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A B S T R A C T

Psychovisual research aims to understand how our brains process
sensory data and has led to many improvements in technical fields
such as visual computing and signal processing. The existing programs
that most psychovisual researchers use to set up their experiments
are all difficult to learn and extend due to various factors. This thesis
explains how we designed a user-friendly application that allows
researchers to conduct psychovisual experiments without doing any
programming themselves and how we ensured a modular approach
towards the available stimuli and experiment methods. If psychovisual
researchers started using this toolbox, we expect it would improve the
efficiency at which they can carry out their research and make the
field of visual psychophysics more accessible to researchers who are
not familiar with software development.
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Figure 1.1 Two examples of existing toolboxes. PsychoPy’s
experimental “Builder" interface is shown in (a).
(b) illustrates a sample script in PsychToolbox
that is used to render an empty window that
may be used for displaying visual stimuli. To
accomplish only such a minor functionality,
the user must write a significant amount of
boilerplate code. 2

Figure 3.1 This diagram contains the scenes that make
up our toolbox. The bold text shows the scene
name, and the italic text below shows the script(s)
associated with the scene. The arrows indicate
the possible scene transitions. The Main Menu
is the origin scene, which opens when the ap-
plication starts. 6

Figure 3.2 An example of what the main menu screen may
look like. On the left, an overview of the config
file is shown. On the right, an overview of the
experiment specification is shown. 8

Figure 4.1 An example of what a 2AFC trial might look
like when running an experiment with our tool-
box. 9

Figure 4.2 This diagram illustrates the configuration pa-
rameters related to the eccentricity calculation,
as seen from above. The thick horizontal line
represents the user’s screen, and the stick-figure
represents the user. 10

Figure 4.3 The target that appears at the centre of the
screen during the 2AFC trials. The target is placed
inside a mask, indicated by a dashed line. Any
portion of the target that is outside of the mask
will not be rendered. On the right, the scale of
the target was increased, but the scale of the
mask remained the same. As a result, the target
appears to be thicker. 11

Figure 4.4 An example of what a 2AFCref trial might look
like when running an experiment with our tool-
box. The image in the middle is the reference
stimulus. 12
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1
I N T R O D U C T I O N

Psychophysics is a methodology and research area that investigates
the connection between the physical properties of stimuli and how we
perceive them [1, 3]. Psychophysical research has led to improvements
in many technology-related practices, the most noteworthy of which
is visual computing. Modern examples include foveated rendering,
which reduces the effort required to render areas in the peripheral
vision for VR displays, and visual signal compression [7, 12]. Another
notable beneficiary is in the medical field, viz., neurology [5]. Visual
psychophysics focuses specifically on human vision, including both
the eye and brain, and such research is nowadays often done by
using computers to perform experiments to measure visual sensitivity.
To carry out these experiments, researchers or students often use
software (referred to as toolboxes) that can aid them with setting up
experiments and storing and analysing their results. Two examples of
popular toolboxes are shown in Figure 1.1.

Existing toolboxes are limited by several factors. Firstly, most of
these toolboxes require their users to have programming experience
in a specific language, as they need to write code to set up their
experiments. Secondly, many toolboxes are very broad in their scope,
for example focusing not just on visual psychophysics but also on
psychoacoustics and other fields of perception. This broad scope leads
to a higher amount of complexity, and a steeper learning curve than
a toolbox focused solely on visual psychophysics could have. The
increased complexity of such toolboxes also makes it harder to add
additional features since the existing codebases are larger and harder
to understand. Additionally, many toolboxes have been discontinued
and are no longer maintained.

We address these issues by creating an open-source psychovisual
toolbox that allows users to set up experiments without writing code.
This toolbox will benefit researchers and students in the fields of vi-
sual psychophysics by allowing them to more easily and efficiently set
up and carry out their experiments. Improvements in psychophysics
made possible by our toolbox will also benefit others, such as people
suffering from sensory disorders. We aim to make our toolbox as
hardware-independent as possible to ensure the accurate reproducibil-
ity of experiments on different displays, including Virtual Reality (VR)
displays.

This thesis outlines our approach to creating this toolbox and show-
cases its capabilities. In Chapter 2, we investigate the state of psychovi-
sual research and the currently existing toolboxes. Chapter 3 provides
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2 introduction

(a) PsychoPy (b) PsychToolbox

Figure 1.1: Two examples of existing toolboxes. PsychoPy’s experimental
“Builder" interface is shown in (a). (b) illustrates a sample script in
PsychToolbox that is used to render an empty window that may
be used for displaying visual stimuli. To accomplish only such a
minor functionality, the user must write a significant amount of
boilerplate code.

a general overview of our implementation, while Chapter 4 details
the experiment methods and stimuli that we have implemented. In
Chapter 5, we discuss the storage and analysis of results, as well as
the results of an experiment we performed ourselves. We investigate
how our toolbox can be adapted to work with VR displays in Chapter
6. Throughout this thesis, we specify two different types of people
who may use the toolbox:

1. User: the user uses the toolbox to set up experiments and analyse
their results.

2. Participant: the participant is someone participating in an exper-
iment set up by a user.

https://www.psychopy.org
https://peterscarfe.com/floatingWindow.html


2
R E L AT E D W O R K

Psychovisual experiments are performed by presenting stimuli on a
computer display and using procedures such as the Two-Alternative
Forced Choice (2AFC), two-interval forced-choice (2IFC), and yes-no
tasks [4]. The 2AFC method presents the participant with two distinct
stimuli: a base stimulus and a test patch where some parameter is
changed, such as the contrast or sharpness of an image. The participant
is then asked which of the two stimuli was the test patch. It is a forced-
choice task, meaning participants must choose one of the stimuli, even
if they see no difference. The 2IFC method is similar but presents
the stimuli sequentially instead of simultaneously [2]. The yes-no
task presents participants with a series of stimuli and asks them to
determine whether or not a given phenomenon is present. Generally,
the 2AFC and 2IFC methods are preferred over the yes-no task, as
they reduce response biases [10]. The testing procedures can also be
made adaptive to the observer’s responses, resulting in less time spent
on stimuli deemed too hard or too easy to see. Multiple toolboxes for
designing and running psychovisual experiments already exist, which
we discuss below.

