
Image Bit-Depth
Manipulation using Distance
Fields

Master Thesis CS

July 2023

Student: Niels Bügel

Primary supervisor: Jĭrí Kosinka

Secondary supervisor: Dênnis José da Silva

A B S T R A C T

With the increase in popularity of high dynamic range (HDR) images,
there is also an increasing demand for methods that can increase
the bit-depth of existing low dynamic range images. Additionally,
HDR images come with larger storage requirements, which is often
undesirable. We present a method that can be utilised for both bit-
depth expansion and bit-depth compression. To enhance the bit depth,
we interpret the input image as a 3D surface. Our method makes use
of signed distance field blending to smooth this surface, allowing us
to remove visible contours while maintaining edge data. We make
use of this technique to construct the decompression step in a new
lossy bit-depth compression scheme. During the compression step, we
remove the grey levels that are not expected to contribute significantly
to the reconstruction process. The evaluation of the scheme is done
using NVIDIA’s FLIP algorithm; a state-of-the-art metric for assessing
perceived differences between images. For the implementation and
evaluation of our method, we developed a new tool called NITRO.
This is a powerful node editor that allows for the construction of
complex image-processing routines via a visual graph representation.
Using this tool, we showcase and evaluate the performance of the
compression scheme on various images.

i

C O N T E N T S

1 Introduction 1

1.1 Proposed Methods & Overview 2

2 Background & Related Work 5

2.1 Quantisation 5

2.2 Bit-Depth Expansion 7

2.3 Image Compression 8

3 Bit-Depth Expansion 11

3.1 Signed Distance Fields 13

3.2 Bit-depth Expansion 15

3.3 Distance Field Evaluation 17

3.4 Shadows & Highlights 17

3.5 Brightness Correction 19

3.6 Colour Images 20

4 Compression Scheme 23

4.1 Compression 23

4.2 Pipeline 27

5 NITRO 29

5.1 Nodes 30

5.2 Data Types 30

5.3 Modules 31

6 Methodology 33

6.1 Similarity Metrics 34

6.2 Brightness Correction 36

6.3 Performance Evaluation 37

7 Results 39

7.1 Bit-Depth Expansion 39

7.2 Compression 44

7.3 Performance 47

8 Conclusions 49

9 Future Work 51

a Appendix 55

a.1 NITRO 55

a.2 Results 58

Bibliography 61

iii

L I S T O F F I G U R E S

Figure 1.1 Quantisation of a gradient resulting in visible
banding. 1

Figure 2.1 False contours appearing due to the RGB chan-
nels being misaligned as a result of the colour
quantisation process. 6

Figure 2.2 Signal quantisation and reconstruction for a
simple 1D greyscale image. 7

Figure 3.1 A quantised 1D signal (dark grey) consisting of
6 colours and its smoothed signal as a result of
signal smoothing (light grey). 11

Figure 3.2 The upper-level sets of a given image L. (a)
Image L of bit-depth d = 2 consisting of 4

unique colours as defined by the colour palette
CPL. (b) The upper-level sets of L, obtained by
upper thresholding at each of the colour palette
values. 12

Figure 3.3 A 3D representation of images. (a) The 3D voxel
height map of L. (b) Upper-level sets of L and
their relation to the voxel height map. Each
level set corresponds to a specific layer/slice in
the 3D representation. 12

Figure 3.4 The effect of the blending approach in 1D signal
reconstruction on the bottom and top layers.
(a) Basic blending approach, where the top and
bottom layers remain flat. (b) Improved blend-
ing strategy that gradually blends the bottom
layer and introduces a smooth fall-off for the
top layer. 18

Figure 3.5 Bit-depth expansion with the brightness correc-
tion step. By construction our method only in-
creases pixel intensities, requiring a correction to
prevent overly bright output images. (a) Quant-
ised input image with mean intensity 0.167.
(b) Reconstructed image with a mean intensity
0.262. (c) Reconstructed image after brightness
correction with mean intensity 0.167. 20

Figure 4.1 Compression steps for the peppers image. The
final output of the compression algorithm con-
sists of (a) and (f). 26

Figure 4.2 Proposed compression scheme. 27

iv

list of figures v

Figure 5.1 NITRO, a visual node editor for creating cus-
tom image processing pipelines. 29

Figure 6.1 Images used to assess the performance of the
bit-depth expansion method and compression
scheme. 33

Figure 6.2 Impact of the filter size sG = ps ·max(m, n) as
determined by ps in the brightness correction
step on the FLIP reconstruction error. Images
with large smooth regions tend to favour a lar-
ger ps, whereas heavily textured images are
reconstructed more effectively using a smaller
ps. 36

Figure 7.1 Bit-depth expansion results of the Peppers im-
age. The majority of the reconstruction errors
lie in the shadows and highlights. (a) Input
image. (b) Quantised 3-bit image. (c) Recon-
structed 3-bit to 8-bit. (d) FLIP 3 to 8-bit recon-
struction error. (e) Quantised 4-bit image. (f)
Reconstructed 4-bit to 8-bit. (g) FLIP 4 to 8-bit
reconstruction error. 40

Figure 7.2 Reconstruction of the Lighthouse image. The
visible contours and noise in the sky are sig-
nificantly reduced, while the sharp edges are
maintained. (a) Original 8-bit image. (b) Cropped
8-bit image. (c) Quantised 3-bit image. (d) Re-
constructed 8-bit image. 40

Figure 7.3 Reconstruction of the Bernoulliborg image re-
ducing the visibility of contours. (a) Original
8-bit image. (b) Cropped 8-bit image. (c) Quant-
ised 3-bit image. (d) Reconstructed 8-bit im-
age. 41

Figure 7.4 Brightness correction step introducing contours
as a result of the filter size as determined by
ps = 1

8 being too small for the large contour
regions in this image. (a) Reconstruction before
brightness correction. (b) Reconstruction after
brightness correction. 42

Figure 7.5 Our bit-depth expansion method applied on a
quantised colour image consisting of 8 colours
on the Duck and Lighthouse images respect-
ively. Our method does not introduce false con-
tours and maintains the majority of the sharp
edges, despite limited information being avail-
able in the input image. (a) Quantised colour
image consisting of 8 colours. (b) Reconstructed
8-bit colour image. 43

Figure 7.6 Compression comparison between JPEG and
our method (3-bits) as per the results in Table 7.3
and Table 7.2 respectively. Except for the Gradient
image, the decompressed images produced by
JPEG compression are of better visual quality
than those of our 3-bit compression scheme
for similar compression ratios. (a) JPEG com-
pression result. (b) JPEG FLIP error. (c) 3-bit
compression result. (d) 3-bit FLIP error. 46

Figure 9.1 Different approaches to layer blending, (a) Cur-
rent blending method which only blends between
consecutive layers, (b) Blending method that
blends between any two components. 52

Figure A.1 Compression comparison between 3-bit and
4-bit compression of our method as per the
results in Table 7.2 and Table 7.4 respectively.
While there is a slight decrease in the com-
pression ratios, the visual quality of the de-
compressed images is improved considerably.
(a) 3-bit compression result. (b) 3-bit FLIP er-
ror. (c) 4-bit compression result. (d) 4-bit FLIP
error. 58

vi

list of tables vii

L I S T O F TA B L E S

Table 7.1 Differences in visual quality between the 3-bit
quantised input image and the reconstructed
8-bit image. In nearly all cases, the three sim-
ilarity metrics show improvements in visual
quality when the image is reconstructed using
our bit-depth expansion method. 42

Table 7.2 Compression performance of our method us-
ing 3-bit quantisation. The compression scheme
achieves good compression ratios, but the sim-
ilarity metrics show a notable loss in visual
quality. 44

Table 7.3 Compression performance of JPEG. The qual-
ity parameter was chosen in such a way that
the file size is closest to that produced by our
3-bit compression scheme. Its compression ra-
tios are similar to that of 3-bit compression (by
construction), but JPEG compression typically
scores better on the similarity metrics compared
to our 3-bit compression. 45

Table 7.4 Compression performance of our method using
4-bit quantisation. There is a slight reduction in
the compression ratios compared to 3-bit quant-
isation, but the visual quality of the reconstruc-
ted images is improved significantly. 45

Table 7.5 Parallel execution times for bit-depth expan-
sion in 3-bit input images. The parallelization
strategy achieves speed-up and efficiency for
p = 8 processors, despite its simplicity and
room for improvement. 47

Table 7.6 Execution time in seconds of the compression
scheme (3-bits) on various images for p = 1.
Compression runs extremely fast, whereas the
decompression step is slower. For the decom-
pression step, most time is spent on the bit-
depth expansion part. The overall execution
time is primarily determined by the image size 48

Table A.1 Parallel execution times for bit-depth expan-
sion in 3-bit input images (with brightness cor-
rection enabled). Compared to Table 7.5, the
speed-up and efficiency values are lower due
to the (inefficient) Gaussian filter taking up a
large portion of the execution time. 59

1
I N T R O D U C T I O N

The number of colours that can be represented by a single pixel of an
image is determined by its bit-depth. Most images are 8-bit, meaning
that a single pixel in a single channel can represent 256 unique values,
often 0–255. However, there are also numerous cases where higher or
lower bit-depths are desirable. High-bit-depth images, also referred to
as high dynamic range (HDR) images, are common in medical imaging,
where monochromatic images typically have bit-depths ranging from
12 to 16 bits [56, 65]. Remote sensing techniques such as LiDAR also
tend to use higher bit-depth images [24, 7]. On the other hand, low-
bit-depth images are desirable when storage size, processing speed
and bandwidth usage are important considerations [39, 17]. Given
these various applications, methods for manipulating bit-depth are
becoming increasingly important.

The reduction of bit-depth is called quantisation [58, 31, 51]. This
process results in a reduction of the number of colours or greyscale
values that can be presented in an image. Quantisation is often no-
ticeable if the bit-depth is reduced to a low enough value and can
result in the appearance of banding as seen in Figure 1.1. While a
human observer is unlikely to notice the difference between higher
bit-depth images (e.g. 8 and 16-bit), the differences tend to show once
the images are being processed. Lower bit-depth images have reduced
flexibility during processing, as there is less information to work with.
As a result, significant manipulation of the colours tends to show the
limitations of lower bit-depth.

The opposite of quantisation is the process of increasing bit-depth,
frequently referred to as bit-depth expansion or bit-depth enhance-
ment. This is the primary focus of this thesis, as we describe a method
for bit-depth expansion using signed distance fields. While there exist
methods that use deep learning to enhance bit-depth [83, 84, 13, 44,
43, 81], these can produce unpredictable results when being applied
to images not included in the training data set. As such, we opted for
a more traditional approach where the result is entirely determined
by the information present in the input image. We do not claim that
our method can outperform these deep learning methods. Instead,

(a) Input (b) Quantised (3-bits)

Figure 1.1: Quantisation of a gradient resulting in visible banding.

1

2 introduction

we want to show that consistent good results can still be obtained
efficiently and effectively using just the input image data.

One of the main applications of quantisation is reducing the image
file sizes. Consequently, compression plays an important role in this.
Compression can broadly be divided into lossless and lossy compres-
sion. In lossless compression schemes, data can be decoded from its
compressed form without loss of information. A popular example of
a lossless image compression scheme is PNG compression [10]. On
the other hand, in lossy compression schemes, there is some degree of
data lost during the compression process. While this tends to give a
decrease in visual quality, it has the advantage that the compression
ratios are often far better than those of lossless compression schemes.
Lossy compression algorithms typically provide a way to control the
trade-off between compression ratio and loss of visual quality, as is
the case with JPEG compression [73, 64, 3].

1.1 proposed methods & overview

In this thesis, we describe two methods: a bit-depth expansion method
and a lossy compression scheme. The idea behind the bit-depth ex-
pansion method is to interpret the image as a voxel height map. Using
this interpretation, each grey level represents a unique horizontal slice
or layer of this 3D surface. A low-bit-depth image, therefore, has fewer
layers than a high-bit-depth image. The goal of the expansion method
is to introduce new layers in such a way that the resulting 3D surface
becomes increasingly smooth. By introducing these new layers, we ef-
fectively introduce gradients in areas that were previously flat colours.
This reduces the appearance of banding and contours, which gives
the appearance of increased bit-depth.

We leverage our newly developed bit-depth expansion technique
to construct a lossy compression scheme. To effectively compress the
image data, we use quantisation in combination with an efficient
encoding algorithm. We compare our compression scheme to JPEG
compression and analyse how it performs in terms of compression
ratios and visual quality loss. For the implementation of the scheme,
we built a tool called NITRO. NITRO is a visual, non-destructive
node editor that can be used to construct image processing routines.
It supports numerous filters and image operations that enable the
user to construct a custom image-processing pipeline. This tool was
invaluable in the development of our method as it allowed for rapid
testing of various approaches.

There are three important remarks about our proposed bit-depth
expansion method. First, it does not introduce artificial details in areas
of the image where there originally were none; it only smooths existing
contours. Introducing new details in the dark or bright regions could
be achievable by using a data-driven approach, but this is not what

1.1 proposed methods & overview 3

our method uses. Second, while we use a 3D interpretation to reason
about our method, we do not explicitly work in 3D. In that sense, this
is similar to watershed segmentation [71], which also does not make
use of explicit 3D operations, despite its intuition. Finally, the methods
we discuss primarily focus on greyscale images. However, we briefly
discuss how it can be extended to work for colour images.

The remainder of this thesis is organised as follows. We first discuss
existing methods for quantisation, bit-depth expansion, and image
compression in Chapter 2. Next, we introduce our method for en-
hancing bit-depth in Chapter 3 and show how this technique can
be used for a compression scheme in Chapter 4. We briefly discuss
the newly developed tool NITRO and the implementation details of
the method in Chapter 5. Prior to presenting the results, we outline
the methodology used to assess the effectiveness of the scheme in
Chapter 6. The results and evaluation of the scheme can be found in
Chapter 7. Finally, we provide concluding remarks in Chapter 8 and a
number of future possible improvements in Chapter 9.

2
B A C K G R O U N D & R E L AT E D W O R K

An image I can be defined as a rectangular grid of size m × n for
which each pixel I(p), 0 ≤ px < n, 0 ≤ py < m maps to a particular
greyscale value or colour. For a quantised image L, the pixel values
L(p) generally do not map to a greyscale or colour value, but rather
to an index in a colour palette CPL. In this thesis, we use the notation
CPL(i) to refer to the greyscale value/colour at index i for the image
L. For a greyscale image, the colour palette is ordered, which means
that for an image consisting of k colours, we have:

CPL(i) < CPL(i + 1) for all 0 ≤ i < k.

