
Investigation of Frontier and Rapidly-Exploring Random
Tree Based Robot Exploration Algorithms and

Implementation of Multi Robot Exploration
Industrial Engineering & Management Bachelor Integration Project

University of Groningen
Faculty of Science and Engineering

June 16, 2023

Student: Rick Drenth, s4490444, r.drenth.4@student.rug.nl
1st Supervisor: Prof. Dr. Ir. Ming Cao, m.cao@rug.nl

2nd Supervisor: Dr. Ir. Gerald Jonker. g.h.jonker@rug.nl
Daily Supervisor: MSc. Bangguo Yu, b.yu@rug.nl

ABSTRACT

This research focuses on the exploration of
unknown area by a Jackal UGV robot using two
different methods: frontier exploration and rapidly
exploring random tree (RRT) exploration. Robots
play a crucial role in exploring unknown environ-
ments. Therefore, it is necessary to understand and
optimize these methods.
The experiments were performed in three maps of
varying sizes using different levels of complexity.
The simulations utilize a 2D LiDAR. The area
coverage, time, exploration rate, and the robustness
of both methods were analysed and compared. De-
spite localization inaccuracies and path planning
issues, both methods achieved high completion
rates. The frontier exploration method generally
outperformed the RRT exploration in terms of
speed, showing that Frontier exploration utilizes
a more efficient exploration policy.
Improvements such as incorporating an exploration
route and considering unreachable but obtainable
areas are suggested. Furthermore, the inclusion
of a multi-robot system for improved efficiency
and how to implement a multi-robot system are
explained. Lastly, the limitations and improve-
ments of the 2D simulation in representing real
life exploration are also discussed.

I. INTRODUCTION

Robots play a crucial role in exploring unknown
environments, offering the potential to extend hu-

man exploration to unreachable and hazardous
places and help in surveillance. Robot exploration
also finds applications in household and logistics
tasks. By designing robots capable of autonomous
exploration, without human intervention, safety
can be ensured and workload for humans can
be reduced [1]. For example, Kuka Systems is
a company that produces smart mobility systems.
Another robots model from Kuka is a mobile robot
with a robotic arm that can autonomously navigate
the shop-floor to a destination before performing
maintenance [2]. Another example from Kuka is a
large robot platform that is used to transport large
aeroplane parts during construction [3].
The progress in robot exploration algorithms since
the 1990s has been significant. Many of these
methods utilize frontier and/or random tree algo-
rithms [4], [5], [6]. Therefore, understanding the
limitations of these systems is crucial.
Frontier methods involve searching for bound-
aries of unknown areas [5], enabling the robot to
move towards unexplored regions and reveal new
boundaries. This process is repeated until no new
boundaries are detected. Another commonly used
algorithm is the random tree or rapidly-exploring
random tree algorithm (RRT), which generates
random samples in unknown areas to establish new
exploration steps [7]. Optimization through the use
of exploration policies to determine optimal paths
is frequently employed. However, focusing on a
single problem or situation does not guarantee
success in alternative scenarios.
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Exploration methods can encounter difficulties
in complex environments, particularly when al-
gorithms encounter obstacles [8]. A promising
method to enhance the effectiveness of exploration
robots in terms of area coverage and exploration
time is the investigation of a multi-robot approach.
Compared to a single robot, multiple robots can
explore complex areas more rapidly. When using
a multi-robot system, it is important to consider
the optimal task distribution among the robots [6].
Hence, this thesis centres around two key objec-
tives: Firstly, comparing the existing frontier and
random tree algorithms. Secondly, exploring the
feasibility of extending the current single robot
system to a multi-robot system, along with the
necessary task adjustments in the exploration pol-
icy. Unfortunately, due to time constraints, the
implementation of task allocation policies could
not be implemented in this thesis. Therefore, only
possible improvements will be discussed and left
open for validation in future research. Thus, only
the single-robot algorithms will be simulated. The
exploration algorithms were evaluated on area cov-
erage, time efficiency, consistency, and robustness.
The robots in this study utilize simultaneous lo-
calization and mapping (SLAM) to continuously
update the map during the exploration process. The
algorithms and analysis are developed using the
Robot Operating System (ROS) and are applied
in simulation using a Clearpath Robotics Jackal
UGV robot, which is available to the university
of Groningen for further validation in real-world
scenarios. The Jackal UGV has been equipped with
a 2D 270◦ range. The algorithms and robot code
in ROS is available as open-source on GitHub.
The code has been made suitable for a multi-robot
system and updated to work in ROS Noetic, which
is currently the newest version of ROS 1 and will
be the last ROS 1 version available.
This thesis will first discuss relevant work and
required knowledge, including the robot frame-
work and characteristics. Subsequently, the im-
plementation and simulation of methods will be
explained before the results will be presented and
discussed. Lastly, the final section will sum up the
observation made and present promising trails for
further research.

