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Abstract

Gamma-hadron separation techniques are required for ground detections in the area of gamma-ray
astronomy. The aim of this work is to implement and compare different separation methods for
the next generation of detectors: the upcoming Cherenkov Telescope Array. Cut-based, logistic
regression and decision trees were implemented and tested on simulated CTA detections. Then, their
performance was compared, finding that decision trees outperform the rest of methods implemented,
reaching around 95% of rightly classified as gamma-events. An even higher performance of these
algorithms could be attained through further adjustments of the hyperparameters involved in their
implementation.
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1 Introduction

The exploration of fundamental physics in recent decades has been experimentally possible due to the
development of particle accelerators. These operate at high energies to study elementary particles,
as is the case of the remarkable Large Hadron Collider, where collisions can reach energies up to
13 TeV [1]. Particle accelerators on Earth are a very useful tool to study high energy processes
in a controlled environment. However, they have energy limitations bound to factors including
geographical considerations or restricted spatial extension [2]. This has set the focus on the detection
of extraterrestrial particles, as some of them have been detected at energies in the order of magnitude
of PeV and beyond [3] [4]. Thus, the study of high-energy particles upon their arrival on Earth is a
powerful tool for physics to probe extreme environments beyond terrestrial laboratories [5].

Gamma rays are of particular interest among the particles that arrive at Earth. They are photons
with energies of GeV and above. Their lack of electromagnetic charge means that they do not get
deflected by magnetic fields in their trajectory. Consequently, gamma rays point back to their source
and their detection can provide a faithful representation of cosmic sources [6]. The detection of
gamma rays has been possible through ground-based telescopes since 1989, with the first gamma-ray
image of the Crab Nebula [7]. Since then, major developments have been made in the area of ground-
based gamma-ray astronomy, leading to a network of observatories all around the world [8]. In this
context, the Cherenkov Telescope Array (CTA) is the future gamma-ray observatory which will be
in the forefront of this kind of detections for the next decade and beyond. It will not only extend the
energy range of gamma ray detections between 20 GeV and 300 GeV but also significantly improve
the sensitivity of current measurements by a factor of 5-10 [9].

There are, however, other types of particles besides gamma rays that arrive on Earth at the energies
at which CTA will operate. The major contribution of other types of events is due to cosmic rays,
particularly protons. The occurence of gamma-ray events (signal) with respect to other detections
(background) is around 0.1% [10]. The task of separating both types of particles is an occuring prob-
lem in the area of ground-based gamma-ray astronomy and is commonly referred to as gamma/hadron
separation 1[11]. There are currently numerous lines of research open on the different methods avail-
able for the gamma/hadron separation applied to the Cherenkov Telescope Array. Improvements in
the signal-background separation performance of CTA would allow for higher sensitivity. This would
lead to higher significance in the detection of sources and, additionally, the detection of very faint
sources e.g. dark matter [9].

The aim of this work is to provide a comparison between the traditional method used for this sepa-
ration and recently introduced ways to perform this task through machine learning. All this will be
applied to simulations of events detected by the Cherenkov Telescope Array.

1The term ’hadron’ arises from the terminology for protons and other particles of the same kind in general. However,
the most relevant species in this problem are protons in particular. Other particles which are not hadrons (i.e. electrons
or positrons) are 100 times less abundant and 10000 less abundant, respectively, than protons at TeV energies, so were
not considered in the present analysis.
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2 Theoretical Overview

The study of high energy extraterrestrial particles through ground-based observatories is possible due
to the physical phenomena that happen upon their arrival at the Earth’s atmosphere. These physical
phenomena are namely Extended Air Showers (EAS) and the Cherenkov effect. After these effects
have happened, the detection of its products on the Earth’s surface can take place. Upon detection,
the information obtained can be used to reconstruct the energy, direction and type of the primary
particle. The information of interest in the present work is whether the particle detected is a signal
gamma ray or a background proton.

2.1 Physical Phenomena

2.1.1 Extended Air Showers

Extraterrestrial high-energy particles interact with the atoms composing the Earth’s atmosphere.
This gives rise to the so-called Extended Air Shower (EAS), which can be divided into two types
depending on the types of interactions involved in their production. Gamma rays are associated with
electromagnetic showers, whereas protons give rise to hadronic showers 2 [12].

