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Abstract

This bachelor thesis investigates axion-driven inflation coupled to a generic U(1) gauge
field. The intrinsic shift symmetry inherent to axions forbids or highly suppresses possible
UV corrections, ensuring a substantial degree of flatness in the inflationary potential over
an extended duration. The interplay between the axion and the gauge field significantly
affects the dynamics of the axion field, deviating from a homogeneous behavior. Backre-
action effects, such as the sourcing of inflaton perturbations through the inverse decay of
gauge field fluctuations and contributions to the universe energy density, are analyzed. Cur-
vature perturbations arising from the coupling and their impact on the power spectrum at
the superhorizon limit are derived and discussed. The resulting power spectrum is found to
exhibit the expected mild scale dependence characteristic of slow-roll inflation. By imposing
COBE normalization to the power spectrum, the mutual interaction between the axion and
gauge field is highlighted. Specifically, it is found how for ξ ≫ 4, where the parameter ξ is
linked to the coupling and growth of gauge field fluctuations, the gauge field contribution to
the spectrum becomes dominant and completely surpasses the vacuum fluctuations. Further
research directions are proposed: the replication of results can involve considering full scalar
and metric perturbations. Additionally, investigating tensor perturbations may provide in-
sights into plausible gravitational wave production. Motivated by recent Cosmic Microwave
Background (CMB) observations, exploring non-Gaussianity effects through higher order
correlation functions is also recommended.
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1 Introduction

Cosmological inflation is a fascinating theory of physics that was first introduced to solve some
crucial open problem about the Universe that the theory of the Big Bang could not directly
answer. Inflation is a period of time after the Big Bang and before recombination, characterised
by a rapid quasi-exponential expansion of space. Introducing this inflationary period leads to a
possible explanation to the apparent uniformity of the Cosmic Microwave Background (CMB),
whereby patches of sky that have never been in causal contact are, nevertheless, measured to be
in thermal equilibrium. This is known as the horizon problem, and a solution to this puzzle is able
to explain also other important cosmological issues such as the flatness problem or the monopole
problem [1]. By means of inflation’s exponential expansion, distinct regions of the universe
become causally connected as the particle horizon expands more rapidly than the Hubble radius,
the characteristic scale of the universe. Consequently, particles re-enter the horizon and gain
sufficient time to attain thermal equilibrium [2].

A theory of inflation frees the universe from the fine tuning problem, as now generic ini-
tial condition can lead to the solution of the problems mentioned above. Moreover, during the
inflationary period, quantum fluctuations appear and undergo significant amplification. These
perturbations get streched to cosmic significance, thereby affecting and becoming imprinted on
the CMB signatures, with reminiscents that are still observable today. As famously known, quan-
tum fluctuations are interpreted as the ancestral source of what are now large-scale structures
in the universe [3].

Nevertheless, there still exist various open questions about the theory of inflation: first of
all, the exact form of the so called inflaton field that characterised the inflationary epoch is
still unknown. Indeed, a successful inflationary period must effectively be driven by the vacuum
energy of a suitable field, allowing for the conversion of its potential energy into exponential
expansion of spacetime. Additionally, the inflationary potential is required to be considerably
flat for a prolonged period of time: this requirement ensures that the potential energy of the
inflaton field dominates over other energy density components, serving as the driving force for
inflation. Eventually, the inflationary phase concludes with a process known as reheating, during
which the inflaton field transfers its stored energy to other forms. This energy transfer can occur
through mechanisms such as decay into numerous particles in the Standard Model. Reheating
marks the effective initiation of the Big Bang epoch [4].

It then follows that studies of inflation become crucially dependent on the exact nature of
the inflaton field. The first proposal was presented by Guth in the 80’s, where he believed that
the Higgs field was the inflaton field [5]. As of current research, this latter hypothesis is not
considered as valid as more probable hypothesis such as inflation driven by an axion field [6].
Axions are fields that posses shift symmetry, i.e. the action remains invariant when the axion
field is shifted by a constant. This symmetry is crucial to ensure that quantum corrections to the
so called slow roll parameters, essentials to quantify the degree to which the inflaton potential is
flat and thus able to effectively drive the inflationary period, are suppressed or at least limited
enough such that UV physics corrections to the inflationary epoch become negligible [7].

In conclusion, the main goal of this research project is to investigate cosmological signatures
of axionic-driven inflation, in which an axion field is coupled to a generic U(1) gauge field. The
thesis is structured as follows: firstly, a concise overview of modern cosmology and the standard
slow-roll inflationary paradigm is provided in section 2. Following this, section 3 delves into
the primary objective of this thesis, starting with presenting and analyzing the action of the
system under consideration. The relevant equations of motion are then derived and discussed,
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with particular attention on studying the dynamic interplay between the axion and the gauge
field. This is subject of subsections 3.2 to 3.5. Finally, in subsection 3.6 an explicit expression
for the late time power spectrum is presented and therefore, the plausibility of this type of
axionic-driven inflation is physically and mathematically argued through phenomenological and
observation-based arguments. Lengthy or less pertinent calculations are provided in the appendix
(A), while a supplementary Mathematica code to the thesis can be found in the appendix (B).
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2 Mathematical Description of Inflation

The concept of cosmological inflation was first introduced by A. Guth in the 1980 in his famous
article "Inflationary universe: A possible solution to the horizon and flatness problems" [5]. As
the title of the article suggests, inflation was presented as a possible resolution to overcome two
important problems arising from Big Bang cosmology: the horizon and the flatness problem.
While this section will primarily concentrate on the former issue, it is essential to begin with a
concise overview of the current understanding in standard cosmology.

2.1 FRW Metric

Standard cosmology, more widely known as the Big Bang model, relies on the Friedmann-
Robertson-Walker (FRW) spacetime metric [8]. This metric is derived from the observation-
driven assumption that the Universe is effectively homogenous and isotropic on large scales, the
so called Cosmological Principle. In this regard, a compelling example is given by the cosmic
microwave background (CMB) temperature uniformity, with anisotropies in the order of one part
in 105 [9]. As the CMB can be interpreted as a relic of the thermal radiation that was perme-
ating the Universe at the time of last scattering (at a redshift z of about z ≈ 1100 [10]), this
measured uniformity indicates that the Universe was highly isotropic and homogeneous. With
these assumptions, in natural units c = ℏ = 1 the FRW metric takes the form [11]

ds2 = gµν dx
µ dxν = −dt2 + a2 (t)

(
dr2

1− kr2
+ r2 dθ2 + r2 sin2 θ dϕ2

)
, (1)

where the metric gµν is expressed in comoving coordinates (t, r, θ, ϕ)1. The term a (t) is the
cosmic scale factor characterising the time dependence of the spatial components of the metric.
As such, knowledge of the scale factor a (t) is crucial to understand and describe the evolution
of the universe. Lastly, the curvature of space is associated to the curvature parameter k, which
can take values of k = −1, 0, 1, describing respectively a negatively curved, flat or positively
curved universe.

A ubiquitous quantity in cosmology is the Hubble parameter H defined as

H ≡ ȧ

a
, (2)

which effectively is the change of a (t) per unit of scale factor. The Hubble parameter sets a
characteristic length scale dH of the universe via the relation

dH = H−1. (3)

dH is known as the Hubble radius or Hubble length. For an observer at the center of a sphere
with radius dH , objects outside this sphere will appear to recede at a speed faster than the speed
of light [3]. As it will be explained further, the time evolution of the comoving Hubble radius
(aH)−1 plays a crucial role in inflation.

1Comoving coordinates refer to a coordinate system in which an observer is static with respect to the relative
expansion of space. As an example, the comoving distance between two objects with no peculiar velocities remains
fixed.
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2.2 Conformal Time

The FRW metric can be recast in a pseudo-Minkowski form by introducing conformal time τ
defined as

dτ ≡ dt

a (t)
. (4)

Conformal time may be interpreted as a clock that slows down alongside the expansion of the
universe [1]. In this thesis, derivatives with respect to cosmic time are denoted by an overdot,
e.g. da

dt ≡ ȧ, whereas derivatives with respect to conformal time by an apostrophe, e.g. da
dτ ≡ a′.

Furthermore, the Hubble parameter H has a corresponding term H in conformal time:

H ≡ a′

a
. (5)

Conformal time τ can then be substituted into (1) to obtain

ds2 = a2 (τ)

[
−dτ2 +

(
dr2

1− kr2
+ r2 dθ2 + r2 sin2 θ dϕ2

)]
. (6)

According to observations, our universe is considerably flat [12]. As such, k = 1 can be
substituted into (6) to yield

ds2 = a2 (τ)
[
−dτ2 + dr2 + r2 dΩ

]
, (7)

where the typical substitution dΩ ≡ dθ2 + sin2 θ dϕ2 was employed. We can now observe how
the FRW metric factorizes as a product of a static Minkowski metric times the time dependent
scale factor a (τ). In matrix notation, the metric (7) takes the diagonal form

g =


−a2 0 0 0
0 a2 0 0
0 0 a2 0
0 0 0 a2

 , (8)

with its inverse metric gµν obtained by inverting (8):

g−1 =


−1/a2 0 0 0

0 1/a2 0 0
0 0 1/a2 0
0 0 0 1/a2

 . (9)

2.2.1 Particle Horizon

Considering an isotropic universe, light propagates radially [1], by which dΩ = 0. Additionally,
light follows a null geodesic ds2 = 0. Substituting these into (7) yields

dr2 = dτ2 . (10)

Integrating (10) leads to

r (τ) = ±τ + C, (11)
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where C is an arbitrary constant. From (11), it follows that light, travelling between two events
denoted by initial time t1 and final time t2, covers a distance of

∆r ≡ τ2 − τ1 =

∫ t2

t1

dt

a (t)
. (12)

By the cosmic speed limit, this is also the maximum distance any other particle can travel
between those times. The causal evolution of two events is therefore defined by the amount of
conformal time between them. As such, the comoving particle horizon is defined as

∆τmax ≡ τ − τ0 =

∫ t

0

dt

a (t)
= τ(t)− τ(0), (13)

where, by convention, t1 = 0 is set such that a (t1 = 0) ≡ 0 corresponds to the Big Bang
singularity. From (4), it can be inferred how t1 = 0 does not necessarily imply τ1 = 0, and
furthermore, we will see how this disagreement is crucial in inflation, where the initial Big Bang
singularity is actually pushed back in conformal time to τ1 = −∞.

It is common practice to rewrite the integral of (13) in terms of the comoving Hubble radius
(aH)−1 as

τ =

∫
1

a
· ȧdt
a · ȧ

a

=

∫
d ln a

aH
. (14)

Equation 14 shows how the behaviour of the comoving Hubble radius is strictly connected to the
particle horizon: if (aH)−1 increases, then τ grows in a similar fashion. In order to mathemat-
ically obtain the evolution of (aH)−1, we need to solve for the universe dynamics governed by
a (t). This is briefly developed in the following subsection.

2.3 Universe Dynamics

Consider the Einstein field equations

Gµν = 8πGTµν . (15)

The universe dynamics for a perfect fluid with energy density ρ and pressure p is obtained by
solving the 00 Einstein field equation together with the trace of (15). Detailed derivations are
copious in literature (e.g. see Ref [13]), therefore only the final results is presented for a flat
universe with k = 0 2:

H2 =
ρ

3
, (16)

Ḣ +H2 = −1

6
(ρ+ 3p) . (17)

Equations (16) and (17) are famously known as the Friedmann equations, and their solutions
provide the time evolution of the scale factor a (t), which as argued in the previos sect As an
example related to the previous subsection, solutions to (16) and (17) yield [1]

(aH)−1 ∝ a
1
2

(
1+3 p

ρ

)
. (18)

2Here units are chosen such that 8πG = 1
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For conventional matter sources, the Strong Energy Condition (SEC) imposes that 1 + 3p
ρ > 0

[14]. It then follows from (18) that the comoving Hubble radius is a monotonically increasing
function, and so is τ , which can be verified by a straightforward integration of (14)

τ =

∫
a

1
2

(
1+3 p

ρ

)
d ln a =

∫
a

1
2

(
−1+3 p

ρ

)
da , (19)

τ ∝ 2

1 + 3p
ρ

a
1
2

(
1+3 p

ρ

)
. (20)

This shows that for sources satisfying the SEC, the particle horizon is a monotonically increasing
function of the scale factor as well, and therefore the initial Big Bang singularity is conventionally
set at τ (0) = 0, with vanishing contributions to the conformal time coming from the lower
boundary of integration. This sets a limit on the extension of the comoving particle horizon
(13), effectively making it a finite quantity, with troublesome consequences which we are about
to explore in the following sections.

2.4 CMB Observations and the Horizon Problem

Figure 1: Self produced heat sky map of the CMB radiation at a temperature of T = 2.728K. A
clear uniformity is displayed at this temperature as the monopole contribution to the spectrum
is dominant. Figure adapted from [15].

We have seen in the previous section that conformal time plays a crucial role in defining
the causal structure of the universe, as it defines the maximum distance at which two separated
particles could ever transmit and receive information. Particles at a distance greater that τ could
have never been in causal contact, since light simply did not have time to travel between them
during a period equal to the age of the universe [16]. In particular, it can be calculated that
patches of the sky that are separated by angles larger than 2 degrees have never been in causal
contact during the history of the universe [17]. Nonetheless, although they are lacking a direct
causal connection, these regions exhibit an unexpected thermal equilibrium, a phenomenon which
is known as the horizon problem. Indeed, observations from the COBE and WMAP experiments
have provided valuable insights into the temperature spectrum of the CMB at different angular
separations. These experiments have found remarkable uniformities in the CMB even for angular
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scales larger than 2 degrees [18]. A clear visual display of this issue can be found in figure 1,
where the heat sky map of the CMB recorded by the COBE Differential Microwave Radiometers
(DMR) experiment is graphically reproduced [19]. The resolution of this puzzle, along with
other cosmological issues such as the flatness problem and the monopole problem is one of the
key motivations for studying the theory of inflation [20] [21].

2.4.1 The Horizon Problem and the Inflationary Solution

Figure 2: The figure illustrates the horizon problem in cosmology. Two distinct patches of the sky,
denoted by the yellow spots, were causally independent during the epoch of recombination. The
CMB photons emitted from these regions eventually reached the observer (depicted as the blue
spot at the center of the figure). Remarkably, despite the lack of direct causal interaction, the
CMB photons from both patches exhibit the same temperature when measured by the observer.
This is known as the horizon problem in cosmology. Adapted from [1].

Figure 2 gives a visual explanation of the horizon problem: patches of sky that were causally
disconnected at the time of recombination emitted CMB photons which are detected today to
be in thermal equilibrium. This surprising phenomenon cannot be just a coincidence, as at the
time of recombination the sky consisted of more than 105 causally disconnected regions [22]. It
appears that there is not enough conformal time from the Big Bang singularity until the epoch of
recombination to explain the apparent uniformity of the CMB temperature spectrum. As stated
in section 2.3, the particle horizon or equivalent conformal time is a monotonically increasing
function of the scale factor. A possible solution to the horizon problem is, then, simply to
postulate a period in which the particle horizon is a decreasing function of time, thereby allowing
patches of sky to share information and approach thermal equilibrium. Mathematically, this is
equivalent to saying

d

dt
(aH)−1 < 0, (21)

from which using (18) implies
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1

2

(
1 + 3

p

ρ

)
< 0 ⇒ p

ρ
< −1

3
. (22)

We can thus see that a period of decreasing comoving horizon may be sustained by a fluid
violating the SEC. Consequently, (20) yields a negative conformal time due to the negative
coefficient 2

1+3 p
ρ
< 0

τ ∝ 2

1 + 3p
ρ

a
1
2

(
1+3 p

ρ

)
, (23)

and as such the Big Bang singularity is actually displaced to

τ(0) = −∞. (24)

The latter equation (24) plays a crucial role in the context of inflation: a significantly greater
amount of conformal time is generated between the Big Bang singularity and the epoch of
recombination.3 This extended duration allows patches of sky to have interacted and become
causally connected in the far past, thereby addressing the fundamental issue arising from the
horizon problem. Figure 3 provides a visual description of the solution to the horizon problem
as given by the theory of inflation.

