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Abstract

In this thesis we review aspects of higher-form symmetries by primarily studying
the free U(1) gauge theory and its one-form symmetries. At first we discuss dif-
ferential forms and some necessary aspects of differential geometry. We continue
by examining different formulations of Maxwell’s theory, derive the equations of
motion in the differential form notation, and touch on the topic of electromag-
netic duality. We proceed by formulation the usual notion of ordinary symmetries
in terms of operators and extending this notion to higher-form symmetries by
considering higher dimensional charged objects and currents. Finally, we review
essential topics related to spontaneous symmetry breaking and conclude that the
photon can be viewed as the Goldstone boson of a spontaneously broken one-form
symmetry of Maxwell’s theory.
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Chapter 1

Introduction

Few ideas have proven to be as fruitful and far-reaching in regards to our un-
derstanding of nature as the notion of symmetries in physics. They pervade our
understanding of the standard model of particle physics in the form of Yang-Mills
theory and, under the guise of diffeomorphisms, that of general relativity. Perhaps
of equal importance, if not of even greater eminence, is the concept of spontaneous
symmetry breaking. The reason for this is that whenever a continuous global sym-
metry is spontaneously broken there must exist gapless excitations of the system.
In particle physics, this means particles of zero mass. This is a result owed to
Nambu [1] and Goldstone [2], who investigated this more thoroughly, at the be-
ginning of the 1960s.

In recent years, a particularly elegant generalization of our usual notion of
ordinary symmetries has been realized by Gaiotto, Kapustin, Seiberg & Willet
[3]. These are know as generalised global symmetries or higher-form symmetries
and are symmetries whose charged objects have dimension p > 0. Pivotally, these
symmetries can also be spontaneously broken, implying the existence of Goldstone
bosons.

This work aims to explore this new type of symmetries, with a particular focus
on the free field Maxwell theory and its U(1) one-form symmetry. The ultimate
goal is to verify the conclusion of [3], namely that the photon is the Goldstone
boson of a broken one-form symmetry.

The remainder of this thesis is structured as follows: in Section 2 we begin by
reviewing notions in differential geometry that allow us to make the rest of our
statements independent of coordinates. This is done by viewing vectors and duals
(and more generally tensors) as maps from the respective tangent and cotangent
spaces to R, and realizing that what we often refer to as tensors in physics are ten-
sor components after a choice of basis. We then discuss the different formulations
of Maxwell’s theory in Section 3, starting from the usual formulation in terms of
electric E and and magnetic B fields and then to the covariant theory, in terms of
the field strength tensor Fµν , which properly transforms with respect to the full
Lorentz group. In 3.3 we formulate the theory in terms of differential forms and
derive the equations of motion while also discussing the dual formulation of elec-
tromagnetism, showing that the duality transformation is exact in the source-free
case. This proves to be useful for analysing the action of one of the higher-form
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symmetry in the context of electromagnetism.
In Section 4 we consider at first ordinary symmetries and how we can under-

stand them in terms of operators. This language allows us to easily generalize our
usual notions of symmetry to that of higher-form symmetries by extending our
view of currents and charged objects by allowing them to be higher dimensional.
In 4.2 we introduce the notion of Wilson loops (and ’t Hooft loops) which are
gauge-invariant objects charged under the one-form symmetry. We then proceed
by considering the one-form symmetry in the source-free Maxwell’s theory and con-
clude this section by discussing some general aspects of higher-form symmetries.
Finally, in Section 5 we review the notion of spontaneous symmetry breaking in
the context of ordinary symmetries, with a particular focus on the linear σ model,
in analogy to which we base most of our discussion of the spontaneous break-
ing of the one-form symmetry in electromagnetism. Ultimately, this leads to our
interpretation of the photon as the Goldstone boson of a spontaneously broken
one-form symmetry.1

1Note that this is different from the suggestion of [4] that the photon is a Goldstone boson
of a broken Lorentz symmetry.
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Chapter 2

Differential Forms

Differential forms are extremely useful when working with electromagnetism, or
any gauge theory for that matter, in curved spaces by allowing us to work inde-
pendent of coordinates. They are a natural way of expressing and generalizing the
idea of integration. While we will be primarily working with Minkowski spacetime,
we review these notions in order to simplify our subsequent notation and make
some generalizations more plain to be seen.

This section largely follows [5] and [6] in order to introduce the needed ideas
and establish the convention used throughout this work.

2.1 Tensors and differential forms

To start off, consider the usual notion of vectors. Rather than ”stretching” along
the manifold, we associate them to a single point p and they belong to the corre-
sponding tangent space Tp, at that point. We can introduce a set of basis vectors
êµ, which span Tp, such that any abstract vector V could be written as a linear
combination

V = V µêµ, (2.1)

with V µ the components of the vector.1 Oftentimes in physics, when talking
about a vector, one simply refers to its components V µ (often called contravariant
vectors) and suppresses the explicit basis vectors. However, the real vector is an
abstract geometrical entity while the components are just the coefficients of the
basis vectors [5]. In the study of manifolds, especially curved ones, a natural choice
of basis for Tp is the coordinate basis comprised of the partial derivative operators
êµ = ∂µ [5]. From this point of view, the transformation law under a change of
coordinates xµ → xµ

′
readily follows. By virtue of the chain rule, the new basis

vectors are

∂µ′ =
∂xµ

∂xµ′ ∂µ, (2.2)

1Throughout this thesis, the Einstein summation convention is adopted with Greek indices
running from µ = 0, 1, 2, 3 and for Latin ones i = 1, 2, 3.
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and by demanding that the vector V = V µ∂µ remain unchanged by a change of
basis we have that

V µ∂µ = V µ′
∂µ′

= V µ′ ∂xµ

∂xµ′
∂µ.

(2.3)

Since the inverse of ∂xµ/∂xµ
′
is ∂xµ

′
/∂xµ, it implies that

V µ′
=
∂xµ

′

∂xµ
V µ. (2.4)

A closely associated notion is that of dual vectors which belong to a cotangent
space (or dual vector space) denoted T ∗

p , spanned by a set of basis dual vectors θ̂µ

for which we demand
θ̂µêν = δµν . (2.5)

Thus, an arbitrary dual can be written as ω = ωµθ̂
µ. Once again, when talking

about dual vectors one often refers only to the components ωµ (sometimes called
covariant vectors). We view the dual space as the set of all linear maps from the
vector space Tp to the real numbers R, i.e. ω : Tp → R.2 This is perhaps made
more clear by considering the action of a dual on a vector:

ω(V ) = ωµθ̂
µV ν êν = ωµV

νδµν = ωµV
µ ∈ R. (2.6)

The natural basis for the cotangent space is the gradient of the coordinates
θ̂µ = dxµ for which (2.5) implies [5]

dxµ(∂ν) =
∂xµ

∂xν
= δµν . (2.7)

In a similar vein to the case of vectors on arbitrary manifolds, we can consider a
change of basis xµ → xµ

′
for which

dxµ
′
=
∂xµ

′

∂xµ
dxµ, (2.8)

and asking that the dual ω = ωµdx
µ be invariant under a coordinate transforma-

tion implies that the components transform as

ωµ′ =
∂xµ

∂xµ′ ωµ. (2.9)

By virtue of the definitions introduced above, one can consider the generaliza-
tion of vectors and dual vectors to that of tensors. We view a tensor T of rank
(k, l) as a multilinear map from k dual vectors and l vectors to R:

T : T ∗(1)
p × ...× T ∗(k)

p × T (1)
p × ...× T (l)

p → R, (2.10)

where × is the usual cartesian product. In this language, a vector is identified as
a (1, 0) tensor while a dual is a (0, 1) tensor. A new operation can be defined, the

2Similarly, one can view vectors as maps from T ∗
p to R, i.e. V : T ∗

p → R.
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tensor product ⊗, which produces a (k +m, l+ n) tensor T ⊗ S, where T is a (k,
l) tensor and S is a (m, n) one:

T ⊗ S(ω(1), ..., ω(k+m), V (1), ..., V (l+n)) = T (ω(1), ..., ω(k), V (1), ..., V (l))

× S(ω(1), ..., ω(m), V (1), ..., V (n)).
(2.11)

We can now introduce the notion of a differential form. A differential p-form
(or simply a p-form) is a completely antisymmetric (0, p) tensor. The space of all
p-forms over a manifold M is Ωp(M). Note that if the manifold is d-dimensional,
there are no p-forms with p > d by virtue of the antisymmetry [5]. In this language,
a dual vector is seen as a 1-form.