• Electromagnetic showers
This kind of EAS can be initiated by photons. They develop due to electromagnetic interactions
through two combined processes: pair production and Bremsstrahlung. Both of them happen
under the influence of the Coulomb fields of air atoms’ nuclei. If its energy is sufficient3, a
photon can undergo pair production (into an electron and a positron). The resulting electron
and positron can undergo the Bremsstrahlung emission of a high energy photon again (see Fig.
2.1). The succession of these phenomena in the atmosphere gives rise to the development of
the electromagnetic shower [13].

• Hadronic showers
These have more complex descriptions as they involve electromagnetic but also strong inter-
actions, giving rise to different components. As can be seen in Fig. 2.1, hadronic showers
generally start though the interaction of a high-energy hadron (for instance a proton) with the
nucleus of an atom composing the air and causing its disintegration. The hadronic component
includes events where hadrons interact via the strong force with atmospheric nuclei, as long as
the energy suffices, to produce more hadrons and vice versa. Apart from hadrons, a nuclear
disintegration can produce pions 4, which are highly unstable mesons and quickly decay. On one
hand, charged pions, π±, with an approximate half-life of 2.6 ·10−8 s, will travel less than 8 me-
ters through the atmosphere [15]. Their main decay channel is into µ±, which accounts for the

2Other particles can also produce EAS. However, only gamma rays and protons are presented in this work.
3The minimum energy requirement for pair production is around 1 MeV (equivalent to two electron rest masses).
4In addition to pions, kaons can also be produced in these interactions. However, they decay into muons and pions,

which is why the discussion above is mainly centered around these last particles [14].
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2 THEORETICAL OVERVIEW
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Figure 2.1: Schematic depiction of the composition of electromagnetic and hadronic showers.

muonic component of the shower5. On the other hand, neutral pions, π0 have an even shorter
half-life than π± and decay into gamma rays. Then these gamma rays undergo pair production
and develop into an electromagnetic shower themselves, thus giving rise to the electromagnetic
component of the hadronic shower [13].

The growth in the number of particles as an electromagnetic shower develops is exponential at the
beginning. Nevertheless, the energy of the initial particle gets redistributed to other particles as the
EAS develops. Consequently, the resulting particles will have less energy per particle. When the
collision loss rate equals that of Bremsstrahlung, the rate of ionisation will reach the critical energy
(around 83 MeV in the air). Then, the electromagnetic shower development desists [14]. Whereas the
electromagnetic component of the hadronic shower follows the description above, the development of
the muonic and hadronic component significantly differs from the electromagnetic component. The
muons of the shower can pass through the material relatively unaffected, losing only a small frac-
tion of their energy through ionization. The particles in the hadronic component undergo additional
interactions, including elastic scattering, inelastic scattering and particle production, leading to the

5Other decay channels are not considered because the main channels for all types of pions account for 99% of the
decay fraction in both cases [15].
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2 THEORETICAL OVERVIEW

production of further hadrons. The development of the hadronic component is complex due to the
nature of the strong interaction and therefore leads to a different shape compared to the purely elec-
tromagnetic EAS [16]. The main variation lies in the fact that hadronic showers are in general more
scattered, while electromagnetic ones remain narrower in their development [17]. This is especially
noticeable on the higher energy ranges of detection of CTA [18].

2.1.2 Cherenkov Effect

Ultra-relativistic charged particles in air can induce Cherenkov light. This is due to two factors: first,
the air is a dielectric medium and charged particles passing through it can polarise it. Second, air
has a refractive index above one, so ultra-relativistic particles can travel at speeds faster than the
speed of light in the medium. The result is the Cherenkov effect: the formation of a wavefront of
coherent light named Cherenkov radiation [12]. Its wavelengths span from the ultraviolet region to
visible light, and it is emitted in a cone-like shape as can be seen in Fig. (2.2).
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Figure 2.2: Basic geometry of Cherenkov radiation phenomenon. Shown are the Cherenkov emission angle, θ
(see equation 2.1), of a charged relativistic particle moving along the z-axis, the instantaneous position of the
wavefront and the direction of propagation of the Cherenkov photons. Adapted from [13].