Figure 3: Solution to the horizon problem given by the introduction of an inflationary period:
the Big Bang singularity is shifted arbitrarily far back to τ(0) = −∞, thereby allowing for a
phase in which the comoving Hubble radius was decreasing. Consequently, patches of sky had
time to interact and share information in order to reach thermal equilibrium. Adapted from [23].

2.5 Slow Roll Parameters

It was described how inflation postulates that a phase of decreasing Hubble radius can provide
a satisfactory solution to the horizon problem. It is crucial that this inflationary epoch lasts
long enough, thereby permitting all regions of the universe sufficient time to attain thermal
equilibrium and thereby address the horizon problem successfully. Consequently, it is worth

3Furthermore, the ending and reheating phase of inflation happens now at τ = 0. See Ref [1].
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deriving two well-known important quantities that describe the effectiveness of the inflationary
period: the relation (21) can be expanded to obtain

d

dt
(aH)−1 =

ȧH + aḢ

(aH)2
= −1

a
(1− ϵ) < 0 where ϵ ≡ − Ḣ

H2
. (25)

Equivalently,
ϵ < 1. (26)

The latter expression tells us that during inflation we expect the Hubble rate to be slowly
changing, as well as we require ϵ to remain smaller than one "for a sufficient number of Hubble
times" [17]:

η ≡ ϵ̇

Hϵ
. (27)

The two parameters ϵ and η introduced above characterize successful inflation whenever

{ϵ, |η|} ≪ 1. (28)

2.6 UV Sensitivity of Slow Roll Parameters and the η Problem

The slow roll parameters quantify the degree of flatness of the inflationary potential, which is
required to drive and sustain the inflationary period for a sufficient amount of time, in order
to address correctly cosmological issues such as the horizon problem explained in the previous
sections. On the other hand, it is reasonable to assume that quantum and gravity corrections in
UV physics could introduce fluctuations in the flatness of the potential, therefore affecting the
minuteness of the slow roll parameters and eventually spoiling inflation. In order to quantify
this, let’s consider a typical slow roll inflation action in the presence of a generic scalar field ϕ
minimally coupled to gravity

S =

∫
d4x

√
−g

[
Mp

2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (29)

where R is the Ricci scalar,
√
−g is the determinant of the metric gµν , and V (ϕ) is a generic

inflaton potential. It is straightforward to derive the equation of motion for the inflaton and the
00 Einstein equation obtained by varying with respect to the metric [17], respectively

ϕ̈+ 3Hϕ̇ = −V ′, (30)

H2 =
1

3Mp

[
1

2
ϕ̇2 + V

]
, (31)

where ϕ is considered a perfect fluid obeying the equation of state [24]

p

ρ
=

1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
. (32)

From equations (30) and (31) an expression for the slow roll parameter ϵ can be derived as

ϵ =
1
2 ϕ̇

2

M2
pH

2
. (33)
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As discussed in section 2.5, ϵ ≪ 1 for successful inflation. Using (33) leads to the slow roll
condition 1

2 ϕ̇
2 ≪ V , from which we can infer that the kinetic energy of the scalar field is

considerably smaller than its potential energy. Consequently, (30) and (31) simplify to

3Hϕ̇ ≈ −V ′, (34)

H2 ≈ V

3M2
p

, (35)

where the ϕ̈ term in the inflaton equation of motion (30) was also neglected, given that ϕ̇ is
already slowly varying. Substituting (34) and (35) into (33) yields

ϵ ≡ ϵv ≈
M2

p

2

(
V ′

V

)2

. (36)

Additionally, in literature it is also usually considered the parameter

ηv ≡ M2
p

V ′′

V
, (37)

which effectively assesses the degree of curvature of the potential: ϵv and ηv are also referred to
as potential slow roll parameters [25] [26]. Slow roll inflation is then assured for {ϵv, |ηv|} ≪ 1
[17].

Quantum corrections may modify the inflaton potential by introducing higher order terms.
For instance, let’s consider a simple example where the inflaton potential receives quantum
corrections of the form:

∆V (ϕ) = Λ4f

(
ϕ

Λ

)
, (38)

where Λ > H represents the characteristic energy scale associated with the UV physics and
f
(

ϕ
Λ

)
is an arbitrary dimensionless function 4. Consequently, the potential V (ϕ) is modified to

V (ϕ) → V (ϕ) + ∆V (ϕ) = V (ϕ) + Λ4f

(
ϕ

Λ

)
, (39)

and the ηv parameter changes by

ηv =
V ′′(ϕ)

V (ϕ)
+

Λ2

V (ϕ)
f ′′
(
ϕ

Λ

)
⇒ ∆ηv ≈ Λ2

H2
> 1, (40)

Changes in the eta parameter are of order O (1)! It then follows that the duration of inflation is
considerably reduced. This is known as the eta problem [27].

3 Axion-Driven Inflation

As introduced in the previous section, inflationary slow roll parameters are highly sensitive to
UV-physics. As shown in [7], higher n-dimensional terms of the type ϕnM4−n

p can also induce

4Notice how if Λ were smaller than H, then the quantum corrections would be highly suppressed and have
negligible impact on the potential.
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order O(1) corrections to the inflationary potential, which may considerably reduce the duration
of the inflationary epoch and hence its effectiveness. Therefore, in order to avoid fine tuning
arguments that claim to suppress these higher order terms because of special initial conditions,
a possible solution comes from considering a shift symmetric invariant action, which is the only
symmetry that does not allow these dangerous corrections [7]. With shift symmetry we refer
to a transformation of the type ϕ → ϕ + constant that leaves the action invariant. Fields ϕ
embedding this symmetry are called Axions.

There exists a simple logical argument to understand why axions forbid quantum corrections
to the inflationary potential: let’s denote the axion field as ϕ, and its potential energy as V (ϕ).
The shift symmetry of the axion field implies that the potential energy V (ϕ) remains invariant
under the transformation ϕ → ϕ+C ⇒ V (ϕ) = V (ϕ+C), where C is a constant. UV corrections
to the potential energy can be expressed as a power series expansion:

V (ϕ) = V0(ϕ) +
∑
i

∆Vi(ϕ), (41)

where V0(ϕ) represents the background potential energy, and ∆Vi(ϕ) are higher order corrections.
Since the potential energy V (ϕ) is invariant under the transformation ϕ → ϕ+ C, the quantum
corrections should also respect this symmetry. This means that each term in the power series
expansion should have the same shift symmetry:

∆Vi(ϕ) = ∆Vi(ϕ+ C). (42)

However, since the quantum corrections are meant to break the shift symmetry, then the effective
potential V (ϕ) would no longer be shift symmetric, leading to a contradiction. Therefore, axions,
which possess a robust shift symmetry, forbid quantum corrections to the inflationary potential.

In this thesis, we consider axion driven inflation coupled to a generic gauge field Aµ via the
operator cϕF F̃ where c is a coefficient. Our analysis thus begins by presenting the action of the
system and describing its constituent terms.

3.1 Action of the System

The model in consideration has the following action:

S =

∫
d4x

√
−g

[
Mp

2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)− 1

4
FµνFµν −

α

4f
ϕ F̃µνFµν

]
, (43)

where ϕ is the axion inflaton field, R the Ricci scalar, Fµν = ∂µAν −∂νAµ the field strength, and
F̃µν = 1

2
√
−g

ηµναβFαβ the field strength dual, with ηµναβ , η0123 ≡ 1 the Levi-Civita tensor. The
dimensionless parameter α is expected to be of order unity, whereas the coefficient f , known as
the axion decay constant, sets the scale of the interaction [28]. As described in Ref [7], f can be
interpreted as a parameter quantifying the least non-negligible coupling, such as the interaction
between the axion field and the gauge field via terms of the form cϕF F̃ . It is expected that
f < Mp, since physics above the Planck scale Mp may introduce shift-symmetry breaking effects,
thus vanishing the effort of studying axion driven inflation [29][30].

3.2 Obtaining the Gauge Field Equations of Motion

As a first step, we derive the equations of motion for the gauge field Aµ, in order to understand
how the created "gauge quanta" are produced and affected by the background inflaton field ϕ. As
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such, both metric and inflaton perturbations can be neglected for the current section. The usual
Einstein summation convention is adopted, by which Greek indexes, such as µ, imply summation
over all spacetime coordinates µ = {0, 1, 2, 3} = {τ, x, y, z} while Latin indexes, such as j, refer
to spatial coordinates only j = {1, 2, 3} = {x, y, z}. The complete derivation can be found in the
appendix A.1. The equation of motion for the gauge field, then, take the form [31]

∂σ
(√

−gF σρ
)
+

α

2f
∂σ (ϕ ησρµνFµν) = 0. (44)

Equation (44) can be simplified by means of the Bianchi identity [32][33]

∂σ (η
σρµνFµν) = 0, (45)

which has also been verified computationally through the code provided in the appendix B.
Expanding (44) by using the derivative product rule and substituting for (45) yields

∂σ
(√

−gF σρ
)
+

α

2f
ησρµνFµν∂σϕ = 0. (46)

In solving equation (46), the Coulomb Gauge A0 = ∂iAi = 0 is adopted. The solution is then
given by

∂2
0Ai − ∂2

jAi −
α

f
ϕ′ϵijk∂jAk = 0, (47)

where ϵijk is the Levi-Civita tensor in three dimensions. Equation (47) takes the vector form

A⃗′′ −∇2A⃗− α

f
ϕ′∇⃗× A⃗ = 0, (48)

where the identity
(
∇⃗× A⃗

)
i
= ϵijk∂jAk was used.

3.2.1 Converting to Fourier Space

As commonly done in QFT, in order to solve (48), A⃗ (τ,x) 5 is promoted to an operator and
then decompose it in its Fourier modes as

A⃗ (τ,x) =
∑
λ=±

∫
d3k

(2π)3/2

[
ϵ⃗λ(k)Aλ(τ,k)aλ(k)eik·x + ϵ⃗∗λ(k)A∗

λ(τ,k)a
†
λ(k)e

−ik·x
]
, (49)

where Aλ are the Fourier modes and aλ, a
†
λ respectively the usual annihilation and creation

operators obeying the canonical commutation relations[
aλ(k), a

†
λ′(k′)

]
= δλλ′δ(3)(k − k′). (50)

In (49) a sum is performed over the two polarization states6 λ = ± represented by the circular
polarization vectors ϵ⃗± obeying [28]

5We remark that, to avoid excessive cluttered expressions, we interchangeably use both the arrow v⃗ and the
boldface notation v to denote vectors.

6Exactly as in classical Electrodynamics [34]
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k⃗ · ϵ⃗±(k⃗) = 0, (51)

k⃗ × ϵ⃗±(k⃗) = ∓ikϵ⃗±, (52)

ϵ⃗±(−k⃗) = ϵ⃗±(k⃗)
∗, (53)

ϵ⃗λ(k⃗)
∗ · ϵ⃗λ′(k⃗) = δλλ′ . (54)

By means of decomposition (49) and (51) to (54), equation (48) can be converted to Fourier
space. The exact calculations can be found in A.2. As such, it is found that the gauge field
modes satisfy equations (

∂2
τ + k2 ± 2kξ

τ

)
A±(τ, k) = 0, ξ ≡ αϕ̇

2fH
, (55)

where the vector notation on the k argument is dropped as the partial differential equation
involves only the magnitude of the momentum vectors k⃗. We will see how the parameter ξ will
play an important role in characterizing the inflationary period and the interplay between the
axion and the gauge field.

3.2.2 Solution of the Gauge Field Modes Equations of Motion

A first look at equation (55) shows that one of the mode functions A± undergoes rapid growth
of fluctuations, also known as tachyonic instability. This can be seen clearer if (55) is rewritten
in terms of kτ (for negative conformal time τ < 0):(

∂2
kτ + 1± 2ξ

kτ

)
A±(τ, k) = 0, (56)

which resembles the standard form of a harmonic oscillator equation with a time dependent
oscillating frequency ω2 = 1± 2ξ

kτ . As such, instabilities will grow when ω2 ≤ 0. The convention
in which ϕ̇ > 0 can be adopted, such that the parameter ξ, which can be effectively treated as a
constant during inflation, since both ϕ̇ and H are slowly varying, remains positive. Consequently,
the mode A+ is the one selected to exhibit tachyonic instability when

ω2 = 1 +
2ξ

kτ
≤ 0 ⇒ kτ ≥ −2ξ, (57)

that is, equivalently, the growth occurs in the vicinity of horizon crossing for the given mode. By
inspection of (56), it then follows that production of gauge field fluctuations for the remaining
mode A− can be neglected.

Equation (55) allows for an analytical solution in terms of hypergeometric functions as

A±(τ, k) = e−ikττ [c0 1F1 (1± iξ, 2, 2ikτ) + c1 U (1± iξ, 2, 2ikτ)] , (58)

where 1F1 is the Kummer confluent hypergeometric function, U is the confluent hypergeometric
function and c0, c1 are constants defined by initial conditions. The solution (58) was confirmed
computationally, see Appendix B. In the current case, it is required that the gauge field satisfies
the Bunch-Davies vacuum [35][36]

lim
τ→−∞

A±(τ, k) =
1√
2k

e−ikτ . (59)
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The exact form of the solution with the appropriate c0 and c1 is rather complicated and can be
found in the code provided in appendix B. On the other hand, in order to account for a more
tractable analysis, solutions to (55) may be recast and presented in terms of Coulomb functions7

G0 and F0, which are themselves a combination of hypergeometric functions [38], in the form

A+(τ, k) =
1√
2k

[G0(ξ,−kτ) + iF0(ξ,−kτ)] . (60)

Although (60) is an exact solution, it is worth applying some approximations to reduce it to
a more practical form. Firstly, from (56) it is possible to infer that A+ modes in the range
−kτ ≫ 2ξ will not develop substantial growth and they will remain in their vacuum state.
Additionally, phenomenologically it is expected for the paramater ξ to satisfy ξ ≥ O(1), in
order for the oscillation frequency (57) to deviate sufficiently from ω ≈ 1 and to allow for
a meaningful exponential growth amplitude of fluctuations8. Therefore the aim is to find a
reasonable approximation in the regime

kτ ≫ −2ξ, eγξ ≫ 1, (61)

where γ is an arbitrary parameter of order one. As argued in [28], solutions to (56) in the region
(61) are well approximated by the expression

A+(τ, k) ≈
√

−2τ

π
eπξK1

(
2
√
−2ξkτ

)
, (62)

where K1(z) is the modified Bessel function of the second kind.
Finally, it is stressed that since kτ ≥ −2ξ is required to develop substantial gauge field

fluctuation, an asymptotic approximation and the large argument of expression (62) may be
employed to obtain (for further details, refer to the appendix A.3)

A+(τ, k) =

√
1

2k

(
−kτ

2ξ

)1/4

eπξ−2
√
−2ξkτ . (63)

The expression (63) are plotted in figure 4 as a function of conformal time, for a range of
values of the parameter ξ. It can be graphically confirmed how the gauge field instabilities are
built towards the end of inflation, as τ → 0. Physically, this can be interpreted as the final
period by which the perturbations are stretched to cosmic significance and thus are about to exit
the horizon. Indeed, as expected, for kτ ≪ −2ξ the gauge field modes remain in their vacuum
state and exhibit an oscillatory motion. Furthermore, it can be observed how the parameter
ξ affects the rate at which the gauge field fluctuations start to grow: this is evident from the
exponential factor eπξ in the expression (63). To further validate the findings presented in this
section, figure 5 provides a visual comparison between the exact solution (60) of the gauge field
equation of motion and the approximate solution (63): the two functions exhibit a high degree
of agreement, indicating that (63) can be confidently employed in all subsequent analyses with
considerable accuracy.

