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Abstract

This paper unifies rigid bodies and fluid flow through Lie group analysis. By
exploiting similarities in the symmetries of their Lagrangian, the study reveals that
their behavior can be seen as geodesic motion on their respective configuration spaces
when an appropriate metric is chosen. Using the Euler-Poincaré reduction theorem,
the Euler-Arnold equations for rigid bodies and fluids are derived. Additionally,
different systems described by Lie group analysis with various groups and met-
rics are mentioned, demonstrating the framework’s versatility. The behavior of the
Hopf/inviscid Burgers’ equation and the Euler ideal flow equation is derived, con-
firming their adherence to the Lie group analysis framework.
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1 Mathematical introduction
Lie group analysis, a branch of mathematics utilizing Lie groups, offers valuable insights
into the analysis of various systems. In this thesis, I use Lie group analysis and build upon
Arnold’s work [1] to present a comprehensive mathematical framework that unifies the
description of different free physical systems. The objectives of this thesis are as follows:
(1) to introduce the Euler-Arnold equation, (2) to establish the equivalence between
this new framework and the existing descriptions of these physical systems, and (3) to
determine the applicability of Lie group analysis to different types of systems.

The thesis starts of by introducing certain mathematical concepts. First are groups
and manifolds which are fundamental mathematical tools used to model a wide range of
physical systems. Manifolds describe the space of states in which a system can exist, while
groups capture the symmetries exhibited by physical systems. On a manifold, a tangent
vector represents the rate of change of a curve. For instance, in a fluid, the velocity of
a particle corresponds to a tangent vector on the container that confines the fluid. The
velocities of all particles collectively give rise to the velocity field. The length of such a
tangent vector can then be measured using a metric. The metric is used to convert a
tangent vector (a velocity) into a number (a speed). It can also be used to find an inner
product between two tangent vectors, this is a measure for how much the two vectors
point in the same direction. Finally, by integration, the metric can be used to find the
length of a curve on the manifold. Curves that extremize the length are called geodesics.
They are usually seen when describing free physical systems. The paths of free particles,
light rays, or fluids can all be seen as geodesics.

To mathematically rigorously describe geodesics one requires the connection. The
connection connects nearby tangent spaces to each other and in doing so allows us to find
the acceleration of a curve. Previously, the velocity vectors at different points in time
were also tangent vectors to different parts of the manifold so they could not be directly
compared. The connection allows for such comparisons. The geodesic equation states
that there should be no acceleration.

The specific systems in this thesis all have the additional property that their configu-
ration is a Lie group. This means that they are a group and a manifold. In some sense,
this means that the manifold that forms the configuration space looks the same from any
point. This is the case for example for a particle in empty space, but not for a particle
inside a finitely sized container.

In this thesis, we will discuss in detail how Lie group analysis can be used to arrive
at two first order equations which together describe the behavior of a rigid body. The
rigid body’s configuration space consists of translations and rotations of the body in N -
dimensional space. This is the Lie group SE(N). We will find a metric so that the
equation of motion of the rigid body is exactly a geodesic on SE(N) by exploiting the
similarity between geodesics and the least action principle.

The metric that we will obtain will necessarily be left-invariant, as a left-multiplication
on SE(N) is equivalent to change the coordinates in which we view the system. Therefore,
it cannot change the energy. This symmetry allows for the use of Noether’s theorem which
will reduce our system to the two first order equations. Namely, a first order equation
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that states that the momentum is preserved when brought back to the Lie algebra by
right-multiplication, and another equation stating that the derivative of the position is
the velocity.

We will generalize this to the Euler-Poincaré reduction theorem, which applies to
all geodesics under a left-invariant metric. We will also construct an alternative equation
which describes the change in velocity rather than momentum. Here, velocity refers to the
derivative of the position whereas momentum refers to the dual of the velocity. Thereafter,
this Euler-Poincaré reduction theorem will be applied to several fluid systems. Fluids have
a right- rather than left-invariant metric which corresponds to a relabeling of the particles,
however we will provide a slight modification to the Euler-Poincaré reduction theorem so
that it can still be applied.

2 Physical introduction
Free systems are physical systems that are not affected by any external potential and
whose Lagrangian depends entirely solely on time-derivatives of the generalized coor-
dinates. The behavior of these systems can be simpler than that of systems that do
experience a potential, but nevertheless is far from uninteresting. A rigid body is one ex-
ample of a system that can display many complicated types of behavior. The intermediate
axis (or tennis racket theorem) comes to mind as an example of interesting, non-intuitive
behavior displayed by a freely rotating rigid body. Fluids too are a free system (when
gravity is absent or neglected).

Both fluids and rigid bodies have been studied by Euler who has found two Euler’s
equations. Euler’s equation for a rigid body is derived based on the conservation of angular
momentum and describes the time evolution of a rigid body’s angular momentum when
the rigid body rotates around a fixed point with some external torque applied. Euler’s
equation for a fluid describe an ideal fluid which means that the fluid is incompressible
and inviscid. Notably, Euler’s equations for both rigid bodies and fluids do include an
external forcing term which means the systems described by Euler were not necessarily
free.

Specifically when these external force terms are set to zero, the systems are free and
interestingly the different physical systems can be described through an almost equiva-
lent mathematical equation. This specific equation is obtained by simplifying the physical
description from an embedding of the physical object in 3-dimensional space into a descrip-
tion of the system as a single point in the configuration space of the object. For example,
in the case of a 3-dimensional rigid body rotating about a fixed point, the configuration
space is the space of rotations SO(3). Then a reformulation of Lagrangian mechanics is
made on this configuration space so that the equation of motion of the physical system
becomes a geodesic on the configuration space.

That geodesic can be simplified to a first order using a method called the Euler-
Poincaré reduction which is similar to how the Euler-Lagrange equation is obtained. The
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resulting first order equation is called the Euler-Arnold equation and it describes the be-
havior of any free physical system. Although the Euler-Arnold equation can be easily
derived for a very small group of systems, it turns out that many more systems (mainly
simplifications or extensions of fluid dynamics) can be seen as the Euler-Arnold equa-
tion on some manifold under some metric. This is interesting and hints at fundamental
similarities between these different systems.

This thesis will end by covering the different fluid systems of which it is known that
they can be described using Lie group analysis. The Lie groups and metrics that are
used for this will be explained and for several examples, the methods shown in the earlier
sections will be applied to derive equations such as the Hopf/inviscid Burger’s equation
and the Euler Ideal flow equation.

Additionally, the relation between the Lie group analysis and the conserved quantities
of several systems will be discussed. In particular, the conservation of momentum and
angular momentum for a rigid body rotating about its center of mass and the vorticity
equation, which states that the vorticity (a generalization of the curl) of a fluid moves
with the fluid as if it was frozen in.
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3 Manifolds
This section contains superficial rehearsal of the definitions of a manifold. For more
detailed and intuitive explanations refer to [2].

A manifold is a mathematical object that can describe various things. It can repre-
sent an object embedded in Euclidean space, like a shape, or it can describe a group of
symmetries, like the different ways you can rotate a ball. When we say it’s "continuous,"
we mean that it can be described using a set of continuously changing parameters [2].

To define a finite-dimensional manifold, we say that it is a set called M that looks
locally like Euclidean space. This means that we can divide it into smaller parts, each of
which can be mapped to a piece of Euclidean space using a set of rules called an atlas.
The atlas consists of pairs of sets Ui and maps ϕi that convert points in Ui to points in
Euclidean space. The sets Ui cover the entire manifold, and the maps ϕi can smoothly
transition between each other.

Definition 3.1. A n-dimensional smooth manifold is a set M which is locally Euclidean.
That means that there is an atlas A =

{
(Ui, ϕi) : i ∈ I

}
for some indexing set I. So that

the following conditions hold.

• Ui is an open subset of M for all i ∈ I;

• ϕi is an injective map from Ui to Rn (or to the upper half plane Hn in case of a
manifold with boundary);

• the Ui form an open cover of M ;

• ϕi ◦ ϕ−1
j is in C∞ for all i, j ∈ I.

Not all manifolds can however be parametrized by a finite number of parameters. If
this is not possible, the object in question may still be an infinite dimensional manifold.
An infinite dimensional manifold is a space that is locally diffeomorphic to a Banach space
or a Fréchet space which can be seen as the infinite dimensional analogues to Euclidean
space. Infinite dimensional manifolds are generally much nastier to work with. The
description of fluids does require specifically Fréchet manifolds however we will not go
into much detail here [3].

3.1 Vector fields

Vector fields are important in physics and have various applications. For example, electric
and magnetic fields, as well as the gravitational field in Newton’s theory, are all examples
of vector fields. In more complex theories, we also encounter tensor fields, which are a
generalization of vector fields. But let’s start by understanding what a vector field is,
which requires us to first define a vector.

A vector is a special object that belongs to something called the tangent space to a
manifold (denoted as TM where M is the manifold). If we imagine a manifold embedded
in a larger space like Rn, the tangent space at a point can be thought of as a flat plane that
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touches the manifold at that point. It’s like a sheet of paper lying flat on a curved surface.
But instead of thinking about it visually, we often think of the tangent space as a space
that contains derivations along curves. These derivations must have certain properties
namely linearity and obeying the product rule. On a functional v from C1(M,R) the
conditions for v being a functional are

v(λf + g) = λv(f) + v(g) and v(fg) = fv(g) + gv(f),

where f, g ∈ C1(M,R) are continuous functions from the manifold to the real numbers
and λ is a real number. There are several complications to this definition such as the fact
that the elements do not really act on functions in C1(M,R) but rather on equivalence
classes that are the same sufficiently close to a certain point. We say that such functions
have the same ‘germ’. For more details and an explanation of what a ‘germ’ is, see [2].

Using this definition, we can think of a tangent vector as something that acts on a
function and outputs a number. We do this by looking at a curve γ : [a, b] → M and
taking its derivative. The derivative of a curve tells us how the function changes as we
move along the curve. We can write this as

γ̇(τ)(f) =
d

dt

∣∣∣∣
t=τ

f(γ(t)).

When we have a coordinate system φ (recall the definition of a chart on a manifold)
centered on a point p := φ−1(0), which gives us a way to assign coordinates to points
on our manifold, we can define paths that behave like straight lines in our chart. The
‘straight’ line γi is given by

γi(t) = ϕ−1(0, . . . , 0, t, 0),

where the nonzero parameter is on the ith position. The derivative of such a path at a
certain point is written as γ̇i(0) =

∂
∂xi

∣∣∣
p
. These ∂

∂xi

∣∣∣
p

form a basis for the tangent space

at that point p [2].
Now that we understand what a tangent space is, we can talk about vector fields. A

vector field is a map that assigns to every point in the manifold a tangent vector to the
manifold at that specific point. This can be made rigorous as follows

Definition 3.2. A vector field associates to every point on a manifold a vector in the
tangent space. It is defined by a map X : M → TM so that π ◦X = id, where π is the
projection operator that maps a tangent vector (p, v) ∈ TpM ⊂ TM to its footpoint, p.
The vector field is smooth if the map X is smooth.

Vector fields are essential in the study of fluid dynamics. The velocity field of a fluid -
its velocity vector at every point - is a vector field as well. This velocity field is essentially
the derivative of the flow function, Φt which maps the position of a particle at time 0 to
the position of that particle at time t.
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3.1.1 The pushforward

There is one extremely important concept related to vectors that may not be absent in
this section. The pushforward of a function is a way of letting a function from a manifold
M to itself f ∈ C∞(M,M) act on vectors which are elements of TM . Conceptually, the
pushforward takes a vector at a point and moves it along with all the other points to
a new position on the manifold. If the neighbourhood around the vector’s footpoint is
rotated, so is the vector and if that neighbourhood is stretched, sheared, or contracted,
those transformations are also applied to the vector.