The Cherenkov emission angle θ follows the relationship below due to coherence requirements,

cos θ =
1

βn
(2.1)

Where β is the Lorentz factor and n is the refractive index of the medium, in this case air [13]. The
particles in EAS from primary gamma rays and protons that fulfil the requirements undergo the
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2 THEORETICAL OVERVIEW

Cherenkov effect 6. The large-scale effect for EAS that is a cone-shaped radiation that is generally
called ’light pool’. EAS take place at about 10 km above sea level with an emission angle θ of
approximately 1.0 to 1.3° 7 and it can be detected through dedicated observatories [13].

2.2 Detection Technique

2.2.1 Cherenkov Telescope Array

Ground-based gamma-ray astronomy has been benefiting from the aforementioned phenomena for
decades through the use of Imaging Air-Cherenkov Telescopes (IACTS). The detection principle con-
sists in the reflection of the light pool from EAS through mirrors onto a photon sensor. Then, the
information is converted into digital data by using photomultipliers [9]. Placing numerous detec-
tion systems as such on the ground allows for the later reconstruction of details of the EAS and
subsequently the primary particle (see Fig. 2.3)8.

Telescope field of view

3 2 1

3

2

1

 [clip, trim=0cm 22.10cm 10.10cm 0cm] 

Figure 2.3: Schematic depiction of the detection technique used by IACTs. In red is a simulated image of
an EAS. The grey shaded cones represent the emmitted Cherenkov radiation. The numbers correspond to
different regions of the light pool as seen in the telescope field of view. Based on [19].

The Cherenkov Telescope Array (CTA) will be a IACT with a telescope arrangement covering both
the northern and the southern skies, with a location in La Palma (Spain) and in Paranal (Chile).
It will consist of three different types of telescopes: Large Size Telescopes (LST), Medium Size
Telescopes (MST) and Small Size Telescopes (SST). The different sizes of telescopes will allow for an
energy spectrum coverage ranging from 20 GeV to about 300 TeV 9. All this together translates to

6For detail on which particles produced in EAS are charged, see Fig. 2.1
7For the energy range considered and the medium being air.
8Note that the EAS image in Fig. 2.3 is based on the CORSIKA simulation (see [17]) of an electromagnetic shower

caused by a primary 50 GeV photon, taken from [17].
9Higher sizes corresponds to lower energies
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2 THEORETICAL OVERVIEW

an improvement in the sensitivity of detections above 1 TeV by a factor of 5-10 with respect to the
previous generation of IACTs (H.E.S.S, VERITAS or MAGIC). In addition to this, it will also be
able to measure shorter timescale phenomena than the current observatories. The angular resolution
will be improved too, leading to higher capability to resolve extended sources [9].

2.2.2 Hillas Parameters

The images resulting from the detections through IACTs have an ellipse-like shape, which can be
parametrised for quantitative analysis [20]. The most widely used technique for this are the Hillas
parameters (see Fig. 2.4). They were first introduced in 1985 by A. M. Hillas in search for criteria
on gamma/hadron separation and are still being used in CTA simulations for the same purpose [20].
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Figure 2.4: Principle and basic parameters of air Cherenkov image analysis. The solid ellipse indicates the
pixel image contour, C is the centroid of the image (location of highest brightness) and M the center of the
field of view. Based on [19].

The major and minor axis of the ellipse, labeled length and width in Fig 2.4, are two examples of the
Hillas parameters. Another parameter of interest is the Hillas radius, representative of the distance
between the centre of the telescope field of view and the centroid of the Cherenkov image. Except
for the clean regular elliptic shape this image is also representative for hadronic showers. The dashed
ellipse at the lower right with the extension of the major axis intercepting the center M of the mirror,
labelled ’On-Source Gamma Ray Image’, shows the typical narrow elliptic contour of a gamma ray
shower when the mirror axis is pointing at the source [19].
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3 Experimental Methods & Approach

The aim of this work is to compare the conventional method used for gamma/hadron separation to
recently-introduced machine learning methods in the context of CTA. In short, this was done by first
applying the different classification techniques to a data set consisting of simulated gamma-ray and
proton events detected by CTA and then assessing the performance of each of the methods in this
task.

The simulated data used in this work was obtained through a number of steps. First, the open
source software CORSIKA was used to simulated the development of extensive air showers in the
atmosphere, as well as their Cherenkov emission [17]. Then, the simulation of the arrays of Imaging
Atmospheric Cherenkov Telescopes and their response to the shower-induced emission was performed
using sim_telarray [21]. Finally, the output of sim_telarray was read and processed directly with
ctapipe, a low-level data processing pipeline software for CTA (see [22]). The output of ctapipe in H5
format contained information on the particle type and its energy, as well as on the signals detected
by the telescopes and their Hillas parametrisation10. The result was a data set of simulated events as
detected by CTA and their associated primary particle. The data set used was class-balanced, with
9291 gamma events and the same number of proton events.