2.1 psychtoolbox-3

Psychtoolbox-3 is, with over 285000 downloads as of May 2018 [9],
one of the most widely used software for psychovisual experiments.
Psychtoolbox version 1 was first created exclusively for Macintosh
devices in 1995 by David Brainard, who was, at the time, a professor
at the University of California. The more recent Psychtoolbox-3 was
released in 2007 and is still updated regularly, almost exclusively by
Mario Kleiner. The current version is a MATLAB library containing
functions for vision and neuroscience research, using OpenGL for ren-
dering. It has VR support through its PsychOpenXR driver. MATLAB
was chosen due to its ease of use for mathematical purposes, such as
calculations and plotting graphs, and its many predefined high-level
functions [9]. Other advantages of MATLAB include its platform inde-
pendence, and its widespread use in the scientific domain, which has
led to good community support. Nevertheless, the main disadvantage
of Psychtoolbox-3 is that it requires users to program in MATLAB,
which, while it provides users with a high degree of customisation,
increases the time and effort needed to set up experiments (see Fig-
ure 1.1b) [6]. This requirement also makes it less accessible to people
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4 related work

unfamiliar with MATLAB, and people who do not own MATLAB,
which is a commercial product.

2.2 psychopy

PsychoPy is a free, open-source software for behavioural science exper-
iments. It is written in Python and makes use of OpenGL. PsychoPy
was first created as a library in 2003 by Jon Peirce, a professor at
The University of Nottingham. Peirce has been regularly providing
updates to PsychoPy, including an editor and the Builder interface
shown in Figure 1.1a. This Builder interface allows users to create
graphical representations of experiments, for which it can generate
and run scripts, meaning that users do not have to do any program-
ming themselves [8]. PsychoPy has limited support for VR displays,
as it is incompatible with the builder interface and only supports a
handful of VR headsets. PsychoPy’s main drawback is its complex-
ity, which is caused by multiple factors. Firstly, PsychoPy has a long
history of development that has resulted in a large codebase that is
difficult for new users to make extensions to. Moreover, PsychoPy is
intended to be used for all behavioural sciences, as opposed to just
visual psychophysics, which has also increased the complexity of its
codebase. This broad scope also makes it harder to use the builder,
because it has made the GUI more complicated. Due to this complexity,
new users must invest significant time and effort into learning to use
PsychoPy.

2.3 other toolboxes

Whereas the previous two were focused mainly on performing ex-
periments, other toolboxes exist that focus on the analysis of psy-
chophysical data and analysis of psychometric functions, such as the
Palamedes and psignifit toolboxes mentioned by Kingdom [3]. How-
ever, these toolboxes are suboptimal for similar reasons as PsychoPy
and Psychtoolbox-3. For example, Palamedes and psignifit both re-
quire the use of MATLAB..



3
I M P L E M E N TAT I O N

We have created a toolbox that allows its users to perform psycho-
visual experiments without having to program anything themselves.
Moreover, we have ensured that it will be easy to extend its capabilities
in the future and that it can function properly on most displays. This
chapter outlines our approach towards creating the toolbox to ensure
the realization of these goals.

3.1 background information

We created our toolbox using the Unity1 engine. As a game engine,
Unity provides us with a solid foundation of functionalities and stock
assets to build our Graphical User Interface (GUI) with, which saved us
a lot of time and effort and allowed us to focus more on the design of
the toolbox itself. Another benefit of Unity is that it supports building
applications for many different platforms, and most of its assets are
platform-independent, which furthers our goal of making the toolbox
as hardware-independent as possible. In Unity, a program consists
of one or more scenes, which are self-contained units consisting a
tree of game objects and components. We use these scenes to separate
the different parts of our application, which allows for a modular
approach where adding a new functionality to the toolbox can be
as simple as creating a new scene for it and adding it to the build
settings. In our toolbox, scenes generally come coupled with one or
more scripts that define behaviour specific to that scene. See Figure 3.1
for an overview of the scenes that make up our toolbox, and how they
connect.

3.2 performing experiments

To allow custom experiments without any programming, our toolbox
has a predefined set of functionalities, which the user can customize
by providing two files. This section explains the roles of these files in
the usage of our toolbox.

3.2.1 The config file

The user must provide a config file to customize the program’s be-
haviour. We chose to use the JavaScript Object Notation (JSON) format

1 https://unity.com

5
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6 implementation

Figure 3.1: This diagram contains the scenes that make up our toolbox. The
bold text shows the scene name, and the italic text below shows
the script(s) associated with the scene. The arrows indicate the
possible scene transitions. The Main Menu is the origin scene,
which opens when the application starts.

because it is simple to understand and commonly used, so many users
might already have experience with it. In C#, we can parse JSON
files using the Newtonsoft JSON framework2. A complete list of the
available parameters and their formats is given in Appendix A. The
user is required to supply at least the three mandatory parameters:

1. Path: the absolute or relative file path to a folder containing the
stimuli to display.

2. Experiment Method: the experiment method that the user in-
tends to use.

3. Stimulus Type: the type of stimulus that the user intends to
display during the experiment.

3.2.2 The experiment specification

The experiment specification contains crucial information about the
trials that are performed during the experiment, such as the filenames
of the stimuli. It is a space-separated text file in which every line
represents one trial. It starts with a (possibly empty) set of warm-up
trials, separated from the main trials by an empty line. The format
of the lines depends on the experiment method, but it will generally
require at least a set of filenames separated by spaces.