The pushforward of a function f ∈ C∞(M,M) is denoted as either df or as f∗. When
it is applied to a vector vp ∈ TpM (which then successively should be applied to a function
g ∈ C1(M,R)). The defining equality is

f∗(v)(g) := df(v)(g) := v(g ◦ f). (1)

The footpoint of the new vector will then be f(p). This definition can be extended to
take a function from one manifold to another f ∈ C∞(M,N) which will turn a vector
v ∈ TM into a new vector in TN , using the same equality from 1 but now with a function
g ∈ C1(N,R).

3.2 Index notation

Before we delve into alternating k-form which is the topic of the next chapter, it is
important to explain what the meaning is of the position of the different indices. In
physics, we often write a vector to be v as vi. In mathematics, such notation is considered
sacriligious. The vi refer to the components of the vector v and the full vector is given by

x = xi ∂

∂xi
.

Here the index i is summed over using the Einstein summation convention. Whenever a
single index appears twice, once as a superscript and once as a subscript, it should be
summed over. For example for two vectors v and u, their Euclidean inner product is
given by

⟨v,u⟩ = viδiju
j.

where δij equals 1 if i = j and zero otherwise. We could also define an object that has
only a subscript. If we make the object fi then it can be ‘contracted’ with a vector vi to
obtain

fiv
i =

∑
i

fiv
i.

As said before, a mathematician would not accept this notation since the vi and the fi
have a hanging, uncontracted index. To make the above statement rigorous, we would
write v = vi ∂

∂xi and f = fidx
i where dxi is the linear function defined by dxi

(
∂

∂xj

)
= δij.

We could then state

f(v) = fidx
i

(
vj

∂

∂xj

)
= fiv

jdxi

(
∂

∂xj

)
= fiv

jδij = fiv
i,
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which amounts to the exact same result. In general, one can convert from a physicists
index notation to a mathematicians index notation by assuming that all uncontracted
indices should be contracted with either ∂

∂xi or dxi, unless this index only appears on one
side of the equation.

Finally, the difference between subscripts and superscripts is how they change under
a coordinate transformation. If I were to do a change of basis from some coordinates
(x1, . . . , xn) to the coordinates (y1, . . . yn) where a coordinate should be seen as a function
of the point described by the coordinate. Then at some point the basis of the tangent
space transforms as follows

∂

∂xi

∣∣∣∣
p

=
∂yj

∂xi

∂

∂yj

∣∣∣∣
p

. (2)

However, a vector should not change, so if we take the same vector v expressed both in
the coordinates x as vix and in the coordinates y as vjy then

vix
∂

∂xi
= vix

∂yj

∂xi

∂

∂yj

∣∣∣∣
p

= viy
∂

∂yj

∣∣∣∣
p

so
∂yj

∂xi
vix = vjy,

which has the term ∂yj

∂xi on the opposite side as Equation 2 does. This is the meaning of
the subscript or superscript, the way in which the different components will transform
under a change of coordinates.

3.3 Alternating k-forms

A k-form is a mathematical object that generalizes certain concepts related to vector
fields. Let’s start with the simplest type, which is a 1-form. A 1-form is an element from
the dual space of smooth vector fields, denoted as T ∗M . In other words, it is a smooth
section of the dual tangent bundle T ∗M that associates each point on the manifold with
a 1-form αp at that point.

α : M −→ T ∗M
p 7−→ αp ∈ T ∗

pM

The set of all 1-forms on a manifold is written as Ω1(M), and it has a basis consisting
of n 1-forms: dx1, . . . , dxn. These 1-forms are defined in terms of coordinate differentials
to have the property

dxi

(
∂

∂xj

)
= δij,

which we already briefly encountered in the previous section.
We can use the wedge product to define higher-degree forms. For k-forms α1, . . . , αk

and vectors v1, . . . , vk at a point p, the wedge product α1 ∧ · · · ∧ αk is defined as the
determinant of a matrix involving evaluations of the 1-forms on the vectors [2]. The
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wedge product is associative, linear, and anticommutative. A k-form is a form that takes
k inputs, and the space of k-forms is denoted as Ωk(M) [2].

(α1 ∧ · · · ∧ αk)p(v1, . . . , vk) = det

α1(v1) · · · α1(vk)
... . . . ...

αk(v1) · · · αk(vk)

 ,

There are several important operations on the space of k-forms. The first is the
exterior derivative denoted by d which sends a k-form to a (k + 1)-form. For a k-form
u = ua1...akdx

a1 ∧ · · · ∧ dxak , the exterior derivative is

du =
∂ua1...ak

∂xi
dxa1 ∧ · · · ∧ dxak ∧ dxi.

It can also be defined in coordinate-free notation by taking Stokes’ theorem as the def-
inition of the exterior derivative. Usually, Stokes’ theorem states that for a k-form
ω ∈ Ωk(M) and for a subset V ⊂ M which is (k + 1)-dimensional,

ˆ
V

dω =

ˆ
∂V

ω,

where ∂ denotes the boundary operator and the integral is defined in coordinates asˆ
∂V

ω :=

ˆ
∂V

ωa1...akdx
a1 · · · dxak .

The second operation sends a k-form to a (k − 1)-form. This operation is called the
interior product and functions by taking a vector field v and injecting it into the first slot
of the k-form α.

(ivα)(u1, . . . , uk−1) = α(v, u1, . . . , uk−1).

Lastly, there is the Lie derivative, denoted as LX , which involves pulling a k-form
along a given vector field X. It is defined using the smooth curve gt(x) in the space of
smooth diffeomorphisms on the manifold which crosses through the identity at t = 0.

g0(x) = x.

The Lie derivative can be seen as the rate of change of the pulled-back form g∗tω with
respect to time t. When the derivative of the curve gt at t = 0 is given by the vector field1

X, the Lie derivative is defined as

LXω :=
∂

∂t
(g∗tω)

∣∣∣∣
t=0

,

where g∗tω(v1, . . . , vk) := ω(gt(v1), . . . , gt(vk)).

∂

∂t
(g∗tω) = LXω,

1In Section 9 it will be shown that this derivative is indeed a vector field.
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where g∗tω(v1, . . . , vk) := ω(gt(v1), . . . , gt(vk)).
This means that one can see the Lie derivative as the object which pulls a k-form along

a certain vector field. By integrating the definition of the Lie derivative, the expression
is obtained

g∗tω =

ˆ t

0

LXωdt+ ω.

When working with the Lie derivative, Cartan’s magic formula is often used as it is a
useful result which states that [2]

LX = iXd + diX .

3.4 Riemannian manifolds

A Riemannian manifold is a manifold together with a metric. A metric should be seen
as a way to measure length of a curve on a manifold. In a Hilbert space we can use the
inner-product to compute the distance2 d(x, y) between two points x and y. The formula
for computing this distance is [4]

d(x− y) =
√

⟨x− y, x− y⟩.

When considering the simple case of Euclidean space Rn, the inner product between two
vectors v = (v1, . . . , vn) and u = (u1, . . . , un) is given by

⟨v,u⟩ =
n∑

i=1

viui.

The distance between the points x = (x1, . . . , xn) and y = (y1, . . . , yn) is

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2,

which is exactly what would be expected from Pythagoras’ theorem.
To compute the length of a non-straight curve, you simply sum the infinitesimal dis-

tances that make up the curve. For a curve γ : [0, 1] → H where H is a Hilbert space,

L(γ) = lim
n→∞

n−1∑
i=0

d

(
γ

(
i

n

)
, γ

(
i+ 1

n

))
.

When n becomes sufficiently large, this successive distance may be approximated using
the derivative of γ at t, γ̇t, which is an element of the tangent space of H. In this case,
because a Hilbert space is already a vector space, we may identify the tangent space and

2This concept of distance is also called metric however it is a different metric than the one we are
interested in.
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the Hilbert space itself Tγ(t)H ∼= H. The inner product then carries over to the tangent
space so the length of the curve is

L(γ) =

ˆ 1

0

√
⟨γ̇, γ̇⟩dt.

In general, however, a manifold is not a vector space, so an inner product cannot
always be defined. On the other hand, the tangent spaces will always be vector spaces.
So, we would like to define an inner product for every tangent space to our manifold. This
is called a metric.

Definition 3.3. A metric g is a map which associates to every point x of the manifold M
a symmetric, positive definite bilinear map on the tangent space TxM . The inner product
between two elements u, v ∈ TxM is written as

⟨u, v⟩ = gx(u, v).

It is worth noting that not all measures of distance are induced by an inner product
and as such not all measures of length can be described with a metric [5].

Theorem 3.4. A norm ∥·∥ on a vector space V is induced by an inner product
√

⟨·, ·⟩ if
and only if the norm obeys the parallelogram identity: for all u, v ∈ V

∥u+ v∥2 +∥u− v∥2 = 2∥u∥2 + 2∥v∥2 .

In this case, the inner product is given by

⟨u, v⟩ = 1

4

(
∥u+ v∥2 −∥u− v∥2

)
.

Technically there is an even more general notion of distance (the one that is confus-
ingly named a metric but is not the metric we have been discussing). This one is not
of interest to us since we should want our length measure to satisfy something called
‘absolute homogeneity’ d(0, sv) = |s| d(0, v) for a real number s and a vector v so that a
reparametrization of a curve will not change its length.

Fortunately, both the parallelogram identity and this ‘absolute homogeneity’ are sat-
isfied by the Euclidean norm

∥v∥2 = vTv,

which is induced by the inner product

⟨u, v⟩ = uTv.

It also holds for the norm on a vector space X when that norm on the vector space is
induced by an inner product on the carrier space

∥X∥2 =
ˆ
M

⟨X(x), X(x)⟩dx,

as can be checked easily using linearity of the integral.
An example of a norm that cannot described as an inner product is the ∞-norm. This

norm on Rn is defined by ∥∥∥(v1, . . . , vn)T∥∥∥ = max
i

|vi|
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3.5 The Connection

The connection is the mathematical formalism that allows us to treat geodesics on arbi-
trary manifolds. One can see a connection as a generalization of the derivative operator.
Although the concept of a connection is defined on all bundles, we will apply it only to
the tangent bundle with a projection operation π : TM → M that sends vectors to their
footpoint. The connection in this case can be seen loosely as differentiating one vector
field along another vector field. In this manner, we ‘connect’ the tangent spaces that were
initially unrelated because they belonged to different points.

Since the tangent bundle itself is a manifold, we can define the tangent bundle of
the tangent bundle, TTM . This space contains derivations of tangent vectors. Through
some constructions, whose details do not matter here, it is possible to define the subspace
HTM which consists of derivations on the tangent bundle in the direction of the manifold
[6]. Rigorously this means that it is a space orthogonal to the space of derivations in the
direction of tangent vectors, this would be called the vertical subspace V TM . Figure 1
gives a visual aid to understand this.

The ultimate result is that a connection on the tangent space of a real manifold can
be defined as a linear operator

∇ : Γ(TM) → Γ(HomR(TM, TM)) ∼= T ∗M ⊗R TM,

that additionally satisfies a product rule

∇Xfs = df(X)s+ f∇Xs

for all f ∈ C∞(M,R), s ∈ Γ(TM), and X ∈ X(M). Here Γ(Ω) denotes the space of
smooth sections on a bundle Ω.

