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Using Polyatomic Molecules for eEDM Searches

Measuring the enhancement factor Wd for untested polyatomic molecules
PbOH and PoOH

Pablo Caparrós Calle

Abstract
Current electron electric dipole (eEDM) searches are investigating the use of previously untested poly-
atomic molecules in order to overcome limitations presented by diatomic molecules. Calculating the
eEDM sensitivity of these proposed polyatomics is then key for such eEDM searches. The determination
of such sensitivity to an eEDM must be calculated through ab initio computational methods. In this
work the enhancement factor Wd for PbOH and PoOH is calculated using Hartree-Fock, coupled cluster
methods and Møller-Plesset perturbation theory. Optimized geometries of the mentioned molecules are
determined as well in the process. Triple and double basis sets are utilized in the geometry optimization
of the molecules. For Wd only double zeta basis sets are utilized due to time limitations. The treatment
of relativity is addressed by performing the calculations with a four component Dirac Hamiltonian. In all
calculations core orbitals were frozen and the maximum electron correlation treated in the paper is done
at a space cut off of 30 a.u of energy for the geometry optimization and of 5 a.u. for the enhancement fac-
tor calculations. For PoOH the final value was of Wd = 8.402×1024 e

h
Hz
cm , calculated using the CCSD(T).

For PbOH the final value was Wd = 9.031×1024 e
h

Hz
cm and it was determined using MP2 methods instead.
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1 Introduction
The Standard Model (SM) of particle physics describes the behaviour of all elementary particles ever dis-
covered and predicts some of their properties with incredible accuracy [1]. Even if some of the predictions
achieved by the SM are extremely impressive, the reality is that all the elementary particles contained in
it account only for 4 percent of the energy content of the universe [1]. It is then not surprising to know
that there are still some aspects of our universe that cannot be explained through the SM. The phe-
nomena causing the biggest conflict can be divided in to three categories. First is the matter-antimatter
imbalance observed in the universe, next is the existence of dark matter and dark energy which account
for 96 percent of the energy content in the universe [1] and at last the inability to merge gravity with
the SM framework. In this circumstances Beyond the Standard Model (BSM) 1 theories are required in
order to explain these discrepancies between empirical data and the SM. Some of these BSM theories
consist of supersymmetric models or extradimensional theories [3]. It is crucial to determine which of
these BSM theories yields the most accurate representation of nature and a possible way of achieving
this is by measuring specific experimental quantities for which different BSM theories will have differing
predictions.

A quantity being currently searched for is the theorized but yet undetected electron electric dipole moment
(eEDM). If the electron was to posses this property, it would violate both parity (P) and time reversal (T)
symmetries. The CPT theorem then states that every relativistic quantum field theory has a symmetry
that simultaneously reverses charge (C)2, reverses parity (P), and reverses the direction of time[4]. If
CPT is conserved in the SM, T violation is equivalent to CP violation meaning an eEDM would violate
CP symmetry equivalently [5]. In the SM the eEDM value is predicted to be extremely small (de ≃
10−38ecm)[6] and remains undetected due to the current experimental limitations. This is where new-
physics or BSM theories come in to play as they predict values for the eEDM orders of magnitude bigger
(10−25−10−33ecm)[7], making it fall within the experimental reach. This increase of the eEDM is caused
by a higher degree of CP violation, which is required to explain the matter-antimatter asymmetry in the
universe [8].

The search for the eEDM is carried out through high precision experiments carried out in molecules
as direct measurements on the electron are not feasible. This because in order to detect an eEDM, an
electric field has to be applied resulting in an energy shift. Electrons are charged and exposing one to
a field would cause it to accelerate away. This problem is solved by using polar molecules because the
electron remains inside the molecule and the internal molecular electric field caused by the molecular
dipole can act as the effective electric field Eeff interacting with the electron. The small energy shifts
caused by these electromagnetic moments can be found in the spectrum of the molecule under test [9].
The eEDM sensitivity of a molecule is determined by its Eeff and normally is calculated by finding the
eEDM enhancement factor Wd through numerical calculations. This enhancement factor Wd is equivalent
to Eeff only differing by an omega factor. The energy shift in the particles will be minute, so a large
Wd is needed. Until recently most measurements have been conducted using polar diatomic molecules
such as YbF[10], HfF+[11], BaF[12] and ThO[13]. The upper limit was set at |de| < 10−29ecm in
experiments with ThO[13] but has been recently surpassed with HfF+ molecular ions giving an upper
limit of |de| < 4.1× 10−30 ecm. All experiments have only given zero-valued measurements and the limit
previously mentioned arises due to the statistical uncertainty σd in the eEDM measurement [14]:

σd =
ℏ
e

1

2|P |Eeffτ
√
ṄT

(1)

where e is the electron charge, P is the molecular polarization, τ is the coherence interaction time, Ṅ
the detection rate of the molecules and T the measurement time. For future experiments it is vital to
increase the coherence interaction time without decreasing the detection rate. This can be effectuated

1BSM can refer to physical phenomena established experimentally but not accommodated by the SM, deeper explanations
accommodated to the SM that serve as extensions to the theory or maybe new-physics theories [2].

2C stands for charge conjugation
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by using laser cooled molecules. Another way to isolate systematic effects mimicking the sought-for shift
is by using molecules with nearly degenerate opposite parity states structure, like the Ω-double levels in
diatomics [15]. In diatomics this source of parity doubling is derived from the electron orbital angular
momentum (electronic structure)[9]. This means there is no guarantee diatomics molecules will allow
for laser coolability as it depends on electronic strucuture too [9]. However, in polyatomic molecules3
such parity doublets can be obtained irrespective of the electronic structure of the selected polyatomic
species [16]. This is because in polyatomics the source of parity doubling is due to nuclear orbital angular
momentum in vibrational bending modes (l-doubling) and so it is decoupled from the source of laser
coolability (electronic strucure) [9]. Furthermore, it has also been shown in [14] that polyatomics YbOH
and BaOH offer the same eEDM sensitivity as their isolelectronic diatomic counterparts YbF and BaF
but with the advantage of being laser coolable, offer full polarization in small fields and the ability to
obtain good control over systematic error effects using internal co-magnetometer states [17].

As previously said the eEDM enhancement factor Wd is required to be as large as possible. There are
multiple key characteristics that give rise to a large Wd and the molecule under test must combine all of
them in order to be able to give measurable energy shifts. The eEDM enhancement factor is proportional
to the atomic number cubed and molecules with at least one heavy atom drastically increase Wd [9].
Furthermore, Wd is proportional to the polarization of the molecule, so the chosen molecule should be
made of atoms with unequal electronegativities. The molecule in question must also be paramagnetic
and hold an unpaired electron in the groundsate in order for the electron to be sensitive to the Eeff .

At the moment most theory proposals for eEDM experiemnts with polyatomics incorporate either a
linear tryatomic molecule consisting of a heavy element with an OH ligand (YbOH[14, 18, 19], BaOH[14],
HgOH[20], RaOH[21], AcOH+[22]) or a symmetric top formed out of CH3/OCH3 ligands (YbCH3[23],
BaCH3[23], HgCH3[20], HgCF3[20], YbOCH3[21], RaOCH3[24], BaOCH3[21]). The diversity of the heavy
elements used is somewhat scarce, most experiments carried out have been done with lanthanides like
Yb or with alkaline earths like Ba or Ra. Some actinides like No or Lr [21] and transition metals like Hg
have also been studied. The number of possible molecules still to be tested is quite extensive and there
are still a substantial amount of different elements that can be utilized. When exploring the literature,
it comes to our attention that the group composed of p-block metals has not been examined yet even
though there are suitable elements that could give promising results. In this work the enhancement factor
Wd for polonium hydroxide (PoOH) and for lead hydroxide (PbOH) will be calculated for the first time
through ab intio calculations.

This molecules are made out of atoms with a high atomic number which implies a high enhancement
factor. Both molecules have an odd number of electrons, ensuring they possess an unpaired electron in
its valence shell. This single unpaired electron will be able to interact with the Eeff of the molecules and
give an energy splitting.

