
UNIVERSITY OF GRONINGEN

APPLIED MATHEMATICS BACHELOR PROJECT

Switched nonlinear DAEs in electrical
circuit theory

Author:
Darina Kuzmenko

Supervisor:
1st: Prof. Stephan Trenn

2nd: Dr. Henk van Waarde

July 7th, 2023



i

Abstract

Inconsistent initial conditions in RLC circuits with switches or faulty components
can cause Dirac impulses in the solution. These electrical impulses can damage cer-
tain parts of the circuit, and thus warrant a study into the unique solvability of the
circuit. However, the presence of nonlinear elements in such a circuit make this
challenging. In this paper, the uniqueness and solvability of nonlinear RLC circuits
is investigated through the framework of nonlinear switched DAEs. A theory de-
veloped by Kausar and Trenn in their 2017 paper "Impulses in structured nonlinear
switched DAEs" is discussed and the extent to which it can be applied to DAE mod-
els of RLC circuits is investogated.
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Chapter 1

Introduction

Electrical circuits are intensely prevalent in modern daily life. Even the most minute
and common household devices often rely on skillfully assembled arrangements of
wires and electrical elements. However, even in those minute devices, electrical
circuits can get very intricate. To avoid accidentally damaging an entire electrical
system due to an oversight or unforeseen circumstance, it would be best to mathe-
matically solve the system first (as mathematical failure is famously less devastating
than electrical failure). Finding this solution usually involves running a numerical
method, and the bigger the system, the more time and energy the computer needs
to come up with an answer. In order to avoid wasting time and resources on an un-
solvable problem, it would be best to verify existence and uniqueness of solutions
beforehand.

Alas, it becomes quickly apparent that this is much easier said than done. In par-
ticular, circuits with electric switches or unexpected electrical faults (which can act
as "unwanted" switches) may experience so-called Dirac impulses, which, in com-
bination with non-linear electrical components, entirely complicate the process of
deriving a (unique) solvability result.

In their 2017 paper "Impulses in structured nonlinear switched DAEs" [8], authors
Kausar and Trenn devised a set of conditions that, when met, ensure unique solv-
ability of switched nonlinear DAEs. This result was developed in the context of
water networks. The aim of this paper is to investigate if this result is applicable to
switched nonlinear DAE models of nonlinear RLC circuits.

Chapter 2 provides a comprehensive introduction to switched differential-algebraic
equations (DAEs). Chapter 3 introduces the necessary background information on
RLC circuits and demonstrate how to translate a nonlinear RLC circuit into a non-
linear DAE system. The latter is heavily based on the research done by Riaza in
his paper "DAEs in Circuit Modelling: A survey" [11] and Engelaar in his Bachelor
Project "Controllability of RLC electrical circuits with ideal components" [6].

Chapter 4 contains the uniqueness and solvability result for nonlinear switched
DAEs developed by Kausar and Trenn, complete with detailed explanations and
theoretical background. Finally, in Chapter 5 this result is applied to nonlonear DAE
systems of nonlinear RLC circuits. Specific examples are examined and potential
limitations in the research framework are discussed.
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Chapter 2

Switched DAEs

Differential-algebraic equations (DAEs) (sometimes referred to as semistate systems) are
systems comprised of both differential and algebraic equations. The presence of the
latter is what distinguishes these systems from ODEs (which, by definition, consist
exclusively of differential equations). DAEs are found to be particularly useful in
the fields of circuit theory and mechanics [12].

One particularly useful class of DAEs is the class of so-called switched (or hybrid)
DAEs. These allow us to combine the discrete and continuous dynamics of a system
in one mathematical model. Switched nonlinear DAEs allow us even more flexibility
in modelling more complex systems.

This chapter presents an introduction to switched nonlinear DAE theory. Section 2.1
is dedicatd to the structure of these systems, complete with relevant notation. Sec-
tion 2.3 examines the solution space of switched nonlinear DAEs, with a particular
focus on solutions containing Dirac impulses.

2.1 Anatomy of switched DAEs

This paper deals with nonlinear switched nonlinear DAEs, i.e. systems of the form

Eσ(t) ẋ(t) = Aσ(t)x(t) + gσ(t)(x(t)) + f (t) (2.1)

where x : R → Rn is the state vector, Ep, Ap ∈ Rn×n are the system matrices,
gp : Rn → Rn is the nonlinearity, f : Rn → Rn is the inhomogeneity and σ(t) is
the switching signal, given as follows

Definition 1 The (time-dependent) switching signal is the function

σ : [0, ∞) → P
t 7→ σ(t) = p ∀t ∈ [tp, tp+1)

where P = {1, 2, ..., m} is the index set and σ is a right-continuous piecewise-constant
function. [4]

Such a function has finitely many discontinuities on every bounded time interval of
[0, ∞) and takes a constant value between any two consecutive switching times.
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The role of the switching signal is to specify the active subsystem of (2.1) at any
given time t. Each subsystem takes the form of

Ep ẋ(t) = Apx(t) + gp(x(t)) + f (2.2)

where p ∈ P and Ep, Ap ∈ Rn×n are constant. In other words, (2.1) is a time-varying
nonlinear DAE whose system matrices Aσ(t), Eσ(t) are piecewise-constant.

This switched structure of the switched nonlinear DAEs is what will later allow us
to represent a complete circuit with multiple branches and switches as one mathe-
matical system.

2.1.1 A note on notation

To improve readability, the time dependency of the state vector x(t) and the switch-
ing signal σ(t) will typically be omitted:

Eσ ẋ = Aσx + gσ(x) + f

2.1.2 A note on classification

Based on the switching signal, switched DAEs can be classified into

• Time-dependent (σ(t)),

• State-dependent (σ(x(t))),

• Both time- and state-dependent (i.e. multiple switching signals involved).

In time-dependent DAEs, the switch from one active subsystem to another can hap-
pen irrespective of the behaviour of the mathematical system. An example would
be a electric switch that breaks of completes a circuit. These are the systems that will
be considered in this paper.