The Levi-Cevita connection is one particularly special connection which ‘preserves’
the metric. It has the property that

∇X⟨Y, Z⟩ = ⟨∇XY, Z⟩ = ⟨Y∇XZ⟩

for all X, Y, Z ∈ Γ(TM).

3.6 Geodesics

Geodesics are length minimizing3 curves between points. An easy example of a geodesic
is in Euclidean space, denoted as (Rn, δ) where δ is the metric. The metric δ means that〈

ui ∂

∂xi
, vj

∂

∂xj

〉
δ

= uiδijv
j =

∑
i

uivi.

In Euclidean space, the geodesics are straight lines from one point to another. The
statement of Newton’s law can be reformulated to state that in the absence of any forces,
the path taken by a particle is a Euclidean geodesic.

3However only locally. When considering geodesics between points that are not sufficiently near
eachother on that geodesic, the curve need only extreme the length.
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Figure 1: The tangent space to a circle can be visualized as a cylinder with the tangent
vectors pointing in the vertical direction. The black curve is a section of TM , where the
dotted lines show how each vector projects down to the circle. In the square we see a
small part of TTM . This part contains three vectors, the red vector points vertically and
represents a derivation purely in the direction of a tangent vector. The green vector points
somewhat in the direction of the manifold, but still points somewhat in the direction of
the tangent vectors as well - it is not orthogonal to V TM . Lastly, the blue vector points
perfectly horizontally so it is an element of the horizontal subspace. The acceleration of
a curve should be a vector pointing in the same direction of the blue curve.
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Different metrics can lead to different paths. For example, the behavior of light can
be seen as a geodesic by rescaling the euclidean metric by 1/v where v is the speed of
light inside the medium.

General relativity uses geodesics to great effect to describe particles’ gravitational
interactions. For this purpose, the 3+1 dimensional space-time is introduced. Movement
of the particles affects the metric as described by Einstein’s field equations creating a
time-dependent metric. When there are no massive bodies present, the metric of special
relativity is accurate. It is given by

η = diag(−1,+1,+1,+1).

Although geodesics are generally used as paths that minimize distance, it turns out
to be (almost) equivalent to consider paths extremising the energy [7]. In a space with a
Riemannian metric g, the path followed by a geodesic γ : [a, b] → G satisfies the equation

γ̈i(t) = −Γi
jkγ̇

j γ̇k, where Γijk =
1

2

(
∂gij
∂xk

+
∂gki
∂xj

− ∂gjk
∂xi

)
are the Christoffel symbols. This equation is called the geodesic equation.

Example 3.5. We will find the equation for a geodesic in the special case of hyperbolic
space parametrized as an open upper half plane. The metric on hyperbolic n-space is

gij(x1, . . . , xn) =
δij
xn

.

This means that

∂gij
∂xk

= δijδkn · −
1

x2
n

and Γijk = − 1

2x2
n

(
δijδkn + δkiδjn − δjkδin

)
.

The equation of motion is given by

γ̈i =
1

2x2
n

(
γ̇iγ̇n + γ̇nγ̇i − (γ̇)2δin

)
.

Importantly, this means that for i ̸= n, γ̈ = 1
x2
n
γ̇iγ̇n which, with the initial condition

γ̇i = 0 will give that γi is constant for all time. This means that (in our particular choice
of basis), geodesics on hyperbolic n-space are always contained within an affine4 plane.
For the sake of simplicity, take a parametrisation so that that affine plane is exactly the
plane spanned by γ1 and γn.

The equations of motion are then

γ̈1 =
1

x2
n

γ̇1γ̇n and γ̈n =
1

2x2
n

(
(γ̇n)2 − (γ̇1)2

)
.

4They are affine because they need not pass through the origin. A plane is closed under addition of
its vectors whereas an affine plane is not. Affine planes are always parralel to some true plane.
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Interestingly enough, the solution to this equation is always the unique circle contained
in the affine plane, with center on the xn = 0 hyperplane and which matches the initial
conditions. In the case where the initial γ̇ points solely in the xn direction, it will be a
line rather than a circle [7].

It is possible to write the geodesic equation in a basis-independent way. This is what
the concept of a connection is used for. The geodesic equation can be written

∇γ̇ γ̇ = 0,

where ∇ is the Levi-Civita connection [6].
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4 Lie groups
Definition 4.1. A Lie group G is a set which simultaneously has a group structure and
a smooth manifold structure[2], [8], [9]. Additionally, the maps

Lh : g 7→ hg and Rh : g 7→ gh

should be smooth. For a reminder of what a group is, see [10]–[12].

Lie groups are often used for describing symmetries, such as the Poincaré group or the
Euclidean group. These Lie groups describe respectively the symmetries of Minkowski
and Euclidean space.

Example 4.2. The orthogonal group SO(N) consists of rotations in N -dimensional space.
It is a group under composition and can be seen as a manifold through the use of Euler
angles. In three dimensions, this means to decompose a rotation into three successive
rotations along comoving axis. See Figure 2 on page 17. In higher dimensions, rotations
are no longer about an axis, but rather within a plane. This leads to an N(N − 1)/2
dimensional manifold [13].

N

x

y

z

Z

X

Y

α

β

γ

Figure 2: The Euler angles first rotate by an angle α about the z-axis, then by an angle β
about the N -axis (which is where the first rotation moved the x-axis, finally by an angle
γ about the Z-axis (which is where the previous rotations moved the z-axis to). In the
figure, the lowercase letters indicate axis in the space frame whereas the capital letters
indicate axis in the body frame.
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4.1 Lie algebra

Whereas the Lie group contains finite-sized symmetries, the Lie algebra contains the
infinitesimal symmetries. For example, the Lie group SO(3) may contain a rotation by
30 degrees around the z-axis whereas the Lie algebra so(3) only contains rotations by an
infinitesimal angle. These infinitesimal symmetries are understood as the tangent space
to the Lie group at the identity element. The Lie algebra is often written in the Fraktur
font.

The Lie algebra forms a group under the operation

[·, ·] : g× g −→ g
(ξ, ω) 7−→ [ξ, ω] =: adξ ω

This operation is called the commutator and can be defined as

[ξ, ω] = ξ̃ ◦ ω̃ − ω̃ ◦ ξ̃
∣∣∣∣
e

,

where ξ̃ and ω̃ are the vector fields generated by ξ and ω using left-invariance. Although
this definition explains the name commutator, it does not elucidate why we should call
the commutator by this weird name “ad” (which is short for adjoint).

To explain how we got to the ad operator, we will need to build up slowly. First we
define the conjugation operator Ag : G → G, x 7→ gxg−1 and from there we can get to
the ad by first definining the Ad operator. Importantly, the conjugation operator sends
the identity element to itself. Thus its pushforward defines a map from g to g. This
pushfoward is the operator called Adg := Ag∗. However, we can now keep the input
fixed and vary the parameter g. Doing this, we can again define a pushforward, this
time the pushforward we obtain is ad which is a linear operator on the lie algebra which
depends lineary on its parameter. The map Φ : g → GL(g), ξ 7→ adξ is called the adjoint
representation of the Lie algebra.

Theorem 4.3. The commutator satisfies the following properties [1], [2]

i) anticommutativity [ξ, ω] = −[ω, ξ];

ii) bilinearity, [aξ + bω, η] = a[ξ, η] + b[ω, η] (this is equivalent to bilinearity only if
anticommutativity is already known);

iii) Jacobi identity [ξ, [ω, η]] + [ω, [η, ξ]] + [η, [ξ, ω]] = 0.

Besides the adjoint representation, we also have the coadjoint representation which is
given by the map Θ : g → GL(g∗), ξ 7→ ad∗

ξ , which is defined by the fact that it satisfies
the following relation. Let ξ, η ∈ g and a ∈ g∗. Then

a(adξ η) = (ad∗
ξ a)(η).

This representation is particularly useful because many times in physics, velocities are
represented by elements of the Lie algebra whereas momenta are elements of the dual
to the Lie algebra. Thus, it will often occur that we need to apply some sort of adjoint
action to the dual of the Lie algebra.
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Example 4.4. The Lie Algebra of SO(N) consists of antisymmetric matrices. One can
see this by differentiating the expression

R(t)TR(t) = I

at t = 0, for a path R : [−ϵ, ϵ] → SO(N) with R(0) = I. The derivative is found with a
product rule and equals

ṘT (t)R(t) +RT (t)Ṙ(t)

∣∣∣∣
t=0

= ṘT (t) + Ṙ(t)

∣∣∣∣
t=0

= 0.

This is indeed exactly the expression satisfied by an antisymmetric matrix. In the specific
case of SO(3) we can even find precisely what the matrix will look like. For a rotation
about the unit vector û = (ux, uy, uz) by an angle φ the matrix is given by Rodgrigues’
rotation formula [14]

R = I + sin(φ)

 0 −uz uy

uz 0 −ux

−uy ux 0

+ sin2(φ/2)

 0 −uz uy

uz 0 −ux

−uy ux 0


2

.

For the Lie algebra we care only about infinitesimal rotations so the sin2(φ/2) will vanish.
This gives us not only that the Lie algebra consists of antisymmetric matrices but also
that the Lie algebra can be represented as

R⊗ S2 ∼= R3.

If this notation is unfamiliar, the S2 represents the unit sphere which contains all unit
vectors and the R represents a scaling factor essentially for how rapidly space is rotating.
We need to use the tensor product (⊗) rather than the Cartesian product (×) specifically
because elements of the form (0, û) and (0, v̂) should be the same (when the object is not
rotating, it does not matter about what axis this rotation is happening).

Using the matrix representation we can find explicity the commutator. Denote the
matrix elements of the Lie algebra induced by the vectors u and v as U and V . Note that
these need no longer be unit vectors as their length now represents the angular speed.

[U, V ] =

 0 −uz uy

uz 0 −ux

−uy ux 0


 0 −vz vy

vz 0 −vx
−vy vx 0

−

 0 −vz vy
vz 0 −vx
−vy vx 0


 0 −uz uy

uz 0 −ux

−uy ux 0


=

−uzvz − uyvy −uzvx uzvx
uxvy −uzvz − uxvx uzvy
uxvz uyvz −uyvy − uxvx


−

−vzuz − vyuy −vzux vzux

vxuy −vzuz − vxux vzuy

vxuz vyuz −vyuy − vxux
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=

 0 vzux − uzvx uzvx − vzux

uxvy − vxuy 0 uzvy − vzuy

uxvz − vxuz uyvz − vyuz 0


which is in fact exactly the element in the matrix representation of the Lie algebra that
corresponds to the element u × v in the vector representation. Thus, the adjoint action
on so(3) in its vector representation can be written explicitly

adu v = u× v.

From this we can immediately obtain also the coadjoint ad∗ which should satisfy

u · adv w = ad∗
v u ·w

which is satisfied specifically by ad∗
v(·) = −v × (·) since we know from their geometric

interpretations as a parallelapiped that

u · (v ×w) = −(v × u) ·w

4.2 The exp map

In general, the exponential function shows up when solving an equation of the sort

ẋ = kx;

the solution to which is
x(t) = x(0)ekt.

Similarly, on a manifold, we denote the solution to the equation γ̇ = X(γ(t)) as
etXγ(0). This means that etX is equal to the flow of vector field Φt. In the literature, you
may find the flow of a single point referred to as an integral curve of the vector field X.