3three atoms or more
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2 Theory

2.1 eEDM Hamiltonian
The interaction of the eEDM with an electric field causes and experimental energy shift ∆E in the
molecule. The value for the eEDM (de) can then be known by obtaining the experimental energy shift
and the effective electric field [14]:

de = ∆E/Eeff (2)

This energy shift is described by the following Hamiltonian [25]:

ĤeEDM = −de(γ0Σ ·E+ iγ ·B) (3)

where E is the total electric field4, B is the total magnetic field, γµ={γ0,γ} are the Dirac gamma matrices
and Σ is the vector of Pauli spin matrices given by:

Σ =

[
σ ∅2×2

∅2×2 σ

]
, σx =

[
0 1
1 0

]
, σy =

[
0 −i
1 0

]
, σz =

[
1 0
0 −1

]
(4)

In equation 3 the second term originating from the magnetic field interaction with the eEDM is negligible
in comparison with the first term originating from the electric field interaction with the eEDM [26]. As a
consequence the eEDM Hamiltonian can be rewritten effectively as a one-body operator in the following
form [27]:

ĤeEDM
eff = 2icde

n∑
i

γ5βp2
i (5)

where n is the total number of electrons in the system, pi is the momentum of electron i and γ5 =
iγ0γ1γ2γ3. At last β is a Dirac matrix specified as:

β =

[
12×2 ∅2×2

∅2×2 −12×2

]
(6)

2.2 First-order Perturbation on Model Hamiltonian
The eEDM Hamiltonian discussed in the previous section can be treated as a first order perturbation to
an unperturbed Hamiltonian Ĥ(0). This gives the total Hamiltonian in the following form:

Ĥ = Ĥ(0) + λ
ĤeEDM

eff

de
(7)

where λ is the field strength and Ĥ(0) is the relativistic Dirac-Coulomb Hamiltonian given by [27]:

Ĥ(0) =

n∑
i

[βimc
2 + cαi · p̂i − VeN (ri)] +

1

2

n∑
i ̸=j

1

rij
(8)

where m is the electron’s mass, VeN is the Coulomb potential generated by the nucleus, ri is the distance
of electron i from the nucleus and rij is the distance between electron i and electron j. The term β is
the Dirac matrix specified in equation 6 and α is another Dirac matrix of the form:

α =

[
∅2×2 σ
σ ∅2×2

]
(9)

Perturbation theory is employed in this method and the introduction of λ in equation 7 allows for the
energy to be expanded as a Taylor series around λ = 0:

EΩ = E
(0)
Ω + λE

(1)
Ω +O(λn) (10)

4includes both the applied external electric field and the internal electric fields
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EΩ is the total energy of the electronic state and E
(1)
Ω is proportional to the eEDM energy shift with a

factor de. The last term O(λn) stands for higher order terms and λ is chosen such that this higher order
terms vanish [27]. This means the final expression for the energy is:

EΩ = E
(0)
Ω + λE

(1)
Ω (11)

Consequently the eEDM enhancement factor can be obtained numerically, according to the Hellmann-
Feynman theorem, from the first derivative of the energy with respect to λ [14]:

Wd =
1

Ω

dEΩ

dλ

∣∣∣∣
λ=0

=
Eeff

Ω
≈

⟨ĤeEDM
eff ⟩
Ω

(12)

the proportionality factor between Wd and Eeff is Ω, the electronic angular momentum projected along
the internuclear axis.

6



3 Computational Methods and Considerations
Solving the full Dirac or Schrödinger equation will yield the exact solution for the energy of the system
but unfortunately solving such equation for systems like molecules is too computationally costly. This
means some approximations have to be made, the results will yield a lower accuracy but in return the
computational cost and time will be reduced. In this research all calculations will be carried out with
the relativistic ab initio quantum chemistry DIRAC19 software. This program is capable of calculat-
ing various molecular properties using the Dirac-Hartree–Fock (HF), Møller–Plesset perturbation theory
(MP2), density functional theory (DFT), configuration interaction (CI) and coupled cluster (CC) elec-
tronic structure theories. In this work only HF, CC and MP2 methods will be explained, the derivation
of these types of methods will be looked in detail in the Computational Methods section 3.3.

3.1 Born-Oppenheimer Approximation
The general expression for a molecular Hamiltonian has the following form [28]:

Ĥmol = T̂e(r) + T̂N (R) + VNe(r,R) + Vee(r) + VNN (R) (13)

Where the T̂ operators are the kinetic terms for the electrons and nuclei in the molecule respectively,
VNe is the attraction potential between nuclei and electrons and the last two potential terms correspond
the repulsion between electrons (Vee) and the repulsion between nuclei (VNN ). All these terms are
functions dependent either on electronic coordinates r or nuclear coordinates R. Now our goal is to
solve the Schrödinger equation for this Hamiltonian (ĤmolΨ = EmolΨ) but a problem arises if we do
this. The Schrödinger equation can only be solved exactly for the hydrogen atom [29], anything more
complex can only be solved using an approximation. This approximation is the Born-Oppenheimer (BO)
approximation and is based on the fact that electrons are thousands of time lighter than nuclei. This
means electrons move much faster than their nuclear counterparts and so from their perspective it seems
like the nuclei are static and do not change their spatial coordinates. Now, how does this help in solving
the Schrödinger equation?

In quantum mechanics, if the Hamiltonian can be separated as a sum of terms each depending on different
variables (Ĥ = Ĥ1(r1) + Ĥ2(r2)) then the wavefuntion can be expressed as a product of functions with
different variables (Ψ = ψ1(r1)ψ2(r2)). If the molecular Hamiltonian could be expressed as a sum of
nuclear and electronic Hamiltonians, then the molecular wavefunction would consist of a product of two
separate functions:

ĤmolΨ = EmolΨ →
[
Ĥe(r) + ĤN (R)

]
ψe(r)ψN (R) = Emolψe(r)ψN (R) (14)

Now there is a problem with the Hamiltonian in equation 13, it does not satisfy the condition for a
Hamiltonian consisting on separable Hamiltonians because the term for the electron-nucleus attraction
VNe depends both on r and R [28]. Here is where the BO approximation comes in to play. Treating the
nuclei as being static in the electrons frame will allow for the wavefunction to be expressed in a similar
form to the one previously mentioned:

Ψ = ψe(r;R)ψN (R) (15)

where the ; symbol in the argument of the electronic part means that we are treating the nuclear coor-
dinates no longer as a variable but as a parameter that is fixed. This type of separation allows us to
separate as well the Hamiltonian in the following way:

Ĥmol =

Ĥe︷ ︸︸ ︷
T̂e(r) + VNe(r;R) + Vee(r)+

ĤN︷ ︸︸ ︷
VNN (R) + T̂N (R) = Ĥe + ĤN (16)

Then we know that the electronic Hamiltonian will give the electronic energies if we solve the electronic
Schrödinger equation:

Ĥeψe(r;R) = Ee(R)ψe(r;R) (17)

7



where the electronic energy depends on the parameter R. Then if we solve for the total molecular energy
we obtain the following expression:

Emol = ⟨Ψ|Ĥmol|Ψ⟩ = Ee +
ĤNψN (R)

ψN (R)
(18)

It most be noticed that in this derivation of the molecular energy expression, the action of the nuclear
kinetic term T̂N on the electronic part of the wavefunction vanishes due to the BO approximation. This
is because T̂N is an operator that applies differentiation with respect to the nuclear coordinates R and
our electronic wavefunction treats R as a parameter that remains fixed5. Knowing this, the nuclear
Schrödinger equation can be written:

T̂N (R)+U(R)︷ ︸︸ ︷(
T̂N (R) + VNN (R) + Ee(R)

)
ψN (R) = EmolψN (R) ; U(R) = VNN (R) + Ee(R) (19)

The new term U(R) is known as the internuclear potential for a given R [28]. This internuclear potential
can be expressed in Hamiltonian form as [30]:

Ĥ =
∑
i

ĥ (i) +
1

2

∑
i ̸=j

ĝ (i, j) + VNN ; VNN =
1

2

∑
A ̸=B

ZAZB

RAB
(20)

where this time the Hamiltonian is expressed in terms of one-electron and two-electron operators, (ĥ(i)
and ĝ(i, j) respectively). The one-electron operator will contain the kinetic term of the electron and
the electron-nucleus interaction. The two-electron operator represents the electron-electron repulsion
interaction term. Even though the nuclear kinetic term is neglected, the BO approximation still takes
in to account the variation in the position of the nuclei when determining the electronic energy. This
contribution comes from the VNN term in equation 20.