In state-dependent DAEs, the switch from one active subsystem to another is in-
duced by the behaviour of the system itself. As an example, consider any circuit
with an electrical fuse. A fuse is designed to melt (and hence break the circuit) when
the current running through it exceeds some specified threshold. Here, the fuse
acts as a state-dependent switch, where part of the state x(t) is the current running
through the fuse-branch. The complexity of a such systems puts them outside of the
scope of our paper.
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2.2 Initial trajectory problem (ITP)

An analogue to the probably more familiar initial value problem (IVP), the initial
trajectory problem (ITP) is defined as follows

Definition 2 An initial trajectory problem (ITP) is defined as

x(−∞,t0) = x0
(−∞,t0)

(2.3)

(Eẋ)[t0,∞) = (Ax + g(x) + f )[t0,−∞) (2.4)

where x0 : R → Rn is some given initial trajectory.

2.3 Distributional solutions

As will be shown in Section 4.1, the solution to a switched DAE problem could in-
clude the Dirac impulse.

Definition 3 The Dirac impulse δt at time t ∈ R is given by

δt : C∞
0 → R,
f 7→ δt( f ) = f (t)

[13]This definition makes use of the space of test functions C∞
0 . To define it, first

consider the space of smooth functions C∞ defined as

Definition 4

C∞
0 = { f : R → R | f is arbitrarily often differentiable} (2.5)

[2009] and the support of f ∈ C∞ defined as

Definition 5
supp f = cl {x ∈ R | f (x) ̸= 0} (2.6)

[13]

Then, the space of test functions C∞
0 is defined as

Definition 6
C∞

0 = { f ∈ C∞ | supp f is bounded} (2.7)

[13]

Moreover, in a later definition, the space of piecewise-smooth functions will be refer-
enced.

Definition 7

C∞
pw =

{
α = ∑

i∈Z

1[ti ,ti+1)αi

∣∣∣∣∣ (αi)i∈Z ∈ (C∞Z),
{ti ∈ R | i ∈ Z} locally finite
with ti < ti+1, i ∈ Z

}
(2.8)

[13]
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The Dirac impulse is a distribution; hence, the solution space will need to be en-
larged from the space of classical solutions to the space of classical distributions, de-
fined as follows

Definition 8 The space of classical distributions is given by

D = {D : C∞
0 → R | D is linear and continuous} (2.9)

[13] Notably, any locally integrable function f : R → R induces a distribution via

fD(g) =
∫

R
f g

However, it turns out that the whole space of distributions D is not a suitable (or en-
tirely necessary) solution space for switched DAEs. Namely, in general distributions
cannot be evaluated at a certain time (which becomes a problem when a solution
needs to be defined at exactly the time of switching from one active subsystem to
another). To combat this, one can consider switched DAEs as DAEs valid on certain
intervals. Thus, a special subclass of distributions needs to be considered such that
it can be defined on restricted intervals. Moreover, the solution space needs to con-
tains the Dirac impulse and it’s derivatives (exactly why will be discussed in Section
4.1). [10] [13]

These reasons give rise to the space of piecewise-smooth distributions DpwC∞ :

Definition 9 [2009] The space of piecewise-smooth distributions is given by

DpwC∞ :=

{
D = fD + ∑

τ∈T
Dτ

∣∣∣∣ f ∈ C∞
pw, T ⊆ R is discrete,

∀τ ∈ T : Dτ ∈ span{δτ, δ′τ, δ′′τ , ...}

}

This space clearly contains the Dirac impulse and it’s derivatives. Moreover, a piecewise-
smooth distribution can be evaluated at any time t ∈ R in the following three ways:

D(t+) = f (t+),
D(t−) = f (t−),

D[t] =

{
Dt, t ∈ T
0, t /∈ T

[8]where f (t±) is the right/left limit of the function f at time t. [8]
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Chapter 3

RLC Circuits

In this paper, RLC circuits will be considered. These comprise of resistors (R), in-
ductors (L), and capacitors (C), as well as voltage and current sources. Despite their
relative simplicity, the real-life applications of RLC circuits are far from limited [1],
and entirely justify a study into (unique) solvability.

DAE systems are a convenient way of modelling RLC circuits as they allow to com-
bine the algebraic Kirchhoff and Ohms Laws and the differential component laws
in one system. Expanding to nonlinear DAEs allows for nonlinear electrical ele-
ments, and expanding to switched nonlinear DAEs allows for time-dependent elec-
tric switches.

There are several ways to approach modelling circuits as DAEs. In his 2013 paper
titled "DAEs in Circuit Modelling: A survey" [11], Riaza provides a comprehensive
overview of strategies for a wide variety of circuit modelling problems. From this
text, the concepts most closely related to RLC circuits and branch-oriented modelling
were skillfully synthesized by University of Groningen student Maico Engelaar in
his 2019 Bachelor Thesis, "Controllability of RLC electrical circuits with ideal com-
ponents" [6].

This chapter will present a brief summary of the findings from Engelaar’s paper,
supplementing with additional theory where necessary. Section 3.1 presents a con-
cise introduction to graph theory. Sections 3.2 and 3.3 discuss Kirchhoff Laws and
component laws respectively. Finally, Section 3.4 presents a practical framework for
modelling RLC circuits as DAEs. Curious readers are strongly encouraged to consult
Riaza’s and Engelaar’s works to get a more thorough understanding of the structure.

3.1 Graph theory

In mathematics, graph theory refers to the study of graphs, or mathematical struc-
tures used to represent relationships between objects. For reasons that will become
apparent, this paper focuses on the subset of directed graphs. [5]

Definition 10 A directed graph G = (V, E, f ) is a triple consisting of two sets and a map.
The elements of V are the nodes, the elements of E are the edges. The map

f : E → V × V
f (e) = ( f1(e), f2(e))

assigns to every edge e an initial node f1(e) and a terminal node f2(e). The edge e is said to
be directed from f1(e) to f2(e).
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One may already see how a mathematical graph can be seen as a convenient ana-
logue for an electrical circuit. The nodes are the points where one or more active
elements in a circuit meet. The edges correspond to the branch of a circuit. (NOTE:
The number of branches corresponds to the number of active elements in a circuit). The di-
rection of the branch, once identified, remains consistent.