It is useful to consider an example which illustrates the use of differential forms.
A gauge field Aµ can be integrated along the worldline γ of a charged particle,
thus writing the integral

∫
γ
Aµdx

µ. A way of approaching this is by parametrizing

the curve γ in terms of a function, with parameter λ, to spacetime xµ(λ) [6]. This
would suggest that the integral would now become

∫ a

b
dλdxµ

dλ
Aµ. Nevertheless,

the answer is independent of the parametrization, so that the integral is simply
written as

∫
γ
Aµdx

µ. Differential forms take this notion further, with the integral

becoming simply
∫
γ
A where the object A, defined as A = Aµdx

µ, is a 1-form. It
contains information about both the field Aµ which is to be integrated and about
the measure of the integration dxµ.

Another example is that of the field strength Fµν , an antisymmetric rank 2
tensor. The 2-form F can be defined as:

F =
1

2
Fµνdx

µ ∧ dxν , (2.12)

where the wedge product ∧ is an antisymmetrized tensor product, meaning:

dxµ ∧ dxν = dxµ ⊗ dxν − dxν ⊗ dxµ. (2.13)

The extra factor of 1/2 appearing in (2.12) is due to the fact that any given term in
the expression above, like dx0 ⊗ dx1, appears twice. The reason why a differential
form is necessarily antisymmetric is due to the fact that a surface element is
composed of each independent coordinate. As an example, on a plane, the area
element is given by dx dy; meanwhile, integrating dx dx would be meaningless.

Evidently, differential forms play an important role in the integration on mani-
folds so it useful to make this idea more precise. From this perspective, an integral
over an n-dimensional manifold Σ is understood as a map from an n-form field ω
to R [5]: ∫

Σ

: ω → R. (2.14)

As an example of this, consider a one dimensional integral which can be written as∫
ω(x)dx with ω(x) denoting the component function and the integration measure

dx now properly understood as a differential form. In order to see this, consider
the usual role of the volume element dµ (on a three-dimensional manifold, for
simplicity), its role is to assign to each (infinitesimal) region an (infinitesimal) real
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number, namely its volume [5]. In other words, the volume element is a map from
3 vectors (which define a region) to the real numbers dµ(V, U,W ) ∈ R. Because
of this, the volume element is a (0, n) tensor (on a n-dimensional manifold) which
is also antisymmetric since under the interchange of two vectors we get the same
volume, but opposite sign, while in the case that two vectors are collinear, the
volume vanishes. Thus, the volume element in n dimensions is a n-form.

Generally, a p-form can be written down as:

ωp =
1

p!
ωµ1...µpdx

µ1 ∧ ... ∧ dxµp , (2.15)

with ωµ1...µp the components of a rank p antisymmetric tensor.3 The wedge product
of the forms is viewed as a signed sum over permutations π,

dxµ1 ∧ ... ∧ dxµp =
∑
π∈Sp

sgn(π) dxπ(µ1) ⊗ ...⊗ dxπ(µp), (2.16)

where π is a permutation of the p indices and sgn(π) is its sign (1 if even, −1 if
odd). The following example illustrates the basic idea:

dx ∧ dy ∧ dz = dx⊗ dy ⊗ dz − dx⊗ dz ⊗ dy + dz ⊗ dx⊗ dy

− dz ⊗ dy ⊗ dx+ dy ⊗ dz ⊗ dx− dy ⊗ dx⊗ dz.
(2.17)

Finally, the order of the wedge product between a p-form ωp and a q-form ηq
can be changed by being careful with the signs

ωp ∧ ηq = (−1)pqηq ∧ ωp. (2.18)

2.2 Exterior derivative

The exterior derivative is an operator which maps p-forms to (p + 1)-forms. At
first, consider its action on a 0-form (a usual function f(x)):

df =
∂f

∂xµ
dxµ = ∂µf dx

µ. (2.19)

Generally, the exterior derivative maps a p-form ω to a (p+ 1)-form

dω =
∂ωµ1...µp

∂xµ
dxµ ∧ dxµ1 ∧ ... ∧ dxµp . (2.20)

In other words, the exterior derivative of a p-form, dω, is the antisymmetrized
derivative whose components are the derivatives of the components of ω [6].

Of particular interest to this text is the action of the exterior derivative on the
1-form A = Aµ dx

µ:

dA =
∂Aν

∂xµ
dxµ ∧ dxν = ∂µAν dx

µ ⊗ dxν − ∂νAµ dx
ν ⊗ dxµ = F. (2.21)

3The case of a 0-form is the degenerate one and corresponds to no differentials dx. We identify
these as regular function f(x).
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In components this is simply Fµν = ∂µAν − ∂νAµ, the field strength of a vector
field.

The exterior derivative obeys a modified version of the product rule due to its
antisymmetric nature, for a p-form ωp and a q-form ηq

d(ωp ∧ ηq) = (dωp) ∧ ηq + (−1)pωp ∧ (dηq). (2.22)

Another important property of exterior differentiation is that for any p-form
ωp, d

2 = 0, i.e.
d(dωp) = 0. (2.23)

This is a consequence of the definition of d and the fact that partial derivatives
(acting on anything) commute ∂µ∂ν = ∂ν∂µ [5]. If dωp = 0 we refer to it as a
closed form. In subsequent sections we will identify these to be conserved currents.
Furthermore, if there exists a (p − 1)-form ηp−1 such that dηp−1 = ωp, we refer
to ωp as an exact form. Notice that by virtue of (2.23) all exact forms are also
closed.4 From these forms one can define a new vector space called the de Rahm
cohomology class Hp(M), comprised of all closed forms modulo the exact ones
on a given manifold M . Interestingly, the dimensionality of Hp(M) depends only
on the topology of M and thus allows us to directly extract information about
the manifold itself [5]. Nevertheless, in this report we typically only consider
Minkowski space as a manifold.

The form notation is powerful because it allows us to make statements in-
dependent of coordinates which is particularly appealing when studying curved
spaces. Additionally, the usual notions of calculus take very simple forms, as a
specific example consider the generalized Stoke’s theorem. For a p-dimensional
manifold M , bounded by ∂M , and a (p− 1)-form ωp−1∫

∂M

ωp−1 =

∫
M

dωp−1. (2.24)

2.3 Hodge duality

The final operation needed on differential forms is Hodge duality. The Hodge star
⋆, on a d -dimensional manifold, takes a p-form to a (d − p)-form. In terms of
components, the operation is essentially contracting a tensor with the Levi-Civita
tensor 5 with d raised indices [6]. In terms of the differentials appearing in a given
form, the Hodge star substitutes the ones already present with all the others [6].
For instance, in flat 3-dimensional space, dx is replaced by dy ∧ dz.

4This statement is not as straight forward in physics. The fact that F = dA leads us to expect
that dF = 0. However, this can be violated if the gauge field is ill-defined at a singular point
(e.g. the core of a magnetic monopole). See chapter 2.2 of [6] for a more detailed discussion.