3.1.1 One-Electron Operator

The form of the Hamiltonian in the BO approximation can vary depending on the type of one-electron
operator chosen for the calculation. In the non-relativistic framework the one-electron operator is a one
component (1c) scalar. On the other hand, in the relativistic regime the expression for the energy of a
relativistic free particle gives both positive and negative energy solutions [31], implying the existence of
both particles and antiparticle [32]. This results in the one-electron operator becoming a four component
(4c) operator describing both particle and antiparticle with their corresponding spins included.

The 4c Hamiltonian can be computationally too heavy for big systems containing several electrons. The
antiparticle part of the Hamiltonian can be frozen in order to obtain a two component Hamiltonian
(2c), where the spin-orbit interaction between the spin of the electron and the magnetic field originating
from the nuclear motion in the electrons frame is well described. Nonetheless, the 4c operator will still
give the most accurate results for relativistic effects. In order to reduce computational costs, new types
of Hamiltonian like the exact two component Hamiltonian (X2c)6 have been developed. The DIRAC
program will always work with 4c operators [33].

In equation 20 the one-electron operator is split in to a relativistic free-electron Dirac Hamiltonian ĥ(0)

and an electric potential VeN addressing the electron-nucleus interaction [33]:

ĥD = ĥ(0) + VeN = βmc2 + c (α · p̂) + VeN (21)

In the non-relativistic case the free-electron Hamiltonian only contains a kinetic term but in the relativistic
regime a mass term is added aswell. In general ĥD is the Dirac-Hamiltonian in a bare nuclear field [30].

5Differentiation with respect to a constant always yields zero so in this case ∇2
N (R)ψe(r;R) ≈ 0.

6This Hamiltonian yields the same results as the 4c Hamiltonian for for positive energy solutions[31]
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3.1.2 Two-Electron Operator

For the non-relativistic case the two-electron operator ĝ(i, j) has the form:

ĝCoulomb(i, j) =
1

rij
(22)

When using this approximation one can notice that we obtain the previously mentioned Dirac-Coulomb
Hamiltonian in equation 8 [31]. However, this means that the Dirac-Coulomb Hamiltonian is not fully
relativistic as it considers the Coulomb interaction to be instantaneous. In order to obtain the full
relativistic picture, the two-electron operator has to be modified so it includes magnetic interactions as
well as retardation effects. In order to obtain the two-electron operator in the relativistic framework, a
Taylor expansion around c−1 up to c−2 is performed [34]. The instantaneous Coulomb-interaction is then
the zeroth-order term of the expansion and first-order correction to the overall Coulomb interaction is
given by the Breit term [31]:

ĝBreit (i, j) = −cαi · cαj

2c2rij
− (cαi · rij) (cαj · rij)

2c2r3ij
(23)

The Breit term can be rearranged and split in to two terms, the Gaunt term and the gauge term [30]:

ĝBreit (i, j) = ĝGaunt (i, j) + ĝgauge (i, j) = −cαi · cαj

c2rij
− (cαi · ∇i) (cαj · ∇j) rij

2c2
(24)

So the expression for the total relativistic Coulomb interaction is give by:

ĝ(i, j) = ĝCoulomb(i, j) + ĝBreit(i, j)

= ĝCoulomb(i, j) + ĝGaunt(i, j) + ĝgauge(i, j)

=
14×4

rij
− cαi · cαj

c2rij
− (cαi · ∇i) (cαj · ∇j) rij

2c2

(25)

where the overall expression consists of a charge–charge interaction ĝCoulomb, a current–current interaction
ĝGaunt and a gauge term ĝgauge [30, 31]. Even though the Coulomb term is in non-relativistic form, it
describes also the spin–same orbit interaction. The Gaunt term describes the spin–other-orbit as well
as orbit–orbit and spin–spin interactions. The gauge term contributes only to the spin-free (scalar)
interaction and is usually less relevant. The Gaunt term is a magnetic interaction (spin) while the other
terms represents retardation effects[34].

3.1.3 Further Relativisitic Considerations

A feature of key importance is to include relativity when analyzing the electronic molecular structure
of the system as electrons surrounding the nuclei can reach extremely fast speeds. The velocity of the
electron will increase with heavier nuclei (larger atomic number Z) due to a stronger electric field being
present. As it was previously said in the introduction, the enhancement factor Wd increases with atomic
number. An estimate of this dependence is given by [35]:

Wd ≈ −4

3

Z3α2κ

γ4
(26)

we can see a cubic dependence on Z, which means heavy nuclei will be favorable for a large eEDM
enhancement factor Wd. In this case γ is the Lorentz factor, α ≈ 1

137 is the fine structure constant and
κ is a constant that depends on the electronic structure.
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3.2 Molecular Orbital Theory
Molecular Orbital theory (MO) is the most popular method used for the description of the electronic
structure of molecules. Unlike Valence bond theory, in MO electrons are not assigned to an individual
chemical bond in the molecule. Instead, each electron is influenced by all atomic nuclei in the molecule in
varying degrees. Molecular orbitals are constructed as a linear combination of all atomic orbitals forming
the molecule (LCAO-MO) [29]:

ψ =

N∑
A

cAΦA (27)

where ψ is the molecular orbital, ϕ is the atomic orbital and cA is the linear coefficient assigned to the
atomic orbitsl ϕA.

3.2.1 Basis Sets

In order to describe this molecular orbitals first the atomic orbitals have to be specified. The general
expression for an atomic orbital is give by the expression:

Φnlm(r, θ, ϕ) = Rn(r)Ylm(θ, ϕ) (28)

where the atomic orbital is divided in two parts, the radial part Rn(r) and the angular part Ylm(θ, ϕ).
The radial part can be described by basis functions, the combination of these basis functions will form
a basis set. Basis functions can be divided in two types, Slater type orbitals (STO) and Gaussian type
orbitals (GTO) [36]:

ΦSTO
abc (x, y, z) = Nxaybzce−ζr, ΦGTO

abc (x, y, z) = Nxaybzce−ζr2 (29)

they are given in Cartesian coordinates. N is a normalization constant and a, b, c control angular
momentum (L = a+b+c). The parameter ζ controls the width of the orbital (large ζ gives tight function,
small ζ gives diffuse function) [36] and at last r =

√
x2 + y2 + z2. The use of L for the specification

of the angular momentum instead of spherical harmonics is justified because using spherical harmonics
is in computational terms too complicated. Both STO and GTO have similar form, only differing in
the argument of the exponent. The STO gives a more accurate description of the actual orbital than
the GTO but it is computationally more demanding. A solution to this problem is to use a linear
combination of GTOs to emulate the behaviour of an STO. This technique will be less computationally
heavy and it will give a good approximation of the STO. This linear combination of GTOs is defined as
a contracted Gaussian type orbital (CGTO), where the terms in the linear combination are now called
primitive Gaussian type orbitals (PGTO):

ΦCGTO
abc = N

K∑
j=1

cjx
aybzce−ζjr

2

(30)

where K is the number of PGTOs per CGTO. A combination of n PGTOs used to mimic an STO is
called "STO-nG". The larger the number of PGTO, the more it will resemble the actual STO. In figure
1 the quality of the STO-nG functions is shown for varying n, it is clear that a larger number of PGTO
in a CGTO will give a more precise description of the STO

If only one basis function (STO, GTO or CGTO) is used in the description of each atomic orbital then the
basis set is called a minimal basis set. When two basis functions are used for the atomic orbital then it is
called a double zeta (Dz) basis sets and three basis functions per atomic orbital is a triple zeta (Tz) basis
set. This can be extrapolated to a larger number of basis set (quadruple, quintuple etc.). The number
of basis functions used per orbital gives the cardinality of the basis set. A larger basis set increases both
the accuracy and the computational cost of the calculation. For an infinite number of basis functions per
atomic orbital, the basis set is said to be a complete basis set (CBS).
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Figure 1: Comparison of the quality of the STO obtained from CGTO at the STO-1G, STO-2G, STO-3G
level. The equation used for the CGTOs is given in radial form instead of using the Cartesian format
given in equation 30. The values for the coefficients cj and the parameters ζ are given in [37].