Now that we have established some basic notations, we first look at
existing methods for bit-depth manipulation. This involves quantisa-
tion (Section 2.1) and bit-depth expansion (Section 2.2). In Section 2.3
we discuss various image compression approaches.

2.1 quantisation

The quantisation process consists of two main components: the gen-
eration of a colour palette CPL and the mapping of each pixel L(x, y)
to a colour CPL(i) in the colour palette. The lower bit-depth that is
used, the smaller the size of the colour palette. The difference between
the input image and the quantised image is commonly referred to
as the quantisation error. Numerous techniques exist for reducing
the bit-depth of images, the most straightforward approach being
uniform quantisation [31]. To reduce an image to d bits, this method
creates a colour palette by splitting the colour range into 2d equally
spaced intervals. The pixels are then simply mapped according to
which interval they fall in. Due to its simplicity, the method is fast but
fails to produce good results when the intervals for images with an
unbalanced histogram. To combat this, effective quantisation methods
take the image data into consideration. An example of this is the
median-cut algorithm [38], which continually splits the colour palette
of the input image until 2d regions remain. Other examples of these
so-called splitting algorithms are the RWM-cut algorithm [79] and
octree-based algorithms [28].

Alternatively, one can treat quantisation as a clustering problem.
Various algorithms exist that use this approach. For example, the Lloyd-
Max algorithm performs quantisation by minimising the least-squares
error between the original data and the quantised data [45]. Another
popular approach is using the (accelerated) k-means algorithm [15, 70,

5

6 background & related work

(a) Input (b) Quantised (3-bits)

Figure 2.1: False contours appearing due to the RGB channels being mis-
aligned as a result of the colour quantisation process.

36] or c-means algorithm [16] to find the most representable colour
palette of the image. These methods produce good results and do not
suffer from the same issues as uniform quantisation [54]. However,
they can be expensive to compute.

A popular technique to improve the visual quality of quantised
images is called dithering [11, 51]. This technique introduces con-
trolled noise before or during the quantisation process to distribute
the quantisation error. Consequently, the appearance of issues such as
banding and contouring is reduced, while still maintaining the same
bit-depth as quantisation without banding. However, due to the noise
patterns dithering introduces, our proposed reconstruction method
does not work well with it.

2.1.1 Colour Quantisation

Colour images are typically represented by multiple monochromatic
channels that each describe a separate component. In sRGB images,
these channels are the red, green and blue channels. To apply quant-
isation to a colour image, there are generally two main strategies. The
first is to treat all channels at once, creating a colour palette consisting
of RGB colours and a single channel containing the corresponding
mappings, as done by e.g. [17]. However, a significant number of
quantisation methods only work on greyscale images. This is where
the second main strategy comes in, which treats each channel sep-
arately. Due to its simplicity, several algorithms do this in (a variant
of) RGB colour space [39]. However, as the RGB channels each en-
code both colour and luminance information, a misalignment of the
channels can result in false contours, as seen in Figure 2.1. A better
approach is to process the channels individually in a colour space that
splits luminance and chrominance. The YCbCr colour space is well
suited for this, as it splits the luminance channel (Y) from the blue
(Cb) and red (Cr) chrominance channels. Using such a colour space
also enables quantisation methods to exploit the fact that humans are
less perceptible to changes in chrominance than in luminance [68]. As
such, it often pays to use more bits for the luminance channel, while
using fewer for the chrominance channels.

2.2 bit-depth expansion 7

Pixel
0 404 8 12 16 20 24 28 32 360 404 8 12 16 20 24 28 32 36

Quantisation

8

0

Le
ve
l

256

0

Le
ve
l

Reconstruction

Pixel

Figure 2.2: Signal quantisation and reconstruction for a simple 1D greyscale
image.

2.2 bit-depth expansion

With the growing availability of HDR displays, finding effective and
efficient methods of how to display low-bit-depth images has become
an increasingly important problem [83]. In addition to this, being able
to reconstruct quantised images to some degree is also beneficial as
quantisation often plays a role in compression methods. Quantisa-
tion and reconstruction are tightly related, as seen in Figure 2.2. The
simplest way to convert an l-bit image to an h-bit image is to append
(h− l) zeros to each pixel value [69], a method referred to as zero-
padding. Note that this method is intended for uniformly quantised
images that do not rely on colour palettes, but store the grey values
directly (although it can be adapted accordingly). The method clearly
increases the bit depth in a fast and simple manner, but it does not
improve the visual quality of the image. To improve the quality of
the reconstructed image, most bit-depth expansion techniques focus
on banding and contour removal. With the rise in popularity of the
learning-based approach, we differentiate between two main categor-
ies: traditional methods and methods that involve some degree of
learning. The traditional methods typically involve filtering or signal
smoothing.

An example of a filter-based method is the approach presented by
Chun Hung et al. [42]. Their approach consists of three stages: first the
image is zero-padded, next smooth regions are identified, and these
are smoothed using a low-pass filter in the final stage. Similarly, the
method proposed by Teguchi et al. [66] uses an edge-preserving low-
pass filter with an adaptive window size to achieve contour smoothing.
The issue with filter-based approaches is that the filters are typically
not fully accurate, which can result in blurred edges [13].

On the other hand, Cheng et al. [19] proposed a method based on
signal smoothing that fills in the gaps between contour edges with
smooth gradients. While this method produces good results, it has
issues with local extrema as it fails to construct a smooth transition
in these regions. Cheng et al. [18] use this method in a later work
that combines this bit-depth expansion and dithering to remove the

8 background & related work

appearance of false contours. They do this by using the enhanced
bit-depth image to apply a specific dithering pattern. The result is an
image that maintains the same bit-depth as the input but has improved
visual quality. Other methods using dithering exist [8], but these do
not increase bit-depth without explicit zero padding.

An example of a method involving deep learning, Byun et al. intro-
duced BitNet [13], a CNN-based approach for enhancing bit-depth.
In contrast to other similar methods, their approach treats all the
RGB channels at once. This has the advantage that colour restoration
in the case of false contours is greatly improved. Other CNN-based
approaches exist [43], but their execution times are typically high [13].
One common issue with learning-based methods is that they require
extensive training data. Additionally, the results are highly dependent
on the quality and extent of the training data, which can cause it to
produce unpredictable results for certain images.

2.3 image compression

Image compression is a popular topic and new methods are still
constantly in development. This section does not serve as a complete
and extensive summary of all of them, but we try to capture some of
the most prominent ones and the different approaches and techniques
that they use.

In its simplest form, the pixels of an image can be represented as
one or more byte sequences. As such, one does not necessarily require
a specialised method to compress these but can use any compression
method that works on byte sequences. The most well-known of these
methods is arguably the lossless compression method called run-
length encoding [60]. The idea is that contiguous sequences of the same
value can be represented much more efficiently by simply denoting
the value and how often it appears. Due to its simplicity, run-length
encoding is still a popular technique and is commonly used as part of
existing compression schemes.

However, compression algorithms typically look for more ways
to reduce data redundancy. A popular choice is the DEFLATE al-
gorithm proposed by Oswal et al. [52]. The DEFLATE algorithm
provides a lossless compression scheme that consists of two phases.
First LZ77 [85] compression is used for a dictionary-based compres-
sion phase. In the second phase, Huffman coding [33] is used to
compress this further. DEFLATE is a popular choice due to its speed.
As such, it is used in various formats such as zip, gzip, and PNG
compression [59, 40, 10]. There are, however, algorithms out there with
better compression ratios, such as Bzip2, PPM, and LZMA, but these
tend to be slower in terms of speed [29].

PNG compression [10] makes use of the DEFLATE algorithm as its
main tool for encoding. In addition to this, it also comprises a pre-

2.3 image compression 9

processing step and allows for different filters to be used to predict
the values of the next colour value. The philosophy behind this is
that pixel values in most images tend to have some spatial relation to
their neighbouring pixels. As such, PNG tends to perform better on
images with fewer fine details, such as line art or images with smooth
gradients [62]. PNG compression has a variable compression level
parameter that can be set by the user. It ranges from 0 to 9 and affects
both the compression speed and resulting file size.

Arguably the most well-known lossy compression method is JPEG
compression [73]. It divides an image into small blocks and transforms
each of these blocks using the discrete cosine transform (DCT) [2].
Using the DCT as one of the building blocks for a compression scheme
is not unique to JPEG as other image formats such as webp [80] and
HEIF [30] also use this approach. In JPEG compression, the coefficients
of the DCT are then quantised so that they can be efficiently encoded.
The coefficients affected most by the quantisation tend to be the ones
representing higher frequencies, which are the parts of the image that
are typically the least noticeable. For colour images, JPEG does not
use the sRGB colour space, but rather the YCbCr colour space. This
allows for extra compression by lowering the resolution of the Cb
and Cr components, as the human eye is less sensitive to changes in
chrominance compared to luminance [68]. The successor of the JPEG
format is JPEG 2000 [64], which uses a wavelet [63] based approach
instead of using the DCT. The authors state that the JPEG 2000 format
outperforms the original JPEG format by 10-20% for high-quality
images. The next generation of the JPEG format, called JPEG XL [3],
aims to improve this even further. For similar quality images, file sizes
are only 30-40% of those produced by the JPEG format.

Other approaches to image compression include methods that use
image skeletons [74, 75] or function-fitting [24, 53]. These methods
use a different image representation to reduce data redundancy. All
in all, there are various techniques that are used when creating a
compression scheme. In the case of lossy compression schemes, the
compression effort is typically focused on the higher frequencies, as
these differences tend to be less noticeable in the decompressed images.
Naturally, bit-depth and quantisation play an important role in this
process.

3
B I T- D E P T H E X PA N S I O N

Our proposed method for bit-depth expansion could be categorised
as a signal smoothing method that makes use of interpolation. A
quantised signal consists of a limited number of levels, so the idea
behind our method is to smooth a low-bit-depth signal by inserting
new levels in such a way that the reconstructed signal shows gradual
changes in intensity (Figure 2.2). In the case of images, we can interpret
these as 3D surfaces where each grey level corresponds to a given
height. Consequently, low-bit depth images have a small number of
layers and therefore contain large flat areas with abrupt transitions
to the layers above them. In higher bit-depth images, these flat areas
are generally very rare. The goal is therefore to make the transition
between grey levels gradual, effectively creating gradients instead of
flat areas. This can be seen for a simple 1D signal in Figure 3.1.

While the idea is simple, the solution is not necessarily straight-
forward. Applying techniques suited for 1D signal-smoothing are
generally not easily extended to 2D signals. One can apply 1D sig-
nal processing methods to 2D signals by applying them row-wise or
column-wise (or both). However, this requires the method in question
to be separable, which is not the case for bit-depth expansion. An
alternative idea would be to use explicit 3D geometry to construct the
smooth surface, but this presents numerous challenges such as how
to handle the topology. While subdivision methods could be applied
here, the resulting algorithm would be complex and unlikely to be
efficient due to the large amounts of geometry introduced. Alternat-
ively, an implicit surface could be fitted, but this is also unlikely to
be efficient and tends to be rather complex. As such, we decided to
approach it differently.

Figure 3.1: A quantised 1D signal (dark grey) consisting of 6 colours and its
smoothed signal as a result of signal smoothing (light grey).

11

12 bit-depth expansion

(a) (b)

Figure 3.2: The upper-level sets of a given image L. (a) Image L of bit-depth
d = 2 consisting of 4 unique colours as defined by the colour
palette CPL. (b) The upper-level sets of L, obtained by upper
thresholding at each of the colour palette values.

(a) (b)

Figure 3.3: A 3D representation of images. (a) The 3D voxel height map of
L. (b) Upper-level sets of L and their relation to the voxel height
map. Each level set corresponds to a specific layer/slice in the 3D
representation.

Given an indexed greyscale image L with a bit-depth d and a colour
palette CPL, we can construct its upper-level sets T↑i (L), 0 ≤ i < 2d by
upper thresholding on each of its grey values:

T↑i (L) = {(p) ∈ L | CPL(L(p)) ≥ CPL(i)}. (3.1)

The upper-level sets of a simple 2-bit image can be seen in Figure 3.2.
Each of these level sets corresponds to a particular horizontal slice
or layer of the 3D image representation as seen in Figure 3.3. By
increasing the bit-depth, we effectively increase the number of layers.
As such, the problem we need to solve is how to insert new layers
such that the 3D surface becomes increasingly smooth.

An important observation we can make here is that the upper-level
sets can only shrink as the grey value increases:

T↑j (L) ⊆ T↑i (L) for all i < j. (3.2)

It is important to preserve this property when reconstructing the
image, as undesirable shapes can be introduced if this is not the case.

3.1 signed distance fields 13

As such, for a reconstructed image Ī, any layer l we introduce between
two layers i and i + 1 must therefore satisfy:

T↑i+1(Ī) ⊆ T↑l (Ī) ⊆ T↑i (Ī) for all i < l < i + 1. (3.3)

To construct such a new layer l, we choose to smoothly blend the
two consecutive level sets T↑i (L) and T↑i+1(L) based on an interpolation
parameter t:

T↑l (Ī) = blend(T↑i (L), T↑i+1(L), t), t ∈ [0, 1], i ≤ l ≤ i + 1. (3.4)

Here t can then be used to determine at which height between the
two levels sets to insert the new layer and how much the surrounding
layers contribute to the final shape at said layer.

It should be noted that a portion of the existing bit-depth expansion
methods suffers from excessive blurring and failure to maintain edge
data [48]. The advantage of only blending between two consecutive
layers is that contours and sharp edges are preserved, provided that
sufficient information is available in the input image. Sharp edges in
an image can be seen as steep cliffs consisting of multiple layers in 3D.
These steep cliffs are preserved due to Equation 3.3 and Equation 3.4.
Consequently, textured regions and hard edges are maintained, while
regions with only minor differences are smoothed.

3.1 signed distance fields

To smoothly and efficiently blend between layers, we use signed
distance fields. A signed distance field is an alternative representation
of binary shapes. Let B be a binary image where its foreground pixels
make up the set Ω and SDFB be the signed distance field of B. We
denote the boundary of Ω by ∂Ω and the shortest distance of a pixel
p ∈ B to ∂Ω by sd(p, ∂Ω). Then SDFB is defined as follows:

SDFB =

sd(p, ∂Ω), if p ∈ Ω

−sd(p, ∂Ω), otherwise.
(3.5)

Using this, we can draw the following conclusions from a distance
field value:

• SDFB(p) < 0→ B(p) is a foreground (interior) pixel.

• SDFB(p) > 0→ B(p) is a background (exterior) pixel.

• SDFB(p) = 0→ B(p) lies exactly on the boundary of Ω.