II. RELATED WORKS

More recent research has explored the integra-
tion of machine learning algorithms to enhance
problem-solving efficiency and robustness [9]. Ma-
chine learning techniques require substantial time
and data for robot training. Research into machine
learning has shown that it can be very effective in
complex systems, such as multi-robot interactions
[10]. The downsides are that due to the behaviour
following from a data set, it is hard to upscale a
system to the real world. On top of that, the robots
can find it hard to react to a dynamic environment.
This results in abrupt behaviour.
Recent research has proposed hybrid-stochastic
methods, combining frontier and RRT algorithms,
to achieve high coverage percentages (around 95-
100% in most cases) in semi-complex environ-
ments [11], [12]. However, these methods have
not been extensively tested in more complex sit-
uations, such as realistic room setups or multi-
room problems. In complex areas with obstacles,
irregularities, or multiple rooms, a coordinated
multi-robot approach can be more efficient [7].
While hybrid stochastic multi-robot systems have
been tested on single-room complex systems ([11],
[12]), further research can replicate and expand
upon these systems to address more complex and
specific problems.
Further research into multi-robot control in au-
tonomous exploration would benefit the academic
world. Communication between robots is crucial
to prevent collisions and minimize redundant ex-
ploration of the same areas. In path planning, con-
sideration must be given to communication among
robots and their positions [4], [13]. Therefore, it
is important to compare existing techniques with
improved algorithms.

III. PROPOSED METHODS

A. Robot Framework
The general process of autonomous robot

exploration is visualized by a diagram (Figure 1.
The steps shown are based on systems described
in [1], [4], [6], [7], [14].
Robots can collect information about the area by
making use of a distance sensor. This data then
needs to be converted and added to a global map.
The robots will have to place themselves in their
own global map for orientation and path planning

2



purposes. The robot orientation is done using
SLAM [4], [15].
After localization, the frontiers can be detected
using one of the existing a frontier detection
algorithms. If there are no frontiers detected,
the exploration mission is seen as completed.
While, if there are unexplored frontiers left, the
exploration will continue. Different methods can
use a slightly different definition of a frontier.
Therefore, the specific definition will be discussed
in their respective sections below. The exploration
policy is the driver for most optimization after the
detection of frontiers. Exploration policies usually
consist of a cost function or a revenue function
that decides which frontier is the most optimal
movement goal. Exploration policies are imperfect
and can cause backtracking or extra movement,
hampering the exploration. Additionally, the
robot could be stranded as a result of inadequate
communication between the path planning and
the exploration policy.
The path planning computes the actions which
the robot has to perform to reach the target
area. However, if the exploration policy does
not account for future goals and movement, the
path planning can send the robot towards an area
where it cannot turn around.
Furthermore, the path planning requires constant
updates about the environment. If the data is not
gathered frequently enough, the path planning
is unable to account for unforeseen obstacles
that appear during movement. Obstacle collision
prevention and general robot movement is set to
find the shortest direct route to the movement
goal. The path planning for the robot is done
by the move base packages from the navigation
stack. The navigation stack is included in ROS
distributions.

B. LiDAR Sensor

In practice, there are many occurrences where
the accessible area will not be completely
uncovered. First of all, no matter the technology
used, the area will be represented by a grid
pattern of some form. Because the real world is
continuous and not discrete, the conversion from
the real world to a representation will cause a loss
of data. Secondly, in real-life situations, sensor

Fig. 1: Diagram showing the different steps in
robot exploration

data is imperfect. As mentioned by Yamauchi,
sound pulses from the sonar system can fade after
hitting a flat surface [5]. Therefore, data might be
misrepresented or omitted in the representation
of the environment. Sensors are also subjected to
noise disrupting the readings.
Often, to limit the information disruption, a
LiDAR is used. Instead of sound waves, a LiDAR
uses electromagnetic pulses to measure distance
[16]. By measuring the time it takes for the
pulses to return and dividing it by the light
speed, the distance can be calculated with a
high accuracy. Because light travels faster than
sound, the quality of measurements will increase
compared to sonar readings. However, light
reflection can be disturbed by weather conditions
and reflections, restricting the use of LiDAR
in outside situations. As a result, exploration
algorithms are usually developed for inside
situations. Thus, the performance of exploration
algorithms in outdoor conditions can be limited.