Other variations of basis sets can be used like split valence basis sets (vXz) which use a minimal basis for
core orbitals and a larger basis for valence orbitals [36]. In this basis sets the X specifies the cardinality
of the basis.

Depending on the system being studied, either tight or diffuse basis functions can be used in order to get
a more accurate description. Tight functions have high values for ζ and they describe with high accuracy
the behaviour of the orbital near the origin. On the other hand diffuse functions have a low ζ and they
decay less rapidly than tight ones. This types of functions increase the quality of the description of the
atomic orbital near the outer regions. They are usually used in systems were an electron is held far away
from the nucleus like anions7.

3.2.2 Dyall Basis Sets

The types of basis sets discussed in the previous section were designed to give good results and convergence
for HF methods but they are not suitable for post-Hartree-Fock calculation where electron correlation is
taken in to account [36]. In order to solve this problem, Dunning developed the correlation consistent
basis sets which are labelled cc-pVXZ. The "cc-" in front stands for correlation consistent and the letter
p stands for the addition of polarization functions.

Polarization functions address the behaviour of an atomic orbital when another atom is approaching.
The electric field of an approaching atom can cause a shift on the electron density of the other atom.
If for example an s orbital is approached by an atom that repels electrons, the electron density in the

7Anions are negatively charged ions.
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symmetric s orbital will move away from the approaching atom. The final electron density will resemble
more the shape of a p orbital than of an s orbital, making it look polarized. This is what polarization
functions do, they add higher order angular momentum functions to the already existing ones in order
to take in to account electron correlation and polarization.

In the DIRAC program there is a wide variety of GTOs available for use, where the main ones are the ones
developed by Dyall and coworkers. This type of basis sets follow the correlation consistent methodology
introduced by Dunning. Dyall basis sets include electron correlation functions for valence, outer core and
inner core orbitals. They add as well diffuse functions [38] for s, p and d block elements [33]. The main
characteristic of the Dyall basis sets is that they are designed to be suitable for relativistic calculations.

The relativistic Hamiltonian 21 is a four component Hamiltonian that requires a four component spinor
on which to act. This four component spinor is normally represented as two component object:

Ψ =

(
ψL

ψS

)
(31)

where each of the components is a two component object itself. The values ψL and ψS are the large and
small components of the four component spinor respectively. The large component would stand for the
positive energy solutions and the small component for the negative energy solutions. This components
can be expressed in terms of each other and for an electron in a hydrogen like atom the small component
can be expressed in terms of the large component as follows [39]:

ψS =
(
2mc2 + ϵ− V

)−1
cσp̂ψL (32)

where V is the potential, ϵ the eigenvalue and p̂ is the momentum. Any basis set used to resolve the
four component Dirac Hamiltonian must satisfy this coupling for the coupling between small and large
component. When this coupling is taken to the non-relativistic limit for positive energy orbitals then we
obtain what is called as kinetic balance [33]. This means that the small and big components of the basis
sets must satisfy the following relation [39]:

χS =
1

2mc
σp̂χL (33)

3.3 Computational Methods
3.3.1 Hartree-Fock

Hartree-Fock (HF) theory posits that each electron’s motion can be described by a single-particle function
(orbital) which does not depend explicitly on the instantaneous motions of the other electrons, instead
every electron sees all the other electrons as a average charge distribution with which it can interact.
This method is a type of variational method8 and derives a set of N-coupled equations for the N spin
orbitals. A solution to these equations will yield the HF wave function and energy of the system. The
following derivation for HF theory will be based on the notes provided by David Sherrill [40], the Hartree
atomic units (ℏ = e = a0 = me = 1) will be used in the following sections. The goal of this method is to
solve the electronic Schrödinger equation that results from the time-independent Schrödinger equation
(non-relativistic case) after invoking the BO approximation:

ĤNR
el |Ψ(r,R)⟩ =

−1

2

n∑
i

∇2
i −

N,n∑
A,i

ZA

rAi
+

N∑
A>B

ZAZB

RAB
+

n∑
i>j

1

rij

 |Ψ(r,R)⟩ = Eel|Ψ(r,R)⟩ (34)

8Variational mathods are based on the variational principle which states that if an arbitrary wavefunction is used to
calculate the energy, the value calculated is never less than the true energy. It implies that, if the coefficients in the trial
wavefunction are varied until the lowest energy is obtained, then those coefficients will be the best for that particular form
of trial function [29].
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where |Ψ(r,R)⟩ is the electronic wave function depending on the electronic and nuclear coordinates (r
and R respectively). Furthermore, N is the total number of nuclei, n is the total number of electrons,
ZX is the atomic number of nuclei X, rAi is the distance between nuclei A and electron i, rij is distance
between electrons i and j and at last RAB is the distance between nuclei A and B. Another way of
expressing this equation is in term of kinetic and potential terms:[

T̂e(r) + V̂eN (r,R) + V̂NN (R) + V̂ee(r)
]
|Ψ(r,R)⟩ = Eel|Ψ(r,R)⟩ (35)

As we are making use of the BO approximation, it is possible to rewrite equation 34 in terms of one and
two electron operators like in equation 20:

ĤNR
el =

n∑
i

ĥ (i) +
1

2

n∑
i<j

ĝ (i, j) + VNN (36)

where the one-electron operator has the form:

ĥ(i) = −1

2
∇2

i −
N∑
A

ZA

rAi
(37)

In this case the one-electron operator does not have a mass term like equation 21 and the two-electron
operator does not contain any of the Breit terms. This is due to the fact that we are treating the BO
approximation in the non-relativistic case for this derivation.

In the HF method, a first approximation to the wavefunction is done by assuming that the electrons in
the system do not interact with each other. In this case the overall wavefunction can be separated and
treated as the product of all spin-orbitals involved in the system:

ΨHP (x1,x2, ...,xn) = χ1(x1)χ2(x2) . . .χn(xn) (38)

this type of wavefunction is the Hartree product. The spin-orbital for electron i is χi(xi) and is dependent
on x which is the set of spin-space coordinates with the form x = {r, w}. The spin-space coordinates
are formed from combining spatial coordinates r with generic spin coordinates w (w = α for spin up and
w = β for spin down). So the spin-orbitals usually can be expressed as a product of a spatial orbital with
a spin function, χ(x) = ϕ(r)α(w).

This type of wavefunction does not satisfy Pauli’s antisymmetry principle which states that a wavefunc-
tion describing fermions should be antisymmetric when interchanging any set of space-spin coordinates
[41]. This shortcoming can be solved by using the linear combination of spin-orbitals given by the Slater
determinant. For n spin-orbitals the Slater determinant has the form:

Ψ =
1√
n!

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χn(x1)
χ1(x2) χ2(x2) · · · χn(x2)

...
...

. . .
...

