithmic law without the dis-
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placement height in Figure 31, there is an unwanted peak for the three regions multi-layer model.

To make the curve smoother and get rid of the peak, we apply grid-refinement, as detailed in

Section 5.6. This yields the average of z0 for heights 3 ≤ z ≤ 20 for the various models as given

in Table 10.

z (m)

Model
3 single 3 multi 5.1 single 5.1 multi 5.2 single 5.2 multi

z = 3 0.111 0.062 0.145 0.055 0.145 0.055

z = 4 0.171 0.099 0.198 0.095 0.198 0.096

z = 5 0.207 0.242 0.229 0.238 0.229 0.24

z = 6 0.23 0.403 0.248 0.44 0.248 0.442

z = 7 0.245 0.602 0.26 0.679 0.261 0.681

z = 8 0.256 0.776 0.268 0.888 0.269 0.889

z = 9 0.263 0.571 0.273 0.644 0.273 0.646

z = 10 0.268 0.434 0.275 0.49 0.275 0.492

z = 11 0.27 0.443 0.275 0.498 0.276 0.5

z = 12 0.272 0.45 0.274 0.503 0.276 0.505

z = 13 0.272 0.454 0.273 0.506 0.274 0.508

z = 14 0.271 0.457 0.27 0.506 0.272 0.509

z = 15 0.27 0.457 0.267 0.505 0.269 0.507

z = 16 0.268 0.455 0.264 0.501 0.266 0.504

z = 17 0.265 0.451 0.26 0.497 0.262 0.499

z = 18 0.262 0.446 0.256 0.491 0.258 0.494

z = 19 0.259 0.44 0.252 0.484 0.254 0.487

z = 20 0.255 0.432 0.248 0.477 0.25 0.48

Average 0.245 0.426 0.252 0.471 0.238 0.522

Table 10. Average roughness length per model, using the logarithmic law (5.5.5), for different
height values z, where the averaged value for 3 multi-layer regions is computed under grid
refinement. Computing the average of each column yields the last row of the table.

Using the values given in the last row of the table, i.e. the ‘averaged’ values, we can compare

the output wind profile for that model with the one for the original model. Figure 36 shows

the comparison between each original model and the two corresponding averaged models. Note

that the orange line corresponds to the ‘first’ averaged method, and the green line to the ‘sec-

ond’, where the second is computed using the logarithmic law which includes the displacement

height d0 (5.5.5).
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(a) Comparison between averaged models
and model 3s.

(b) Comparison between averaged models
and model 3m.

(c) Comparison between averaged models
and model 5.1s.

(d) Comparison between averaged models
and model 5.1m.

(e) Comparison between averaged models
and model 5.2s.

(f) Comparison between averaged models
and model 5.2m.

Figure 36. Comparison between the first and the second averaged model, which takes into
account the displacement height d0, for the extended terrains, at x = 1100m.

We see from these plots that for most of the models, namely three regions (both single-

and multi-layer) and for five regions in single-layer (regardless of which region of forest is first),

the roughness length extracted from the logarithmic law with displacement height yields more

accurate results than without. However, for five regions in multi-layer, the results are the same.

Plotting the error between the averaged models and the original models yields Figure 37. The

maximum error per model and per method, where we compare the two ‘averaged’ methods, is

given in Table 11.
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(a) Absolute difference between averaged
models and model 3s.

(b) Absolute difference between averaged
models and model 3m.

(c) Absolute difference between averaged
models and model 5.1s.

(d) Absolute difference between averaged
models and model 5.1m.

(e) Absolute difference between averaged
models and model 5.2s.

(f) Absolute difference between averaged
models and model 5.2m.

Figure 37. Plots of the difference in absolute value between the first averaged model and the
second, which includes the displacement height d0, for the extended terrains, at x = 1100m.

Method
Model

3 single 3 multi 5.1 single 5.1 multi 5.2 single 5.2 multi

Averaged 1 0.351 0.519 0.355 0.451 0.372 0.467
Averaged 2 0.246 0.445 0.265 0.424 0.260 0.457

Table 11. Maximum error in m/s of the output velocity between the first and second averaged
models and the original model, when considering the extended terrain, per model and per
method of effective roughness length.

Including the displacement height d0 in the logarithmic law clearly yields more accurate

results. However, when comparing with the maximum error for Taylor’s second method as given

in Table 5, we see that the latter still yields more accurate results. Hence, our ‘improved averaged’

roughness length using the logarithmic law and including the displacement height is not the most

representative for any of our terrains.
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5.6 Grid-refinement

In this section, we look at refining the grid considered for all six original models. We first look

at grid-refinement for the three regions multi-layer model, specifically used to overcome the

pike appearing when extracting the roughness length from the logarithmic law, as discussed in

Section 5.4. Grid refinement is a tool used in simulations to yield more accurate and precise

results. This method consists in reducing the size of each grid-cell in the Cartesian plane, until

we see no difference in the output between two consecutive refinements.