5Note that we distinguish between the Levi-Civita symbol ϵ̃µ1...µd
, defined in the usual manner

(i.e. ϵ̃01...(d−1) = +1), and the Levi-Civita tensor ϵµ1...µd
, related to the former via the metric:√

|g|ϵ̃µ1...µd
= ϵµ1...µd

. This difference arises when considering curved spaces and the two can be
treated as equal when dealing with flat spaces.
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We define the action of the Hodge star on a p-form (on a d-dimensional manifold
with metric gµν) as

⋆(dxµ1 ∧ ... ∧ dxµp) =
1

(d− p)!
ϵν1...νdg

µ1ν1 ...gµpνpdxνp+1 ...dxνd . (2.25)

It is common to refer to ⋆ωp as the (Hodge) dual of ωp. Acting with ⋆ twice
returns the original form up to a minus sign:

⋆(⋆ωp) = (−1)p(d−p)+sωp, (2.26)

where s is the number of minus signs in the metric signature (s = 1 for a Lorentzian
metric).6

6Depending on convention, one can take s = 3 but since both are odd there is no difference.
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Chapter 3

Electromagnetism and Duality

In this chapter we review some of the formulations of the laws of electromagnetism,
starting from the classical vector one and building up to the differential form
notation. Additionally, we look at the duality transformation of the Maxwell
theory which maps electric and magnetic charges to each other.

3.1 The classical theory

Classical electrodynamics is described by the usual Maxwell equations with a
charge density ρ and current density J [5]:

∇ · E = ρ (3.1)

∇×B = J+
∂E

∂t
(3.1a)

∇ ·B = 0 (3.1b)

∇× E = −∂B
∂t
, (3.1c)

with E and B the usual electric and magnetic fields. If a system lacks sources (i.e.
ρ = 0 and J = 0) Maxwell’s equations take the symmetric form

∇ · E = 0 ∇× E = −∂B
∂t

∇ ·B = 0 ∇×B =
∂E

∂t
.

(3.2)

They are invariant under a duality transformation (E,B) → (B,−E). Equations
(3.1b) and (3.1c) imply the existence of the scalar ϕ and vector A potentials
defined by [7]:

B = ∇×A, E = −∇ϕ− ∂A

∂t
. (3.3)

However, the equations above do not determine the potential uniquely as the fields
E and B remain unchanged under a transformation

ϕ→ ϕ′ = ϕ+
∂f

∂t
, A → A′ = A−∇f, (3.4)
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with f(t,x) an arbitrary function. We view (3.4) as a gauge transformation (cor-
responding to a gauge symmetry) and, generally, require that the observables of a
theory are invariant under such transformations (are gauge invariant).

The potential formulation has the advantage of identically satisfying (3.1b)
and (3.1c)

∇ ·B = ∇ · (∇×A) = 0

∇× E = −∇×∇ϕ−∇× ∂A

∂t
= −∂B

∂t
.

(3.5)

3.2 The covariant theory

Rather than working with two 3-vectors, E and B, which do not transform under
the full Lorentz group, we can introduce the electromagnetic field strength tensor,
a (0, 2) antisymmetric tensor Fµν , defined by

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 = −Fνµ, (3.6)

where Ei and Bi are the components of the electric and magnetic fields [5]. Observe
that the field components can be identified from the field strength as Ei = F 0i

and ϵ̃ijkBk = F ij.
We can also perform a duality transformation, but now in terms of the dual

tensor

Gµν =


0 −B1 −B2 −B3

B1 0 −E3 E2

B2 E3 0 −E1

B3 −E2 E1 0

 , (3.7)

which in index notation can be written as Fµν → Gµν = 1
2
ϵ̃µνσρF

σρ. As such, the
entries of the two tensors are

F 0i = Ei F ij = ϵ̃ijkBk , G0i = Bi Gij = −ϵ̃ijkEk. (3.8)

The four source-free equations of motion (3.2) can be reduced to two, in terms of
the field strength and its dual respectively:

∂µF
µν = 0 ∂µG

µν = 0. (3.9)

By introducing the current 4-vector Jµ = (ρ,J), the classical Maxwell’s equa-
tions can be written in component notation as

∂iE
i = J0

ϵ̃ijk∂jBk = J i + ∂0E
i

∂iB
i = 0

ϵ̃ijk∂jEk = −∂0Bi.

(3.10)
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The first two equations, in terms of Fµν , take the form

∂jF
ij − ∂0F

0i = J i

∂iF
0i = J0,

(3.11)

while the others can be written down as ∂[σFµν] = 0.1 Finally, by using the
antisymmetry of Fµν , Maxwell’s equations become

∂νF
µν = Jµ, ∂[σFµν] = ∂σFµν + ∂µFσµ + ∂µFνσ = 0. (3.12)

Thus, the original four equations are replaced by two which transform as tensors,
meaning that if they are satisfied in some inertial frame, they will remain true in
any frame transformed through a Lorentz transformation.

The field strength can also be express in terms of the four-vector potential
Aµ = (ϕ,A) as

Fµν = ∂νAµ − ∂µAν , (3.13)

which is identical to (3.3). Additionally, the gauge transformation takes the sim-
pler form

Aµ → A′
µ = Aµ + ∂µf, (3.14)

under which it is easy to see that the field strength is invariant

Fµν → F ′
µν = ∂νA

′
µ − ∂µA

′
ν

= ∂νAµ + ∂ν∂µf − ∂µAν − ∂µ∂νf

= ∂νAµ − ∂µAν = Fµν .

(3.15)

Finally, we can write the Lagrangian density for the free electromagnetic field
as

L = − 1

4e2
FµνF

µν , (3.16)

with e the coupling constant. It behaves correctly under Lorentz and gauge trans-
formations and can be used to find the usual equations of motion through the
usual variational procedure of finding the Euler-Lagrange equations where Aµ is
the dynamical variable.

3.3 The geometric theory

Recall equation (2.21), we interpret Aµ, the 4-vector potential, to be the compo-
nents of the differential 1-form A = Aµdx

µ such that we can succinctly relate the
potential to the field strength through the exterior derivative:

F = dA, (3.17)

1For some arbitrary tensor with n indices Tµ1...µn we denote its antisymmetrization by
T[µ1...µn] =

1
n! (Tµ1...µn+ alternating sum over permutation of the indices) [5].

11



which we recall to take the familiar form in terms of components (dA)µν = ∂µAν−
∂νAµ = Fµν . Concurrently, the Bianchi identity for the electromagnetic field,
namely ∂[σFµν] = 0, is simply understood as the closure of the two-form F

dF = 0. (3.18)

In regards to the other equation in (3.12), it is interesting to consider the Euler-
Lagrange machinery in the differential form notation in order to derive it. The
standard electromagnetic action, in the presence of electric charges (alternatively,
we can interpret this as coupling the theory to a current) becomes:

S =

∫
d4x

(
− 1

4e2
FµνF

µν − AµJ
µ

)
=

∫
X

(
− 1

2e2
F ∧ ⋆F − A ∧ ⋆J

)
,

(3.19)

where X is the full space-time manifold and J is the electric current 1-form whose
components are Jµ [6]. Consider a variation of the potential of the form

A→ A′ = A+ δA, (3.20)

where δA is any arbitrary variation. Using (3.17), we obtain

δS = δ

∫
X

(
− 1

2e2
dA ∧ ⋆(dA)− A ∧ ⋆J

)
=

∫
X

(
− 1

2e2
[d(δA) ∧ ⋆dA+ dA ∧ ⋆d(δA)]− δA ∧ ⋆J

)
.