χ1(xn) χ2(xn) · · · χn(xn)

∣∣∣∣∣∣∣∣∣ = |12 . . .n⟩ (39)

Now that the form for the Hamiltonian and of the wavefunction are known, the total energy of the system
can be found by:

EHF = ⟨Ψ|ĤNR
el |Ψ⟩ =

∑
i

⟨i|ĥ|i⟩+ 1

2

∑
ij

([ii|jj]− [ij|ji]) (40)

where the term in angle brackets is the one-electron integral:

⟨i|ĥ|i⟩ =
∫
χ∗
i (x1)ĥ(i)χj(x1)dx1 (41)
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and the term in square brackets is the two-electron integral:

[ij|kl] =
∫
χ∗
i (x1)χj(x1)

1

rij
χ∗
k(x2)χl(x2)dx1dx2 (42)

The HF method assumes that the wavefunction can be approximated by a single Slater determinant
made up of one spin orbital per electron. Now the goal is to minimize the Hartree-Fock energy expression
with respect to changes in the orbitals χi → χi + δχi. The spin-orbitals are assumed to be orthonormal
(⟨i|j⟩ = δij) and the variational procedure should also leave them orthonormal. This can be accomplished
by Lagrange’s method of undetermined multipliers. The end result is the HF equation:ĥ(x1) +

n∑
j ̸=i

[Jj(x1)−Kj(x1)]

χi(x1) = ϵiχi(x1) (43)

from this equation we obtain the energy eigenvalues ϵi for the spin orbital i. The two new terms introduced
are the Coulomb operator Jj and the exchange operator Kj . The Coulomb operator gives the average
local potential at point x1 due to the charge distribution at x2 from the electron in orbital j:

Jj(x1) =

∫
|χj(x2)|2

r12
dx2 (44)

The exchange operator does not have a a simple classical analog like the Coulomb operator and it is the
result from the antisymmetry requirement of the wavefunction. It exchanges spin orbitals χi and χj , it
can be defined by its action on an arbitrary spin orbital χi:

Kj(x1)χi(x1) =

[∫
χ∗
j (x2)χi(x2)

r12
dx2

]
χj(x1) (45)

In equation 43 the action on the spin-orbital χi can be treated as a single Fock operator :

f̂(x1)χi(x1) = ϵiχi(x1), f̂(x1) = ĥ(x1) +

n∑
j

[Jj(x1)−Kj(x1)] (46)

The solutions to these equations are found by guessing an initial trial orbital wavefunction, calculating
the Fock operator. Solving the HF equation then results in a new orbital wavefunctions. Next, these new
orbitals are used for further calculations and this process is repeated until reaching convergence. This
iterative procedure is called a self-consistent-field (SCF) approach.

3.3.2 Restricted and Unrestricted Hartree-Fock

The HF method derived above assumes that the spatial part of the spin orbital is the same for both spin
up α and spin down β. This assumption follows from the fact that only orbitals which are fully occupied
by two electrons are allowed. This is because having an equal amount of spin up and spin down electrons
guarantees that the interaction between electrons of equal spin is equal for both spin up and spin down.
This case for fully occupied orbitals is called the restricted Hartree-Fock (RHF).

In the case of having a system consisting of an unequal number of spin up and spin down orbitals, the
spatial part of their spin-orbitals should be different. This gives a pair of coupled equations, this method
is called the spin unrestricted Hartree-Fock (UHF).

3.3.3 Dirac-Hartree-Fock

The whole procedure discussed in the previous section was done under the non-relativistic framework.
The one-electron operator only contains a kinetic term and no mass terms are added. If the HF procedure
is done taking relativity in to account, then the free electron Dirac Hamiltonian is used as the one-electron
operator. In this case the method is called the Dirac-Hartree-Fock (DHF) method.
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3.3.4 Electron Correlation Methods

The HF method generates solutions to the Schrodinger equation where the actual electron–electron inter-
action is replaced by an average mean field interaction. In a large basis set, the HF wave function might
be able to account for 99 percent of the total energy, but the remaining 1 percent is still very important
for describing chemical phenomena [34]. The difference in energy between the HF and the lowest possible
energy in the given basis set is called the Electron Correlation (EC) energy. This EC energy arises from
Coulomb correlation interactions and Fermi correlation interactions. The first one correlates electrons
with opposite spin and the second one electrons with the same spin. The Coulomb correlation will occur
more frequently as it is present for both the electrons in the same orbital and for electrons in different
orbitals.

In HF methods only one single Slater determinant is used where electrons in the same spin-orbital have
a spatial overlap of one but with opposite spin. On the other hand for electrons in different spin-orbitals
the spatial overlap will be zero [34]. This means that Coulomb correlation is fully ignored by the HF
method because the wave function takes into account the interelectronic repulsion only in an average
way [42]. This interaction may be better addressed by using dynamic correlation methods which address
electron excitation.

3.3.5 Coupled Cluster

Coupled cluster (CC) is one of the most common use methods out of several post-Hartree–Fock ab
initio quantum chemistry methods. The CC method is an approach that solves the problem of electron
correlation that we encounter in HF theories [42]. In this section we will follow the derivation from A.A.
Hasanein and M.W. Evans in [42]. The CC method is based on an exponential operator:

Ψ = eT̂Φ0 (47)

which is added to the Slater determinant Φ0. The argument in the exponent T̂ is an operator that creates
excitations from an independent particle model wave function Φ0. It can stand for either a closed shell
(RHF) or open shell (UHF) single determinant formed out of molecular spin-orbitals. The operator T̂ is
called the cluster operator and it has the following form:

T̂ = T̂1 + T̂2 + ...+ T̂n (48)

where T̂1 is the one-particle excitation operator and T̂2 is the two-particle excitation operator. The letter
n stands for the number of electrons in the molecule. The action of the first two operators is given by:

T̂1Φ0 =
∑
r,k

tkrD
k
r ; T̂2Φ0 =

∑
r>s
k>l

tklrsD
kl
rs (49)

where the letters p, q, r, s... stand for the occupied orbitals and the letters i,j,k,l,...stands for the
unoccupied virtual orbitals. The terms tklrs...etc, are the operator coefficients which give the amplitude of
the transition. Dk

r is a singly excited determinant and Dkl
rs is a doubly excited determinant. The single

excitation operator excites the electron from orbital r to the virtual orbital k as described by D. The
equation for the rest of operators is similar to the the ones shown above, they are formed out of a linear
combination of excited determinants. The maximum amount of excited electrons that can exist in the
system is n so T̂n is the last operator available.

The term in exponential form in equation 47 can expanded through Taylor expansion to get:

exp
{
T̂
}
= 1 + T̂ +

T̂ 2

2!
+
T̂ 3

3!
+ ... (50)

and equation 47 obtains the form:

Ψ =

[
1 + T̂ +

T̂ 2

2!
+
T̂ 3

3!
+ ...

]
Φ0 (51)
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Now, equation 48 for the overall cluster operator is inserted in to equation 51 with the corresponding
expression 49 for each operator of T̂ . Performing this operation would resemble the full CI calculation
and it would give the exact wavefunction and correlation energy of the system [42]. Normally the full
CI calculations are not carried out as they require a lot of computational cost. It is more common to
truncate the expression for the cluster operator and only use the first couple of operators in equation
48. If only T̂1 and T̂2 are utilized, then it is called the CC singles and doubles (CCSD) method. When
utilizing this method we use the following expression for the wavefunction:

Ψ = eT̂Φ0 = e(T̂1+T̂2)Φ0 =

[
1 + T̂1 + T̂2 +

(T̂1 + T̂2)
2

2!

]
Φ0 (52)

where we get double excitation determinants originating both by a two-particle excitation operator T̂2
and by the product of two consecutive one-particle operator 1

2! T̂
2
1 . Although they both will give double

excitation orbitals, the amplitude for the latter case will be given by a product of two separate coefficients
tkr t

l
s instead of a single amplitude coefficient tklrs. The terms consisting of both one and two-particle

excitation operators 1
2! T̂1T̂2 will resemble triple excitations. Ultimately, the square of the two-particle

operator will address the case for quadruple excitations.