The initial grid is defined by DX = DZ = 1, and we begin by dividing it in two, i.e. we

set DX = DZ = 0.5. This means that we thus have to double the total number of gridpoints.

We may also change the initial parameters for the leaf area density in the multi layer model.

The result is provided in Figure 38 for three height levels of z. Note that we consider the ERL

extracted from the logarithmic law without displacement height (5.4.1).

(a) Refining the grid-size by a half, at the
first height level.

(b) Refining the grid-cell by a half, at the
second height level.

(c) Refining the grid-size by a half, at the fifteenth height level.

Figure 38. Grid refinement done by dividing the grid-size by 2 for model 3m from Figure 31,
for various height levels z.

Under the grid refinement, we notice that the peak at x = 369 vanishes. However, for z1 = 1/2

the first height level, we note the presence of another peak in the grid-refined curve at x = 610.

This peak is coherent with the presence of vortices, but its magnitude is unexpected. The peak

for the first height level z1 disappears in the second height level z2, which is due to the lower

boundary conditions dependent on a system of seven equations with seven unknowns (Luppes,

1993, Chapter 3), which directly affect the first level. For the second level, the results depends on

the Navier-Stokes equations, and are only indirectly influenced by the lower boundary conditions.

Thus, from this point onward, we do not consider the first height level z1 anymore.
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On the plots for z = 2 and z = 15 we do not have any surprising peaks, and the bump

signalling the start of the rough zone is indeed present. Furthermore, we note a quite significant

difference between the original grid and the refined grid for a half. Hence we require further grid

refinement. In other words, we set DX = DZ = 0.25, which gives the plot in Figure 39.

(a) Refining the grid-size by a quarter, at
the second height level.

(b) Refining the grid-size by a quarter, at
the fifteenth height level.

Figure 39. Grid refinement done by dividing the original grid-size by 4 for model 3m from
Figure 31, for the second and the fifteenth height levels.

From this additional grid-refinement, we note that there is still a difference between the curve

for half grid-cell refinement, and quarter grid-cell refinement. Therefore, we half the grid-cell size

once again which is provided in Figure 40.

(a) Refining the grid-size by an eighth, at
the second level.

(b) Refining the grid-size by an eighth, at
the fifteenth level.

Figure 40. Grid refinement done by dividing the original grid-size by 8 for model 3m from
Figure 31, for the second and the fifteenth height levels.

The curve for the 1/8 grid is similar to that for 1/4, but we still note a slight difference. Hence,

we aim to further apply grid refinement to 1/16. However, such a grid refinement requires a large

memory capacity, thus it is not done here and left as a recommendation.
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5.7 Most accurate effective roughness length

We have studied five methods for computing an effective roughness length, given by:

• André and Blondin:

ln(zeff0 ) =
µ(∆)∫

∆
dx

ln(z0)−ln(z1)

− ln(z1); (5.7.1)

• Taylor :

ln(zeff0 ) = ⟨ln(z0)⟩ , (5.7.2)

ln(zeff0 ) = ⟨ln(z0)⟩+ a1

(〈
ln2(z0)

〉
− ⟨ln(z0)⟩2

)
, (5.7.3)

where a1 = F
κ2V 2

g /u2
∗+F and F = ln(u∗/Vg)−B + ln(Vg/fz0);

• de Vries et al.:

zeff0 =
H

2
exp

{
−

[
2κ

Cdλ+ κ2

ln2(H/2z01

]}
; (5.7.4)

• averaged :

zeff0 =

〈
(z − d0) exp

{
−u(z)κ

u∗

}〉
. (5.7.5)

These methods give the ERL per model as in Table 12.

Method
Model

3 single 3 multi 5.1 single 5.1 multi 5.2 single 5.2 multi

AB 1 0.742 0.742 0.742 0.742 0.742 0.742
AB 1/8 0.004 0.004 0.004 0.004 0.004 0.004

Taylor, 1st 0.093 0.093 0.093 0.093 0.093 0.093
Taylor, 2nd 0.104 0.104 0.104 0.104 0.104 0.104
de Vries 0.03 0.03 0.01 0.01 0.01 0.01
Averaged 0.325 0.511 0.322 0.504 0.323 0.534

Table 12. Recapitulation of all effective roughness lengths zeff0 (m) obtained, per model and
per method.

For each method, we compared the output velocity with that of the original model, and

computed the maximum error. A recapitulation of those errors per model and per method is

given in Table 13.