As such, given SDFB, we can reconstruct B exactly by thresholding
SDFB with a value of zero:

B =

1, if SDFB(p) ≤ 0

0, otherwise.
(3.6)

14 bit-depth expansion

It should be noted that the case sd(p) = 0 does not occur when
working in raster graphics. This is due to the fact that in practice
the distance is evaluated between foreground and background pixels,
instead of using ∂Ω. As such, the smallest possible distance is 1 in
this case. However, we will still use this property later to efficiently
reconstruct an image from a collection of upper-level sets.

3.1.1 Distance Metrics

There are numerous distance metrics that can be used for the calcula-
tion of a (signed) distance field. A distance metric specifies how to cal-
culate the distance between two pixel locations. The most well-known
ones are the Manhattan (MDT), Chessboard (CDT), and Euclidean
(EDT) distance metrics. Let p and q be two pixel locations. These
metrics are then defined as follows:

• MDT(p, q) = |px − qx|+ |py − qy|

• CBD(p, q) = max(|px − qx|, |py − qy|)

• EDT(p, q) =
√
(px − qx)

2 + (py − qy)
2

The most obvious choice for our method is the Euclidean distance
as this gives the smoothest distance field. This is also the distance
metric most often used in signed distance fields [50]. In addition to
this, the Euclidean distance transform has the nice property that it is
radially symmetric, which means that it is rotation invariant [25]. As
such, it should produce the most natural and consistent blend shapes.

3.1.2 Shape Interpolation

A convenient property of signed distance fields is that we can perform
pixel-wise interpolation to blend between two binary images. This
ability to use signed distance fields for shape blending is common
throughout the literature [21, 37, 32, 20]. One can linearly interpolate
between two binary images B0 and B1 using t, 0 ≤ t ≤ 1 by first
interpolating their signed distance fields:

SDFBt(p) = (1− t) · SDFB0(p) + t · SDFB1(p). (3.7)

This can then be used to construct Bt:

Bt =

1, if SDFBt(p) ≤ 0

0, otherwise.
(3.8)

Cohen-Or et al. [20] remark that simple linear interpolation between
signed distance fields can present numerous issues. One example they

3.2 bit-depth expansion 15

provide is that in a linear blend between a thin rod and a rotated ver-
sion of said rod, the object may shrink significantly or even disappear
for particular values of t. However, given the constraint Equation 3.2,
these or similar situations cannot occur in our setting. While their
warp-based blending method might show some very minor improve-
ments, it is unlikely to improve the reconstruction result significantly.

Apart from linear interpolation, it is also possible to use other
interpolation methods. A number of these were tested, including
monotone cubic interpolation [26]. However, we found that for the
purposes of bit-depth expansion, these did not show a meaningful
improvement in visual quality over linear interpolation. Additionally,
defining proper boundary conditions for cubic splines is a challenging
task in this context. This, on top of the fact that linear interpolation
allows us to evaluate the final image pixel in constant time, is why we
decided to stick with linear interpolation. In the next section, we show
how we can use Equation 3.8 to construct a higher bit-depth image.

3.2 bit-depth expansion

Given Equation 3.8, we can now insert arbitrarily many layers and
using these layers, the image can be reconstructed. Instead of inserting
a specific number of layers, we assume an infinite number of layers
are inserted, resulting in a smooth 3D surface. We first make the
observation that the greyscale value at a given pixel p corresponds to
CPL(i) such that p ∈ T↑i (L) and p /∈ T↑j (L), i < j < 2d:

L(p) = max{i : p ∈ T↑i (L)}. (3.9)

That is, the grey level of a given pixel corresponds to the height of the
3D surface at said pixel. Since we assume an infinite number of layers,
a pixel p lies exactly on the surface when SDFĪ(p) = 0. As such, we
need to find l ∈ R such that SDFT↑l (Ī)(p) = 0.

Due to the newly inserted layers satisfying Equation 3.2, the grey
scale value at a given pixel p must lie between CPL(i) and CPL(i + 1),
where i = L(p), which can also be seen in Figure 3.1. Let SDFi be the
signed distance field of layer i, i.e. SDFi = SDFT↑i (L). As we defined

i = L(p), we know that p ∈ T↑i (L) and p /∈ T↑i+1(L), which allows us
to conclude:

SDFi(p) ≤ 0 and SDFi+1(p) ≥ 0. (3.10)

Given that we linearly blend between the two consecutive layers at i
and i + 1, we need to find t such that:

(1− t) · SDFi(p) + t · SDFi+1(p) = 0. (3.11)

Given Equation 3.10, we can find t ∈ [0, 1] by rewriting Equation 3.11:

t =
SDFi(p)

SDFi(p)− SDFi+1(p)
. (3.12)

16 bit-depth expansion

Using t, the grey level of the reconstructed image Ī at p can be calcu-
lated using:

Ī(p) = t · (CPL(i + 1)− CPL(i)) + CPL(i). (3.13)

This allows us to evaluate the grey level at each pixel in O(1). As
such, the performance of this stage is independent of the desired bit-
depth and depends only on the image size. The final result Ī is not an
indexed image. In practice, we assume Ī to be a floating-point image
instead of integer-valued grey values to make this process easier. As
such, its pixel values are in the range [0, 1] where 0 equates to black
and 1 to white. Consequently, we also assume that the colour palette
of L consists of floating point values: CPL(i) ∈ [0, 1], 0 ≤ i < 2d. Using
floating-point images has the advantage that Equation 3.13 can be
evaluated directly without any intermediate rounding. It can then be
easily converted to an integer image Iint of the desired bit-depth k
using:

Iint = ⌊ Ī(p) · 2k − 1
2
⌋. (3.14)

The pseudocode for the reconstruction process can be seen in Al-
gorithm 1.

Algorithm 1: reconstruct(L, CP, SDF)
Input : A d-bit indexed image L of size m× n, its colour palette CPL

with CPL(i) ∈ [0, 1], 0 ≤ i < 2d, and an array of signed
distance fields SDFs defined as [SDFT↑0

, SDFT↑1
, ..., SDFT↑

2d
].

Output : The reconstructed output floating-point image Ī.
1 for y = 0 to m do
2 for x = 0 to n do
3 i0 ← L(x, y);
4 i1 ← L(x, y) + 1;

5 SDFi ← SDF[i0](x, y); // SDF[i0] = SDFT↑i0 (L)

6 SDFi+1 ← SDF[i1](x, y); // SDF[i1] = SDFT↑i1 (L)

7 t← SDFi
SDFi−SDFi+1

; // Equation 3.12

8 △ ← CP(i1)− CP(i0);
9 Ī(x, y)← t · △+ CP(i0); // Equation 3.13

10 end
11 end

3.3 distance field evaluation 17

3.3 distance field evaluation

Evaluating Equation 3.12 requires the calculation of a signed distance
field for every grey level of the input image. However, calculating for
every foreground pixel the distance to the nearest background pixel
(or vice versa) is an expensive task, with the naive implementation
taking O(m2 · n2) operations for an image of size m × n. As such,
numerous algorithms have been proposed to do this efficiently. For the
Chessboard and Manhattan distance, a simple two-pass approach can
be used, where the image is first scanned row-wise, and then column-
wise (or vice versa) [61]. For the Euclidean distance, this is more
challenging to do efficiently as the problem is not easily separable. This
gave rise to a number of algorithms that approximate the Euclidean
distance transform [22]. However, there also exist methods that can
evaluate the exact Euclidean distance field in linear time. Due to its
good performance and relatively simple implementation, we use the
distance transform as proposed by Meijster et al. [47, 25].

It should be noted that the above distance transform algorithms do
not evaluate a signed distance field; they only evaluate the distance
from each foreground pixel to each background pixel. As such, given
a binary image B, the unsigned distance field DFB is defined as:

DFB =

sd(p, ∂Ω), if p ∈ Ω

0, otherwise.
(3.15)

A signed distance field also requires the calculation of the distance
from each background pixel to each foreground pixel. To do this, we
can simply evaluate DFBc , where Bc is the complement of B. In order
to obtain a signed distance field, we then simply subtract the distance
field Bc from the distance field of B:

SDFB = DFB − DFBc . (3.16)

3.4 shadows & highlights

While the blending approach works well, it is not immediately clear
how to deal with the bottom and top-most layers. The bottom-most
layer representing the darkest regions (shadows) is empty by construc-
tion (i.e. only contains foreground pixels) as seen in Figure 3.2. As
such, the reconstruction result is what can be seen in Figure 3.4a, since
the distance values for layer i = 0 are all constant. Instead, we aim
to achieve the result in Figure 3.4b. To do this, the distance values
cannot be constant. However, it is still important to be able to recon-
struct T↑0 (Ī) from the distance field using Equation 3.6. Given that
a signed distance field stores the closest distance between different
pixels, we can move the contours of the shape(s) it represents outwards
by subtracting a positive constant value from each pixel. The idea is to

18 bit-depth expansion

(a) (b)

Figure 3.4: The effect of the blending approach in 1D signal reconstruction
on the bottom and top layers. (a) Basic blending approach, where
the top and bottom layers remain flat. (b) Improved blending
strategy that gradually blends the bottom layer and introduces a
smooth fall-off for the top layer.

construct SDF0 by growing SDF1 such that max(SDF0) = 0. This can
be done by subtracting the maximum value of SDF1. Therefore, the
bottom-most layer can be evaluated as follows:

SDF0 = SDF1 −max(SDF1). (3.17)

In the case of the top-most layer representing the brightest regions
(highlights), there is no layer to blend to. This would result in a
completely flat surface for these brightest pixels. To prevent this, we
introduce an additional top layer and use a similar strategy as before.
Given that the input image has a bit-depth d, we introduce a new layer
SDF2d . However, this time we shrink the contours by adding a positive
constant value such that min(SDF2d) = 0. As such, this new layer can
be calculated using:

SDF2d = SDF2d−1 + |min(SDF2d−1)|. (3.18)

In contrast to the bottom-most layer which already had the colour
value CPL(0) associated with it, the introduction of an extra layer also
requires an extra colour. An initial guess for this value might be to
always let this be the brightest value a pixel can be. However, this
causes issues for dark images whose maximum value is significantly
lower than this. As such, we ideally use the maximum value of the
input image I for this. However, this information is typically not
available, since one often has access only to the quantised image L.
Therefore, we estimate this value by simply extrapolating the colour
palette based on the last two values:

CPL(2d) = 2 · CPL(2d − 1)− CPL(2d − 2). (3.19)

In the case of uniformly quantised images, this should reproduce ex-
actly what we are after. Otherwise, it provides a good enough estimate.
Overall, applying these techniques to the shadows and highlights is
vital for the performance of our bit-depth expansion method.

3.5 brightness correction 19

3.5 brightness correction

Due to the nature of this approach, a given pixel value can only
ever increase in brightness. This would not be an issue when the
quantisation process is done by truncation. However, this is often not
the case as this does not produce optimal quantisation results. As such,
the shadows are lifted and the mean intensity of the reconstructed
image is greater than that of the original.

To solve this issue, we introduce a simple brightness correction step.
Let L be the quantised version of I with mean intensity µ(L) and
let Ī be the reconstructed image with mean intensity µ(Ī). First, we
note that quantisation preserves primarily the low-frequencies of an
image. As these carry the majority of intensity information, we assume
µ(L) ≈ µ(I). As such, the simplest way to do brightness correction is
by subtracting the difference in mean image values:

Īc = Ī − (µ(Ī)− µ(L)), (3.20)

where Īc is the brightness corrected version of Ī. The problem with
this approach is that it reduces the brightness values uniformly, which
tends to reduce the highlights too much. An improved approach to
this is to take into consideration local illumination. Once again, we rely
on the fact that quantisation removes primarily the high frequencies,
so the low frequencies of a quantised image should be nearly identical
to that of the input image. As such, we can take the difference in the
low-frequency brightness instead of the mean brightness. This can be
done by a low-pass filter such as a Gaussian blur:

Īc = Ī − (Ī ∗ G− L ∗ G), (3.21)

where L ∗G denotes the convolution of L with the kernel G. Here both
Ī and L are convolved with the same Gaussian kernel G defined as:

G(p) =
1

2πσ2 · e
−

p2
x+p2

y
2σ2 . (3.22)

The standard deviation σ used to construct G affects the final output.
Using an infinitely large value for σ will make this method equivalent
to subtracting the mean difference as seen in Equation 3.20. However,
using a value for σ that is too small (i.e. no blur) will result in Īc =

L. As such, σ should be large enough to mask out the contours of
the quantised image, while being small enough to capture its lower
frequencies. Since we are working in the discrete domain, the Gaussian
kernel G has a maximum size sG. Additionally, we already have
information on the resolution of the input image, so we can first
define sG and use this to calculate σ. To do this, we let sG depend on
the size of L. Therefore, we define:

sG = ps ·max(m, n), (3.23)

20 bit-depth expansion

(a) (b) (c)

Figure 3.5: Bit-depth expansion with the brightness correction step. By con-
struction our method only increases pixel intensities, requiring a
correction to prevent overly bright output images. (a) Quantised
input image with mean intensity 0.167. (b) Reconstructed image
with a mean intensity 0.262. (c) Reconstructed image after bright-
ness correction with mean intensity 0.167.

where ps ∈ [0, 1] is a scaling factor that can be defined by the user.
Using the three-sigma rule [57], we infer σ from the kernel size using:

σ =
sG − 1

6
. (3.24)

This ensures that at least 99% of the values fit in the kernel size.
The optimal value for ps depends on the image, but we provide
a reasonable default value for this in Chapter 6. The effect of the
brightness correction step can be seen in Figure 3.5. The issue with the
filter approach is that small shadow and highlight regions are still not
fully accurate, as these higher frequency details are not captured due
to the Gaussian filter. As such, for these regions, shadows tend to be
lifted, while highlights can be diminished. Additional improvements
could be made to this, but that is left to future work. The pseudocode
for the entire bit-depth expansion process can be seen in Algorithm 2.

3.6 colour images

While we primarily focus on greyscale images in this thesis, we also
want to provide a simple and brief outline of how the method can
be applied to colour images for the sake of completeness. Colour
images are generally represented in (a variant of) the RGB colour
space. However, similar to how quantisation methods can suffer from
the false contours seen in Figure 2.1, applying the bit-depth expansion
scheme on each RGB channel separately will result in similar issues.
As such, a better approach is to use the YCbCr colour space instead. It
should be noted, however, that if the quantisation process introduces
false contours, the bit-depth expansion process will not eliminate these.
Despite this, the method can still produce visually pleasing results on
RGB images provided that the image was quantised properly, as we
show in Section 7.1.