(3.21)

We can now use the fact that for 2 differential forms ω, λ ∈ Ωp(X) will obey2

ω ∧ ⋆λ = λ ∧ ⋆ω, (3.22)

to obtain dA ∧ ⋆d(δA) = d(δA) ∧ ⋆dA, which implies

δS =

∫
X

(
− 1

e2
[d(δA) ∧ ⋆dA]− δA ∧ ⋆J

)
. (3.23)

We also make use of the product rule (2.22), with p = 1 here, to get

d(δA ∧ ⋆dA) = dδA ∧ ⋆dA− δA ∧ d⋆dA

⇒ dδA ∧ ⋆dA = d(δA ∧ ⋆dA) + δA ∧ d⋆dA.
(3.24)

Thus, the variation of the action becomes

δS =
1

e2

[∫
X

d(δA ∧ ⋆dA) +
∫
X

(δA ∧ d⋆dA)

]
−
∫
X

(δA ∧ ⋆J) . (3.25)

2In general we view this as the scalar product on the space Ωp(X) which can be written as
⟨λ, ω⟩ = λ ∧ ⋆ω ∈ R.
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Using Stoke’s theorem (2.24) the first integral can be converted to a surface one
and we assume that the fields fall off sufficiently fast at infinity/at the boundary
such that the boundary term will also vanish as a result, thus obtaining

0 = δS =
1

e2

∫
∂X

(δA ∧ ⋆dA) +
∫
X

(
1

e2
[δA ∧ d⋆dA]− δA ∧ ⋆J

)
=

∫
X

(
1

e2
[δA ∧ d⋆F ]− δA ∧ ⋆J

) (3.26)

Since this must hold for any variation δA we find that 1
e2
d⋆F = ⋆J . We have thus

arrived at the very compact form of the Maxwell equations in terms of differential
forms3

1

2π
dF = 0

1

e2
d⋆F = ⋆J. (3.27)

The vacuum Maxwell’s equations, meaning Jµ = 0, are invariant under the
duality transformation

F → ⋆F ⋆F → −F = ⋆(⋆F ), (3.28)

where it is straightforward to notice from the discussion around (3.8) that the
components of ⋆F are nothing else than Gµν . We can thus define a dual field
strength

G =
2π

e2
⋆F. (3.29)

By assuming that we are in the vacuum d⋆F = 0 ⇒ dG = 0, meaning that we
can introduce (locally) a ”dual” gauge field Ã such that

G = dÃ. (3.30)

It might be tempting to think of Ã as a 1-form field analogously to A but this is
generally not the case by virtue of the ⋆ operator. Depending on the dimensionality
of your spacetime manifold X, d = dim(X), G will be a (d − 2)-form implying
that Ã is generally a (d− 3)-form.

We can obtain a dual description of the Maxwell theory from the dual field
strength by writing down an action of the form

S =

∫
X

(
− 1

2ẽ2
G ∧ ⋆G

)
, (3.31)

where the dual coupling constant ẽ = 2π
e
[8]. Interestingly, the coupling constant

for the dual theory is inversely proportional to the original one, meaning that our
electric description, which is weakly coupled, goes to a strongly coupled theory in
the magnetic description! This comes from Dirac’s considerations [9] of magnetic
monopoles, realizing that their fundamental charge must be inversely proportional

3We choose to explicitly include the factors of 1/e2 and 1/2π in order to account for the
convention on flux quantization in terms of Z numbers. This will become apparent in the
subsequent sections.
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to the fundamental electric charge. This is an example of S-duality (S referring to
strong coupling) which is shown, rather trivially, to be exact for the free Maxwell
theory. The duality plays an important role in supersymmetric theories involv-
ing non-Abelian Yang-Mils fields and showing this duality becomes a much more
involved endeavour [10].
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Chapter 4

Generalised Symmetries

In recent years, a powerful generalization of our notion of global symmetries has
been understood. These symmetries are often called higher symmetries, p-form
symmetries, gauge-like symmetries or generalized global symmetries [3], [11]. In
essence, this generalization consists in considering charges that are carried by p-
dimensional excitations, created by p-dimensional operators in spacetime. It is
thus useful to begin by formulating our usual notions of ordinary symmetries in
terms of operators.

4.1 Ordinary symmetries

In Quantum Field Theory (QFT), we associate a continuous ordinary (0-form)
symmetry with a conserved current Jµ satisfying ∂µJ

µ = 0. In terms of differ-
ential forms, we understand the usual current as a 1-form J = Jµdx

µ and the
conservation law is equivalent to the closure condition [6]

d⋆J = 0. (4.1)

Typically, one integrates the conserved current over a codimension-11 submanifold
of spacetime Σ ⊂ X, representing space, but it is more general to think of it as a
(d− 1)-space separating spacetime to two regions. Hence, we find the charge as

Q(Σ) =

∫
Σ

⋆J. (4.2)

We can construct a type of operators which implement the action of the sym-
metry within a limited region of spacetime called symmetry operators [3]. They act
on charged operators, of charge q, corresponding to some operator insertion O(x)
that is charged under the symmetry. The former are defined by exponentiating
the integrated (conserved) current and a coefficient α:

U(Σ, α) := exp

(
iα

∫
Σ

⋆J

)
. (4.3)

1We refer to the codimension of a submanifold as the number of dimensions transverse to the
submanifold, i.e. a codimension-p manifold in a d-dimensional spacetime is (d− p)-dimensional.
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From these, we can see the action of the symmetry operators on the charged
operators as

U(Σ, α)O(x)U †(Σ, α) = D(g)O(x), (4.4)

where D(g) is a representation of the symmetry group G corresponding to the
symmetry transformation. For U(1) symmetries (the focus of this work), the
representation is one-dimensional and the coefficient α, labeling the symmetry
operator, corresponds to an element eiα ∈ U(1), a parameter of the symmetry
transformation.2 In other words, the phase α is defined mod 2π. Hence, we expect
that for the U(1) case the charged operator will transform as

U(Σ, α)O(x)U †(Σ, α) = eiαO(x). (4.5)

The symmetry operators are topological, meaning that the surface Σ can be
deformed arbitrarily without changing the answer, as long as it does not cross any
charged operators [3]. In order to see this, suppose that the operator is deformed
to a different surface, i.e. Σ → Σ′. This deformation sweeps out a region M such
that, if no operators were crossed, ∂M = Σ− Σ′. This means that the operators
are related as

U(Σ′, α) = exp

(
iα

∫
Σ−Σ′

⋆J

)
U(Σ, α)

= exp

(
iα

∫
M

d⋆J

)
U(Σ, α) = U(Σ, α),

(4.6)

where the second line is by virtue of Stoke’s theorem (2.24) and current conserva-
tion d⋆J = 0. Conversely, if a charged object is present inside M , U(Σ′, α) and
U(Σ, α) will differ by precisely its contribution [6].

Formulating symmetries in terms of operators is a powerful approach since it
gives us an intrinsic description of the symmetry which is valid even when there is
no Lagrangian or when there are multiple Lagrangians (e.g. in duality) [3]. Alas,
this also means that the action on the fundamental fields might not be clear or,
as we will see for the case of the Maxwell theory, one might need to consider the
dual description in order to understand the symmetry. Perhaps surprisingly, this
formalism also applies for the the case of discrete symmetries (like ZN) for which
a Noether current does not exist. One of the simplest examples of this is that of a
theory with a Z2 symmetry which acts on the field as UϕU † → −ϕ, implemented
by the unitary operator U . Nevertheless, in this thesis we are only interested
in continuous global symmetries, hence Lie groups, and refer to [3] for a deeper
discussion on higher-form discrete symmetries.