Definition 4.5. For any vector field X : M → TM , the integral curve is defined to be
a curve γ : [a, b] → M which satisfies the property that γ̇(t) = X(γ(t)) for all t ∈ [a, b].
Notice that although these curves can be defined for any vector field, the vector field
by our definition can only depend on time if there is an explicit time coordinate in our
manifold. In this case we would want the vector field to have a constant component in
the time-direction.

In the case of a Lie group, this map from vector fields to functions can be turned into
a map from elements of the Lie algebra to elements of the Lie group. To do this, we must
first introduce the concept of left (and right) invariant vector fields.

Definition 4.6. A vector field is left (respectively right) invariant if X(gh) = Lg∗X(h)
(respectively X(hg) = Rg∗X(h)).
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Using the previous definition, we can reconstruct the entire vector field if even one
vector is given. In particular, we can construct an entire vector field using just an element
from the Lie algebra. For example, on the Lie group Rn the vector field generated by
(0, ξ) ∈ g is X : g 7→ (g, ξ).

Definition 4.7. The exponential of an element X in the Lie algebra is defined to be the
exponential of the vector field generated using X by the condition of left-invariance.

Theorem 4.8. For every element X of the Lie algebra g, there exists an element γ of the
Lie group G so that

eX = Lγ.

Proof. Denote by X̃ the vector field generated from X using left-invariance and let h ∈ g.
So

eXh = eX̃h = Φ1(h),

where Φt is the flow of X̃. Let χ(t) := Rh−1Φt(h) so that χ(0) = 0. The equation satisfied
by χ̇ is

χ̇ =
d

dt

(
Rh−1Φt(h)

)
= Rh−1∗

d

dt

(
Φt(h)

)
= Rh−1∗X̃(Φt(h))

= X̃(Rh−1Φt(h))

= X̃(χ).

This differential equation is independent of h. So we may choose γ := χ(1) to obtain that
indeed eXh = Rhγ = Lγh for all h ∈ G.
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5 The classical approach to a rigid body
In classical mechanics, the motion of a rigid body can be described by the Euler equations.
These equations govern the rotational motion of the body and are derived based on
Newton’s laws of motion and the principles of rotational dynamics. In this derivation, we
assume a rigid body with a fixed axis of rotation.

Figure 3: A 2-dimensional rigid body rotates
about a fixed point, the pivot. The configuration
can be indicated by a parameter θ [15].

Figure 4: In 3 dimensions, a rigid
body’s rotation is defined by the an-
gular velocity vector. The angu-
lar velocity is turned into a rotation
with the right-hand rule [16].

Consider a 3-dimensional rigid body rotating about a fixed axis passing through the
origin. Let’s denote the density function of the rigid body by ρ and the angular velocity
vector of the body which points in the direction around which the object is rotating ω.
It has magnitude ∥ω∥ := d

dt
θ. See Figure 4.

The velocity of any one part of mass in the body is v = ω × r. This gives an angular
momentum

L =

ˆ
r× vdm

=

˚
ρ(r)r× (ω × r)dV

If we write this in a basis, r = (rx, ry, rz), and ω = (ωx, ωy, ωz), this integrand becomes

r× (ω × r) =

rx
ry
rz

×

rzωy − ryωz

rxωz − rzωx

ryωx − rxωy
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=

−ryrxωy + r2yωx + r2zωx − rzrxωz

−rzryωz + r2zωy + r2xωy − rxryωx

−rxrzωx + r2xωz + r2yωz − ryrzωy


=

r2y + r2z −ryrx −rzrx
−rxry r2x + r2z −rzry
−rxrz −ryrz r2x + r2y

ω.

For this reason, we can use the inertia tensor

I =

˚
ρ(r)

r2y + r2z −ryrx −rzrx
−rxry r2x + r2z −rzry
−rxrz −ryrz r2x + r2y

 dV,

which then has the property that
L = Iω.

The way we currently wrote this, the inertia tensor appears to be a matrix, however, this
is not really true. To be entirely precise, we should distinguish momenta from velocities,
as a velocity is a vector whereas a momentum is a covector (in indices this means that
velocity has a superscript whereas momentum has a subscript). In order for the moment of
inertia tensor to send a vector to a covector, it must be a (0, 2)-tensor5, not a (1, 1)-tensor
like a matrix is. This distinction will become important during the Lie group analysis,
but for now it suffices to treat both as regular vectors.

According to Newton’s second law for rotational motion, the net torque acting on the
body is equal to the rate of change of angular momentum. Mathematically, this can be
written as:

τ =
dL

dt
(3)

where τ is the total torque acting on the body, and L is the angular momentum of the
body. In the case of a free body, this external force must be equal to zero.

In the case of a free system, τ must be zero so the equation of motion becomes

d

dt
(Iω) = Iω̇ = 0,

where ω̇ represent the time derivatives of ω̇.
However, this will not hold. As the object rotates, the density function will change,

so, the notation ρ(r) has been incorrect from the start. Instead, we should have been
writing ρ(r, t). To resolve this issue, we observe the rigid body from a rotating reference
frame, which is rotating with the body. We could instead have chosen to let I vary in
time to obtain

İω + Iω̇ = 0,

5Or (2, 0)-tensor depending on what notation you prefer to follow. The point is, it turns a vector into
a covector, not a vector into a vector.

23



but this would only complicate matters further.
In the rotating reference frame we must deal with the issue that the basis unit vectors

are no longer constant in time. Instead, a basis vector û rotates at a rate

dû

dt
= ω × û.

Writing L = Lxx̂ + Lyŷ + Lz ẑ, where the components and unit vectors are given in
the rotating frame, the product rule lets one find the derivative of L.

dL

dt
=

d

dt

(
Lxx̂+ Lyŷ + Lz ẑ

)
= L̇xx̂+ L̇yŷ + L̇z ẑ + Lx(ω × x̂) + Ly(ω × ŷ) + Lz(ω × ẑ)

= L̇rot + ω × L,

where L̇rot refers to the change of the decomposition in the rotating reference frame. As
stated before, in the absence of external forces, this derivative should vanish and as such,
in the rotating frame, we obtain that

Iω̇ + ω × (Iω) = 0.

Solving this equation will tell us everything that we care to know about the motion of the
rigid body.
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6 The classical approach to an inviscid fluid
To describe a classical fluid system, there are two equations that may always be used [17].
These are the continuity equation and the Navier-Stokes equation, which are derived
from respectively conservation of mass and conservation of momentum. Let’s start with
deriving the continuity equation.

Consider a small volume element V within the fluid. The rate of change of mass within
this volume element is given by:

d

dt

˚
V

ρdV

where ρ is the fluid density. Mass is conserved so the change in mass must be equal
to the net mass flow into or out of the volume element through its boundaries. This can
be expressed as:

d

dt

˚
V

ρdV = −
‹

∂V

ρv · n̂dA

where v is the velocity vector of the fluid and n̂ is the outward unit normal vector
of the surface element dA. The negative sign accounts for the flow out of the volume
element. The time derivative can be moved into the integral as long as the density as a
function of time and position is sufficiently smooth (this would not be the case for example
at the surface of a river where the fluid’s density suddenly drops to zero). By applying
the divergence theorem, the right-hand side can be simplified too.

˚
V

∂ρ

∂t
dV = −

˚
V

∇ · (ρv)dV

The only way for this equality to hold with any volume V is if the two integrands are
the same. Thus,

∂ρ

∂t
= −∇ · (ρv).

This is the continuity equation [17]. Next, let’s consider the conservation of momen-
tum. It shows that at any moment, the change in mass at a specific point must be exactly
equal to the amount of mass moving away from or into that point. For the Navier-Stokes
equation we use the conservation of momentum. The rate of change of momentum within
a volume element V is given by:

d

dt

˚
V

ρvdV

As with matter, momentum must also be conserved, so the change in momentum of
the matter inside our volume is given by the amount of momentum crossing through the
boundaries of the volume.

d

dt

˚
V

ρvdV = −
‹

∂V

(ρv)(v · n̂)dA+

‹
∂V

fdA
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where f is the force pushing on the volume from the outside and all other variables are
defined as before. One could add a term for forces acting on the particles inside the
volume, but since such forces are absent in the free systems considered in this work, they
are also not included in the previous equation. Specifically for an inviscid fluid (which is
what we will be discussing in the rest of this thesis too), the force term is of a particularly
easy form.

f = −Pn̂,

where P is the pressure and n̂ the normal vector to the surface. In case the pressure in
the fluid is constant, this would result in no net force on the volume as the volume is
compressed equally from all sides. The divergence theorem can be used to write this as a
volume integral6 ‹

−Pn̂dV = −
˚

∇PdA.

To proceed any further, we must make the somewhat dubious step
‹

∂V

(ρv)(v · n̂)dA =

˚
V

∇ · (ρvv)dV.

This step is dubious since the product vv is not a defined object and neither is its
divergence. To make such a step mathematically rigorous, we would need to resort to the
tensor product however that is beyond what I intend to cover in this thesis [2]. Instead,
we may pretend that the product is a matrix vv := vvT . This allows for an expansion in
coordinates. The ith component of the vector ∇ · (ρvv) is given by

(
∇ · (ρvv)

)
i
=

n∑
j=1

∂

∂xj

(
ρvjvi

)
,

where n is the dimension of the fluid flow (for physically realizable systems, this will 1, 2,
or 3) and v = (v1, v2, . . . , vn). We can now write the equation as a single volume integral

˚
V

(
∂

∂t
(ρv) +∇ · ρvvT +∇P

)
dV = 0

Similar to the continuity equation, this integral can be equal to zero for all volumes
V only if the integrand is identically zero.

∂

∂t
(ρv) +∇ · (ρvvT ) = −∇P.

This is the Navier-Stokes equation for an inviscid fluid [17]. Now it is important to note
that the two equations we found - the continuity equation and the Navier-Stokes equation
- are not sufficient to solve for the number of variables that we have. The Navier-Stokes
equation is a vector equation so if we consider a fluid in n-dimensions, we have n + 1

6This might look like a generalization of the gradient theorem but really it is an application of the
divergence theorem with a vector field Pc for any constant vector c.
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equations in n + 2 unknowns. These unknowns are the velocity of the fluid, the density
of the fluid, and the pressure. To resolve this, assumptions are often made about a fluid.
One could assume that the fluid is incompressible which would give a constraint that the
velocity field remains divergence free which can be used to determine the pressure term
[17].
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7 Lie group analysis of a rigid body
The tools described before can be used to model a rigid body. The Euclidean group,
SE(N), describes all transformations that can be done that will keep the structure of the
rigid body intact. That is, it can be moved and it can be rotated. This motivates us to
describe the time-evolution of the rigid body as paths within the Euclidean group. As we
will later find, these paths are, in fact, geodesics under some special inner product [18].

Although cases with N > 3 cannot be realized in the real world - space is three-
dimensional after all - we will describe the motion of an N -dimensional rigid body [19].
This more general approach will reveal more of the underlying structure and is simulta-
neously more useful as a preparation for our later description of ideal fluids [18].

The group structure of SE(N) similar to that of the affine group except that instead
of any invertible matrix M , we only allow rotation matrices from the special orthogonal
group. The multiplication rule is

(R2, s2)(R1, s1) = (R2R1, R2s1 + s2) (4)

A rigid body can be seen as a density function ρ ∈ Ωn(Rn) on RN which represents
the mass-distribution of the rigid body in space. For mathematical convenience, a density
function should be used with a compact support. Since our rigid body lives in RN the
condition of compact support means nothing more than that the rigid body is finite in
size.