7Coulomb functions are solutions to the Coulomb equation d2W
dρ2

+
[
1− 2η

ρ
− L(L+1)

ρ2

]
W = 0 [37]. In our case,

(56) is exactly the Coulomb equation with L = 0, ρ = kτ and η = ±ξ.
8Here it is simply anticipated that given the similarity of (56) to a harmonic oscillator, then the unstable

models will likely display a growing exponential behavior.
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Figure 4: Plot of the gauge field modes A+ as in expression (63) as a function of conformal
time, for five different values of the parameter ξ. The plot reveals a significant increase in the
amplitude of fluctuations towards the end of the inflationary period τ → 0. Moreover, the rate
of production of these fluctuations becomes more rapid as the value of ξ increases.

Figure 5: Comparison between the exact solutions (60) versus the approximate solution (63).
As it can be inferred, the two agree to a high degree of accuracy in the regime (61) where the
approximation was effectively derived. The parameter ξ is set to ξ = 4.

3.3 Derivation Equations of Motion for Inflaton

In order to study the backreaction effects that the gauge field perturbations have on the infla-
tionary epoch, the equation of motion of the inflaton field needs to be derived. This is the subject
of the next sections. Additionally, the 00 Einstein equation is computed, as the gauge field per-
turbations may also affect the homogeneous background evolution given by the corresponding
Friedmann equation.
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3.3.1 Inflaton Equation of Motion

Equation (43) is varied with respect to ϕ. In particular,

∂L
∂ϕ

= −
√
−g

(
α

4f
ϕ F̃µνFµν +

dV

dϕ

)
, (64)

∂L
∂ (∂µϕ)

= −1

2

√
−ggσρ

(
δµσ∂ρϕ+ δµρ∂σϕ

)
= (65)

= −1

2

√
−g (gµρ∂ρϕ+ gσµ∂σϕ) = (66)

−1

2

√
−g (∂µϕ+ ∂µϕ) = −

√
−g∂µϕ, (67)

where from (66) to (67) the symmetric property of the FRW metric gµν = gνµ was used, which can
also be inferred from its matrix form (8). Given the result of (64) and (67), the Euler-Lagrange
equation for the axion field ϕ becomes

∂L
∂ϕ

− ∂µ

(
∂L

∂ (∂µϕ)

)
= 0, (68)

−
√
−g

(
α

4f
ϕ F̃µνFµν +

dV

dϕ

)
− ∂µ

(√
−g∂µϕ

)
= 0. (69)

The first term in (69) contains the backreaction of the gauge field on the dynamics of the axion,
whereas the second term introduces a Hubble friction contribution to the equation of motion
due to time dependence of the FRW metric, specifically as in the usual slow-roll homogeneous
inflation [39]. Further simplification of (69) leads to

−a4
(

α

4f
ϕ F̃µνFµν +

dV

dϕ

)
−
(
−2a a′ϕ′ + a2

(
−ϕ′′ +∇2ϕ

))
= 0, (70)

ϕ′′ −∇2ϕ− 2
a′

a
ϕ′ + a2

dV

dϕ
= a2

α

4f
ϕ F̃µνFµν , (71)

where all the details of the derivation can be found in the appendix A.4
In order to simplify the analysis of equation (71), the tensorial formulation of the gauge

field term is converted to the physical fields, which by convenience are denoted "Electric" and
"Magnetic" fields, although they do not necessarily bear any resemblance to the corresponding
fields as in Standard Model physics9. It is thus proposed [31] [40]

Ei ≡ − 1

a2
Ai

′, Bi ≡
1

a2
ϵijk∂jAk, (72)

or equivalently, in vector notation

E⃗ ≡ − 1

a2
A⃗′, B⃗ ≡ 1

a2
∇× A⃗. (73)

9As an example, the expectation value of the dot product between the electric and magnetic field vectors
⟨E⃗ · B⃗⟩Electromagnetism is zero in QED. On the other hand, in section 3.4 we will find an explicit expression for
⟨E⃗ · B⃗⟩ assuming the U(1) gauge field of our system.
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Consequently, (71) is rewritten as

ϕ′′ −∇2ϕ− 2Hϕ′ + a2
dV

dϕ
= a2

α

f
E⃗ · B⃗, (74)

which has been verified computationally through the code provided in appendix B.

3.3.2 00 Einstein Equation

The 00 Einstein equation is obtained by varying the action with respect to the 00 component of
the metric [41]. The derivation is performed through the code provided in the appendix B and
leads to a modified Friedmann equation with an additional energy density contribution from the
gauge field:

H2 =
1

3M2
p

[
1

2
ϕ′2 +

1

2

(
∇⃗ϕ
)2

+ a2V +
a2

2

(
E⃗2 + B⃗2

)]
. (75)

3.4 Backreaction of Gauge Field on the Homogeneous Inflaton Dynamics

The homogeneous inflation provided by the axion ϕ sources a growth of perturbations for Aµ

in its respective equation of motion (55) through the term ξ dependent on ϕ̇. In section 3.3.1,
the equation of motion for the axion field ϕ coupled to the gauge field Aµ through the term
ϕF̃µνFµν in the action (43) was derived. This equation captures the dynamics of the axion field
and its interaction with the gauge field. Therefore, it follows similarly that the evolution of ϕ is
affected by the production of the gauge field fluctuations, which backreact on the homogeneous
background evolution through the last term of (74). In order to allow for a more tractable
study of these backreaction effects, a mean field approximation of (74) and (75) is employed,
by which inflaton perturbations are ignored and the gauge field fluctuations are averaged out.
Mathematically, this leads to

ϕ′′ − 2Hϕ′ + a2
dV

dϕ
≈ a2

α

f
⟨E⃗ · B⃗⟩, (76)

H2 ≈ 1

3M2
p

[
1

2
ϕ′2 + a2V +

a2

2
⟨E⃗2 + B⃗2⟩

]
, (77)

where the terms inside angle brackets are expectation value outlining the backreaction of the
gauge field on the homogeneous dynamics of the axion during inflation [28]. The presence of
these backreaction effects allows for several physical considerations to be made: firstly, from
(76) it can be observed how the gauge field fluctuations effectively dissipate kinetic energy ϕ′

from the axion in order to source their exponential growth. Secondly, the gauge field also serves
as an additional energy density term in the Friedmann equation (77). Consequently, the usual
inflationary period may be affected due to the different energy contributions and thus the inflaton
potential may not be dominant. It is then crucial to find explicit expressions for both expectation
values and impose slow roll conditions. The procedure is as follows:

Both spatial averages can be evaluated by referring to the Fourier mode decomposition (49),
with the only difference that the ladder operator quantisation is now neglected as the work is
performed in a classical picture10. As such, it is found that

10The same results for the spatial averages in (76) and (77) are obtained by considering the full quantum Fourier
mode decomposition (49) if the angle brackets are considered as effectively defining vacuum expectation values.
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A⃗(τ,k) =
∫

d3k

(2π)3/2
ϵ⃗(k)A(τ, k)eik·x, (78)

E⃗ = − 1

a2

∫
d3k

(2π)3/2
ϵ⃗(k)A′(τ, k)eik·x, (79)

B⃗ =
1

a2

∫
d3q

(2π)3/2
q ϵ⃗(q)A(τ, q)eiq·x, (80)

where the subscripts λ = ± is dropped since it is now implicit that only the A+ polarization
is considered, as it was found in section 3.2.2 that the A− mode does not produce sensible
fluctuations and thus it can be neglected. Inserting (78) into the expectation values in (76) leads
to

⟨E⃗ · B⃗⟩ = − 1

a4

∫
d3x d3k d3q

(2π)9/2
q ϵ⃗(k) · ϵ⃗(q)A′(τ, k)A(τ, q)ei(k+q)·x = (81)

= − 1

a4

∫
d3k d3q

(2π)3
δ(3) (k + q) q ϵ⃗(k) · ϵ⃗(q)A′(τ, k)A(τ, q) = (82)

= − 1

a4

∫
d3k

(2π)3
k A′(τ, k)A(τ, k) = (83)

= − 1

a4

∫
d3k

(2π)3
k

d

dτ
|A|2, (84)

where the normalization (54) of the polarization vectors was used. Similarly, for the spatial
average in (77) it is obtained (see appendix A.5)

⟨E⃗2 + B⃗2⟩ = 1

a4

∫
d3k

(2π)3

[∣∣A′∣∣2 + k2|A|2
]
. (85)

Unsurprisingly, direct evaluation of (84) and (85) by substitution of the exact mode solutions
(60) is impractical as the integrals are divergent. On the other hand, the approximations (63) can
be employed inside the integrals (84) and (85), where the integration regions can eb expanded
from k = 0 to k = ∞. This latter approximation is argued to be accurate as it is discussed in
3.2.2 how the A+ modes do not produce perturbations and oscillate along their vacuum state
for −kτ ≪ −2ξ. Consequently the regions contribute negligibly to the integrals and can be
evaluated explicitly as

⟨E⃗ · B⃗⟩ = −135H4e2πξ

65536π2ξ4
≈ −2.1 · 10−4H

4e2πξ

ξ4
, (86)

⟨E⃗2 + B⃗2⟩ =
63H4e2πξ

(
4ξ2 + 5

)
262144π2ξ5

≈ 2.4 · 10−5H
4e2πξ

(
4ξ2 + 5

)
ξ5

. (87)

Slow roll inflation is then reasonable when the source term a2 αf ⟨E⃗ · B⃗⟩ in (76) is much smaller
than the variation of the inflaton potential (such that its degree of flatness is not considerably
altered). Mathematically, this can be expressed as
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∣∣∣∣dVdϕ
∣∣∣∣≫ ∣∣∣∣a2αf ⟨E⃗ · B⃗⟩

∣∣∣∣ ⇒ H2

|ϕ′|
≪ 69ξ3/2e−πξ, (88)

where the definition of ξ and the slow roll approximation (34) was used. An additional constraint
comes from assuming that the inflaton potential remains dominant and effectively drives inflation.
The gauge field energy density produced by the growth of perturbations in (77) must satisfy

V ≫ 1

2
⟨E⃗2 + B⃗2⟩ ⇒ H

Mp
≪ 124ξ3/2e−πξ, (89)

where for simplicity factors of 1
ξ2

are neglected since O(ξ) ≥ 1. Both constraints (88) and (89)
must be satisfied in order for inflation coupled to the U(1) gauge field to be successful.

3.5 Inflaton Perturbations

The axion field ϕ is now considered as a function of both space and time, that is

ϕ = ϕ(τ) + δϕ(τ,x), (90)

and study how its perturbations δϕ(t,x) evolve. This can be performed by first substituting (90)
into (74):

(ϕ(τ) + δϕ(τ,x)) ′′−∇2δϕ(τ,x)−2H(ϕ(τ)+δϕ(τ,x))′+a2
dV

d (ϕ(τ) + δϕ(τ,x))
= a2

α

f
E⃗ ·B⃗. (91)

Expanding to linear order the potential in the last equation yields

dV

d (ϕ(τ) + δϕ(τ,x))
≈ dV

dϕ(τ)
+

d2V

dϕ(τ)2
δϕ(τ,x) = (92)

= V (ϕ)′ + V ′′(ϕ)δϕ(τ,x). (93)

Plugging (93) into (91) leads to

[
ϕ(τ)′′ − 2H(ϕ(τ) + a2V ′]+ ϕ(τ,x)′′ −∇2δϕ(τ,x) + 2Hδϕ(τ,x) + a2V ′′(ϕ)δϕ(τ,x) = a2

α

f
E⃗ · B⃗.

(94)
The terms in square brackets are exactly equation (76), hence this leads to the equation of motion
for the axion perturbations in the form

δϕ(τ,x)′′ −∇2δϕ(τ,x) + 2Hδϕ(τ,x) + a2V ′′(ϕ)δϕ(τ,x) = a2
α

f

(
E⃗ · B⃗ − ⟨E⃗ · B⃗⟩

)
. (95)
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3.5.1 Solution to the Equation of Motion for Inflaton Perturbations

Equation (95) is a partial linear inhomogeneous differential equation. As such, its general solution
can be expressed as a sum of the homogeneous solution plus a particular solution:

δϕ(τ,x) = δϕhomogeneous(τ,x) + δϕparticular(τ,x). (96)

Physically, the homogeneous solution corresponds to the classic vacuum inflaton perturbations,
which are extensively studied in literature, e.g. see [17] [42]. On the other hand, the inhomoge-
neous term can be interpreted as sourcing inflaton perturbations via inverse decay contributions
of the form δA+ δA → δϕ [43]. These inverse fluctuations are worth studying, as their evolution
may radically affect usual slow-roll inflation. As an example, Ref [44] derived how the inverse
decay term actually dominates over the vacuum perturbations in the range f ≤ 10−2Mp.

With this premise, it is proceeded to solve equation (95) in a similar way as in section 3.2.1, by
firstly performing a mode expansion of the axion perturbations and thus converting the equation
to Fourier space:

δϕ(τ,x) =
∫

d3k

(2π)3/2
Qk(τ)

a(τ)
eik·x, (97)

where the artificial extraction of the scale factor a(τ) from the mode function Qk(τ) will become
clear further in the derivation. The following identities follow:

δϕ(τ,x)′′ =
∫

d3k

(2π)3/2

[
Qk

′′a− a′Qk
′

a2
− (a′′Qk + a′Q′

k)− 2a′2aQk

a4

]
, (98)

∇2δϕ(τ,x) =
∫

d3k

(2π)3/2
k2

Qk(τ)

a(τ)
eik·x. (99)

Substituting (98) and (99) into (95) leads to

∫
d3k

(2π)3/2

[
Qk

′′

a
− a′

a2
Q′

k − a′′

a2
Qk −

a′Q′
k

a2
+ 2

(a′)2Qk

a3
+ 2

a′

a2
Q′

k − 2
(a′)2Qk

a3
+

k2

a
+

a2V ′′

a

]
eik·x =

=

∫
d3k

(2π)3/2

[
Qk

′′

a
− a′′

a2
Qk +

k2

a
Qk +

a2V ′′

a
Qk

]
eik·x = a2

α

f

(
E⃗ · B⃗ − ⟨E⃗ · B⃗⟩

)
.