3.6 colour images 21

Algorithm 2: expandBitDepth(L, CP)
Input : A d-bit indexed image L of size m× n, its colour palette CPL

with CPL(i) ∈ [0, 1], 0 ≤ i < 2d and a value ps controlling the
filter size in the brightness correction step.

Output : The reconstructed floating-point image Īc.

1 SDFs ← array of size 2d + 1; // Evaluate signed distance field for

each layer

2 for i = 1 to 2d do
// Due to L being indexed, we can threshold directly using i

3 B ← threshold(L, i);
4 Bc ← 1 - B;
5 SDFs[i] ← DFB - DFBc ; // Equation 3.16

6 end
// Bottom layer

7 SDFs[0] ← SDFs[1]−max(SDFs[1]); // Equation 3.17

// Top layer

8 SDFs[2d] ← SDFs[2d − 1] + |min(SDFs[2d − 1])|; // Equation 3.18

9 CP[2d] ← 2 ∗ CP[2d − 1]− CP[2d − 2]; // Equation 3.19

// Reconstruction

10 Ī ← reconstruct(L, CP, SDFs); // Algorithm 1

// Brightness Correction

11 sG ← ps ·max(m, n);
12 σ ← (sG − 1)/6; // Equation 3.24

13 G ← gaussianKernel(σ, sG);
14 Īc ← Ī − ((Ī ∗ G)− (L ∗ G)); // Equation 3.21

4
C O M P R E S S I O N S C H E M E

Having introduced a means of enhancing bit-depth, the natural next
step is to leverage this for a compression scheme. Quantisation provides
an effective way of reducing the amount of data needed to be encoded.
Clearly, using fewer bits to represent an image reduces the amount
of data to encode. In addition to this, the reduction in bit-depth also
means that fewer unique values can be represented. This increase
in data redundancy allows the data to be encoded more efficiently.
During the quantisation process, data is lost, meaning that the scheme
we present here is a lossy compression scheme.

4.1 compression

The initial idea of our compression scheme is relatively simple. The
first step is to quantise the input image I to d bits. The quantisation
process can be seen as the removal of layers. Ideally, the quantisation
algorithm should progressively remove those layers that cause the least
amount of visual quality loss. However, this is not a trivial problem
to solve. Progressively removing layers can cause the algorithm to
get stuck in local minima, which would ultimately mean that all
possible combinations of layers would need to be evaluated, which
would result in an extremely expensive algorithm. Even if one were
to progressively remove layers, finding out which layer contributes
least to the reconstruction is still extremely expensive. This was also
noted by Wang et al. [76]. As an alternative, they proposed to use
heuristics based on the histogram of the input image to select which
layers to remove. While this sounds promising, we found that k-means
outperformed this method for our purposes. As such, we opted to use
k-means instead. Despite modern hardware getting faster, k-means can
still be very slow for large images. Finding a global optimum to the
k-means objective function is NP-hard [4], so in practice, the algorithm
runs for a maximum number of iterations maxiter. As a result, the
time complexity of k-means for an m× n image is O(m · n · k ·maxiter).
Clearly, its performance is therefore heavily dependent on the image
size.

One can make the observation that k-means is only used for finding
an optimal colour palette. This means that the spatial pixel informa-
tion is not relevant. Using this information, we can gain a significant
performance improvement by applying k-means on the histogram of
the image instead. This requires a small modification of the algorithm,
where the cluster centres are represented by and based on the indices

23

24 compression scheme

of the histogram, while the means are updated by taking into con-
sideration the number of pixels at each index. The result of this is
surprisingly powerful, as the time complexity of k-means is no longer
dependent on the image size, but on the bit-depth dL of the input
image: O(2dL · k ·maxiter). Even for 16-bit images (which would require
a large histogram), this approach is already beneficial for image sizes
starting at 256× 256.

After quantisation of I, we obtain an image L with a colour palette
consisting of k = 2d colours. Without any further modification, our
image byte sequence still consists of m · n bytes (assuming the input
image was 8-bit). Therefore, the 8− d most significant bits are always
zero. While most encoding algorithms can deal with this data repe-
tition, packing the pixel data first tends to improve the compression
ratios. By packing the pixel data, we can obtain a pixel sequence of
m · n · d

8 bytes. The resulting byte sequence can then be efficiently
encoded using any of the existing encoding algorithms such as DE-
FLATE [52]. It should be noted, however, that the pixel data does not
necessarily need to be treated as a plain byte sequence, so existing
image compression algorithms such as PNG could also be used. For
the purposes of our compression scheme, we use the DEFLATE al-
gorithm as implemented by zlib [23], providing an effective and easy
way to compress the pixel byte sequence. We found that this was more
effective in compressing the pixel data compared to PNG compression.

It is important to use a lossless compression algorithm when com-
pressing the quantised image. Using a lossy algorithm might provide
a better compression ratio, but it can introduce artefacts in the quant-
ised image that affect the reconstruction. Recall that the bit-depth
expansion process blends consecutive layers. As a result, any lossy
algorithm that introduces new layers in between the existing layers,
or shifts the layers in any way can severely affect the visual quality of
the reconstructed image.

4.1.1 Multi-scale Compression

A compression scheme solely consisting of a quantisation step and
bit-depth expansion does not necessarily provide good reconstruction
results. To achieve performance similar to existing lossless schemes,
the quantisation step should quantise the input image to 3 or 4 bits at
most. However, despite the ability of our expansion scheme to improve
the visual quality of low-bit-depth images, it does not introduce new
details and in order for the compression scheme to be usable, the
reconstructed results should be as close as possible to the input image.
The quantisation process captures primarily the low frequencies, as
these convey the most information regarding the overall structure
and shape of the image. However, this means that a lot of the higher-
frequency details are lost during this quantisation step. If we could

4.1 compression 25

efficiently find, extract and store the low-frequencies, then the quant-
isation process could focus primarily on the higher-frequency details,
resulting in improved reconstructions.

As such, the idea behind this part is to first remove the low fre-
quencies of the image and store them in an efficient manner. With the
removal of the low frequencies, the quantisation step then has to en-
code a smaller range of colours and can capture the higher frequency
details of the input image. For the extraction of the low frequencies,
there are numerous approaches possible. Methods often use the fre-
quency domain for this by using DCT or wavelet transforms. While
these methods would likely produce comparable results, we propose
a simpler approach that extracts the low frequencies of an image by
applying a low-pass filter, using e.g. the Gaussian kernel described
in Equation 3.22. We can extract the low-pass-filtered image from
the input image to obtain a residual that only contains the higher
frequencies. The issue with this approach is we also need to be able to
efficiently store the low frequencies. This is where we can use an idea
that is relatively common in multi-scale image processing.

Instead of filtering the input image directly, we first create a smaller
resolution version S. This version can then be filtered and upscaled
again to calculate the residual. The advantage of this is that the storage
of the low-resolution image is extremely cheap. To obtain this small-
scale image S, we resize the input image to a portion p ∈ R, 0 < p < 1
of its original size while maintaining the original aspect ratio:

S = downscale(I, p ·m, p · n). (4.1)

The exact value of p depends on the input image. We found that for
the majority of the images, p = 1

8 provided a good trade-off between
compression size and visual quality. This means that for an input
image of 256× 256, the resized image is 32× 32. We still need some
degree of low-pass filtering as upscaling S results in a blocky image.
There is the possibility of applying this filter after the upscale step,
but we can also apply it beforehand:

Sb = S ∗ G. (4.2)

This is much faster performance-wise and still reduces the ap-
pearance of blockiness significantly. We can now extract the high
frequencies from I by calculating the residual:

Ir = I − upscale(Sb, m, n). (4.3)

The resulting residual Ir is then ready to be quantised to L using
k-means. The outputs of the compression step are L and S and the
entire process can be seen for the peppers image in Figure 4.1. We also
observed that the method appears to perform best when downscale

and upscale use some form of interpolation instead of using a nearest-
neighbours approach. The choice between cubic and linear interpol-
ation does not make a significant impact on the reconstruction, so

26 compression scheme

(a) Input (b) Resized to 32x32 (c) Low-pass filtered

(d) Resized to input size (e) Residual (f) Residual (3-bits)

Figure 4.1: Compression steps for the peppers image. The final output of the
compression algorithm consists of (a) and (f).

we opt to use linear interpolation for the sake of performance and
simplicity.

Evidently, this approach comes with the added cost of storing the
low-resolution version of the input image. However, the benefit out-
weighs the cost here, as the extra storage space required is generally
only around 10% or less for p = 1

8 . This could be reduced even further
by also quantising S. However, whether this is worth doing depends
on the size of S. When S is small, the increase in compression effect-
iveness by quantising S is minimal. For larger images, this could make
a bigger difference, but it is still only a small portion of the total file
size that is affected by this.

It should also be noted that in addition to storing this low-resolution
image, the final compression result would need additional metadata.
The compression scheme essentially produces two separate images,
so if these are to be stored in a single file, then extra information has
to be added to denote where and how L and S are stored. While this
adds to the complexity of the file format, it does not contribute to the
final file size in a considerable way.

4.2 pipeline 27

Downscale by
factor

Low-pass filter Upscale

Calculate
residual Quantise to bits

EncodeInput Compressed
Output

(a) Compression pipeline.

Low-pass filter Upscale

Bit-depth expansion

AddCompressed
Input OutputDecode

(b) Decompression pipeline.

Figure 4.2: Proposed compression scheme.

4.2 pipeline

The full pipeline for both compression and decompression can be seen
in Figure 4.2. We should note that this compression approach is similar
to existing ideas from multi-scale image processing [1], specifically,
the image encoding scheme proposed by Burt et al. [12]. There are a
few key differences, however. First, we only use a single image to store
the lower frequencies. Second, we apply the low-pass filter before
upscaling. Lastly, we use resizing with interpolation, whereas the
method of Burt et al. uses simple downsample/upsample functions.

Experiments were also done involving perceptually uniform colour
space. Greyscale images are typically linear in nature, but not percep-
tually uniform. The CIELAB colour space [14] provides such a colour
space where the L-component is perceptually uniform. Additionally, it
ranges from 0-100 instead of 0-255 for traditional greyscale images. As
such, an idea was to remove the first 155 layers by simply converting
to this colour space. However, this did not show any considerable im-
provements. This, in addition to the added performance penalty, made
us decide not to include it. Various other modifications could be made,
such as using different encoding/decoding methods, pre- or post-
processing steps or alternative ways of extracting the low-frequency
components. We leave this for future work, however.

5
N I T R O

Many methods in the image processing domain consist of multiple
stages and the construction of these stages can require a significant
amount of trial and error. This process can be very time-consuming
as the developer needs to modify the source code, recompile, and
run the program countless times. Additionally, it is often desirable to
compare various options or versions, which tends to result in a very
complex UI and potential code duplication. Our newly developed
open-source application NITRO1 attempts to solve all of these issues.
NITRO (Figure 5.1) is a powerful tool for building complex image
processing routines in a non-destructive manner. At its core, NITRO
is a visual node editor, meaning that the user can construct a custom
graph of nodes to create their own pipeline. When building a new
image processing pipeline, one often uses existing building blocks.
This is where NITRO shines: it comes with a large collection of these
building blocks in the form of nodes, ranging from simple transform
and blend operations to more complex filters or frequency domain
transforms.

Figure 5.1: NITRO, a visual node editor for creating custom image processing
pipelines.

NITRO was built using C++, Qt, CMake, and OpenGL. It uses
OpenCV as the backbone for its image representation and the QtNodes
library2 to do the heavy lifting of the visual graph representation.
However, a significant number of changes to this library were required
in order to get the desired qualities. To this end, we created a fork
containing these numerous modifications. The GUI of NITRO was
inspired by Blender’s Shader Editor given its user-friendliness and

1 https://github.com/BugelNiels/nitro

2 https://github.com/paceholder/nodeeditor

29

https://github.com/BugelNiels/nitro
https://github.com/paceholder/nodeeditor

30 nitro

flexibility. The project was developed with extensibility in mind, which
means that it is easy to define custom nodes, data types, or even
custom GUI widgets. Below we outline a few of the implementation
and design details of NITRO to highlight its usability for future image
processing research.

5.1 nodes

Fundamentally, a node consists of a number of input ports, output
ports, and an operation. This operation is what is executed when
the node graph is evaluated. The input ports are used to retrieve
the input data for the operation, while the results are propagated
to the output ports. One of the primary goals of NITRO is to make
it easy to add new nodes and it should streamline new research by
removing as many obstacles as possible when designing new image
processing operations. To this end, the way nodes are constructed was
carefully designed to use a combination of the builder pattern and
the command pattern to achieve this [27]. The combination of these
patterns makes it straightforward to add new nodes while providing
optimal flexibility. A simple example of a node implementation can
be found in Appendix A.1.

5.2 data types

A data type in NITRO is a wrapper for the data it represents. These
data types are the things passed between the nodes when the graph
is evaluated. At the time of writing, NITRO supports 4 different data
types:

• Integers

• Doubles

• Greyscale Images

• Colour Images

We made the explicit distinction between greyscale and colour im-
ages, seeing that a number of image processing routines only work on
(or only produce) greyscale images. However, this presented a chal-
lenge, as user experience is vital for NITRO. By using two different
data types for images, it would mean that the user would always have
to explicitly convert between greyscale and colour images using a ded-
icated node when using a node solely intended for greyscale/colour
images. This is where the type conversion system comes in. Any data
type can register a dedicated conversion function that specifies how
it can be converted from any other data type. For example, a colour

5.3 modules 31

image can be converted to a greyscale image by extracting its lumin-
ance channel. Similarly, greyscale images can be converted to colour
images by simply duplicating the greyscale channel into the RGB
channels. Another example would be the conversion between integers
and doubles. These conversions can all be specified within the data
type itself, making it very flexible. A simple data type implementation
example can be found in Appendix A.1.

There are some use cases where — even though a type conversion is
possible — a node should not accept said type as input. For example,
any double input port always accepts integers (as defined in the
double data type). However, in certain cases, it might also be desirable
to accept a greyscale image instead of a plain double. This prevents
the user from having to spawn separate nodes when working with
operations that are applicable to both images and numbers (such
as basic math operations). This is why it is also possible to specify
additional data types that a given port should accept.

While the main purpose of NITRO is to construct image processing
pipelines, its core functionality is not dependent on images. As a
matter of fact, NITRO can work with any data type the developer
defines. This means that it is possible to define custom data types to
extend the functionality further. Some possible future extensions to
NITRO could be support for e.g. strings, meshes, curves, etc.