Let r(t) be the position vector at time t of the infinitesimal volume that at time 0 was
at r0, then the kinetic energy of the rigid body is given by

K(t) =
1

2

ˆ ∥∥ṙ(t)∥∥2 ρ.
The variable r0 does not appear explicit but one should consider both r(t) and ρ to be
functions of r0 which is the variable over which we integrate.

The kinetic energy equation before is essentially just an integral version of the well
known equation K(t) = 1

2
mṙ2. As described before, the configuration space of the rigid

body is SE(N) so r(t) = g(t)r0 for some path g(t) ∈ SE(N). Specifically since the body
is rigid, the curve g(t) is the same for all r regardless of which position r0 they started off
at. In fact, since r0 is a constant in time, ṙ(t) = ġ(t)r0. Therefore,

K(t) =
1

2

ˆ ∥∥ġ(t)r(0)∥∥2 ρ.
Now, using that the action of an element (R, s)v = Rv + s, we proceed to find

K(t) =
1

2

ˆ ∥∥∥Ṙr0 + ṡ
∥∥∥2 ρ =

1

2

ˆ [∥∥∥Ṙr0

∥∥∥2 + 2⟨Ṙr0, ṡ⟩+∥ṡ∥2
]
ρ,

where we have for now made time-dependence implicit.
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Using the standard inner product on Rn, ⟨v,u⟩ = vTu = Tr
(
uvT

)
, and that the Lie

algebra of SO(N), se(N) ∋ Ṙ consists of antisymmetric matrices,∥∥∥Ṙr0

∥∥∥2 = −Tr
(
Ṙr0r

T
0 Ṙ
)
,

and using linearity of the inner product,ˆ
⟨Ṙr0, ṡ⟩ρ =

〈
Ṙ

ˆ
r0ρ, ṡ

〉
.

Here, it can be seen that
´
r0ρ is the object’s center of mass, scaled by the total mass.

By choosing the initial coordinates in such a way that the center of mass coincides with
the origin, it can be made so that this inner product term vanishes. This coordinate
system is called the center of mass (COM) frame. Note that the center of mass is not
necessarily the origin of our frame at any time other than 0.

The remaining kinetic energy consists of two terms, one from the momentum, 1
2
∥ṡ∥2M

and one term from the angular momentum, −1
2
Tr
(
ṘJṘ

)
where M =

´
ρ and J =´

r0r
T
0 ρ.

As is usual at this point, we define an inertia operator A : se(N) → se∗(N). The inertia
operator must have the property A((Ω,v))((Ω,v)) = K(t) where (Ω,v) = L(R,s)−1∗(Ṙ, ṡ).
This is well-defined, since the metric on RN is invariant under the action of SE(N).

The fact that our energy can be so neatly divided into two parts motivates us to par-
tition this operator into two operators as well. Namely, AL and AP which are respectively
given by

AL((Ω,v))((Ω,v)) = −1

2
Tr(ΩJΩ) and AP((Ω,v))((Ω,v)) =

1

2
M∥v̇∥2 .

What do we get for all this work? A metric on SE(N). We define the inner product

⟨(Ṙ1, ṡ1), (Ṙ2, ṡ2)⟩A := Ag((Ṙ1, ṡ1))((Ṙ1, ṡ1))

:=
(
L∗
g−1ALg−1∗

)
((Ṙ1, ṡ1))((Ṙ1, ṡ1))

= A(Lg−1∗(Ṙ1, ṡ1))(Lg−1∗(Ṙ1, ṡ1))

= AL(Lg−1∗(Ṙ1, 0))(Lg−1∗(Ṙ2, ṡ2)) + AP(Lg−1∗(0, ṡ1))(Lg−1∗(Ṙ2, ṡ2))

=: AgL((Ṙ1, 0))((Ṙ2, ṡ2)) + AgP((0, ṡ1))((Ṙ2, ṡ2))

The splitting of this metric in second to last step is allowed because the pushforward of
left-multiplication does not mix translation and rotation components as can be verified
by a straightforward linearisation of Equation 4.

L(R1,s1)∗(Ṙ, ṡ) = (R1Ṙ, R1ṡ)

The beauty of this metric is the information it contains about the rigid body. The
energy7 of a path under this metric is the same as the action of the physical object using

7energy is the integral of the square of the norm E =
´
∥ẋ∥2 dt
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the Lagrangian L = K. Thus, the geodesic g(t) obtained in SE(N) will describe exactly
the time-evolution that the rigid body will undergo.

We could alternatively have chosen to use right multiplication when we extended our
inner-product with right multiplication but this would not have given us the same result.
Since left multiplication happens after everything else, it takes the velocity vectors with
it while rotating the body. Right multiplication would rotate the body without taking the
velocity vector with it. This is a problem since rotating the body can change the moment
of inertia and if we do not rotate the angular velocity in the same way as we rotated the
body, the energy can change due to this changed moment of inertia.

Fortunately, the metric we created is invariant under left multiplication. Through
Noether’s Theorem [18], [20], this invariance creates a conserved current of the form

J(g, ġ) = R∗
g

∂L
∂ġ

∣∣∣∣
g

= 2R∗
g⟨ġ, ·⟩ = 2R∗

gAg(ġ) := 2ms = constant. (5)

The subscript ‘s’ denotes that this is the momentum with respect to space. We can also
define a momentum with respect to the rigid body’s own coordinates. In this case we
would obtain mb := L∗

gAg(ġ) = Ad∗
g ms. Since ms is constant, the time derivative of mb

is then given by [21],
ṁb = ad∗

ωb
mb, (6)

with ωb := Lg−1∗ġ. This equation is known as the Euler-Arnold equation [21] and is one of
the most fundamental and valuable results of the are of mathematics that concerns itself
with Lie group analysis.

Although it might seem that we lost something by going from ms to mb - our equation
certainly looks more complicated, this was always the case and the complexity of the
equation was simply made more evident. This is because in terms of just the A operator,

mb = A(Lg−1∗ġ) whereas ms = Ad∗
g A(Lg−1∗ġ).

Thus, the complexity that is visible in Equation 6 was not absent in Equation 5, it was
merely well hidden.

The previous construction is not limited to the Lie group SE(N) and can be done for
any Lie group equipped with a left-invariant inner product. In fact, one can considers
the group of all rotations about a fixed point SO(3) and make the identifications with the
objects from the previous section, mb = Iω and ωb = ω. Then, the explicit form of the
coadjoint operator on so(3), which is negative the cross product, does indeed yield the
same equation as previously found

ṁb = −ωb ×mb.

It is possible to write this equation in terms of ωb without explicit dependence on mb

[1]. This will require the creation of a bilinear form precisely for this purpose.

Theorem 7.1. The time evolution of the angular velocity obeys the equation

dωb

dt
= B(ωb, ωb),
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where B is a bilinear operator defined by the equality

⟨a, [b, c]⟩ = ⟨B(a, b), c⟩.

Proof. For any vector a in the Lie algebra, we have〈
dωb

dt
, a

〉
=

(
A
dωb

dt
, c

)
=

(
dmb

dt
, c

)
=
(
ad∗

ωb
mb, c

)
=
(
mb, adωb

c
)

=
(
mb, [ωb, c]

)
=
〈
ωb, [ωb, a]

〉
=
〈
B(ωb, ωb), a

〉
.

Which holds for any a in the Lie algebra, so

dωb

dt
= B(ωb, ωb).

7.1 Preserved Quantities

From physics, we know of the existence of two constants of motion. They are the linear
momentum P, and the angular momentum L which is a bivector.

P :=

ˆ (
Ṙr0 + ṡ

)
dµ, and L :=

ˆ
(Rr0 + s) ∧

(
Ṙr0 + ṡ

)
dµ.

In the COM frame, they simplify to

P :=

ˆ
ṡdµ = M ṡ, and L :=

ˆ (
Rr0 ∧ Ṙr0 + s ∧ ṡ

)
dµ.

The second angular momentum term is the term that represents angular momentum of
a particle moving in an (affine) line that does not cross through the origin. We will
assume that s(0) = 0 so that s(t) =

´ t
0
ṡ(τ)dτ = ṡt. The anti-symmetric wedge product

s ∧ ṡ = ṡt ∧ ṡ will therefore vanish.
It is interesting to see how these can both be derived directly form the Euler-Arnold

equation. As stated before, the inertia operator can be separated in two distinct parts
relating to linear and angular momenta, respectively

d

dt

(
R∗

gAgL((Ṙ, 0)) +R∗
gAgP((0, ṡ))

)
= 0.
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These are conservation of angular momentum and linear momentum. We can proceed
further by using the statement that the pullback of right-multiplication does not mix
translations into rotations (although it does mix rotations into the translations!). Thus,
when we apply this operator to a pure rotation vector (Ω2, 0), we will find

d

dt

(
R∗

g

(
AgL((Ṙ, 0)) + AgP((0, ṡ))

)
(0,v)

)
=

d

dt

(
AgP((0, ṡ))(Rg(0,v))

)
= 0.

This holds for any v ∈ g, and kerAgP((0, ṡ)) ⊃
{
(Ṙ, ṡ) : Ṙ = 0

}
, so it must be the case

that
d

dt

(
R∗

gAgP((0, ṡ))
)
= 0 and separately

d

dt

(
R∗

gAgL((Ṙ, 0))
)
= 0.

These two equations are respectively equal to conservation of momentum and conservation
of angular momentum.

7.2 The mathematical essence of this analysis

From a mathematical point, many of the constructions above are more complicated than
necessary. The decomposition of our group into a rotation and translation part provides
additional physical intuition, but does not aid mathematical understanding. For this
reason, I provide here a very brief overview of exactly what steps were taken without any
relation to their physical meaning.

We began with a configuration space that formed a Lie group G. On the Lie algebra
of this Lie group, g, we defined an operator A : g → g∗ which was linear, positive definite,
and symmetric. For X, Y ∈ g and λ ∈ R,

1. A(λX + Y ) = λA(X) + A(Y ),

2. A(X)(X) ≥ 0,

3. A(X)(Y ) = A(Y )(X).

This operator provides an inner product on the Lie algebra by

⟨X, Y ⟩A = A(X)(Y ).

We then extended this inner product through left-invariance to obtain a metric on the en-
tire Lie group. We chose left-invariance because we knew from the physical interpretation
of our system that the metric should be left-invariant.

Theorem 7.2. When extending an inner product on the Lie algebra g of the Lie algebra
G through left-invariance, we obtain a metric on G.

⟨X, Y ⟩Ag
:= Ag(X)(Y ) := L∗

g−1ALg−1∗(x)(Y ) = A(Lg−1∗X)(Lg−1∗Y )

for all g ∈ G and X, Y ∈ TgG.
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Proof.

(i) The operator is linear in every tangent space. For g ∈ G, X, Y, Z ∈ TgG, and λ ∈ R,

Ag(λX + Y ) = L∗
g−1A(Lg−1∗(λX + Y ))

= L∗
g−1A(λLg−1∗X + Lg−1∗Y )

= λL∗
g−1A(Lg−1∗X) + L∗

g−1A(Lg−1∗Y )

= λAg(X) + Ag(Y ).

(ii) The operator is symmetric in every tangent space. For g ∈ G and X, Y ∈ TgG

Ag(X)(Y ) = A(Lg−1∗X)(Lg−1∗Y ) = A(Lg−1∗Y )(Lg−1∗X) = Ag(Y )(X).