Method
Model

3 single 3 multi 5.1 single 5.1 multi 5.2 single 5.2 multi

AB 1 0.689 0.679 0.697 0.615 0.713 0.607
AB 1/8 0.703 0.712 0.694 0.777 0.678 0.786

Taylor 1st 0.144 0.140 0.137 0.206 0.126 0.213
Taylor 2nd 0.124 0.118 0.118 0.184 0.108 0.190
de Vries 0.199 0.189 0.079 0.137 0.072 0.142
Averaged 0.351 0.519 0.355 0.451 0.372 0.467

Table 13. Maximum error in m/s of the output velocity between the effective model and the
original model, when considering the extended terrain, per model and per method.

This table allows us to conclude that the most accurate ERL for the three regions models

is the one given by Taylor (5.7.3). On the other hand, for five regions models, and thus models

with multiple rough terrains, the most accurate ERL is the one given by de Vries et al. (5.7.4).
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6 Conclusions and recommendations

We began this thesis by looking at the equations modelling two-dimensional atmospheric flow,

namely the Navier-Stokes equations for stationary, two dimensional, incompressible, viscous flow.

We then detailed the equations specific to each of the two surface types described by Klaassen

(1992): single- and multi-layer, and finally we gave the boundary conditions for our model,

following the system of seven equations in seven unknowns given by Luppes (1993).

After deriving the equations underlining our model, we looked at the main problem of this

thesis: finding an average roughness length. We reviewed three already existing methods: André

& Blondin (1986), Taylor (1987), and de Vries et al. (2003), where we derived the equations for

the effective roughness length zeff0 detailed in each paper. This lead to comparison in order to

determine which was the most accurate method for three given terrain types.

In this thesis we have looked at two homogeneous regions: grassland and forest. To study

these regions, we considered 300m of forest and 600m of grass, under three dispositions. In this

way, we created a 3 regions model and two 5 regions models, where we alternated 100m and

200m of forest for the first rough region. These three dispositions are thus the three given terrain

types considered throughout this study. We ran simulations for each of the models, under both

single- and multi- layer surface type, to compare the effect of the vortices appearing after each

rough region on the output wind velocity at the end of the terrain.

From this we concluded that the vortices (and the presence of drag and countergradient force,

in the multi-layer approach) did slow down the velocity, but the wind velocity for three or for

five regions did not present any major differences. Indeed, the wind flow was slowed down more

in the five regions terrain, but only by less than 2%. Hence, such a difference is hardly significant

enough to be taken into account.

We also concluded that the vortices (and the forces) slowed down the velocity more under

multi-layer than under single-layer. This can be explained by the fact that in the multi-layer

surface type, the rough region consists of multiple layers, where each layer has a horizontally

constant leaf area density. This allows for the wind to flow between the ‘leaves’ of the forest.

On the other hand, for the single-layer surface type, the vegetation is considered to be a single

‘block’, with a constant roughness length z0, where hence wind does not pass through.

After looking at the effect of the vortices for three and five regions, we proceeded to the main

goal of this paper; which is to find a way to compute an average, or effective roughness length

(ERL). We compared four methods to each another, and for six different models corresponding

to all three given terrains under both single- and multi-layer surface types. The methods were the

ones designed by André & Blondin (1986), Taylor (1987), and de Vries et al. (2003). The fourth

method is new, derived in this study by extracting the roughness length from the logarithmic

law, and averaging over height to obtain the ERL. To check which method was the most accurate

one, we considered an extension of the terrain for all original six models, and we compared the

velocity output at the end of the new terrain for all models and all ERL methods.

We confirmed Taylor’s suggestion that the dependency on the first height level in André and

Blondin’s method was inaccurate. Indeed, for all of the six models considered, Taylor’s method

for the effective roughness yielded much better results. We also concluded that Taylor’s method

is the most accurate one for the three regions model, while for five regions de Vries et al.’s

method gives the better results.

The use of the effective roughness length is to make larger-scale meteorological simulations

easier by considering a heterogeneous terrain as a single ‘block’. To this end, in real life, the

ERL is used to represent heterogeneous terrains containing more than one single rough region.

Therefore, it is advised to consider de Vries et al.’s method to compute the ERL, as it yields the

best results for terrains with two (or more) rough regions.
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Further research can be done by looking into improving the ‘averaged’ method, by comparing

the different equations for logarithmic law. We note that the logarithmic law used by André and

Blondin is the most ‘basic’ one, while de Vries et al. use a slightly more advanced version by

adding a displacement term d0 into the logarithm. Another alternative is the logarithmic law

used by Klaassen and Luppes, which depends on a stability function in terms of the the Monin-

Obukhov length. The stability function improves the accuracy of the logarithmic law, but it is

more complicated to work with from an algebraic point of view.