3.3 modularity of stimuli and experiment methods

One of our key objectives was to ensure that stimuli and experiment
methods were modular, and that new ones could easily be added

2 https://www.newtonsoft.com/json

https://www.newtonsoft.com/json


3.4 general scenes 7

in the future. This section explains our design for the stimuli and
experiment methods, and the required steps to add a new stimulus or
experiment method.

3.3.1 Modularity of experiment methods

In our toolbox, each experiment method has its own Unity scenes,
generally requiring one scene per stimulus. We use an abstract class
TestManager to define behaviour that should be common to all exper-
iment methods. This behaviour includes initializing the trial scene,
shuffling the trial order and saving its mapping, and progressing
through the trials. For every experiment method, we create a class
deriving from TestManager to define behaviour specific to the experi-
ment method. This behaviour may include loading a new set of stimuli
and storing the results of the trials. Creating a new experiment method
thus requires creating a new set of scenes and a new TestManager

sub-class.

3.3.2 Modularity of stimuli

As mentioned in Section 3.3.1, each experiment method has one Unity
scene per stimulus. In other words, every stimulus has one Unity
scene for each experiment method. We use an interface (IStimulus)
as an abstraction for the stimuli. We opted to use an interface instead
of an abstract class because the implementations of the stimuli are
largely unrelated. Therefore, no common behaviour exists between
them that could be provided by an abstract class. By using the interface,
the TestManager and its sub-classes can function independently of
the stimuli, because we define all stimulus-specific behaviour in the
IStimulus implementation. This stimulus-specific behaviour includes
loading the stimulus from a file and ensuring it displays correctly.
Creating a new stimulus type thus requires creating a new set of
scenes and a new IStimulus implementation.

3.4 general scenes

This section provides an overview of the scenes in our toolbox that can
appear regardless of the configured experiment method and stimulus.

3.4.1 Main menu

The main menu scene initially greets the user when launching the
toolbox. As shown in Figure 3.2, the main menu displays the contents
of both the config file and the experiment specification. Additionally,
it allows the user to refresh the current files or select different ones.



8 implementation

Figure 3.2: An example of what the main menu screen may look like. On
the left, an overview of the config file is shown. On the right, an
overview of the experiment specification is shown.

3.4.2 Survey & instructions

The survey and instructions scenes are both optional scenes that
may appear depending on the Survey and Instructions configuration
parameters. The survey presents the participant with a sequential
list of questions, to which the participant may provide an answer by
typing it into a textbox. The instructions scene displays user-defined
instructions to the participant.

3.4.3 End screen

The end screen is the scene displayed after a participant finishes all
the trials in the experiment. It informs the participant that the trial
phase has concluded. Aside from this, it contains three buttons, which
allow the user to close the toolbox, return to the main menu, or view
a summary of the experiment that was just performed.

3.4.4 Tools

The toolbox contains two scenes that we categorize as tools. These are
not used when performing experiments, but may be helpful when
setting them up. They allow the user to test with different values for
certain configuration parameters. The toolbox currently contains a tool
for fade parameters (explained in Section 4.4.2) and a tool for model
parameters (explained in Section 4.6).



4
E X P E R I M E N T M E T H O D S & S T I M U L I

Our toolbox comes built-in with three experiment methods and three
stimuli types. Aside from these, 20 optional configuration parameters
are available to the users. This chapter describes these experiment
methods, stimuli, and configuration parameters, as well as their im-
plementation.

4.1 experiment method : 2afc

The 2AFC task presents the participant with concurrent pairs of stimuli.
The participant must then choose one of the stimuli based on some
property. Figure 4.1 displays a sample trial.

Figure 4.1: An example of what a 2AFC trial might look like when running
an experiment with our toolbox.

4.1.1 Eccentricity

As seen in Figure 4.1, the two stimuli are presented at an equal dis-
tance from the centre of the screen. The length of this distance is
determined by the eccentricity, which the user must provide for each
trial in the experiment specification. The eccentricity is the horizontal
angle between the centre of the screen and the centres of the two stim-
uli from the participant’s perspective. In the 2AFC scenes, the stimuli
are anchored to the centre, so we need to calculate the distance from
the centre in pixels corresponding to the given eccentricity. We can
compute this pixel distance in two ways depending on the parameters
provided.

9



10 experiment methods & stimuli

Figure 4.2: This diagram illustrates the configuration parameters related
to the eccentricity calculation, as seen from above. The thick
horizontal line represents the user’s screen, and the stick-figure
represents the user.

4.1.1.1 Tangent

The first approach requires the user to supply the Screen Width and
Viewing Distance parameters (both in centimetres). Additionally, the
user may provide the Resolution Width parameter1. As seen in Fig-
ure 4.2, there is a right triangle where the eccentricity is the angle and
the viewing distance is the adjacent side. Using simple trigonometry,
we can find the desired pixel distance d:

d =
Viewing Distance · tan(eccentricity)

Screen Width
· Resolution Width

4.1.1.2 Field of view

The second approach requires the user to supply the Field Of View
parameter, which contains the angle between the centre and edge
of the screen from the user’s perspective, as seen in Figure 4.2. The
calculation is then:

d =
eccentricity · Resolution Width

2 · Field Of View

The advantages of the second approach are that the calculation is
simple and works for curved displays. However, the field of view

1 The Resolution Width parameter specifies the resolution width of the display in pixels,
which will default to the resolution width of the toolbox window if omitted.
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might be difficult to measure and require multiple measurements for
different viewing distances.