(iii) The operator is positive definite (since we already showed linearity and symmetry,
we only have to show positive semidefiniteness)

Ag(X)(X) = A(Lg−1∗X)(Lg−1∗X) ≥ 0.

We then applied Noether’s theorem to find that the equation of motion for a geodesic
g(t) may be split into two first order equation.

ξ = Lγ−1∗γ̇ and
d

dt

∂A(ξ)(ξ)

∂ξ
= ad∗

ξ

∂A(ξ)(ξ)

∂ξ

Symmetry and linearity of the A operator gives that ∂A(ξ)(ξ)
∂ξ

= 2A(ξ) so that these equa-
tions may instead be written in terms of η := A(ξ) as

η = L∗
γ−1A(γ̇) and

dη

dt
= ad∗

A−1η η.

Finally, we defined the bilinear operator B by the equality

⟨[a, b], c⟩A = ⟨B(c, a), b⟩A

for all a, b, c ∈ g. Using Theorem 7.1 we then found that the Geodesic equation may be
written as the pair of equations

ξ = Lγ−1∗γ̇, and
dξ

dt
= B(ξ, ξ).

Instead of using Noether’s theorem, we could have also used the more specific Euler-
Poincaré reduction theorem. The Euler-Poincaré reduction theorem has the advantage
that it brings us immediately to the Euler-Arnold equation and is more readily generalized
to infinite dimensional manifolds.
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Theorem 7.3 (Euler-Poincaré Reduction Theorem (for a Matrix Lie group)). For any
left-invariant Lagrangian L whose restriction to the Lie algebra is given by ℓ. Then for
a path γ(t) ∈ C∞([a, b],M) with ξ(t) := Lγ(t)−1∗γ̇(t) and M a Matrix Lie group, the
following are equivalent [22], [23]

1. γ(t) satisfies the Euler–Lagrange equations for L on G;

2. γ(t) obeys the variational principle δ
´ b
a
L(γ̇)dt = 0 for all variations with fixed

endpoints;

3. ξ(t) obeys the variational principle δ
´ b
a
ℓ(ξ)dt = 0 for variations of the form δξ =

η̇ + [ξ, η] with η ∈ C∞([a, b], g) and η(a) = η(b) = 0.

4. ξ(t) satisfies d
dt

∂ℓ
∂ξ

= ad∗
ξ

∂ℓ
∂ξ

where ℓ is the restriction of the Lagrangian to the Lie
algebra.

Proof. The equivalence of the first and the second is immediate as this is how the Euler-
Lagrange equations are obtained.

The second to the third is quite technical. Since the Lagrangian is left-invariant,
ˆ b

a

L(γ̇)dt =

ˆ b

a

ℓ(ξ)dt

The proof then boils down to the claim that all variations of γ with fixed endpoints
correspond to variations of ξ of the form δξ = η̇ + [ξ, η]. If we take a smooth family of
curves γ(t, ε) and let ξ = Lγ−1∗

∂γ
∂t

and η = Lγ−1∗
∂γ
∂ε

, then we would need

Lemma 7.4. For ξ = Lγ−1∗
∂γ
∂t

and η = Lγ−1∗
∂γ
∂ε

with γ(t, ε) some smooth family of curves
with fixed endpoints on a matrix Lie group.

∂ξ

∂ε
=

∂η

∂t
+ [ξ, η] ,

This lemma will be proved right after the current proof is complete. The equivalence
of the third and fourth follows through integration by parts

δ

ˆ b

a

ℓ(ξ)dt = δ

ˆ b

a

∂ℓ

∂ξ
dt

= δ

ˆ b

a

∂ℓ

∂ξ

(
η̇ + [ξ, η]

)
dt

= δ

ˆ b

a

− d

dt

∂ℓ

∂ξ
η + ad∗

ξ

(
∂ℓ

∂ξ

)
ηdt = 0.

so
d

dt

∂ℓ

∂ξ
η = ad∗

ξ

(
∂ℓ

∂ξ

)
.
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Proof of Lemma 7.4. In the case of a Matrix Lie group such as SE(N) or SO(N), this can
be derived using the product rule

∂

∂ε

(
g−1∂g

∂t

)
= −g−1∂g

∂ε
g−1∂g

∂t
+ g−1 ∂2g

∂ε∂t

= −ηξ + ξη − ξη + g−1 ∂2g

∂ε∂t

= [ξ, η] +
∂η

∂t
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8 Lie group analysis of other physical systems
It turns out that the rigid body is far from being the only physical system that can
be described through a Lie group analysis. One notable example is the flow of an
ideal(incompressible and inviscid) fluid in a manifold M which is described by geodesics
in the space of volume preserving diffeomorphisms of that manifold to itself, Diffµ(M).
This example will be discussed in more detail in the next section. In [1] and in Table 1,
many more systems are given.

Table 1: This table, adapted from [1] shows a list of relevant physical equations that may
be derived as a geodesic equation, along with the Lie group and metric that can be used
to derive the equation.

Lie group metric Euler-Arnold equation
SO(N) A(Ω)(Ω) Euler top (a rigid body with a fixed point)
SE(N) A((Ω,v))((Ω,v)) rigid body moving in a body in a fluid
Diff(S1) L2 Hopf/inviscid Burgers’ equation
Diff(S1) Ḣ1/2 Constantin–Lax–Majda-type equation
Virasoro L2 Korteweg de Vries equation
Virasoro H1 Camassa–Holm equation
Virasoro Ḣ1 Hunter–Saxton (or Dym) equation
Diffµ(M) L2 Euler ideal fluid
Diffµ(M) H1 averaged Euler flow
Symppω(M) L2 symplectic fluid
Diff(M) L2 EPDiff equation
Diffµ(M)⋊ Vectµ(M) L2 ⊕ L2 Magnetohydrodynamics
C∞(S1, SO(3)) H−1 Heisenberg magnetic chain

The analysis of these systems is simplified by the fact that Theorem 7.3 from the
analysis of the rigid body does in fact hold for all systems with a left-invariant metric.
The proof is readily generalized using a result from [24]

Theorem 8.1 (Euler-Poincaré reduction theorem). Consider a left-invariant Lagrangian
L whose restriction to the Lie algebra is given by ℓ. Then for a path γ(t) ∈ C∞([a, b],M)
with ξ(t) := Lγ(t)−1∗γ̇(t) and M any Lie group, the following are equivalent [22], [23]

1. γ(t) satisfies the Euler-Lagrange equations for L on G;

2. ξ(t) satisfies d
dt

∂ℓ
∂ξ

= ad∗
ξ

∂ℓ
∂ξ

.

Proof. The proof is extremely similar to the proof of the Euler-Poincaré reduction theorem
for a matrix Lie group. To generalize the proof to non-matrix Lie groups, we must prove
Lemma 7.4 in the case of an arbitrary Lie group. For this, we use the shorthand notation
provided by the logarithmic derivative. The left logarithmic derivative is given by [23]

δlγ = Lγ−1(t)∗dγ,
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which relates the the derivative of a logarithm

d

dt
ln
(
f(t)

)
=

1

f(t)
f ′(t).

In case γ is a function of t and ε, this means

δlγ = ξdt+ ηdε,

where η and ξ are defined the same as in Theorem 7.3. Now, it is the case that [23], [24]

dδlf +
[
δlf, δlf

]∧
= 0 (7)

for all f ∈ C∞([a, b],M). Here [·, ·]∧ denotes the exterior product induced by the com-
mutator. It is defined by

[α, β]∧ (u, v) =
1

2

([
α(u), β(v)

]
−
[
α(v), β(u)

])
,

for u, v ∈ g and α, β ∈ Ω1(U) with U some open set containing the identity element.
If we now apply this vanishing 2-form from equation 7 to the basis elements ( ∂

∂t
, ∂
∂ε
),

we obtain

0 =

[(
∂ξ

∂ε
− ∂η

∂t

)
dt ∧ dε+ [ξdt+ ηdε, ξdt+ ηdε]∧

](
∂

∂ε
,
∂

∂t

)
=

∂ξ

∂ε
− ∂η

∂t
+

1

2

(
[η, ξ]− [ξ, η]

)
,

which is indeed equivalent to
∂ξ

∂ε
=

∂η

∂t
+ [ξ, η] .
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9 Lie groups for the analysis of fluids
When analysing fluid flows, we will be in all but a few cases dealing with groups of
diffeomorphisms. When the flow is contained within a manifold M , the group of diffeo-
morphisms of that manifold Diff(M) is defined as follows{

F ∈ C∞(M,M) : F is a bijection and F−1 ∈ C∞(M,M)
}
,

with composition as the group rule. The diffeomorphisms should also be continuously
connected to the identity element, so that for all F ∈ Diff(M) there is some smooth flow
on the manifold g(t, x) and some T ∈ R so that g(0, x) = x and g(T, x) = F (x). For
example, if we take diffeomorphisms of (0, 1) ⊂ Rn, the diffeomorhism x 7→ 1 − x is not
included.

Within this diffeomporphism group, there are two important subgroups. The subgroup
of volume-preserving diffeomorphisms and the subgroup of symplectomorphisms. The
subgroup of volume preserving diffeomorphisms is written Diffµ(M) where µ is the volume
form that is preserved. This group has the additional condition that

|det dFx| = 1,

where det dFx is defined to be the volume of a unit parallelapiped after it has been trans-
formed by the map dFx. That is, take some set of vectors e1, . . . , en so that µ(e1, . . . , en) ̸=
0, then

det(dFx) =
µ(dFx(e1), . . . , dFx(en))

µ(e1, . . . , en)
.

The choice of ei does not matter here since in an n-dimensional vector space, any n
linearly independent vectors can be written as a linear combination of any other n linearly
independent vectors.

The Lie algebra of the diffeomorphism group consists of smooth vector fields on M ,
X(M). This may be seen to hold because for any path g(t, ·) ∈ Diff(M) with g(0, x) = x,
∂
∂t

∣∣∣
t=0

g(t, x) ∈ Tg(0,x)M = TxM . The condition that g(t, ·) ∈ C∞(M,M) is what gives us
the additional constraint that vector fields in the Lie algebra must be smooth [1].

When restricting to the volume-preserving diffeomorphisms, the Lie algebra will be
restricted to those vector fields whose divergence vanishes. In case the manifold has a
boundary, the vector fields should be parallel to that boundary [1].

The subgroup of symplectomorphisms is the subgroup that preserves a symplectic
form ω ∈ Ω2(M).

9.1 The Virasoro group

The Virasoro group is the ‘central universal extension’ of Diff(S1). It can be written as a
semidirect product

Vir = Diff(S1)⋊R.
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The composition rule is given by

(f, a) ◦ (g, b) =
(
f ◦ g, a+ b+

ˆ
s1
log
(
f(g(x))

)′
d
(
log g′(x)

))
,

where the logarithm is defined as the inverse of the exp map and we use an identification
between the Lie algebra of S1 and the real numbers. The choice of which identification
allows one to add an arbitrary constant into the equation but we will use the identification
such that ker(exp) = {2πk : k ∈ Z}.

The Lie algebra of the virasoro group is then a semidirect product between the Lie
algebra os Diff(S1) and R. The Lie algebra of Diff(S1) is the vector fields on S1 so

vir = Vect(S1)⊕ R,

with the commutation operation[
(f

∂

∂x
, a), (g

∂

∂x
, b)

]
=

((
f ′ · g − g′ · f

) ∂

∂x
,

ˆ
S1

f ′ · g′′dx
)
,

where · denotes pointwise multiplication.