One may also look into refining the grid further than 1/8, which is as far as we went in this

thesis due to limited memory storage. As seen in the section dedicated to grid refinement, the

curve for the roughness length became smoother, hence further refinement would perhaps yield

even more accurate results for the ‘averaged’ method.

Another aspect to look into is the number of regions. As seen with de Vries et al.’s method,

it is more accurate for two distinct rough regions than for a single one. Hence, one may increase

the number of rough regions, or change their properties. We may wonder if having two rough

regions with different roughness length would yield different results regarding the accuracy of

this method.

Finally, further research could be done into the impact of vortices on global scale meteorologi-

cal simulations. For instance, in de Vries et al.’s method, the impact of local vortices between the

two different five regions models is not taken into account. This could have some repercussions

on the larger-scale simulation.
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A Background on fluid dynamics

This section provides some background into three main topics that are considered in this thesis:

the Navier-Stokes equations, the equations of state for ideal gases, and the principle of Reynolds

averaging. This section follows the lecture notes written by Veldman (2009).

A.1 The Navier-Stokes equations

Conservation of mass is given by

∂tϱ+
∑

i ∂i(ϱui) = 0, (A.1.1)

where ϱ is the density of air and ui is the i-th component of the velocity. This equation is called

the continuity equation. Conservation of energy is given by:

∂t(ϱE) +
∑

i ∂i(ϱEui) = ϱFiui +
∑

j ∂j(uiσij) +
∑

i ∂iqi. (A.1.2)

This equation is called the energy equation For many fluids, the heat flux qi is proportional to

the temperature gradient: qi = −k∂iT, where k is the heat conduction constant.

We can write the stress tensor as

σij = −pδij + τij , (A.1.3)

where p is the pressure, δij is the Kronecker δ, that is and τij is the viscous shear stress tensor

for two dimensions, given by τij = 2µeij . Here, µ is the dynamical viscosity and

eij =
1

2

(
∂ui
∂j

+
∂uj
∂i

)
, (A.1.4)

where ui, uj are the i, j components of the velocity vector u, respectively. Conservation of mo-

mentum can thus be written component wise as:

∂t(ϱui) +
∑

j ∂j(ϱuiuj) = ϱFi +
∑

j ∂jσij , (A.1.5)

where Fi is the i-th component of the body force per unit of mass and volume. This equation is

called the balance of momentum.

The Navier-Stokes equations, which model the motion of every fluid flow, are a set of equations

presented by Navier and Stokes independently. Factually, these equations are the equation of

balance of momentum (A.1.5), together with the stress tensor, as defined in (A.1.3) and (A.1.4):

∂t(ϱui) +
∑

j ∂j(ϱuiuj) = ϱFi +
∑

j ∂jσij . (A.1.6)

In common day practice, however, the Navier-Stokes equations also cover the continuity equa-

tion (A.1.1) and the energy equation (A.1.2):

∂tϱ+
∑

i ∂i(ϱui) = 0,

∂t(ϱE) +
∑

i ∂i(ϱEui) = ϱFiui +
∑

j ∂j(uiσij) +
∑

i ∂iqi.
(A.1.7)

In this thesis, we consider the atmospheric flow to be incompressible (see Section 2.1), which

means that the density ϱ is considered constant. Under this assumption, we can simplify the

equations of motion. Namely, the continuity and momentum equations become∑
i ∂iui = 0,

∂t(ui) +
∑

j ∂j(uiuj) = Fi +
1

ϱ

∑
j ∂jσij .

(A.1.8)
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Finally, by expanding the stress tensor in the newly obtained balance of momentum above, one

obtains the Navier-Stokes equations for an incompressible fluid as

divu = 0

∂u

∂t
+ (u · ∇)u = F− 1

ϱ
∇p+ ν div gradu,

(A.1.9)

where ν = µ/p is the kinematic viscosity and u is the velocity vector. These equations, as well

as accurate boundary conditions for the model studied in this paper are explored further in

Section 2.1.

A.2 Equations of state

An ideal fluid is a theoretical fluid that is incompressible and has zero viscosity. For ideal gases,

in particular, we have two thermodynamic equations of state:

p = ϱRsT, Rs = cp − cv,

e = cvT,
(A.2.1)

where cp, cv are the specific heats at constant pressure and constant volume respectively, e is the

internal energy of the fluid, and T is the temperature. Rs is the specific gas constant, defined

by Rs = R/M , where R is the gas constant and M is the molar mass, i.e. the molecular weight

of a particle.