2We aim to emphasize this point in order to differentiate between a U(1) symmetry (and
hence an underlying U(1) gauge theory) and a R one since the groups are locally the same and
both have the Lie algebra u(1) ∼= R. Nevertheless, they are globally different and a U(1) gauge
theory is one which admits quantized charges and magnetic monopoles. On the other hand, R
gauge theory does not have quantized charge and forbids magnetic monopoles. We choose not to
study this in detail by deriving these statements explicitly, but rather refer the interested reader
to [6].
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4.2 Wilson loops

Before continuing our discussion to higher-form symmetries (i.e. p > 0), it is useful
to consider what are the charged objects under it. For a 0-form symmetry, they
have been pointlike (0-dimensional), local operators. Similarly, a 1-form global
symmetry acts on 1-dimensional operators, the charged objects are now strings
rather than point particles. Additionally, since we are only interested in the global
symmetry rather than the gauge one, we also require these operators to be gauge
invariant. In gauge theory, these are the Wilson loops associated with loops γ in
spacetime of charge q [6] 3

W (γ) := exp

(
i

∮
γ

Aµdx
µ

)
= exp

(
i

∮
γ

A

)
. (4.7)

Their gauge invariance is straightforward to see by considering the action of the
gauge transformation A→ A+ dλ on W (γ)

W (γ) → W ′(γ) = exp

(
i

∮
γ

(A+ dλ)

)
= exp

(
i

∮
γ

dλ

)
W (γ)

= W (γ),

(4.8)

since
∮
γ
dλ = 0, by using Stoke’s theorem (2.24) and the fact that γ is a closed

loop. We understand W (γ) to serve as an electric probe of our theory.
We can also look at Wilson loops in the dual description, in terms of Ã, now

identifying them as ’t Hooft loops

H(γ) := exp

(
i

∮
γ

Ã

)
, (4.9)

which we view as a magnetic probe of the theory [3].
It is worth noting that the Wilson loop has a pleasantly physical interpretation,

particularly in the electromagnetic case. Generally, if we take a vector along a
closed path C then W (C) tells us how it will differ from its starting value, in
mathematics this refers to the notion of holonomy [12]. In general relativity,
we understand this in terms of the parallel transport around a manifold, related
to the Christoffel connection Γσ

µν . Finally, in Maxwell’s theory, we can think of
transporting a particle of charge e along C. When returning to the initial position,
the particle picks up a phase ψ → eieαψ with α =

∮
C A [12]. In essence, this is

nothing else than the Aharonov-Bohm effect.

4.3 Higher-form symmetries

Having introduced the notion of symmetries in terms of operators for ordinary
symmetries, the generalization to p-form symmetries readily follows. We general-
ize the conservation law (4.1) to d⋆J(p+1) = 0, with J(p+1) a (p + 1)-form current

3Generally, the definition of W (γ) requires path-ordering P along γ and working with the
trace, however this is unnecessary for the Abelian case.
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rather than simply a 1-form. The symmetry operators U(Σ, α) are now supported
on codimension-(p + 1) manifolds, while the objects charged under these are p-
dimensional. For the 1-form case, this corresponds to Wilson loops. More gen-
erally, when dealing with higher-form symmetries we consider higher dimensional
”Wilson objects” which correspond to surfaces or p-volumes [3].

Before formulating a general statement regarding the action of higher-form
symmetries, we start by analysing the source-free electromagnetic theory.

4.3.1 Free Maxwell theory

The free field Maxwell theory is described (in 4 dimensions) by

S =

∫
X

(
− 1

2e2
F ∧ ⋆F

)
. (4.10)

We interpret the two equations of motion (3.27) in terms of currents

Je =
1

e2
F Jm =

1

2π
⋆F, (4.11)

with both F and ⋆F 2-forms, conserved in the sense that both satisfy d⋆J = 0.
For concreteness, we take the manifold Σ, on which the symmetry operator is

supported, to be the 2-sphere S2. The associated conserved charges (from which
we construct symmetry operators) are then

Q(1)
e =

∫
S2

⋆Je =
1

e2

∫
S2

⋆F and Q(1)
m =

∫
S2

⋆Jm =
1

2π

∫
S2

F. (4.12)

The two are nothing else than the electric flux and magnetic flux through S2

respectively [3]. Equivalently, they measure charge (electric or magnetic) enclosed
by S2. We also see here the reason for our choice of normalization, owed to the
”Dirac quantization” condition, such that Q

(1)
e ∈ Z and Q

(1)
m ∈ Z [12].

The electric symmetry

We follow the procedure outlined in the previous sections to construct the sym-
metry operator

U(S2, α) = exp

(
iα

e2

∫
S2

⋆F

)
. (4.13)

The charged object under this symmetry will be the Wilson loop (of some
charge q ∈ Z), with the symmetry transformation being

Wq(γ) → eiqαWq(γ). (4.14)

In order to see this, take the equal-time commutation relation

[Ei(t,x), Aj(t,y)] = −ie2δijδ(x− y), (4.15)
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and consider the case where both the Wilson loop and the symmetry operator are
completely located inside the spatial manifold [13]. By doing this, we obtain4[

Q(1)
e (S2),

∮
γ

Aidx
i

]
= −i

∫
S2

dSi

∮
γ

dxjδijδ(x− y) = −iI(S2, γ), (4.16)

where I(S2, γ) ∈ Z is the signed intersection number of S2 and γ in space.
We can now verify that the action of the symmetry of the Wilson loop is5

U(S2, α)Wq(γ)U
†(S2, α) = eiαQ

(1)
e (S2)eiq

∮
γ Ae−iαQ

(1)
e (S2)

= eiαqI(S
2,γ)Wq(γ),

(4.17)

which is precisely (4.14), under the assumption that the charged operator and
symmetry operator intersect once.

In terms of gauge field, the symmetry corresponds to a translation

A→ A+ λ, (4.18)

with λ a flat/closed 1-form (dλ = 0) that is not exact [14]. This requirement
is owed to the fact that we are interested in global symmetries (under which
the Wilson loop picks up a phase) rather than gauge symmetries of the form
A → A+ dη (under which the Wilson loop is invariant). Recall the discussion at
the end of Section 2.2, this is a statement that the transformation is classified by
the first cohomology group of the spacetime manifold X, i.e. λ ∈ H1(X).

The magnetic symmetry

We turn now to the second conserved current Jm = 1
2π
⋆F , from which we construct

the symmetry operator

U(S2, α) = exp

(
iα

2π

∫
S2

F

)
. (4.19)

The charged objects under the symmetry are the ’t Hooft loops Hm(γ), but the
action of the symmetry is more subtle and difficult to see in the electric description.

Nevertheless, we can work with the electromagnetic dual and the ”magnetic”
gauge field G = dÃ, with G ∝ ⋆F , in order to check the action of the symmetry.
From this perspective, we understand the conserved current to be Jm = 1

ẽ2
G and

the charged object will be H(γ) rather than W (γ).
The ’t Hooft loop (of charge m ∈ Z) will also transform as a U(1) charged

object Hm(γ) → eimαHm(γ). We can check this in the dual frame in an analogous
manner to the discussion for the electric symmetry6

U(S2, α)Hm(γ)U
†(S2, α) = eiαQ

(1)
m (S2)eim

∮
γ Ãe−iαQ

(1)
m (S2)

= eiαmI(S2,γ)Hm(γ),
(4.20)

4Since we take S2 to only extend in the spatial directions, we find that Q
(1)
e (S2) =

1
e2

∫
S2 ϵ̃µνρσF

µνdSρσ = 1
e2

∫
S2 E · dS.

5In doing this, we are tacitly making use of the BCH theorem in the form eAeB = e[A,B]eBeA.
6Similarly to the electric case, because S2 is a pure spatial slice, we find Q

(1)
m (S2) =

1
2π

∫
S2 FµνdS

µν = 1
2π

∫
S2 B · dS.
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with the commutator (4.15), now understood in terms of Ã and the magnetic field
Bi, i.e.

[Bi(t,x), Ãj(t,y)] = −iẽ2δijδ(x− y). (4.21)

Similarly, we view this as a translation of the dual (magnetic) gauge field Ã →
Ã+ η, with η a flat form [3].