Although used extensively, the coupled cluster singles and doubles (CCSD) method is not sufficient
when highly accurate results are required [43]. The CCSDT which includes the three-particle excitation
operator T̂3 gives results in excellent agreement with those obtained with full CI, but the cost of CCSDT
is high enough to severely restrict its application. A computationally cheaper approximation to CCSDT
can be done by introducing a perturbative estimate of the connected triple excitations, this is done in
methods such like CCSD(T) [44]. This method includes perturbations up to fifth order in the expansion
of exp

{
T̂1 + T̂3 + T̂3

}
. Other methods only introduce new perturbations up to fourth order like the

CCSD+T [44]. All these CC methods guarantee size extensivity9 and size consistency10 but they are not
variational like HF. [45].

3.3.6 Møller-Plesset Perturbation Theory

Møller-Plesset (MP) perturbation theory is another of the theories addressing the problem of electron
correlation faced in HF methods. It is a perturbation method like CC but this time the perturbation is
applied on the Hamiltonian. The basic idea behind perturbation theory is that if the description of a
simple system is known, then a more complex version of this system can be treated mathematically as an
altered (perturbed) version of the simple one [46]. This section is based on the derivation of C.J.Cramer
[47]. In perturbation theory, the overall Hamiltonian is described as:

Ĥ = Ĥ(0) + λV (53)

where we have an unperturbed Hamiltonian with a perturbing term V parameterized by λ. In MP he
unperturbed Hamiltonian is taken as the sum of one-electron Fock operators:

Ĥ(0) =

n∑
i=1

f̂i (54)

where n is the number of basis functions. The zeroth-order eigenvalue for the unperturbed Hamiltonian
is given then by:

Ĥ(0)Ψ(0) =

occ∑
i

ϵiΨ
(0) (55)

9Means that the energy should grow linearly with the number of electrons in the system.
10Property that guarantees the consistency of the energy behaviour when the interaction between the involved molecular

system is nullified.
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where we are summing over the occupied orbitals and Ψ(0) is the HF wavefuntion. The perturbation
term V is given in the following expression as:

V =

occ∑
i

occ∑
i>j

1

rij
−

occ∑
i

occ∑
j

(
Jij −

1

2
Kij

)
(56)

where we are summing over MO orbitals instead of AO orbitals. Now we can compute the first-order
correction to the zeroth-order energy by finding the expectation value, which will give the HF energy:

E(0) + E(1) = ⟨Ψ(0)|Ĥ(0)|Ψ(0)⟩+ ⟨Ψ(0)|V |Ψ(0)⟩ = EHF (57)

If only the first-order correction is applied to the energy then the method is known as MP1. No electron
correlation has been added until now. In order to account for it, it is necessary to compute the second
order energy correction also which is given by:

E(2) =
∑
j>0

|⟨Ψ(0)
j |V |Ψ(0)

0 ⟩|2

E
(0)
0 − E

(0)
j

(58)

If this expression for the second-order correction is furthered derived using the Condon–Slater rules and
Brillouin’s theorem11, then the final form for E(2) is:

E(2) =

occ∑
i

occ∑
j>i

vir∑
a

vir∑
b>a

[(ij|ab)− (ia|jb)]2

ϵi + ϵj − ϵa − ϵb
(59)

where in this case the indices a and b stand for virtual orbitals. Combining all this corrections in a sum
we obtain the MP2 method. Additional energy correction can be added to the total energy, if enerfy
corrections up to n-order are counted then the method is termed MPn. In the case of MP2 the final
energy would be:

EMP2 = E(0) + E(1) + E(2) (60)

MP2 methods do not take a lot of computaational time and can be efficiently evaluated. They scale with
N5 where N is the number of basis functions.

11Integrals involving the singly excited determinants will all be zero [47].
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4 Results
As it was mentioned in the introduction, the molecules of interest for eEDM searches must be polyatomic
in order to overcome the limitations encountered with diatomics (not laser coolable). The molecule must
contain a heavy atom with a high atomic number Z so relativistic enhancements can amplify the eEDM
signal and it should also posses a dipole moment acting as a Eeff . The molecule must also contain an
unpaired electron in its groundstate so it can interact with the Eeff .

In the literature most of the polyatomc molecules utilized consist of a heavy metal atom bonded to a
OH ligand, other types of molecule like symmetric tops (CH3 ligand) have been proposed as well. This
types of molecular structures have been studied several times, varying the type of heavy atoms in them.
Lanthanides and alkaline earth metals have been utilized as the heavy atom but no elements in the p-metal
group of the periodic table have been used. This overlook of the p-metal group comes to our attention as
there are promising candidates like Pb or Po that could give a high eEDM enhancement factor. That is
why in this work the proposed molecules for study are PbOH and PoOH, they follow a similar structure
to the literature consisting of an OH ligand but they contain at the same time new untested elements
that could give interesting results. The chosen molecules have the previously mentioned qualities that
are needed so in theory they should give good eEDM sensitivity.

4.1 Geometry Optimization
Before doing a proper calculation for Wd, it is crucial to have a sensible description of the geometry of
the molecule. The molecules under study are linear triatomics with a bend geometry, a schematic of this
types of molecules is shown in figure 2.

Figure 2: Schematic of the type of geometry that PoOH and PbOH possess. The nucleus in green
corresponds to the heavy element (Pb or Po) and the other two atoms are the ligand OH. This image
was created using the AVOGADRO software [48].

An accurate description of the bond lengths and bond angles must be found, this can be achieved by
performing a geometry optimization. A geometry optimization works by using an initial geometry as an
input to the program which then varies the bond lengths and angles until it finds the geometry with the
lowest energy state. This process takes several iterations before it converges on one value.

As it was mentioned previously, all the calculations performed for the derivation of the molecular proper-
ties were carried out with the DIRAC19 program. The first guess for the geometry used as the intput for
the optimization was found in the literature for PoOH. For PbOH the geometry found in the literature
[49] did not converge in the calculations so instead an alternative initial geometry was calculated.

For the alternative calculation of PbOH, first a optimization using the auto optimize tool in AVOGADRO
was done. This optimization uses a default universal force field (UFF) to find the geometry [48]. This
UFF geometry is then used as an input for a second geometry optimization, this time performed with
the ORCA program. This ORCA calculation was carried out at the DFT level, using the functional form
B3LYP and basis sets def2-TZVP. This DFT method uses similar math to the one found in HF but it
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includes as well a certain amount of correlation energy throught exchange correlation potential. This
final geometry found in ORCA was then used as the input for the calculations in DIRAC.

On the other case, the geometry found in the literature for PoOH converged when being used as the
initial input. This geometry found in the literature was also calculated using DFT methods and treated
relativistic effects with RECP [50]. The initial geometries are shown in the table below:

Molecule RM−O [Å] RO−H [Å] α[°]

PoOH [50] 2.0644 0.9610 106.89
PbOH 2.1119 0.9642 113.79

Table 1: Initial input geometries for the CCSD geometry optimization, bond lengths are given in Angstrom
1Å= 1× 10−10m [51]). Both calculations were done using the DFT, for PbOH the B3LYP fuctional was
used and for PoOH the PBE0 functional was utilized instead

These initial geometries were further optimized using the CCSD method. Triple excitations (CCSD(T),
CCSD-T, CCSD+T) were not utilized in this section in order to save computational time. For this
calculations the basis sets were varied in cardinality, where Tz and Dz basis sets were used. In specific,
the basis sets utilized in this work are the relativistic Dyall.v2z and Dyall.v3z basis sets. Calculations
were also performed varying the type of Hamiltonian. A set of calculations was done using the relativistic
4c Hamiltonian and another with the X2c Hamiltonian. The non-relativistic 1c Hamiltonian was tested
as well in order to see how important the effects of relativity are in this calculations. The results for
PoOH are given in table 2:

Basis Hamiltonian RPo−O [Å] RO−H Å] α[°]

Dyall.v2z 4c 2.156052 0.967499 105.904
Dyall.v2z X2c 2.156044 0.967511 105.910
Dyall.v3z 4c 2.100646 0.958618 107.840
Dyall.v2z 1c 1.934903 1.000172 171.874

Table 2: Optimized geometry for PoOH at the CCSD level of theory. The space cut-off was set in an
energy range of -30a.u to +30a.u, this corresponds to 61 correlated electrons.