A.3 Reynolds averaging

The surface layer-model, which is studied in Section 2, is a turbulence model, which can still

be described using the equations of motion (A.1.6) and (A.1.7). However, since turbulent flows

require very fine computations with very small time steps, we require all variables to be averaged,

following the process of Reynolds averaging (Veldman, 2009, Section 2.2). To this end, we divide

all the variables into a mean value and a fluctuation. For instance, for the velocity vector u and

the pressure p, we obtain

u = u+ u′, p = p+ p′, (A.3.1)

where u denotes the mean value of u over a time interval T that is small with respect to the

global time scale, but large with respect to the turbulent time scale. That is,

u(x, t) =
1

T

∫ t+T

t

u(x, τ)dτ. (A.3.2)

We proceed similarly for p. For the incompressible case, we can detail this equation further.

Namely, by substituting (A.3.1) into the equation of motion for incompressible flow (A.1.8),∑
i ∂iui =

∑
i ∂i(ui + u′i) = 0,

∂tui +
∑

j ∂j(uiuj) = ∂t(ui + u′i) +
∑

j ∂j((ui + u′i)(uj + u′j)) = Fi +
∑

j

1

ϱ
∂jσij .

(A.3.3)

Then, since by definition of the mean value u as in equation (A.3.2), we get
∫ t+T

t
u′(x, τ)dτ ≈ 0,

and similarly for p′, this means that the linear terms in u and p do not obtain a contribution

from the fluctuations u′ and p′. By integrating both above equations (A.3.3), between t and

t+ T we obtain for the continuity equation∫ t+T

t

∑
i∂iuidτ =

∑
i∂i

∫ t+T

t

uidτ = 0 =⇒
∑

i∂iui = 0, (A.3.4)
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and for the balance of momentum we are left with (Veldman, 2009, Section 2.2)

∂tui +
∑

j ∂j(uiuj) + ∂jRij = F i +
∑

j

1

ϱ
∂jσij , (A.3.5)

where Rij is the Reynolds stress tensor, defined by:

Rij = u′iu
′
j + u′iuj + uiu′j . (A.3.6)

Note that the Reynolds stress tensor stems from the convective terms, but has the appearance

of a stress tensor, and thus it is usually combined with the stress tensor σij . We can also

introduce some further approximations, namely that when ui and uj are constant over the

interval between t and t+ T , the following hold:

u′iuj = 0, uiu′j = 0, uiuj = uiuj , and ∂tui = ∂tui. (A.3.7)

In general, the above results only hold approximately. Substituting (A.3.7) into the continuity

equation (A.3.4) and into the balance of momentum (A.3.5) yields the Reynolds-averaged Navier-

Stokes equations: ∑
i∂iui = 0,

∂tui +
∑

j∂j(uiuj) = F i +
∑

j∂j

(
1

ϱ
σij + R̃ij

)
,

(A.3.8)

where R̃ij = −u′iu′j . However, we then reach of problem in these new averaged Navier-Stokes

equation: the unknowns u′i in Rij , for which no equation is available in first instance. Finding

such an equation for the fluctuation is called the closure problem and is the essence of turbulence

modeling. R̃ij has to be expressed in known quantities, like u and p.

We note that for the equations describing the atmospheric flow, the Reynolds averaging of

all variables is implicitly assumed
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B Derivation of the Monin-Obukhov length

The Obukhov length, first defined by Monin & Obukhov (1954), and also known as the Monin-

Obukhov length, is given by

L∗ = − u3∗
κ g
T0

q
cpϱ

, (B.1.1)

where u∗ is the friction velocity, κ is the von Kármán constant, g is the gravitational acceler-

ation, T0 is the mean temperature of the surface layer, q is the turbulent vertical heat flux, cp
is the specific heat of the air at constant pressure, and ϱ is the density of air. Here, the three

parameters given by u∗,
g
T0
, and q

cpϱ
are considered to be the definitive characteristic of the

turbulence of the surface layer, that is the surface above the grass for example.

In what follows, we establish the steps leading to the Obukhov length, and we end this

section by rewriting it into an easier form to work with (i.e. an equation that is independent of

the friction velocity). One key element used here is the gradient Richardson number:

Ri =
g

T0

∂θ/∂z

(∂u/∂z)2
, (B.1.2)

where θ is the potential temperature, g is the gravitational acceleration, u = u(z) is the velocity

of the wind, and ∂u/∂z is the velocity gradient. This number describes the qualitative character

of the turbulence flow in the atmospheric boundary layer, and we obtain three cases:

(i) If Ri > 0 then the stratification is stable, which prevents the development of turbulence.

If Ri > Ricr, for some critical value Ricr, then there are no turbulences. Stratification

means the existence or the formation of distinct layers in a body of water of air, here the

atmosphere.