(100)

The ⟨E⃗ ·B⃗⟩ term in the last equation can be neglected, since it does not depend on the momentum
modes k⃗ as the expectation value integrates over all momentum space. Therefore, the final
expression is reached by converting the source term to Fourier space as well:[

∂2
τ −

a′′

a
+ k2 + a2V ′′

]
Qk = Jk(τ), (101)

where Jk(τ) is the source term in momentum space defined as

Jk(τ) = a3
α

f

∫
d3x

(2π)3/2

[
E⃗ · B⃗

]
(τ, x⃗) e−ik⃗·x⃗. (102)
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Some readers may recognize equation (101) as a resemblance to the inhomogeneous Mukhanov-
Sasaki equation, which arises naturally in slow-roll inflation when perturbing the minimally
coupled action of the inflaton through considering metric and scalar perturbations [45]. As such,
solutions to (101), which are about to be derived and discussed, will be in an analogous form
as the canonical Mukhanov-Sasaki equation. Equation (101) can be solved similarly as (95), by
splitting between the homogeneous and particular solutions

Qk(τ) = Qhomogeneous
k (τ) +Qparticular

k (τ). (103)

As usually done when solving for inflaton vacuum fluctuations, an operator expansion of the
homogeneous term is employed [17]

Qhomogeneous
k (τ) = b (k)Qk(τ) + b† (−k)Q∗

k(τ), (104)

where Qk(τ) and Q∗
k(τ) are linearly independent solutions of the homogeneous equation. The

corresponding axion raising/lowering operators obey the common canonical commutation relation[
b (k) , b†

(
k′)] = δ(3)

(
k − k′) , (105)

and since the axion ϕ and the gauge field Aµ are a priori independent, their respective ladder
operators are consequently statistically independent. Thus, they commute:[

b (k) , aλ
(
k′)] = [b (k) , a†λ (k′)] = 0. (106)

This latter property is crucial as the commutativity between the ladder operators for the homo-
geneous and particular solution can be exploited to argue that correlation functions involving
cross terms such as ⟨Qhomogeneous

k Qparticular
k’ ⟩ vanish, implying that the curvature perturbations

can be expressed as the sum of two independent terms

ζ = ζhomogeneous + ζparticular. (107)

This will be the subject of the following sections. But firstly, we take some time to derive the
standard expression for the homogeneous solution to (101).

3.5.2 Solution of the Homogeneous Equation

The homogeneous part of the axion perturbation equation of motion (101) can be recast into the
form [

∂2
τ +

(
k2 −

n2 − 1
4

τ2

)]
Qk(τ) = 0, (108)

where we refer to appendix A.6 for a detailed derivation.
Equation (108) allows for an analytical solution in terms of Bessel functions of the first and

second kind:
Qk(τ) =

√
τ [c1Jn(kτ) + c2Yn(kτ)] , (109)

although in literature they are most frequently presented in terms of the equivalent Hankel
functions of the first and second kind as

Qk(τ) =
√
−τ
[
αH(1)

n (−kτ) + βH(2)
n (−kτ)

]
, (110)
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where c1, c2, α, β are all constants determined by initial conditions. In (110), a −i term was
extracted from the initial condition constants to convert the Hankel function from a negative to
a positive argument (since τ is negative during inflation) using the property

Jn(kτ) = −iJn(−kτ) for n ≈ 3

2
and τ ≤ 0, (111)

which was verified computationally. This leads an equivalent solution to (108) which is usually
presented in literature in order to conventionally select only the Hankel function of the first kind,
e.g see Refs [1] and [46]. It is stressed that these are all arbitrary normalization procedures, and
the final results (including the power spectrum) will not be affected.

In order to avoid the vacuum ambiguity, impose Bunch-Davies vacuum can be imposed

lim
τ→−∞

Qk(τ) =
1√
2k

e−ikτ . (112)

Asymptotic approximations of the Hankel functions of the first and second kind are [47]

lim
τ→−∞

H
(1)
n≈3/2(kτ) = i

√
2

π

1

kτ
eikτ , lim

τ→−∞
H

(2)
n≈3/2(kτ) = i

√
2

π

1

kτ
e−ikτ , (113)

where a physically unobservable phase factor of i was kept to conventionally make the mode
functions real in the limit −kτ → 011 [28]. Thus, (110) takes the asymptotic form

lim
τ→−∞

Qk(τ) =

√
2

π

[
α

√
1

k
e−ikτ + β

√
1

k
eikτ

]
. (114)

Matching (114) with (112) leads to

α = i

√
π

2
, (115)

and consequently, the modes functions that serve as the homogeneous solutions to the axion
perturbation equation are

Qk(τ) = i

√
π

2

√
−τH(1)

n (−kτ). (116)

3.5.3 Particular Solution

Any particular solution to the axion perturbation equation of motion (101) can be expressed by
employing the Green’s function method. It is thus solved[

∂2
τ +

(
k2 −

n2 − 1
4

τ2

)]
Gk(τ, τ

′) = δ
(
τ − τ ′

)
. (117)

The normalized solution to (117) is therefore (see Ref [28])

Gk(τ, τ
′) = iΘ

(
τ − τ ′

) [
Qk(τ)Q

∗
k(τ

′)−Q∗
k(τ)Qk(τ

′)
]
, (118)

such that a particular solution to (101) can be expressed as

11Here lim−τ→0 H
(1)

3/2 = − i
√

2
π

(kτ)3/2
is used.
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Qparticular
k (τ) =

∫ 0

−∞
dτ ′Gk(τ, τ

′)Jk(τ), (119)

where as usual during inflation conformal time runs over the negative real axis.

3.6 Derivation of the Power Spectrum

3.6.1 Vacuum 2-point Correlator

In the previous section the mode functions describing the axion perturbations during the in-
flationary epoch were derived. The focus now shifts to obtaining an expression for the power
spectrum of curvature perturbations ζ(τ, x⃗), which are strictly connected to the inflaton pertur-
bations by the approximate relation [48]

ζ(τ,x) = −H

ϕ̇
δϕ(τ,x). (120)

Derivation of expression (120) is beyond the scope of this thesis. Nevertheless, it is a standard
relation extensively mentioned in literature, e.g. see [49]. Curvature perturbations are also known
as adiabatic, as they equally affect all relative changes in any observable scalar quantities, i.e.
δX
Ẋ [50]. As a relevant example to this thesis, observations led to considering CMB anisotropies
fluctuations, which arise from energy density perturbations on the surface of last scattering, as
utterly adiabatic [51].

Firstly, the curvature perturbations ζ(τ, x⃗) are decomposed into their Fourier modes

ζ(τ, x⃗) =

∫
d3k

(2π)3/2
ζk(τ)e

ik·x. (121)

Comparing (121) with (97), and using the relation (120) it is found that

ζk = −H

ϕ̇

Qk

a
. (122)

As argued in section 3.5.1, the curvature perturbations take the form

ζk = ζhomogeneous
k + ζparticular

k , (123)

implying a correlation function ⟨ζkζk’⟩ ≡ ⟨0| ζkζk’ |0⟩ of the type

⟨ζkζk’⟩ = ⟨ζhomogeneous
k ζhomogeneous

k’ ⟩+ ⟨ζparticular
k ζparticular

k’ ⟩, (124)

where again cross terms vanish by the same reasoning as in section 3.5.1. The homogeneous
correlation function can be evaluated as follows: the homogeneous modes are replaced with their
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operator expansion (104) such that

⟨ζhomogeneous
k ζhomogeneous

k’ ⟩ = H2

ϕ̇2a2
· ⟨
(
b (k)Qk(τ) + b† (−k)Q∗

k(τ)
)(

b
(
k′)Qk′(τ) + b†

(
−k′)Q∗

k′(τ)
)
⟩ =

(125)

=
H2

ϕ̇2a2

(
⟨b (k)Qk(τ)b

(
k′)Qk′(τ)⟩+ ⟨b (k)Qk(τ)b

† (−k′)Q∗
k′(τ)⟩+ (126)

⟨b† (−k)Q∗
k(τ)b (k)Qk(τ)⟩+ ⟨b† (−k)Q∗

k(τ)b
† (−k′)Q∗

k′(τ)⟩
)
=

=
H2

ϕ̇2a2
Qk(τ)Q

∗
k′(τ)⟨b (k) b†

(
−k′)⟩, (127)

where to pass from (126) to (127) the standard vacuum identities

b |0⟩ = 0, ⟨0| b† = 0, (128)

are used. Equation (127) can be further simplified by means of the canonical commutation
relation for the axion ladder operators (105) as

⟨ζhomogeneous
k ζhomogeneous

k’ ⟩ = H2

ϕ̇2a2
Qk(τ)Q

∗
k′(τ)

〈 [
b (k) , b†

(
−k′)] 〉 = (129)

=
H2

ϕ̇2a2
Qk(τ)Q

∗
k(τ)δ

3(k − k′) = (130)

=
H2

ϕ̇2a2
|Qk(τ)|2 δ3(k − k′). (131)

The modulus squared of the axion perturbation mode functions in (131) is obtained directly from
(116):

|Qk(τ)|2 =
π

4
(−τ)

∣∣∣H(1)
n (−kτ)

∣∣∣2. (132)

The latter equation can be simplified further by considering a key feature of curvature pertur-
bations. Indeed, they posses the remarkable property by which their time evolution is stopped
on superhorizon scales. This can be interpreted as a subsequent effect from locality: as they
get stretched to horizon scale, the fluctuations become causally disconnected from the region
of space they originated, and as such they cannot be altered by local physics [52] [53]. Most
importantly, the features observed in the cosmic microwave background (CMB) radiation are
imprinted by curvature fluctuations created during the inflationary period and subsequently
frozen [54]. Consequently, since the interest lies in curvature perturbations well beyond the
horizon, the superhorizon limit k

aH ≈ −kτ ≪ 1 of the Hankel function can be considered [55]

lim
τ→0

H(1)
n =

i

π
Γ(n)

(
−kτ

2

)−n

, (133)
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which then gives

|Qk(τ)|2 = − 1

4π
τ Γ2(n)

(
−kτ

2

)−2n

= (134)

22n

4π
Γ2(n)

τ1−2n

k2n
=

22n

4π
Γ2(n)

τ1−2n

k3
k3−2n = (135)

≈ 1

2

(
1

aH

)−2 1

k3

(
1

aH

)3−2n

= (136)

=
1

2
a2H2 1

k3

(
k

aH

)3−2n

= (137)

=
1

2
a2H2 1

k3

(
k

aH

)ns−1

, (138)

where the numerical and gamma terms are evaluated at exactly n = 3/2 in the amplitude (as
this is expected not to change dramatically the scale invariance of the spectrum) and the spectral
index ns defined as ns − 1 ≡ 3− 2n is introduced. The latter is exploited to measure deviation
of the power spectrum from scale invariance, i.e. when ns − 1 ̸= 0. In conclusion, the 2-point
correlator function for the vacuum fluctuations has the standard expression

⟨ζhomogeneous
k ζhomogeneous

k’ ⟩ = H2

ϕ̇2a2
1

2
a2H2 1

k3

(
k

aH

)ns−1

= (139)

=
H4

2ϕ̇2

1

k3

(
k

aH

)ns−1

δ3(k − k′) = (140)

=
2π

k3
P
(

k

aH

)ns−1

δ3(k − k′), (141)

where the term P is defined as

P1/2 ≡ H2

2π
∣∣∣ϕ̇∣∣∣ . (142)

3.6.2 Particular 2-point Correlator

The correlation function for the particular solution is independent from the vacuum contribution
and is expressed in terms of the Green’s function found in section 3.5.3 as

⟨ζparticular
k ζparticular

k’ ⟩ = H2

ϕ̇2

∫
dτ ′ dτ ′′

1

a(τ)2
Gk(τ, τ

′)Gk′(τ, τ
′′)⟨Jk(τ

′)Jk(τ
′′)⟩. (143)

By substituting for the Green’s function (118) and after some algebra

⟨ζparticular
k ζparticular

k’ ⟩ = H2

ϕ̇2

4

a(τ)2
Q2

k(τ)

∫
dτ ′ dτ ′′ Im

[
Qk(τ

′)
]
Im
[
Qk(τ

′′)
]
⟨Jk(τ

′)Jk(τ
′′)⟩,

(144)
where it was invoked the property by which the 2-point correlator exhibits a non-zero value
solely when the magnitudes of the momenta involved are identical (|k| = |k′|), similarly to the
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vacuum case. All algebraic simplifications are confirmed with the code provided in the appendix
B. Taking into consideration our interest in the superhorizon power spectrum of the modes, the
mode function outside the integral in (144) can be replaced with the mode (138) leading to

⟨ζparticular
k ζparticular

k’ ⟩ = 2H4

ϕ̇2

1

k3

(
k

aH

)ns−1 ∫
dτ ′ dτ ′′ Im

[
Qk(τ

′)
]
Im
[
Qk(τ

′′)
]
⟨Jk(τ

′)Jk(τ
′′)⟩.

(145)
The source 2-point correlator ⟨Jk(τ

′)Jk′(τ ′′)⟩ can be evaluated explicitly, although the calcula-
tion is rather lengthy and involved. Therefore, only the final result is presented, and the reader
may refer to Refs [28] and [44] for further details. As such, the correlator for the source term
takes the rather convoluted form

⟨Jk(τ
′)Jk(τ

′′)⟩ = α2δ(3)(k + k′)

8f2a(τ ′)a(τ ′′)

∫
d3q

(2π)3

[
1 +

|q|2 − q · k
|q||k − q|

2
]
A
[
τ ′, |q|, |q − k|

]
A∗ [τ ′′, |q|, |q − k|

]
,

(146)
where

A
[
τ ′, |q|, |q − k|

]
≡ |q|A′

+(τ
′, |q − k|)A+(τ

′, |q|) + |q − k|A′
+(τ

′, |q|)A+(τ
′, |q − k|). (147)

Equation (146) can now be inserted into the correlator (145):

⟨ζparticular
k ζparticular

k’ ⟩ = H6

2ϕ̇2

1

k3

(
k

aH

)ns−1 α2

f2
δ3(k + k′)

∫
d3q

(2π)3

[
1 +

|q|2 − q · k
|q||k − q|

2
]
×∫

dτ ′ dτ ′′ (−τ ′)(−τ ′′)Im
[
Qk(τ

′)
]
Im
[
Qk(τ

′′)
]
A
[
τ ′, |q|, |q − k|

]
A∗ [τ ′′, |q|, |q − k|

]
, (148)

where, as previously done, the de Sitter approximation τ ≈ − 1
aH was used. The time integrals

in (148) can be rewritten as

∫
dτ ′ dτ ′′ (−τ ′)(−τ ′′)Im

[
Qk(τ

′)
]
Im
[
Qk(τ

′′)
]
A
[
τ ′, |q|, |q − k|

]
A∗ [τ ′′, |q|, |q − k|

]
=∫

dτ ′ (−τ ′)2
∣∣Im [Qk(τ

′)
]
A
[
τ ′, |q|, |q − k|

]∣∣2. (149)

The k dependence of the integrals in (148) can be overcome by converting to the dimensionless
integration variable q̄ ≡ q

|k| and substituting for the gauge field mode functions (63) as well as
the axion mode functions (116). After some algebraic simplifications [28],

⟨ζparticular
k ζparticular

k’ ⟩ = H6e4πξ

28π2ϕ̇2

1

k3

(
k

aH

)ns−1 α2

f2
δ3(k + k′)×

∫
dq̄

1 + q̄2 − q̄ · k̂

q̄
∣∣∣k̂ − q̄

∣∣∣
 |q̄|1/2

∣∣∣q̄ − k̂
∣∣∣1/2 [|q̄|1/2 + ∣∣∣q̄ − k̂

∣∣∣1/2]2×
(√

π

2

∫ ∞

−kτ
dxx3/2Re

[
H

(1)
3/2(x)

]
e−z

√
x

)2

. (150)
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Following the same convention adopted in [28], the particular 2-point correlator is rewritten as

⟨ζparticular
k ζparticular

k’ ⟩ = 2π

k3

(
k

aH

)ns−1

P2χ(ξ)e4πξδ3(k + k′), (151)

where as in section (3.2.1), ξ ≡ αϕ̇
2fH and the ξ dependent function χ(ξ) is defined as

χ(ξ) ≡ ξ2

8π

∫
dq̄

1 + q̄2 − q̄ · k̂

q̄
∣∣∣k̂ − q̄

∣∣∣
 |q̄|1/2

∣∣∣q̄ − k̂
∣∣∣1/2 [|q̄|1/2 + ∣∣∣q̄ − k̂

∣∣∣1/2]2×
(√

π

2

∫ ∞

−kτ
dxx3/2Re

[
H

(1)
3/2(x)

]
e−z

√
x

)2

. (152)

In the spirit of the cosmological principle, the power spectrum is expected to be directionally
independent [54]. As such, a reference scale direction k̂ = (1, 0, 0) is taken in order to solve (152)
numerically through the code provided in the appendix B. A plot of χ(ξ) is shown in figure 6. It
can be inferred how the amplitude of the function decreases rapidly as the parameter ξ increases,
although the exponential factor in the correlator strongly counterbalance this steep decline. As
such, the amplitude of (151) could grow substantially for higher values of ξ. This gives another
physical reason to phenomenologically exclude too large values of the parameter ξ, and thus it
is reasonable to expect axionic-inflation to be happening around O(ξ) ≈ 1.