In Figure 3.1 (below), there are 5 branches and 4 nodes. The direction is set by the
current flowing out of the voltage source.

FIGURE 3.1: An electrical circuit on the left and its corresponding
graph on the right. The nodes are numbered.

The final relevant component is a loop.

Definition 11 A path is a nonempty graph P = (VP, EP) of the form

VP = (x0, x1, ..., xk), EP = (x0x1, x1x2, ..., xk−1xk)

where all the nodes xi are distinct. The vertices x0 and xk are the ends of the path.

Definition 12 A loop is a path with x0 = xk

A loop in an electrical circuit is similarly defined as a closed path that does not "pass
through" the same node more than once. In Figure (3.1), there are three loops.
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3.2 Kirchhoff’s laws

In 1845, German physicist Gustav Kirchhoff introduced two equalities regarding the
current and voltage in an electrical circuit.

Kirchhoff’s Current Law (KCL) dictates that the sum of the currents leaving the
node is equal to the sum of the currents entering the node.

Kirchhoff’s Voltage Law (KVL) dictates that the sum of the voltages along the
branches of any closed loop is equal to zero.

These laws are what will constitute the algebraic equations in our DAE.

3.3 RLC components

The three components of an RLC circuit (save the voltage and current sources) are
the resistor, inductor, and capacitor. The relationship between the current and volt-
age within each ideal element are described below. These are easily generalized into
their nonlinear counterparts. The symbols used for each element in circuit diagrams
are given in Figure 3.2.

FIGURE 3.2: (From left to right) symbols for resistor, capacitor and
inductor.

3.3.1 Resistor

Resistors help regulate the flow of current in a circuit. They can be used to, for ex-
ample, prevent a too strong current from frying other elements in the circuit.

The relationship between the voltage and current within an ideal resistor was de-
scribed by German physicist and mathematician Georg Simon Ohm in 1827 in a
statement known as Ohm’s Law:

vR = RiR (3.1)

Here, the constant R is referred to as the resistance and is measured in Ohms (Ω).
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3.3.2 Inductor

An inductor stores electrical energy in the form of a magnetic field. The relation-
ship between the voltage and current within an ideal inductor is described by the
following relation:

d
dt

iL =
1
L

vL (3.2)

Here, the constant L is referred to as the inductance and is measured in Henry (H).

3.3.3 Capacitor

A capacitor stores electrical energy in the form of an electrical field. The relation-
ship between the voltage and current within an ideal capacitor is described by the
following relation:

d
dt

vC =
1
C

iC (3.3)

Here, the constant C is referred to as the capacitance and is measured in farads (F).

NOTE: Readers may be more familiar with the induction and capacitance constants being on
the left-hand side of the equations. The form used in this paper is, obviously, equivalent, and
more useful to us when introducing nonlinearity into the circuit system.

NOTE: The above equations hold for ideal linear electrical elements. In generalizing to non-
linear electrical elements, replace the right-hand side of the equation with the corresponding
nonlinear relation. E.g. for a resistor, vR = RiR becomes vR = R(iR).

3.3.4 Voltage and current sources

Voltage and current sources generate a voltage and current respectively. These are
interpreted in the system as input variables u(t). For structural reasons explained
later, they are also included in the state vector x(t).

3.4 RLC into DAE

This section details the process for translating an RLC circuit into a DAE system as
it was summarized in Engelaar’s paper [6] (with a minor modification regarding the
voltage and current sources). Again, this framework does not explicitly include non-
linear elements, but the modification required to do so is very straightforward.
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Step 1: Count the nodes, branches, loops and elements in your circuit.

n = number of nodes,
b = number of branches,
m = number of loops,
r = number of resistors,
ℓ = number of inductors,
c = number of capacitors.
vs = number of voltage sources,
cs = number of current sources

(3.4)

Step 2: Combine all of the current and voltage measurements into a state vector:

x =



iR
iL
iC
iVS
iCS
vR
vL
vC
vVS
vCS


∈ R2b (3.5)

The subscript indicates the active element to which the current or voltage measure-
ments pertain. If there are multiple elements of the same type (e.g. two resistors),
make sure to keep their order consistent throughout the calculations.

Step 3: Construct the so-called All-node incidence (ANI) matrix A0 and the All-loop
(AL) matrix B0. Each row of the ANI corresponds to an equation of the KCL, and
each row of the AL corresponds to an equation of the KVL.

The ANI matrix is defined by A0 = {ajk} ∈ Rm×n

ajk =


1 if branch k leaves node j
−1 if branch k enters node j
0 otherwise

(3.6)

The AL matrix is defined by B0 = blk ∈ Rb×n where

bjk =


1 if branch k is in loop j and has the same orientation
−1 if branch k is in loop j and has the same orientation
0 otherwise

(3.7)

Step 3: For reasons more thoroughly elaborated on in Engelaar’s Bachelor Thesis
[6], A0 and B0 are not full-rank matrices. They may be reduced into such for the
purposes of making future calculations more compact. For the ANI matrix A0, it
suffices to remove an arbitrary row, which results in a full-rank incidence matrix Ã.
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For the AL matrix B0, one may use any method to select b − n + 1 linearly indepen-
dent rows from B0 to construct the loop matrix B̃. (Electrical circuit theory supports
this! The number of independent loops in a circuit (i.e. loops that contain at least
one branch that is not part of any other independent loop) is indeed equal to the
number of branches minus the number of nodes plus one. [1])

Step 4: Combine the Kirchhoff Laws, component laws, and voltage and current
sources into matrices E ∈ R2b×2b and A ∈ R2b×2b

E =

r ℓ c vs cs r ℓ c vs cs

b+r 0

ℓ 0 I 0

c 0 I 0

vs+cs 0

A =

r ℓ c vs cs r ℓ c vs cs

n-1 Ã 0

b-n+1 0 B̃

r -R 0 I 0

ℓ 0 1/L 0

c 0 1/C 0

vs 0 I 0

cs 0 I 0

Step 5: The voltage and current sources are accounted for in the form of the input
vector u:

u =
[
uVS uCS

]
∈ Rvs+cs

where uVS are the input voltage sources and vCS are the input current sources.