(ii) If Ri < 0 then the stratification is unstable and the potential temperature decreases with

height.

(iii) If Ri = 0 then the stratification is neutral, so it does not influence the development of

turbulence. Then, distribution of temperature with height is adiabatic, which means that

there is no transfer of heat and the change in internal energy is only due to work.

In the third case, we find ourselves in what resembles an incompressible environment with con-

stant density.

We look at the derivation of the Obukhov length as given by Obukhov in 1971 (Obukhov,

1971, Section 4), where we assume that within the surface layer, the external forces are negligible

in regards to the internal friction. Moreover, we suppose that the internal sources of heat, that

is the heat of water condensation and the absorption of radiation, are absent. This then leads

to a model where the momentum and heat flows are constant with regard to the height z, or, in

other words,

τ(z) = τ = constant,

q(z) = q = constant,
(B.1.3)

respectively. Prandtl’s equation allows to describe a turbulent process in a uniform fluid such as:

τ(z) = ϱℓ2m

(
∂u

∂z

)2

, (B.1.4)

where ℓm = κz is the mixing length, also called the turbulent length scale, for κ ≈ 0.4 the

von Kármán constant. One can also describe turbulence with the use of the coefficient of eddy
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viscosity A, such as τ = Adu
dz , which leads to a formulation of the eddy viscosity coefficient:

A = ϱℓ2m
∂u

∂z
. (B.1.5)

From this, we can introduce the coefficient of turbulence, usually defined in terms of the coefficient

of eddy viscosity:

K =
A

ϱ
. (B.1.6)

The friction velocity, determined in terms of the shear stress τ and the density ϱ as u∗ =
√
τ/ϱ,

can be used to rewrite the Prandtl’s equation (B.1.4) as

u2∗ = ℓ2m

(
∂u

∂z

)2

=⇒ ℓm
∂u

∂z
= u∗, (B.1.7)

and the coefficient of turbulence as

K = u∗ℓm. (B.1.8)

We note that the coefficient of turbulence depends on both the friction velocity u∗ and on the

height coordinate z, and hence it is variable. Therefore, it is more useful to use this coefficient

rather than the coefficient of eddy viscosity A, as we can use Prandtl’s equation (B.1.4) directly

in that case.

Before continuing with the derivation of the Obukhov length, we must state three assumptions

with regard to the transfer of substances:

(i) If a substance moves while unmixed with the surrounding air, then it is indestructible, i.e.

its quantity remains unchanged.

(ii) The total quantity of a substance is preserved when mixing two masses of air. This property

is called the continuity property.

(iii) The mixing of a substance with the environment (e.g. air) does not have an essential

influence on the development of turbulences. We say that a substance is passive.

These assumptions will be implicitely supposed throughout this appendix, and this thesis.

We then look at the coefficient of eddy diffusivity Ks and the coefficient of turbulent heat

exchange KT . Eddy diffusion is a process where fluid substances mix together due to eddy

motion. These two coefficients satisfy

Ks ≈ KT ≈ K = u∗ℓm. (B.1.9)

We can also use the diffusion equation and the equation for turbulent heat transfer to determine

Ks and KT respectively:

Fs = −Ksϱ
∂s

∂z
,

q = −cpϱKT
∂θ

∂z
,

(B.1.10)

where in the first equation, Fs is the mean flux of the substance, s is the gravimetric concentration

of the substance. Gravimetric analysis is a method of determining the mass or concentration of

a substance by measuring a change in mass.

In the second equation, q is the mean heat flux, cp is the specific heat at constant pressure

of the air, ϱ is the air density, and ∂θ/∂z is the vertical gradient of potential temperature. We

note that equation (B.1.9) is not strictly established, i.e. we cannot determine the exact value

of Ks and KT , only they order of magnitude. This then means that there is a dimensionless αs
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(respectively αT ) such that Ks = αsK (KT = αTK). This allows us to rewrite the equations

given in (B.1.10):

Fs = −αsϱℓ
2
m

∣∣∣∣∂u∂z
∣∣∣∣ ∂s∂z ,

q = −αT cpϱℓ
2
m

∣∣∣∣∂u∂z
∣∣∣∣ ∂θ∂z .

(B.1.11)

In general, the coefficient αT depends on Prandtl’s number

Pr =
µcp
λ
, (B.1.12)

where µ and λ are the molecular viscosity and the molecular thermal conductivity of the en-

vironment, respectively. Since αs and αT are dimensionless, it can be assumed that they are

definite functions of the Richardson number. In general, one may assume that all the dimension-

less characteristics of a turbulent flow with a density variable, or potential temperature variable,

are defined as functions of some basic dimensionless parameter.