4.1.2 Target

The 2AFC task requires the participant to stare at the centre of the
screen, at which a target is displayed. As shown in Figure 4.3, the
target appears as a cross and is surrounded by a mask that bounds its
display size. Note that the real length of the cross’ lines is much larger
than shown here, extending far beyond the mask.

Figure 4.3: The target that appears at the centre of the screen during the 2AFC

trials. The target is placed inside a mask, indicated by a dashed
line. Any portion of the target that is outside of the mask will not
be rendered. On the right, the scale of the target was increased,
but the scale of the mask remained the same. As a result, the
target appears to be thicker.

The user can modify the size of the cross through the Target Scale
configuration parameter. Doing this will alter the scale of the mask,
meaning that either more or less of the target is shown. The user can
also modify the thickness of the cross through the Target Thickness
configuration parameter. Doing this will alter the scale of the target
image. Since only the scale of the target image changes, and not that
of the mask, the image will appear thicker or thinner without its
dimensions changing.

4.2 experiment method : 2afc with reference

The Two-Alternative Forced Choice with reference (2AFCref) method
is similar to the 2AFC method but contains three stimuli instead of
two. The third stimulus is used as a reference and is displayed in the
centre of the screen, replacing the target in the 2AFC method, as seen
in Figure 4.4.
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Figure 4.4: An example of what a 2AFCref trial might look like when running
an experiment with our toolbox. The image in the middle is the
reference stimulus.

4.3 experiment method : rating

The rating method presents the participant with concurrent sets of
stimuli. The size of the set is arbitrary but remains constant throughout
the experiment. Based on some property, the participant must assign
a score to every stimulus. The stimuli will have an equal amount of
space between their centres. As seen in Figure 4.5, our implementation
includes a set of sliders, which the participant may use to give their
rating for each stimulus.

(a) One stimulus. (b) Two stimuli.

(c) Three stimuli. (d) Four stimuli.

Figure 4.5: Examples of what a rating trial may look like with one, two, three,
or four stimuli. Every stimulus is accompanied by a slider that
the participant can set to a value from 0% to 100%.

In the unity scenes for the rating test, we implemented the base case
where only one stimulus is present. Based on the number of stimuli
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required, this base stimulus is duplicated, along with its slider. Then,
the stimuli and sliders are moved horizontally to achieve the equal
spacing.

4.4 stimulus type : image

The first and simplest stimulus type we added to the toolbox was the
image stimulus. It displays an image stored using either the png or
jpeg file format. The images are displayed in their true size, mean-
ing that one pixel on the display exactly matches one pixel on the
image. This approach prevents any bias caused by upsampling or
downsampling of the pixel values that occur during the scaling of
images. We implemented the image stimulus by using Unity’s built-in
UI Image2. This approach allows us to read a stored image into a 2D
texture. Depending on the configuration parameters, we then apply
some modifications to the texture, such as the screen calibration (Sec-
tion 4.4.1) and blending (Section 4.4.2). Finally, the texture is converted
to a sprite and loaded into the image, which we then resize to match
the sprite’s dimensions. Since the image is a UI component, it must be
placed inside a Unity Canvas3.

4.4.1 Screen calibration

The user may adjust the RGB pixel values of the displayed images by
providing the Screen Calibration configuration parameter. It consists of
four floating point numbers a, b, c, γ for each colour channel, which
are used according to the following formula:

y = a + (b + cx)γ,

where x is the old value of the colour channel, and y is the new value.
This calculation is then applied three times to each pixel, once for
every colour channel (red, green, and blue). Note that the 0-255 range
is used for the RGB values. By using the screen calibration, the user
can achieve a near-identical look for the same stimuli on displays with
varying brightness levels, contrasts, and colour settings. For example,
the user may set a = 10 for each colour channel, which causes the
image to have a slightly increased brightness.

2 https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/script-Image.

html

3 https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/UICanvas.

html

https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/script-Image.html
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/script-Image.html
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/UICanvas.html
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/UICanvas.html
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4.4.2 Blending images

The user may want to blend images into the background, to reduce
the sharpness of their edges. Our toolbox provides the user with this
functionality through raised cosine filtering:

H( f ) =


1 if | f | ≤ 1−β

2T

1
2 [1 + cos(πT

β [| f | − 1−β
2T ]])] if 1−β

2T < | f | ≤ 1+β
2T

0 otherwise

(4.1)

The formula shown in Equation 4.1 is applied to the alpha colour
channel of the pixels, which represents the transparency. Note that
0 ≤ α ≤ 1. The value of f is calculated for each pixel based on its
position in the image. We use parameters u and v, which are defined
as follows:

u =
horizontal pixel index

image width
− 0.5

v =
vertical pixel index

image height
− 0.5

The user can customize the behaviour of the blending through three
different configuration parameters:

1. Beta: this parameter allows the user to choose the value of the
β constant seen in Equation 4.1. The β constant controls how
quickly the fade goes from α = 0 to α = 1.

2. T: this parameter allows the user to choose the value of the T
constant seen in Equation 4.1. The T constant controls how far
from the edge the fade starts, i.e. where α starts to become lower
than 1.

3. Blend Mode: through this parameter, the user may select the
blending type to use. Our toolbox supports four different types
of blending, which will be detailed below. Examples of each
blending function can be seen in Figure 4.6.

horizontal only This blending function will only blend the left
and right sides of the image into the background. The value of α is
calculated as α = H(u).

vertical only This blending function will only blend the top and
bottom of the image into the background. The value of α is calculated
as α = H(v).

normal This blending function will combine the horizontal and
vertical blending. The value of α is calculated as α = H(u) + H(v)− 1.
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circular This blending function will circularly blend the image.
The value of α is calculated as α = H(

√
u2 + v2).