3



C. SLAM

SLAM algorithms enable a robot to navigate
and explore autonomously without relying on pre-
existing knowledge about its environment nor on
external tools such as GPS. SLAM algorithms
iteratively update both the robot positions and the
map based on sensor measurements.
SLAM requires knowledge about the robot posi-
tion and odometry. Position information is in this
case provided by the LiDAR sensor. In simulation,
the odometry is given by the simulation environ-
ment. In real life, odometry data can be provided
by an odometer or calculated from distance and
time data. By combining the sensor measurements
with estimation techniques, the position of the
robot can be estimated and a map of the environ-
ment can be created.
In this thesis, gmapping is used for the SLAM
algorithm [17]. gmapping builds the map of the
environment by interpreting sensor data. The map
is represented as a 2D grid of occupied points.
Each cell holds a probability of occupancy. Using
the sensor data, the weights of the probability can
be adjusted, resulting in a more accurate represen-
tation [18].
When using the gmapping included in the ROS
Noetic distribution, the package provides localiza-
tion for the robot as well, based on sensor data.
The gmapping is supported by an Extended
Kalman Filter (EKF). EKF predicts the robot state
by using a linearized version of the equations of
motion of the robot [19]. By using the speed and
position of the last known point in time in a dis-
crete model, the current position can be estimated.
After the prediction, the robot updates the current
position by using the measured data of the current
state. By iteratively performing this process, the
state estimate can continuously be given to the
robot system. It must be noted that due to sensor
noise and linearization of a dynamical model, the
quality of estimations can be poor. In order to
improve the quality, a higher number of reference
points in the environment should be given. EKF
fuses its own estimation with that of the gmapping,
creating a more accurate localization.

D. Frontier Exploration

The basis of most exploration and mapping
algorithms is built upon the foundations laid down

by Brian Yamauchi in 1997 [5]. Frontiers are
the boundaries of an unexplored space. When a
robot moves towards unexplored space, the newly
explored area can be mapped and the boundaries
are shifted. Theoretically, by moving towards
unexplored boundaries every iteration, the entirety
of an accessible region can be explored.
As mentioned in the SLAM and Sensor section,
the constructed map of an area can contain
inaccuracies. Therefore, there will be discrepancies
between simulation results and reality.
Based on the most recently obtained sensor
data, points on the grid map can be classified
as explored space, occupied space or unknown
area. Using edge detection algorithms, the
boundaries of the explored area are generated.
An exploration boundary is present in any open
area neighbouring unknown space. A frontier is
defined as the connection of explored space and
unknown area that allow enough space for the
robot to pass through [5]. As a result, natural
boundaries of accessible area are formed.
After updating the map, the robot will attempt to
move towards the nearest frontier, regardless of
resulting backtracking motion. The path planning
algorithm uses the shortest possible path it can
find without interacting with the occupied grid
spaces to avoid colliding with obstacles. In the
paper by Yamauchi, it is described that the robot
only scans the area after reaching the newest
frontier. Obtaining data while driving can cause
the robot to change course towards a closer
frontier when discovered.
The algorithm by Yamauchi has been implemented
by Bovbel and is available on the ROS website
[20]. The algorithm has been implemented using
ROS and can be used in simulation and on real
robots. However, for the sake of facilitation,
another package is used, the m-explore package
[21]. The m-explore package, behaves similarly to
the package by Bovbel. In addition, this method
improves the algorithm by gathering data while
moving, instead of solely gathering data at a
frontier. The m-explore package is updated for
ROS Noetic, eliminating most incompatibility
issues. This open-source package can therefore be
used to test and compare the frontier algorithm to
newer algorithms.
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E. Rapidly-Exploring Random Tree Exploration

In search of a more time efficient exploration
method, Umari and Mukhopadhyay developed the
rapidly-exploring random tree algorithm, which
combines the features of the frontier exploration
algorithm and a random tree based algorithm [7].
The rapid random tree algorithm was originally
developed by LaValle. It differs from the standard
random tree algorithm by always taking the nearest
node to the randomly selected point to create an
edge [22], thereby vastly improving the speed of
the algorithm. RRT is quick to find a path towards
unexplored space. However, the path it finds is
often not optimal due to re-exploring of space and
non-optimal path planning.
Umari presents a method that uses the RRT al-
gorithm to find frontier points. The algorithm
first selects a random point. If the point can be
found in the unexplored region of the map, the
point is marked as a frontier. Every iteration, the
tree is reset and restarted from the current robot
position. After finding a new frontier, the robot will
move towards that frontier similarly to the standard
frontier exploration algorithm. This algorithm is
called Local Frontier Detector. Umari combines
the Local Frontier Detector with a Global Frontier
Detector, which is not reset. The combination of
both ensures that far points of the map can be
reached before the tree is reset.
To reduce the number of data points, a filtering
module is used to discard old frontier points and
frontiers points that are close together by taking the
centre point of a group of frontiers. The remain-
ing points are used for the path planning. Umari
created a weighted system to evaluate the frontier
points based on the distance to the new point in
a straight line and the expected information gain.
The revenue is defined as:

R(x f p) = λh(x f p,xr)I(x f p)−N(x f p), (1)

h(x f p,xr) =

{
1, i f ||xr − x f p||> hrad

hgain, hgain > 1
(2)

Where λ is the weight given to the information
gain, I the information gain, N the navigation cost,
xr the current location, x f p the frontier position,
hrad an arbitrary radius from the robot and hgain
an arbitrary gain.