The input matrix is then defined as

B =

vs+cs

b+r+c+ℓ 0

vs+cs -I
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Step 6: Steps 4-5 combine into the final form

Eẋ = Ax + Bu (3.8)

NOTE: The code for this construction is included in Appendix B.

Step 7: If there is a nonlinear active element in the circuit, replace the relevant con-
stant in matrix A with zero and add on the nonlinearity as a column vector g(x).

3.4.1 A note on input

In this paper, a special case of the system Eẋ = Ax + Bu will be considered, specifi-
cally one where the input Bu is treated as (part of the) inhomogeneity f .

Another alternative would be to assume a constant voltage and current source, i.e.

d
dt

iCS =
d
dt

vVS = 0

This would require a few more modifications to the construction of E and A them-
selves.

3.5 Example

Consider the following circuit

FIGURE 3.3: Example circuit with one capacitor, one inductor, one
voltage source and one switch

The capacitance C, inductance L and generated voltage V are indicated on the Figure
3.3.

Define the switching signal σ(t) as

σ(t) =

{
1 switch is on the voltage source
2 switch is on the capacitor
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Then, the two subsystems of the complete switched SDAE are
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0




i̇L
i̇VS
v̇L

v̇VS

 =


−1 1 0 0
0 0 1 1
0 0 1/L 0
0 0 0 1




iL
iVS
vL

vVS

+
[
0 0 0 −1

]
vVS

E1..............................................A1.............................................

and 
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 1




i̇L
i̇C
v̇L
v̇C

 =


−1 1 0 0
0 0 1 1
0 0 1/L 0
0 1/C 0 0




iL
iC
vL
vC


E2.......................................A2..............

If, for example, the capacitor were nonlinear C(iC), subsystem (E2, A2) would con-
tain a nonlinear term

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 1




i̇L
i̇C
v̇L
v̇C

 =


−1 1 0 0
0 0 1 1
0 0 1/L 0
0 0 0 0




iL
iC
vL
vC

+


0
0
0

C(iC)


.....E2...........................................A2.............................g2(x)
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Chapter 4

Nonlinear switched DAEs:
existence and uniqueness of
solutions

As mentioned in the introduction, being able to determine the (unique) solvability
of a system is hugely benefitial in saving time and resources. However, in the con-
text of nonlinear switched DAEs, this proves to be no easy feat, which is shown in
Section 4.1. In their 2017 paper "Impulses in structures nonlinear switched DAEs"
[8], authors Kausar and Trenn present a set of conditions under which existence and
uniqueness of solution of a switched nonlinear DAE can be guaranteed. This result
is presented in Section 4.3. The remainder of the chapter is dedicated to the thorough
dissection of their theorem.

4.1 Problem

The main challenge in studying the solvability of nonlinear switched DAEs (2.1) is
the nonlinear evaluation of the potentially impulsive parts of the solution. Recall
that, by definition, the space of piecewise-smooth distributions Dn

pwC∞ (i.e. our so-
lution space) is linear. Hence, if there was a Dirac impulse in the solution x, the
nonlinear evaluation gσ(x) would take us out of that solution space.

To illustrate, consider a linear resistor

vR = RiR

A Dirac impulse in iR would translate directly to a Dirac impulse in vR, just scaled
by the constant R. Now, consider the following instead a nonlinear resistor

vR = R(iR) = cos(iR),

and imagine again a Dirac impulse in iR. How would this translate in vR?

So when can the Dirac impulse show up in our solution? Well, it can become an
issue when so-called inconsistent initial value are present. For example, consider the
circuit in Figure 4.1 (below).
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FIGURE 4.1: Circuit with one resistor, two capacitors and one voltage
source

This circuit has two subcircuits that can be switched between electronically. When
the switch is flipped to the left (as it currently is in Figure), the active circuit includes
the voltage source and the capacitor C1. Say the capacitor is charged to voltage E.
When the switch is flipped to the right, it effectively "adds" another capacitor and
resistor into the active circuit. At the moment that the switch is flipped to the right,
the left capacitor is supplying a voltage of E volts into node 1, and the right capacitor
is supplying no voltage into node 1. But this is a loop, and by Kirchhoff’s Laws, the
sum of all voltages in a loop is equal to zero. Hence, the problem has an inconsistent
initial value at the time of switching from left to right. [15] [2]

This inconsistency is equalized instantaneously by a Dirac impulse. Hence, the pres-
ence of inconsistent initial conditions is conducive to Dirac impulses in the solu-
tion. Consequently, when looking at a switched nonlinear DAE of this form (2.1), a
(unique) solution cannot always be guaranteed.

4.2 Existence and uniqueness of solution: informal reason-
ing

In their 2017 paper "Impulses in structured nonlinear switched DAEs", Kausar and
Trenn bypass the problem descrived in the previous section by assuming that the
nonlinearity gσ(x) is sparse in such a way that it "overlooks" the possibly impul-
sive parts of x. Following this, they show that under some additional conditions,
the original DAE (2.1) can be "split up" into an equivalent form comprised of three
DAEs, for each of which one can verify existence and uniqueness of solutions using
preexisting theory.
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4.3 Existence and uniqueness of solution: formal result

The formal existence and uniqueness result for nonlinear DAEs derived by authors
Kausar and Trenn is as follows.