5.3 modules

To facilitate the addition of new data types and nodes, NITRO uses a
module system. Not only does this promote decoupling, but it also al-
lows developers to work on their own modules independently without
affecting the source code of NITRO itself. The module system allows
the developer to separate certain functionality into a module, which
can then be enabled/disabled at compile time. This means that e.g.
support for meshes and geometry manipulation can be implemented
as a separate module. Additionally, the user can then decide which
modules to include and/or exclude depending on their needs. For
example, a user aiming to design an image processing pipeline is likely
not interested in any functionality related to 3D meshes or curves. To
prevent clutter in the UI and potential hogging of resources, they can
decide not to include these modules. Examples of subjects that could
have their own module in the future could be image segmentation,
geometry, curves, machine learning, or videos.

6
M E T H O D O L O G Y

To gain an understanding of how well the bit-depth expansion (Chapter 3)
and compression scheme (Chapter 4) perform, we use a number of
different images of varying sizes (Figure 6.11). The image contents
range from simple gradients to highly textured regions to ensure we
can test how the methods perform in different situations.

(a) Gradient
(256× 256)

(b) Peppers
(512× 512)

(c) Cat
(1024× 1024)

(d) Lighthouse
(768× 512)

(e) Plane
(768× 512)

(f) Bernoulliborg
(2000× 1500)

(g) Ducks
(960× 720)

Figure 6.1: Images used to assess the performance of the bit-depth expansion
method and compression scheme.

The bit-depth expansion and compression schemes are evaluated
separately. For the bit-depth expansion method, we use images quant-
ised using k-means to determine how well it can reconstruct the input
image. It should be noted that the reconstruction performance is in
part also influenced by the quality of the quantisation process. Given
that k-means produces good results, however, this effect is limited.

We evaluate the bit-depth expansion method by testing it on images
quantised to 3 and 4 bits respectively. While our method also works for
high bit-depths, the differences in visual quality are difficult to assess
there as they are typically not perceptible. However, showing that the
method can perform well on these low-bit depth images allows us to
draw conclusions on how well it performs on higher bit-depth images.

For the analysis of the compression scheme, we analyse two things.
First, we assess the loss of visual quality resulting from the lossy

1 Note that the ducks image is used only for the colour bit-depth expansion.

33

34 methodology

compression scheme using a similarity metric. Next, we compute the
compression ratios based on the compressed data:

CR =
nu

nc
, (6.1)

where CR is the compression ratio, nu is the number of bits of the
uncompressed image and nc is the number of bits for the compressed
image. These results are then compared to JPEG compression to give
a frame of reference. To do this, we compress the images using JPEG
in such a way that the final file sizes (and therefore compression
ratios) are as close together as possible. This is done using the quality

parameter that JPEG compression provides. The visual quality of the
decompressed image can then be compared between our method and
JPEG compression. It is worth mentioning that the quality parameter
is specified by an integer and ranges from 0 to 100. As such, the final
file sizes cannot be matched perfectly.

6.1 similarity metrics

There are numerous methods for measuring image similarity. The
most popular ones include the mean-square error (MSE), peak-signal-
to-noise ratio (PSNR) and structural similarity index (SSIM). The
three metrics are all referred to as full-reference metrics, i.e. metrics
requiring both an input image I and a reference image Ire f .

The mean-squared error is calculated as follows:

MSE(I, Ire f) =
1

m · n ∑
p
(I(p)− Ire f (p))2. (6.2)

It represents the average squared distance between two images. As
the name suggests, MSE is an error metric, so the lower the value, the
higher the similarity. However, its value can be difficult to interpret.
This is where PSNR comes in: it uses the MSE value and gives it
context by using a logarithmic transform and combining it with the
maximum possible value a pixel can have:

PSNR(I, Ire f) = 20 · log10(MAXI)− 10 · log10(MSE(I, Ire f)), (6.3)

where MAXI is the maximum possible value a pixel can have. For an
image of k bits, MAXI = 2k − 12. PSNR is expressed in decibels (dB),
where higher values indicate a greater similarity.

Neither MSE nor PSNR takes into consideration aspects of the hu-
man visual system. Various methods have been proposed to improve
on this including SMAPE [72], SSIM [77], S-CIELAB [35, 82], and HDR-
VDP-2 [46]. Arguably the most used of these is SSIM, which is based
on three components: luminance, contrast, and structure. Using these

2 In the case of floating-point images, MAXI = 1.0.

6.1 similarity metrics 35

three components, it attempts to take into account how the human
visual system reacts to these changes. Despite SSIM aligning more
with human perception compared to MSE and PSNR, there are still
numerous issues with it [55]. To give an example, a slight rotation or
translation of the image can produce extreme errors, despite the im-
ages being visually nearly equivalent. There are a number of variations
on SSIM that attempt to improve its accuracy, such as MSSIM [41] and
MS-SSIM [78]. However, these methods are still not without issues, so
we opt to use a different metric instead.

6.1.1 NVIDIA FLIP

FLIP is a new visual similarity metric for images developed by NVIDIA [5].
Their method uses various aspects of the human visual system to build
an error map that is representative of the differences perceived by hu-
mans. The primary purpose of FLIP was to compare rendered images
by flipping between them in place (hence the name). One fundamental
aspect that sets FLIP apart is its usage of viewing distance as part of
the parameters. For example, a black and white chessboard viewed
from some distance will appear grey to the observer. This is not cap-
tured by similarity metrics such as PSNR or SSIM, while FLIP takes
this into consideration by letting the user define the PPD (pixels per
degree).

The FLIP pipeline consists of two important parts: a colour pipeline
and a feature pipeline. In the colour pipeline, they detect differences
in colour. They first perform a spatial filtering step using filters based
on the human contrast sensitivity functions. The colours are then
converted to a perceptually uniform colour space before they are
compared. This colour space conversion allows FLIP to deal with
phenomena such as the Hunt effect [34]. In the feature pipeline, feature
differences between the two images are evaluated using edge and point
detection. The resulting errors from the colour and feature pipelines
are then combined into a single value.

As FLIP outperforms all of the aforementioned metrics, this is also
the metric that is used in this thesis. Fundamentally, FLIP produces
a per-pixel difference map instead of a single value such as MSE or
PSNR. For a number of images, we provide the error map, but it is
also important to have a quantitative value associated with this. In
their paper, the authors of FLIP specify that it is suitable for pooling.
As such, we also provide the mean FLIP error for the images. For the
results, we used a PPD value of 33.5. This corresponds to viewing a
70 cm wide screen with a horizontal resolution of 1920 pixels from a
distance of 70 cm. Despite the aforementioned issues with MSE and
PSNR, we recognise that they are still widely used. As such, we will
not only provide the mean FLIP error but also the MSE and PSNR for
each image comparison.

36 methodology

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

ps

FLI
P

re
co

ns
tr

uc
ti

on
er

ro
r

Gradient Peppers
Cat Lighthouse
Plane Bernoulliborg
Ducks

Figure 6.2: Impact of the filter size sG = ps ·max(m, n) as determined by
ps in the brightness correction step on the FLIP reconstruction
error. Images with large smooth regions tend to favour a larger
ps, whereas heavily textured images are reconstructed more ef-
fectively using a smaller ps.

6.2 brightness correction

The brightness correction step has a user-controllable parameter ps.
However, it is not always desirable or feasible to give the user control
over this, so we also provide a sensible default value for ps. The impact
of ps on the reconstruction of various images can be seen in Figure 6.2.
Here we see that heavily textured images such as the cat image
favour lower values of ps, while images containing larger regions or
gradients favour higher values of ps. It is clear that there is no single
best value, and while it might be possible to estimate a good value
for ps based on image content, this would require significant extra
computations. Histogram-based approaches are unlikely to provide
a good estimate, as spatial pixel information is important. A better
approach could be to look at the average or maximum component
size of the component tree, but computing this component tree is an
expensive operation [49]. As such, the results shown in Chapter 7

were obtained the default value ps = 1
8 , which seems to provide a

reasonable trade-off between contour removal and maintaining details
in the shadows and highlights. However, if contour removal is the
primary objective, then it is worth increasing ps with a slight sacrifice
to the reconstruction error in textured regions.

6.3 performance evaluation 37

6.3 performance evaluation

While performance was an important consideration when designing
the methods, it was not the main focus of this project. Nevertheless,
we want to give some indication of how fast our methods run. As
such, we also provide some basic performance measurements of both
the bit-depth expansion algorithm and the compression scheme.

As the bit-depth expansion is well-suited for parallelization, we
created a simple parallel implementation using OpenMP. For this, we
follow a very simple strategy where two primary parts are parallelised:
first, each thread is responsible for calculating the signed distance
field of a single layer of the input image. Second, the reconstruction is
parallelised by assigning each thread a portion of the pixels. It should
be noted that a fully optimised version can be made to run significantly
faster. In this case, the signed distance field calculation itself should be
split up, since the distance transform algorithm allows for this. This
would make better use of spatial locality. Additionally, a number of
the functionalities that are currently performed by OpenCV, such as
handling the matrix expressions and finding minima/maxima, can
then be parallelised much more effectively. Finally, by doing this, all
threads only need to be spawned once, instead of for each operation,
which would reduce a significant amount of overhead. As such, this
performance test should only be used to give an intuition on how it
can perform; a well-optimised version would be significantly faster.

In that same vein, the brightness correction step has been disabled
for the purposes of this parallelisation performance test. The current
implementation relies on OpenCV implementations for Gaussian-blur
and there are a significant number of improvements to be made here
when it comes to (parallel) performance. To give a realistic idea of the
parallel performance it can achieve, we omit this from the performance
results (although they can still be found in the Appendix).

To this end, we also provide a brief evaluation of the parallel per-
formance and the speed-up it achieves. The speed-up s is calculated
as:

s(p) =
Tseq

Tpar(p)
, (6.4)

where Tseq is the execution time and Tpar(p) the execution time using
p processors. The efficiency e(p) is then determined using:

e(p) =
Tpar(p)

p
. (6.5)

All execution times were obtained by taking the median runtime over
10 runs using a Ryzen 5900x.

7
R E S U LT S

Below we provide the results and corresponding discussion for the bit-
depth expansion method and compression scheme. In addition to this,
we also evaluate its performance. This chapter is structured as follows.
First, we show the results of the bit-depth expansion algorithm in
Section 7.1. Next, we demonstrate the performance of the compression
scheme and how it compares to JPEG compression in Section 7.2.
Finally, we analyse the runtime performance of both the bit-depth
expansion method and compression scheme in Section 7.3.

7.1 bit-depth expansion

The results for our bit-depth expansion scheme on the peppers image
can be seen in Figure 7.1. There are a few things to note here. First,
a number of highlights are lost in the quantisation process. It can be
seen in Figure 7.1c that these highlights are not fully recovered by the
expansion process, which is also evident when inspecting the FLIP
error map. This shows, as explained in Section 3.4, that the majority
of the errors lie in the shadows and the highlights. Part of this can
be attributed to the quantisation process, as quantisation tends not
to capture small but important colour regions in the shadows and
highlights of the image. Given that our approach is not data-driven, it
is unrealistic to expect it to reproduce these areas perfectly at such a
low bit depth. However, for the shadows, the errors can be primarily
attributed to the fact that our bit-depth expansion method at its core
only increases brightness — something that the brightness correction
step is unable to fully compensate for in these regions.

As we increase the bit-depth from 3-bit to 4-bit, we see that these
issues are reduced. Where the initial quantised image clearly shows
noise and contours, this is significantly reduced in the reconstructed
image. It can be observed though that the method is relatively sensitive
to noise in the quantised input, which is particularly visible in the
dark pepper at the centre of the image. Whether this is for better or
for worse is difficult to say. On one hand, it can produce these slightly
spotty patches, but on the other hand, it does not cause any completely
smooth/flat areas and gives the illusion of texture.

Looking at the Lighthouse image in Figure 7.2, we can see that
even with very little colour information, our bit-depth expansion
method can still reproduce a relatively convincing output image. In
particular, the sky and clouds appear of higher quality compared
to their quantised counterpart. Granted, as one zooms in further, it

39

40 results

(a)

(b) (c) (d)

(e) (f) (g)

Figure 7.1: Bit-depth expansion results of the Peppers image. The majority
of the reconstruction errors lie in the shadows and highlights. (a)
Input image. (b) Quantised 3-bit image. (c) Reconstructed 3-bit
to 8-bit. (d) FLIP 3 to 8-bit reconstruction error. (e) Quantised
4-bit image. (f) Reconstructed 4-bit to 8-bit. (g) FLIP 4 to 8-bit
reconstruction error.

(a) (b)

(c) (d)

Figure 7.2: Reconstruction of the Lighthouse image. The visible contours
and noise in the sky are significantly reduced, while the sharp
edges are maintained. (a) Original 8-bit image. (b) Cropped 8-bit
image. (c) Quantised 3-bit image. (d) Reconstructed 8-bit image.

7.1 bit-depth expansion 41

(a) (b)

(c) (d)

Figure 7.3: Reconstruction of the Bernoulliborg image reducing the visibility
of contours. (a) Original 8-bit image. (b) Cropped 8-bit image. (c)
Quantised 3-bit image. (d) Reconstructed 8-bit image.

is clear that details are missing, but this is as expected given the
small amount of information in the quantised image. Generally, the
reconstructed image is significantly more visually pleasing that the
quantised image.

The effects of quantisation such as contouring are particularly visible
in areas that contained some sort of gradient. One common example
of these areas are skies in photos. This could already be seen in the
Lighthouse image, but it is even more apparent in the Bernoulliborg

image in Figure 7.3. The quantised image shows very clear contours
in the sky, whereas this is significantly reduced in the reconstructed
image. However, it does not fully eliminate the gradient, which is
due to the brightness correction step. In the brightness correction
step, a trade-off has to be made when choosing the filter size sG
(Figure 6.2). As the sky in this image is relatively large, the filter is
too small for this particular region of the image. As such, contours
are still present in the low-frequencies of the image, causing the
corrected reconstructed image to introduce some of these contours as
well. A comparison of this can be seen for the Bernoulliborg image in
Figure 7.4 where the reconstructed image prior to brightness correction
shows a significantly smoother gradient. While it is possible to opt for
a larger filter size, this means that other regions are affected negatively.
In more natural images this is undesirable, so despite it introducing
some degree of contours, the current filter size offers a reasonable
trade-off between smoothing larger regions and preserving intensities
in detailed regions. However, we recognise that this can be improved

42 results

(a) (b)

Figure 7.4: Brightness correction step introducing contours as a result of the
filter size as determined by ps =

1
8 being too small for the large

contour regions in this image. (a) Reconstruction before brightness
correction. (b) Reconstruction after brightness correction.

further, so we have outlined a short approach on how to do this in
Chapter 9.