The final geometries given by CCSD have longer bond lengths than the one that was initially used. An-
other interesting observation that comes to mind is the difference in bond length between the different
basis sets used. Assuming that the Tz basis is more accurate, we can conclude that the Dz basis overes-
timates the bond lengths for both the Po-O and the O-H bonds. We can notice as well a slight difference
in the bond angle, this time being underestimated in the Dz case.

In the case were the Hamiltonian was changed from 4c to X2c there appeared to be no significant
differences, the bond lengths in both calculations agreed up to three decimal places. For the angle,
the difference is again minimal and can be considered to be negligible. On the other hand for the 1c
Hamiltonian we see that it clearly deviates from its relativistic counterparts. Bond lengths are altered
when ignoring relativity, but more importantly is the effects this has on the bond angle. The bond angle
increases drastically and t seems like the molecule is trying to reach a fully straight linear geometry.

The results for PbOH are given in table 3. For PbOH no measurements for with v3z have been performed
and only the Hamiltonian has been varied.

Again we observe that the choice of relativistic Hamiltonian (4c or X2c) does not alter the values signifi-
cantly like in the case of PoOH. For the 1c Hamiltonian we see again that the geometry changes severely.
It is curious to see how for both PoOH and PbOH the bond angle increases considerably but the bond
length between the p-metal and the oxygen atom decreases PoOH while for PbOH it increases. Apart
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Basis Hamiltonian RPb−O [Å] RO−H Å] α[°]

Dyall.v2z 4c 2.112572 0.964580 113.764
Dyall.v2z X2c 2.111954 0.964043 113.769
Dyall.v2z 1c 2.295624 1.116204 158.382

Table 3: Optimized geometry for PbOH at the CCSD level of theory. The space cut-off was set in an
energy range of -30a.u to +30a.u, this corresponds to 61 correlated electrons.

from the non-relativistic case, the geometry of PbOH remains virtually the same in both the CCSD
optimization and the original DFT optimization. It seems like PoOH is more sensitive to the change of
computational method which might mean that PoOH is also affected more by how electron correlation is
treated.

The geometry for the calculations of Wd will be chosen based on the accuracy of the method used to
determine it. So for PoOH the geometry given by the CCSD calculation, using the Dyall.v3z basis and
4c Hamiltonian will be the one used. For PbOH, the geometry that will be used will be one determined
with CCSD, a 4c Hamiltonian and Dyall.v2z basis sets.

4.2 Calculations for the Enhancement Factor Wd

As it was mentioned in the theory, in order to obtain a value for the enhancement factor Wd we have to
compute the derivative or gradient of the energy of the molecule with respect to the applied field strength
λ. So in order to find such gradient, the energy of the molecule is calculated when being exposed to
different field strengths. This applied field strength will range from −λ to λ, which means it will be
reversed.

A correct order of magnitude for the field strength has to be found as well, because it is crucial to have a
linear fit between the molecular energy and the field strength. If this is the case then we can approximate
the derivative of the energy with respect to λ in the following way:

Wd =
1

Ω

dEΩ

dλ

∣∣∣∣
λ=0

≈ 1

Ω

E(λ)− E(−λ)
2λ

(61)

With a linear fit it is then possible to find the enhancement factor by determining the numerical gradient
of the graph. In order to quantify the strength of the linear relationship between energy and λ, the corre-
lation coefficient12 r was computed for the calculated energies. The values for the correlation coefficients
and of the gradient of the plotted energies were obtained using the stats.linregress command in Python
from the Scipy package.

The optimal order of magnitude for the field strength was found to be of λ ∼ 10−8. The field strength at
this value gave the best linear fits for the energy in terms of λ, an example of such a fit is shown in figure
3 for PbOH. The r value for such graph is nearly equal -1 so the requisite of having a linear dependence
is satisfied13, the obtained linear fit is shown by the dashed line.

The molecular energies calculated in this paper will be given in atomic energy units14, the unis of the
actual effective electric field Eeff will be given GVcm−1 and the unit of Wd will be in h e

h
Hz
cm where e

is the electron charge and h is the Planck constant15. In addition, a factor of 1024 will be added to the
units of Wd in order to increase readability. Then the final expression relating the Wd and the numerical

12It varies from 1 to -1 depending if the relationship is negative or positive, if the r value is 0 then both variebles are not
correlated at all.

13The actual correlation coefficient of figure 3 is r=-0.9999996707181451
141a.u.= 5.142 206 747 63 ·1011 V m−1 [52].
15h = 4.135 667 696 · 1015 Hz eV−1 [53].
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gradient of the graph is given as:

Wd

[
1024

e

h

Hz

cm

]
=

5.14220674763

4.135667696

1

Ω

E(λ)− E(−λ)
2λ

= 1.24338006
1

Ω

E(λ)− E(−λ)
2λ

(62)

Figure 3: Graph showing the linear dependence of the molecular energy in terms of the field strength λ
for PbOH. The energy is computed with DHF,4c Hamiltonian, Dyall.cv2z and an occupied and virtual
space cut-off of ±5 a.u.

4.3 Results for the Enhancement Factor Wd

In this section the results obtained for the enhancement factor of PbOH and PoOH will be shown. As
it can be observed in the figure 3, the field strength λ was varied from −2 × 10−8 to −2 × 10−8. These
calculations of the energy were performed with the core-valence Dyall.cv2z basis sets. These basis sets are
similar to the Dyall.v2z basis sets used in the geometry optimization but they add as well tight functions
to the basis sets in order to improve the description of the AO near the nucleus and the core electrons
[36]. These core-valence basis sets include the (n-2) shell for the s elements, the (n-1) shell for the p
elements, the (n-1) shell for the d elements, and nothing extra for the f elements [33]. At last, in order
to account for relativity the Hamiltonian used was the Dirac 4c-Hamiltonian.

The geometries used as the input for the calculations were the ones found in the previous section of
the geometry optimization. Molecules were positioned with the M-O bond axis (M stands for the corre-
sponding p-metal) pointing in the z-direction, parallel to the field strength in order to increase the eEDM
signal.

Finally, the results shown in the calculation for PbOH were computed using DHF and MP2 methods. No
results calculated using CCSD or CCSD with triple excitations will be shown for PbOH due to the fact
that they gave extremely high values for Eeff which does not correspondond at all with other similar
molecules found in the literature. This inconsistency found in the CC method might be arising from the
symmetry of the molecule and the multireference character of this one. On the other hand, for PoOH the
CC methods gave reasonable results while DHF gave underestimated values for Eeff that were too low
to take in to consideration. Table 4 and table 5 show the results obtained for Eeff and Wd corresponding
to PoOH and PbOH respectively.
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Mehtod Eeff [GVcm−1] Wd

[
1024 e

h
Hz
cm

]
MP2 8.882 4.295

CCSD 20.582 9.952
CCSD(T) 17.378 8.402
CCSD-T 17.668 8.542

Table 4: Effective electric field and the corresponding enhancement factor for PoOH. Calculations were
done with Dyall.cv2z basis set, a 4c Hamiltonian and an occupied and virtual space cut-off of ±5 a.u.

Mehtod Eeff [GVcm−1] Wd

[
1024 e

h
Hz
cm

]
MP2 18.678 9.031
DHF 19.087 9.229

Table 5: Effective electric field and the corresponding enhancement factor for PbOH. Calculations were
done with Dyall.cv2z basis set, a 4c Hamiltonian and an occupied and virtual space cut-off of ±5 a.u.

In table 5 we can see that for PbOH the enhancement factor Wd does not vary too much with the change
of method as the MP2 value only differs by 2 per cent from the DHF value . On the other hand in table
4 PoOH seems to be more sensitive to the method as it is noticeable how the enhancement decreases
drastically for MP2, being approximately half of the value calculated with CC methods. We can see
as well that when triple excitations are added to CCSD, the enhancement factor decreases slightly with
respect to CCSD by 16 per cent for CCSD(T) and by 14 percent for CCSD-T.