The data set was composed of a combination of LST, MST and SST detections. However, further
analysis was performed on each telescope type individually and on different camera types in the case
of the MSTs. Unless explicitly stated, the results provided were obtained based on a combination of
all telescope sizes together.

3.1 Classification Methods

3.1.1 Cut-Based Method

Historically, the method used for the gamma/hadron separation was to establish a cut-off value or
threshold for the features that were more image-sensitive [23]. This procedure was applied by plotting
the distributions of gamma (signal) and proton (background) events for a given feature in the data
set. Then, a threshold was chosen for the features which showed a separation between the two types
of events (see Fig 3.1).

3.1.2 Machine Learning

The advent of machine learning has been a breakthrough for the processing of large volumes of data
in the area of astroparticle physics [24]. Along this line, the majority of methods chosen for the
gamma/hadron separation in CTA simulated events are based on machine learning. The main focus
is particularly on supervised learning classification algorithms. These algorithms must be trained on
a number of features such as the Hillas parameters in order to determine whether an event is gamma-

10The term "feature" may be used for the Hillas parameters as it aligns with machine learning terminology.
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Figure 3.1: Example of the gamma and proton distributions of the number of events for two different features.
On the left is the Hillas width uncertainty, which was used for the cut-based method. On the right is a feature
where the separation was not discernible and therefore unusable for such purpose.

or proton- induced. Thus, the type of the initial particle must be known, which is provided in the
data set used in this analysis. In general, they work as follows: first, they are trained on a training
set which contains both feature values and the target class or actual particle type. Then, they are
given a test set which contains only the feature values but not the target class. They are therefore
made to predict an event’s class through its feature values [25]. Thus, in the test set, the algorithm
is given the Hillas parameters of an event and not the type of particle the associated with it. For
the present analysis, all the features present in the data set (40) were used in the machine learning
algorithms 11.

The proportion used for the training and test set was 80% to 20% respectively, which is a common
practice in the area of machine learning. The variable hyperparameters were chosen to be the standard
ones provided by the widely used machine learning python library "Scikit - learn" (see [26]). The
particular algorithms tested for the gamma/hadron separation were the following:

• Logistic Regression
This is one of the simplest methods used for classification, and it works by obtaining a prob-
ability between 0 and 1 of the event belonging to a given class. This is calculated through
linearly combining the features and assigning a weight or an importance to them based on the
training set [24]. Then, this linear combination is put into a sigmoid function. This is the gen-
eral function of choice because it is a smooth S-like function bounded between 0 and 1, making
it a very useful tool for expressing probabilities [27]. Once the importance for each feature is
given through the training set, the function is applied to the test set in order to determine the
probability of an event belonging to a given class, say a gamma-ray event. The probability
threshold for an event to be considered gamma-ray event is 0.5, the standard value [28] 12.

11Using fewer features yielded very similar results, so we decided to use all the information available in the data set.
12For a further study on the choice of threshold, see appendix A
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3 EXPERIMENTAL METHODS & APPROACH

• Decision trees
Decision trees are sequential models, which logically combine a sequence of simple tests; each
test compares a numeric attribute against a threshold value of a feature. When a data point
falls in a partitioned region, a decision tree classifies it as belonging to the most frequent class in
that region [29]. Two variants of decision trees were used: random forest and boosted decision
tree (BDT). The first kind incorporates the construction of many of these decision trees and
then choosing the most popular class among them (gamma or proton) to be the predicted
one [30]. BDTs have been used before in other IACTs like H.E.S.S [31] and they incorporate
continuous values of features into quantiles instead of a unique threshold and binary choice like
basic decision trees [32].

3.2 Performance Assessment

After applying all the methods chosen for the classification of events into gamma- or proton- events
(cut-based, logistic regression, random forest and boosted decision tree), their performance was as-
sessed. This was done through the use of confusion matrices, from which the F-score was calculated
as a metric for evaluating the performance of each of the classification models. Note that, for the
cut-based method, the performance assessment was done for the highest-separation feature.