We define K0 to be the coefficient of turbulence under the condition of normal stratification

stratification (i.e. that Ri = 0). This allows us to write the coefficient of turbulence K in terms

of the gradient Richardson number Ri and K0:

K = ϕ(Ri)K0. (B.1.13)

Determining the dimensionless function ϕ is challenging and requires a deep study of turbulence,

and thus will not be done here. However, we know some general information about it. Namely,

since ϕ(Ri) is defined in such a way that ϕ(Ri = 0)K0 = K0, we can conclude that

ϕ(0) = 1. (B.1.14)

Furthermore, as seen in the three cases for the Richardson number, when Ri increases the strat-

ification of the atmosphere becomes more stable, meaning that we have less turbulence. Hence,

as Ri increases, the coefficient of turbulence K decreases, and thus ϕ(Ri) is a monotonically

decreasing function. Here, monotonicity of the function follows from the definition of K = u∗ℓm,

which is also monotone. We also stated that for Ri > Ricr, there was no turbulence, and hence

ϕ(Ri) = 0 for Ri > Ricr. (B.1.15)

Various works have been dedicated to computing the critical Richardson number, ranging from 1/24

(as stated by Tollmien in 1935) to 1 (Richardson in 1920). In his paper, Obukhov (1971) used 1/11

for numerical calculations.

Having stated a few properties of the dimensionless function ϕ(Ri), we can rewrite the dif-

fusion and heat transfer equation given in (B.1.11) into their final form, by setting α = αs/αT

and noting that τ = Fs since the momentum flux corresponds to a diffusion equation,

τ = ϕ(Ri)ϱℓ
2
m

∣∣∣∣∂u∂z
∣∣∣∣ ∂u∂z ,

q = −αϕ(Ri)cpϱℓ
2
m

∣∣∣∣∂u∂z
∣∣∣∣ ∂θ∂z ,

(B.1.16)

where we recall that

Ri =
g

T0

∂θ/∂z

(∂u/∂z)2
, ℓm = κz. (B.1.17)

This allows us to go back to the model given by Obukhov, in which we suppose that the

external forces are negligible with regard to the internal friction and that the internal sources

59



of heat are absent. These assumptions define the concept of surface layer of the atmosphere.

The momentum and heat flows are thus constant with regard to the height z, i.e. τ(z) = τ0
and q(z) = q0. Hence,

τ0 = ϕ(Ri)ϱℓ
2
m

∣∣∣∣∂u∂z
∣∣∣∣ ∂u∂z ,

q0 = −αϕ(Ri)cpϱℓ
2
m

∣∣∣∣∂u∂z
∣∣∣∣ ∂θ∂z ,

(B.1.18)

For convenience, we introduce the heat flux velocity v = −q/(cpϱT0), and together with the

friction velocity u∗ =
√
τ/ϱ, this yields

v

αu2∗
=

1

T0

∂θ

∂z

(
∂u

∂z

)−1

= constant, (B.1.19)

since q, τ are constant, and the changes of absolute density and temperature within the boundary

layer can be considered negligible. Therefore, v = v0 and u∗ = u∗0 are constant. From this

equation, we have the potential temperature given by

∂θ

∂z
=
vT0
αu2∗

∂u

∂z
=⇒ θ(z) =

vT0
αu2∗

u(z) + c, (B.1.20)

where c is a constant. This tells us that, in the surface layer, the distribution of temperature

with regard to the height is similar to the distribution of the wind. Using the friction velocity

given above, we can also rewrite the momentum equation that was given in equation (B.1.11)

into

u∗ =
√
ϕ(Ri)ℓm

∂u

∂z
. (B.1.21)

Recalling the equation for heat flow as given in (B.1.11), and dividing it by the cube of equa-

tion (B.1.21) yields

q

u3∗
=

−αϕ(Ri)cpϱℓ
2
m |∂u/∂z| (∂θ/∂z)

ϕ(Ri)3/2ℓ3m (∂u/∂z)
3

=
−αcpϱ(∂θ/∂z)√
ϕ(Ri)ℓm (∂u/∂z)

2

Then, by recalling the definition of heat flux velocity, v = −q/(cpϱT0), we have:

=⇒ q

cpϱ
=

−αu3∗(∂θ/∂z)√
ϕ(Ri)ℓm(∂u/∂z)2

=⇒ −T0v =
−αu3∗(∂θ/∂z)√
ϕ(Ri)ℓm(∂u/∂z)2

(B.1.22)

=⇒ v

αu3∗
ℓm =

1

T0

∂θ/∂z

(∂u/∂z)2
1√
ϕ(Ri)

Using the definition of the gradient Richardson number given in (B.1.2), we have:

=⇒ v

αu3∗
ℓm =

Ri

g

1√
ϕ(Ri)