Theorem 1 For ω ∈ [0, ∞), consider the local nonlinear ITP{
x(−∞,0) = x0

(−∞,0)

(Eẋ)[0,ω) = (Ax + g(x) + f )[0,ω)

(4.1)

with initial trajectory x0 ∈ Dn
pwC∞ . If the following assumptions hold:

(R): (E, A) is regular,

(F): The inhomogeneity f is induced by a piecewise-smooth function f : R → Rn,
...] i.e. f = f D,

(S): g : Rn → Rn is locally Lipschitz continuous and picewise-smooth,

(G): ∃g : Rmg → Rng ∃M ∈ Rmg×n ∃N ∈ Rn×ng ∀ξ ∈ Rn such that
..... g(ξ) = N g(Mξ),

(M): MEimp = 0,

(N): im N ⊆ im E,

Then there exists ω > 0 such that the local nonlinear ITP (4.1) has a unique solution
x ∈ Dn

pwC∞ on (−∞, ω).

NOTE: A particularly cautious reader may not feel entirely convinced by the final statement.
After all, ω may turn out to be very small, thus severely (or entirely) limiting the real-life
applicability of the theorem. This is, unfortunately, the case for many results regarding ex-
istence and uniqueness of solutions of systems of differential equations. A possible way to
bypass this issue is to extend the solution by re-using the initial value. This, of course, breaks
down if our solution is undefined at ω or is constantly increasing. In this case the problem
has what is known as a maximal solution.

Following this, they formulated a corollary that extends the above result to switched
nonlinear DAEs in the form (2.1).

Corollary 1 Consider the switched DAE (2.1) such that ∀p the subsystem satisfies the con-
ditions stated in Theorem 1. Then, for any initial trajectory x0 ∈ Dn

pwC∞ on (−∞, 0), there
exists a unique distributional solution x ∈ Dn

pwC∞ of (2.1) defined on (ω, ∞) for some finite
ω ∈ R.
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4.4 Explanation

The purpose of this section is to convince the reader of the relevance and necessity
of each of the six conditions listed in 4.1. For a rigorous and very comprehensive
proof, the reader is welcome to consult page 3184 in the original paper by Kausar
and Trenn [8].

Recall that Section 4.3 outlined two main assumptions for unique solvability:

1. The nonlinearity gσ is sparse in such a way that it "overlooks" the potentially
impulsive parts of x,

2. The DAE (2.1) can be split up into three uniquely solvable systems.

Each condition in Theorem 1 works to translate these assumptions into a mathemat-
ically rigorous form.

4.4.1 QWF

Before any explanation is to proceed, several formal definitions and concepts must
be introduced.

The first condition (R) in Theorem 1 is regularity of matrix pair (E, A).

Definition 13 A matrix pair (E, A) ∈ Rn×n ×Rn×n is said to be regular if det(s · E − A)
is not the zero polynomial.

A consequence of regularity is that the matrix pair can necessarily be transformed
into the quasi-Weierstrass form (QWF).

Proposition 1 A matrix pair (E, A) ∈ Rn×n × Rn×n is regular iff there exist invertible
transformation matrices S, T ∈ Rn that put (E, A) into quasi-Weierstrass form (QWF)

(SET, SAT) =

([
I 0
0 N

]
,
[

J 0
0 I

])
(4.2)

where N ∈ Rn2×n2 is nilpotent and J ∈ Rn1×n1 with n1 = n − n2 is some matrix.

In [3] it was shown that a convenient method to obtain the transformation matrices
S, T is through the Wong sequences.

Theorem 2 Let (E, A) be a regular matrix pair. Define the Wong sequences as

V0 = Rn, V i+1 = A−1(EV i),

W0 = 0, W i+1 = E−1(AW i),

where

M−1(N) = {x ∈ Rn | Mx ∈ N} = pre-image of N ⊆ Rn under M,
N(M) = {y = Mx ∈ Rn | x ∈ N} = image of M ⊆ Rn under N.
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These sequences converge after the same number of finite steps. Denote the limits with V∗

and W∗. Choose full rank matrices V and W such that

im V = V∗

im W = W∗

Then, the transform matrices

T =
[
V W

]
S =

[
EV AW

]−1

are invertible and put (E, A) into quasi-Weierstrass form.

NOTE: A MATLAB code for finding the QWF of a matrix pair (E, A) was derived by Trenn
in his 2009 PhD Thesis "Distributional Differential Algebraic Equations" [13]. This code
was used in calculations in Chapter 4 of this paper and is included in full is Appendix B for
convenience of reference.

4.4.2 Nonlinearity gσ is sparse

(R): (E, A) is regular,

(G): ∃g : Rmg → Rng ∃M ∈ Rmg×n ∃N ∈ Rn×ng ∀ξ ∈ Rn such that
g(ξ) = N g(Mξ),

(M): MEimp = 0

Based on the QWF of (E, A) (condition (R)) one defines the impulse projector:

Πimp = T
[

0 0
0 I

]
S (4.3)

and the impulse matrix
Eimp = ΠimpE (4.4)

The usefullness of this matrix becomes more apparent when compared with the lin-
ear analogue of our DAE system. Consider the following linear ITP:

x(−∞,0) = x0
(−∞,0)

(Eẋ))[0, ∞) = (Ax + f )[0,in f ty)

From existing theory [13] [14] one can obtain the explicit solution formula for the
linear ITP. Specifically, if f is induced by a piecewise-smooth function, the impulsive
part of x is defined as as:

x[0] = −
n−1

∑
i=0

(Eimp)ix0(0−)δ(i) −
n−1

∑
i=0

(Eimp)i
i

∑
j=0

f (i−j)(0+)δ(j) (4.5)

where δ(i) denotes the ith derivative of the Dirac impulse δ.
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x[0] is a linear combination of Diracs and their derivatives, i.e. x[0] = x0δ + x1δ̇ +
x2δ̈. Then, from 4.5 it is clear that there exist y0, y1, y2 such that xi = Eimp · yi for
i = 1, 2, 3. Hence, condition (M) would imply that

Mx[0] = MEimp ∑ yi

= 0 × ∑ yi condition (M)

= 0

If our nonlinearity is indeed in the form (G), then Mx[0] = 0 implies that g "over-
looks" the potentially impulsive part of x at the time of the inconsistent initial value
and can be evaluated even for distributional x.