The visual quality differences are summarised in Table 7.1. From
the above images, it was already clear that the bit-depth expansion
process improves visual quality over the quantised image, and the
results here confirm this as it improves on all three metrics. The only
exception to this is that for some images the PSNR is reduced slightly
in the reconstructed image. However, even in these cases, the values
are nearly equal.

Table 7.1: Differences in visual quality between the 3-bit quantised input
image and the reconstructed 8-bit image. In nearly all cases, the
three similarity metrics show improvements in visual quality when
the image is reconstructed using our bit-depth expansion method.

Quantised Reconstructed

Image MSE PSNR FLIP MSE PSNR FLIP

Gradient 71.518 29.521 0.148 22.095 34.617 0.092

Peppers 56.262 30.529 0.106 42.254 31.089 0.095

Cat 61.901 29.961 0.112 49.330 29.745 0.104

Lighthouse 45.380 31.234 0.093 40.017 31.266 0.091

Plane 47.687 31.118 0.091 32.888 32.276 0.082

Bernoulliborg 60.255 30.125 0.113 48.035 30.060 0.109

Overall, the expansion scheme produces good results, even for
images with low bit-depth. It does not overly blur sharp edges, except
in cases where the quantised image contains too little information
and the sharp edges are exactly one grey-level step apart. In these
cases, it is impossible to distinguish between what needs to be a sharp
edge and a smooth edge regardless, so this is expected. There are
some issues with the shadows and the highlights, in addition to the
brightness correction step not being perfect, which still leaves room
for further improvements.

7.1 bit-depth expansion 43

(a) (b)

Figure 7.5: Our bit-depth expansion method applied on a quantised colour
image consisting of 8 colours on the Duck and Lighthouse images
respectively. Our method does not introduce false contours and
maintains the majority of the sharp edges, despite limited inform-
ation being available in the input image. (a) Quantised colour
image consisting of 8 colours. (b) Reconstructed 8-bit colour im-
age.

7.1.1 Colour Images

For the sake of completeness, we provide two examples to show
our method can also be applied to colour images. This was done
by applying the bit-depth expansion method individually on each
channel in the YCbCr colour space. The results for this can be seen
in Figure 7.5. Generally, the results are good, as there seems to be no
appearance of false contours. While the image appears slightly blurred,
this can be attributed to the lack of information in the input image.
This lack of information is greater in colour images, because a colour
image quantised to 8 colours loses significantly more information
compared to a greyscale image quantised to 8 greyscale values. It
should also be noted that, unlike BitNet [13] or the method proposed
by Cheng et al. [19], our method does not remove any false contouring.

However, when using more colours in the input image, it does not
smooth all the desired contours. The reason for this is that the method
only blends between consecutive layers. As such, as soon as a gradient
area misses one of the intermediate colours, a contour will appear. It
should be noted that the colours were quantised directly, instead of
on a per-channel basis. A per-channel quantisation produces better
results and tends not to have these issues, but that also increases
storage costs. In general, a well-quantised image should not have this
issue, but this is not always controllable. This particular issue, along
with a possible solution, is further explained in the Chapter 9.

44 results

7.2 compression

Our compression uses quantisation as the core mechanism to achieve
good compression ratios. Given that the degree of quantisation is
configurable by the user, we provide the results for both 3-bit and
4-bit quantisation here. In Table 7.2, we can see the performance for
the 3-bit compression scheme. The algorithm performs relatively well,
generally achieving compression ratios of around 5. The exception
to this is the gradient image, which compresses extremely well. On
the other hand, heavily textured images, such as the Cat image, have
lower compression ratios. This is as expected since a higher variance
in pixel intensity typically reduces the spatial correlations that many
compression algorithms depend on. Image size does not seem to
have a significant impact on the compression ratio, given that the
Bernoulliborg achieves a comparable compression ratio compared to
smaller images.

Table 7.2: Compression performance of our method using 3-bit quantisation.
The compression scheme achieves good compression ratios, but
the similarity metrics show a notable loss in visual quality.

Image Quality Compression

Name Size (KB) MSE PSNR FLIP Size (KB) CR

Gradient 65.536 0.8 48.5 0.025 0.878 74.64

Peppers 262.144 30.4 31.1 0.082 52.085 5.03

Cat 1048.576 32.9 31.5 0.082 244.253 4.29

Lighthouse 393.216 25.8 32.1 0.072 84.923 4.63

Plane 393.216 22.0 32.2 0.060 69.709 5.64

Bernoulliborg 3000 29.9 31.7 0.079 554.338 5.41

For the JPEG comparison, we tried to match the final file size of
3-bit compression as best as possible. As such, the results for JPEG
compression seen in Table 7.3 have a separate quality parameter. First
to note is that for similar file sizes, JPEG produces higher-quality
images. The exception to this is the gradient image, which the JPEG
compression algorithm could not come close to. Overall, JPEG per-
forms much better, since it is always able to use a quality value of
80+ when trying to achieve similar compression ratios. As such, the
corresponding FLIP error map is typically much less visible than that
of our 3-bit compression scheme (Figure 7.6).

Despite JPEG performing considerably better, our compression
scheme still achieves PSNR values over 30 and the average FLIP
error never goes above 0.1. As is evident from the FLIP error map,
however, the compression scheme still struggles with the shadows and
highlights due to the bit-depth expansion process. Additionally, we
can also clearly see the loss of detail during the quantisation process.

7.2 compression 45

Table 7.3: Compression performance of JPEG. The quality parameter was
chosen in such a way that the file size is closest to that produced by
our 3-bit compression scheme. Its compression ratios are similar to
that of 3-bit compression (by construction), but JPEG compression
typically scores better on the similarity metrics compared to our
3-bit compression.

Image Quality Compression

Name Quality MSE PSNR FLIP Size (KB) CR

Gradient 0 83.8 28.9 0.156 1.144 57.29

Peppers 86 11.6 37.5 0.038 53.192 4.93

Cat 82 3.3 42.9 0.024 243.971 4.30

Lighthouse 85 11.7 37.4 0.038 82.753 4.75

Plane 90 4.4 41.7 0.024 70.275 5.60

Bernoulliborg 82 5.8 40.5 0.025 547.923 5.48

If the quantisation process is increased to 4 bits, the visual quality
of the decompressed image is significantly better. All three metrics
improve, while the final image size does not increase substantially.
Surprising is that going from 3-bit to 4-bit has no effect on the de-
compressed image for the gradient image. This most likely has to do
with the fact that this image can already be compressed extremely effi-
ciently using 3 bits. Overall, the slight increase in file size is worth the
trade-off considering the increase in visual quality, since the loss of de-
tails due to the quantisation process is notably reduced. A comparison
between 3-bit and 4-bit compression can be found in Appendix A.2.

Table 7.4: Compression performance of our method using 4-bit quantisation.
There is a slight reduction in the compression ratios compared
to 3-bit quantisation, but the visual quality of the reconstructed
images is improved significantly.

Image Quality Compression

Name Size (KB) MSE PSNR FLIP Size (KB) CR

Gradient 65.536 0.8 48.5 0.025 0.878 74.64

Peppers 262.144 17.5 34.7 0.062 62.198 4.21

Cat 1048.576 18.7 35.1 0.064 285.572 3.67

Lighthouse 393.216 16.3 35.5 0.057 94.850 4.15

Plane 393.216 11.0 37.0 0.043 80.576 4.88

Bernoulliborg 3000 13.3 36.7 0.054 679.378 4.42

46 results

(a) (b) (c) (d)

Figure 7.6: Compression comparison between JPEG and our method (3-bits)
as per the results in Table 7.3 and Table 7.2 respectively. Except
for the Gradient image, the decompressed images produced by
JPEG compression are of better visual quality than those of our
3-bit compression scheme for similar compression ratios. (a) JPEG
compression result. (b) JPEG FLIP error. (c) 3-bit compression
result. (d) 3-bit FLIP error.

7.3 performance 47

7.3 performance

Due to its excellent suitability for parallelization, we also provide
a brief comparison between the serial bit-depth expansion scheme
and the parallel implementation. The main results can be seen in
Table 7.5. It is clear that, despite the issues mentioned in Section 6.3,
the parallelisation was still beneficial. Depending on the image size,
the speed-up ranges from 3.4 to 5.9. The results also show that the
speed-up and efficiency are reduced for images containing more high-
frequency details. This can most likely be attributed to the fact that
the performance of the distance transform algorithm is to a certain
degree dependent on the image contents [25], resulting in worse load-
balancing compared to images with fewer details. However, this would
be less noticeable in a well-optimised parallelization. Note that this is
the version without the brightness correction step; the results for the
algorithm with the (unoptimised) brightness correction step enabled
can be found in Appendix A.2. Overall, the parallelisation was, despite
its simplicity, effective.

Table 7.5: Parallel execution times for bit-depth expansion in 3-bit input im-
ages. The parallelization strategy achieves speed-up and efficiency
for p = 8 processors, despite its simplicity and room for improve-
ment.

Image p = 1 (msec) p = 8 (msec) Speedup Efficiency (%)

Gradient 10.69 1.82 5.87 73.42

Peppers 56.48 13.24 4.27 53.32

Cat 142.37 41.86 3.40 42.51

Lighthouse 76.07 14.34 5.30 66.31

Plane 73.06 13.63 5.36 67.00

Bernoulliborg 345.72 80.41 4.30 53.74

The performance results for the compression process of the various
images can be seen in Table 7.6. It should be noted that these results
were obtained by using 8 threads and that the brightness step was
enabled for these results. From these timing results, we can see that
the method provides excellent results, despite the fact that a signed
distance field has to be calculated for each layer. In the compression
step, the primary bottleneck is the encoding step as performed by the
zlib library. The optimisation of the k-means quantisation really shows
its benefits here, as an unoptimised version would be significantly
slower for larger images. The performance of the compression step
could be improved even further, considering that this part is not par-
allelised. However, looking at where most of the time is spent, this
would yield diminishing returns.

48 results

Table 7.6: Execution time in seconds of the compression scheme (3-bits)
on various images for p = 1. Compression runs extremely fast,
whereas the decompression step is slower. For the decompression
step, most time is spent on the bit-depth expansion part. The over-
all execution time is primarily determined by the image size

Compression (sec) Decompression (msec)

Image Reduction Encoding Total Decoding Expansion Total

Gradient 0.16 0.31 0.47 0.10 1.92 2.02

Peppers 0.60 16.43 17.03 0.98 21.60 22.58

Cat 3.35 33.51 36.86 2.61 113.60 116.21

Lighthouse 1.37 14.32 15.69 0.94 32.27 33.21

Plane 0.78 14.75 15.53 0.88 30.28 31.16

Bernoulliborg 10.86 83.47 94.33 6.84 473.58 480.42

The decompression step is slower in comparison to the compression
step but still provides good results. Images up to 2000× 1500 can be
decompressed in less than half a second. Here, the bottleneck is clearly
the bit-depth expansion step. This can mostly be attributed to two
things. First, a signed distance field has to be calculated for each layer
of the input image. Despite that, the method does not scale extremely
poorly as the bit-depth increases. To give an indication, even for 256

grey levels in the input image, the bit-depth expansion part only
takes 2.1 seconds. Second, the brightness correction step is relatively
slow, as it fully depends on the OpenCV implementation. The fact
that the method still performs well as the number of grey levels in
the input image increase seems to suggest that this step is nearly as
detrimental to performance as the signed distance field calculations.
Despite all this, the bit-depth expansion algorithm is still relatively
fast. For images of size 768× 512, the decompression takes around 33

milliseconds, which is equivalent to roughly 30 fps. Given its potential
to be optimised further, we can conclude that its performance is very
promising.

8
C O N C L U S I O N S

In this thesis, we proposed a method for bit-depth expansion and
used it to construct a lossy compression scheme. The bit-depth expan-
sion method makes use of signed distance field blending to create
a smoother version of the input image. Overall, it performed well
as it is able to improve the visual quality of quantised images by a
considerable amount. However, there are still various improvements
to be made to the scheme, as it tends to produce the majority of the
errors in the shadow and highlight regions of the image. The method
is relatively expensive, given that it requires a signed distance field to
be calculated for each grey level of the input image. Fortunately, the
algorithm is trivially parallelised, which we demonstrated provided
a good speedup. Using this parallel approach, we showed that the
majority of images can still be reconstructed in a short amount of time.

The compression scheme makes use of quantisation in the com-
pression step. To improve the visual quality of the decompressed
image while maintaining good compression ratios, we extract the
low-frequencies into a low-resolution image. The residual and low-
resolution are then encoded using the DEFLATE algorithm. In the
decompression step, these images are decoded and bit-depth expan-
sion is applied to the residual image. This is then combined with the
low-frequencies to obtain the decompressed image. The compression
scheme can effectively compress images, achieving compression ra-
tios of around 5. Still, it still lags behind existing lossy compression
methods such as JPEG compression.

Ultimately, both the bit-depth expansion method and the compres-
sion scheme seem to be promising. However, before these methods
are viable to use, the suggestions outlined in Chapter 9 should ideally
be implemented and experimented with. This might improve its re-
construction results and runtime performance to the degree that this
method can then be viably used in the real world.

49

9
F U T U R E W O R K

There are various improvements that can still be made to both the
expansion method and the compression scheme. A number of these
were already briefly commented on before, but we outline them below
in further detail.

• As mentioned in Chapter 3, the bit-depth method only increases
the pixel intensity by construction. To combat this, we introduced
a brightness correction step using a low-pass filter. However, this
correction step suffers from two main issues: it requires a trade-
off for the filter size and small regions that require this correction
are typically not captured by this filter approach. There are two
approaches that could improve this. The first approach focuses
on the brightness correction step. Here an adaptive filter [67]
could be used to change the degree to which particular regions
are filtered. This could possibly prevent the issues shown in
Figure 7.4, where the brightness correction step re-introduced
some contouring effects. The second, more complicated approach
would be to change the blending method such that existing layers
are not necessarily interpolated. The result of this would be a
method that does not always increase pixel intensity but can also
lower it. This would however require a different approach for
interpolating the distance layers.

• In certain cases, the bit-depth expansion method does not smooth
all contours it is expected to smooth. This is typically the result
of a suboptimal quantisation process, but this is not always
controllable by the user. The reason that this occurs is that it
only blends two consecutive layers, which means that if there
is another layer in between (even though it is not present in
that particular region of the image), the contour will remain.
On a global image scale, this is desirable for maintaining edges.
However, locally it might be desirable to still blend between
layers even if they are consecutive. The issue is showcased in
Figure 9.1. A fix for this would be to do the blending based on
the Max-Tree [49]. In these cases, each component is blended
with its parent component (or vice versa). As the Max-Tree is
flattened during its construction, this means that locally two
layers can still blend even if they are not consecutive. However,
whether this will actually improve the visual quality or blur the
image and edges too much is difficult to say.