Therefore, the free Maxwell theory has U(1)
(1)
e ×U(1)(1)m global (one-form) sym-

metry under which the Wilson and ’t Hooft loops pick up a phase.7

4.3.2 General discussion

We discuss now some general aspects of higher-form symmetries which make them
different from ordinary symmetries.

In general, p-form symmetries (with p ≥ 1) must be Abelian. Two symmetry
operators will fuse according to the corresponding group law

U(Σ(d−p−1), α)U(Σ(d−p−1), β) = U(Σ(d−p−1), ζ), (4.22)

with ζ = αβ in the group G [3]. In the p = 0 case, Σ(d−p−1) is of codimension-1,
so we can think inserting the two operators at different times, say t ± ϵ, and we
make sense of the ordering of operators through time-ordering so the operators
might not commute. Because of this, the symmetry group can be non-Abelian.
For p > 0, there is no such ordering as the manifold at t + ϵ can be smoothly
deformed to t− ϵ [3]. Therefore, the two operators must commute and the group
must be Abelian.8

We also address one of the assumptions made when computing the commu-
tator (4.16), namely that both S2 and γ are within the spatial manifold and
they intersect only at points in space. Generically, S2 and γ can be placed in
spacetime and the action of the symmetry is through linking ℓ(S2, γ) [14]. Thus,
for a p-form symmetry, we view the action of a symmetry operator, supported
on a codimension-(p + 1) manifold Σ, on the charged operator, supported on a
p-dimensional manifold Γ, to be9

U(Σ, α)OΓU
†(Σ, α) = eiαqℓ(Γ,Σ)OΓ. (4.23)

It is useful to consider an illustrative example which shows how the symmetry
is implemented for the case of a 1-form symmetry in 3 dimensional spacetime, see
Figure 4.1 for this. Recall that one of the reasons why we took the Wilson loops to

7The electric symmetry remains a 1-form one for arbitrary spacetimes of dimension d while

the magnetic one is generally identified as a (d − 3)-form symmetry U(1)
(d−3)
m . Note that in

saying this, we ignore that, depending on d or p, there exists the possibility of adding a Chern-
Simons term to the action (which is not invariant under the transformation A → A+ λ [14]) or
a θ term.

8In saying this, we assume trivial topology. If the theory is placed on a manifold with a more
complicated topology, the symmetry can become non-Abelian. We refer to [3] for a discussion
on this topic.

9We show this for the specific case of a U(1) global symmetry but would generally refer to a
representation D(g) of our symmetry group as in (4.4).
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Figure 4.1: The 1-form symmetry action on line operator OΓ in 2+1 spacetime,
demonstrated in two ways. In (a), we look at a product of operators parallel
to the xy plane, evaluated at times t for OΓ and t ± ϵ for U(Σ, α) and U †(Σ, α)
respectively. We evaluate the whole expression at time t to be U(Σ, α)OΓU

†(Σ, α).
We view this as a linking between Σ and Γ in spacetime (corresponding ℓ(Σ,Γ) = 1
in this scenario), by using the topological invariance of

∫
Σ
⋆J to smoothly deform

(a) into (b) [15]. Figure adapted from [16].

be the charged objects under the 1-form symmetry of the Maxwell theory was due
to their gauge invariance. Generally, we can consider any 1-dimensional charged
operator which intersects/links with Σ in an unavoidable way (viz. Γ and Σ in Fig.
4.1, the symmetry operator cannot be smoothly deformed past the charged oper-
ator such that they would become disjoint, meaning U(Σ, α)OΓU

†(Σ, α) ̸= OΓ).
10

Additionally, since we are working with a 3-dimensional theory, the symmetry op-
erator, which is still codimension-2, is now 1-dimensional. This means that we can
take it to be supported on the circle S1 such that we could more clearly picture
the linking between the two manifolds Γ and Σ.

10Meaning that, in fact, we can also consider lines supported on the boundary (or at infinity)
to also be charged under such a symmetry. In saying this, we aim to mention that Wilson lines
with endpoints on the boundary are also gauge-invariant but this requires a careful treatment
of the boundary conditions which is why we chose, for simplicity, to focus on Wilson loops for
our discussion of the Maxwell theory. It is worth noting that these operators are closely related
to the notion of asymptotic symmetry for which we understand the shift to be by a p-form that
has support at infinity. See [14] for a treatment of Wilson lines and boundary effects.
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Chapter 5

Spontaneous Symmetry Breaking

We have seen that our understanding of ordinary symmetries can be generalized
by considering charges carried by p-dimensional operators (and hence extending
our notion of currents to (p+1)-form ones). As with ordinary symmetries, higher-
form symmetries can be spontaneously broken which leads to the existence of
Nambu-Goldstone (NG) bosons [3]. In this framework, we understand the photon
to be the NG boson of the spontaneously broken 1-form symmetry of the Maxwell
theory!

In this chapter we only discuss the salient points behind the idea of symmetry
breaking before specializing to the 1-form Maxwell case. For a more thorough
introduction, the reader is advised to consult [17] or [18].

5.1 Discrete symmetries

We start in the same vein as [19] and consider the simple physical example of a
thin, circular rod sitting vertically on a table pushed down along its length with
a force F⃗ . If F⃗ is small, the rod remains unbent and retains its invariance under
rotations about its axis. If F⃗ exceed some critical value F⃗crit, it bends in a plane
chosen at random. The new ground state of the rod is no longer symmetric under
rotations. While the rod bends in only one of the many degenerate configurations,
the others can be reached through a rotation. This example aims to to show
the context in which symmetry breaking occurs: once a parameter goes beyond a
critical value (F⃗crit here), the system becomes unstable and the new ground state
is now degenerate and no longer invariant under the symmetry [19].

In order to illustrate Spontaneous Symmetry Breaking (SSB) in a relativistic
system, we consider the scalar ϕ4 theory with Lagrangian

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − λ

4!
ϕ4, (5.1)

where m and λ are temperature dependent [17]. We take that for a certain critical
temperature T > TC : m

2 > 0 while for T < TC : m
2 < 0 [17]. For T > TC , the

potential V = −Lint =
1
2
m2ϕ2 + λ

4!
ϕ4 has a minimum at ϕ = 0.
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For T < TC , in our Lagrangian, we make the change m2 → −m2 (such that
m2 is still positive) and obtain

L =
1

2
∂µϕ∂

µϕ+
1

2
m2ϕ2 − λ

4!
ϕ4. (5.2)

In this scenario, our potential V has a local maximum at ϕ = 0 and is unstable.
On the other hand, the other minima can be found from

∂V

∂ϕ
= m2ϕ− λ

6
ϕ3 = 0 ⇒ ϕ = ±

√
6m2

λ
= ±v. (5.3)

We can expand our field around one of the minima, ϕ =
√

6m2

λ
+ ϕ̃, with the

Lagrangian taking the form

L =
1

2
∂µϕ̃∂

µϕ̃+
3m4

λ
−m2ϕ̃2 −

√
λ

6
mϕ̃3 − λ

4!
ϕ̃4. (5.4)

The initial Lagrangian (5.2) had the Z2 symmetry ϕ → −ϕ. Once we expand
around the new minimum, we say that the symmetry is spontaneously broken
since it looks like (5.4) is no longer invariant under the symmetry ϕ̃ → −ϕ̃, it is
”spoiled” by the ϕ̃3 term. However, the symmetry is still there but is ”hidden”,
it is now realized nonlinearly as ϕ̃→ −ϕ̃− 2v [17].

Generally, we identify SSB from the Vacuum Expectation Value (VEV) of the
appropriate order parameter (in the example from above, this is simply the field
ϕ). We identified two minima, so there must be two different vacua: |Ω+⟩ such
that ⟨Ω+|ϕ|Ω+⟩ =

√
6m2/λ and |Ω−⟩ with ⟨Ω−|ϕ|Ω−⟩ = −

√
6m2/λ. The Z2

symmetry took ϕ → −ϕ so it must also take |Ω+⟩ → |Ω−⟩ and while the two
vacua are equivalent, the system has to choose one or the other [17].