3.2.1 Confusion Matrix

A confusion matrix is a widely used tool used in the assessment of classification algorithms [33]. It
consists on a grouping of the correctly classified events and the wrongly classified events. In the
case of a binary class problem, this results in a 2x2 matrix which contains percentages where the
entries are generally referred to as true positive (TP), false positive (FP), false negative (FN) and
true negative (TN), (see Fig. 3.2).
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Figure 3.2: Annotated diagram of a confusion matrix in a binary classification problem. Here, the positive
class is considered to be gamma (signal) and vice versa.

9



3 EXPERIMENTAL METHODS & APPROACH

3.2.2 F-Score

Confusion matrices are a very useful tool for the evaluation of classification algorithms. They provides
a great starting point and a visual representation of the performance of a classifier. However, further
metrics for model performance assessment can be defined in order to summarise this information
compactly in a single value. The choice of performance metric generally depends on the type of
problem at hands and considerations dependent on the priorities and goals of the analysis.

Accuracy is the overall rightly classified events over the total of events. Even though this is a valuable
measure for the performance of the model, there are two inconveniences in its use for this case. Firstly,
assuming the classifier will most likely not be perfect, there are two possible types of errors: FP and
FN. However, the measure of accuracy gives no information about the distribution onto these two
categories. Secondly, we have to take into account the fact that we are dealing with a classification
problem where the signal (gamma) has much more importance over the background (proton). That is
why we are not so interested in knowing about the TN events (rightly classified as background), but
rather about our two types of error. These errors can be assessed though the metrics of sensitivity and
precision, which are widely used metrics in the area of astroparticle physics for the gamma-hadron
separation problem in Cherenkov detectors. The precision and sensitivity are defined as follows [34].

Precision =
TP

TP + FP
(3.1)

Sensitivity =
TP

TP + FN
(3.2)

Equation 3.1 and 3.1 can be combined in the concept of the F-score [35]. This widely used metric
in machine learning is a harmonic mean between precision and sensitivity, and provides information
on the performance of a classifier while taking into account the importance of one of the classes
(signal or gamma) over the other (background or proton). In addition, this metric has already been
used before in the CTA collaboration for the performance assessment of classifiers in the context of
gamma/hadron separation [36].

F-score = 2 · Precision · Sensitivity
Precision + Sensitivity

=
2 · TP

2 · TP + FP + FN
(3.3)

Where the first part of equation 3.3 offers a definition with respect to precision and sensitivity, and
the second part is expressed with respect to the confusion matrix terms13.

To summarise, the widely used confusion matrix provides a non-case-sensitive way to visually assess
the performance of a classification model. Additionally, the defined F-score offers a case-dependent
yet compact quantitative measure of the performance of each of the classifiers in this particular
problem, aiming at easing the comparison between models.

13As a clarification, the absolute TN, TP, FN, FP were used instead of the rate because the data set considered
consisted of 50% gamma and 50% proton events
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4 Results & Discussion

Fig. 4.1 shows the confusion matrices obtained after applying the different classification methods for
the data including all telescopes (SST, MST, LST). It can be seen that 73.42% of the gamma events
were correctly classified in the case of the cut-based method. This is for the feature which displayed
the greatest distribution separation, which turned out to be the Hillas width uncertainty. For this
particular feature, proton events displayed higher values than gamma ones (see Fig. 3.1 for reference).
The threshold in the cut-based method, which was chosen to be 0.001 m, indicated that although
the separation of the two distributions was not very high, it was noticeable enough. This may be
due to the fact that gamma showers are generally more narrow and defined than proton showers [19].
Hadronic showers are known to be more dispersed, which may explain a greater uncertainty when
identifying the width of the ellipse arising from the light pool of Cherenkov radiation. This may have
been reflected in an overall greater uncertainty in the simulated data for the Hillas width.
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Figure 4.1: Confusion matrices obtained after applying the different classification methods (cut-based, logistic
regression, random forest and boosted decision tree).
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4 RESULTS & DISCUSSION