Formula 2 proposes that for a distance to the
frontier larger than an arbitrary value, the gain will
be minimized. Therefore, the algorithm creates
bias towards shorter distances from the robot. As
a result, the robot explores structurally, which
reduces backtracking.
The information gain is a circle around the new
point. The radius of the circle should be equal
to that of the sensor data. This assumes that all
robots used gain information in a circular shape
around the robot. However, in reality, the LiDAR
used in this system only has a 270◦ view. A weight
is given to the information gain to ensure that the
information gain and navigation cost have the same
order of magnitude. Umari has implemented the
algorithm using ROS. The ROS package is avail-
able on [23]. The package can used for simulation
and real-world robots. Umari has also extended the
package to include multi-robot control.

F. Multi-Robot Exploration

Multi-robot exploration makes use of coordi-
nated exploration of an environment by a team
of multiple robots. Instead of relying on a single
robot to explore an area, multi-robot systems dis-
tribute the exploration task among multiple robots,
allowing for more efficient and effective coverage.
With multiple robots working simultaneously, the
exploration process can be completed more quickly
compared to a single robot. Each robot can explore
a different region of the environment. Thereby,
reducing the overall exploration time. By making
use of multiple robots, it is possible to achieve
better coverage of the environment. The robots can
explore different areas simultaneously, increasing
the exploration rate and coverage of a region.
Multi-robot systems can share information and
observations with each other, improving the overall
knowledge of the environment. The robots can
collectively build a more accurate map or model
of the explored area by sharing the data in a
combined map. This map can then be used for
further communication and planning of the multi-
robot exploration. However, combining multiple
maps is subjected to inconsistencies. For perfect
map merging, the localization of the robots would
have to be perfect. In reality, localization is never
perfect [19], [18]. Therefore, merging maps using
multiple robots can create an inaccurate map that
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mistakenly removes or adds obstacles on the global
map. Since the exploration policy relies on the
overall map, inaccurate map merging can cause
many issues in exploration.
Multi-robot systems are more robust compared to
single-robot systems [24]. If one robot encounters
a problem or malfunctions, other robots can con-
tinue the exploration task, minimizing the impact
of individual robot failures. Furthermore, when-
ever an individual robot makes a mistake in its
measurements of the surroundings, another robot
can account for its mistakes and correct the map.
However, the correcting system relies on overlap of
sensor data and backtracking, which is not desired
for an optimal exploration rate.
Multi-robot exploration requires more complex
task allocation and coordination mechanisms com-
pared to single-robot exploration. In the package
used for this thesis, the multi-robot exploration
relies on the RRT exploration algorithm. The RRT
algorithm uses one lead robot to calculate possible
frontiers [23]. It then calculates the most valuable
frontier for each robot, selecting the most valuable
of all and then assigning it to the corresponding
robot. When assigning exploration goals, the RRT
system does not account for overlap between the
expected data gathered from new goals. As a result,
overlap of data and backtracking situations are
created, hampering the potential of the system.
The main change would be to start the random tree
from all robots, alternating the robots or having
a global position where the random tree starts
branching. Without such a system, the branch-
ing favours the robot on which the algorithm is
based. Secondly, the expected data has to be taken
into account when calculating the optimal frontier.
Lastly, the robots can focus on dividing the area
in segments. By assigning each robot a segment,
the overlap is minimized, and the random tree will
find the edges of its boundary quicker. As a result,
the overall performance will improve. However,
as mentioned before, this reduces the chances for
correction of localization. Furthermore, planning
collision-free paths for multiple robots in real-time
can be challenging, especially in complex and dy-
namic environments. Without proper localization
and continuous communication with a hub or other
robots directly, collision is imminent.
In the literature, it is common to consider a group
of three robots working together. In this specific

scenario, it will be assumed that the robots can
communicate their positions with each other. It is
important to consider communication in the path
planning of the robots to prevent collisions and
minimize the area that is explored multiple times
[4], [13].
Unfortunately, using a multi-robot system requires
a lot of computational power. As a result, the
uses of multi-robot systems in reality are minimal,
as it is difficult to provide enough capacity in
exploration of area unknown to the users. Using
systems on the shop floor, similar to the Kuka
robots, would allow the user to install computing
power within communication range.