Figure 6: The dimensionless function χ from equation (152) as a function of ξ.

3.6.3 The Cumulative Power Spectrum

Expressions for both the vacuum and particular correlation functions, respectively (141) and
(151), can now finally be related to the power spectrum by the well known equation [3]

⟨ζkζk′⟩ = P (k)
2π

k3
δ(3)(k + k′). (153)
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It is now clearer why it was decided to cast the vacuum and particular correlators into the
respective forms (141) and (151), since it can now be effortlessly inferred that the power spectrums
Pvacuum and Pparticular are

Pvacuum = P
(

k

aH

)ns−1

, (154)

Pparticular = P2

(
k

aH

)ns−1

χ(ξ)e4πξ. (155)

Physically, by inspection of (155), it can be observed how the particular power spectrum is
strongly dependent on the parameter ξ, which effectively quantifies the backreaction of the gauge
field on the axionic inflationary evolution. In particular, the gauge field mode functions A+ in
the representation given by (63) were employed, which were obtained in the limit e4πξ ≫ 1. It
is, thus, reasonable to anticipate that the exponential term in (155) will dominate the power
spectrum as ξ increases, while being in a subdominant position with respect to the vacuum
contribution as ξ → 0 due to the relative small magnitude of the function χ(ξ) (see section
3.6.2.) Consequently, the duration of the inflationary period can be significantly affected by
these dynamics.

In order to delve deeper into this aspect, an expression for the cumulative power spectrum
is derived, which encompasses the combined effects of both the vacuum and particular contri-
butions. Through this analysis, the interplay between these two components can be examined,
studying how they interact and evolve as a function of the parameter ξ. Firstly, it was dis-
cussed previously that the vacuum and particular contributions are statistically independent,
as the corresponding solutions to the equation of motions can be expanded in terms of com-
muting ladder operators. Consequently, (154) and (155) can be substituted into (153) with
P (k) = Pvacuum + Pparticular to obtain an expression for the early power spectrum

P (k) =

(
k

aH

)ns−1 [
P + P2χ(ξ)e4πξ

]
. (156)

It is often convenient to parametrize the power spectrum with respect to a pivot scale k0 usually
set by experimental capabilities and observations [56]. A common adopted pivot is the Wilkin-
son Microwave Anisotropy Probe (WMAP) scale k0 = 0.002Mpc−1 [21] [28]. Following this
convention finally yields

P (k) =

(
k

k0

)ns−1 [
P + P2χ(ξ)e4πξ

]
, k0 = 0.002Mpc−1. (157)

Interestingly, both the vacuum and particular contributions to the power spectrum have
the same mild scale dependence as expected for typical slow roll inflation. Several insights
can be derived from this observation: firstly, it is noted that the mathematical reason that
led to the scale invariance of the particular power spectrum was the possibility to rewrite the
integrals of χ(ξ) in the dimensionless variable q̄ = q

|k| . Consequently, the only scale dependence
came from the same vacuum solutions |Qk(τ)|2. This procedure was employed due to the usage
of the approximate gauge field mode solutions into the source correlator (146). These were
derived within the regime kτ ≫ −2ξ, specifically near the conclusion of the inflationary period.
At this stage, scalar fluctuations are anticipated to have undergone substantial stretching to
cosmic scales in a reasonably uniform manner, leading to a more gradual evolution of the power
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spectrum during late times. This is similar to mapping the degree of smoothness of the surface
of an ocean: on small enough scales, smaller than the characteristic wavelength of a wave, the
spectrum appears smooth. As the scale is increased, uniformities arise and can be detected in
the power spectrum. On the other hand, on large enough scales (bigger than a typical wave
wavelength), the spectrum can appear fairly even again [57]. It is then reasonable to predict
deviation from the scale invariance for the particular power spectrum as the exact solutions (60)
to the gauge field equation of motion are considered in evaluating the 2-point correlator (150).
Furthermore, it is remarked how the particular power spectrum is amplified by the exponential
factor e4πξ, which given large enough values of ξ could eventually overtake the standard vacuum
fluctuations, therefore spoiling inflation. This can be better observed from figure 7, where the
standard and particular contributions to the late time power spectrum (157) are plotted and
normalized according to the COBE normalization P (k) ≈ 25 · 10−10 [58] [28]. It can be clearly
inferred how the gauge field fluctuations completely surpass the vacuum contribution in the range
ξ ⪆ 4, from where the latter must be dramatically reduced to ensure the spectrum normalization
is maintained.

Figure 7: The COBE normalized power spectrum derived from expression (157). The behavior
is closely dependent on the parameter ξ: as its value increases, the gauge field contribution
dramatically overcomes the vacuum solution, and thus an exponential decrease of the latter has to
be inserted in order to retain the spectrum at the observed normalized value of PCOBE ≈ 5·10−5.
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4 Conclusions

Axion-driven inflation was extensively investigated within the framework of U(1) gauge field
coupling. The interplay between the axion and the gauge field was discovered to possess notable
effects on the dynamics of the axion field, influencing the standard homogeneous behavior. This
was achieved through several backreaction effects including the sourcing of inflaton perturbations
via inverse decay of gauge field fluctuations and contributions to the overall energy density of
the universe.

This thesis focused on analyzing the curvature perturbations arising from this coupling and
their impact on the power spectrum at the superhorizon limit. It was derived that the power
spectrum exhibited the characteristic mild scale dependence expected in usual slow-roll inflation.
Additionally, the synergy between the axion and gauge field was clearly observed from applying
COBE normalization to the power spectrum, where it was discovered that in the region ξ ≫ 4,
involving the parameter ξ strictly connected to the coupling and growth of the gauge field fluc-
tuations, the source contribution dominated the spectrum by completely surpassing the vacuum
perturbations.

Several possible further paths of research are available on this subject: firstly, reproduction
of the results obtained in this thesis could be performed by considering full scalar and metric
perturbations. Furthermore, tensor perturbations may also be considered, with possible results
that would lead to production of gravitational waves during axionic-driven inflation. Additionally,
motivated by fairly recent CMB observations [59], non-Gaussianity effects in the spectrum could
be worth investigating by computing higher order correlation functions, similarly to the work
accomplished by Refs [28] and [60].

In conclusion, axions demonstrate promising characteristics as potential drivers of an infla-
tionary period that shaped the observed universe. Their intrinsic shift symmetry is crucial to
forbid potential UV corrections to Lagrangian and thus maintain a considerable degree of flat-
ness of the inflationary potential for a prolonged period of time. The coupling of axions to U(1)
gauge fields leads to a remarkable interplay between these components, resulting in substantial
fluctuations that manifest in the late-time power spectrum.
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A Detailed Calculations and Derivations

A.1 Derivation Gauge Field Equation of Motion

The Coulomb Gauge A0 = 0 is applied and thus the action (43) is varied by means of the
following Euler-Lagrange equations:

∂L
∂Aρ

− ∂σ

(
∂L

∂ (∂σAρ)

)
= 0, (158)

where L is the Lagrangian of the system. Additionally, some common known identities in gauge
field theory are exploited, such as

FµνFµν = (∂µAν − ∂νAµ) (∂µAν − ∂νAµ) = 2 (∂µAν∂µAν − ∂µAν∂νAµ) (159)
FαβFµν = (∂αAβ − ∂βAα) (∂µAν − ∂νAµ) = ∂αAβ∂µAν − ∂αAβ∂νAµ − ∂βAα∂µAν + ∂βAα∂νAµ,

(160)

together with

∂

∂ (∂µAν)

(
∂αAβ∂βAα

)
= 2∂νAµ (161)

∂

∂ (∂µAν)

(
∂αAβ∂αAβ

)
= 2∂µAν . (162)

By inspection of (43), it is inferred that the only term depending on the gauge field Aµ or one
of its derivatives are

LA =
√
−g

[
−1

4
FµνFµν −

α

4f
ϕ F̃µνFµν

]
, (163)

LA =
√
−g

[
− 1

2
(∂µAν∂µAν − ∂µAν∂νAµ)+

− α

8f
ϕ
ηµναβ√
−g

(∂αAβ∂µAν − ∂αAβ∂νAµ − ∂βAα∂µAν + ∂βAα∂νAµ)

]
. (164)

Therefore, equation (158) can now be applied to (164):
∂L
∂Aρ

= 0, (165)

as there are no terms depending explicitly on Aρ. Furthermore,

∂L
∂ (∂σAρ)

=
√
−g

[
− ∂σAρ + ∂ρAσ−

α

8f
ϕ
ηµναβ√
−g

(
δσαδ

ρ
β∂µAν+∂αAβδ

σ
µδ

ρ
ν−δσαδ

ρ
β∂νAµ−∂αAβδ

σ
ν δ

ρ
µ−δσβδ

ρ
α∂µAν−∂βAαδ

σ
µδ

ρ
ν+δσβδ

ρ
α∂νAµ+∂βAαδ

σ
ν δ

ρ
µ

)]
,

∂L
∂ (∂σAρ)

=
√
−g

[
− ∂σAρ + ∂ρAσ−

α

8f

ϕ√
−g

(
ηµνσρ (∂µAν − ∂νAµ)+ησραβ (∂αAβ − ∂βAα)+ηρσαβ (∂βAα − ∂αAβ)+ηµνρσ (∂νAµ − ∂µAν)

)]
.

(166)
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Equation (166) can be further simplified by recalling that the Levi-Civita tensor ηµναβ is totally
anti-symmetric, hence a minus sign is obtained upon index swapping procedures. As such, an
appropriate swap of indexes of the last four terms in (166) shows that these terms are indeed
the same. Thus, one is left with

∂L
∂ (∂σAρ)

=
√
−g

[
∂ρAσ − ∂σAρ − α

8f

ϕ√
−g

4 ησρµν (∂µAν − ∂νAµ)

]
, (167)

∂L
∂ (∂σAρ)

=
√
−gF σρ − α

2f
ϕ ησρµνFµν (168)

where from (167) to (168) the definition of field tensor Fµν was substituted for. Therefore, the
equation of motion for the gauge field are given by the solutions to [31]

∂σ
(√

−gF σρ
)
+

α

2f
∂σ (ϕ ησρµνFµν) = 0. (169)

A.2 Converting the Guage Field Equation of Motion to Fourier Space

Firstly,

A⃗′′ =
∑
λ=±

∫
d3k

(2π)3/2

[
ϵ⃗λ(k)A′′

λ(τ,k)aλ(k)e
ik·x + ϵ⃗∗λ(k)A∗

λ
′′(τ,k)a†λ(k)e

−ik·x
]
. (170)

Similarly, the Laplacian of (49) is straightforwardly given by

∇2A⃗ = −
∑
λ=±

∫
d3k

(2π)3/2
k2
[
ϵ⃗λ(k)Aλ(τ,k)aλ(k)eik·x + ϵ⃗∗λ(k)A∗

λ(τ,k)a
†
λ(k)e

−ik·x
]

(171)

whereas the curl of A⃗ requires further computations:

∇⃗× A⃗ =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x ∂y ∂z
Ax Ay Az

∣∣∣∣∣∣ = (172)

= x̂ (∂yAz − ∂zAy)− ŷ (∂xAz − ∂zAx) + ẑ (∂xAy − ∂yAx) , (173)

such that

∇⃗× A⃗ =
∑
λ=±

∫
d3k

(2π)3/2

[
∇⃗× ϵ⃗λ(k)Aλ(τ,k)aλ(k)eik·x + ∇⃗× ϵ⃗∗λ(k)A∗

λ(τ,k)a
†
λ(k)e

−ik·x
]
,

(174)

∇⃗× A⃗ =
∑
λ=±

∫
d3k

(2π)3/2

[
i

kyϵz(k⃗)− kzϵy(k⃗)

kzϵx(k⃗)− kxϵz(k⃗)

kxϵy(k⃗)− kyϵx(k⃗)

Aλ(τ,k)aλ(k)eik·x+ (175)

− i

kyϵz(−⃗k)− kzϵy(−⃗k)

kzϵx(−⃗k)− kxϵz(−⃗k)

kxϵy(−⃗k)− kyϵx(−⃗k)

A∗
λ(τ,k)a

†
λ(k)e

−ik·x

]
, (176)
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where the λ subscript on the polarization vectors is for ease of notation. Condition (52) is then
applied to obtain

∇⃗× A⃗ =

∫
d3k

(2π)3/2

[
i(−ik)⃗ϵ+(k)A+(τ,k)a+(k)eik·x − i(−ik)⃗ϵ+(−k)A∗

+(τ,k)a
†
+(k)e

−ik·x+

(177)

i(−ik)⃗ϵ−(k)A−(τ,k)a−(k)eik·x − i(−ik)⃗ϵ−(−k)A∗
−(τ,k)a

†
−(k)e

−ik·x
]
,

∇⃗× A⃗ =

∫
d3k

(2π)3/2

[
kϵ⃗+(k)A+(τ,k)a+(k)eik·x − kϵ⃗+(−k)A∗

+(τ,k)a
†
+(k)e

−ik·x+ (178)

−kϵ⃗−(k)A−(τ,k)a−(k)eik·x + kϵ⃗−(−k)A∗
−(τ,k)a

†
−(k)e

−ik·x
]
.

Expressions in Fourier space for all the terms in (48) are now obtained. Finally, substituting
(170), (171) and (178) into (48) yields

∫
d3k

(2π)3/2

[(
A+

′′(τ,k) + k2A+(τ,k)−
α

f
ϕ′kA+

′′(τ,k)
)
ϵ⃗+(k)a+(k)eik·x+ (179)(

A∗
+
′′(τ,k) + k2A∗

+(τ,k) +
α

f
ϕ′kA∗

+(τ,k)
)
ϵ⃗∗+(k)a

†
+(k)e

−ik·x+(
A−

′′(τ,k) + k2A−(τ,k) +
α

f
ϕ′kA−(τ,k)

)
ϵ⃗−(k)a−(k)eik·x+(

A∗
−
′′(τ,k) + k2A∗

−(τ,k)−
α

f
ϕ′kA∗

−(τ,k)
)
ϵ⃗∗−(k)a

†
−(k)e

−ik·x
]
= 0.

Equation (179) implies that each term within round brackets in is set to zero. In particular,

A+
′′(τ,k) + k2A+(τ,k)−

α

f
ϕ′kA+

′′(τ,k) = 0, (180)

A−
′′(τ,k) + k2A−(τ,k) +

α

f
ϕ′kA−(τ,k) = 0. (181)

Equations (180) and (181) can be further simplified by converting ϕ′ to cosmic time

ϕ′ =
dϕ

dτ
=

dϕ

dt

dt

dτ
= ϕ̇ a. (182)

During inflation, the de Sitter approximation of the scale factor a(inflation) ≈ − 1
Hτ can be used

[31][1] such that (180) and (181) take the form

A+
′′(τ,k) + k2A+(τ,k)−

α

f
ϕ̇

(
− 1

Hτ

)
kA+(τ,k) = 0, (183)

A−
′′(τ,k) + k2A−(τ,k) +

α

f
ϕ̇

(
− 1

Hτ

)
kA−(τ,k) = 0. (184)
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By denoting ξ ≡ αϕ̇
2fH , ultimately it is arrived at

A+
′′(τ,k) + k2A+(τ,k) +

2kξ

τ
A+(τ,k) = 0 (185)

A−
′′(τ,k) + k2A−(τ,k)−

2kξ

τ
A−(τ,k) = 0 (186)

which can be rewritten for ease of notation into one equation as(
∂2
τ + k2 ± 2kξ

τ

)
A±(τ, k) = 0, (187)

where the vector notation on the k argument is dropped as the differential equation involves only
the magnitude of the momentum vectors k⃗.