Logistic regression as a classification algorithm yielded an 83.10% correctly identified gamma events.
Even though this supposes a 10% improvement with respect to the historically used method, this is
only the case when the entire energy range of CTA is considered (20 GeV to 300 TeV). Upon further
inspection, it was found that the cut-based method performance can be majorly improved by only
considering the data from SSTs, operating in the higher end of this energy range (for more detail, see
appendix C). In order to examine whether the differences had to do with the instruments used or with
a real physical variation, different types of cameras were examined when possible. This was the case
for MSTs, where FlashCam and NectarCam were analysed separately. It was found that the type of
camera did not have an impact in the separation per feature, and the order of most relevant features
for the cut-based method was the same for both types of cameras. This indicates that the relevance of
features is not dependent on the instrument used, but rather on the physical aspect detected. Taking
all the previous into account, there is strong indication that the development of gamma and proton
EAS at higher energies (above 5 TeV, operating range of SSTs) is more different than at lower energies.

Taking the previous considerations into account, when only the SSTs are considered, the cut-based
method can yield an F-score as high as 0.77 ± 0.01 as can be seen in Fig. 3.3. Logistic regression
would offer a comparable performance when applied to all telescopes (0.78 ± 0.01). As clearly seen
in both Fig. 4.114 and 3.3, decision trees are the best option when it comes to separation of gamma-
and proton- events in CTA. Both random forest and boosted decision tree show over 95% rightly
identified gammas. The F-score of the random forest was 0.96 ± 0.01 15, while the boosted decision
tree’s was 0.97 ± 0.01. Even though random forest has a lower F-score, the difference with respect to
the boosted decision tree lies within the error margin, which makes these two methods’ performance
comparable and effectively considered the same. These two machine learning methods are encom-
passed in the same family of classification algorithms (decision trees), which can be explain the fact
that their F-scores are in agreement with each other.

At first, the F-scores associated with decision trees seemed excessively high, so some additional search
on the possible correlation between the features provided to the algorithms was done. However,
the correlation matrix did not yield any particular high values (the highest value found for the
correlation coefficient was 0.24). Once the we tested that there was no leakage of information or
correlation leading to such a high performance, we can propose that these algorithms could be even
improved. This could be done through adjusting the variables or hyperparameters chosen during
their implementation. The standard values of the built-in functions were used, and further analysis
on the effect of hyperparameter tuning in the functions should be explored, possibly yielding different
performances when used on the test data. Along these lines, in Fig. A.1, the different classification
methods are given for comparison. However, it must be noted that this information cannot be used

14Further performance metrics are presented in appendix D
15Detail on the calculation of the errors for the metrics is given in appendix B
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4 RESULTS & DISCUSSION
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Figure 4.2: F-score for the different classification methods implemented. Results are given for a combination
of all telescopes, and the cut-based F-score when only SSTs are considered is also displayed for reference.

as an overall statement on the performance of classification methods. Rather, it must be taken with
the caution of taking into account that this is only a comparison for the used hyperparameters and
the provided dataset. Namely, the information displayed is rather a statement on the performance
of these methods under the particular conditions chosen. As a remark, decision trees are prone to
overfitting [37], which is an aspect to be considered when further investigating the hyperparameters
of this family of algorithms.

In spite of the fact that decision trees yielded very accurate classifications, a few additional factors
should be considered when assessing their performance when it comes to CTA. First, the analysis per-
formed in the present work evaluates the performance of the classification methods on class-balanced
datasets. Namely, the amount of signal and background was considered to be the same. This can be
chosen when working with a simulation. However, this is not expected to be the case with real data,
as there is a high class-imbalance where the majority of instances are background and the signal
represents a very small fraction 0.1% of the detections [10]. A possibility would be to investigate
data sets where the proportion of signal to background mimics the real case. In this way, the eval-
uation of the performance of the algorithms based on the simulation would be more applicable to
real detections. There have been numerous studies on the class imbalance problems applied to the
context of decision trees [38], and even algorithms developed, like the Class Confidence Proportion
Decision Tree, which take this class imbalance into account [39]. These special case of decision trees
could bring the analysis on gamma-hadron separation to a more realistic and applicable case in the
area of gamma-ray detection.
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4 RESULTS & DISCUSSION