(a) Horizontal Only. (b) Vertical Only.

(c) Normal. (d) Circular.

Figure 4.6: Examples of the four blending functions our toolbox provides.
All examples were made using T = 1.30, β = 0.25.

4.5 stimulus type : video

The video stimulus displays a video that is stored in mp4 format.
Like images, the videos are displayed at their true size. Obtaining
the video’s dimensions required the use of ffmpeg

4, which allows
us to read the metadata of stored videos. We implemented videos
by using Unity’s built-in VideoPlayer5 component. The video player
also requires a render target, for which we chose to use a RawImage6

component since we can easily resize it to match the video’s original
dimensions. Displaying a video during runtime is as simple as provid-
ing the video player with the video’s Uniform Resource Locator (URL).

4 https://ffmpeg.org

5 https://docs.unity3d.com/Manual/class-VideoPlayer.html

6 https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/

script-RawImage.html

https://ffmpeg.org
https://docs.unity3d.com/Manual/class-VideoPlayer.html
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/script-RawImage.html
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/script-RawImage.html
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Since the video player and raw image are both UI components, they
must be inside a canvas. At the time of writing, the video player has
only been tested on Windows 10 and may not function properly on
other platforms due to compatibility issues.

4.5.1 Blending videos

Similarly to images, we can blend videos into the background. Un-
like images, which are static, videos may change their pixels at every
frame, making it inefficient to blend the videos by altering their pixel
values. Instead, the video stimulus uses a mask image, which is en-
tirely the same colour as the background and will have an inverted
transparency compared to the image blending. We then use the same
calculations as in Section 4.4.2, but invert the final value: α′ = 1 − α.
As a result, the mask becomes more opaque towards the edges, while
being transparent near the centre.

4.6 stimulus type : model3d

The final stimulus we implemented is the Model3D stimulus, which
can display 3D objects stored using the obj file format. Unlike images
and videos, which use two-dimensional scenes, correctly displaying
3D objects requires three-dimensional scenes. This extra dimension
introduces notable differences, which we discuss in Section 4.6.1 and
Section 4.6.2. Another difference is that models require a light source,
which we place at the same position as the camera (both are at the
origin). Loading in new models during runtime is not easy to do in
Unity, as Unity provides no way of doing this. Therefore, we used
the Runtime OBJ Importer7, which is a free asset from the Unity asset
store that allows us to load in models from obj files during runtime.
After loading a model, all we do is copy some properties from the
previous model (such as its position and orientation), which we then
remove from the scene.

4.6.1 Projection

Since models use three-dimensional scenes, a projection to 2D is
needed. We chose to use an orthographic projection because it allows
identical models to look the same, regardless of where they are placed
on the screen. When using a perspective projection, models may look
differently depending on their positions, even if they are identical, as
shown in Figure 4.7. We set the size of the orthographic projection to

7 https://assetstore.unity.com/packages/tools/modeling/

runtime-obj-importer-49547

https://assetstore.unity.com/packages/tools/modeling/runtime-obj-importer-49547
https://assetstore.unity.com/packages/tools/modeling/runtime-obj-importer-49547
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the resolution of the user’s display, which allows us to use identical
coordinates for models, images, and videos.

(a) Orthographic.

(b) Perspective.

Figure 4.7: The same models when using an orthographic projection and
a perspective projection. The right model looks different when
using a perspective projection.

4.6.2 Transformations

Since the models do not have any constraints regarding their display
size, and due to their three-dimensional nature, we allow a higher
degree of customization for how models should be displayed. This
subsection will cover the configuration parameters exclusive to 3D
models.

model scale The Model Scale parameter allows the user to apply
a three-dimensional non-uniform scaling transformation to the dis-
played models. Since 3D objects can vary in size, this parameter allows
the user to shrink or enlarge their objects to fit properly on the screen.

model rotation The Model Rotation parameter allows the user
to apply a three-dimensional rotation transformation to the displayed
models. Since 3D objects may appear differently depending on their
rotation, this parameter allows the user to ensure that the rotation of
their model is correct.

symmetric models This parameter allows the user to toggle
whether or not the displayed models should be horizontally symmetric,
if possible. We do this by modifying the models on the right half of
the screen. For these models, the x component of their scale and the
y and z components of any rotations performed on them are made
negative.
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model distance This parameter allows the user to change the
distance between the models and the camera. Only the distance along
the z-axis can be modified in this way. Since we use an orthographic
projection, this distance will not affect the models’ displayed sizes;
only the lighting will change.

other parameters Aside from the transformations, there are
some other configuration parameters that the user may provide to
customize the display of the models. These parameters are listed
below:

• Model Colour: allows the user to set the colour of the model.

• Glossiness: allows the user to determine how glossy/reflective
the model should be.

• Lighting Type: allows the user to choose the type of light source
to use. Our toolbox currently supports ambient, point, spot, and
directional light sources.

• Lighting Intensity: allows the user to adjust the intensity of the
light source.

4.7 general configuration parameters

The previous six sections already discussed some configuration pa-
rameters that were specific to some experiment method(s) or stimulus
type(s). This subsection will cover the parameters that can be used
with any combination of experiment method and stimulus type.

4.7.1 Background Colour

The Background Colour parameter allows the user to specify, in RGB
values, the colour of the background during trials. This parameter can
be important for some experiments, since the background colour may
affect the participant’s colour perception. For example, a bright back-
ground might cause the user’s vision to adapt to higher brightness,
making it more difficult to differentiate between darker colours in a
stimulus.