The final values recommended for Wd will be chosen taking in consideration the most accurate method
used for the calculation. In the case of PbOH the chosen final value will be the one obtained with MP2
as it is the only method for PbOH that takes electron correlation in to consideration up to some degree.
Now, for PoOH several methods that account for electron correlation where performed so deciding which
one to chose requires more deliberation.

MP2 is based on perturbation theory, and these types o theories work best with small perturbations in
order for the Taylor expansion to converge quickly [47]. The problem is that in MP2 the perturbation
originates from the electron-electron repulsion which can be a large contributor to the total energy so
the electron correlation given by this method is not expected to be very accurate [47]. That is why one
of the CCSD methods with triple excitations must be chosen instead. The final value for Wd of PoOH
will be the one calculated with CCSD(T), following the reasoning in [14]. The final values can be found
in table 6:

Molecule Eeff [GVcm−1] Wd

[
1024 e

h
Hz
cm

]
PoOH 17.378 8.402
PbOH 18.678 9.031

Table 6: Final values for the effective electric field Eeff and enhancement Wd.
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5 Discussion

5.1 Uncertainty
The values determined in this research have to be taken with a grain of salt. A big part missing in this
study is the corresponding uncertainty analysis required for this values that were just determined. Due
to the lack of time, no further calculations were carried out for Wd. If any future studies are carried for
this molecules, a rigorous uncertainty analysis must be carried out in order to asses the values given in
here.

The first source of uncertainty that may arise in this calculations corresponds to the low electron cor-
relation that was taken in to account. The virtual and occupied space cut-off was of ±5a.u. which
represents only 27 correlated electrons for both PbOH and PoOH. This space cut-off corresponds only
to an electron correlation of 0.297 for PbOH and of 0.290 for PoOH16. It is recommended to perform a
several calculations varying the electron correlation and as well with a full electron correlation. This way
it will be possible to asses how this computational parameter affects the enhancement factor value. Due
to a lack of time, only calculations with a certain type of electron correlation were performed.

A second source of uncertainty is the choice of basis set. In this study the basis sets were only varied
for the geometry optimization. For the enhancement factor only v2z basis sets were used as they are
computationally less demanding and take less time than the v3z basis. More calculations should be carried
out with higher cardinality in the basis sets as a means to determine the effect of this computational
parameter in the enhancement factor. Apart from the cardinality, it should also be studied what are the
effects of adding diffuse and tight functions to the to the basis sets. In this work only cv2z basis sets
were used for Wd, calculations should be carried out with no tight functions to see if the final values vary
considerably with this change in the description of the orbitals.

The third computational parameter that needs to be considered is the treatment of relativity. In this
paper relativity was accounted for by using the 4c Hamiltonian. Even though this is a good description
of the system, it only accounts for the one-electron operator part of the overall total Hamiltonian. The
two-electron operator still got a classical treatment. In this types calculations for the enhancement factor,
relativity plays a crucial role as it enhances the eEDM signal. A better description of relativity could be
obtained by implementing the Gaunt term in the 4c Hamiltonian. Other sources of uncertainty would
still be present as one part of the Breit term is still missing, the gauge term. DIRAC has at the moment
no way of implementing this gauge term so the Gaunt term must suffice at the moment.

The last source of uncertainty is the geometry of the molecule. Even though a geometry optimization
was performed for both molecules, there still some uncertainty in the values found for the bond lengths
and bond angles. A way of addressing how this uncertainty affects the final enhancement factor of the
molecules could be done by varying slightly the bond angles and bond lengths when performing the Wd

calculations. Seeing how changing the bond length and bond angles affects the final Wd value could give
some insight on how reliable the values obtained are.

In addition to the sources of uncertainty listed above, an explanation for the drastic change of effective
electric field when varying the method needs explanation. It was observed that the for PbOH, the Eeff

increased drastically when it was calculated through CC methods. On the other hand for PoOH, CC
methods gave reasonable results while DHF underestimated Eeff unlike PbOH. This behaviour of the
molecules is unusual to say the least, as they are both similar molecules with nearly equal number of
electrons in their heavy atom.

It should also be mentioned that in eEDM experiments the measured energy shift of the molecule is not
only due to the eEDM. A second interaction known as the scalar-pseudoscalar interaction (S-PS) also
contributes to the energy shift experienced by the molecule. In order to obtain an accurate magnitude for
the eEDM, the effects of this S-PS interaction should also be determined by calculating its corresponding

16electron correlation given by Ncorrelated
Ntotal
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enhancement factor Ws. Knowing both enhancement factors allows for disentanglement of the effects
corresponding to the eEDM from the overall energy shift.

5.2 Comparison with the Literature
In order to know if the molecules chosen for study are promising candidates, they must be compared with
the already studied molecules in the literature. In table 7 we can see the effective electric field Eeff for
the molecules in this paper compared to some polyatomics with similar geometry found in the literature.
The value for ThO (molecule used to determine the eEDM upper limit) is displayed as well

Molecule Eeff [GVcm−1]

PoOH 17.378
PbOH 18.678

RaOH [24] 48.866
HgOH [20] 28.470
YbOH [14] 23.4
BaOH [14] 6.650
ThO [54] 84

Table 7: Effective electric field for different monohydroxide moleculesfound in the litetarute and for PoOH
and PbOH

It must be taken in to account that the computational methods and considerations used for these molecules
in these other works are different than the ones used in this paper.

At first glance the effective electric field or enhancement factor Wd of PoOH and PbOH is not very
high compared to other tested molecules like HgOH which contains a similar number of electrons in its
heavy atom. RaOH is another molecule that possesses a way higher enhancement factor than the tested
molecules in this paper, which means that he molecules PbOH and PoOH may not be the most sensitive
moleculas towards the eEDM.

We can see as well that all these monohydroxide polyatomics found in the literature are less sensitive to
the eEDM than the diatomic ThO, which almost doubles the Eeff of the most sensitive MOH molecule
(RaOH) found in the literature. This does not mean that polyatomics are not suitable to eEDM searches,
as they offer more advantages apart from their eEDM sensitivity, (Laser coolability). Other factors like
practical limitations need to be taken in to account, all the values listed in the table above were determined
with theoretical computational methods and no practical considerations of their actual experimental
applicability were considered.
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6 Conclusion
In this work the enhancement factor Wd for PbOH and PoOH was calculated using Hartree-Fock, cou-
pled cluster methods and Møller-Plesset perturbation theory. Optimized geometries of the mentioned
molecules were determined as well in the process at the CCSD level of theory. No triple excitations were
added in this calculations in order to save computational time. Relativistic Dyall triple and double basis
sets were utilized in the geometry optimization of the molecules as well.

For Wd only double zeta basis sets are utilized due to time limitations. The treatment of relativity was
addressed by performing the calculations with a 4c Dirac Hamiltonian. In all calculations core orbitals
were frozen and the maximum electron correlation treated in the paper was done at a space cut off of 30 a.u
of energy for the geometry optimization (correlating 61 electrons) and of 5 a.u. (correlating 27 electrons)
for the enhancement factor calculations. For PoOH the final value was of Wd = 8.402 × 1024 e

h
Hz
cm ,

calculated using the CCSD(T). For PbOH the final value wasWd = 9.031×1024 e
h

Hz
cm and it was determined

using MP2 methods instead.

The values obtained lack of an uncertainty analysis which is required in order to do a proper assessment
of the values obtained in this research. Further calculations varying the electron correlation, type of basis
set, treatment of relativity and molecular geometry are required. Calculation of the scalar-pseudoscalar
enhancement factor Ws is required as well, as this interaction plays also a role in the energy shift of the
molecule in eEDM experiments.

The final values for the PbOH and PoOH for the enhancement factor do not seem to be specially high
in comparison to other monohydroxide molecules found in the literature. Still, further computations
for PbOH and PoOH are suggested to be carried with a higher level of theory and with higher electron
correlation. As well, the Gaunt term should be taken in to consideration in order to evaluate more
precisely the effects of relativity on Wd.
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