51

52 future work

(a) (b)

Figure 9.1: Different approaches to layer blending, (a) Current blending
method which only blends between consecutive layers, (b) Blend-
ing method that blends between any two components.

• The current bit-depth expansion requires a signed distance field
to be calculated for every grey level of the input image. While
we already use an algorithm that does this in linear time, this is
still an expensive operation to do. Additionally, its performance
is highly dependent on the bit-depth of the input image, as
a higher bit-depth requires more signed distance fields to be
calculated. Improving the efficiency of this is not a trivial matter,
but we try to provide some pointers here.

First, the algorithm we use proposed by Meijster et al. [47] con-
sists of two phases. The vertical phase is relatively independent
in the sense that it does not require any neighbour information,
besides its top and bottom neighbours. As such, this phase can
be altered slightly by calculating for each pixel p the distance to
the nearest pixel q such that I(p) < I(q). For a given column,
this can be done efficiently by constructing two 1D max trees:
one constructed by traversing the column top-down and one
constructed by traversing the column bottom-up. The distances
of the pixels are simply the y-differences between the pixel and
its parent component. The final vertical scan result can then be
obtained by taking the minimum of these distances from the two
Max-Trees. It should be noted that one still requires additional
index information for the second phase, as just the distances are
not enough in this case. Currently, we have not found a way to
alter the second phase in a similar fashion.

An alternative approach could be to use Max-Trees. As we can
calculate the greyscale value directly using linear interpolation,
we require only two distance values per pixel. As such, it should
not be necessary to calculate the distance for every layer. One
possible way to do this using max trees is by storing the contours
of each component and then calculating the distance for a given
pixel by finding the closest contour pixel of its parent component.
This would most likely be reasonably fast, provided that the Max-
Tree can be constructed efficiently using e.g. [49] and that the
contours can also be extracted efficiently. However, the efficiency
would still be very much dependent on the image contents. It has

future work 53

the advantage that it becomes more efficient as the bit-depth of
the input image increases. This is because the average component
size will be smaller in these cases, so each pixel has to search
a smaller set of pixels to find the closest distance. This method
would also work well with the point mentioned before regarding
Max-Trees.

• The bit-depth expansion method is extremely suitable for par-
allelisation. Essentially, every pixel can be evaluated independ-
ently from other pixels (depending on the distance transform
algorithm used). This means that it would not only be possible to
efficiently parallelise this on the CPU (as implemented already)
but can also be parallelised on the GPU. There are existing meth-
ods for evaluating distance fields on the GPU [6] and there are
also methods available for Max-Trees [9] in case the aforemen-
tioned approach is used.

• There is room for improvement in the quantisation process of
the compression scheme. While k-means generally produces
good results, it does not take into consideration how are method
is used for reconstruction. Ideally, the quantisation method re-
moves those layers in such a way that the bit-depth expansion
algorithm can reconstruct them as closely as possible. Ideally,
this method should then also consider the fact that the expansion
method only increases pixel intensity, which might then negate
the need for the brightness-correction step.

• NITRO still has room for numerous features and improvements.
Two features that would be nice to have are code generation and
node procedures. With code generation, it would be possible
to generate the C++ of the current node graph. This allows
programmers to include their custom-built pipeline into other
programs. As such, NITRO can then be used for generating a
quick prototype/skeleton of the pipeline, which can then be
optimised and extended manually using the generated code. On
the other hand, node procedures would allow the user to group
a number of nodes into a single procedure node. The advantage
of this is that custom routines can then be easily re-used without
cluttering the node graph view. Other improvements include
support for GPU processing, additional image-processing nodes,
extra modules with functionalities for e.g. image segmentation,
an automatic build pipeline, improved dock widgets and the
inclusion of unit tests.

• A large number of existing lossy compression algorithms rely on
quantisation. It would be interesting to see how the integration
of our bit-depth expansion method would improve the visual
quality of the decompressed image.

A
A P P E N D I X

a.1 nitro

a.1.1 Nodes

Source Code A.1: Command pattern implementation for a node that calcu-
lates the discrete cosine transform of a greyscale image.

1 void nitro::DCTOperator::execute(NodePorts &ports) {

2 if(!ports.allInputsPresent()) {

3 return;

4 }

5 // Get the input data

6 cv::Mat inputImg = *ports.inGetAs<GrayImageData>("Image");

7 int inverse = ports.getOption("Inverse");

8 // Evaluate

9 cv::Mat result;

10 cv::dct(inputImg, result, inverse);

11 // Store the result

12 ports.output<GrayImageData>("Image", result);

13 }

Source Code A.2: Construction of a node using the builder pattern.

1 NitroNodeBuilder builder("DCT", "dct", category);

2 return builder.

3 withOperator(std::make_unique<DCTOperator>())->

4 withIcon("frequency.png")->

5 withNodeColor({255,0,0})->

6 withInputPort<GrayImageData>("Image")->

7 withCheckBox("Inverse", false)->

8 withOutputPort<GrayImageData>("Image")->

9 build();

55

56 appendix

a.1.2 Data Types

Source Code A.3: Header file for an integer data type.

1 #pragma once

2

3 #include <utility>

4

5 #include "QtNodes/NodeData"

6 #include "flexibledata.hpp"

7

8 namespace nitro {

9 class IntegerData : public FlexibleData<int, IntegerData> {

10 public:

11 IntegerData();

12

13 explicit IntegerData(int value);

14

15 static QString id() {

16 return id_;

17 }

18

19 static void registerConversions();

20

21 [[nodiscard]] QString getDescription() const override;

22

23 private:

24 inline static const QString name_ = "Integer";

25 inline static const QString id_ = "Integer";

26 inline static const QColor baseColor_ = {89, 140, 92};

27 };

28 } // nitro

A.1 nitro 57

Source Code A.4: Source file for an integer data type.

1 #include "nodes/datatypes/integerdata.hpp"

2 #include "nodes/datatypes/decimaldata.hpp"

3

4 namespace nitro {

5 IntegerData::IntegerData()

6 : FlexibleData<int, IntegerData>(0, id_, name_, baseColor_) {

7 // By default, always allow conversions from doubles

8 allowConversionFrom(DecimalData::id());

9 }

10

11 IntegerData::IntegerData(int value)

12 : FlexibleData<int, IntegerData>(value, id_, name_, baseColor_) {

13 // By default, always allow conversions from doubles

14 allowConversionFrom(DecimalData::id());

15 }

16

17 QString IntegerData::getDescription() const {

18 return QString::number(data());

19 }

20

21 void IntegerData::registerConversions() {

22

23 // Every type needs a "conversion" to itself

24 IntegerData::registerConversionFrom<IntegerData>(

25 [](const std::shared_ptr<QtNodes::NodeData> &nd) {

26 auto d = std::static_pointer_cast<IntegerData>(nd);

27 return d->data();

28 });

29

30 IntegerData::registerConversionFrom<DecimalData>(

31 [](const std::shared_ptr<QtNodes::NodeData> &nd) {

32 auto d = std::static_pointer_cast<DecimalData>(nd);

33 return int(std::round(d->data()));

34 });

35 }

36 } // nitro

58 appendix

a.2 results

a.2.1 4-bit Compression

(a) (b) (c) (d)

Figure A.1: Compression comparison between 3-bit and 4-bit compression
of our method as per the results in Table 7.2 and Table 7.4
respectively. While there is a slight decrease in the compression
ratios, the visual quality of the decompressed images is improved
considerably. (a) 3-bit compression result. (b) 3-bit FLIP error. (c)
4-bit compression result. (d) 4-bit FLIP error.

A.2 results 59

a.2.2 Performance

Table A.1: Parallel execution times for bit-depth expansion in 3-bit input im-
ages (with brightness correction enabled). Compared to Table 7.5,
the speed-up and efficiency values are lower due to the (inefficient)
Gaussian filter taking up a large portion of the execution time.

Image p = 1 (sec) p = 8 (sec) Speedup Efficiency (%)

Gradient 11.82 2.84 4.16 52.02

Peppers 66.20 21.23 3.12 38.98

Cat 201.05 128.52 1.56 19.55

Lighthouse 87.81 37.08 2.37 29.60

Plane 86.38 28.36 3.05 38.07

Bernoulliborg 690.10 431.68 1.60 19.98

B I B L I O G R A P H Y

[1] Edward Adelson, Charles Anderson, James Bergen, Peter Burt
and Joan Ogden. ‘Pyramid Methods in Image Processing’. In:
RCA Eng. 29 (Nov. 1983).

[2] Nasir Ahmed, T_ Natarajan and Kamisetty R Rao. ‘Discrete
Cosine Transform’. In: IEEE Transactions on Computers C-23.1
(1974), pp. 90–93.

[3] Jyrki Alakuijala, Ruud Van Asseldonk, Sami Boukortt, Mar-
tin Bruse, Iulia-Maria Coms, a, Moritz Firsching, Thomas Fisc-
hbacher, Evgenii Kliuchnikov, Sebastian Gomez, Robert Obryk
et al. ‘JPEG XL next-generation image compression architecture
and coding tools’. In: Applications of Digital Image Processing XLII.
Vol. 11137. SPIE. 2019, pp. 112–124.

[4] Daniel Aloise, Amit Deshpande, Pierre Hansen and Preyas
Popat. ‘NP-hardness of Euclidean sum-of-squares clustering’. In:
Machine learning 75 (2009), pp. 245–248.

[5] Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus
Oskarsson, Kalle Åström and Mark D. Fairchild. ‘FLIP: A Differ-
ence Evaluator for Alternating Images’. In: Proc. ACM Comput.
Graph. Interact. Tech. 3.2 (2020).

[6] Francisco de Assis Zampirolli and Leonardo Filipe. ‘A Fast
CUDA-Based Implementation for the Euclidean Distance Trans-
form’. In: 2017 International Conference on High Performance Com-
puting & Simulation (HPCS). 2017, pp. 815–818.

[7] Emre Başeski. ‘16-Bit to 8-Bit Conversion in Remote Sensing
Images by Using Image Content’. In: 2019 9th International Con-
ference on Recent Advances in Space Technologies (RAST). 2019,
pp. 413–417.

[8] Sitaram Bhagavathy, Joan Llach and Jiefu Zhai. ‘Multiscale Prob-
abilistic Dithering for Suppressing Contour Artifacts in Digital
Images’. In: IEEE Transactions on Image Processing 18.9 (2009),
pp. 1936–1945.

[9] Nicolas Blin, Edwin Carlinet, Florian Lemaitre, Lionel Lacas-
sagne and Thierry Géraud. ‘Max-Tree Computation on GPUs’.
In: IEEE Transactions on Parallel and Distributed Systems 33.12

(2022), pp. 3520–3531.

[10] Thomas Boutell. PNG (Portable Network Graphics) Specification
Version 1.0. RFC 2083. Mar. 1997.

61

62 bibliography

[11] Joachim M. Buhmann, Dieter W. Fellner, Marcus Held, Jens
Ketterer and Jan Puzicha. ‘Dithered Color Quantization’. In:
Computer Graphics Forum. Vol. 17. 3. Wiley Online Library. 1998,
pp. 219–231.

[12] Peter J. Burt and Edward H. Adelson. ‘The Laplacian Pyramid
as a Compact Image Code’. In: Readings in Computer Vision. Ed.
by Martin A. Fischler and Oscar Firschein. San Francisco (CA):
Morgan Kaufmann, 1987, pp. 671–679.

[13] Junyoung Byun, Kyujin Shim and Changick Kim. ‘BitNet: Learning-
based bit-depth expansion’. In: Computer Vision–ACCV 2018: 14th
Asian Conference on Computer Vision, Perth, Australia, December 2–
6, 2018, Revised Selected Papers, Part II 14. Springer. 2019, pp. 67–
82.

[14] ‘CIE Recommendations on Uniform Color Spaces, Color-Difference
Equations, and Metric Color Terms’. In: Color Research & Applica-
tion 2.1 (1977), pp. 5–6.

[15] M. Emre Celebi. ‘Improving the performance of k-means for
color quantization’. In: Image and Vision Computing 29.4 (2011),
pp. 260–271.

[16] Mehmet Celenk. ‘A color clustering technique for image seg-
mentation’. In: Computer Vision, Graphics, and Image Processing
52.2 (1990), pp. 145–170.

[17] Jyh-Shan Chang, J.-H.J. Lin and Tzi-Dar Chiueh. ‘Color image
vector quantization using binary tree structured self-organizing
feature maps’. In: 1998 IEEE International Joint Conference on
Neural Networks Proceedings. IEEE World Congress on Computa-
tional Intelligence (Cat. No.98CH36227). Vol. 2. 1998, 1428–1432

vol.2.

[18] Cheuk-Hong Cheng, Oscar C. Au, Ngai-Man Cheung, Chun-
Hung Liu and Ka-Yue Yip. ‘Low color bit-depth image enhance-
ment by contour-region dithering’. In: 2009 IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing
(2009), pp. 666–670.

[19] Cheuk-Hong Cheng, Oscar C. Au, Chun-Hung Liu and Ka-Yue
Yip. ‘Bit-depth expansion by contour region reconstruction’. In:
2009 IEEE International Symposium on Circuits and Systems. 2009,
pp. 944–947.

[20] Daniel Cohen-Or, David Levin and Amira Solomovici. ‘Contour
blending using warp-guided distance field interpolation’. In:
Proceedings of Seventh Annual IEEE Visualization’96. IEEE. 1996,
pp. 165–172.

[21] Daniel Cohen-Or, Amira Solomovic and David Levin. ‘Three-
Dimensional Distance Field Metamorphosis’. In: ACM Trans.
Graph. 17.2 (1998), 116–141.

bibliography 63

[22] Per-Erik Danielsson. ‘Euclidean distance mapping’. In: Computer
Graphics and image processing 14.3 (1980), pp. 227–248.

[23] Peter Deutsch and Jean-Loup Gailly. Zlib compressed data format
specification version 3.3. Tech. rep. 1996.

[24] Juan P. D’Amato. ‘FitDepth: fast and lite 16-bit depth image
compression algorithm’. In: EURASIP Journal on Image and Video
Processing 2023.1 (2023), p. 5.

[25] Ricardo Fabbri, Luciano Da F. Costa, Julio C. Torelli and Odemir
M. Bruno. ‘2D Euclidean Distance Transform Algorithms: A
Comparative Survey’. In: ACM Comput. Surv. 40.1 (2008).

[26] Frederick N Fritsch and Ralph E Carlson. ‘Monotone Piecewise
Cubic Interpolation’. In: SIAM Journal on Numerical Analysis 17.2
(1980), pp. 238–246.