4.4.3 DAE can be split up into three uniquely solvable DAEs

(R): (E, A) is regular,

(F): The inhomogeneity f is induced by a piecewise-smooth function
f : R → Rn, i.e. f = f D,

(S): g : Rn → Rn is locally Lipschitz continuous and picewise-
smooth,

(N): im N ⊆ im E,

(M): MEimp = 0

The regularity (R) of (E, A) once again allows us to consider the QWF of (E, A).
Specifically, it can be shown that there exists a special case of the transformation
matrices S, T such that the matrix pair (E, A) assumes the special form

(SET, SAT) =

(I 0 0
0 0 0
0 N1 N2

 ,

 J 0 0
0 I 0
0 0 I

) (4.6)

T−1x =

 v
w1
w2
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Plugging this into our DAE (2.2),

Eẋ = Ax + g(x) + f

ET

 v̇
ẇ1
ẇ2

 = AT

 v
w1
w2

+ g

(
T

 v
w1
w2

)+ f

SET

 v̇
ẇ1
ẇ2

 = SAT

 v
w1
w2

+ Sg

(
T

 v
w1
w2

)+ S f

I 0 0
0 0 0
0 N1 N2

 v̇
ẇ1
ẇ2

 =

 J 0 0
0 I 0
0 0 I

 v
w1
w2

+

Sv

Sw
1

Sw
2

 g

(
T

 v
w1
w2

)+

Sv

Sw
1

Sw
2

 f


v̇ = Jv + Svg(x) + Sv f
0 = w1 + Sw

1 g(x) + Sw
1 f

N1ẇ1 + N2w2 = w2 + Sw
2 g(x) + Sw

2 f

Each new equation corresponds to it’s own ITP. The remaining conditions (F), (S)
and (N) allow us to use solution theory [10] to verify the unique solvability of each
of the three new ITPs. Namely, note that the first condition is just an ODE and can
be solved for v accordingly. Then, condition (N) implies that Sw

1 g(x) = 0, making
the second equation directly solvable for w1. Lastly, by condition (M) it follows that
g(x) is independent of Sw

2 . Hence, the third equation can be solved using known
f , w1 and g(x) since

[
N1 N2

]
is nilpotent [13].
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Chapter 5

Results

The solution theory of switched nonlinear DAEs in the 2017 paper by Krausar and
Trenn was developed in the context of modelling water distribution systems (the
main concern was that of the water hammer effect, which occurs when a large quan-
tity of flowing water is suddenly halted and has the potential to cause serious dam-
age to the hydraulic infrastructure) [9]. This section is an investigation into the ap-
plication of this theorem to RLC circuits.

Section 5.2 considers what happens when the resistor(s) are made nonlinear. Section
5.3 contains further examples to illustrate the complexity of the problem. The re-
maining sections outline potential caveats related to the structure of the DAE model
used and how this may be inhibiting an effective application of Theorem 1.

5.1 Note on examples

In order to evaluate the application of Theorem 1 to switched nonlinear RLC cir-
cuit models, one does not need to study complete switched nonlinear RLC circuit
examples. Recall that, as per Corollary 1, the result 1 would need to hold for every
subcircuit in a switched system.

5.2 Resistors

An immediate consequence of using the DAE framework described in Chapter 3 is
that making any resistor nonlinear violates condition (N) of Theorem 1. To illustrate,
consider the general structure of a DAE



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 I 0 0 0
0 0 I 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


ẋ =



Ã 0 0 0 0 0
0 0 0 0 0 B̃
0 0 0 0 0 I 0 0 0 0
0 I 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 I 0
0 0 0 0 I 0 0 0 0 0


x+



0
0

−R(iR)
0
0
0
0


+ f

..........................E A N g(Mx)
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(This is by no means a rigorous sketch of the structure, but it works well enough to
illustrate the result.)

Comparing matrix E and nonlinearity g(x) = N g(Mx), one observes that

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 I 0 0 0
0 0 I 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0





0
0

−R(iR)
0
0
0
0


..........................E N g(Mx)

In the simplest case, N =
[
0 0 1 0 0 0 0

]T, and im(N ) ⊆ im(E) is clearly
not satisfied. It is easy to see that any other choice of N it is similarly unsatisfactory.
Hence, in any scenario with a nonlinear resistor, Theorem 1 cannot be used to ensure
(unique) solvability.

5.3 Capacitors and Inductors

The rigorous nonlinear DAE structure detailed in Chapter 3 leads us to believe that
there may be some compact proof that would allow us to make a concrete judge-
ment on the solvability of some class of RLC circuits. However, so far neither the
theoretical nor empirical results supported the existence of any such result.

As an example, consider the following circuit

FIGURE 5.1: Circuit with two resistors, three capacitors, one inductor,
one voltage source and one current source

If the inductor is the only nonlinear element in the circuit, i.e. the nonlinearity takes
the form

g(x) =
[
0 0 0 0 0 0 0 0 0 0 L(vL) 0 0 0 0 0

]
,

and
MEimp =

[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
,

i.e. condition (M) of Theorem 1 is satisfied.
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However, if the inductor and capacitor 3 to be nonlinear, i.e. the nonlinearity takes
the form

g(x) =
[
0 0 0 0 0 C3(iC3) 0 0 0 0 L(vL) 0 0 0 0 0

]
and the calculations show that

MEimp =

[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −C1 −C2 C1 + C2, 0, 0],

]
and hence the condition (M) is not satisfied.