A.3 Large Argument Asymptotic of A+ Modes

The large argument asymptotic behavior of the expression√
−2τ

π
eπξK1

(
2
√
−2ξkτ

)
(188)

involving the modified Bessel function of the second kind can be obtained by employing the large
argument asymptotic behavior of K1(z), using the following asymptotic expansion [61]:

Kν(z) ∼
√

π

2z
e−z

(
1 +

4ν2 − 1

8z
+

(4ν2 − 1)(4ν2 − 9)

2!(8z)2
+ · · ·

)
, as z → ∞. (189)

Applying this asymptotic expansion to (188) yields√
−2τ

π
eπξK1

(
2
√
−2ξkτ

)
∼
√

−2τ

π
eπξ
√

π

4
√
−2ξkτ

e−2
√
−2ξkτ

×
(
1 +

3

8
√
−2ξkτ

+
3 · 7

2!(8
√
−2ξkτ)2

+ · · ·
)
,

(190)

as kτ → −∞. By keeping terms up to first order and after some algebra, it is arrived at√
−2τ

π
eπξK1

(
2
√

−2ξkτ
)
≈ 1√

2k

(
−kτ

2ξ

)1/4

eπξ−2
√
−2ξkτ . (191)

A.4 Derivation of the Axion Equation of Motion

The aim is to simplify equation (69). As such,
√
−g is evaluated with the help of (8):

√
−g =

√
−det(g), (192)

√
−g =

√
− (−a8(τ)) = a4(τ). (193)

The second term of (69) can then be expanded as follows:
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∂µ
(√

−g∂µϕ
)
= ∂0

(√
−g∂0ϕ

)
+ ∂i

(√
−g∂iϕ

)
, (194)

= ∂0
(
a4g0ν∂νϕ

)
+ a4gij∂i∂jϕ, (195)

= ∂0
(
a4g00∂0ϕ

)
+ a4gij∂i∂jϕ, (196)

where the symmetric property of the FRW metric was used. From (9), it is inferred that g00 =
− 1

a2
and |gµν | = 1

a2
such that

∂µ
(√

−g∂µϕ
)
= ∂0

(
a4
(
− 1

a2

)
∂0ϕ

)
+ a4

(
1

a2

)
∂i∂iϕ = (197)

= ∂0
(
−a2∂0ϕ

)
+ a2∇2ϕ (198)

= −2a a′ϕ′ + a2
(
−ϕ′′ +∇2ϕ

)
. (199)

Substituting (199) into (69) finally leads to

−a4
(

α

4f
ϕ F̃µνFµν +

dV

dϕ

)
−
(
−2a a′ϕ′ + a2

(
−ϕ′′ +∇2ϕ

))
= 0, (200)

ϕ′′ −∇2ϕ− 2
a′

a
ϕ′ + a2

dV

dϕ
= a2

α

4f
ϕ F̃µνFµν . (201)

A.5 Electric and Magnetic Fields Expectation Values

The aim is to derive an expression for

⟨E⃗2 + B⃗2⟩ = ⟨E⃗2⟩+ ⟨B⃗2⟩, (202)

since the integration is linear in E⃗2 and B⃗2. As such, it is found

⟨E⃗2⟩ = 1

a4

∫
d3x d3k d3q

(2π)9/2
ϵ⃗(k⃗) · ϵ⃗(q⃗)A′(τ, k)A′(τ, q)ei(k⃗+q⃗)·x⃗ = (203)

=
1

a4

∫
d3k d3q

(2π)3
δ(3)(k⃗ + q⃗)⃗ϵ(k⃗) · ϵ⃗(q⃗)A′(τ, k)A′(τ, q) = (204)

=
1

a4

∫
d3k

(2π)3
ϵ⃗(k⃗) · ϵ⃗(−k⃗)A′(τ, k)A′(τ, k) = (205)

=
1

a4

∫
d3k

(2π)3
∣∣A′(τ, k)

∣∣2, (206)

where properties (53) and (54) are used. Similarly for the magnetic field

⟨B⃗2⟩ = 1

a4

∫
d3x d3k d3q

(2π)9/2
q kϵ⃗(k⃗) · ϵ⃗(q⃗)A(τ, k)A(τ, q)ei(k⃗+q⃗)·x⃗ = (207)

=
1

a4

∫
d3k d3q

(2π)3
δ(3)(k⃗ + q⃗)q kϵ⃗(k⃗) · ϵ⃗(q⃗)A(τ, k)A(τ, q) = (208)

=
1

a4

∫
d3q

(2π)3
q2|A(τ, q)|2. (209)
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The expectation value of the energy density is then obtained by summing expressions (206) and
(209):

⟨E⃗2 + B⃗2⟩ = 1

a4

∫
d3k

(2π)3

[∣∣A′(τ, k)
∣∣2 + k2|A(τ, k)|2

]
. (210)

A.6 Derivation of Mukhanov-Sasaki Equation

For notational convenience, the double derivative of the potential in (95) is renamed as a mass
term m2 ≡ V ′′. Secondly, the definition of the slope and curvature slow-roll parameters ϵ and η
is recalled as12 [62]

ϵ ≡ − Ḣ

H2
, (211)

η ≡ 1

3

V ′′

H2
, ⇒ V ′′ = 3ηH2, (212)

as well as the well known relation

ä

a
= Ḣ +H2 = (1− ϵ)H2, (213)

which can be converted to conformal time as follows:

ä =
d

dt

(
da

dτ

dτ

dt

)
=

d

dt

(
a′ · 1

a

)
= (214)

=
d

dτ

(
a′

a

)
dτ

dt
=

a′′

a2
− (a′)2

a3
, (215)

such that

ä

a
= (1− ϵ)H2 =

1

a

(
a′′

a2
− (a′)2

a3

)
=

a′′

a3
− (a′)2

a4
. (216)

Expression (216) can be inverted to obtain

a′′

a
= a2 (1− ϵ)H2 +

(
a′

a

)
= (217)

= (aH)2 (1− ϵ) +H2, (218)

but,

H =
a′

a
=

1

a
ȧ
dt

dτ
= ȧ, (219)

hence,

a′′

a
= (aH)2 (2− ϵ) . (220)

12We remark that units are chosen in order to set the Planck mass to Mp = 1.
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This whole bookkeeping was meant to simplify the −a′′

a + a2m2 term in (101) to

a2m2 − a′′

a
= 3 (aH)2 η − (aH)2 (2− ϵ) = (221)

= (aH)2 [3η − 2 + ϵ] . (222)

The first order approximation aH ≈ − 1
τ (1 + ϵ) can now be utilized (see equation (2.4.89) of [17]

), which is valid during the inflationary epoch {ϵ, | η |} ≪ 1, into the last expression (222) to
yield

1

τ2
(1 + ϵ)2 [3η − 2 + ϵ] ≈ 1

τ2
(1 + 2ϵ) (3η − 2 + ϵ) = (223)

= − 1

τ2
(2 + 3 (ϵ+ η)) = (224)

= − 1

τ2

(
n2 − 1

4

)
, (225)

where n ≡ 3
2 + ϵ+η. Finally, by substituting (225) into (101), the homogeneous part to the simil

Mukhanov-Sasaki equation takes the form[
∂2
τ +

(
k2 −

n2 − 1
4

τ2

)]
Qk(τ) = 0. (226)
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B Mathematica Supplementary Code

In this appendix the Mathematica code used as supplement to the calculations and computations
presented in this thesis is outlined.
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Probing Axion Inflation Coupled to 

U(1) Gauge Fields
Gianmarco Morbelli s4513932

Code supplement to the

respective bachelor thesis
NB: Ricci package is required to run this notebook. Use the following line to update to the relevant 
directory where the packages is located.
I am considerably grateful to Martino Michelotti for the help provided in shaping this code.

<< "Your directory" (* Set the path to Ricci.m *)

LastIndex = 3; (* 3+1 dimensions, indices from 0 to 3 *)

Coordinate[0] = τ;
Coordinate[1] = x;
Coordinate[2] = y;
Coordinate[3] = z;

(* Insert the non-zero metric components *)

MetricTensor[0, 0] = -n[τ]^2 ;
MetricTensor[1, 1] = a[τ]^2 ;
MetricTensor[2, 2] = a[τ]^2 ;
MetricTensor[3, 3] = a[τ]^2 ;

Do[Ad[mu], {mu, 0, 3}] (* U(1) gauge fields *)

Ad[0] = A0[τ, x, y, z];
Ad[1] = A1[τ, x, y, z];
Ad[2] = A2[τ, x, y, z];
Ad[3] = A3[τ, x, y, z];

Do[Fdd[mu, nu] = D[Ad[nu], Coordinate[mu]] - D[Ad[mu], Coordinate[nu]],
{mu, 0, 3}, {nu, 0, 3}]

Do[Fuu[mu, nu] = Sum[InverseMetric[mu, al] × InverseMetric[nu, be] × Fdd[al, be],
{al, 0, 3}, {be, 0, 3}], {mu, 0, 3}, {nu, 0, 3}]
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Check Bianchi identity for the gauge field

In[18]:= Sum[D[Signature[{σ, ρ, μ, ν}] × Fdd[μ, ν], Coordinate[σ]],
{σ, 0, 3}, {μ, 0, 3}, {ν, 0, 3}]

Out[18]=

0

It works!

Equation of motion for the gauge field Aμ

In[19]:= infla = χ[τ];

(* Now we write the action *)

sg = Simplify[Sqrt[-DetMetric], {n[τ] > 0, a[τ] > 0}];

az = Expandsg Mp2  2 ScalarCurvature -

(1 / 4) Sum[Fuu[mu, nu] × Fdd[mu, nu], {mu, 0, 3}, {nu, 0, 3}] -

(1 / 2) (Sum[InverseMetric[mu, nu] × D[infla, Coordinate[mu]] ×

D[infla, Coordinate[nu]], {mu, 0, 3}, {nu, 0, 3}]) - V[infla] +

(λ / (8 f)) infla * Sum[Signature[{mu, nu, al, be}] × Fdd[mu, nu] × Fdd[al, be],

{mu, 0, 3}, {nu, 0, 3}, {al, 0, 3}, {be, 0, 3}];

In[22]:= eqA = Block[{ν = 1}, Expand[D[az, Ad[ν]] -

Sum[D[D[az, D[Ad[ν], Coordinate[μ]]], Coordinate[μ]], {μ, 0, 3}]] /.
{A0  0, n'[τ]  a'[τ], n[τ]  a[τ]}] // FullSimplify

Out[22]=

A1(0,0,0,2)
[τ, x, y, z] +

λ χ′[τ] A2(0,0,0,1)[τ, x, y, z] - A3(0,0,1,0)[τ, x, y, z]

f
+

A1(0,0,2,0)
[τ, x, y, z] - A3(0,1,0,1)

[τ, x, y, z] -

A2(0,1,1,0)
[τ, x, y, z] - A1(2,0,0,0)

[τ, x, y, z]

In Coulomb gauge
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In[23]:= eqA1 = A1(0,0,0,2)
[τ, x, y, z] +

λ χ
′
[τ] A2(0,0,0,1)

[τ, x, y, z] - A3(0,0,1,0)
[τ, x, y, z]

f
+

A1(0,0,2,0)
[τ, x, y, z] + A1(0,2,0,0)

[τ, x, y, z] - A1(2,0,0,0)
[τ, x, y, z];

eqA2 = A2(0,0,0,2)
[τ, x, y, z] + A2(0,0,2,0)

[τ, x, y, z] +

λ χ
′
[τ] -A1(0,0,0,1)

[τ, x, y, z] + A3(0,1,0,0)
[τ, x, y, z]

f
+

A2(0,2,0,0)
[τ, x, y, z] - A2(2,0,0,0)

[τ, x, y, z];
eqA3 = A3(0,0,0,2)

[τ, x, y, z] + A3(0,0,2,0)
[τ, x, y, z] +

λ χ
′
[τ] A1(0,0,1,0)

[τ, x, y, z] - A2(0,1,0,0)
[τ, x, y, z]

f
+

A3(0,2,0,0)
[τ, x, y, z] - A3(2,0,0,0)

[τ, x, y, z];

Inflaton equation of motion and the 00 Einstein equation

Now we include also inflaton perturbations

In[26]:= Clear[infla]
infla = χ[τ, x, y, z];

az2 = Expandsg Mp2  2 ScalarCurvature -

(1 / 4) Sum[Fuu[mu, nu] × Fdd[mu, nu], {mu, 0, 3}, {nu, 0, 3}] -

(1 / 2) (Sum[InverseMetric[mu, nu] × D[infla, Coordinate[mu]] ×

D[infla, Coordinate[nu]], {mu, 0, 3}, {nu, 0, 3}]) - V[infla] +

(λ / (8 f)) infla * Sum[Signature[{mu, nu, al, be}] × Fdd[mu, nu] × Fdd[al, be],

{mu, 0, 3}, {nu, 0, 3}, {al, 0, 3}, {be, 0, 3}];

eqinf = Simplify[
Expand[(1 / a[τ]^2) ((Sum[D[D[az2, D[infla, Coordinate[μ]]], Coordinate[μ]],

{μ, 0, 3}] - D[az2, infla]))] /.
{n'[τ]  a'[τ], n[τ]  a[τ], A0  0}, Assumptions  a[τ] ≠ 0]

Out[29]=

a[τ]2 V′
[χ[τ, x, y, z]] - χ

(0,0,0,2)
[τ, x, y, z] -

χ
(0,0,2,0)

[τ, x, y, z] - χ
(0,2,0,0)

[τ, x, y, z] +
1

f a[τ]2

λ A2(0,0,0,1)
[τ, x, y, z] A1(1,0,0,0)

[τ, x, y, z] - A3(0,0,1,0)
[τ, x, y, z]

A1(1,0,0,0)
[τ, x, y, z] - A1(0,0,0,1)

[τ, x, y, z] A2(1,0,0,0)
[τ, x, y, z] +

A3(0,1,0,0)
[τ, x, y, z] A2(1,0,0,0)

[τ, x, y, z] + A1(0,0,1,0)
[τ, x, y, z]

A3(1,0,0,0)
[τ, x, y, z] - A2(0,1,0,0)

[τ, x, y, z] A3(1,0,0,0)
[τ, x, y, z] +

2 a′[τ] χ(1,0,0,0)[τ, x, y, z]

a[τ]
+ χ

(2,0,0,0)
[τ, x, y, z]

The 00 Einstein equation is obtained by varying the action with respect to the metric
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In[30]:= eq0 = FullSimplify[(1 / (2 a[τ]))
Expand[D[az2, n[τ]] - D[D[az2, n'[τ], τ]] /. {n'[τ]  a'[τ], n[τ]  a[τ]}],

Assumptions  a[τ] ≠ 0]
Out[30]=

-
1

4 a[τ]2
2 a[τ]4 V[χ[τ, x, y, z]] -

6 Mp2 a′
[τ]

2
+ A2(0,0,0,1)