G. Robot Operating System

1) ROS Environment: The Robot Operating
System is open-source software that can be used
as a tool for developing and controlling robots.
ROS is already widely used by robot developers
and is becoming increasingly popular [25].
The environment provides tools in the form of
packages, written by the creators, Open Robotics,
and by the public. The newer versions of ROS
are supported on Linux, Windows, and macOS.
However, most of the documentation is written for
Linux Ubuntu. Since 2020 ROS has been remade
into ROS 2 with ROS 1 remaining as the older
version. ROS 2 is still in development and will be
fundamentally different from ROS 1. As a result,
existing libraries in ROS 1 can stop functioning.
However, many of these libraries are very useful.
Because it is non-trivial to convert these packages
to ROS 2 and ROS 2 is still in development,
ROS 1 will remain relevant. The most recent
distribution of ROS 1 is ROS Noetic. ROS Noetic
will be supported until 2025 [26]. At the time of
writing, the previous distribution, ROS Melodic,
is near its end of life. Meaning that, after May
2023 the system will not be supported any more.
Since the aforementioned algorithms are only
compatible with older versions of ROS (Melodic
for Frontier exploration and Kinetic for RRT
exploration) and both packages have not been
updated since 2020, there is no guarantee they
will work in Noetic. Therefore, part of this thesis
is updating the packages whenever problems are
encountered.
ROS makes use of a system of nodes and topics.
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A node is an executable file in a package [27].
A topic is a communication service which nodes
can use to exchange information by subscribing
and publishing to nodes [27]. It is important to
understand the ROS communication system to be
able to debug any issues that may arise. The nodes
and topics can also be visualized automatically
by ROS using the rqt package. The visualization
of nodes and topics is similar to a flow chart,
making it easier to discover unconnected nodes
and mismatching issues.
ROS is compatible with the Gazebo simulation
environment. Gazebo allows developers to
create their own robots and worlds. Robots are
represented using URDF files which describe all
the links of a robot. Gazebo converts the given
URDF files to SDF files. The SDF files do not
only describe the robot, they also describe the
simulation world, dynamic movement and include
physical properties [28]. Gazebo can subscribe
to ROS topics and use the information about the
robot state to simulate the movement.
For this project, a number of Gazebo worlds
have been created for testing various properties of
the exploration algorithms. The characteristics of
these worlds will be explained in the methodology.
In combination with Gazebo, the rviz package
can be used for the representation of the local
and global maps [29]. This package enables
basic functionality for use in mapping, such
as directional goal instructions and display of
maps. However, the frontier and RRT packages
provide increased functionality with the rviz
package. The package can show both local and
global maps and frontiers. As well as the path
the robot is currently traversing. By making
use of the navigation stack, rviz can output the
number of pixels in the map that are uncovered.
Using this feature, the percentage of uncovered
space can be calculated. It is also possible
to keep track of the exploration time using
rviz. The explored area and time are essential
in the comparison of multiple exploration systems.

2) ROS Implementation: The algorithms are
tested on the Jackal UGV (Figure 2. The Jackal
UGV can be simulated using a ROS meta package,
provided by Bangguo Yu [30]. A meta package
contains a group of packages bundled into one
large, interdependent package. Next to the use of

the move base package to move the robot, the robot
can be manually controlled using teleop input such
as joysticks. The launch files will open the Gazebo
environment with the world specified in the main
launch file and the specified robot.
The meta package also contains demo launch files
that launch all the necessary nodes to control the
robot and represent the output in rviz, including
localization, mapping, and movement goals.
In the main launch file, the world for testing can
be specified by replacing the “name.world” with
the desired gazebo world. For testing autonomous
exploration algorithms, the joystick argument can
be set to false. However, leaving it on true does
not interfere with the exploration and can be
useful to overwrite commands when testing real
robots. The main changes to convert the algorithm
for single to multi-robot use are the namespaces.
All nodes and links need a robot namespace to
differentiate between information from different
robots. By setting the namespaces as arguments
for the include file, different robots can be called
using different names. For each robot a different
move base node is also initialized. The move base
package computes the path the robot has to take
to reach a goal and sends the velocity commands.
The move base package makes use of a global and
local planner. The global planner calculates a path
to the target location from the current position of
the robot. To be able to calculate a path, the pack-
age requires the grid based map of the environment
to account for obstacles. The move base package
uses an A* algorithm to calculate the shortest path.
The A* algorithm uses an approximation function
to calculate the costs of movement of each grid
point to the goal in search of the most promising
path.
Combined with the global planner, a local planner
is included to deal with dynamic obstacles. It
uses a subset of the map, called a local map,
for trajectory calculations. The simulation in this
thesis do not make use of dynamic obstacles.
To deal with navigation failure, the move base
package also includes recovery behaviour algo-
rithms. The first step in performing recovery be-
haviour is to reset the costmap used for calcula-
tions, resulting in the most up-to-date information
map. Next the package tries to recalculate the path
and if necessary tries to rotate the robot.
Further down in the main launch file, the map-
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merge package is called upon. The map-merge
package merges the maps for use in multi-robot
exploration.
Below the map merge package node, the trans-
formation nodes can be found. The transforma-
tion nodes relate the position of the robot to the
reference frame of the world. It is important to
remember that when changing the initial positions
in the robot launch nodes, the same initial con-
ditions need to be set in the static tf transform
publisher. The static transform publisher is used
to communicate the initial positions of the robot
with the world. Lastly, rviz is launched using robot
1 as a reference for the display of maps.
The jackal spawner, called using the main launch
file, launches a number of different nodes. First
of all, the description of the robot is launched.
Then the control and teleop nodes are launched.
The control is used whenever the robot uses au-
tonomous exploration, whereas the teleop ensures
that a controller or keyboard can be used for
control. Lastly, the robot model is spawned using
the URDF files. URDF files include all informa-
tion about robot links and its representation in a
simulation environment.
In the description launch file, the transform pub-
lisher node for continuous transform is initialized.
As opposed to the static transform node, this node
communicates the position of the robot while not
stationary. In the URDF files, namespaces have
been added in various places.
In the control launch file, the name space has been
included as well. The file launches the EKF local-
ization, included in the robot localization package.
In the corresponding yaml file, one line has been
added that was causing naming issues. Inside the
robot localization package, a default name for the
child frame can be found. The namespace does not
automatically overwrite this frame. Therefore, the
namespace has to be specified for the name base
frame id. Furthermore, substitution values are set
to true. This is needed to allow the namespace as
an argument in the yaml file.
After the robots are set up, the gmapping demo
can be activated in a different terminal. The gmap-
ping demo launches the gmapping package. In the
gmapping package, the LiDAR range can be set in
the maxUrange parameter.
Next to initializing the gmapping, the exploration
algorithm also has to be activated in a new termi-