9.2 The commutator on a diffeomorphism group

The commutator on the lie algebra of vector fields is taken to be negative the Poisson
bracket [1]. This can be written in coordinates as

[X, Y ]i = −{X, Y }i = −
∑
j

(
Xj

∂Yi

∂xj
− Yj

∂xi

∂xj

)
=
∑
j

(
Yj

∂xi

∂xj
−Xj

∂Yi

∂xj

)
.

In particular the case of a one-dimensional fluid flow can be described by the group
Diff(S1). In this case the commutator simplifies to be

[X, Y ] = Y
∂X

∂y
−X

∂Y

∂x
.

Although the commutator is important, the Euler-Arnold equation is written in terms
of ad∗, not ad. The expression for ad∗ can be found by first finding the expression of Ad.
The right-invariance of the metric gives reason to identify all the tangent spaces of the
metric with vector fields. For X ∈ Tx Diff(M) and Y ∈ Ty Diff(M), we write

X ∼ Y ⇐⇒ ∃g ∈ Diff(M) : X = Rg∗Y.

This allows us to associate a unique element of Vect(M) to every element in T Diff(M). In
addition, we obtain that when we define equivalence in this way, the Ad operator becomes

Ad∗
g η ∼ L∗

gη.

This means that the ad operator is given by

ad∗
ξ η ∼ Lξη,

where Lξ is the Lie derivative.
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10 Metrics for the analysis of fluids
There are several possible metrics on the space of diffeomorphisms. They all differ from
the metric used for the analysis of a rigid body in one critical way. Instead of being
left-invariant, they are right invariant. The difference between left- and right-invariance
is essentially whether the operation is applied before or after the time-evolution of the
system. Right-invariance, can then be interpreted as a relabeling of the particles in the
system done before the system’s time-evolution takes place. See Figure 5.

Figure 5: The action of a diffeomorphism permutes the position of all points (particles) in
the fluid. When done through right multiplication i.e. before the fluid flows, this amounts
to a mere relabeling of particles which does not change the Lagrangian of the system. The
same is not true in case of left multiplication since the pushfoward of left-multiplication
will also move around velocity vectors and possibly stretch or contract them.

One could mistakenly presume that the fact that these groups are right and not left-
invariant means Theorem 8.1 is no longer useful. Fortunately, a simple change in definition
of the group operator can turn a right-invariant metric into a left-invariant metric. Instead
of endowing the manifold with ◦ : (g, h) 7→ g◦h, we can use the operator ∗ : (g, h) 7→ h◦g.
Under the operator ∗, the manifold remains a Lie group and as such all theorems for
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left-invariant metrices can be applied in the right-invariant case except for the need to
interchange left and right multiplications in the definitions of all terms.

The exchange of left and right multiplication has one crucial effect on the Euler-Arnold
equation. This is that the adjoint operator Adg under the ◦ operator becomes the Adg−1

under the ∗ operator. In the Euler-Arnold equation this means that for a right-invariant
metric we have

η = L∗
γ−1 γ̇,

dη

dt
= − ad∗

A−1η η,

and correspondingly

ξ = L∗
γ−1 γ̇,

dξ

dt
= −B(ξ, ξ),

with B defined the same as in Theorem 7.1. The L2 metric is perhaps the most intuitive
metric to place on a diffeomorphism group. As discussed before, the Lie algebra of the
(volume-preserving) diffeomorphism group consists of (divergence-free) vector fields. One
can define the inner product on such a vector field by the equation

⟨V, V ⟩ =
ˆ
M

(V · V )µ.

For a review of how such integrals on manifolds are defined, see [2]. This metric encapsu-
lates in a very tangible way the energy stored in the fluid flow. The volume form µ may
be treated as the density at a point whilst V · V is the square velocity of the flow at that
point.

The L2 metric may also be called the (0,2)-Sobolev norm W 0,2. A Sobolev norm is
defined by [4]

∥f∥Wk,p =

 k∑
i=0

ˆ
M

∥∥∥∇if(x)
∥∥∥p dx

1/p

.

In the special case where p = 2, the norm is induced by a metric which is called Hk.
Confusingly, this Hk metric is also called the Sobolev metric. The H1 metric can for
example be used on the Virasoro group to obtain the Camassa Holm equation, and the
well known L2 metric is equal to the H0 metric [4].

It is also possible to define a so-called degenerate Sobolev metric Ḣ2. This metric is
defined by

∥f∥Ḣs =

(ˆ
M

∥∥∇sf(x)
∥∥2 dx)1/2

.

In case 0 < s < 1 , this is defined through fractional laplacians ∇sf = (−∆)s/2f , which
are themselves defined through the Fourier series [25].

F((−∆)s/2f)(ξ) = |ξ|s F(f)(ξ).
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10.1 The Hopf or inviscid Burgers’ equation

10.1.1 History

Burgers’ equation was initially proposed by Henry Bateman in 1915. He introduced the
equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2

with 0 < x < L, ν ∈ R+ and 0 < t < T . The equation was later used by Burgers to
mathematically model turbulent fluids. Later on, both Eberhard Hopf and Julian David
Cole found a substitution u(x, t) = −2ν θx

θ
by which Burgers’ equation could be simplified

into a heat equation in θ [26]. When deriving this equation from a Lie theoretic approach,
the viscosity term ν ∂2u

∂x2 does not appear.
Without the viscosity term, the equation is known as the Hopf equation or the inviscid

Burgers’ equation. The equation can be solved by the method of characteristics. Provided
initial conditions u(0, x) = f(x), the method of characteristics yields the implicit solution

u(t, x) = f(x− u(t, x)t).

However, this solution may not always be defined for arbitrary time. It is possible for
characteristic curves to cross in a process known as shock formation. Figure 6 shows a
numeric simulation of the Hopf equation that displays shock formation around t = 250.

Figure 6: A solution to the inviscid Burgers’ equation. The initial condition is u(0, x) =
e−x2 and simulation is performed with a timestep of 0.001. At t = 250 we see the beginning
of a shock wave around x = 1.5.
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10.1.2 Lie group derivation

There is a very fortunate result that the Lie group of diffeomorphisms from a locally flat
manifold to itself is locally flat under the L2 metric [1], [27]. For this reason, the geodesic
equations on such Lie groups are extremely simple. The only requirement is that the
acceleration of any curve vanishes [1]

∂2g(t, x)

∂t2
= 0.

Let g(t, x) be a geodesic in Diff(S1) and let v(t, x) = ∂
∂t
g(t, g(t, x)). Then the geodesic

equation reads
∂2g(t, x)

∂t2
=

∂v

∂t
+ v

∂v

∂x
= 0.

Had we started from the Euler-Arnold equation, we would have obtained a slightly
different (but equivalent) result.

⟨a, [b, c]⟩ = −⟨a, {b, c}⟩

= −
ˆ
S1

(
ab

∂c

∂x
− a

∂b

∂x
c

)
µ

= −
ˆ
S1

(
−∂a

∂x
bc− a

∂b

∂x
c− a

∂b

∂x
c

)
µ

=

ˆ
S1

(
∂a

∂x
bc+ a

∂b

∂x
c+ a

∂b

∂x
c

)
µ

=

ˆ
S1

(
∂a

∂x
b+ a

∂b

∂x
+ a

∂b

∂x

)
cµ

so that
B(v, v) =

∂v

∂x
v + 2v

∂v

∂x
= 3v

∂v

∂x
.

As the metric for a fluid is right-invariant, the equation of motion is then

∂v

∂t
= −3v

∂v

∂x
.

This differs by a factor 3 from the original geodesic equation but this difference may be
reconciled by rescaling time. Do note that we may rescale time in this equation, but we
should not simultaneously rescale time in the equation

v =
∂

∂t
g(t, g(t, x)).
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10.2 The Euler equation

10.2.1 History

The Euler equation is one of the oldest equations used in Fluid dynamics. The equations
were introduced by Leonhard Euler in the 18th century. Much of Euler’s work was inspired
by earlier work done by the Bernoullis [28]. Euler’s equation describes the behavior of an
ideal fluid which means it is both incompressible and inviscid.

10.2.2 Lie group derivation

Like in the derivation of the Hopf equation, we use that Diff(M) is locally flat under the L2

metric. In this case, however, we are concerned with the subgroup Diffµ(M). The fact that
we are dealing with a subgroup introduces a slight complication. The acceleration ∂2

ttg
need no longer vanish! Instead, the acceleration must be orthogonal to the subgroup [1].
This can be interpreted as a constraining force that keeps the geodesic within Diffµ(M).
We thus have

⟨∂2
ttg, u⟩ = 0,

for all divergence-free vector fields u. More precise information on the curvature of
Diffµ(M) can be found in [29].

Lemma 10.1. If for some 1-form α ∈ Ω1(M), α(u) = 0 for all divergence free vector
fields u on M , then α is the differential of a zero form (scalar field) [1].

Proof. Consider any closed curve γ and let uε be supported on a torus Tε around this
curve with radius ε. Denote by Φ the flux of this vector field through any cross-section
of the torus. The flux is necessarily constant due to the divergence free-ness of the vector
field. As ε goes to zero,

lim
ε→0

ˆ
M

α(uϵ)µ = lim
ε→0

ˆ
T

α(u) = Φ

ˆ
γ

α = 0.

Since we are free to choose Φ to have a nonzero value, we obtain that the integral of α
vanishes over all closed curves. Thus, α is an exact 1-form.

Therefore, it must be the case that
(
∂2
ttg
)♭ is an exact 1-form.(

∂2g

∂t2

)♭

= −dP,

where ♭ is the musical isomorphism8 between the 1-forms and the vector fields, whose
inverse is ♯. Rather neatly then, we may apply the sharp operator to both sides of this

8This isomorphism sends a vector v to a covector ♭v = ⟨v, ·⟩ and may thus be seen to be essentially a
contraction with the metric.
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equation and use the identity ∇ = ♯d to find that ∂2
ttg must be a gradient field −∇P [2].

Using the chain rule to work out ∂2
ttg, Euler’s equation is derived [21]

∂v

∂t
+∇vv = −∇P, ∇ · v = 0,

where ∇ is the Levi-Cevita connection. Notice that P is not constant in time but rather
varies as is given by the condition that ∇ · v must remain 0.

10.3 Conserved quantities

The flow of an ideal fluid has several conserved quantities. The number of conserved
quantities differs based on the dimension of the manifold. One example of a conserved
quantity for an ideal fluid is the vorticity. The vorticity ξ is given by

ξ = du,

where u = v♭ is the dual vector field associated to the velocity vector field. As discussed
in Section 9.2, the time derivative of u is given by

∂u

∂t
= Lvu.

The exterior derivative will commute with the time-derivative for smooth vector fields, so
by Cartan’s magic formula [2],

∂ξ

∂t
= dLvu = d (ivdu+ divu) (8)

The exterior derivative is nilpotent so the second term will vanish, and in the first term
we may replace du with ξ.

∂ξ

∂t
= divξ, (9)

which is in fact equal to the Lie derivative again as the second part of Cartan’s magic
formula ivd will vanish when applied to the vorticity which is an exact 2-form.