4.7.2 Wait Time

The Wait Time parameter allows the user to specify the number of
seconds it should take for the next set of stimuli to appear on the
screen after finishing the current trial. During this wait time, the user’s
progress will appear in the centre of the screen. This wait time may
also reduce bias created by the user’s eyes adapting to the colour of a
stimulus.
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R E S U LT S & A N A LY S I S

When performing psychovisual experiments, it is crucial to store
the results and to ensure that they are easy to analyse. Our toolbox
provides users with a simple way to store, distinguish, and analyse
their results. This chapter explains our design for this system and
shows the results of a JPEG compression experiment we performed
using the toolbox.

5.1 stored information

When an experiment is performed, we store the following types of
information:

• Test ID: an identifier that is assigned to the experiment by the
user. It is requested from the user on the main menu before
starting the experiment.

• Survey: a list of question-answer pairs containing the questions
that were asked during the survey and the responses provided
by the participant.

• Test Type: the type of test that was performed, which is a combi-
nation of the stimulus type and experiment method (for example:
2AFC_Image).

• Mapping: the mapping that was applied to the list of trials to
randomize the order.

• Results: a list of trial-response pairs containing information about
the trial presented and the participant’s response. The format of
this data depends on the experiment method.

5.2 storage method

The results of an experiment are stored in two or three different text
files, depending on the user’s preferences.

5.2.1 Human-readable log

The human-readable log is designed in a way that makes it easy for
humans to understand. It contains all the types of information listed
in Section 5.1. An example of what this log file might look like is
shown in Figure 5.1a. The mapping a -> b means that the ath trial
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in the experiment specification was shown as the bth trial during the
experiment.

(a) The human-readable log (b) The machine-readable log

Figure 5.1: An example of what the log files might look like. Both logs were
generated by the same experiment

5.2.2 Machine-readable log

This log is designed to be easy for a program to parse. The first three
lines contain the Test ID, Experiment Type, and the number of trials in
the experiment. The fourth line contains the mapping, which follows
the same logic as the one in the human-readable log. After that, the
Results are displayed on separate pairs of lines. This log does not
include the Survey.

5.2.3 Warm-up log

This log contains the Results for the warm-up trials, and will only be
created if the user has provided the Log Warmups configuration pa-
rameter with a value of true. The format of the Results list is identical
to that of the human-readable log.

5.3 experiment summary

Our toolbox provides a single tool that is used to provide a summary
of the results of an experiment. It only works for the 2AFC and 2AFCref

experiment methods. It will display a list of the performed trials, some
helpful information, and the user’s response. It obtains its data by
parsing the machine-readable log. As seen in Figure 5.2, the tool shows
the stimuli for each trial, with the chosen stimulus surrounded by a
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red border. The list of trials spans multiple pages, with up to four
trials on each page.

Figure 5.2: An example of the analysis tool.

5.4 validation with a jpeg compression experiment

In order to test the usability of our toolbox for psychovisual experi-
ments, we have performed our own experiment. In this experiment,
we investigated the visibility of JPEG compression artifacts across
different compression levels, at varying eccentricities.

5.4.1 Experiment set-up

For this experiment, we generated stimuli with different JPEG com-
pression levels using the MATLAB imwrite function. For JPEG images,
the imwrite function allows for the specification of the Quality argu-
ment, which we used to control the compression level. We chose the
following quality levels: q ∈ {1, 2, 4, 8, 16, 20, 50, 75, 100}. We showed
every quality level in a 2AFC trial, where the other stimulus was al-
ways the image with quality q = 100. These trials were performed
once for each of the following eccentricities: e ∈ {5, 10, 20, 35, 55}. We
performed this experiment 6 times to measure the detection rate, i.e.
in how many of the experiments the most compressed stimulus was
correctly identified. All repetitions of this experiment were performed
by the same person. Additional information about the experiment is
shown in Table 5.1
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parameter value

Viewing distance (cm) 60

Display FOV 114.5916◦

Display peak luminance (cd/m2) 158.9

Display colour space sRGB

Background colour (RGB) [186, 186, 186]

Background luminance (cd/m2) 78.1

Image dimensions (px) 256x256

Table 5.1: This table contains parameters for the experiment we performed.

5.4.2 Experiment results

To analyze the results of this specific experiment, we created a script
that parses all of the machine-readable logs. After parsing, the Scottplot1

library was used to create a plot that displays the results. This plot
can be seen in Figure 5.3. We opted to plot the quality (x-axis) against
the detection rate (y-axis) for each eccentricity, because it allows us
to distinguish the results for different eccentricities and quality lev-
els. It is clear from Figure 5.3 that the detection rate of low-quality

Figure 5.3: A graph displaying the detection rate (y-axis) for different combi-
nations of compression levels (x-axis) and eccentricities.

stimuli was higher at lower eccentricities, while the detection rate of
high-quality stimuli is mostly unaffected by the eccentricity. When the
difference between two stimuli was not visible, there was a 50% chance
to choose the right stimulus. Thus the expected detection rate for such
stimuli would be 3/6. Since only six experiments were performed,

1 https://scottplot.net

https://scottplot.net
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outliers (such as q = 75, e = 55) are expected to be very common.
Therefore, the data at higher quality levels and eccentricities is not
accurate enough to draw conclusions from.





6
V I RT UA L R E A L I T Y

We have created an adaptation of our toolbox that performs adequately
on VR displays, specifically the Oculus Rift. This chapter explains the
changes we had to make to our toolbox so that it would work on the
Oculus Rift.