Fig. 2: Image of the Jackal UGV robot in a
simulated environment.

nal. In the RRT launch files, the initial costmap can
be changed. There are many more files included
in all the packages. However, this explanation was
kept to those files that have been altered for im-
plementation of the multi-robot system, essential
for explanation of the system or files that had
parameters changed. Changed parameters will be
discussed in the methodology.

IV. EXPERIMENTS

A. Simulation Setup

The Jackal UGV in the simulations makes use
of a 2D LiDAR with a 270◦ range of 8 m. For
the experiments, the LiDAR range is increased
from 8 m to 10 m. This was done to lower the
chance of localization not working properly. The
initial map size for both global and local maps
was increased to a 20×20 m area, matching the
size of the largest used map. This ensures that
the robot can always discover new frontiers. The
robot has the same initial position in all the maps.
The initial position is set to the origin at (0,0),
which is also the centre of the maps.
Three custom worlds were made for testing
various aspects of the robot. Map 1 is the largest
map (Figure 3. It has a size of 20×20 m. The
square obstacles on the map are evenly spaced
out. A lower density of obstacles was attempted
beforehand. This proved to give many localization
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problems. Therefore, the lower density maps were
rejected in favour of higher density maps. A large
room prevents the LiDAR from scanning the
room instantly after turning and makes the room
acceptable for testing obstacle interaction.
Map 2 is the smallest map and has a size of 10×10
m (Figure 4). The map features different types of
obstacles. On all sides, small corridors and corners
with small coves can be found. These obstacles
force the robot to move around the obstacles,
at times moving into unexplored space that is
directly continuing in previously uncovered area.
The meandering of the map creates a situation
where the robot has to choose a target position
that is possibly not the shortest total path. The
walls create a situation where the robot has to
choose between frontiers and makes detection of
frontiers harder. Between the cylindrical objects, a
situation exists where the LiDAR can see into the
gaps, creating a new unknown area. However, the
robot cannot uncover this area immediately due
to the small intraversable gap. Because the area
is a 10×10 m area, the LiDAR is able to scan the
entire length of the area if there are no obstacles
interrupting its view. The last map is a 15×15 m
map (Figure 5). This map is larger than the 10×10
m map, forcing movement from one side of the
map to another. The map features simple wall
based obstacles. This is done to create a large
chance of success for the exploration algorithms
and thus focussing the test on the exploration rate
on a larger map. Inspiration for the maps was
taken from [11], [12].
To allow for proper analysis, the methods should
each have a valid run on every map. A run is
valid if the robot does not get stuck and can
complete its entire programme. A programme
is seen as complete when no new area is being
discovered by the robot. A possible source of error
is the inaccuracy of size of the uncovered area.
This is the result of inaccuracies in the mapping
process. Therefore, maps that have visible large
inaccuracies have to be excluded and cannot count
as a valid run.
Due to the randomness in the RRT algorithm and
the inaccuracies of localization, the run closest
to 100% coverage of five runs will be taken for
comparison.

Fig. 3: Image of Map 1 in the Gazebo environment.

Fig. 4: Image of Map 2 in the Gazebo environment.