Finally, analysis on real detections should be performed in order to assess the capabilities of decision
trees as classification algorithms. Furthermore, other classification methods besides those considered
in the present work should be investigated for gamma-hadron separation. Neural networks, for
instance, are being expored as a very promissing method in image reconstruction in gamma-ray
astronomy [40]. This type of algorithm has been applied to other IACTs before [41] and is being
applied particularly to one of the first real detections of CTA [42]. The efforts for obtaining highly
accurate results for gamma-hadron separation in the data of CTA range from implementation of
decision trees to convolutional neural networks to numerous others [43]. This is a topic not only
relevant for a small portion of research groups, but rather a problem that has been investigated for
decades and should remain evolving. Finding better strategies to separate ground-based gamma-ray
detections will also allow us to increase the confidence when answering questions currently still open
in the area of physics: What are the most energetic events in our Universe? Is there new physics
beyond the Standard Model?
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5 Conclusion

In summary, the best performing classification algorithms for gamma-hadron separation tested on
this work for all types of telescopes of CTA are decision trees. On the other hand, more rudimentary
machine learning techniques like logistic regression yielded similar results to the cut-off method.
The latter’s performance highly benefited from considering each size of telescope separately. This
is expected because the energy range analysed is narrower and therefore the features have greater
differences between gamma-ray and proton-initiated EAS. Furthermore, the differences between these
EAS are strongly believed to be greater for higher energies (above 5 TeV). Limitations of this work
include the number of events considered for each class (gamma-ray and proton) when analysing the
performance of the classification methods. A balanced (50% gamma, 50% proton) data set was
considered. However, this is not the case in the occurence of EAS, which have a high class imbalance,
where only 0.1% of the are gamma-ray initiated [10]. A suggested improvement for this aspect is to
make a randomly chosen data set where the proportion of gamma to proton detections mimics that
which is naturally occurring. Furthermore, other types of classification methods should be examined,
such as convolutional neural networks, in order to improve gamma-hadron separation techniques.
This would improve the reliability of overall results that ground-based gamma-ray astronomy can
offer, particularly with the upcoming Cherenkov Telescope Array.
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Appendix
Gamma-hadron separation with the upcoming Cherenkov Telescope Array

Appendix to the Bachelor’s thesis, ‘Gamma-hadron separation with the upcoming Cherenkov Telescope
Array ’ (2023) by Sofia Llàcer Caro. Written for the BSc Physics: Particle Physics programme at the
University of Groningen.
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A ROC curve for machine learning algorithms

Even though a probability of 0.5 was considered as the threshold in order to deem an event gamma or
hadron induced, other values were also considered as an additional exploration. Below is the receiver
operating characteristic (ROC) curve for the logistic regression, random forest and boosted decision
tree algorithms implemented. It can be seen that, regardless of the value chosen as a discriminating
threshold for the binary classification, decision trees remain the best classification method out of
those implemented.
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Figure A.1: ROC curve for the different machine learning algorithms implemented in the present work. The
area under the curve (AUC) is also presented for each of them.
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B Error analysis

The error associated to the performance metrics was calculated through the estimation of the effect
of a number of factors in the final results. The different performance metrics were calculated several
times while changing the ratio of training to test set. Then, the random seeds used along the code
in order to choose random subsets of data were changed. The maximum deviation of the final result
was as estimated though the uncertainties provided.
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C Cut-based analysis on SSTs

The Hillas parameter which showed the greatest separation between gamma and proton distributions
was the Hillas radius when only SSTs were considered. This encompasses an energy range from 5
TeV to 300 TeV. The threshold value used for the F-score calculation for SSTs only in Fig. A.1 can
be seen in Fig. C.1 below.
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Figure C.1: Distribution of number of gamma- and proton- events for a given Hillas radius, including the
threshold chosen for the cut-based method when only SSTs were considered.
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D Further performance metrics

The results for various commonly-used performance metrics for the different classification methods
implemented is presented in Table 1. The F-score is as presented in Fig. A.1 and the precision and
sensitivity were calculated through 3.1 and 3.2 respectively. The accuracy was calculated as follows

Accuracy =
TP + TN

TP + TN + FP + FN

where the terms are those of the confusion matrix. The error was estimated through the method
explained in appendix B. Note that the results presented are for a chosen discriminating threshold
between gamma and proton of 0.5.

Table 1: Performance metrics for the different classification methods implemented.

Method
Performance Metrics (± 0.01)

Accuracy Precision Sensitivity F-score

Cut-based 0.61 0.59 0.72 0.65

Logistic Regression 0.76 0.74 0.80 0.77

Random Forest 0.95 0.96 0.95 0.95

Boosted Decision Tree 0.97 0.97 0.98 0.97
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