5.4 Caveat: regularity

The regularity condition (R) is necessary and sufficient for the existence of the nec-
essary QWF. For smaller circuits (e.g. 2-4 active components), empirical evidence
shows the regularity condition holds by default as there is a term independent of
the resistance, inductance or capacitance constants in the polynomial det(s · E − A).
However, for more complicated circuits there is a distinct absence of such an in-
dependent term, and there is hence a constraint on which (combinations of) circuit
elements can be made nonlinear.

Take as an example the circuit from Figuire 4.1. Calculations show that
For Figure 5.1, running the code reveals that the regularity result is

det(s · E − A) = C1 · C2 · s2 + C1 · C3 · s2 + C2 · C3 · s2 + C1 · C2 · C3 · L1+
C1 · C2 · L1 · R1 · s + C1 · C3 · L1 · R1 · s + C2 · C3 · L1 · R1 · s

Recall that regularity requires that this polynomial is not equal to the zero polyno-
mial. However, note that there are no terms independent of either the capacitance
or inductance. Hence, there is some limitation to the elements which can be made
nonlinear, e.g. making capacitor 1 and capacitor 2 nonlinear makes (E, A) irregular,
but making capacitor 2 and inductor 1 nonlinear does not affect regularity.

Another related result is that circuits may be divided up into a set of independent
loops in different ways [1]. Hence, the loop matrix B̃ may be different for the same
circuit, which would in turn affect the regularity result det(s · E − A).

However, a sort of "loophole" can be employed that will allow any problem to be
regular. In examples thus far, to convert a linear element to a nonlinear one, the cor-
responding constant (resistance R, inductance L or conductance C) was "removed"
from the A matrix and "added" it back into the system in the form of a nonlinear
function in g(x). However, one could instead leave matrix A unmodified, and in-
clude a term in g(x) such that it cancels the "unwanted" constant in A. For example,
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a nonlinear resistor would result in a nonlinearity g(x) such that

g(x) =



0
...
0

R f (iR) + R
0
...
0


Of course, this "loophole" would imply that the DAE matrices (E, A) remain the
same regardless of which circuit elements are nonlinear. Moreover, the QWF trans-
formation matrices S, T and, subsequently, the impulse matrix Eimp remain the same
throughout.

5.5 Caveat: reducing system size

Another way in which it may be possible to bypass the non-regularity of pair of
system matrices (E, A) is by reducing the system size. As an example, consider a
circuit containing a nonlinear resistor and a linear inductor only. Then, the following
equations would be active:

iR = iL

vR + vL = 0

vL =
1
L

d
dt

iL

vR = R(iR)

It would be possible to express this system in the following reduced form

1
L

d
dt

iL = −R(iL)

Similar calculations on irregular systems could reduce the size of the system and
potentially bring it into a regular form. Of course, this would then warrant an inves-
tigation into exactly how much information about the system would be lost in this
way.
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Chapter 6

Conclusion

In this paper the uniqueness and solvability of switched nonlinear DAEs was consid-
ered. Specifically, it was investigated if the uniqueness and solvability result derived
by Krausar and Trenn in [8] could be applied to switched nonlinear DAE models of
RLC circuits.

In Chapter 1, the notion of switched nonlinear DAES was introduced, with a partic-
ular focus being made on the solution space of piecewise-smooth distributions. In
Chapter 2, relevant background information on RLC circuits was introduced, and a
framework for translating a nonlinear RLC circuit into a nonlinear DAE was intro-
duced.

Chapter 3 discussed the existence and uniqueness result derived by Kausar and
Trenn in their paper "Impulses in structured nonlinear switched DAEs" [8]. Lastly,
attempts (however successful) at combining the nonlinear RLC circuits were pre-
sented in Chapter 4.
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Appendix A

RLC into DAE

A.1 MATLAB code for generating the DAE form of an RLC
circuit

%%%%%%%%%%%%%%%%% Preliminaries %%%%%%%%%%%%%%%%%

disp(' ');

n = input("How many elements does your circuit have? ANSWER
: ");

oldE = zeros (2*n,2*n);
E = sym(oldE);

oldA = zeros (2*n,2*n);
A = sym(oldA);

disp(' ');

%%%%%%%%%%%%%%%%% Resistors %%%%%%%%%%%%%%%%%

nR = input('How many resistors does your circuit have?
ANSWER: ');

syms(sym('R',[1,nR]));

disp(' ');

if nR==0
RES = 0;

else
disp('Type in the resistance values in order.')
disp('Please use the following notation (brackets and

commas ')
disp('included): [R1, R2, ..., ].')
disp('If the exact values are unknown , use "R1" etc. ')
RES = input('ANSWER: ');

end

disp(' ');
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%%%%%%%%%%%%%%%%% Capacitors %%%%%%%%%%%%%%%%%

nC = input('How many capacitors does your circuit have?
ANSWER: ');

syms(sym('C',[1,nC]));

disp(' ');

if nC==0
CAP = 0;

else
disp('Type in the capacitance values in order.')
disp('Please use the following notation (brackets and

commas ')
disp('included): [C1, C2, ..., ].')
disp('If the exact values are unknown , use "C1" etc. ')
CAP = input('ANSWER: ');

end

disp(' ');

%%%%%%%%%%%%%%%%% Inductors %%%%%%%%%%%%%%%%%

nL = input('How many inductors does your circuit have?
ANSWER: ');

syms(sym('L',[1,nL]));

if nL==0
IND = 0;

else
disp('Type in the inductance values in order.')
disp('Please use the following notation (brackets and

commas ')
disp('included): [L1, L2, ..., ].')
disp('If the exact values are unknown , use "L1" etc. ')
IND = input('ANSWER: ');

end

disp(' ');

%%%%%%%%%%%%%%%%% Voltage sources %%%%%%%%%%%%%%%%%

nVS = input('How many voltage sources does your circuit
have? ANSWER: ');

disp(' ');
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%%%%%%%%%%%%%%%%% Current sources %%%%%%%%%%%%%%%%%

nCS = input('How many current sources does your circuit
have? ANSWER: ');

disp(' ');

%%%%%%%%%%%%%%%%%

% At this point , we have two empty matrices ,
% E,
% A,
% five constants
% nR -- number of resistors ,
% nCA -- number of capacitors ,
% nL -- number of inductors ,
% nV -- number of voltage sources ,
% nCU -- number of current sources ,
% and (max) three arrays
% RES -- array containing the resistances ,
% CAP -- array containing the capacitances ,
% IND -- array containing the inductances.