Fig. 5: Image of Map 3 in the Gazebo environment.
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B. Results and Analysis

The area coverage and time is recorded and can
be compared by an analysis of area coverage over
time evolution and the total time and coverage
of the map. The percentage of area uncovered
can be calculated using the map size. To find
the accurate map size, the map first has to be
fully uncovered by controlling the robot manually
using rviz. Even when manually controlling the
robot, the localization is not perfect. Therefore, the
maximum map size is not completely accurate. To
show the robustness of the algorithms, the number
of failed attempts before a successful run will also
be noted. Lastly, the simulation of the robot uses
a safety factor on the robot when calculating its
possible path. As a result, some area can be seen
as unreachable. However, this is only a problem
in small areas due to the small safety factor.
Therefore, it is not expected to raise any issues.
In table I, the results from the most successful run
per method for every map can be found. The table
shows the attempts needed before the presented
run, the uncovered area and corresponding comple-
tion percentage, the average exploration rate and
the improvement of the average exploration rate
of the frontier method compared to RRT.
It can be seen that all methods are close to com-
pletion. Although, in three out of six cases, the
completion is higher than 100%. This is due to the
quality of the localization method, the simulation
makes small non-rectifiable mistakes. It is non-
rectifiable because the robot can not reach this area
afterwards to correct its mistake and overwrite the
data. Whenever there is a loss of localization, it
can happen that the LiDAR scans the distance,
but mistakes the location such that it does not
recognize the walls. This effect can be observed in
figures 12, 14, 15, 17. However, the effect does not
occur in all situations. For example, in figure 16,
the frontier algorithm never loses its positions in
any of its runs. In figures 6-11, the explored area
over simulation time graphs of the best runs for
both methods on all maps can be found. In figure
13 the best run of the RRT algorithm on Map 1 is
shown. On this map, the best run did not lose its
position, although the effect occurred in other runs,
which were viewed as lesser runs. Unfortunately,
the issue occurs on almost every run for every map
to varying degrees. Another possible cause is the

obstacles not lining up correctly and allowing gaps
in between the obstacles. However, since the issue
mostly occurs through the walls, which signify the
exploration boundaries, this is not likely to be the
case. The uncertainty results in both an uncertain
maximum and uncertain covered area. However, it
was observed that the loss of localization usually
happens towards the end of a run. Therefore, it is
more useful to look at the exploration rate.
Furthermore, it was observed that many runs had
to be aborted as a result of the robot getting stuck.
There are three situations where the robot is getting
stuck. First of all, there might be a frontier set close
to a wall or other edge. Because the robot cannot
drive in reverse, the robot cannot turn and is stuck
in place. Secondly, the robot has a safety factor.
This safety factor is used in calculations to make
the robot bigger than its actual size. However, the
robot often drives too close to a wall or obstacle
until it is stuck. This problem can possibly be
solved by increasing the safety factor. However,
this also increases the minimum gap size needed to
allow the robot to pass through. Lastly, the robot
is getting stuck in situations where it is unclear
why it is stuck. The robot indicates that it is stuck
and tries to correct itself by turning. In most cases,
the robot can continue its journey after some time.
However, in some cases, the run had to be aborted.
As can be seen in table I, for the two smaller
maps, the exploration rates do not differ much.
However, the frontier exploration has a slight edge
of around 10% in both maps, including the area
outside the boundaries. Where, RRT is supposed
to help in finding tight corners, this is not visible
in the results. The contrary seems to be true, from
observations it seems that the robot does not get
stuck as often using the frontier method. This
is possibly the result of the slight differentiation
in the definition of a frontier. In general, the
frontier method also causes less backtracking to
previous locations compared to the RRT explo-
ration. Due to the simple exploration policy of the
frontier algorithm, it drives towards the edge of
explored area. After moving, the robot will move
towards the next closest frontier. This causes a
fairly organized exploration, branching out from
the origin. Although backtracking still happens, it
is less common. The RRT algorithm has a more
complex exploration policy. Instead of the closest
point, the algorithm focusses on the most valuable
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point. Often this point is located behind the already
explored area. In this policy, the weight of distance
can be altered. By changing the weight, the amount
of backtracking can be reduced.
On the large map, the frontier algorithm has a
lower average exploration rate than the RRT al-
gorithm. However, as can be seen in figure 2,
the frontier algorithm has an oddity where it was
stuck for a long time, exploring little area. This be-
haviour is not expected for the frontier algorithm,
since it does not branch out like the RRT method,
but moves towards a new area immediately. If the
time between 23 and 45 seconds were to be ex-
cluded, the new average exploration time becomes,
35577 Pixels/Sec, resulting in a rate improvement
of 41% instead of the previous 21% decrease. This
is the effect of the robot being able to traverse the
large open space more easily than using the RRT
method. The RRT method was struggling to find
the points on the far side of the map.
Moreover, the exploration rate graphs do not ac-
count for the initialization period of the RRT
exploration. Meaning that, after the algorithm has
started, the random tree has to branch out first
before finding any frontiers. As seen in the fig-
ures, the graph does not plateau at zero seconds.
Indicating that the calculation only starts after first
movement. This delay results in a skewed vision
of the total time it takes. Thus, further favouring
the frontier algorithm.
The current SLAM package is causing much trou-
ble while gathering information, contaminating the
data and creating large inaccuracies. The loss of
localization of the package can be decreased by
increasing the LiDAR range and increasing the
number of obstacles. Using a larger number of
obstacles increases the number of reference points
that can be used for localization. Furthermore, a
larger number of samples is needed to test the
RRT algorithm. Since there is a high degree of
randomness and uncertainty in the method, the
amount of data needs to be increased and averaged
to create a more accurate data set for comparison
and analysis.
To summarize, the Frontier algorithm is generally
faster and causes less backtracking than the RRT
algorithm. Both methods are causing the robot to
get stuck. Therefore, the main cause of the problem
seems to be that the calculation of the move-
ment does not take into account future movement.