[τ, x, y, z] - A3(0,0,1,0)
[τ, x, y, z]2 +

A1(0,0,1,0)
[τ, x, y, z] - A2(0,1,0,0)

[τ, x, y, z]2 +

A1(0,0,0,1)
[τ, x, y, z] - A3(0,1,0,0)

[τ, x, y, z]2 +

A0(0,1,0,0)
[τ, x, y, z] - A1(1,0,0,0)

[τ, x, y, z]2 +

A0(0,0,1,0)
[τ, x, y, z] - A2(1,0,0,0)

[τ, x, y, z]2 +

A0(0,0,0,1)
[τ, x, y, z] - A3(1,0,0,0)

[τ, x, y, z]2 + a[τ]2 χ(0,0,0,1)
[τ, x, y, z]2 +

χ
(0,0,1,0)

[τ, x, y, z]2 + χ
(0,1,0,0)

[τ, x, y, z]2 + χ
(1,0,0,0)

[τ, x, y, z]2

In[31]:= eq0 /. {A0  0, χ  (χ[#] &)}
Out[31]=

-
1

4 a[τ]2
2 a[τ]4 V[χ[τ]] - 6 Mp2 a′

[τ]
2
+

a[τ]2 χ′
[τ]

2
+ A2(0,0,0,1)

[τ, x, y, z] - A3(0,0,1,0)
[τ, x, y, z]2 +

A1(0,0,1,0)
[τ, x, y, z] - A2(0,1,0,0)

[τ, x, y, z]2 +

A1(0,0,0,1)
[τ, x, y, z] - A3(0,1,0,0)

[τ, x, y, z]2 +

A1(1,0,0,0)
[τ, x, y, z]2 + A2(1,0,0,0)

[τ, x, y, z]2 + A3(1,0,0,0)
[τ, x, y, z]2

We convert to physical electric and magnetic field

I n [ ] : = electricf =

-(1 / a[τ]^2) A1(1,0,0,0)
[τ, x, y, z], A2(1,0,0,0)

[τ, x, y, z], A3(1,0,0,0)
[τ, x, y, z];

magneticf =

1 / a[τ]^2 Curl[{A1[τ, x, y, z], A2[τ, x, y, z], A3[τ, x, y, z]}, {x, y, z}];

I n [ ] : = electricf.magneticf /. a[τ]  1
Ou t [ ] =

--A2(0,0,0,1)
[τ, x, y, z] + A3(0,0,1,0)

[τ, x, y, z] A1(1,0,0,0)
[τ, x, y, z] -

A1(0,0,0,1)
[τ, x, y, z] - A3(0,1,0,0)

[τ, x, y, z] A2(1,0,0,0)
[τ, x, y, z] -

-A1(0,0,1,0)
[τ, x, y, z] + A2(0,1,0,0)

[τ, x, y, z] A3(1,0,0,0)
[τ, x, y, z]

We check whether the two expression in the equation of motion for phi and the converted one with 

electric and magnetic field coincide (for simplicity we set a to 1).

I n [ ] : = SimplifyExpand[(a[τ]^4) electricf.magneticf] 

A2(0,0,0,1)
[τ, x, y, z] A1(1,0,0,0)

[τ, x, y, z] -

A3(0,0,1,0)
[τ, x, y, z] A1(1,0,0,0)

[τ, x, y, z] -

A1(0,0,0,1)
[τ, x, y, z] A2(1,0,0,0)

[τ, x, y, z] + A3(0,1,0,0)
[τ, x, y, z]

A2(1,0,0,0)
[τ, x, y, z] + A1(0,0,1,0)

[τ, x, y, z] A3(1,0,0,0)
[τ, x, y, z] -

A2(0,1,0,0)
[τ, x, y, z] A3(1,0,0,0)

[τ, x, y, z], Assumptions  a[τ]  1

Ou t [ ] =

True
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I n [ ] : = right = A2(0,0,0,1)
[τ, x, y, z] - A3(0,0,1,0)

[τ, x, y, z]2 +

A1(0,0,1,0)
[τ, x, y, z] - A2(0,1,0,0)

[τ, x, y, z]2 +

A1(0,0,0,1)
[τ, x, y, z] - A3(0,1,0,0)

[τ, x, y, z]2 +

A1(1,0,0,0)
[τ, x, y, z]2 + A2(1,0,0,0)

[τ, x, y, z]2 + A3(1,0,0,0)
[τ, x, y, z]2;

left = electricf.electricf + magneticf.magneticf /. a[τ]  1
Ou t [ ] =

-A2(0,0,0,1)
[τ, x, y, z] + A3(0,0,1,0)

[τ, x, y, z]2 +

-A1(0,0,1,0)
[τ, x, y, z] + A2(0,1,0,0)

[τ, x, y, z]2 +

A1(0,0,0,1)
[τ, x, y, z] - A3(0,1,0,0)

[τ, x, y, z]2 +

A1(1,0,0,0)
[τ, x, y, z]2 + A2(1,0,0,0)

[τ, x, y, z]2 + A3(1,0,0,0)
[τ, x, y, z]2

We confirm again that the right equation of motion is obtained by comparing the gauge field terms 

with their physical field expressions

I n [ ] : = Simplify[left  right]
Ou t [ ] =

True

Let’s try to define A as a vector. We start with considering plus polarization

I n [ ] : = kvec = {k1, k2, k3};
r = {x, y, z};
ϵν = {ϵ1[k1, k2, k3], ϵ2[k1, k2, k3], ϵ3[k1, k2, k3]};
ϵνh = {ϵ1h[k1, k2, k3], ϵ2h[k1, k2, k3], ϵ3h[k1, k2, k3]};
Cross[kvec, ϵν]  I Sqrt[kvec.kvec] ϵν;

Convert to Fourier Space

I n [ ] : = A1[τ_, x_, y_, z_] :=
aν[k1, k2, k3] * Aν[τ, k1, k2, k3] Exp[I (k1 x + k2 y + k3 z)] * ϵ1[k1, k2, k3]

A2[τ_, x_, y_, z_] :=
aν[k1, k2, k3] * Aν[τ, k1, k2, k3] Exp[I (k1 x + k2 y + k3 z)] * ϵ2[k1, k2, k3]

A3[τ_, x_, y_, z_] :=
aν[k1, k2, k3] * Aν[τ, k1, k2, k3] Exp[I (k1 x + k2 y + k3 z)] * ϵ3[k1, k2, k3]

Normalization and properties of polarization vectors

I n [ ] : = crosspola = Thread[Cross[kvec, ϵν]  I Sqrt[kvec.kvec] ϵν];

I n [ ] : = eqmotionA =

FullSimplify[FullSimplify[Expand[eqA1  0 /. {A1  (A1[#1, #2, #3, #4] &),
A2  (A2[#1, #2, #3, #4] &), A3  (A3[#1, #2, #3, #4] &)}],

{f ≠ 0, λ ≠ 0, aν[k1, k2, k3] ≠ 0, k > 0}] /. Thread[
Cross[kvec, ϵν]  I Sqrt[kvec.kvec] ϵν] /.

(kvec.kvec)  k^2, {k > 0, ϵ1[k1, k2, k3] ≠ 0}]
Ou t [ ] =

k Aν[τ, k1, k2, k3] (f k - λ χ
′
[τ]) + f Aν(2,0,0,0)

[τ, k1, k2, k3]  0

We now switch back to cosmic time for the inflaton term and make the approximation that during 
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inflation the scale factor a ≈ -
1

H τ

I n [ ] : = approxeqA = ExpandAll@FullSimplify[eqmotionA〚1〛 / f, f ≠ 0] /. χ
′
[τ] λ / f  -2 ξ / τ

Ou t [ ] =

k2 Aν[τ, k1, k2, k3] +
2 k ξ Aν[τ, k1, k2, k3]

τ
+ Aν(2,0,0,0)

[τ, k1, k2, k3]

Solutions of the gauge field equations of motion

Momentum vector k only appears in magnitude, hence we can set the argument k1, k2, k3  to just k.

I n [ ] : = equationforA = approxeqA /. Aν  (Aν[#1, k] &)
Ou t [ ] =

k2 Aν[τ, k] +
2 k ξ Aν[τ, k]

τ
+ Aν(2,0)

[τ, k]

I n [ ] : = approxequationAminus =

k2 Aν[τ, k1, k2, k3] -
2 k ξ Aν[τ, k1, k2, k3]

τ
+ Aν(2,0,0,0)

[τ, k1, k2, k3];

I n [ ] : = equationforAminus = approxequationAminus /. Aν  (Aν[#1, k] &)
Ou t [ ] =

k2 Aν[τ, k] -
2 k ξ Aν[τ, k]

τ
+ Aν(2,0)

[τ, k]

I n [ ] : = initialcondition = Asymptotic[Aν[τ, k], τ  -Infinity]  E^(-I k τ) / Sqrt[2 k];

I n [ ] : = solutionA =

FullSimplify@DSolve[{equationforA  0}, Aν[τ, k], τ, Assumptions  k > 0]
Ou t [ ] =

Aν[τ, k]  
- k τ

τ (2 Hypergeometric1F1[1 +  ξ, 2, 2  k τ] +

1 HypergeometricU[1 +  ξ, 2, 2  k τ])

I n [ ] : = solutionAminus =

FullSimplify@DSolve[{equationforAminus  0}, Aν[τ, k], τ, Assumptions  k > 0]
Ou t [ ] =

Aν[τ, k]  
- k τ

τ (2 Hypergeometric1F1[1 -  ξ, 2, 2  k τ] +

1 HypergeometricU[1 -  ξ, 2, 2  k τ])
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I n [ ] : = asymp = Asymptotic- k τ
τ

(2 Hypergeometric1F1[1 +  ξ, 2, 2  k τ] + 1 HypergeometricU[1 +  ξ, 2, 2  k τ]),

τ  -Infinity, Assumptions  ξ > 0
Ou t [ ] =


- k τ

( k τ)
-1- ξ

-
2-2- ξ (1 +  ξ) ξ 1

k
-
2-4- ξ ξ (- + ξ)2 (-2  + ξ) 1

k2 τ
+ 2-1- ξ

τ 1 +


- k τ

(- k τ)
-1- ξ

-
2-2- ξ (1 +  ξ) ξ 2

k Gamma[1 -  ξ]
-
2-4- ξ ξ (- + ξ)2 (-2  + ξ) 2

k2 τ Gamma[1 -  ξ]

+
2-1- ξ τ 2

Gamma[1 -  ξ]
+


 k τ

( k τ)
-1+ ξ

-
2-2+ ξ (1 -  ξ) ξ 2

k Gamma[1 +  ξ]
-
2-4+ ξ ξ ( + ξ)2 (2  + ξ) 2

k2 τ Gamma[1 +  ξ]

+
2-1+ ξ τ 2

Gamma[1 +  ξ]

I n [ ] : = c1c2 = FullSimplify[Solve[{asymp  E^(-I k τ) / Sqrt[2 k],
D[asymp, τ]  - I k E^(-I k τ) / Sqrt[2 k] }, {1, 2}], {k > 0, ξ > 0}]

Ou t [ ] =

1  2
5

2
- ξ k5/2 τ2 (- k τ)

- ξ

- 22  ξ
k2 τ2 ξ

ξ -2 + 3  ξ + ξ
2

2
+ 2 k ξ

2
( + ξ)

2
τ - 8  k2 ξ2 τ2 - 16 k3 τ3 +

-2  k τ ξ2 (-2 + ξ (-3  + ξ))2 + 4  k (- + ξ)2 τ - 8 k2 τ2 Gamma[ ξ]

Gamma[1 -  ξ]


ξ
3
1 + ξ

2

2
4 + ξ

2
 + k ξ

2
1 + ξ

2
 12 - 23 ξ

2
+ ξ

4
 τ -

8 k2 ξ 4 - 17 ξ
2
+ 3 ξ

4
 τ

2
+ 64 k5 τ5,

2  2
5

2
- ξ


-2  k τ k5/2 ξ2 τ2 ( k τ)

- ξ
(-2 + ξ (-3  + ξ))

2
+ 4  k (- + ξ)

2
τ - 8 k2 τ2

Gamma[ ξ]  ξ
3
1 + ξ

2

2
4 + ξ

2
 + k ξ

2
1 + ξ

2
 12 - 23 ξ

2
+ ξ

4
 τ -

8 k2 ξ 4 - 17 ξ
2
+ 3 ξ

4
 τ

2
+ 64 k5 τ5

The final solution given by Mathematica is rather complicated 
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I n [ ] : = finasol = FullSimplify@solutionA /. c1c2
Ou t [ ] =

Aν[τ, k]  
- k τ

τ

2
5

2
- ξ


-2  k τ k5/2 ξ2 τ2 ( k τ)

- ξ
(-2 + ξ (-3  + ξ))

2
+ 4  k (- + ξ)

2
τ - 8 k2 τ2

Gamma[ ξ] Hypergeometric1F1[1 +  ξ, 2, 2  k τ] 

ξ
3
1 + ξ

2

2
4 + ξ

2
 + k ξ

2
1 + ξ

2
 12 - 23 ξ

2
+ ξ

4
 τ - 8 k2 ξ 4 - 17 ξ

2
+ 3 ξ

4
 τ

2
+

64 k5 τ5 + 2
5

2
- ξ k5/2 τ2 (- k τ)

- ξ
- 22  ξ

k2 τ2 ξ

ξ -2 + 3  ξ + ξ
2

2
+ 2 k ξ

2
( + ξ)

2
τ - 8  k2 ξ2 τ2 - 16 k3 τ3 +

-2  k τ ξ2 (-2 + ξ (-3  + ξ))2 + 4  k (- + ξ)2 τ - 8 k2 τ2 Gamma[ ξ]

Gamma[1 -  ξ]

HypergeometricU[1 +  ξ, 2, 2  k τ]  ξ
3
1 + ξ

2

2
4 + ξ

2
 +

k ξ
2
1 + ξ

2
 12 - 23 ξ

2
+ ξ

4
 τ - 8 k2 ξ 4 - 17 ξ

2
+ 3 ξ

4
 τ

2
+ 64 k5 τ5 

But it effectively reduces to Bunch-Davies Vacuum

I n [ ] : = FullSimplify@Asymptotic[finasol〚1, 1, 1, 2〛, τ  -Infinity]
Ou t [ ] =

- k τ

2 k

Solutions can be recast in terms of Coulomb functions

I n [ ] : = modeAplus[τ_, k_] := 1 / Sqrt[2 k] (CoulombG[0, ξ, -k τ] + I CoulombF[0, ξ, -k τ])

I n [ ] : = modeAminus[τ_, k_] := 1 / Sqrt[2 k] (CoulombG[0, -ξ, -k τ] + I CoulombF[0, -ξ, -k τ])

Whereas the approximate function as derived in the thesis are given by

I n [ ] : = approximatefuncfrompaper[τ] :=
1 / Sqrt[2 k] (-k τ / (2 ξ ))^(1 / 4) E^(Pi ξ - 2 * Sqrt[-2 ξ k τ]);

We now show that fluctuations for mode A- are negligible, and that perturbations are enhanced 

almost only for -k τ ≪ 2 ξ and for eπξ ≫ 1.
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I n [ ] : = Block{k = 0.2, ξ = 4}, Plot{Evaluate@Re[modeAplus[τ, k]],

Evaluate[approximatefuncfrompaper[τ]]}, {τ, -10, -1},
PlotLegends  Placed[{"Exact solution", "Approximate solution"}, {0.25, 0.8}],
Frame  {{True, False}, {True, False}},

FrameLabel  "A+(τ, k  0.2)", None, {"τ", None}, FrameTicks  All

Ou t [ ] =

Exact solution

Approximate solution

-10 -8 -6 -4 -2

0

2000

4000

6000

8000

τ

A
+
(τ
,
k

0.
2)

I n [ ] : = multipleAmodes = Block[{ξ = #, k = 2}, Re[modeAplus[τ, k]]] & /@ {1.1, 2, 3, 4, 5};

I n [ ] : = ShowBlock{k = 2}, PlotmultipleAmodes, {τ, -7, -0.5}, PlotLegends  {

"ξ = " <> ToString[#] & /@ {1.1, 2, 3, 4, 5}},
Frame  {{True, False}, {True, False}},

FrameLabel  "A+(τ, k  2)", None, {"τ", None}, FrameTicks  All

Ou t [ ] =

-7 -6 -5 -4 -3 -2 -1

0

2

4

6

8

τ

A
+
(τ
,
k

2)

ξ = 1.1

ξ = 2

ξ = 3

ξ = 4

ξ = 5

Modes A- do not develop perturbations and remain in their vacuum state

I n [ ] : = multipleAmodesminus =

Block[{ξ = #, k = 2}, Re[modeAminus[τ, k]]] & /@ {1.1, 2, 3, 4, 5};
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I n [ ] : = ShowBlock{k = 2}, PlotmultipleAmodesminus, {τ, -10, -1}, PlotLegends  {

"ξ = " <> ToString[#] & /@ {1.1, 2, 3, 4, 5}},
Frame  {{True, False}, {True, False}},

FrameLabel  "A+(τ, k  2)", None, {"τ", None},

FrameTicks  All, PlotRange  {{Automatic, Automatic}, {-1, 1}}

Ou t [ ] =

-10 -8 -6 -4 -2 0
-1.0

-0.5

0

0.5

1.0

τ

A
+
(τ
,
k

2)

ξ = 1.1

ξ = 2

ξ = 3

ξ = 4

ξ = 5

Expectation values involving E
 and B

.