[27] Erich Gamma, Richard Helm, Ralph Johnson and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley professional computing series. Addison-
Wesley, 1995.

[28] Michael Gervautz and Werner Purgathofer. ‘A Simple Method
for Color Quantization: Octree Quantization’. In: New Trends
in Computer Graphics. Ed. by Nadia Magnenat-Thalmann and
Daniel Thalmann. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1988, pp. 219–231.

[29] Apoorv Gupta, Aman Bansal and Vidhi Khanduja. ‘Modern
lossless compression techniques: Review, comparison and ana-
lysis’. In: 2017 Second International Conference on Electrical, Com-
puter and Communication Technologies (ICECCT). IEEE. 2017, pp. 1–
8.

[30] Miska Hannuksela, Jani Lainema and Vinod Malamal Vadakital.
‘The High Efficiency Image File Format Standard [Standards in
a Nutshell]’. In: Signal Processing Magazine, IEEE 32 (July 2015),
pp. 150–156.

[31] Paul Heckbert. ‘Color Image Quantization for Frame Buffer Dis-
play’. In: Proceedings of the 9th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’82. Boston, Mas-
sachusetts, USA: Association for Computing Machinery, 1982,
297–307.

[32] Gabor T Herman, Jingsheng Zheng and Carolyn A Bucholtz.
‘Shape-based interpolation’. In: IEEE Computer Graphics and Ap-
plications 12.3 (1992), pp. 69–79.

[33] David A. Huffman. ‘A Method for the Construction of Minimum-
Redundancy Codes’. In: Proceedings of the IRE 40.9 (1952), pp. 1098–
1101.

64 bibliography

[34] Robert William Gainer Hunt. ‘Light and Dark Adaptation and
the Perception of Color’. In: J. Opt. Soc. Am. 42.3 (1952), pp. 190–
199.

[35] Garrett M. Johnson and Mark D. Fairchild. ‘A top down de-
scription of S-CIELAB and CIEDE2000’. In: Color Research &
Application 28.6 (2003), pp. 425–435.

[36] Hideo Kasuga, Hiroaki Yamamoto and Masayuki Okamoto.
‘Color quantization using the fast K-means algorithm’. In: Sys-
tems and Computers in Japan 31.8 (2000), pp. 33–40.

[37] James R. Kent, Wayne E. Carlson and Richard E. Parent. ‘Shape
transformation for polyhedral objects’. In: Proceedings of the 19th
annual conference on Computer graphics and interactive techniques
(1992).

[38] Anton Kruger. ‘Median-cut color quantization’. In: Dr Dobb’s
Journal-Software Tools for the Professional Programmer 19.10 (1994),
pp. 46–55.

[39] Chih-Hung Lee, Hao-ying Lu and Ji-Hwei Horng. ‘Color quant-
ization by hierarchical octa-partition in RGB color space’. In:
2018 IEEE International Conference on Applied System Invention
(ICASI). 2018, pp. 147–150.

[40] John R. Levine. The ’application/zlib’ and ’application/gzip’ Media
Types. RFC 6713. Aug. 2012.

[41] Chaofeng Li and Alan Bovik. ‘Content-Weighted Video Quality
Assessment Using a Three-Component Image Model’. In: Journal
of Electronic Imaging 29 (Jan. 2010).

[42] Chun Hung Liu, Oscar C. Au, Peter H. W. Wong, M. C. Kung
and Shen Chang Chao. ‘Bit-depth expansion by adaptive filter’.
In: 2008 IEEE International Symposium on Circuits and Systems
(ISCAS). 2008, pp. 496–499.

[43] Jing Liu, Wanning Sun and Yutao Liu. ‘Bit-depth enhancement
via convolutional neural network’. In: International Forum on
Digital TV and Wireless Multimedia Communications. Springer.
2017, pp. 255–264.

[44] Yuqing Liu, Qi Jia, Jian Zhang, Xin Fan, Shanshe Wang, Siwei
Ma and Wen Gao. Learning Weighting Map for Bit-Depth Expansion
within a Rational Range. 2022.

[45] Stuart Lloyd. ‘Least squares quantization in PCM’. In: IEEE
Transactions on Information Theory 28.2 (1982), pp. 129–137.

[46] Rafał Mantiuk, Kil Joong Kim, Allan G. Rempel and Wolfgang
Heidrich. ‘HDR-VDP-2: A Calibrated Visual Metric for Visibility
and Quality Predictions in All Luminance Conditions’. In: ACM
Trans. Graph. 30.4 (2011).

bibliography 65

[47] Arnold Meijster, Jos BTM Roerdink and Wim H Hesselink. ‘A
general algorithm for computing distance transforms in linear
time’. In: Mathematical Morphology and its applications to image and
signal processing (2000), pp. 331–340.

[48] Gaurav Mittal, Vinit Jakhetiya, Sunil Prasad Jaiswal, Oscar C Au,
Anil Kumar Tiwari and Dai Wei. ‘Bit-depth expansion using min-
imum risk based classification’. In: 2012 Visual Communications
and Image Processing. IEEE. 2012, pp. 1–5.

[49] Laurent Najman and Michel Couprie. ‘Building the Compon-
ent Tree in Quasi-Linear Time’. In: IEEE Transactions on Image
Processing 15.11 (2006), pp. 3531–3539.

[50] Helen Oleynikova, Zachary Taylor, Marius Fehr, Juan I. Nieto
and Roland Siegwart. ‘Voxblox: Building 3D Signed Distance
Fields for Planning’. In: CoRR abs/1611.03631 (2016).

[51] Michael T Orchard, Charles A Bouman et al. ‘Color quantization
of images’. In: IEEE Transactions on Signal Processing 39.12 (1991),
pp. 2677–2690.

[52] Savan Oswal, Anjali Singh and Kirthi Kumari. ‘Deflate compres-
sion algorithm’. In: International Journal of Engineering Research
and General Science 4.1 (2016), pp. 430–436.

[53] Shaimaa M. Othman, Amr E. Mohamed, Zaki Nossair and M. I.
El-Adawy. ‘Image Compression Using Polynomial Fitting’. In:
2019 3rd International conference on Electronics, Communication and
Aerospace Technology (ICECA). 2019, pp. 344–349.

[54] Celal Ozturk, Emrah Hancer and Dervis Karaboga. ‘Color Image
Quantization: A Short Review and an Application with Artifi-
cial Bee Colony Algorithm’. In: INFORMATICA, 25 (Oct. 2014),
pp. 485–503.

[55] Jean-François Pambrun and Rita Noumeir. ‘Limitations of the
SSIM quality metric in the context of diagnostic imaging’. In:
2015 IEEE International Conference on Image Processing (ICIP). 2015,
pp. 2960–2963.

[56] Saurin S. Parikh, Damian Ruiz, Hari Kalva, Gerardo Fernández-
Escribano and Velibor Adzic. ‘High Bit-Depth Medical Image
Compression With HEVC’. In: IEEE Journal of Biomedical and
Health Informatics 22.2 (2018), pp. 552–560.

[57] Friedrich Pukelsheim. ‘The three sigma rule’. In: The American
Statistician 48.2 (1994), pp. 88–91.

[58] Jan Puzicha, Marcus Held, Jens Ketterer, Joachim Buhmann and
Dieter Fellner. ‘On spatial quantization of color images’. In: IEEE
Transactions on Image Processing 9 (Apr. 2000), pp. 666–682.

[59] Registration of a new MIME Content-Type/Subtype - application/zip.
IANA. Accessed: 2023-02-07. 1991.

66 bibliography

[60] A. Harry Robinson and Colin Cherry. ‘Results of a prototype
television bandwidth compression scheme’. In: Proceedings of the
IEEE 55.3 (1967), pp. 356–364.

[61] Azriel Rosenfeld and John L Pfaltz. ‘Distance functions on digital
pictures’. In: Pattern Recognition 1.1 (1968), pp. 33–61.

[62] Diego Santa-Cruz, Touradj Ebrahimi, Joel Askelof, Mathias
Larsson and Charilaos Christopoulos. ‘JPEG 2000 still image
coding versus other standards’. In: Proc SPIE 4115 (Dec. 2000).

[63] Mark J Shensa et al. ‘The discrete wavelet transform: wedding
the a trous and Mallat algorithms’. In: IEEE Transactions on Signal
Processing 40.10 (1992), pp. 2464–2482.

[64] Athanassios Skodras, Charilaos Christopoulos and Touradj Eb-
rahimi. ‘The JPEG 2000 still image compression standard’. In:
IEEE Signal Processing Magazine 18.5 (2001), pp. 36–58.

[65] Wen Sun, Yan Lu, Feng Wu and Shipeng Li. ‘Level embedded
medical image compression based on value of interest’. In: 2009
16th IEEE International Conference on Image Processing (ICIP). 2009,
pp. 1769–1772.

[66] Akira Taguchi and Johji Nishiyama. ‘Bit-length expansion by
inverse quantization process’. In: 2012 Proceedings of the 20th
European Signal Processing Conference (EUSIPCO). 2012, pp. 1543–
1547.

[67] Victor T. Tom. ‘Adaptive Filter Techniques For Digital Image
Enhancement’. In: Digital Image Processing. Ed. by Andrew G.
Tescher. Vol. 0528. International Society for Optics and Photonics.
SPIE, 1985, pp. 29 –42.

[68] Shiaw-Tsyr Uang, Yi-Lun Kao and Cheng-Li Liu. ‘The Effects
of Luminance Levels and Colors on Chromatic Perception’. In:
Proceedings of the Fifth Asia Pacific Industrial Engineering and Man-
agement Systems Conference (Jan. 2004).

[69] Robert Ulichney and Shiufun Cheung. ‘Pixel Bit-Depth Increase
by Bit Replication’. In: Proceedings of SPIE - The International
Society for Optical Engineering 3300 (May 1998).

[70] Oleg Verevka and John W. Buchanan. ‘Local K-means Algorithm
for Colour Image Quantization’. In: Proceedings of Graphics In-
terface ’95. GI ’95. Quebec, Quebec, Canada: Canadian Human-
Computer Communications Society, 1995, pp. 128–135.

[71] Luc Vincent and Pierre Soille. ‘Watersheds in digital spaces:
an efficient algorithm based on immersion simulations’. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence
13.6 (1991), pp. 583–598.

bibliography 67

[72] Thijs Vogels, Fabrice Rousselle, Brian Mcwilliams, Gerhard Röth-
lin, Alex Harvill, David Adler, Mark Meyer and Jan Novák. ‘De-
noising with Kernel Prediction and Asymmetric Loss Functions’.
In: ACM Trans. Graph. 37.4 (2018).

[73] Gregory K Wallace. ‘The JPEG still picture compression stand-
ard’. In: IEEE Transactions on Consumer Electronics 38.1 (1992),
pp. xviii–xxxiv.

[74] Haohong Wang, G.M. Schuster, A.K. Katsaggelos and T.N. Pap-
pas. ‘An efficient rate-distortion optimal shape coding approach
utilizing a skeleton-based decomposition’. In: IEEE Transactions
on Image Processing 12.10 (2003), pp. 1181–1193.

[75] Jieying Wang, Jiří Kosinka and Alexandru Telea. ‘Spline-based
medial axis transform representation of binary images’. In: Com-
puters & Graphics 98 (2021), pp. 165–176.

[76] Jieying Wang, Maarten Terpstra, Jiří Kosinka and Alexandru
Telea. ‘Quantitative Evaluation of Dense Skeletons for Image
Compression’. In: Information 11.5 (2020).

[77] Zhou Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli. ‘Image
quality assessment: from error visibility to structural similarity’.
In: IEEE Transactions on Image Processing 13.4 (2004), pp. 600–612.

[78] Zhou Wang, Eero P. Simoncelli and Alan C. Bovik. ‘Multiscale
structural similarity for image quality assessment’. In: The Thrity-
Seventh Asilomar Conference on Signals, Systems & Computers, 2003.
Vol. 2. 2003, 1398–1402 Vol.2.

[79] Ching-Yung Yang and Ja-Chen Lin. ‘RWM-cut for color image
quantization’. In: Computers & Graphics 20.4 (1996). Hardware
Supported Texturing, pp. 577–588.

[80] James Zern, Pascal Massimino and Jyrki Alakuijala. WebP Image
Format. Internet-Draft draft-zern-webp-12. Work in Progress.
Internet Engineering Task Force, Dec. 2022. 51 pp.

[81] Jing Zhang, Qianqian Dou, Jing Liu, Yuting Su and Wanning Sun.
‘BE-ACGAN: Photo-realistic residual bit-depth enhancement by
advanced conditional GAN’. In: Displays 69 (2021), p. 102040.

[82] Xuemei Zhang, Brian A Wandell et al. ‘A spatial extension of
CIELAB for digital color image reproduction’. In: SID interna-
tional symposium digest of technical papers. Vol. 27. Citeseer. 1996,
pp. 731–734.

[83] Yang Zhao, Ronggang Wang, Yuan Chen, Wei Jia, Xiaoping
Liu and Wen Gao. ‘Lighter but Efficient Bit-Depth Expansion
Network’. In: IEEE Transactions on Circuits and Systems for Video
Technology 31.5 (2021), pp. 2063–2069.

68 bibliography

[84] Yang Zhao, Ronggang Wang, Wei Jia, Wangmeng Zuo, Xiaoping
Liu and Wen Gao. ‘Deep Reconstruction of Least Significant
Bits for Bit-Depth Expansion’. In: IEEE Transactions on Image
Processing 28.6 (2019), pp. 2847–2859.

[85] Jacob Ziv and Abraham Lempel. ‘A universal algorithm for
sequential data compression’. In: IEEE Transactions on Information
Theory 23.3 (1977), pp. 337–343.

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Proposed Methods & Overview

	2 Background & Related Work
	2.1 Quantisation
	2.2 Bit-Depth Expansion
	2.3 Image Compression

	3 Bit-Depth Expansion
	3.1 Signed Distance Fields
	3.2 Bit-depth Expansion
	3.3 Distance Field Evaluation
	3.4 Shadows & Highlights
	3.5 Brightness Correction
	3.6 Colour Images

	4 Compression Scheme
	4.1 Compression
	4.2 Pipeline

	5 NITRO
	5.1 Nodes
	5.2 Data Types
	5.3 Modules

	6 Methodology
	6.1 Similarity Metrics
	6.2 Brightness Correction
	6.3 Performance Evaluation

	7 Results
	7.1 Bit-Depth Expansion
	7.2 Compression
	7.3 Performance

	8 Conclusions
	9 Future Work
	A Appendix
	A.1 NITRO
	A.2 Results

	 Bibliography