Consequently, the main improvement that can be
made to the exploration policy is the use of an
exploration route instead of a single point. Using a
route and updating the route after reaching a point
results in the prediction of future movement and
therefore a more reliable exploration algorithm.
However, an edge case would have to be included
for situations where only one frontier is known.
A second improvement could be the inclusion of
a second type of frontier. At the moment, the
only possible positions considered are between
the edge of known and unknown area. However,
it is possible that there is an unreachable area
that can be fully or partially uncovered using the
sensor without the robot traversing the space. As a
solution, a different type of frontier can be intro-
duced that considers the best location for gathering
information about unreachable but obtainable area.
Because the robot in question does not make use
of a 360◦ but rather a 270◦ LiDAR, the robot
could gather information about its surroundings
more efficiently if it uses either a 360◦ LiDAR
or turns around its own axis at the frontier. The
extra information gain helps to reduce localization
problems. The robot could also arch its movement
towards a place if that provides more new data
while moving. However, this would increase the
length of its path. Therefore, the inclusion of such
a run would have to weigh up against the shortest
path method in different situations.
Lastly, the explored situation has to be compared
to reality. The translation of the discussed problem
leaves a lot to be desired. The main issue is
the fact that the robot struggles with spaces that
are smaller than 1,5-2 m in diameter. In reality,
almost all indoor areas have smaller gaps that
the robot should be able to traverse. Therefore,
the exploration methods analysed are currently not
acceptable for use in real life. Furthermore, the
robot cannot handle height differences or bridging
and tunnelling obstacles that it can pass over or
under. The inclusion of a 3D LiDAR as opposed
to a 2D Lidar would enable the robot to navigate
more complex terrain. For example, terrain with
height differences or moving under obstacles such
as tables. Increasing the problem from a 2D setting
to a 3D setting increase the level of realism.
However, it is well known that solving a 3D control
problem is significantly more difficult than a 2D
situation. Moreover, the initial position in all maps
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was at the origin, located in the middle of the
maps. In reality, an exploration is expected to
happen from an entrance. Meaning that the robot
has to start from a boundary position on the map.
Thus, both the effect of starting at a boundary
and the effect of different initial positions on the
quality of exploration is unknown.

V. CONCLUSION AND FUTURE RESEARCH

The comparison between the Frontier algorithm
and the RRT algorithm for autonomous exploration
shows that the frontier algorithm generally outper-
forms the RRT algorithm in terms of exploration
rate, robustness and backtracking, resulting in a
more organized exploration. Furthermore, the RRT
algorithm can struggle to find points on the far side
of the map, leading to a lower average exploration
rate on larger maps. Additionally, both algorithms
face challenges, including issues with localization,
getting stuck in certain situations, and non-optimal
exploration. The understanding of these problems
is essential for overcoming issues and improving
exploration.
To improve the exploration process, several sug-
gestions are proposed. First, the use of an explo-
ration route instead of a single point is recom-
mended to consider future movement and enhance
reliability. A second improvement could involve
introducing a different type of frontier to uncover
unreachable but obtainable areas efficiently. Addi-
tionally, upgrading the LiDAR sensor to a 360°
range or enabling the robot to rotate at the frontier
would provide more comprehensive information
and aid in reducing localization problems. Further-
more, the exploration methods should be validated
using a better localization and mapping package
to reduce inaccuracies and ensure reliable data
collection.
It is important to note that the current exploration
methods have limitations when applied in real life.
The robot struggles to navigate through spaces
smaller than 1.5-2 m in diameter. The current setup
is also not able to handle height differences or
bridging and tunnelling obstacles. To address these
limitations, the inclusion of a 3D LiDAR sensor
is suggested, which would enable the robot to
navigate more complex terrain. However, solving
a 3D control problem is known to be significantly
more challenging than a 2D situation.

Overall, further research and improvements are
needed and encouraged to enhance the perfor-
mance and adaptability of exploration algorithm.
The effect of starting positions and different initial
positions on the quality of exploration also need to
be investigated. The use of a multi-robot system,
of which the beginnings have been set up in
this thesis, could help in solving many of these
problems.
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