5.2 Continuous symmetries

Continuous global symmetries which, by Noether’s theorem, are associated to a
conserved current ∂µJ

µ = 0 are particularly interesting in a SSB framework. This
is owed to Goldstone’s theorem which we state without proof1: The spontaneous
breaking of a continuous global symmetry implies the existence of massless bosons
[2]. For ordinary symmetries, we can create a 1-particle NG boson state from
the vacuum by acting with the symmetry current corresponding to the broken
symmetry

⟨Ω|Jµ(x)|p⟩ = pµe
ip·xf, (5.5)

with f a constant [6].
To get an intuitive understanding of why this is true, consider the linear sigma

model, with ϕ now a complex scalar field, as outlined in [17]. The Lagrangian is
given by

L = (∂µϕ
⋆)(∂µϕ) +m2ϕϕ⋆ − λ

4
ϕ2ϕ⋆2. (5.6)

1For a proof the reader is advised to consult [18] for ordinary symmetries or [14] for the case
of higher-form symmetries.
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The symmetry in this case is U(1) and acts as ϕ(x) → eiαϕ(x). The potential
V = −m2|ϕ|2 + λ

4
|ϕ|4 is once more unstable for ϕ = ϕ⋆ = 0 and instead we find

the minimum to be

∂V

∂ϕ
= −2m2|ϕ|+ λ|ϕ|3 = 0 ⇒ |ϕ|2 = 2m2

λ
. (5.7)

We interpret this to mean that there are an infinite number of equivalent vacua

|Ωθ⟩ such that ⟨Ωθ|ϕ|Ωθ⟩ =
√

2m2

λ
eiθ.

To expand around the vacuum, we parameterize ϕ(x) in terms of two real fields
σ(x) and π(x) [17]

ϕ(x) =

(√
2m2

λ
+

1√
2
σ(x)

)
e
i
π(x)
Fπ , (5.8)

with Fπ a real number. In terms of the new fields, the Lagrangian takes the form

L =
1

2
(∂µσ)

2 +

(√
2m2

λ
+

1√
2
σ(x)

)2
1

F 2
π

(∂µπ)
2

−
(
−m

4

λ
+m2σ2 +

1

2
m
√
λσ3 +

1

16
λσ4

)
.

(5.9)

This Lagrangian describes two particles, a massless one π and a massive one σ. We
visualize this in terms of the excitation of the Mexican hat (wine bottle) potential
shown in Figure 5.1. The massive σ field is visualized as radial excitations for which
displacements against the restoring force of the potential will cost energy. This
is typically associated with the Higgs boson. Meanwhile, the π field corresponds
to excitations along the equipotential minimum (the degenerate vacua) and the
associated particle is massless, i.e. the NG boson [18]!

NG bosons are closely associated with shift symmetries [17]. To explicitly see
this, consider the action of the broken U(1) symmetry (ϕ(x) → eiθϕ(x)) with ϕ(x)
parameterized in terms σ(x) and π(x) (5.8). The symmetry is now once more
nonlinearly realized as

π(x) → π(x) + Fπθ, (5.10)

leaving σ(x) invariant. Additionally, we see that this is also a symmetry of the
Lagrangian (5.9). This can be used to place a constraint on the model even if
the full theory which is spontaneously broken is not known, namely that the shift
symmetry prohibits a mass term for π(x) [17].

5.3 The Maxwell one-form symmetry

We turn now to the SSB of higher-form symmetries and, for concreteness, consider
the breaking of the one-form symmetry of Maxwell’s theory (in 4 dimensional
spacetime).
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Figure 5.1: The Mexican hat potential. The second derivative of the potential
gives the mass squared of the particles. Displacements about the minimum of the
potential are decomposed into two modes: a massless one (solid line, the π) and
a massive one (dashed line, the σ). Figure adapted from [17].

A key insight is that the appropriate order parameter which distinguishes be-
tween different phases of the theory is now the VEV of the Wilson loop ⟨W (γ)⟩
[3].2 Generally, ⟨W (γ)⟩ depends on geometric properties of γ such as either the
minimal area bounded by the curve A(γ) or its perimeter L(γ). For area law scal-
ing, the expectation value of the Wilson loop rapidly goes to zero as the size of the
loop increases and we say that the symmetry is unbroken. On the other hand, for
a perimeter law (or any scaling milder than this, as will be shortly introduced) we
interpret the one-form symmetry to be spontaneously broken. Then, for a large
loop γ, we effectively have3

⟨W (γ)⟩ ∝ e−A(γ) ⇒ ⟨W (γ)⟩ = 0

⟨W (γ)⟩ ∝ e−L(γ) ⇒ ⟨W (γ)⟩ ≠ 0.
(5.11)

It is useful to consider a simple yet surprisingly illuminating example which
shows the relation between the expectation value of the Wilson loop and the
potential between two charged particles. Consider the loop γ shown in Figure
5.2, we interpret it as the creation of a static particle-antiparticle pair (viz. the
particles can only propagate in time and no kinetic terms can be attributed to
them), separated by a distance r = R, which propagate forward for a time T
after which they annihilate back to the vacuum. We find ⟨W (γ)⟩, for the given
loop, by looking at the euclidean path-integral which, for long times, projects our
system to the lowest energy state [12].4 Before the particles appear, and after they

2Equivalently, the VEV of the ’t Hooft loop H(γ) if working in the dual description.
3One could argue that, for large loops (r → ∞ in (5.14) (5.16)), both expectation values will

vanish. However, for the perimeter (or milder) scaling, the operator can be redefined by adding
a counterterm along the loop such that the expectation value is nonzero for arbitrarily big loops
[6], [20]. Conversely, if the scaling is faster than a perimeter law this can not be done [14].

4We do not show explicitly this derivation as it falls beyond the scope of this thesis. Never-
theless, we refer to [21] for a wonderful derivation of this and some of the results which follow.
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disappear, there is only the vacuum which we take to be the ground state of the
system and hence the one with zero energy. However, in the presence of the two
sources, the ground state of the system has an energy V (r), corresponding to the
inter-particle potential. Thus, one finds [21]

⟨W (γ)⟩ ∝ lim
T→∞

e−V (r)T . (5.12)

Meaning that we can compute the potential as the following limit

V (r) = − lim
T→∞

1

T
ln⟨W (γ)⟩. (5.13)

Figure 5.2: Wil-
son loop describing
static particles sep-
arated spatially by
distance R and prop-
agating for time T .

We aim to emphasize the importance of this result. In
the framework of lattice gauge theory, one views the Wil-
son loop as the product of link variables along a given con-
tour which means that, in principle, the potential between
two charged particles can be calculated by using numerical
methods [21].5

We can discuss now the expectation values of the Wil-
son loop associated to Figure 5.2. Suppose it has an area
law

⟨W (γ)⟩ ∝ e−σTr, (5.14)

by virtue of (5.13), it leads to a potential that grows lin-
early with the distance

V (r) = σr, (5.15)

for some σ that has dimensions of energy per length.
If the loop has a perimeter law, the associated potential

is constant6

⟨W (γ)⟩ ∝ e−ρ(T+r) ⇒ V (r) = ρ. (5.16)

Finally, we consider a case which we did not mention before, but which is
relevant to our discussion of Maxwell’s theory. This is the Coulomb behaviour
with scale-invariance on the parameters of the loop which decays milder than the
perimeter law (and hence also signals a broken phase) [22]. The expectation value
depends on the ratios r/T and T/r, for which we find

⟨W (γ)⟩ ∝ e−α
T
r
−β

r
T ⇒ V (r) =

α

r
. (5.17)

This is nothing else than a Coulomb-like potential.