=⇒ Ri√
ϕ(Ri)

=
gℓmv

αu3∗
,

which is another way to write the gradient Richardson number, where ℓm = κz. We note that this

equation yields only one solution for Ri, as the left side is a monotonically increasing function.
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Furthermore, when the mixing length ℓm is equal to zero, i.e. when the height z = 0, we have

Ri(0) = 0. (B.1.23)

Rewriting equation (B.1.22) to have the presence of z made explicit, we obtain

Ri =
gvκz

αu3∗

√
ϕ(Ri)

=⇒ ∂Ri

∂z
=
gvκ

αu3∗

√
ϕ(Ri) +

gvκz

αu3∗

∂zϕ(Ri)

2
√
ϕ(Ri)

,
(B.1.24)

since ϕ(Ri) is also dependent on z. Furthermore, since ϕ(0) = 1, we obtain for z = 0:(
∂Ri

∂z

)
z=0

=
gvκ

αu3∗
. (B.1.25)

Since v = −q/(cpϱT ), it follows that the partial derivative of Ri with respect to z near z = 0

is negative, and hence as height decreases, the gradient Richardson number will approach zero,

where at ground level Ri(0) = 0. The derivative of the Richardson number allows us to define

the height of the sub-layer of dynamics turbulence, also known as the Obukhov length:

L∗ =
1

α(∂Ri/∂z)z=0
=

u3∗
κgv

. (B.1.26)

One can also write this length such that it does not depend on the friction velocity, using the

definition of v and u∗:

L∗ = − u∗
κ g
T0

q
cpϱ

= −cpT0τ
3/2

κgqϱ1/2
.

(B.1.27)

We have thus shown the steps leading to the derivation of the Obukhov length. This characteristic

length appears in Section 2, when detailing the equations underlining both surface types (single-

and multi-layer).
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Glossary of notation

hc canopy height

z0 roughness length

u(z) wind velocity at height z

u∗ friction velocity

κ von Kármán constant (κ ≈ 0.40)

zeff0 effective roughness length

ν kinematic viscosity

p pressure

µ viscosity

ϱ density

Fd drag force

Fcg countergradient force

τ surface stress, momentum flux,

turbulence

H sensible heat

E latent heat, total energy per unit

mass of a fluid

θ potential temperature

q heat flux, specific humidity

T temperature, temperature

gradient

p0 standard pressure, initial pressure

R gas constant

cp specific heat capacity at constant

pressure

cv specific heat capacity at constant

volume

Hs sensible heat at the surface

Es latent heat at the surface

ue horizontal velocity at the upper

edge of the boundary layer

pe pressure at the upper edge of the

boundary layer

T0 mean temperature of the layer,

initial absolute temperature

L∗ (Monin-)Obukhov length

ψM,H integrated form of a stability

function for momentum or heat

ϕM,H stability function for momentum

or heat

ℓm mixing length

εM eddy viscosity for momentum

εH eddy viscosity for heat

ℓma adjusted mixing length

Cℓ rate of adjustment constant

ζ = z/L∗ adjusted length used in stability

functions

Pr neutral turbulent Prandtl’s

number

rs stomatal or surface resistance

τ0 initial shear momentum

u∗0 initial friction velocity

H0 initial sensible heat

Ts absolute temperature of the

surface

Ta absolute temperature of the air

E0 initial latent heat

e∗s saturated water vapour pressure

of the surface

ea water vapour pressure of the air

ra air resistance

Aε0 available energy at the surface

λ latent heat of vaporisation

groco ground heat constant

Rn0 net radiation of the surface

Rs specific gas constant,

Rs = cp − cv = R/M , short wave

radiation

Rℓ long wave radiation

α albedo

ε emissivity of the surface

σ stress tensor, Stephan-Boltzman

constant

z0h = z0e
−2 roughness length for heat

ℓmm maximum mixing length

Aℓ leaf area index

Aℓr reference value of the leaf area

density

Rn(z) net radiation at height z (or of

that layer)

KR extinction coefficient for net

radiation

∆z height of the layer

Aℓ∆z leaf area index

ℓw leaf width

rto free parameter corresponding to

the overall level of transpiration

δ∗ displacement thickness of the

boundary layer

Ri Richardson number

ueff
∗ effective friction velocity

∆ length of the grid

µ(∆) Lebesgue measure of ∆

za0 apparent roughness length

Vg length of the geostrophic wind

Ro Rossby number

f Coriolis parameter

d0 displacement height

δij Kronecker δ

e internal energy of a fluid

Rij Reynolds stress tensor

g acceleration due to gravity

A coefficient of eddy viscosity

K coefficient of turbulence
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