I n [ ] : = approximatemodeAplus[τ, k] =

1 / Sqrt[2 k] (-k τ / (2 ξ ))^(1 / 4) E^(Pi ξ - 2 * Sqrt[-2 ξ k τ]);

I n [ ] : = averageEdotB =

-1 / (4 Pi^2 a^4) Integrate[k^3 FullSimplify@D[approximatemodeAplus[τ, k]^2, τ],
{k, 0, Infinity}, Assumptions  {τ < 0, ξ > 0}] //. {τ  1 / H, a  1}

Ou t [ ] =

-
135 2 π ξ H4

65 536 π2 ξ4

I n [ ] : = averageE2B2 = FullSimplify@Expand[1 / (4 Pi^2 a^4) Integrate[k^2
(D[approximatemodeAplus[τ, k], τ]^2 + k^2 approximatemodeAplus[τ, k]^2),

{k, 0, Infinity}, Assumptions  {τ < 0, ξ > 0}]] //. {τ  1 / H, a  1}
Ou t [ ] =

63 2 π ξ H4 5 + 4 ξ2

262 144 π2 ξ5

Some useful identities

Green’s function

In[41]:= g[t1, t2] :=
I HeavisideTheta[t1 - t2] (q[t1] Conjugate[q[t2]] - Conjugate[q[t1]] q[t2])

In[42]:= FullSimplify[Expand[
(g[t1, t2] /. {t1  τ, t2  τ0}) * (g[t1, t2] /. {t1  τ, t2  τ1})], q[τ] ∈ Reals]

Out[42]=

4 HeavisideTheta[τ - τ0, τ - τ1] Im[q[τ0]] Im[q[τ1]] q[τ]2
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In[43]:= Expand[(g[t1, t2] /. {t1  τ, t2  τ0}) * (g[t1, t2] /. {t1  τ, t2  τ1})]
Out[43]=

-Conjugate[q[τ0]] Conjugate[q[τ1]] HeavisideTheta[τ - τ0]
HeavisideTheta[τ - τ1] q[τ]2 + Conjugate[q[τ]] Conjugate[q[τ1]]
HeavisideTheta[τ - τ0] HeavisideTheta[τ - τ1] q[τ] × q[τ0] + Conjugate[q[τ]]
Conjugate[q[τ0]] HeavisideTheta[τ - τ0] HeavisideTheta[τ - τ1] q[τ] × q[τ1] -

Conjugate[q[τ]]2 HeavisideTheta[τ - τ0] HeavisideTheta[τ - τ1] q[τ0] × q[τ1]

In[44]:= FullSimplify[-Conjugate[q[τ0]] Conjugate[q[τ1]] +

Conjugate[q[τ1]] q[τ0] + Conjugate[q[τ0]] q[τ1] - q[τ0] × q[τ1]]
Out[44]=

4 Im[q[τ0]] Im[q[τ1]]

Bessel Function

In[52]:= FullSimplify[BesselJ[3 / 2, k τ]  -I BesselJ[3 / 2, -k τ],
Assumptions  {τ < 0, k > 0}]

Out[52]=

True

Derivation of power spectrum

Solve for the dimensionless χ(ξ)

I n [ ] : = χ3[ξ_] := ξ^2 / (8 Pi) NIntegrate[(1 + ((q1^2 + q2^2 + q3^2) - q1) /

(Sqrt[q1^2 + q2^2 + q3^2] Sqrt[(1 - q1)^2 + q2^2 + q3^2]))^2 *

Sqrt[q1^2 + q2^2 + q3^2]^(1 / 2) * Sqrt[(q1 - 1)^2 + q2^2 + q3^2]^(1 / 2) *

(Sqrt[q1^2 + q2^2 + q3^2]^(1 / 2) + Sqrt[(q1 - 1)^2 + q2^2 + q3^2]^(1 / 2))^2 *

(Pi / 2) *

(x^(3 / 2) Re[HankelH1[3 / 2, x]] E^(-(2 Sqrt[2 ξ] (Sqrt[q1^2 + q2^2 + q3^2]^
(1 / 2) + Sqrt[(q1 - 1)^2 + q2^2 + q3^2]^(1 / 2))) Sqrt[x]))^2,

{x, 0, Infinity}, {q1, -Infinity, Infinity}, {q2, -Infinity, Infinity},
{q3, -Infinity, Infinity},
Method  {"MultidimensionalRule", "Generators"  9},
PrecisionGoal  10, AccuracyGoal  10]

I n [ ] : = Table[Evaluate[χ3[ξ]], {ξ, 1, 9, 0.2}]
Ou t [ ] =

9.79883 × 10-6, 4.43487 × 10-6, 2.23171 × 10-6, 1.21737 × 10-6,

7.07661 × 10-7, 4.3309 × 10-7, 2.76593 × 10-7, 1.83084 × 10-7, 1.24958 × 10-7,
8.75758 × 10-8, 6.27965 × 10-8, 4.59577 × 10-8, 3.42348 × 10-8, 2.59059 × 10-8,
1.9903 × 10-8, 1.54911 × 10-8, 1.21918 × 10-8, 9.71391 × 10-9, 7.7702 × 10-9,
6.36605 × 10-9, 5.19716 × 10-9, 4.29298 × 10-9, 3.59795 × 10-9, 3.00354 × 10-9,
2.52973 × 10-9, 2.19165 × 10-9, 1.82928 × 10-9, 1.56257 × 10-9, 1.34321 × 10-9,
1.31784 × 10-9, 1.15803 × 10-9, 1.00607 × 10-9, 7.46192 × 10-10,
6.58754 × 10-10, 6.16365 × 10-10, 5.15892 × 10-10, 4.60507 × 10-10,

4.20034 × 10-10, 2.91985 × 10-10, 2.54785 × 10-10, 3.2253 × 10-10

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I n [ ] : = list = Thread[
{{9.798825658147578`*^-6, 4.434872816993712`*^-6, 2.2317135077461777`*^-6,

1.21736601479737`*^-6, 7.076609392820408`*^-7, 4.3309006246320117`*^-7,
2.7659268739892427`*^-7, 1.8308388319999438`*^-7, 1.2495809954089347`*^-7,
8.757583296471376`*^-8, 6.279653756484055`*^-8, 4.5957684325696595`*^-8,
3.423479700469405`*^-8, 2.590586911890827`*^-8, 1.9902990576599183`*^-8,
1.5491099643824834`*^-8, 1.2191766100672054`*^-8,
9.713909740489984`*^-9, 7.770202684710494`*^-9, 6.36604781877133`*^-9,
5.197164341368833`*^-9, 4.292981578349364`*^-9, 3.5979513194070786`*^-9,
3.003541921815547`*^-9, 2.5297285305690097`*^-9, 2.1916493316087435`*^-9,
1.8292783327416729`*^-9, 1.562570548262091`*^-9, 1.3432112745491081`*^-9,
1.317839131499263`*^-9, 1.1580333621141924`*^-9, 1.0060707550758208`*^-9,
7.461921629772588`*^-10, 6.587535537238211`*^-10,
6.163646302119666`*^-10, 5.158924010729107`*^-10, 4.605068214417691`*^-10,
4.2003435008160875`*^-10, 2.9198464661759426`*^-10,
2.5478508307638025`*^-10, 3.225299118078547`*^-10}, Range[1, 9, 0.2]}];

Plot of the χ(ξ) function.

I n [ ] : = ListLinePlotReverseSort[#] & /@ list, PlotRange  Full,

Axes  False, Frame  {{True, False}, {True, False}},

FrameLabel  "χ(ξ)", None, {"ξ", None}, FrameTicks  All

Ou t [ ] =

2 4 6 8
0.00000

2.×10-6

4.×10-6

6.×10-6

8.×10-6

0.00001

ξ

χ
(ξ
)

COBE normalizazion

I n [ ] : = pCobe[ξ_] := E^(-4 Pi ξ) / (2 χ3[ξ]) (-1 + Sqrt[1 + 10^(-8) χ3[ξ] E^(4 Pi ξ)])

Table[Evaluate[pCobe[ξ]], {ξ, 1, 9, 0.2}]
Ou t [ ] =

2.5 × 10-9, 2.5 × 10-9, 2.5 × 10-9, 2.5 × 10-9, 2.49997 × 10-9, 2.49978 × 10-9,

2.49825 × 10-9, 2.48582 × 10-9, 2.38961 × 10-9, 1.89766 × 10-9, 1.00488 × 10-9,
3.96534 × 10-10, 1.38547 × 10-10, 4.62072 × 10-11, 1.50985 × 10-11, 4.88083 × 10-12,
1.56689 × 10-12, 4.9971 × 10-13, 1.59029 × 10-13, 5.00055 × 10-14, 1.57515 × 10-14,
4.9326 × 10-15, 1.53348 × 10-15, 4.77681 × 10-16, 1.48138 × 10-16, 4.52969 × 10-17,
1.41112 × 10-17, 4.34543 × 10-18, 1.33392 × 10-18, 3.83284 × 10-19, 1.1637 × 10-19,
3.55334 × 10-20, 1.17429 × 10-20, 3.55703 × 10-21, 1.0466 × 10-21, 3.25588 × 10-22,

9.80798 × 10-23, 2.92284 × 10-23, 9.97738 × 10-24, 3.0399 × 10-24, 7.68972 × 10-25

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I n [ ] : = pcobelist = {2.499999982605964`*^-9, 2.4999998995534867`*^-9,
2.49999938967263`*^-9, 2.4999958951388746`*^-9, 2.4999705418952134`*^-9,
2.4997774683703524`*^-9, 2.498247639000135`*^-9, 2.485822381045987`*^-9,
2.3896093456512826`*^-9, 1.897664630490458`*^-9, 1.0048762775704315`*^-9,
3.965336527898024`*^-10, 1.385468271093583`*^-10, 4.620724850371261`*^-11,
1.509854602602767`*^-11, 4.880830118971101`*^-12, 1.566892420609399`*^-12,
4.9970955081443`*^-13, 1.5902945173834236`*^-13, 5.0005493279184504`*^-14,
1.5751498375524562`*^-14, 4.932600964408639`*^-15, 1.5334782061195048`*^-15,
4.776809818324325`*^-16, 1.4813829011421233`*^-16, 4.5296872835483043`*^-17,
1.4111179630326825`*^-17, 4.34543099343275`*^-18, 1.3339205685512846`*^-18,
3.8328373720055126`*^-19, 1.1636986081991456`*^-19, 3.5533357599319686`*^-20,
1.1742880077705868`*^-20, 3.557033377362587`*^-21, 1.0465983118979531`*^-21,
3.2558829045515746`*^-22, 9.80798442365184`*^-23, 2.922838745264451`*^-23,
9.977384533010795`*^-24, 3.0398991634215816`*^-24, 7.689721944486793`*^-25};

Now plot Pcobe  alone

I n [ ] : = Show[
ListLinePlot[ReverseSort[#] & /@ Thread[{Sqrt[pcobelist], Range[1, 9, 0.2]}]]]

Ou t [ ] =

2 4 6 8

0.00001

0.00002

0.00003

0.00004

0.00005

I n [ ] : = χlist = {9.798825658147578`*^-6, 4.434872816993712`*^-6,
2.2317135077461777`*^-6, 1.21736601479737`*^-6, 7.076609392820408`*^-7,
4.3309006246320117`*^-7, 2.7659268739892427`*^-7, 1.8308388319999438`*^-7,
1.2495809954089347`*^-7, 8.757583296471376`*^-8, 6.279653756484055`*^-8,
4.5957684325696595`*^-8, 3.423479700469405`*^-8, 2.590586911890827`*^-8,
1.9902990576599183`*^-8, 1.5491099643824834`*^-8, 1.2191766100672054`*^-8,
9.713909740489984`*^-9, 7.770202684710494`*^-9, 6.36604781877133`*^-9,
5.197164341368833`*^-9, 4.292981578349364`*^-9, 3.5979513194070786`*^-9,
3.003541921815547`*^-9, 2.5297285305690097`*^-9, 2.1916493316087435`*^-9,
1.8292783327416729`*^-9, 1.562570548262091`*^-9, 1.3432112745491081`*^-9,
1.317839131499263`*^-9, 1.1580333621141924`*^-9, 1.0060707550758208`*^-9,
7.461921629772588`*^-10, 6.587535537238211`*^-10, 6.163646302119666`*^-10,
5.158924010729107`*^-10, 4.605068214417691`*^-10, 4.2003435008160875`*^-10,
2.9198464661759426`*^-10, 2.5478508307638025`*^-10, 3.225299118078547`*^-10};

I n [ ] : = gaugecon = pcobelist^2 * Table[E^(4 Pi ξ), {ξ, 1, 9, 0.2}] * χlist;

Plot of gauge quanta contributions

Supplement Code.nb     13

Printed by Wolfram Mathematica Student Edition



I n [ ] : = ListLinePlot[ReverseSort[#] & /@ Thread[{Sqrt[gaugecon], Range[1, 9, 0.2]}]]
Ou t [ ] =

2 4 6 8

0.00001

0.00002

0.00003

0.00004

0.00005

Combined plot of the power spectrum

I n [ ] : = sumcontributions = gaugecon + pcobelist;

I n [ ] : = ListLinePlot{ReverseSort[#] & /@ Thread[{Sqrt[gaugecon], Range[1, 9, 0.2]}],

ReverseSort[#] & /@ Thread[{Sqrt[pcobelist], Range[1, 9, 0.2]}],
ReverseSort[#] & /@ Thread[{Sqrt[sumcontributions], Range[1, 9, 0.2]}]},

PlotLegends  {"Gauge fluctuations", "Vacuum fluctuations",
"Total contribution"}, Axes  False, Frame  {{True, False}, {True, False}},

FrameLabel  "P1/2(k)", None, {"ξ", None}, FrameTicks  All

Ou t [ ] =
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