5We note in passing that a similar procedure can be employed in Quantum Chromodynamics
(QCD) in order to test for confinement by finding the interquark potential.

6In the context of confinement, we refer to this as a deconfining phase since the energetic cost
of separating two charges at large distances is finite. Conversely, for the case with V (r) = σr,
the potential is said to be confining.
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Having said this, we can turn back to our discussion of Maxwell’s theory where,
unsurprisingly, two probe particles experience a Coulomb potential V (r) ∝ 1

r
.

Therefore, our one-form global symmetry is spontaneously broken and the system
should have Goldstone bosons. In fact, we now understand this NG boson to be
nothing else than the photon [3]! Moreover, we understand the shift by a flat form
A→ A+ λ, identified for the one-form symmetry (4.18), to be the generalization
of the familiar shift by a constant π → π+ c, discussed in the context of the linear
σ-model (5.10) [14].7

Recall that, in terms of components, the current corresponding the sponta-
neously broken symmetry is nothing else than the field strength tensor Jµν = Fµν

(4.11). This suggests that we can check whether the photon is indeed the NG
boson by acting with the two-form current on the vacuum, and checking its over-
lap with the one photon state, similarly to (5.5). This is an exercise in Quantum
Electrodynamics (QED) which falls beyond the scope of this work, but for which
we refer to [14] and [22] for details. In doing so, one obtains a non-zero overlap
between the vacuum and the single photon state

⟨Ω|Fµν |ϵ, p⟩ ∝ ϵ[µpν]e
ip·x, (5.18)

with ϵ the photon’s polarization and p its momentum.8 Typically, when there is a
massless scalar field in a theory, the usual underlying reason is that of Goldstone’s
theorem. Here, we see that this reasoning can also be applied to explain why the
photon is massless, provided that we extend the theorem’s validity to higher-form
symmetries.

Before concluding this section, we aim to touch on some subtle questions.
The keen eyed reader might wonder what is the fate of the magnetic symmetry,
after all we identified that Maxwell’s theory has U(1)(1)e × U(1)

(1)
m global one-

form symmetry. The answer is that both9 symmetries are spontaneously broken
[3], [12]. However, an immediate follow up question arises: To the breaking of
which symmetry does the photon correspond? In our discussion of the linear σ
model (in analogy to which we look at the one-form symmetry) we had a breaking
G = U(1) → H = {1} and one NG boson. As a consequence, we could naively
think that there are two NG bosons (of which one the photon), corresponding
to the breaking of the two symmetries. However, due to electromagnetic duality,
there is only one NG boson (hence only the photon) corresponding to either of the
symmetries (i.e. we can give rise to a one photon state by acting on the vacuum
with either the electric or the magnetic current [3]).

Additionally, we should note that based on our analysis, the free Maxwell
theory is always spontaneously broken since we only associate to it the Coulomb

7The generalization for p-form symmetries, with p > 1, is then simply understood as the shift
of a p-form field A by a flat p-form λ (dλ = 0). The transformation is now classified by the p-th
cohomology group λ ∈ Hp(X).

8We understand the single photon state to be the one created by the appropriate creation
operator |ϵ, p⟩ = aϵ(p)

†|Ω⟩, with ϵ representing the physical polarizations [22].
9By working with the dual theory, the discussion for the magnetic symmetry and the fate of

the ’t Hooft loop H(γ) follows completely analogously to the one described above for the Wilson
loop.
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potential and respectively the deconfinement of charges. We believe that, while
surprising at first, this is simply indicative of an incomplete theory which does
not model the existence of a symmetric phase to which phase transitions could
happen. Notably, this is contrary to the view of [12] and [20] which see the
superconducting phase as the symmetric one, with the photon having an effective
mass. For completeness, we offer a few comments on this. Firstly, we do not view
the superconducting phase as belonging to the model studied here, i.e. the free
field theory (4.10), and argue that, if dealing with superconductors, one has to
study the Landau-Ginzburg theory and is no longer in the free field regime (see
[17] for a short exposition on this). On the other hand, in a superconductor, the
electrons form Cooper pairs and the photon has short-range correlations. It is
argued by [12] that, in this scenario, the energetic cost of separating two particles
(similarly to the case of Figure 5.2) is

V (r) = σr, (5.19)

with the flux lines between the particles forming collimated tubes. If this were
the case, we can see based on our discussion around (5.14) that we would indeed
understand this as the symmetric phase of the theory (Wilson loop would have an
area law). Nevertheless, we view this in a speculative light and postpone a more
complete discussion for future work.

Finally, we mention one aspect in which the breaking of higher-form symmetries
is different from that of ordinary symmetries. In the usual scenario, the explicit
breaking of a spontaneously broken continuous 0-form symmetry gives a mass to
the Goldstone boson10, this typically happens if the symmetry is not exact or if
it is gauged [17]. By adding charged matter (either electric or magnetic) to the
Maxwell theory we explicitly break the symmetries as the underlying conservation
laws are no longer true and take the form

1

e2
d⋆F = Je ,

1

2π
dF = Jm. (5.20)

Perhaps concerningly, at a first glance, this might seem to suggest that the photon
would gain a mass if charged matter is added to the theory. However, this is not
the case. A simple argument for this is that generally, one can only add local
operators to the action but only non-local objects are charged under the higher-
form symmetry (i.e. p ≥1) [16].11 Because of this, the pseudo-Goldstone boson
of a higher-form symmetry remains massless even if the symmetry is explicitly
broken! We consider this aspect beyond the scope of this thesis and refer to [23]
for a more detailed discussion.

10A concrete example of this is the pion which we understand as the pseudo-Goldstone boson
of the chiral Lagrangian of QCD, with only up and down quarks, for which the chiral symmetry
(SU(2)×SU(2)) is not exact due to the quark masses [17].

11The fact that local objects are uncharged under a higher-form symmetry follows from our
discussion at the end of Section 4.3.
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Chapter 6

Conclusion

In this thesis we reviewed higher-form symmetries, with an emphasis on Maxwell’s
theory (free field case), concluding that the photon can be interpreted as the NG
boson of a SSB one-form symmetry. This allows us to explain the masslessness of
the photon in the framework of SSB, without having to appeal to what we view as
the more dire interpretation of the spontaneous breaking of the Lorentz symmetry
[4]. This was done by formulating symmetries in the language of operators and
extending our notion of currents and charged objects to ones of higher dimension-
ality. Subsequently, by treating the VEV of the Wilson loop as the appropriate
order parameter of the one-form symmetry, we have seen that for the U(1) gauge
theory (i.e. electromagnetism, with a Coulomb potential) ⟨W (γ)⟩ ≠ 0 and hence
signals that the theory is always in a broken phase. By using this information in
tandem with Goldstone’s theorem, we arrived at our conclusion, namely that the
photon can indeed be interpreted as the NG boson of a broken one-form symmetry.

We aim to emphasize that most of our discussion, specifically for the SSB of the
one-form symmetry, was done in analogy to the previously existing σ model and
it does not offer an intrinsic and complete description (this is further reinforced
by the conclusion that the symmetry is always spontaneously broken). Addition-
ally there are still some open questions such as the number of Goldstone modes
resulting from the SSB or the existence of a symmetric phase (at least for the free
field case), for which (to the best of our knowledge) there does not seem to be an
answer in literature.

Finally, our discussion has mostly revolved around the U(1) gauge theory.
According to [3], higher-form symmetries also exist in general Yang-Mils theory
(with generic gauge group SU(N)) and they are associated to the center symmetry
(ZN). It would be thus interesting to analyse the implications of this and the
process of constructing symmetry operators for discrete symmetries. Additionally,
our discussion of the magnetic symmetry has been rather superficial and it would
be helpful to gain a better understanding of the interplay between the electric and
magnetic symmetry and the consequences of the two dual descriptions.
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