6.1 unity set-up

To develop the application, we first had to install the Oculus XR-Plugin.
We also chose to use Unity’s XR Interaction Toolkit1, which provides
many different stock assets. These assets allowed us to focus more on
the development of the toolbox itself instead of having to implement
basic functions, such as the behaviour of the controllers. We chose
to use the Complete XR Origin Set Up prefab asset, which is a set
of GameObjects and Components that work together to transform
data from the Extended Reality (XR) tracking subsystems into world
space [11].

6.2 scenes

For the VR adaptation, we had to modify all of our scenes. This section
shows some common updates we had to make to all scenes.

6.2.1 VR Foundation

The VR Foundation is a prefab asset we created that contains all the
standard components needed for a VR scene. These components in-
clude a floor for the user to stand on, a light source to illuminate
the user’s surroundings, and a Complete XR Origin Set Up. We then
added this asset to each scene in our toolbox.

6.2.2 Canvas

In Unity, all UI components must be placed inside a Canvas to be
rendered. For the original toolbox, all our scenes used canvases set
as screen overlays. For XR scenes, this is not an option. Instead, the
canvas must be placed in world space. The canvases now also require
a Tracked Device Graphic Raycaster component to handle interac-

1 https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.3/

manual/index.html
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tions with its UI components, such as clicking buttons. We thus had
to modify every single canvas in every scene.

6.2.3 Projection

The three-dimensional scenes in the original toolbox used an ortho-
graphic projection since it allowed identical models to look identical
regardless of their positions in the scene. VR scenes, however, do not
support orthographic projection. Therefore, we had to change some
cameras to use a perspective projection. As a result, identical models
may not look the same.

6.3 eccentricity

Since we now use three-dimensional scenes where the user may look
around by moving their head, we had to ensure that the stimuli stay
at the correct eccentricity while still being displayed correctly. To
accomplish this, we created a hierarchy of game objects, which is
shown in Figure 6.1. The solution can be interpreted as having the
stimuli on the ends of straight line segments. As the user looks around,
these line segments move and rotate to face the user. Additionally,
the stimuli themselves are rotated to face the user. We calculate the
positions of points 2 by applying a rotation of α to point 1.

6.4 input

The Oculus Rift uses controllers for its input, meaning we had to
completely overhaul our input systems, which relied on keyboard and
mouse inputs.

6.4.1 Mouse clicks

For mouse click interactions, we only had to replace the Graphic

Raycaster components of the canvases with Tracked Device Graphic

Raycaster components. Then, the clicking interaction can be per-
formed by pointing at the interactable object with one of the controllers
and pressing its trigger.

6.4.2 Keyboard input

For the trial scenes, we had to replace all of the keyboard button
inputs with inputs of the controller buttons. We implemented this by
checking whether any buttons are pressed at every frame update. For
the 2AFC and 2AFCref trials, we allow the user to click either the primary
(A/X), secondary (B/Y), or grip button on either controller to choose
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Figure 6.1: Our hierarchy of game objects that are used together to make
stimuli appear at the correct angle and position.

a stimulus. Using the left controller indicates picking the left stimulus
and vice versa. For the rating trials, the user must simultaneously click
the primary buttons of both controllers to confirm their ratings.

6.4.3 Virtual keyboard

While we managed to replace the keyboard inputs with controller in-
puts for the trial scenes, we still needed some way for the user to enter
strings, e.g. to answer the survey questions. To this end, we imple-
mented a virtual keyboard, seen in Figure 6.2, which appears when the
user selects a text input field. The user can use the controllers to click
on the keyboard’s buttons, which will add the character corresponding
to the chosen key to the input field.
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Figure 6.2: The virtual keyboard we created for the VR adaptation of our
toolbox.

6.5 evaluation

As explained in the previous sections, we have successfully adapted
all of the core functionalities of our toolbox to work on the Oculus
Rift. All of the stimuli and experiment methods that we implemented
for the original toolbox can also be used in VR. We have reworked our
user input systems to be compatible with the Oculus Rift controllers.
While largely successful, our adaptation is not perfect; there are minor
differences with the original toolbox, such as the projection mentioned
in Section 6.2.3.



7
C O N C L U S I O N S

Our project’s goal was to create a toolbox that could be used to
perform psychovisual experiments without any programming and to
which new stimuli types and experiment methods could both easily
be added. Other important objectives included making our toolbox
display-independent and creating a VR adaptation.

By using a configuration file, our toolbox can perform different
experiments without any programming efforts from the user. Mak-
ing the stimuli and experiment methods modular was as simple as
using an abstract class and interface to define behaviour specific to
experiment methods and stimuli and creating different Unity scenes
for each combination.

Display-independence has been partially achieved through some
configuration parameters, which provide functionalities such as gamma
correction. However, some of these could not be implemented for all
stimuli. Gamma correction, for instance, currently only supports image
stimuli.

We adjusted all of the scenes in the original toolbox to function
adequately on VR displays. There are however some functionalities not
supported in Unity VR, such as the orthographic projection originally
used for model stimuli. Nevertheless, we consider the adaptation to
be successful.

By performing our own JPEG compression experiment with the
toolbox, we have verified that we can use the toolbox to conduct
psychovisual experiments without requiring any programming. There-
fore, we conclude that we have successfully designed a user-friendly
desktop application for conducting psychovisual experiments.
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F U T U R E W O R K

While we consider the project a success, there are many ways in which
the project could be improved in the future. The most notable ones
are listed below:

• Platform independence: We mainly created the project to work on
devices using Windows 10 as their operating system. Since Unity
offers good cross-platform support, making the toolbox work
on other platforms should be possible. However, fundamental
differences in the hardware and deployment methods mean
that parts of a project may not port between platforms without
change.1 For example, we ran into an issue where the Unity
VideoPlayer component would not be able to load videos during
runtime on a Macbook running OSX. This problem was the only
one we encountered, but other platforms like Linux and Android
have not been tested.