∂ξ

∂t
= Lvξ. (10)

This equation means that the vorticity is essentially frozen into the fluid.
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11 Conclusion
In conclusion, the research presented in this thesis provides an interesting new way of
viewing the behavior of free physical systems. It provides a comprehensive, albeit brief
review of the mathematical concepts required to understand the Euler-Poincaré reduction
theorem, the Euler-Arnold equation and the resulting symmetries that can be found.

The method of Lie group analysis allowed for a unification of two different areas of
physics - rigid bodies and fluid flow - by exploiting a similarity in their Lagrangian and the
symmetries of these systems. Namely, both systems have a Lagrangian that depends solely
on the time-derivative of the system’s configuration. In the case of the N -dimensional
rigid body this configuration space was SE(N) or SO(N) when the rigid body had a single
fixed point. In the case of fluids that filled a container M , this configuration space was
Diff(M), the space of diffeomorphisms from M to itself.

The fact that these systems had a Lagrangian depending solely on the time derivative
of the configuration meant that their Lagrangian could be represented as a quadratic form
on the tangent space to these configuration spaces. This quadratic form could then be
written as a metric which allowed for the conclusion that - under a certain metric - the
equation of motion of the physical systems would be the equation of a geodesic on these
configuration spaces.

The symmetries of both systems were discussed. A rigid body had a left-invariant met-
ric which could be understood as a Lagrangian that would not change when one switched
to a different reference frame. In contrast, a fluid had a right-invariant metric which
could be understood as a Lagrangian that would not change when one gave a different
labeling to the particles. Using the Euler-Poincaré theorem, the geodesic equation for a
left-invariant metric was reduced from a second order equation to a first order equation
and by reversing the order of the group operation, this reduced equation could also be
used to describe fluids. In the case of a rigid body with an inertia operator A : g → g∗

(defined so that A(ω)(ξ) = ⟨ω, ξ⟩ is the bilinear form induced by the Lagrangian) which
followed a path γ : [a, b] → SE(N) (or SO(N) respectively), the angular velocity was
defined as ω(t) := Lγ(t)−1∗γ̇(t) and the Euler-Arnold equation was found to be

∂A(ω)

∂t
= ad∗

ω A(ω).

For a fluid the angular velocity was similarly defined and when the fluid had a velocity
field v, the Euler-Arnold equation was found to be

∂A(v)

∂t
= ad∗

v A(v).

Finally, several systems that could be described with Lie group analysis using different
groups of metric were mentioned and it was explained which metric and group were needed
to arrive at each of the different physical equations. Not all these systems were described
but in particular the Hopf/inviscid Burgers’ equation and the Euler ideal flow equation
were, their behavior was derived and shown to indeed follow from the framework provided
by Lie group analysis.

46



12 References
[1] V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics. Springer

International Publishing, 2021. doi: 10.1007/978- 3- 030- 74278- 2. [Online].
Available: https://doi.org/10.1007/978-3-030-74278-2.

[2] M. Seri, Analysis on manifolds, 2023.

[3] A. I. Shnirel’man, “ON THE GEOMETRY OF THE GROUP OF DIFFEOMOR-
PHISMS AND THE DYNAMICS OF AN IDEAL INCOMPRESSIBLE FLUID,”
Mathematics of the USSR-Sbornik, vol. 56, no. 1, pp. 79–105, Feb. 1987. doi:
10 . 1070 / sm1987v056n01abeh003025. [Online]. Available: https : / / doi . org /
10.1070/sm1987v056n01abeh003025.

[4] J. Penteker, Lecture notes sobolev spaces, 2015.

[5] S. R. Garcia and R. A. Horn, A Second Course in Linear Algebra. Cambridge Uni-
versity Press, May 2017. doi: 10.1017/9781316218419. [Online]. Available: https:
//doi.org/10.1017/9781316218419.

[6] C. Wendl, Lecture notes on bundles and connections, 2008.

[7] R. van der Veen, Geometry, 2022.

[8] B. C. Hall, Lie Groups, Lie Algebras, and Representations. Springer International
Publishing, 2015. doi: 10.1007/978-3-319-13467-3. [Online]. Available: https:
//doi.org/10.1007/978-3-319-13467-3.

[9] W. Rossmann, Lie Groups (Oxford Graduate Texts in Mathematics), en. London,
England: Oxford University Press, Jun. 2006.

[10] J. Top and S. Müller, Group theory - lecture notes, University of Groningen, 2018.

[11] D. Boer, Symmetry in physics - lecture notes, University of Groningen, 2021.

[12] D. Boer, Lie groups in physics - lecture notes, University of Groningen, 2021.

[13] D. V. Georgievskii and M. V. Shamolin, “Generalized euler’s equations describing
the motion of a rigid body with a fixed point in Rn,” Doklady Physics, vol. 47, no. 4,
pp. 316–318, Apr. 2002. doi: 10.1134/1.1477889. [Online]. Available: https:
//doi.org/10.1134/1.1477889.

[14] International symposium on mathematical theory of networks and systems, en. 1984.

[15] [Online]. Available: https : / / phys . libretexts . org / Courses / University _
of_California_Davis/UCD%3A_Physics_9HA__Classical_Mechanics/5%3A_
Rotations_and_Rigid_Bodies/5.1%3A_Rotational_Kinematics.

[16] [Online]. Available: https://xaktly.com/AngularVelocity.html.

[17] P. Onck, Physics of fluids, 2023.

[18] B. Kolev, “Lie groups and mechanics: An introduction,” 2004. doi: 10.48550/
ARXIV.MATH-PH/0402052. [Online]. Available: https://arxiv.org/abs/math-
ph/0402052.

47

https://doi.org/10.1007/978-3-030-74278-2
https://doi.org/10.1007/978-3-030-74278-2
https://doi.org/10.1070/sm1987v056n01abeh003025
https://doi.org/10.1070/sm1987v056n01abeh003025
https://doi.org/10.1070/sm1987v056n01abeh003025
https://doi.org/10.1017/9781316218419
https://doi.org/10.1017/9781316218419
https://doi.org/10.1017/9781316218419
https://doi.org/10.1007/978-3-319-13467-3
https://doi.org/10.1007/978-3-319-13467-3
https://doi.org/10.1007/978-3-319-13467-3
https://doi.org/10.1134/1.1477889
https://doi.org/10.1134/1.1477889
https://doi.org/10.1134/1.1477889
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9HA__Classical_Mechanics/5%3A_Rotations_and_Rigid_Bodies/5.1%3A_Rotational_Kinematics
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9HA__Classical_Mechanics/5%3A_Rotations_and_Rigid_Bodies/5.1%3A_Rotational_Kinematics
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9HA__Classical_Mechanics/5%3A_Rotations_and_Rigid_Bodies/5.1%3A_Rotational_Kinematics
https://xaktly.com/AngularVelocity.html
https://doi.org/10.48550/ARXIV.MATH-PH/0402052
https://doi.org/10.48550/ARXIV.MATH-PH/0402052
https://arxiv.org/abs/math-ph/0402052
https://arxiv.org/abs/math-ph/0402052


[19] E. Celledoni, “An introduction to lie group methods for rigid body systems,” 2021.
[Online]. Available: https://hdl.handle.net/11250/2980270.

[20] J.-M. Souriau, Structure of dynamical systems (Progress in Mathematics), en, 1997th ed.
Secaucus, NJ: Birkhauser Boston, Sep. 1997.

[21] C. Vizman, “Geodesic equations on diffeomorphism groups,” 2008. doi: 10.48550/
ARXIV.0803.1678. [Online]. Available: https://arxiv.org/abs/0803.1678.

[22] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. Springer
New York, 1999. doi: 10.1007/978-0-387-21792-5. [Online]. Available: https:
//doi.org/10.1007/978-0-387-21792-5.

[23] A. Bloch, P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu, “The euler-poincaré
equations and double bracket dissipation,” Communications in Mathematical Physics,
vol. 175, no. 1, pp. 1–42, Jan. 1996. doi: 10.1007/bf02101622. [Online]. Available:
https://doi.org/10.1007/bf02101622.

[24] S. Sternberg, “Lectures on differential geometry. by s. sternberg,” The Mathematical
Gazette, vol. 50, no. 371, Feb. 1966. doi: 10.2307/3614853. [Online]. Available:
https://doi.org/10.2307/3614853.

[25] C. Bucur and E. Valdinoci, “An introduction to the fractional laplacian,” in Lecture
Notes of the Unione Matematica Italiana, Springer International Publishing, 2016,
pp. 7–37. doi: 10.1007/978- 3- 319- 28739- 3_2. [Online]. Available: https:
//doi.org/10.1007/978-3-319-28739-3_2.

[26] M. P. Bonkile, A. Awasthi, C. Lakshmi, V. Mukundan, and V. S. Aswin, “A system-
atic literature review of burgers’ equation with recent advances,” Pramana, vol. 90,
no. 6, Apr. 2018. doi: 10.1007/s12043-018-1559-4. [Online]. Available: https:
//doi.org/10.1007/s12043-018-1559-4.

[27] F. Otto, “THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE
POROUS MEDIUM EQUATION,” Communications in Partial Differential Equa-
tions, vol. 26, no. 1-2, pp. 101–174, Jan. 2001. doi: 10.1081/pde- 100002243.
[Online]. Available: https://doi.org/10.1081/pde-100002243.

[28] O. Darrigol, Worlds of Flow, en. London, England: Oxford University Press, Sep.
2005.

[29] G. Misiołek, “Stability of flows of ideal fluids and the geometry of the group of
diffeomorphisms,” Indiana University Mathematics Journal, vol. 42, no. 1, pp. 215–
235, 1993, issn: 00222518, 19435258. [Online]. Available: http://www.jstor.org/
stable/24897090 (visited on 07/08/2023).

48

https://hdl.handle.net/11250/2980270
https://doi.org/10.48550/ARXIV.0803.1678
https://doi.org/10.48550/ARXIV.0803.1678
https://arxiv.org/abs/0803.1678
https://doi.org/10.1007/978-0-387-21792-5
https://doi.org/10.1007/978-0-387-21792-5
https://doi.org/10.1007/978-0-387-21792-5
https://doi.org/10.1007/bf02101622
https://doi.org/10.1007/bf02101622
https://doi.org/10.2307/3614853
https://doi.org/10.2307/3614853
https://doi.org/10.1007/978-3-319-28739-3_2
https://doi.org/10.1007/978-3-319-28739-3_2
https://doi.org/10.1007/978-3-319-28739-3_2
https://doi.org/10.1007/s12043-018-1559-4
https://doi.org/10.1007/s12043-018-1559-4
https://doi.org/10.1007/s12043-018-1559-4
https://doi.org/10.1081/pde-100002243
https://doi.org/10.1081/pde-100002243
http://www.jstor.org/stable/24897090
http://www.jstor.org/stable/24897090

	Mathematical introduction
	Physical introduction
	Manifolds
	Vector fields
	The pushforward

	Index notation
	Alternating k-forms
	Riemannian manifolds
	The Connection
	Geodesics

	Lie groups
	Lie algebra
	The exp map

	The classical approach to a rigid body
	The classical approach to an inviscid fluid
	Lie group analysis of a rigid body
	Preserved Quantities
	The mathematical essence of this analysis

	Lie group analysis of other physical systems
	Lie groups for the analysis of fluids
	The Virasoro group
	The commutator on a diffeomorphism group

	Metrics for the analysis of fluids
	The Hopf or inviscid Burgers' equation
	History
	Lie group derivation

	The Euler equation
	History
	Lie group derivation

	Conserved quantities

	Conclusion
	References