%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% Filling in E %%%%%%%%%%%%%%%%%

for i=1:nL
E(n+nR+i,nR+i) = 1;

end

for i=1:nC
E(n+nR+nL+i,n+nR+nL+i) = 1;

end

%%%%%%%%%%%%%%%%% Filling in A %%%%%%%%%%%%%%%%%

for i=1:nR
A(n+i,i) = -RES(i);
A(n+i,n+i) = 1;

end

for i=1:nL
A(n+nR+i,n+nR+i) = IND(i); % Should technically be

1/IND(i)
end
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for i=1:nC
A(nR+nL+i,nR+nL+i) = IND(i); % Should technically

be 1/CAP(i)
end

for i=1:nVS
A(n+nR+nC+nL+i,n+nR+nC+nL+i) = 1;

end

for i=1:nCS
A(n+nR+nC+nL+nVS+i,nR+nC+nL+nVS+i) = 1;

end

%%%%%%%%%%%%%%%%% Word of caution %%%%%%%%%%%%%%%%%

disp('I will now ask you questions regarding the
relationship between the branches , nodes , and loops in
your circuit.');

disp('When answering , please adhere to the following branch
order: Resistor(s) --> Inductor(s) --> Capacitor(s) -->
Voltage source(s) --> Current source(s).');

prompt = input('Input [1] to continue. ANSWER: ');

disp(' ');

%%%%%%%%%%%% Filling in A: Branches and nodes %%%%%%%%%%%%

nodes = input('How many nodes does your circuit have?
ANSWER: ');

disp(' ');

branches = input('How many branches does your circuit have?
ANSWER: ');

disp(' ');

ATemp = zeros(nodes ,branches);

disp('The next questions all ask "does branch x Enter (-1),
Leave (1), or Not Connect (0) with node y?');

disp('Answer with -1 (Enter), 1 (Leave) or 0 (Does Not
Connect).');

disp(' ');

for j=1: nodes
for k=1: branches
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X = sprintf('Branch %d and node %d?',k,j);
disp(X);
prompt = input('ANSWER ( -1/1/0): ');
ATemp(j,k) = prompt;

end
end

ANew = ATemp (1:( nodes -1) ,:); % Arbitrarily deleting one row

%%%%%%%%%%%% Filling in A: Branches and loops %%%%%%%%%%%%

disp(' ')

loops = input('How many loops does your circuit have?
ANSWER: ');

disp(' ');

BTemp = zeros(loops ,branches);

disp('The next questions all ask "Does branch x have the
same orientation as loop y?');

disp('Answer with 1 (Same orientation), -1 (Different
orientation) or 0 (Not in this loop).');

disp(' ');

for j=1: loops
for k=1: branches

X = sprintf('Branch %d and loop %d?',k,j);
disp(X);
prompt = input('ANSWER (1/ -1/0): ');
BTemp(j,k) = prompt;

end
end

if rank(BTemp)==1 % Extracting linearly independent rows
BNew = BTemp;

else
BNew = licols(transpose(BTemp),1e-10);

end

%%%%%%%%%%%% Filling in A: Final compilation %%%%%%%%%%%%

A(1:( nodes -1) ,1:n) = ANew;

A(nodes:n,(n+1):2*n) = transpose(BNew);
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A.2 MALAB code for extracting linearly independent subset
of matrix rows [7]

function [Xsub ,idx]= licols(X,tol)

if ~nnz(X) %X has no non -zeros and hence no independent
columns
Xsub =[]; idx =[];
return

end
if nargin <2, tol=1e-10; end
[Q, R, E] = qr(X,0);
if ~isvector(R)
diagr = abs(diag(R));

else
diagr = R(1);

end
%Rank estimation
r = find(diagr >= tol*diagr (1), 1, 'last'); %rank

estimation
idx=sort(E(1:r));
Xsub=X(:,idx);

end
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Appendix B

QWT

NOTE: These scripts come from "Distributional Differential Algebraic Equations" by Stephan
Trenn. [8] They are included here for convenience of reference.

B.1 MATLAB code for calculating a basis of the preimage
A−1(imS) for some matrices A and S

function V=getPreImage(A,S)

[m1,n1]=size(A);
[m2,n2]=size(S);

if m1==m2 || m2==0
H1=null([A,S]);
H2=H1(1:n1 ,:);
H3=sym(H2);
V=colspace(H3);

else
error('Both matrices must have the same number of

rows');
end

end

B.2 MATLAB code for calculating a basis of the space V∗

function V=getVspace(E,A)

[m,n]=size(E);

if (m==n) & size(E)==size(A)
V=eye(n,n);
oldsize=n;
newsize=n;
finished =0;
while finished ==0;

symEV=sym(E*V);
EV=colspace(symEV);
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V=getPreImage(A,EV);
oldsize=newsize;
newsize=rank(V);
finished =( newsize == oldsize);

end;
else

error('Matrices E and A must be square and of the
same size');

end

end

B.3 MATLAB code for calculating a basis of the space W∗

function W=getWspace(E,A)

[m,n]=size(A);

if (m==n) & size(E)==size(A)
W=zeros(n,1);
oldsize=n;
newsize=n;
finished =0;
while finished ==0;

symAW=sym(A*W);
AW=colspace(symAW);
W=getPreImage(E,AW);
oldsize=newsize;
newsize=rank(W);
finished =( newsize == oldsize);

end;
else

error('Matrices E and A must be square and of the
same size');

end

end
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