• Display independence: While we implemented some ways to make
our toolbox more display independent, not all of these ways
support all of our stimulus types. Moreover, other parameters
could be implemented to improve display independence, such as
adjusting the frame rate of videos. Future work should include
improving the current parameters and adding new ones.

• Improve stimuli support: Currently, our toolbox supports only a
small number of file types for each stimulus type. For example,
3D models only support the OBJ file format. Many other pop-
ular file formats exist for each stimulus type (FBX and STL for
3D models, for example). In the future, we should extend the
toolbox to support these file formats, which we can do either by
improving the existing stimulus implementations or adding new
ones.

• Improving the VR adaptation: Some functionalities could not be
adapted to VR, including the orthographic projection and mak-
ing images and videos pixel-perfect. Moreover, our VR adapta-
tion has only been tested on the Oculus Rift. Many other VR
headsets exist, which may be made by different companies, or
have different specifications (e.g. resolution). In the future, our
VR adaptation should be improved and made to work on other
popular VR headsets, such as the Oculus Quest and Microsoft
Hololens.

1 https://docs.unity3d.com/Manual/CrossPlatformConsiderations.html
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• Configuration file builder: Our toolbox uses configuration files in
JSON format. While the JSON format is easy to understand, it
may still take time to get used to working with it. Adding a tool
that provides a GUI in which users can create a configuration
file without requiring knowledge of the JSON format would
increase the user-friendliness of our toolbox.

• Miscellaneous quality of life improvements: Many small improve-
ments should be made to our toolbox to improve the user expe-
rience. Some examples are the following:

– A file selector may be added so that users do not have to
determine the path to a file or directory.

– A way to use the experiment summary with pre-existing
log files may be added.

– More experiment summary types, such as one supporting
the rating experiment, may be added.

– Additional tools that may be used to test the values for
specific configuration parameters, such as the screen cali-
bration, may be added.



A
C O N F I G U R AT I O N PA R A M E T E R S

This appendix lists all of the configuration parameters that are avail-
able to the user, including their required format and a brief description
of their function.

a.1 mandatory parameters

This section includes the parameters that must be included in every
configuration file

path (string)
The file path to a folder containing the stimuli to use for the experi-
ment.

test type (string)
The experiment method that should be used.

stimulus type (string)
The file extension of the stimuli that should be used.

a.2 eccentricity parameters

This section includes the parameters that are used for the eccentric-
ity calculation of the 2AFC and 2AFCref experiment methods. When
using this experiment methods, it is mandatory to include either
the Field Of View parameter, or the Viewing Distance and Screen

Width parameters. When using the VR adaptation of the toolbox, these
parameters will be ignored.

field of view (float)
The angle (in degrees) between the centre of the screen and edge of
the screen as measured from the viewing point.

viewing distance (float)
The distance (in centimetres) between the viewing point and the centre
of the screen.

screen width (float)
The distance (in centimetres) between the edges of the display.
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a.3 general optional parameters

This section includes the parameters that are optional, but may be
used for any combination of experiment method and stimulus types.
Each one of these has a listed default value.

resolution width (integer, default: read from device)
The width-component of the device’s resolution in pixels.

resolution height (integer, default: read from device)
The height-component of the device’s resolution in pixels.

background colour (colour, default: neutral gray)
The colour (in RGB values) that the background should be during
trials.

wait time (float, default: 1.0)
The amount of time (in seconds) between trials during which the
progress counter should be displayed.

instructions (string, default: ϵ)
The instructions that should be shown to the user before starting the
experiment.

questions (string array, default: [])
The questions that should be asked of the user before starting the
experiment.

log warmups (boolean, default: false)
Whether or not the results of the warm-up trials should be recorded.

a.4 specific optional parameters

This section includes the parameters that are optional, and may only
be used for a subset of the combinations of available stimulus types
and experiment methods.

input type (2AFC & 2AFCref, integer array, default: [0]])
The types of input that may be used to select stimuli during the trials.
The two currently available types are left/right arrow keys (0) and
mouse clicks (1).

target thickness (2AFC, float, default: 1.0)
A multiplier for the thickness of the target that appears at the centre
of the screen.
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target scale (2AFC, float, default: 1.0)
A multiplier for the size of the target that appears at the centre of the
screen.

screen calibration (Image, object, default: identity calibration)
This parameter contains the constants a, b, c, and gamma for each
colour channel. These are used for the screen calibration functionality
discussed in Section 4.4.1.

blend mode (Image & Video, string, default: "Normal")
Which type of blending should be used for the blending functionality
discussed in Section 4.4.2.

beta (Image & Video, float, default: 0.0)
The value of the β constant used for the blending functionality dis-
cussed in Section 4.4.2.

t (Image & Video, float, default: 0.0)
The value of the T constant used for the blending functionality dis-
cussed in Section 4.4.2.

symmetric models (3D Model, boolean, default: true)
Whether or not the displayed models should be symmetric.

model scale (3D Model, 3D vector, default: identity scale)
A non-uniform scaling transformation that should be applied to the
displayed models.

model rotation (3D Model, 3D vector, default: identity rotation)
A three-dimensional rotation transformation that should be applied to
the displayed models.

model colour (3D Model, colour, default: white)
The colour that should be applied to the displayed models.

glossiness (3D Model, float, default: 0.5)
How glossy the displayed models should look.

lighting type (3D Model, string, default: "Ambient Only")
The type of light source that should be used in the trial scene.

lighting intensity (3D Model, float, default: 1.0)
How luminous the light source in the trial scene should be.
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